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ABSTRACT 
Nowadays, 1 in 36 children is diagnosed with autism spectrum 
disorder (ASD) according to the Centers for Disease Control and 
Prevention (CDC) [52], which makes this condition one of the most 
prevalent neurodevelopmental disorders. For children on the autism 
spectrum who face substantial developmental delays, the trajectory 
of their cognitive growth can be markedly improved by interven-
tions if the condition is identifed early. Therefore, there is a critical 
need for more scalable screening and diagnostic tools, as well as the 
need to improve phenotyping to refne estimates of ASD symptoms 
in children. Here, we introduce AI4Autism: a 4-year project funded 
by the Swiss National Science Foundation, which aims to address 
the needs outlined above. In this project, we examine the potential 
of digital sensing to provide automated measures of the extended 
autism phenotype. This is accomplished using multimodal tech-
niques based on computer vision and Internet of Things sensing, 
for the purpose of stratifying autism subtypes in ways that would 
allow for precision medicine. We present an overview of our main 
results so far, introducing datasets and annotations that we intend 
to make publicly available, as well as methods and algorithms for 
analyzing children’s behaviors and producing an ASD diagnosis. 
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1 INTRODUCTION 
Autism is a prevalent lifelong neurodevelopmental disorder char-
acterized by defcits in communication (e.g. language delay) and 
reciprocal social interactions (e.g. turn-taking in conversations), 
and by the presence of restricted and repetitive behaviors and inter-
ests (e.g. hand-fapping) [1]. The term spectrum in ASD is used to 
refer to the wide range of possible symptoms and their perceived 
severity. The level of intellectual and adaptive functioning is highly 
variable, as well as the level of functioning in the diferent areas of 
life in adulthood (e.g. relationships, education, employment). 

Autism often becomes evident in the frst 3 years of childhood, 
although it can sometimes remain undiagnosed until adulthood 
when the symptoms are more subtle. For children with a larger 
developmental delay, getting a proper and early diagnosis is of 
critical importance for access to early intervention programs that 
have a tremendous impact on the child’s long-term outcome [27]. 
It is indeed now widely recognized that early intervention has the 
potential to substantially transform the future of afected children 
[27, 59, 77, 93], and that there is a direct relationship between the 
age at the start of the intervention and the outcome [93]. Even in the 
absence of a specialized intervention program, an earlier diagnosis 
is associated with a signifcantly better outcome, as parents can 
learn how to optimally support the development of their child. 

In addition to screening, there is also an important need to better 
understand and delineate the whole spectrum of ASD. Clinicians 
currently lack insights and methods to best stratify between difer-
ent autism sub-types, which could then be associated with a dif-
ferent prognosis or sensitivity to treatment [6]. This motivates the 
need for having a more granular strategy for autism characteriza-
tion, taking into account the intricacies of symptoms, hence moving 
towards precision medicine, i.e. tailoring intervention strategies to 
the specifc characteristics of each individual [20]. 

Recent developments in digital sensing and machine learning 
have ofered opportunities for seamless sensing of body movement, 
social scene capture, and measure of object manipulation. Despite 
considerable eforts, most studies in computational behavior coding 
and digital phenotyping for autism have sufered from the following 
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Figure 1: Key elements of the AI4Autism project. 

limitations: 1. modest sample sizes, 2. mono-modal approaches, 3. 
focus on eliciting specifc behaviors by largely controlled prompts, 
and 4. technical difculties related to behavior sensing (viewpoints, 
children population, image resolution for gaze). 

The AI4Autism project is an interdisciplinary project combining 
the skills of experts in clinical research, engineering, and computa-
tional social sciences in order to address these technical, scientifc, 
and clinical limitations. An overview of its main aspects is given in 
fgure 1. First, from a clinical research perspective, the project is 
grounded on the Geneva Autism Cohort consisting of more than 
450 young children with ASD and their age-matched typically de-
veloping (TD) peers, extensively assessed with standardized clinical 
and cognitive assessments. Our aim is to design digital tools for 
screening, behavioral coding, and automated profling of autism 
phenotypes, testing them frst in a controlled setting with well-
established clinical protocols, before deploying them to ’in the wild’ 
feld environments, such as daycare centers. 

Digital sensing encompasses two approaches to be combined 
down the road: 1. With Internet of Things (IoT) sensors, investigate 
the monitoring of fne-grained motor skills developments of very 
young children, through the integration of inertial and low-cost 
Ultra-Wide-Band (UWB) indoor localization data. 2. Leveraging the 
availability of large behavioral and clinical annotation data, develop 
novel computer vision and multimodal machine learning methods 
for the analysis of motor-gaze coordination patterns, and for ASD 
diagnosis and profling, with a focus on interpretable models. 

In the remainder of this manuscript, we frst present the main 
aims of the project (Section 2), before delving into our methodolog-
ical approach, and how it contrasts with the current state of the 
art in digital phenotyping for autism (Section 3). Next, we moti-
vate and describe the three datasets collected and their annotations 
(Section 4). Finally, we present the diferent computational models 
we have developed so far (Section 5), before concluding the paper 
with a summary and an overview of future works (Section 6). 

2 PROJECT OBJECTIVES 
The AI4Autism project has been designed to develop tools for auto-
mated behavioral coding and digital phenotyping of autism. The 
objective is to extract and comprehend the most relevant features 
for detecting non-verbal social and motor behaviors, which are key 
for diagnosing autism [2, 15, 30, 72, 91]. This approach is particu-
larly suited for screening very young children (age 1 to 4), as the 
features that distinguish children with ASD from their typically 
developing peers are largely non-verbal at this age [26, 50, 51]. Our 
main aims are the following: 
Aim 1: better stratifcation of ASD subtypes. From a clinical 

perspective, one goal is to study whether the fne-grained quantif-
cation of the child’s behavior in a controlled setting can actually be 
exploited for better stratifying diferent autism sub-types, which 
is not possible with the current gold standard [35]. We expect that 
such stratifcation that goes beyond current clinical approaches can 
trigger the discovery of previously undetected autism sub-types, 
associated with a diferent prognosis, sensitivity to treatment, or 
neuro-biological mechanisms. 
Aim 2: build a large-scale curated database of manual annota-
tions of behaviors in preschoolers with autism. Intensive man-
ual annotations still represent the only way to obtain a fne-grained 
quantifcation of specifc autism symptoms. Drawing inspiration 
from the ADOS coding protocol, we set out to perform intensive 
fne-grained annotations of non-verbal behaviors, like joint atten-
tion, gestures, coordination of visual contact with other nonverbal 
behaviors, or play behaviors. Such annotations will be used for the 
study in aim 1, and serve as a basis for training computer-vision 
and IoT ASD profling machine learning approaches (aim 3). 
Aim 3: designing tools for automated ASD identifcation and 
digital phenotyping in young children under controlled con-
ditions. Considering the need for robust automated and unbiased 
screening approaches, we investigate interpretable multimodal deep 
learning techniques (computer vision and IoT) for the recognition 
of ASD behavioral patterns related to free play activities and the 
coordination between gaze and posture/gestures, and obtain an 
automated classifcation between ASD and non-ASD, as well as a 
digital ASD profle. To build these tools, we will primarily work on 
data collected to analyze specifc behaviors in clinical conditions, 
following specifc assessment structures (ADOS), based on study 
samples that are clearly either ASD or typically developing (TD). 
Diferent methodological frameworks will be investigated here, as 
described in the next subsections. 
Aim 4: validating and generalizing models and tools for ASD 
screening at large. While clinical data represents an important 
scientifc step to obtain relevant datasets with annotations for both 
ASD profle and ground-truth behaviors, our aim is to design mod-
els working in more challenging conditions, from several perspec-
tives: sensing, with more versatile recording structures such as 
mobile cameras or IoT set-ups and variable viewpoints or lighting 
conditions; diferent assessment protocols (less structured, shorter, 
etc); or less clearly defned clinical populations, e.g. children sus-
pected of having autism seeking diagnosis in an outpatient clinic. 
These individuals might have autistic traits, or other comorbid con-
ditions, departing from clear-cut research samples composed of 
well-separated positives and negatives. To demonstrate the scala-
bility of our approach, we aim to validate models in the “real life” 
conditions of an outpatient clinic or directly in daycare centers. 

3 RESEARCH DIRECTIONS 
Several key elements need to be investigated to address the above 
aims. The frst one, which we discuss in Section 4, is related to the 
creation of useful annotated datasets to enable clinical research, de-
veloping machine learning methods, and open science. The second 
one is the overall strategies for designing clinical and computational 
methods. In the following, we introduce the main limitations of the 
state-of-the-art from diferent perspectives and present the general 
approach we take to address them. 
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3.1 Clinical Perspective 
Practices and limitations in autism screening and profling. 
Autism spectrum disorder is a clinical diagnosis that relies on cri-
teria described in the Diagnostic and Statistical Manual of Mental 
Disorders [1]. Early symptoms usually include altered modulation 
of eye contact and diminished engagement in social interactions, 
whereas non-social symptoms include altered quality of play, repet-
itive behaviors, mannerisms, and sensory issues. As the child devel-
ops language, he/she can often express himself with stereotyped 
language, echolalia, altered prosody, and show difculties in turn-
taking conversations. In short, ASD symptoms can present in a 
large variety of ways, depending on age and cognitive abilities. 

Regarding screening, approaches largely rely on parent question-
naires given by primary healthcare practitioners, which are thus 
infuenced by the subjective assessments in parents’ reports [82], 
yielding suboptimal screening sensitivity [10]. Furthermore, their 
use depends on the level of training of these practitioners [25, 40]. 
To ensure unbiased access for each child, several authors advocate 
that screening should happen directly in childcare centers rather 
than in healthcare practices [23, 41, 46, 89]. This would, however, 
imply large-scale training of daycare workers. In this context, be-
havioral sensing tools clearly hold a promise to support autism 
screening [21, 75], in an automated, unbiased, and scalable manner. 

Another critical challenge is to provide clinicians with relevant 
autism sub-types that could be associated with diferent prognoses 
[6]. Currently, the best clinical and research practice for autism 
phenotyping relies on an observational scale, the Autism Diagnostic 
Observation Schedule (the ADOS-2, [50]). It consists of a 45-60 min 
observational assessment completed by a highly-trained clinician 
that aims at creating a playful environment to elicit social behav-
iors, and rating behaviors on a scale of 0 to 3 following very strict 
and standardized procedures. While extremely useful for clinical 
practice standardization, the relatively coarse symptom granularity 
measure prevents and restricts the use of these tools to monitor the 
change over time. Therefore, digital tools for extended phenotyping 
carry the promise to gather more comprehensive sets of measures 
for autism symptoms on a continuous scale. 
ASD digital stratifcation. As stated above, the current gold-
standard diagnostic assessment ADOS relies on manual coding by 
expert clinicians, and only provides a semi-quantitative assessment 
of autism symptoms. Following the deep phenotyping principle, 
which aims to gather information about disease manifestations 
in a more individual and granular way [22, 87], we can achieve a 
more fne-grained quantifcation of these symptoms. This approach 
holds the potential for delineating autism sub-types and develop-
ing personalized medicine for autistic individuals [7]. Currently, 
such fne-grained descriptions of autism symptoms however largely 
rely on labor-intensive manual annotations by experts. A better 
delineation could help to provide more individualized interven-
tion strategies for autistic children. Indeed, current intervention 
strategies in younger autistic children rely on play-based behavioral 
intervention. Despite the general positive gain associated with such 
methods [27, 78], their benefts remain variable from one child to 
another [64, 85]. There is currently little knowledge on which type 
of intervention better works for each child [84]. We thus critically 
need to identify relevant autism subgroups that better respond to 

each intervention type. In this endeavor, we advocate deep pheno-
typing, in particular the one provided by digital phenotyping, which 
has the potential to provide us with meaningful autism subgroups. 
We thus aim to develop a comprehensive stratifcation strategy for 
automated quantifcation of a large variety of autistic symptoms, 
with a particular focus on preschool age. 

3.2 Computational Perspective 
Computer vision and behavior recognition methodology. The 
use of computer vision to obtain objective and quantitative stan-
dardized observations supporting the diagnosis of ASD children is 
relatively young. Earlier work used to rely on high-end screen-based 
eye trackers [43, 44, 67, 73]. Recently, research works have emerged 
to analyze children’s behavior in more ecological settings, includ-
ing real interactions [72]. Due to the prevalence of attention and 
emotional defcit in ASD children, a vast majority of research has 
been dedicated to the measurement of these two cues [2, 16, 65, 72]. 
Most earlier works used head pose as a proxy for gaze [18] and 
were facing the sensor placement issue with moving children. To 
alleviate this problem, wearable sensors have been proposed either 
by instrumenting the child with an eye-tracking sensor [58], facing 
issues with the compliance of the kids, or using a sensor worn 
by the experimenter/clinician [16], allowing for the extraction of 
more accurate attentional cues (e.g. eye contact). Regarding motor 
gesture analysis for ASD, [92] is the only work we are aware of, but 
it relies on a very contrived diagnosis pipeline (i.e. voice prompt, 
imposed starting hand pose and position), and with school-aged 
children (i.e. 10 years old). 

In terms of settings, most research targeted standard face-to-face 
clinician-child or parent-child interaction sessions. Other diagnosis 
settings include social robots, seen as simpler interaction partners 
that can elicit desired behaviors to train or test children’s responses 
[2]; Kinect sensors to measure social defcits in children with ASD 
[11]; or as an attempt to dramatically scale the screening process 
of ASD for children, mobile healthcare sensors combining afective, 
attention, and basic name-call stimuli head rotation reactions [39]. 
None of the above has considered natural interactions in open 
settings like ADOS, as we do. 
Investigated strategies. In this project, we investigate two difer-
ent approaches for autism analysis, as shown in Fig 2: 
(1) one-stage detection from raw inputs; 
(2) a compositional approach which frst identifes (or exploits as a 
supervision signal) low-level cues (e.g. gestures, gaze), which can 
then be used to predict ADOS-2 score items and the ASD diagnosis. 

The idea behind the frst method is to operate directly on image 
sequences from ADOS-2 sessions or on standard modalities ex-
tracted from them (e.g. pose, depth) using of-the-shelf pre-trained 
models, and to classify whether the patient is ASD or TD (see 
Section 5.1 and [45]). While it ofers the beneft of avoiding the 
need for behavioral annotations and discovering specifc patterns, 
this approach sacrifces interpretability. There’s also a risk that 
models trained this way might rely on contextual elements from 
the session environment (e.g. the clinician’s attitude toward the 
child) that could indicate a diagnosis, rather than solely on the 
child’s observable behaviors. The second approach adopts a two-
step process where we frst model relevant motor coordination 
behavioral patterns related to posture, gestures, gaze, attention and 
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Figure 2: Two diferent approaches for ASD analysis, which can both be trained end-to-end. In green (top), directly inferring 
the ASD diagnosis and scores from multiple features extracted from the raw video sequences. In blue (bottom), the network 
architecture includes intermediate modeling of several behavioral cues, which can lead to more interpretable diagnoses. 

communication, interactions or play activities, which are used in a 
second stage to infer the ASD binary label or build a relevant ASD 
profle from the ADOS-2 items. A major beneft is to enable the 
quantifcation of these behaviors, which in turn can help uncover 
semantically meaningful ASD profles. 
IoT sensing. One of the methodologies we investigated involves 
the analysis of play behaviors. Play, in fact, is an instinctive need for 
humans. It correlates with a healthy development process. Playing 
development and types of play – functional and symbolic – are 
strictly related to children’s abilities and development. Many models 
exist to describe the relationship between children’s play and their 
development [56, 61]. However, the literature focuses mostly on 
populations older than two years old [5] with a strong focus on the 
child’s social, emotional, and cognitive development [14, 86], with 
little attention devoted to the sensory-motor aspect of play [80]. 

In this project, we focus on studying children’s play behaviors 
from the perspective of sensory-motor developments: we target 
very small children, exploit a non-invasive innovative approach 
based on toys’ inertial measurements, UWB-based localization, and 
video analysis, and collect statistically signifcant data to provide 
meaningful results directly applicable in clinical practice. This ap-
proach allows for a more fne-grained, objective, and automated 
analysis of play behavior, converging in the recognition of play 
patterns relevant to the analysis of children’s neurodevelopmen-
tal disorders. Our goal is to exploit this IoT-based play analysis 
methodology as a support for traditional social and health research. 
It provides the technological tools allowing quantitative answers 
to questions like: “How and for how long does a child interact 

with a toy?”, and “How do the child-toy interactions evolve with 
time?”, hence deriving precise children play behavioral models and 
measures that can be related to clinical data. 

4 DATASETS 
Datasets are the cornerstone of our research. In this section, we 
introduce the diferent datasets that we have collected, along with 
their purposes and annotation protocols. Given our aims, on the 
one hand, we need clinical data in sufcient amounts to assess 
methods as well as research novel ASD stratifcations. To this end, 
we mainly rely on the Geneva Autism cohort (see description in the 
introduction and Section 4.1). On the other hand, we need data with 
behavioral annotations in order to train machine learning models. 
To address the latter, we rely on both publicly available benchmarks 
(ChildPlay dataset, Section 4.3) which can be disseminated for re-
search, as well as autism-relevant data, as behaviors exhibited in 
such cases can be pathological (see sections 4.1). 

4.1 UniGe ADOS Dataset 
Motivation. ADOS, the current gold-standard diagnostic assess-
ment for autism, relies on manual expert coding and provides a 
semi-quantitative assessment of autism symptoms. As our goal is to 
investigate the development of a fully automated methodology to 
better quantify autism symptoms following the principles of deep 
phenotyping, we aim to more densely annotate such ADOS ses-
sions to investigate our research questions, from both the clinical 
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perspective (see ASD stratifcation in aim 1 and Section 3.1) and 
behavior computational perspective (see aim 3 and Section 3.2). 
Data Collection. Children included in this project are assessed 
within the context of the Geneva Autism Cohort, [31, 47, 68]. which 
employs a comprehensive phenotyping strategy combining stan-
dardized clinical tools with neuroimaging and digital phenotyping 
tools. Within this framework, autistic symptoms are evaluated us-
ing the ADOS protocol [26, 50, 51]. The ADOS comprises diferent 
modules specifcally designed to elicit and observe autism symp-
toms at various developmental and language levels of individuals. 
These modules assess approximately 30 specifc behaviors and as-
sign scores on a scale ranging from 0 (no evident symptom) to 3 
(very strong evidence of symptomatology). The coding process is 
closely intertwined with the assessment, as clinicians take notes 
during the evaluation, and the coding progression actively shapes 
the session fow. The ultimate objective is to obtain a fully scored 
session based solely on live interaction. 
Annotation Protocol. Taking inspiration from the ADOS coding 
scheme, we designed an annotation protocol focusing on behav-
iors primarily characterized by nonverbal components, which is 
well suited to be used with computer vision tools. In the ADOS, 
coding thresholds for each behavior are determined based on their 
frequency, with more stringent thresholds applied to behaviors that 
are less prevalent in the general population and vice versa. For 
instance, for high-frequency behaviors like the initiation of joint at-
tention, the absence of at least one clear example of a three-step joint 
attention behavior (involving visual contact and/or vocalization or 
gesture) within a single ADOS session is considered indicative of 
a symptom in this area. Once a child demonstrates such behavior 
or multiple repeated instances, the ADOS does not diferentiate 
further in its scoring. With our adapted annotation protocol, our 
aim is to enhance the measurement granularity by documenting all 
instances of a given behavior, along with their duration. A video 
annotation sheet sample is provided in the appendix (see Fig. 9). 
The annotation is carried out using the tool BORIS [32]. 

4.2 The Geneva Pose for Autism dataset 
Motivation. To demonstrate the capacity of computer vision tools 
to support automated identifcation, we built a dataset using solely 
the information contained in the body pose of the participants in the 
social interaction. Note that in this way, the data are anonymized, 
thus overcoming the sensitive question of personal data protection. 
Data. For this purpose, we used available ADOS videos collected 
between 2013 and 2020 in the Geneva Autism Cohort. Sixty-eight 
children with autism (2.8 ± 0.93 years) and 68 typically developing 
children (2.55 ± 0.97 years) were included, divided into two equal 
and balanced training and test sets. We used the multi-person 2D 
pose estimation OpenPose technology [13] to extract the pose of all 
people present in the room (child, parent, clinician) and generate 
videos of only the skeletal keypoints, which formed our dataset (see 
Fig. 4A and B), which constitutes the data. We refer the interested 
reader to our previously published work [45] for more details. 
Annotations. As these videos are coming from the Geneva Autism 
Cohort, following an ADOS protocol, each video comes from the 
corresponding behavioral annotations in a 0-3 range, as well as a 
global ASD vs TD score. 

Figure 3: Samples from the ChildPlay dataset overlaid with 
annotations. Left: head box and gaze point annotations. 
Right: human-object interaction annotations. ChildPlay is 
the frst public benchmark for analyzing children’s gaze and 
interaction behaviors in free-play environments. 

4.3 ChildPlay Dataset 
Motivation. The ChildPlay dataset (see Fig. 3, and [81] for details) 
is a set of videos featuring children in free-play environments inter-
acting with their surroundings. The dataset is rich in unprompted 
social behaviors, communicative gestures, and interactions. It is 
publicly available1 and features high-quality dense gaze annota-
tions, including a gaze class to account for special scenarios that 
arise in 2D gaze following. They can also be used to model other 
attention-related behaviors like shared attention, gaze shifts, eye 
contact, and fxations. To the best of our knowledge, this is the frst 
representative gaze dataset aiming to cover children. 
Data Collection. We relied on the YouTube video search engine 
with queries like “children playing toys”, “childcare center”, or “kids 
observation” to retrieve videos matching our aims. The scene con-
text of our videos ranged from childcare facilities and schools to 
homes and therapy centers. We obtained a dataset of 401 clips, 
mainly restricted to indoor environments, showing 1 or 2 adults 
and multiple children. The age group varies from toddlers to pre-
teenagers. The dominant activity of children is “playing with toys”, 
but the dataset also includes a few clips containing other interac-
tions such as behavioral therapy exercises. 
Annotation Protocol. In every clip, we selected up to 3 people and 
for each of them, in every frame, we annotated the head bounding 
box, a 2D gaze point, and a gaze label. We also provide the person 
class label (adult vs. child). The gaze label addresses an important 
limitation with existing datasets, in which annotating a 2D gaze 
point is enforced in every frame, with only a standard inside vs. 
outside label to denote if the person looks within the frame or 
not [19]. However, there are many situations where annotating 2D 
gaze points is highly challenging, if not impossible. To avoid this, 
our gaze label was defned to include 7 non-overlapping classes 
1Childplay is available at https://www.idiap.ch/en/dataset/childplay-gaze 
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to account for special scenarios: inside-frame, outside-frame, gaze-
shift, occluded, eyes-closed, uncertain, not-annotated. 

We are also exploring extra possible layers of annotation related 
to gestures and interactions with objects such as holding, operat-
ing, and pointing (see right column of Fig. 3). This will allow the 
joint modeling of gaze and interactions, which is instrumental in 
analyzing motor-gaze coordination patterns. 
Comparison with the literature. The Multimodal Dyadic Behav-
ior (MMDB) dataset [72], the Self-Stimulatory Behaviors dataset 
(SSBD) [69], DREAM [8] and 3D-AD [74] are all datasets meant to 
tackle diferent aspects of autism, be it stimming behaviors (arm 
fapping, head banging), speech and vocalizations, communicative 
gestures (e.g. pointing, reaching, etc.), or gaze patterns (e.g. shared 
attention). However, they are either anonymized, limited in terms 
of behaviors, or restricted to lab environments (e.g. screening or 
therapy sessions). In contrast, ChildPlay boasts a higher diversity 
of scenes, people, gestures, viewing angles, and lighting conditions. 

5 METHODS AND ANALYSIS 

5.1 End-to-end ASD Detection from Raw Inputs 
This approach relates to the frst category described in Fig. 2. That 
is, given only videos of the pose of people, can we directly identify 
ASD vs TD children without identifying atomic behavioral cues? 
The method is described in more detail in [45]. 
Model architecture. To this end, we relied on the Geneva pose 
dataset (see Sec. 4.2). We split the videos of this dataset into 5-
second segments to train a neural network. This network relied on 
a VGG16 convolutional neural network pre-trained on Imagenet to 
extract high-dimensional semantic features from individual frames, 
and use them as input to an LSTM temporal model. The trained 
model was applied to make predictions on 5s video segments of the 
test set, which were further aggregated over the entire duration of 
the video for each subject to make a global prediction. 
Results. Using the above network, we reached a prediction accu-
racy of 80.9% and a F1 score of 0.82 on the unseen test set (sensitivity: 
85.3%, specifcity: 76.5%). Further tests on an independent and un-
balanced set of 106 preschoolers (105 with ASD) led to a similar 
level of accuracy (0.81) demonstrating the robustness of our ap-
proach. We further observed that the confdence probability for 
ASD obtained was highly correlated with many clinical parameters 
(severity of autism symptoms measured with the ADOS, p<0.001; 
measures of level of daily functioning, p<0.001; cognitive function-
ing as measured with best estimate IQ, p=0.012). Strikingly, the 
ASD probability was also highly correlated with many individual 
items from the ADOS, particularly those related to the coordina-
tion between gaze and gestures (see Fig.4C). We further tested how 
much the prediction accuracy was infuenced by the video length, 
and the results demonstrate that an average 0.7 accuracy is already 
obtained with 10 min video segments (see Fig.4D). The prediction 
consistency is also very high across the video of a single individual 
even with relatively short video segments where for instance, for 
half of the ASD samples, our method achieves a 100% consistency 
in prediction based on randomly selected segments summing up to 
only 10 minutes. These important results demonstrate the feasibility 
of video-based automated identifcation of autism symptoms. 

Figure 4: Using OpenPose Reconstruction during the ADOS 
scene to generate body pose images (A, B). ASD Probability 
obtained from a neural network based on the Pose Estima-
tion highly correlates with specifc behaviors as coded in the 
ADOS set-up by trained clinicians (C). The accuracy in the 
prediction increases with the duration of videos, with the 
fnal accuracy being 81% in our sample. Assessment of the 
stability in the predictions (D). 

In the context of this Sinergia proposal, we aim to push the 
boundaries of this type of analysis, by increasing the accuracy in 
detecting autism over even shorter video duration, and by using 
the technology to provide deep phenotyping of autism signs. 

5.2 Attention Modeling 
Motivation. Understanding attention behaviors is a key compo-
nent for autism diagnosis, and we have investigated this topic. Prior 
works have focused on estimating gaze directions or proxies for it 
[34, 49], and from there, people’s Visual Focus of Attention (VFOA), 
defned as looking at a specifc person or object [3, 33, 60, 76], but 
such methods required access to frontal views of people and/or 
knowledge of the 3D scene structure and were contrived to specifc 
face-to-face interaction settings. To analyze gaze in more general 
scenes, we have followed [71], which introduced the Gaze Following 
task, defned as predicting the gaze target of a person (i.e. defned 
as 2D coordinates in the image). Predictions of all people can then 
be further processed to infer their social gaze patterns. Below we 
detail prior works in this direction, as well as ours. 
Gaze Following from Images. Typical gaze following methods 
have a two-branch architecture (such as our approach, see Fig. 5): 
the frst one processes the gaze information of a person (typi-
cally, a head crop and the person’s image location), and its output 
is processed by the second branch along with the full image to 
identify salient items related to the person’s gaze and generate a 
heatmap highlighting the candidate visual attention target of the 
person [17, 36, 42, 48, 57, 90]. More recent works have incorporated 
additional modalities like temporal information [19], depth [4, 29], 
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Figure 5: Our proposed gaze following architecture [81]. The 
Gaze Pathway processes the head crop of a person to predict a 
3D gaze vector, which is used with the inferred point cloud to 
generate the person’s 3DFoV map. It is processed along with 
the image and a head location mask by the Scene Pathway to 
predict the Attention Heatmap and the In-Out gaze label (i.e. 
whether the person is looking inside the frame or outside). 

Figure 6: Qualitative results of our method on ChildPlay. The 
3DFoV highlights potential gaze targets and excludes other 
salient items (like people) with non-matching depth. The GT 
gaze target is given in red and the prediction in green. 

or a combination of pose and depth as in our work, which had set 
the state-of-the-art in gaze following benchmarks [38]. 

Depth, in particular, is important for ruling out salient items 
that lie along a person’s 2D line of sight but are not visible to the 
person in 3D space. As standard gaze following datasets do not come 
with depth information, some works [4, 29] relied on depth (more 
specifcally, disparity) estimated from pre-trained models [70, 88]. 
However, due to unknown camera parameters, the latter sufer 
from stretched and distorted reconstructed 3D scenes (point clouds) 
which are not so suitable for 3D geometric scene analysis. 

To address this issue, we recently proposed [81] a more geo-
metrically consistent approach, leveraging a depth estimation algo-
rithm [63] yielding geometry-preserving point clouds, and learning 
to predict a 3D gaze vector congruent with the estimated point 
cloud, and allowing to predict the 3D Field of View (3DFoV) of a 
person. Fig. 5 presents our approach, while Fig. 6 shows qualitative 
results of our method on ChildPlay samples. 
Social Gaze Prediction. Predicting gaze 2D locations is not very 
informative for autism analysis (and other social tasks), where 
obtaining attention labels is more relevant. In particular, three 
social gaze tasks are of general interest: 

• LAEO, Looking at Each Other (or eye contact): binary label 
indicating whether a pair of people look at each other; 

Gaze 
Following

Module

Pairwise
Task-Specific

Heads

Heads

Image

Graph Module

SA

LAH

LAEO

Figure 7: Social gaze inference architecture. Gaze representa-
tions from a Gaze Following Module outputs are used by a 
Graph Module to jointly model all people interactions. Then 
Task-Specifc Network Heads predict the social gaze relation 
for each person pair. 

Model P��� Children ↑ P��� Adults ↑ 

Gupta [38] 0.435 0.621 
Tafasca [81] 0.509 0.681 
Gupta* [38] 0.648 0.731 
Tafasca* [81] 0.604 0.704 

Table 1: LAH performance of gaze following methods on 
ChildPlay. *indicates models fne-tuned on ChildPlay. 

• SA, Shared Attention (or joint attention): binary label indi-
cating whether a pair of people look at the same item; 

• LAH, Looking at Head: binary label indicating whether a 
person looks at another person’s face/head. 

LAEO was frst studied in computer vision by [55]. Their model 
used geometric information to predict LAEO. Since then, several 
deep learning-based works have been proposed to solve this task [12, 
24, 53, 54], including the use of a gaze following approach [37]. 
Regarding the SA task, authors in [28] were the frst to study it. 
Their method combined the predicted 2D gaze cones of people in 
the scene with a heatmap of object region proposals. A more recent 
work [79] improved over this by directly inferring shared attention 
from the raw image. Several gaze following methods [19, 83] also 
evaluated their method on the SA task and seemed to provide better 
performance than methods meant specifcally for shared attention 
detection (protocols were not exactly the same). 

Despite its importance, the LAH task had never been proposed in 
the context of analyzing general scenes. Indeed, LAH can be viewed 
as a generalization of LAEO, indicating one-way eye contact. This 
is relevant for autism diagnosis as children may look at the clinician 
and not vice-versa, and detecting such cases could help provide 
an extended characterization of children’s gaze behavior. We thus 
introduced it in [81], and processed gaze following benchmark 
datasets to obtain LAH annotations. Sample performance (accuracy 
of looking or not at a person) is shown in Table 1. We see that 
models trained on standard gaze following datasets, which consist 
mostly of adults, provide poor LAH performance for children, and 
improve signifcantly after fne-tuning on ChildPlay. This highlights 
(i) the difculty of the task, with performance reaching only up to 
0.7, and (ii) the need for children-specifc datasets like ChildPlay to 
obtain gaze models more applicable to children. 

Finally, note that we recently developed a social gaze prediction 
methodology, summarized in Fig. 7 for the 3 tasks, which addressed 
previous limitations by processing all people jointly, leading to 
state-of-the-art performance. 
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Figure 8: Toy kit samples (with ADOS and AutoPlay toys). 

5.3 Toy-Embedded Sensors 
Motivation. As mentioned earlier, although play behavior is a 
natural demonstration of children’s neurodevelopment, only a few 
works have investigated the sensory-motor aspect of play in the 
IoT literature. Developing an ASD digital phenotyping method calls 
for defning manipulation measurement methodologies enabling 
an autonomous and unbiased play observation, which is privacy-
preserving and non-intrusive for the children. Additionally, chil-
dren’s gestures and play activities are intrinsically diferent from 
human activities well-studied in literature: the diference between 
fne-grained and coarse-grained activity drives the need for new 
methodologies for human activity recognition. Below we describe 
how we addressed these challenges: measurement of autonomous 
play activity and recognition of play-related fne-grained activities. 
Autonomous Play. Our methodology exploits inertial and indoor-
localization sensors to measure the movements of toys manipulated 
by children, allowing the inference of the driving manipulation 
activities during play in a privacy-preserving and non-intrusive 
manner. The measurements rely on the AutoPlay toys-kit that we 
had developed, which includes commonly used toys (e.g. ball, car, 
cube, doll, spoon) [9, 30] and extended to incorporate the ADOS toys 
(see Fig. 8): in both cases, sensors are embedded within the toys in a 
child-safe way. Each toy embeds one sensor node, comprising both 
an Inertial Measurement Unit (IMU) and an Ultra-Wide Band sensor 
(UWB) recording the 3D position and orientation of the embedding 
object in a room. The toys allow for the analysis of the main sensory-
motor classes of play: mouthing, simple manipulation, functional, 
relational, and functional-relational [66]. The measurement of play 
behaviors with diferent settings (ADOS augmented toys and ADOS 
protocol, AutoPlay toys-kit for autonomous play) allows for the 
comparison of play behaviors analysis in autonomous situations 
versus in a semi-standardized protocol, and can provide clinicians 
with indicators related to children’s motor behavior (i.e. giving 
gesture) assessment, and validates the potential scaling of the IoT 
based methodology in a non-controlled scenario. The augmented 
ADOS setting has been chosen because ADOS is the gold standard 
for autism diagnosis. AutoPlay and ADOS data allow us to model 
autonomous play behavior by extracting behavioral quantitative 
features from the observations and investigate which of them and 
of play behavior patterns are specifcally associated with autism, 
in a way that could help remote screening. 
Fine-Grained Human Activity Recognition. Human manipulation-
related activities are often composed of sequences of micro-movements 
whose level of granularity is in the order of the milli-second. To 

recognize those micro-movements and activities, we use supervised 
learning methodologies applied to the inertial and 3D indoor lo-
calization (UWB) data collected from the toy-embedded sensors, 
using as labels video-based annotation of play activities related 
to the children-toys interactions. An initial list of micro-activities 
for analyzing play behaviors has been identifed [30] through an 
initial study involving typically developing children in the age 
of 9 to 18 months: functional activities such as drag, stack, and 
push; exploratory activities like bite and knock; rotational activities 
like overturn and rollover. In [62], we demonstrated the intrinsic 
diference between coarse-grained (widely investigated in litera-
ture) and fne-grained (characterizing children’s motor behavior) 
human activities, showing the performance drop (around 10% for 
f1-score) of the well-established methodologies from the Human 
Activity Recognition literature when applied to children play activ-
ities, demonstrating the need for dedicated approaches which we 
will further investigate during this project. 

6 CONCLUSION AND FUTURE WORK 
This paper is an efort to review the AI4Autism project and con-
trast our work with the available literature. In essence, it is an 
interdisciplinary research collaboration aiming to develop tools 
and strategies to ease the autism screening process, gain a better 
understanding of ASD phenotypes, and scale the solutions to less 
controlled environments where they can make a tangible impact. 

Our work so far has focused on several key areas. First, collecting 
the necessary data to enable any further analyses and modeling, 
be it datasets annotated with relevant behavioral cues (e.g. gaze, 
gestures), or recordings of screening sessions annotated accord-
ing to the ADOS-2 protocol. Second, preliminary attempts at the 
end-to-end one-stage prediction of ASD based on raw inputs, and 
specifcally, pose skeletons. Third, modeling of gaze as an interme-
diate step for ASD recognition. In particular, we have focused on 
the gaze-following task and its possible extensions to localize the 
gaze target and introduce informative semantic components (e.g. 
eye-contact). Lastly, we explored the use of inertial and localization 
sensors embedded in toys to study play activities in children from 
a sensory-motor perspective. 

There are several remaining steps that we plan to tackle next: (i) 
fnalize data collection and annotations; (ii) on the computational 
side, incorporate the temporal component in our gaze methods, 
move to gestures and interactions modeling, and leverage IoT data 
coupled with visual streams to develop multimodal activity recog-
nition methods; (iii) on the autism side, study ASD predictions from 
intermediate cues, and once we have a large enough sample of 
ADOS-2 annotations, study how these behavioral quantities shape 
patients’ profles and assess whether distinct clusters emerge. Fi-
nally, we plan to integrate our methods together into a solution to 
be tested in a diferent and more challenging environment. 
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A APPENDIX: ADOS ANNOTATION 

Figure 9: A sample annotation sheet covering 5 minutes of an ADOS session. We can see the duration of diferent coded 
behaviors (e.g. request using eye contact and vocalization) and ADOS activities (e.g. free play). 
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