
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Thèse 2016                                     Open Access

This version of the publication is provided by the author(s) and made available in accordance with the 

copyright holder(s).

EPR steering and its application to fundamental questions in bell 

nonlocality

Bowles, Joseph

How to cite

BOWLES, Joseph. EPR steering and its application to fundamental questions in bell nonlocality. 

Doctoral Thesis, 2016. doi: 10.13097/archive-ouverte/unige:87905

This publication URL: https://archive-ouverte.unige.ch/unige:87905

Publication DOI: 10.13097/archive-ouverte/unige:87905

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:87905
https://doi.org/10.13097/archive-ouverte/unige:87905
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THÈSE
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Thèse No 4953

Genève
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Abstract

This thesis is dedicated to the study of foundational concepts in quantum
theory from a perspective of quantum information theory. We consider the
measurement statistics obtained from multipartite quantum systems within
the frameworks of Bell nonlocality and EPR steering (Part I), and the com-
munication and processing of single quantum systems in networks of devices
(Part II).

One of the most striking aspects of quantum theory is its departure from
classical notions of locality. A typical state in quantum theory cannot be
written as the product of its local subsystems, but instead must be described
by a global state of which the local subsystems are said to be entangled. This
inseparability at the mathematical level of the theory is known to persist even
at the observational level, where certain entangled quantum states, via the
violation of Bell inequalities, display correlations that defy any explanation
satisfying classical notions of local causality.

Interestingly however, it is known that not all entangled quantum states
lead to Bell inequality violation, showing that entanglement and Bell nonlocal-
ity are in general different resources. Whereas much effort has been devoted to
studying the set of states that violate a Bell inequality, relatively little effort
has been given to the converse question of characterising those states which
do not. The central focus of Part I is thus an investigation into the sets of
entangled states in quantum theory that do not allow for any Bell inequality
violation. Our motivation is in part fundamental, since a better understanding
of such sets allows for a better understanding of the relationship between the
fields of entanglement and Bell nonlocality, and in part practical, since Bell
nonlocality serves as the resource for so called device-independent protocols in
quantum information processing.

After introducing Bell nonlocality (Chapter 2), our starting point will be
the recently developed field of EPR steering (Chapter 3). We first present
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two results relating specifically to this field, namely demonstration of asym-
metric EPR steering (Chapter 4) and a criterion which serves as a necessary
condition for EPR steering for two-qubit states (Chapter 5). We then exploit
a connection to Bell nonlocality, allowing us to use the tools of EPR steering
to answer fundamental questions relating to Bell nonlocality. This proves to
be particularly fruitful, leading to a number of applications (Chapter 4) and
allowing one to prove an in-equivalence between entanglement and nonlocality
for quantum systems of arbitrary numbers of parties (Chapter 6). We then
explore the classical resources required to simulate entanglement (Chapter 7),
our main result being the first example of an entangled quantum state that
can be simulated using classical resources of finite dimension.

Part II switches the focus to single quantum systems and the processing
of these systems in communication networks. Here, quantum theory is known
to provide significant advantages over classical information processing, for ex-
ample through algorithms of quantum computing, communication complexity,
cryptography and random number generation.

An important resource of interest for such tasks is dimension, i.e. Hilbert
space dimension of the quantum systems used in the networks. We present
methods to certify the dimension of quantum systems processed by networks
of devices, tailored to the case where the devices share classical correlations
(Chapter 7), and the case in which they are independent (Chapter 8). We
also use these tests to compare the power of quantum vs classical communi-
cation, and show that quantum systems outperform classical systems of the
same dimension under significant experimental noise. This leads to a quan-
tum random number certification protocol that is extremely tolerant to noise
(Chapter 8).

While the thesis should serve as a concise overview of all main results, the
reader is directed towards the published papers for some additional results and
detailed proofs.
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Résumé

Cette thèse est consacrée à l’étude des concepts fondamentaux de la physique
quantique d’un point de vue de l’information quantique. Les statistiques de
mesures obtenues via des systèmes quantiques multipartites sont étudiées dans
le cadre de la nonlocalité de Bell et du steering EPR (Partie I). Par ailleurs,
nous discutons des concepts de dimension et d’aléa dans des réseaux quantiques
(Partie II).

Un des aspects les plus étonnants de la mécanique quantique est son
désaccord avec la notion classique de localité. Un état quantique typique
ne peut pas être décrit comme le produit de sous-systèmes locaux, mais par
un état global dont les sous-systèmes sont intriqués. Cette inséparabilité au
niveau mathématique persiste même au niveau de l’observation. En effet, cer-
tains états intriqués, via la violation des inégalités de Bell, demontrent des
fortes corrélations qui défient toute explication par une théorie locale.

Il existe pourtant des états quantiques intriqués qui ne violent aucune
inégalité de Bell, ce qui montre que l’intrication et la nonlocalité sont en général
des ressources différentes. Tandis que beaucoup d’effort a été dédié à l’étude
des états qui violent des inégalités de Bell, relativement peu est connu à propos
des états intriqués, dits locaux, qui ne violent aucune inégalité de Bell. Le fo-
cus de la première partie de la thèse est l’étude de ces états. Notre motivation
est en partie fondamentale, car cet étude permet une meilleure compréhension
de la relation entre les concepts de l’intrication et de la nonlocalité de Bell, et
en partie pratique puisque la nonlocalité de Bell constitue une ressource pour
les protocoles de l’information quantiques dits “device-independent”.

Après avoir rappelé les concepts de la nonlocalité de Bell (Chapitre 2), notre
point de départ sera le domaine récement développé du steering EPR (Chapitre
3). Nous présentons d’abord deux résultats relatifs à ce sujet. Le premier
démontre que le steering EPR est fondamentalement asymétrique (Chapitre 4).
Le second est un critère nécessaire pour montrer qu’un état de deux qubits est
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une ressource pour le steering EPR (Chapitre 5). Ensuite, nous exploitons une
connexion avec la nonlocalité de Bell, ce qui nous permet d’utiliser les outils du
steering EPR pour répondre à des questions fondamentales de la nonlocalité
de Bell. Ceci s’avère particulièrement fructueux, permettant plusièurs appli-
cations (Chapter 5) et une démonstration de l’inéquivalence entre l’intrication
et la nonlocalité pour les systèmes quantiques d’un nombre arbitraire de sous-
systèmes (Chapter 6). La Partie I est conclut en explorant les ressources
classiques nécessaires pour la simulation de l’intrication (Chapitre 7). Notre
résultat central est la démonstration de l’existence d’états intriqués admettant
une simulation classique avec des ressources de dimension finie.

La second partie de la thèse se concentre sur les systèmes quantiques
uniques dans les réseaux de communication. Dans ce scènario, les états quan-
tiques offrent des avantages considérables sur leurs contreparties classiques, par
exemple dans les domaines du calcul, de la cryptographie et de la géneration
de nombres aléatoires.

Une ressource importante pour de telles tâches est la dimension, i.e. la
dimension de l’espace de Hilbert des systèmes quantiques utilisés dans ces
réseaux. Nous présentons des méthodes pour certifier la dimension d’états
quantiques traités par des réseaux de communication. Ces méthodes sont
adaptées au cas où les appareils partagent des correlations classiques (Chapitre
7), et au cas ou ils sont indépendants (Chapitre 8). On compare la puissance
de la communication quantique avec la communication classique, démontrant
ainsi que la performance des systèmes quantiques surpasse celle des systèmes
classique de même dimension, même en présence d’un fort bruit experimental.
Ces résultats mènent également un protocole pour la certification de nom-
bres aléatoires quantiques qui est extrêmement robuste au bruit experimental
(Chapitre 8).
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Chapter 1

Overview

Part I: Outline

The early 20th century was an exciting time for physics. Whereas Einstein
was creating a revolution in our understanding of space, time and gravity,
an independent quantum revolution was under way. The year 1900 saw the
publication of Planck’s work on the quantum nature of energy exchange [1],
followed in 1905 by Einstein’s proposal of the quantisation of radiation as
an explanation of the photoelectric effect [2]. The work eventually resulted
in the Heisenberg and Schrödinger formalisms of quantum mechanics [3, 4]
marking a profound paradigm shift in physics. Quantum theory has since been
unprecedented in its predictive power, providing breakthroughs spanning all
areas of physics.

Despite its undeniable success at observational predictions, questions were
being raised about the foundations of the theory. In their famous 1935 pa-
per, Einstein, Podolsky and Rosen (EPR) [5] put forward their belief as to
why quantum theory cannot be considered a complete theory of nature. Un-
derpinning their argument was the notion of local causality, that operations
performed in one local laboratory should not influence the state of a system
at another distant laboratory. Under this assumption, the nonlocal nature of
wavefunction collapse suggests that the theory is incomplete, in the sense that
new additional variables should be added to render it consistent.

In the same year, Schrödinger [6] expanded on the ideas of EPR and showed
that such a phenomenon arises from a property of certain quantum states
known as entanglement: such states cannot be understood as the sum of their
individual subsystems but rather by a global state which encompasses all sub-
systems. With the continuing success of quantum mechanics as a predictive
tool however, the conclusion of EPR was mostly considered a philosophical
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12 Chapter 1

footnote of the theory and went largely ignored. It was not until 1964 that
John Bell offered a conclusive reply [7], leading to the field of Bell nonlocality
to which Part I of the thesis is dedicated and which we introduce in Chapter 2.
Bell proved that no theory satisfying the notion of local causality can repro-
duce the correlations of separated measurements on certain quantum states.
Consequently, orthodox pictures of the nature of physics in space and time as
favoured by EPR had to be abandoned. Moreover, such claims soon became
experimentally testable via the violation of so-called Bell inequalities [8,9] and
have been recently demonstrated beyond all reasonable doubt via loophole free
experiments [10–12].

The phenomenon of Bell nonlocality can be seen as a consequence of the ex-
istence of entangled states in quantum theory as introduced by Schrödinger [6],
and for a time it was presumed that entanglement and nonlocality were two
sides of the same coin. It was not until 1989 that the the precise relation-
ship between the state dependent notion of entanglement and the possibility
of nonlocality (i.e. Bell inequality violation) was investigated by Werner [13].
There, he showed the existence of entangled quantum states which do not
lead to Bell inequality violation. Hence, although entanglement is necessary
for nonlocality, in some cases it is not sufficient. 30 years on from Werner’s
result, a precise understanding of the relationship between entanglement and
nonlocality is still missing. In Part I of the thesis we present progress in this
direction, as outlined below.

Local hidden variable models
In order to prove that a particular quantum state does not violate any Bell
inequality, one must construct a local hidden variable (LHV) model, which
guarantees that all possible correlations from the state satisfy the notion of
local causality. This is typically a difficult task since the LHV model must
be guaranteed to work for all choices of measurements, and consequently rel-
atively few states admitting LHV models are known. Much of Part I of this
thesis is dedicated to studying the set of states admitting LHV models, and
presenting new methods for their construction. This then allows us to answer
fundamental questions about the relationship between entanglement and non-
locality.

EPR Steering as a tool for the study of Bell nonlocality
The phenomenon discussed by EPR and expanded on by Schrödinger has
recently been formalised in quantum information theory under the name of
EPR steering [14]. The previous years have seen a large volume of work focused
on this subject, which we introduce in Chapter 3. Importantly for us, EPR
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steering can be linked to Bell nonlocality. Fundamental questions about Bell
nonlocality can then be tackled with the tools of EPR steering, which we
exploit in later chapters.

In Chapter 4 we demonstrate asymmetric steering, that is, a quantum state
for which EPR steering is possible in only one direction. This settles a ques-
tion that was open since the beginning of the field [14]. Chapter 5 presents
a sufficient criterion which guarantees that a two-qubit state does not lead to
EPR steering. This in turn implies that such states do not exhibit Bell non-
locality and provides general classes of entangled quantum states admitting
LHV models. We then present some applications of this result to the fields of
Bell nonlocality and measurement incompatibility. Some further applications
of this result are then presented. In Chapter 6 we consider multipartite sys-
tems. Here, we present a family of genuinely multipartite entangled states for
any number of parties which admit LHV models, proving an in-equivalence of
entanglement and nonlocality for any number of parties. Our construction is
based upon ideas of EPR steering and uses states obtained from the criterion
of Chapter 5.

LHV models using finite resources
Although it is known that certain entangled states admit LHV models, a
common feature of all previously known models is that they require shared
classical resources of infinite dimension, despite the corresponding simulated
quantum state having finite Hilbert space dimension. In Chapter 8 we in-
vestigate whether this is necessarily the case of all LHV models. We prove
the existence of entangled quantum states admitting LHV models that can be
constructed using shared classical resources of finite dimension, and discuss
the case of simulating nonlocal quantum states using classical communication.

Part II: Outline

The second half of the thesis is focused on the certification of dimension and
randomness from quantum systems.

Certification of dimension
The concept of dimension (i.e. the number of independent degrees of freedom
of a system) plays a vital role in many areas of physics and information theory.
Given the fragile nature of quantum systems however, creating and controlling
systems of high dimension becomes increasingly difficult, and experimentalists
are constantly pushing to manipulate quantum systems of ever higher dimen-
sion. This has its motivation, for example, in the practical implementation of
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quantum computing or communication protocols, where quantum systems of
a given dimension are known to dramatically outperform their classical coun-
terparts.

It is thus desirable to develop methods to certify the dimension of physical
systems produced in the laboratory. Chapter 8 and Chapter 9 are focused on
this problem. We work in the “device-independent” framework, whereby one
does not assume precise experimental control over the devices and works only
with the statistics of the experimental data. This is of practical significance
since experimental implementations are typically subject to sources of error.

In Chapter 8 we outline the general framework, building on that of [15].
We consider networks of preparation, transformation and measurement de-
vices which model the physical devices used in a laboratory experiment and
develop tests of dimension for these networks. We also investigate the power
of quantum vs classical systems in such networks and show that quantum sys-
tems can significantly outperform classical systems of the same dimension at
certain tasks. In Chapter 9 we consider a related problem featuring a simple
network of two devices, under the additional assumption that the devices act
independently. We show that here, quantum systems can outperform classical
systems, even under arbitrary large sources of background noise.

Certification of randomness
The generation of high quality random numbers is an important problem that
finds application in cryptography, simulation and gambling. However, prac-
tically all commercial methods used to generate random numbers use classi-
cal pseudo-random functions, which are fundamentally deterministic, or noise
from complex physical processes (such as thermal/electronic noise), which is
impossible to fully characterise. This makes for a reliable estimate on the
quality of such sources particularly troublesome. The fact that the outcomes
of measurements on quantum systems are inherently probabilistic has sparked
a field of research focused on exploiting quantum systems for the generation
and certification of random numbers [16–20]. In this way, reliable bounds of
the quality of a source of random numbers can be guaranteed.

In the final part of Chapter 9 we present a protocol that allows one to
certify the quality of random numbers produced when qubit quantum systems
are prepared and subsequently measured. The protocol is based on the tests
of dimension presented in the same chapter. We work in the “semi-device-
independent” scenario, where total experimental control over the quantum
systems is not required. As with our tests of dimension, true randomness can
be certified under large experimental noise and low detection efficiency, which
has made possible a corresponding experimental realisation.
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Chapter 2

Bell nonlocality

2.1 The Bell scenario

Consider two parties (which we will call Alice and Bob from here on in) at sep-
arate locations in space. A source is located between the two which provides
them with some shared physical system (see Fig. 2.2). Alice receives a uni-
formly chosen classical variable x ∈ {0, · · · , n−1} (called her input) and must
return another classical variable a = {0, · · · ,m−1} (called her output). Simi-
larly, Bob receives his input y = {0, · · · , n−1}, outputting b = {0, · · · ,m−1}.
The labels of the inputs/outputs do not carry any particular significance but
simply refer abstractly to a number of possible measurements that could be
performed on some shared system held by Alice and Bob, and their corre-
sponding outcomes (for example polarisation measurements on a system of
two photons). We make the additional assumption that Alice and Bob can-
not communicate their given inputs to each other. This is somewhat natural
given that they are separated spatially, but can be enforced, for example, by
ensuring that the space-time event where Alice receives her input is space-like
separated from the event where Bob gives his output and vice-versa.

This process is then repeated many times; in each round Alice and Bob
receive their inputs and must give their outputs. In the limit of infinitely
many rounds1, we may thus define the conditional probability distributions
p(ab|xy), i.e. the probability that in a given round Alice and Bob give the
outputs a, b upon receiving the inputs x, y. Throughout this thesis, we will
generally refer to the set of these distributions as the correlations produced in
a Bell scenario. As we will see, a striking feature of quantum theory is that it

1Note that we are making an assumption of independent, identically distributed rounds.
For a discussion of memory effects in Bell tests, see for example [21].
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Figure 2.1: The Bell scenario. Two separated parties (called Alice and Bob)
represented by the black boxes share a physical system provided by a source,
then receive inputs x and y and provide outcomes a and b.

can produce correlations strictly stronger than those allowed by any classical
theory.

2.1.1 Classical correlations

Our aim here is to characterise the most general correlations that can result
from the laws of classical physics in a Bell scenario. Following Bell [7], this
can be formalised as follows. Given her input x, Alice outputs a according to
a probability distribution p(a|x). Similarly, Bob outputs according to p(b|y).
Note that at this stage we have assumed a notion of locality : since Alice does
not know Bob’s input y, her output can depend only on her input x and so
p(a|xy) = p(a|x) (and likewise for Bob p(b|xy) = p(b|y)). We further assume
that these distributions are deterministic, i.e. for a given input x, Alice will
return some output a with probability 1. At this stage we therefore have

p(ab|xy) = p(a|x)p(b|y), (2.1)

which will also be a deterministic function since it is a product of deterministic
functions.

In a typical experiment, the observed correlations will neither be of the
above form (i.e. product form) nor deterministic since there may be some
unobserved or unknown classical variables leading to correlations and/or noise.
This can be taken care of by introducing a shared classical random variable
λ ∈ Λ (which may take a potentially continuous range of values), which Alice
and Bob can use to probabilistically mix deterministic strategies. Denoting
the probability density of this random variable by qλ so that

∫
Λ
qλdλ = 1, we

thus have

p(ab|xy) =

∫

Λ

qλpλ(a|x)pλ(b|y)dλ, (2.2)
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Figure 2.2: Representation of a LHV model which defines the set of classical
correlations in a Bell scenario.

where each pλ(a|x), pλ(b|y) is a deterministic function2. If we have a finite
number of inputs and outputs, we have a finite number of possible deterministic
functions pλ(a|x), pλ(b|y) and so one can replace the above integral by a finite
sum without loss of generality:

p(ab|xy) =
∑

λ

qλpλ(a|x)pλ(b|y). (2.3)

Here, λ is summed over all possible combinations of deterministic functions
for Alice and Bob. For historical reasons, the shared variable λ is called a local
hidden variable and (2.2) a local hidden variable model for the correlations (see
Fig. 2.2 for a graphical representation of the above).

With a little thought, one can convince oneself that any correlations arising
from the laws of classical physics (classical mechanics and special relativity,
for example) must give rise to correlations of this form. More generally, any
theory satisfying the above principle of locality will produce such correlations.
Such correlations are hence termed local, and throughout this thesis we will
use the words classical and local synonymously to describe correlations of the
form (2.2).

2.1.2 Quantum correlations

We now wish to provide the same analysis for quantum theory (see Fig. 2.3).
Alice and Bob’s local measurements will be governed by measurement opera-
tors Ma|x ≥ 0, Mb|y ≥ 0 acting on the local Hilbert spaces of Alice and Bob
and such that

∑
aMa|x =

∑
bMb|y = 1 (where the identity acts on the relevant

2Note that we could allow these functions to be non-deterministic. However, we can
always hide any indeterminism by adding some classical random variables to λ that simulate
this indeterminism (since any finite distribution p(a|x) can be written as a convex mixture
over the deterministic functions pλ(a|x))
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Figure 2.3: Bipartite correlations attainable in a Bell test using quantum
theory.

Hilbert space). Since we have the full power of quantum mechanics, we replace
the classical hidden variable λ by any valid bipartite quantum state ρ acting
on the joint Hilbert space of Alice and Bob. This state, can, for example, be
entangled between the Hilbert spaces of Alice and Bob. The correlations are
then given via the Born rule as

p(ab|xy) = Tr
[
Ma|x ⊗Mb|y ρ

]
. (2.4)

It is a simple exercise to show3 that any correlations of the form (2.2) can be
written in the form (2.4). Whether the converse question is true, i.e. whether
quantum correlations admit a local hidden variable model explanation and if
so when, will be the general question of interest of this part of the thesis.

2.2 The CHSH inequality

We start by rewriting (2.3) as

p(ab|xy) =
∑

λ

qλDλ(ab|xy), (2.5)

where Dλ(ab|xy) = pλ(a|x)pλ(b|y) and
∑

λ qλ = 1. Equation (2.5) can thus be
seen as the convex hull of a finite number of possible deterministic distributions
indexed by the variable λ. This allows for a rather elegant description of the
set of classical correlations in terms of convex polytopes. As an illustrative
example, we take the simplest nontrivial scenario where both Alice and Bob
receive one of two possible inputs, giving one of two possible outcomes (that
is, n = m = 2).

3for example, the classical hidden variable can be modelled as a diagonal (hence separa-
ble) quantum state of sufficiently high dimension ρ =

∑
λ qλ|λ〉〈λ|.
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One possible deterministic strategy for Alice is to output a = 0 for x = 0, 1,
that is [p(0|0), p(0|1)] = [1, 1]. Another is given by the case where she outputs
a = 1 for x = 0, 1, so [p(0|0), p(0|1)] = [0, 0]. Finally we have the cases where
she outputs a = 0 for one input and a = 1 for the other, corresponding to [0, 1]
and [1, 0]. Hence, we have 4 possible deterministic strategies for Alice’s local
function p(a|x). For Bob we have the same and so we have a total of 4 × 4
deterministic functions Dλ(ab|xy), λ = 1, · · · , 16.

We now define the “correlation vector”

p = [p(00|00), p(01|00), p(10|00), · · · , p(11|11)] (2.6)

whose elements are the values of the conditional probability distribution p(ab|xy).
Since we have m = n = 2 this vector lives in a space of dimension 16 and ev-
ery possible set of correlations p(ab|xy) corresponds to a point in this space.
In fact, we can reduce the size of this space by exploiting some known linear
dependencies between the p(ab|xy). The first four of these are given by the
normalisation of the probabilities, that is

∑

ab

p(ab|xy) = 1 ∀x, y. (2.7)

The second set of dependencies are given by no-signalling, reflecting the fact
that Alice cannot communicate her input to Bob (and vice-versa). Math-
ematically, this means that Bob’s (Alice’s) marginal distribution should be
independent of Alice’s (Bob’s) choice of input, giving us

∑

a

p(ab|xy) = p(b|y) ∀y, b (2.8)

∑

b

p(ab|xy) = p(a|x) ∀x, a. (2.9)

This gives us another 4 dependencies (we can consider e.g. a = 0, b = 0 due to
normalisation). We may therefore reduce the size of our space by 8 so that p
now lives in a space of dimension 8.

The set of classical correlations is then the convex hull of the 16 determin-
istic vectors pλ, which geometrically forms a convex polytope in dimension 8
(see Fig.
2.4 for a graphical representation of this). This polytope is completely charac-
terised by a finite set of inequalities that are linear in the probabilities, which
define the facets of the polytope. For our simple case, one finds a number of
facets corresponding to the normalisation of probabilities and a single facet
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Figure 2.4: Graphical (two dimensional) representation of the set of Bell local,
quantum and non-signalling correlations p for the two inputs, two outputs.
The vertices of the central square represent the deterministic classical correla-
tions. The set of Bell local correlations, L, is the convex hull of these vertices
(dark grey square). Note that the full space is actually 8-dimensional and
we have more deterministic vertices than shown. The facets of this polytope
are called Bell inequalities. Outside of this lies the set of correlations achiev-
able using quantum systems, Q. Finally, the set of non-signalling correlations
NS (those which respect (2.8)) is also a polytope lying outside of the quan-
tum set. The point pQ corresponds to the maximal quantum violation of the
CHSH inequality.

inequality (up to relabelling of input/outputs) given by

I[p(ab|xy)] = E00 + E01 + E10 − E11 ≤ 2, (2.10)

where Eij =
∑

ab(−1)a+bp(ab|xy). This is known as the CHSH Bell inequality
[8], and is hence satisfied by all correlations of the form (2.2). Since (2.10) is
linear in the probabilities, one may alternatively write

p · I ≤ 2 (2.11)

for some real vector I of the same dimension of p.
For the case with n inputs and m outputs the procedure is much the same,

and we arrive at a local polytope P (of much higher dimension) whose non-
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normalisation facets we call Bell inequalities4. A set of distributions p(ab|xy)
given by a correlation vector p is then Bell local iff it belongs to the polytope
P and hence satisfies all facet Bell inequalities I(n) (indexed by n):

p ∈ P ⇐⇒ p · I(n) ≤ C(n) ∀n. (2.12)

Computational methods [22, 23] can be used for finding such facets, however
quickly become infeasible so that only simple scenarios can be solved (in gen-
eral the problem is known to be NP-hard in the number of inputs [24]).

2.3 Quantum nonlocality

We have now done all the necessary work to lead us to Bell’s famous theorem
[7]:

Theorem 2.3.1 (Bell’s Theorem). There exist correlations p(ab|xy) arising
from local measurements on bipartite quantum states that cannot be written
in the form (2.2).

To see this, consider the (maximally entangled) pure state

ρ = |ψ−〉〈ψ−|, (2.13)

where

|ψ−〉 =
1√
2

(|01〉 − |10〉). (2.14)

Parameterise measurements using the Bloch vector notation:

M0|j =
1 + ~mj · ~σ

2
; M1|j = 1−M0|j, (2.15)

where ~mj is a normalised Bloch vector and ~σ = (σx, σy, σz) is the vector of Pauli

matricies. The state (2.14) has the interesting property that Exy = −~ax ·~by
where ~ax, ~by are the Bloch vectors of Alice and Bob’s measurements. If we
chose Alice’s measurement Bloch vectors to be in the z and x directions, a1 =
êz, ~a2 = êx, and Bob’s measurement Bloch vectors to be ~by = (êz ± êx)/

√
2,

we find

I[p(ab|xy)] = 2
√

2, (2.16)

4 Facets of the local polytope P are generally called tight Bell inequalities. More generally,
any function f(p(ab|xy)) such that f(p(ab|xy) > L for some L implies that the correlations
lie outside of P (and are hence nonlocal) is called a Bell inequality
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hence violating the CHSH Bell inequality. For obvious reasons, such cor-
relations are termed nonlocal. It hence follows that no classical theory can
reproduce the correlations of quantum mechanics.

Experimental observation of the violation of the CHSH Bell inequality was
made soon after its discovery [25] using entangled photons pairs, and eventually
enforcing space like separation between the measurement events [26]. More
recently, a number of experimental groups have achieved a so called “loophole
free” violation of the CHSH inequality [10–12], confirming that nature is indeed
nonlocal.

2.4 Not all entangled states are nonlocal: Werner’s

model

Since separable states always give rise to local correlations, the violation of
a Bell inequality can be seen as a certification of entanglement. A relevant
question is then: does entanglement always lead to nonlocality? That is, given
any entangled state, can one always find local measurements such that (2.2)
is not satisfied?

It turns out that the answer to this question is no, as first shown by Werner
[13] in 1989. Consider the one parameter family of two qubit mixed states (now
called Werner states):

ρα = α|ψ−〉〈ψ−|+ (1− α)1/4. (2.17)

These states are entangled for α > 1/3 (as verified, for example, via the PPT
criterion [27]). For α > 1

√
2 the state violates the CHSH Bell inequality.

Werner showed that for α ≤ 1/2, all the correlations obtained from ρα using
projective measurements satisfy (2.2) and thus never lead to Bell inequality
violation.

In order to prove this, we need to exhibit an explicit local hidden variable
(LHV) model for the state, i.e. some hidden variable λ with distribution qλ
and local distributions pλ(a|~x), pλ(b|~y) for the measurements Ma|~x, Mb|~y of
Alice/Bob with Bloch vectors ~x, ~y such that

Tr
[
ρ 1

2
Ma|~x ⊗Mb|~y

]
=

∫

Λ

qλ pλ(a|~x)pλ(b|~y)dλ (2.18)

(the case α < 1/2 is straightforward since it corresponds to adding white
noise). This can be achieved by choosing λ to be a unit vector on the 3-

sphere, which we write as λ = ~λ, distributed uniformly q~λ = 1
4π

. Intuitively,
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Figure 2.5: Representation of the sets of separable, local (states admitting
LHV models), and nonlocal quantum states.

~λ can be thought to represent a qubit pure state with Bloch vector ~λ. The
distributions p~λ(a|~x) and p~λ(b|~y) are given by

p~λ(a|~x) =
1− (−1)a sgn[~x · ~λ]

2
; p~λ(b|~y) =

1 + (−1)b ~y · ~λ
2

. (2.19)

Hence, the state ρα does not violate any Bell inequality for α ≤ 1
2

if ar-
bitrary projective measurements are performed. One may further wonder
whether (2.2) may be violated if one is allowed to perform general measure-
ments (positive-operator valued measures, or POVMs) on the same state. Bar-
rett [28] proved that if α ≤ 5/12 this is not the case, and we hence have a class
of entangled state that admits a LHV model even for general measurements.

Since there exist entangled quantum states admitting LHV models, the set
of states admitting a LHV model is a superset the set of separable states (see
Fig. 2.5). However, relatively few such states are known [29–32]. Much of this
half of the thesis will be dedicated to the study of the LHV set, i.e. finding
entangled quantum states admitting LHV models, with an aim of better un-
derstanding the relationship between entanglement and nonlocality. In order
to do this we will use tools from the newly developed field of EPR steering,
which we introduce in the following chapter.
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EPR steering

At the heart of the EPR argument [5] lies the fact that one party, by mak-
ing measurements on one half of an entangled state, can non-locally influence
the reduced state of the other party’s subsystem. This concept was proposed
by Schrödinger [6] and first explored in continuous variable systems [33, 34].
Recently, the phenomenon has been formalised in the quantum information
setting [14] (we focus on a more recent, although essentially equivalent ap-
proach, see [35] for a review), which we briefly outline here.

Again we have two parties, Alice and Bob, that share some bipartite quan-
tum state ρ. Alice performs a measurement on her half of the state given by
the measurement operators Ma|x. We then define the resulting subnormalised
reduced state on Bob’s subsystem

σa|x ≡ TrA
[
Ma|x ⊗ 1 ρ

]
, (3.1)

where we have p(a|x) = Trσa|x. The set of matrices {σa|x}a for fixed x is
called a measurement ensemble and the set of all measurement ensembles an
assemblage. Notice that since

∑
aMa|x = 1,

∑
a σa|x = TrA[ρ] = ρB for all x.

Formally, we say that an assemblage demonstrates EPR steering from Alice to
Bob (shortened to steering from Alice to Bob from here on in) if it does not
admit a decomposition of the form

σa|x =

∫

Λ

qλpλ(a|x)σλdλ, ∀a, x (3.2)

where qλ is again a normalised distribution over λ ∈ Λ, pλ(a|x) is an arbitrary
probability distribution, and σλ is a quantum state (called a local hidden state)
acting on the Hilbert space of Bob. The right hand side of the above can be
understood as follows (see Fig. 3.1). A source between Alice and Bob chooses

27
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Figure 3.1: Representation of (3.2). The source prepares the classical variable
λ, and sends this to Alice. To Bob, the local hidden state σλ is sent. If
Alice outputs with probability pλ(a|x) Bob receives the state σa|x/Tr σa|x (after
averaging over λ) with probability Trσa|x.

the local hidden variable λ with probability density qλ, and sends to Bob the
local hidden state σλ and to Alice the variable λ. Alice, upon receiving her
input x, outputs a with probability pλ(a|x). The corresponding state held by
Bob is then σa|x/Tr[σa|x] occurring probability p(a|x) = Trσa|x. To simplify
things slightly, one can further absorb the qλ into the σλ, defining σ̃λ = qλσλ.
Equivalently to (3.2), one then has

σa|x =

∫

Λ

pλ(a|x)σ̃λdλ ∀a, x , (3.3)

with σ̃λ ≥ 0 and
∫

Tr σ̃λ = 1.

Since all separable state lead to assemblages of the form (3.3), it follows
that if the assemblage {σa|x} demonstrates steering then the state ρ must be
entangled. One also sees that Alice and Bob play asymmetric roles. Generally,
one refers to Alice as the untrusted party and Bob the trusted party. The
reason for this is that we do not assume anything about the distributions
pλ(a|x), but we assume we know the reduced states σa|x/Tr σa|x of Bob via
tomography. Contrasting this with Bell nonlocality, for example, both parties
are untrusted. In the following chapter we will explore this asymmetry in more
detail.

3.1 EPR steering and LHV models

If all assemblages that can be produced from a state ρ admit a decomposition
of the form (3.2) ( i.e. for all possible measurements Ma|x) then the state ρ is
called unsteerable from Alice to Bob. Every state which is unsteerable admits
a LHV model, which can be seen as follows. Define pλ(b|y) = Tr[σλMb|y]. This
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Figure 3.2: Representation of the sets of separable, unsteerable (LHS), Bell
local (LHV) and nonlocal states. The set of unsteerable states is a subset of
the set of local states.

then defines a LHV model

p(ab|xy) =

∫

Λ

qλpλ(a|x) Tr
[
σλMb|y

]
dλ

= Tr

[(∫

Λ

qλpλ(a|x)σλdλ

)
Mb|y

]

= Tr
[
σa|xMb|y

]
= Tr

[
TrA

[
Ma|x ⊗ 1 ρ

]
Mb|y

]

= Tr
[
Ma|x ⊗Mb|y ρ

]
, (3.4)

hence reproducing the correlations of the state ρ. Consequently, unsteeable
states occupy a middle ground between separable and nonlocal states (see
figure (3.2)). This allows one to study fundamental questions related to Bell
nonlocality whilst working in the steering framework. As we will see in this
and later chapters, this can be a particularly fruitful approach.

The first line of (3.4):

p(ab|xy) =

∫

Λ

qλpλ(a|x) Tr
[
σλMb|y

]
dλ (3.5)

is called a local hidden state (LHS) model, since it is a special case of a LHV
model where Bob’s response function takes the form pλ(b|y) = Tr[σλMb|y], with
σλ called the local hidden state (in comparison to a local hidden variable).
The above can be seen as the definition of steering for correlations: a set of
correlations p(ab|xy) demonstrates steering from Alice to Bob iff they do not
admit a decomposition of the form (3.5).
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3.2 EPR steering and one-sided maps

The fact that one of the parties in the steering scenario is trusted allows one
to define a useful lemma (see also [36,37]):

Lemma 3.2.1. Let Ω be a positive linear map, and let {σa|x} be an assemblage
that does not demonstrate steering from Alice to Bob (i.e. that admits a
decomposition (3.3)). Then the assemblage {σΩ

a|x} given by

σΩ
a|x =

Ω[σa|x]

Tr [Ω[ρB]]
(3.6)

where ρB =
∑

a σa|x does also not demonstrate steering from Alice to Bob.
Furthermore, if Ω is invertible and its inverse map positive, then {σa|x} demon-
strates steering form Alice to Bob if and only if {σΩ

a|x} demonstrates steering
from Alice to Bob.

Proof. Using (3.3) we find

Ω[σa|x]

Tr [Ω[ρB]]
=

∫

Λ

pλ(a|x)
Ω[σ̃λ]

Tr [Ω[ρB]]
dλ =

∫

Λ

pλ(a|x)σ̃Ω
λ dλ. (3.7)

Note that σ̃Ω
λ ≥ 0 and

∫

Λ

Tr
[
σ̃Ω
λ

]
dλ =

Tr
[
Ω[
∫

Λ
σ̃λdλ]

]

Tr [Ω[ρB]]
= 1 (3.8)

since by summing (3.3) over a we have

∫

Λ

σ̃λdλ = ρB. (3.9)

If the map Ω is invertible then one has

σa|x =
Ω−1

[
σΩ
a|x

]

Tr
[
Ω−1

[
σΩ
a|x

]] . (3.10)

Hence, if Ω−1 positive then {σa|x} demonstrates steering if and only if {σΩ
a|x}

demonstrates steering.

From this we can prove the following Theorem, which will be of use throughout
this part of the thesis.
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Theorem 3.2.1. Let Ω be a positive linear map. If the state ρ admits a LHS
model from Alice to Bob, then the state

ρΩ =
1A ⊗ Ω[ρ]

Tr [Ω[ρB]]
(3.11)

admits a LHS model from Alice to Bob. Furthermore, if Ω is invertible and
its inverse map positive then the statement is if and only if.

Proof. The proof of this follows from the fact that

TrA
[
Ma|x ⊗ 1 ρΩ

]
=

Ω
[
σa|x
]

Tr [Ω[ρB]]
. (3.12)

which by Lemma 3.2.1 does not demomstrate steering for all Ma|x and hence
admits a LHS model. To prove the if and only if condition, one uses the fact
that

ρ =
1A ⊗ Ω−1 [ρΩ]

Tr [Ω−1 [ρΩ
B]]

(3.13)

with ρΩ
B = TrA ρΩ.

3.3 Steering as a semi-definite program

Many problems in steering can be tackled using the tools of semi-definite
programming (SDP) optimisation [38]. For example, for a finite number of
inputs and outputs, deciding if (3.3) is satisfied can be cast as a semi-definite
program feasibility problem [39, 40]. This follows from that fact that for a
fixed number of inputs and outputs, one may take the functions pλ(a|x) to be
the set of all deterministic functions (as was the case in Bell nonlocality). We
must then check

σa|x =
∑

λ

pλ(a|x)σ̃λdλ ∀a, x ;
∑

λ

Tr[σ̃λ] = 1 ; σ̃λ ≥ 0 ∀λ. (3.14)

The first two of these conditions are linear in the optimisation variables σ̃λ
and the final a semi-definite constraint, hence the above can be solved with
a semi-definite program. SDP methods for steering go far beyond this simple
example - see [35] for a review.
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One-way EPR steering

Alice and Bob play asymmetric roles in the steering scenario. A natural ques-
tion is whether there exist states that are steerable uniquely in one direc-
tion [14]. That is, does there exist a state ρ that admits a LHS model from
Bob to Alice, however does not admit a LHS model from Alice to Bob. This
has fundamental interest, since it would show an inherent asymmetry of quan-
tum steering for quantum states, but also of potential practical interest, since
there are many quantum information tasks in which one party is trusted (your-
self, for example), but not the other. The existence of one-way steering was
proven for the set of gaussian measurements on a family of continuous variable
states [41,42] (with corresponding experimental observation [43]). Considering
non-gaussian measurements however, the result was not known to hold, and
indeed for Bell nonlocality it is known that for certain states non-guassian mea-
surements can be necessary to violate a Bell inequality [44]. Considering more
general measurements on quantum states the question thus remained open,
mainly due to the difficulty in constructing LHS models for all measurements
for (necessarily asymmetric) quantum states.

We answer the question of one-way EPR steering [Paper A], considering
arbitrary projective measurements on the two qubit state given by:

ρ(α) = α|ψ−〉〈ψ−|+ 1− α
5

(
2 |0〉〈0| ⊗ 1

2
+ 3

1
2
⊗ |1〉〈1|

)
. (4.1)

This state is entangled in the range α > 1/19(−6 + 5
√

6) ≈ 0.3288 (as verified
using the positive partial transpose criterion [27]). For α ≤ 1/2, ρ(α) we show
that ρ(α) admits a LHS model from Bob to Alice, however for α & 0.4983 no
model can exist from Alice to Bob (i.e. the state is steerable from A → B).
Hence in the range 0.4983 ≤ α ≤ 1/2 the state is one-way steerable from Alice
to Bob. Below we show this in two parts, first focusing on the LHS model

33
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from Bob to Alice, then the demonstration of steering from Alice to Bob. In
the following chapter (Section 5.3.1), we present the simplest possible example
of one-way steering based on a different class of two-qubit states.

4.1 No steering from Bob to Alice

We wish to provide a LHS model for ρ(α) for α = 1/2. We therefore need
to define the hidden states σλ, distribution qλ and response functions pλ(b|~x)
such that

p(ab|xy) = Tr
[
ρ(1/2)Ma|~x ⊗Mb|~y

]
(4.2)

=

∫

Λ

qλ Tr
[
σλMa|~x

]
pλ(b|y)dλ, (4.3)

(see Eq. 3.5) where we take a = ±1, b = ±1. For projective measurements
with Bloch vectors ~x, ~y, the correlations of this state are completely defined
by

〈ab〉 = −1

2
~x · ~y ; 〈a〉 =

x3

5
; 〈b〉 = −3y3

10
, (4.4)

where 〈ab〉 =
∑

ab ab p(ab|~x~y) is the expectation value of the product of out-
comes ab (and similarly for 〈a〉, 〈b〉), and x3, y3 are the z-components of the
Bloch vectors ~x, ~y.

To simulate these statistics, we chose the LHS model

σ~λ = |~λ〉〈~λ| ; q~λ =
1 + λ3

4π
; b = −λ0sgn(~y · ~λ), (4.5)

where ~λ = (sin θ cosφ, sin θ sinφ, cos θ) is the Bloch vector for the hidden state
and λ0 = ±1 is a local variable for Bob. For now we assume λ = 1 always.
Unlike before, the shared variable is not uniformly distributed on the sphere,
but is weighted towards to top of the sphere due to the term λ3. Working in
spherical co-ordinates one has λ3 = cos θ and

〈ab〉 = −
∫

φ

∫

θ

1 + cos θ

4π
Tr
[
A~x|~λ〉〈~λ|

]
sgn[~y · ~λ] sin θdθdφ (4.6)

= −
∫

φ

∫

θ

1 + cos θ

4π
~x · ~λ sgn[~y · ~λ] sin θdθdφ (4.7)

= −
∫

φ

∫

θ

1

4π
~x · ~λ sgn[~y · ~λ] sin θdθdφ

−
∫

φ

∫

θ

cos θ

4π
~x · ~λ sgn[~y · ~λ] sin θdθdφ. (4.8)
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Here A~x = M+1|~x−M−1|~x is Alice’s observable. The second of these two terms

is equal to zero. This can easily be seen since if the vector ~λ has angle θ, the
flipped vector −~λ has angle π − θ. Under this transformation θ → π − θ one
has cos θ → − cos θ, sin θ → sin θ, ~x · ~λ→ −~x · ~λ and sgn[~y · ~λ]→ −sgn[~y · ~λ].

It follows that the contribution to the second term of 〈ab〉 coming from ~λ is

precisely equal and opposite than the contribution from ~λ, and the integral
vanishes. We are thus left with

〈ab〉 = −
∫

φ

∫

θ

1

4π
~x · ~λ sgn[~y · ~λ] sin θdθdφ (4.9)

= −1

2
~x · ~y, (4.10)

which follows from the fact that the above is precisely the same correlation
predicted by Werner’s model (see (2.19)) with the uniform distribution q~λ =
1/4π.

The marginal term 〈a〉 for Alice is a straightforward integration of trigono-
metric functions

〈a〉 =

∫ 2π

0

dφ

∫ π

0

sin θdθ
1 + cos θ

4π
~x · ~λ (4.11)

=
x3

3
. (4.12)

To calculate Bob’s marginal 〈b〉 is a little more involved. Since the function

sgn(~y · ~λ) is symmetric about ~λ = ~y, it is useful to rotate into the frame (θ̃, φ̃)
in which the θ̃ = 0 direction is aligned with ~y. This will involve rotating the
original frame by an angle θB, where θB is the angle of ~y to the (original) z
direction. In this frame, the distribution q~λ is given by

q(θ̃, φ̃) =
1− sin θB sinφ sin θ̃ + cos θB cos θ̃

4π
. (4.13)

This frame has the advantage that sgn(~y · ~λ) = +1 for 0 ≤ θ̃ ≤ π/2 and

sgn(~y ·~λ) = −1 for π/2 < θ̃ ≤ π. We may thus split the integral in two so that

〈b〉 = −
∫ 2π

0

dφ̃

[∫ π/2

0

q(θ̃, φ̃) sin θ̃dθ̃ −
∫ π

π/2

q(θ̃, φ̃) sin θ̃dθ̃

]
. (4.14)

This involves only integration over trigonometric functions and gives

〈b〉 = −y3

2
. (4.15)
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Hence the above model produces the correct joint correlations 〈ab〉 but not the
marginal statistics 〈a〉 . This can be remedied by using the variable λ0 (which
we previously set to 1). This is due to the fact that the marginal statistics
predicted by the model are in fact too strong. If we chose a distribution
p(λ0 = −1) = f then one finds

〈a〉 = (1− 2f)
x3

3
; 〈b〉 = (1− 2f)

y3

2
. (4.16)

Thus, if we chose f = 1
5

we obtain the correct statistics for the state. Note
that the joint statistics 〈ab〉 do not depend on on f .

4.2 Steering from Alice to Bob

The next step involves showing that no LHS model can exist from Alice to
Bob. This can be achieved using semi-definite programming (SDP) techniques.
We perform a fixed number m of measurements given by the observables Mi

for Alice, and the three Pauli observables σj, j = 1, 2, 3 for Bob. We further
define σ0 = 1. We then have

〈ab〉 = Tr [ρ(α)Mi ⊗ σj] j > 0 ; 〈b〉 = Tr [ρ(α)1⊗ σj] . (4.17)

One has 〈a〉i = 〈ab〉i0. We may then use use the following SDP [39] (which is
essentially the same SDP as Section 3.3) for deciding if a given assemblage is
steerable or not.

α∗ = maxα

s.t.
∑

λ

Eλ(i) Tr [ρλσj] = 〈ab〉ij,
∑

λ

Tr [ρλσj] = 〈b〉j (4.18)

∑

λ

Tr [σλ] = 1 ; σλ ≥ 0 ∀σλ. (4.19)

Here Eλ(i) = ±1 represent the deterministic response functions of Alice (given
now as correlators), and the summation over λ is over all such deterministic
strategies for her inputs. The value of α∗ gives upper bounds to the critical
value at which the state demonstrates steering for a given set of measurements.
In table 4.2, upper bounds for α∗ obtained via SDP optimisation are presented.
For m > 14 one sees that the state is steerable for α ≥ 0.4983. This therefore
proves that in the range 0.4983 ≤ α < 0.5, the state is one-way steerable.
This result can be made analytic via the construction of a steering inequality
which guarantees that the assemblage demonstrates steering (See Paper A
Appendix).
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m 2 3 4 5 6 7 8

α∗ 0.6951 0.5661 0.5424 0.5302 0.5156 0.5120 0.5088
m 9 10 11 12 13 14

α∗ 0.5037 0.5030 0.5014 0.5005 0.4993 0.4983

Table 4.1: Threshold values α∗ for which the state ρ(α) is steerable from Alice
to Bob. The optimisation is conducted over all possible steering tests where
Alice performs m = 2, . . . , 14 projective measurements.

4.2.1 A stronger example

One can in fact obtain a stronger example of one-way steering using essentially
the same LHS model as above (although this was no realised at the time of
publication). If one fixes λ0 = 1, the correlations (4.9), (4.11), (4.15) simulate
the correlations of the state (written in the Pauli basis)

ρ =
1

4

[
1 +

1

3
σz ⊗ 1− 1

2
1⊗ σz −

1

2

∑

i

σi ⊗ σi
]
. (4.20)

This state has stronger asymmetry than (4.1) and steering from Alice to Bob
can be more easily demonstrated using the same SDP techniques (six mea-
surements for Alice are enough here).

4.3 Outlook

This work has inspired a number of subsequent works. Notably, one way
steering has been extended to the scenario in which the LHS model for the
unsteerable direction is valid even if general measurements (POVMs) are per-
formed [36]. There have also been experimental realisations of one-way steering
for finite dimensional quantum states [45,46].

Given the asymmetric nature of one-way steering, one could imagine ap-
plications in asymetric quantum information processing tasks. This is at the
moment somewhat missing and would be an interesting avenue of research.
Finally, EPR steering has recently been formalised in the multipartite set-
ting [47]. A natural extension to this work would be to explore assymetric
steering in multipartite states. For example, does there exist a tripartite state
(with parties ABC), such that A can steer to B, B to C, C to A, but not in
the reverse direction?

In Section 5.3.1 of the following chapter, we present the simplest possible
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demonstration of one-way EPR steering, based on a different set of unsteerable
states.
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Sufficient condition for
unsteerability

Whereas it is relatively easy to verify if a state is steerable (e.g. via SDP meth-
ods for a fixed number of measurements [39]), it is generally much harder to
guarantee that a state is unsteerable. This is due to the fact that one must
verify that (3.3) is satisfied for all possible measurements. For this reason, rel-
atively few states admitting LHS [13,29,48], or more general LHV models are
known [31, 49, 50]. In [Paper B], we present a simple sufficient criterion for
a state of two-qubits to be unsteerable for arbitrary projective measurements,
hence implying that ρ admits a LHS model for projective measurements. This
provides one with the possibility of finding new families of states admitting
LHS (and hence LHV) models. One important concept needed to prove this
criterion is that of canonical states, as described in the following section. We
then apply our criterion to a family of two-qubit states, which leads to a num-
ber of applications in both Bell nonlocality and measurement incompatibility.

5.1 Canonical states for steering

Consider a mixed entangled state ρ of two qubits, with reduced state for Bob
ρB = TrA[ρ]. Define the (state dependent) positive linear map

Ωρ [ρ] = ρ
− 1

2
B ρ ρ

− 1
2

B . (5.1)

39
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Note that Ω is invertible since ρB is full rank. It follows from Theorem 3.2.1
that the state

ρ′ =
1⊗ ρ−

1
2

B ρ 1⊗ ρ−
1
2

B

Tr
[
1⊗ ρ−

1
2

B ρ 1⊗ ρ−
1
2

B

] (5.2)

is unsteerable from Alice to Bob if and only if ρ is unsteerable from Alice to
Bob. Hence, if we aim to prove the unsteerability of a two-qubit mixed state1

ρ, we may focus our attention on the corresponding canonical state ρ′ defined
above. Since by construction we have TrA[ρ′] = ρ′B = 1/2 it follows that

ρ′ =
1

4

(
1 + ~a · ~σ ⊗ 1 +

∑

i

Tiσi ⊗ σi
)

(5.3)

where ~a is Alice’s local Bloch vector and T = diag(T1, T2, T3) is the diagonal
correlation matrix of the state (which can always be made diagonal by local
unitaries [51]).

5.2 Criterion for unsteerability

The criterion is as follows:

Theorem 5.2.1. Let ρ be a two-qubit state with corresponding canonical
form ρ′ given by (5.3). If

max
~x

[
(~a · ~x)2 + 2 ||T~x||

]
≤ 1, (5.4)

where ~x is a normalized vector and || · || the euclidean vector norm, then ρ is
unsteerable from Alice to Bob, considering arbitrary projective measurements.

Proof. We first characterize the assemblage resulting from projective measure-
ments on a state in the canonical form ρ′. Alice’s measurement is given by
a Bloch vector ~x and output a = ±1, corresponding to operators M±|~x =
(1 + ~x · ~σ)/2. For a = +1, the steered state in Bloch vector notation is (see
for example [48])

σ+|~x = TrA(M+|~x ⊗ 1ρ′) =
1

4
[(1 + ~a · ~x)1 + T~x · ~σ]. (5.5)

1The case of pure states is irrelevant here since all entangled pure states are steerable [39]
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Notice that the above state is diagonal in the basis {|~s〉, |−~s〉}, with Bloch
vector ~s = T~x

||T~x|| ; we omit the ~x dependence to ease notation. The eigenvalues

of σ+|~x are

α(~x) =
1

4
(1 + ~a · ~x+ ||T~x||), β(~x) =

1

4
(1 + ~a · ~x− ||T~x||). (5.6)

Note that by construction α(~x) ≥ β(~x). One can then find σ−1|~x from σ+|~x by
using σ−1|~x = ρB − σ+1|~x.

To prove unsteerability of ρ we may focus on the unsteerability of the
canonical state ρ′. We therefore construct a LHS for the assemblage given by
(5.5), which can be seen as a generalisation of Werner’s model. Notice that
Werner’s model (Eq. 2.19) can be seen as a local hidden state model with
local hidden states given by the pure states

σ~λ = |~λ〉〈~λ| (5.7)

with a uniform distribution

q~λ =
1

4π
. (5.8)

This ensures that
∫
q~λ σ~λ d2~λ =

1
2

= ρB (5.9)

as required by summing (3.2) over a. Our canonical states ρ′ are defined
precisely so that TrA[ρ] = ρ′B = 1/2. We also therefore take the the same
hidden states and (uniform) distribution as Werner. However, we modify the
response function p~λ(a = ±|~x) such that

p~λ(±|~x) =
1± sgn(~s(~x) · ~λ− c(~x))

2
, (5.10)

where ~s given by ~s = T~x/||T~x|| defines the direction of the steered state for a
given ~x and c(~x) ∈ [−1, 1] (to be chosen). The intuition (see also Fig. 5.1) is
that with this choice of ~s, the steered state in our LHS model (after averaging

over ~λ) will have Bloch vector in the direction ~s, as required from (5.5). The
number c(~x) can be used to make the marginal distribution p(a|~x) for Alice
non-uniform without modifying the direction of the Bloch vector of the steered
state (e.g. for c(~x) = −1 we have p(a|~x) = 1). For each measurement ~x, we
thus need to find ~s(~x) and c(~x) such that the LHS model reproduces the steered
state (5.5).
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Figure 5.1: Illustration of Alice’s response function (5.10) in our LHS model.

If sgn(~s(~x) · ~λ − c(~x)) ≥ 0 then a = +1 (shaded spherical cap, with angle
θc = arccos[c]), otherwise a = −1. The steered state then corresponds to the
average (sub-normalized) density matrix obtained by integrating pure qubit

states |~λ〉 over the shaded region.

To do this, note that we need only concentrate on the case a = +1; the
case a = −1 is automatically satisfied from σ+1|~x + σ−1|~x = ρB and (5.9). We
now calculate the assemblage predicted by this model, given by

σLHS
+1|~x =

∫
σ~λ p~λ(+|~x)d~λ =

1

4π

∫
|~λ〉〈~λ|p~λ(+|~x)d~λ. (5.11)

We parameterise the state |~λ〉 using the Bloch decomposition in the basis
{|~s〉, |−~s〉}:

|~λ〉 = |~λ(θ, φ)〉 = cos
θ

2
|~s〉+ sin

θ

2
eiφ|−~s〉. (5.12)

Working in this basis and integrating over the spherical cap of Fig. 5.1 for
which a = +1, we have

σLHS
+1|~x =

∫ 2π

0

∫ θc

0

(
cos2 θ

2
cos θ

2
sin θ

2
e−iφ

cos θ
2

sin θ
2
eiφ sin2 θ

2

)
sin θdφdθ

4π
,

where θc = arccos[c(~x)] is the angle of the spherical cap. Since
∫ 2π

0
eiφdφ = 0,

the off-diagonal components will be zero, and σLHS

+1|~x is therefore diagonal in
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Figure 5.2: Plot of the achievable range of eigenvalues (α′, β′) in our LHS
model (for a fixed direction ~s). The upper blue curve corresponds to the
condition α′ =

√
2β′−β′ and is achieved by the response functions (5.10); any

point in the light blue area below may be achieved by taking a suitable convex
combination of these functions (e.g. dashed line). Since we have α′ ≥ β′, the
grey area is not of interest.

the {|~s〉, |−~s〉} basis, as desired. From this, the eigenvalues of σLHS

+1|~x, α
′(~x) and

β′(~x), are given by

α′(~x) + β′(~x) =
1

2

∫ θc

0

sin θdθ =
1− cos θc

2
; (5.13)

α′(~x)− β′(~x) =
1

2

∫ θc

0

cos θ sin θdθ =
1− cos2 θc

4
. (5.14)

Upon using θc = arccos[c(~x)] one then finds

α′(~x) + β′(~x) =
1

2
(1− c(~x)); (5.15)

α′(~x)− β′(~x) =
1

4
(1− c2(~x)), (5.16)

from which we get the eigenvalues as a function of c(~x) as

α′(~x) =
√

2β′(~x)− β′(~x) ; β′(~x) =
1

8
(1− c(~x))2, (5.17)

corresponding to the curve of Fig. 5.2. Since this curve is concave, by fixing ~s
and taking convex combinations of the response functions (5.10) with different
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c(~x), we may prepare any steered states corresponding to (α′, β′) below this
curve, leading finally to

β′(~x) ≤ α′(~x) ≤
√

2β′(~x)− β′(~x). (5.18)

This corresponds to the blue area in Fig. 5.2. We thus conclude that the model
reproduces the assemblage of any canonical state ρ, as long as its eigenvalues
satisfy the above relation, i.e. α(~x) ≤

√
2β(~x) − β(~x), for any measurement

vector ~x, or equivalently

max
~x

[
(α(~x) + β(~x))2 − 2β(~x)

]
≤ 0. (5.19)

Using (5.6) to convert this maximisation into Bloch vector notation we arrive
at Theorem 5.2.1.

One natural question is whether our criterion is both necessary and suffi-
cient, i.e. whether it completely characterises the set of unsteerable two-qubit
states. Using the criterion alone, we know this to not be the case. For exam-
ple take the classically correlated state ρ = 1

2
[|00〉〈00| + |11〉〈11|] and choose

~x = (0, 0, 1). One easily sees that our criterion is violated, however the state
is separable and thus clearly unsteerable. However, it may be possible to in-
corporate other ideas in order to make the condition necessary and sufficient.
For example, one could consider the set of states given by

ρ = pρUS + (1− p)ρSEP, (5.20)

where ρUS is a state satisfying our criterion, ρSEP a separable state and 0 ≤ p ≤
1. Since mixing an unsteerable state with a separable state does not change
its steerability, this also defines a (larger) set of unsteerable states which could
potentially include all unsteerable two-qubit states. Whether this is the case
is still unknown.

5.2.1 A useful example

The criterion (5.4) can be used to prove analytically the unsteerability of
families of two qubit states for projective measurements. Here, we give one
such example which will prove to be useful in later chapters of the thesis. Our
states of interest are the two parameter family of “generalised Werner states”:

ρ(p, χ) = p|ψχ〉〈ψχ|+ (1− p)ρAχ ⊗
1
2
, (5.21)
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Figure 5.3: Characterisation of entanglement and steering for states ρ(p, χ).
The solid black curve corresponds to (5.22), obtained from our unsteerability
criterion. The state is separable in the light orange region, unsteerable (in
both directions) in the dark blue region, unsteerable only from Alice to Bob
(hence one-way steerable) in the light blue region, and two-way steerable in
the white region (obtained from equation 19 of [48]). What happens in the
grey region is an interesting open question.

with p ∈ [0, 1] and χ ∈ [0, π/4]. Note that for χ = π/4 we recover the two-
qubit Werner states. Using our criterion, we are able to prove unsteerability
form Alice to Bob in the range

cos2(2χ) ≥ 2p− 1

(1− p)p3
, (5.22)

see the thick black curve of Fig. 5.22 for a graph of this curve. For a proof of
the above see Appendix A.

5.3 Applications

The state (5.21) has a number of interesting applications. This is due in part
to the fact that for very small χ, the state is highly asymmetric yet remains
entangled. We now present a number of these applications.
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5.3.1 Simplest one-way steering

The states (5.21) in fact provide another example of one-way steering for two-
qubit states. From these we can construct the simplest example possible of
one-way steering, that is, a two-qubit state that is one-way steerable, where
only two measurement settings are needed to prove steering in one direction.
Note that by applying the filter Fχ = diag(1/ cosχ, 1/ sinχ) we obtain

1

2
Fχ ⊗ 1ρ(p, χ)Fχ ⊗ 1 = ρ(p, π/4), (5.23)

which is a Werner state with visibility p. Since this state is steerable (in both
directions) for p > 1/2 [14], it follows from Theorem 3.2.1 and the fact that Fχ
is invertible that the state ρ(p, χ) is steerable from Bob to Alice for p > 1/2 for
χ > 0. Hence, for the parameter range χ > 0, 1/2 < p < p∗(χ), where p∗(χ)
is determined by (5.4), the states ρ(p, χ) are one-way steerable (for projective
measurements) from Bob to Alice only (see Fig. 5.22).

Furthermore, the Werner state violates the CHSH Bell inequality for p >
1/
√

2. Since Bell nonlocality is strictly stronger than EPR steering, any Bell
nonlocal state is steerable. The state ρ(p, π/4) is therefore steerable (in both
directions) for only two measurement settings for p > 1/

√
2. Again by using

Fχ one has from Theorem 3.2.1 that ρ(p, χ) is steerable for two measurement
settings from Bob to Alice for χ > 0. This can also be extended to the
case where the LHS model for the state is valid for POVM measurements by
considering the states

ρPOVM(p, χ) =
1

2
ρ(p, χ) +

1

2
|0〉〈0| ⊗ ρB (5.24)

where one can show (see Paper B Section IVA) one-way steering for two mea-
surements settings in the range p > 0.83353 and corresponding χ given by
(5.22).

5.3.2 Sufficient condition for joint measurability

The above criterion also finds application in quantum measurement theory.
This follows from the direct connection existing between steering and the no-
tion of joint measurability of a set of quantum measurements [52,53], which has
already found applications, see e.g. [54]. A collection of projective measure-
ments are said to be compatible if their corresponding observables commute
(i.e. they share the same eigenvectors). For POVM measurements, this can be
generalised to a notion of joint measurability. A set of measurements {Ma|x}
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is said to be jointly measurable [55] if there exists a joint POVM {Gλ} with
outcomes λ and probability distributions p(a|x, λ), from which the statistics
of any of the measurements {Ma|x} can be recovered by a suitable post pro-
cessing, that is

Ma|x =

∫
Gλp(a|x, λ)dλ ∀ a, x. (5.25)

It has been shown that a set of POVMs is non-jointly measurable if and only
if it can be used to demonstrate steering on some bipartite entangled state
[52,53]. In this sense steering and measurement incompatible are very closely
related.

From this, one can convert our criterion for unsteerability into a criterion
for joint measurability of a (potentially continuous) set of POVM measure-
ments. Let {M±|x} be a set of dichotomic qubit POVMs with

M+|x =
1

2
(kx1 + ~mx · ~σ) (5.26)

with ||~mx|| ≤ kx ≤ 2− ||~mx||, and M−|x = 1−M+|x. Then the set {M±|x} is
jointly measurable if

kx(kx − 2) + 2||~mx|| ≤ 0 (5.27)

for all x. This can be seen as follows. A set of measurements {M±|x} is jointly

measurable if and only if the assemblage given by σ±|x = ρ
1
2M±|xρ

1
2 , where ρ

is a full-rank quantum state [56], is unsteerable. Choosing ρ = 1/2 we get the
corresponding assemblage σ±|x = ρ1/2 M±|x ρ1/2 = 1

2
M±|x. Following Theorem

1, condition (5.27) ensures the unsteerability of σ±|x, and consequently the
joint measurability of {M±|x}. As with our criterion for unsteerability, it is
not known if the above leads to a necessary and sufficient condition for joint
measurability.

5.3.3 LHV model for incompatible measurements

In the bipartite scenario, if one party has a set of jointly measurable POVMs,
it follows that the statistics must be local [53]. Like entanglement, then, non-
joint measurability for both parties is a necessary requirement for nonlocality.
Using our criterion, one can show that there exist non-jointly measurable sets
of measurements for Alice that do not lead to nonlocal correlations, considering
arbitrary dihcotomic measurements for Bob and an arbitrary shared entangled
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state. Hence, for arbitrary dihcotomic measurements for Bob, non-joint mea-
surability of measurements is not sufficient for nonlocality. This includes the
case, for example, where the parties share an arbitrary two-qubit entangled
state and Bob performs arbitrary projective measurements. This can be con-
trasted with the existence of entangled quantum states that admit LHV models
and thus do not lead to nonlocality. Specifically, we consider the (continuous)
set of noisy projective measurements

Mη
±|~y =

1

2
(1 + η ~y · ~σ) . (5.28)

This set of measurements is jointly measurable iff η ≤ 1/2 [54]. Note that

Tr
[
M±|~x ⊗Mη

±|~y |ψχ〉〈ψχ|
]

= Tr
[
M±|~x ⊗M±|~y ρ(η, χ)

]
, (5.29)

where ρ(η, χ) is given by (5.21). One can thus recast the problem of the LHV
simulation of the set of noisy projective measurements (5.28) and arbitrary
projective measurements for Alice on any bipartite state as finding a LHV
model for the state (5.21) for all χ for a given p = η. This eventually leads to
a proof [Paper C] that the set of measurements with η < 0.503 (or η < 0.515 if
SDP methods are used) admits a LHV model for any state where Bob performs
arbitrary dihcotomic measurements. Extending this to POVM measurements
for Bob is currently a work in progress and would lead to a proof that non-joint
measurability does not imply Bell inequality violation in general.

5.3.4 No hidden nonlocality for qubits

A bipartite state is said to have hidden nonlocality if ρ admits a LHV model
however the state

ρF =
FA ⊗ FBρF †A ⊗ F †B

Tr[FA ⊗ FBρF †A ⊗ F †B]
(5.30)

does not admit a LHV model, hence violates some Bell inequality. The ma-
trices FA, FB are called local filters. The filtering operation, for example,
corresponds to making the local measurements {FA, 1−FA}, {FB, 1−FB} on
the state ρ and postselecting the first outcomes. In the context of sequential
measurement scenarios, hidden nonlocality gives a sufficient condition for the
state not to admit a so-called sequential LHV model (see [57]). Hidden non-
locality was first shown to exist by Popescu [58], where the state before the
filtering admits a LHV model for projective measurements. We then extended
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this result to the case in which the LHV model before filtering is valid for
general POVM measurements [Paper D]. One may wonder whether all en-
tangled states could have their nonlocality revealed in such a way, i.e. for any
entangled state, can one always find local filters that reveal the nonlocality
of the state? For the case of projective measurements, the criterion (5.4) can
be used to show that this is not the case. Specifically, consider the two-qubit
Werner states

ρp = p|ψ−〉〈ψ−|+ (1− p)1
4
. (5.31)

We first consider a filter on Alice’s subsystem:

ρFA =
FA ⊗ 1 ρp F

†
A ⊗ 1

Tr
[
FA ⊗ 1 ρp F

†
A ⊗ 1

] . (5.32)

Due to the U ⊗ U symmetry of the Werner state, it is sufficient to restrict to
diagonal filters FA = diag(cosχ, sinχ) for χ ∈ [0, π/4]. One then finds

ρFA = p|ψχ〉〈ψχ|+ (1− p)ρAχ ⊗
1
2

= ρ(p, χ). (5.33)

Hence, this state is precisely the state (5.21). From the condition (5.22), one
sees that this state admits a LHS model from Alice to Bob for all χ if p ≤ 1/2.
From Theorem (3.2.1) we may therefore apply any filter to Bob’s subsystem
and still have a LHS model for the filtered state. From this it follows that the
filtered state

ρF =
FA ⊗ FB ρp F †A ⊗ F †B

Tr
[
FA ⊗ FB ρp F †A ⊗ F †B

] (5.34)

admits a LHS model from Alice to Bob for projective measurements (and
thus a LHV model) for all possible filters for p ≤ 1/2. This state therefore
does not violate any Bell inequality for arbitrary projective measurements.
This result can thus be seen as a generalisation of Werner’s original result,
extended to include hidden nonlocality. The case where one demands that the
filtered state remains local even for POVM measurements can be tackled using
a combination of the above and SDP techniques (work in progress).

5.4 Outlook

Related work has also discussed the LHS simulation of two-qubit states, no-
tably for Bell diagonal states [48] and more recently general two-quibt states
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[59]. One common property of all these works (including this chapter) is that
only steering under projective measurements is considered. Naturally, one
would therefore like to extend our criterion and others to include POVM mea-
surements. This seems somewhat challenging given the added complexity of
the set of POVM measurements. An alternative possibility to proving a sim-
ilar result would be to look at whether POVM measurements are useful for
steering. Evidence suggests that POVMs are generally not useful for steering,
that is, a given state is steerable if and only if it is steerable using projective
measurements. Proving this would therefore immediately generalise any result
holding for projective measurements. Similarly, one would like to find criteria
which extend beyond the qubit-qubit case. It is unlikely that our criterion can
be straightforwardly extended to higher dimensional systems since it uses as a
central tool the Bloch sphere representation which is applicable only to qubit
systems.
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LHV simulation of multipartite
entangled quantum states

So far our discussion of nonlocality has been limited to bipartite states. Con-
sidering multipartite states, the relationship between entanglement and nonlo-
cality is far less explored. One important question here is whether there exist
multipartite entangled states that admit LHV models, as we have seen is the
case in the bipartite scenario. To make the question nontrivial it is necessary
to consider states that have genuine multipartite entanglement, the strongest
form of multipartite entanglement. This question has been explored for the
case of tripartite states, where it was shown that such states exist [60], and
another work has explored the link between genuine multipartite entanglement
and genuine multipartite nonlocality [61]. We present progress in this direc-
tion [Paper E] by using tools from EPR steering to show the existence of a
family of genuinely multipartite entangled states that admit LHV models, for
any number of parties. Thus, the strongest form of multipartite entanglement
does not lead to any nonlocality if one considers non-sequential local measure-
ments. Considering sequential measurements however, we will see that our
construction allows us to prove the existence of multipartite hidden nonlocal-
ity. This therefore highlights the potential importance of performing sequential
measurements to reveal the nonlocality of entangled quantum states.

6.1 Multipartite LHV models

Consider a state ρ of N parties, where party i can make measurements labelled
xi obtaining outcomes ai, specified by the measurement operators Mai|xi , with
Mai|xi ≥ 0 and

∑
ai
Mai|xi = 1. The probability to see the outputs a =

51
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(a1, · · · , aN) given the inputs x = (x1, · · · , xN) is given by

p(a|x) = Tr
[
ρ (⊗Ni=1Mai|xi)

]
. (6.1)

The state ρ is called (fully) local if, for all possible measurement operators
Mai|xi , the statistics p(a|x) can be reproduced by a local hidden variable
(LHV) model:

p(a|x) =

∫

Λ

qλpλ(a1|x1)pλ(a2|x2) · · · pλ(aN |xN)dλ, (6.2)

where qλ is a probability density over the shared variable λ ∈ Λ and the
pλ(ai|xi)’s are probability distributions, called local response functions. Like-
wise, if the above cannot be satisfied then the state is said to be nonlocal, as
witnessed by the violation of (some) Bell inequality.

One may also consider a weaker notion of locality, whereby the correla-
tions are not demanded to be local with respect to all parties (as in (6.2)), but
instead to be (mixtures of) correlations that are each local across some bipar-
tition. Denoting by (b, b̄) ∈ B a bipartition of the parties, these correlations
take the form

p(a|x) =
∑

(b,b̄)∈B
pb

∫

Λb

qbλpλ(ab|xb)pλ(ab̄|xb̄)dλ, (6.3)

where ab, xb denote the inputs and outputs for the bipartition b, pb is a prob-
ability distribution and qbλ is a probability density over λ ∈ Λb for each b.
Note that (6.2) implies (6.3) but not necessarily the converse. Correlations
which cannot be written in the above form are called genuinely multipartite
nonlocal (GMNL) and represent the strongest form of multipartite nonlocal-
ity [62]. Here, for simplicity, we put no restrictions on the probability distribu-
tions pλ(ab|xb), pλ(ab̄|xb̄) other than positivity and normalisation (for example
they may be signalling); note that more sophisticated definitions of GMNL
were proposed [63,64]. The N -party Greenberger-Horne-Zeilinger (GHZ) state
|GHZ〉 = (|0〉⊗N + |1〉⊗N)/

√
2 is known to produce correlations which are

GMNL, as proven by the violation of the Svetlichny inequalities [62,65,66].
Recall that we would like to find multipartite entangled states admitting

LHV models, i.e. satisfying (6.2) for all local measurements. Trivially, one
can achieve this by taking a bipartite state ρA1A2 admitting a LHV model and
constructing the state

ρA1···AN = ρA1A2 ⊗ ρA3 ⊗ ρA3 ⊗ · · · ⊗ ρAN . (6.4)
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Since ρA1A2 is entangled, so is ρA1···AN , and the LHV model for ρA1A2 can
be easily extended to the whole state as the remaining subsystems are in a
separable state. To make the question relevant, we therefore require a stronger
notion of multipartite entanglement, called genuine multipartite entanglement.

6.2 Genuine multipartite entanglement

Consider N parties sharing a multipartite quantum state ρ acting on H1 ⊗
· · · ⊗ HN , where Hi is the local Hilbert space of party i. Denote again by
(b, b̄) ∈ B a bipartition of the N parties. If ρ can be decomposed as a mixture
of states that are each separable on some bipartition of the Hilbert space then
we have

ρ =
∑

(b,b̄)∈B
pb

(∑

j

qbj |Φj〉〈Φj|b ⊗ |Φj〉〈Φj|b̄

)
, (6.5)

with
∑

b pb =
∑

j q
b
j = 1 and |Φj〉〈Φj|b acts on the Hilbert space specified

by the partition b (and similarly for |Φj〉〈Φj|b̄). If ρ does not admit such a
decomposition then it is genuinely multipartite entangled (GME). Such states
can thus not be created via local operations and communication using only
biseparable states.

Determining whether a given state is GME is challenging, as one must
search over all possible decompositions (6.5). However, there are sufficient
conditions for an N -qubit state to be GME [67–69] (see also [70]).

One such condition, which can be seen as a generalisation of concurrence
for multi-qubit systems, is given be the following [67–69]. Write the state ρ in
the canonical basis |0, 0, · · · , 0〉, |0, 0, · · · , 1〉, · · · , |1, 1, · · · , 1〉 as

ρ =




c1 z1

c2 z2

. . . . .
.

cn zn
z∗n dn

. .
. . . .

z∗2 d2

z∗1 d1




(6.6)
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(we only write the elements of interest), where n = 2N−1. Then ρ is GME if

C(ρ) = 2 max
i
{|zi| − wi} > 0, (6.7)

where wi =
∑n

j 6=i
√
cjdj. For the case of qubit X-matrices (of the above form),

the above condition is both necessary and sufficient. Below we will use this
condition to ensure that a state is GME.

6.3 Method

Our construction will make use of tools from EPR steering and the following
generalisation of Theorem 3.2.1 1 for multiple copies of a bipartite state. The
basic idea is that by taking many copies of an unsteerable state in a star-
network configuration (see Fig. 6.1), one may make a joint measurement on
the central parties, swapping the entanglement to the remaining parties such
that they are projected on to a state that is GME. Importantly, if the original
state is unsteerable, the swapped state admits a LHV model. Concretely, we
have the following lemma:

Lemma 6.3.1. Let ρ be a quantum state acting on HA1⊗HB1 . The state ρ⊗N

therefore acts on HA1⊗· · ·⊗HAN⊗HB1⊗· · ·⊗HBN = HA⊗HB. Furthermore
let ΩB be a completely positive linear map acting on HB. If ρ is unsteerable
from A1 to B1, then the N -party state

ρA1···AN =
TrB

[
1A ⊗ ΩB(ρ⊗N)

]

Tr[1A ⊗ ΩB(ρ⊗N)]
(6.8)

admits a local hidden variable model, of the form (6.2), on the N -partition
A1/A2/ · · · /AN−1/AN .

The set of measurements for which the multipartite LHV model will hold will
depend on the original LHS model for ρ, e.g. if the LHS model for ρ is valid
for projective/POVM measurements, then the LHV model for ρA1···AN will be
valid for projective/POVM measurements.

The LHV model for ρA1···AN is constructed as follows. Denote the ith state
of ρ⊗N by ρi. Since ρi is unsteerable, it admits a LHS model with local
hidden states σλi distributed according to qλi , and local response functions

pλi(ai|xi). The LHV model for ρA1···AN then has a local hidden variable ~λ =
(λ1, λ2, · · · , λN) distributed according to

Q(~λ) =

∏
i qi
N Tr[ΩB(⊗iσλi)], (6.9)
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where N ensures the normalisation of Q. One sees that the initially uncorre-
lated variables λi of the shared variable ~λ in the multipartite LHV model are
correlated using the map ΩB and the local hidden states. This can be seen
as a classical analogue of entanglement swapping whereby a local CP map
on the central parties is used to quantumly correlate a collection of initially
uncorrelated quantum systems. For a full proof of the above lemma see the
Appendix of [Paper E].

6.4 GME states with fully local models

6.4.1 Projective measurements

We now use Lemma 6.3.1 to construct N -qubit GME states which admit fully
local models for projective measurements for all N . Specifically, consider the
class of two-qubit states (defined previously in (5.21))

ρ(p, χ) = p|ψχ〉〈ψχ|+ (1− p)ρχA ⊗
1
2
, (6.10)

where 0 ≤ p ≤ 1, 0 ≤ χ ≤ π/4, |ψχ〉 = cosχ|00〉 + sinχ|11〉, and ρχA =
TrB |ψχ〉〈ψχ|. These states are entangled for all χ ∈ ]0, π/4] if p > 1/3. As we
have seen (Eq. 5.22) these states admit a LHS model for projective measure-
ments from Alice to Bob if

cos2(2χ) ≥ 2p− 1

(2− p)p3
. (6.11)

Hence, for any 0 ≤ p < 1 one may find a corresponding χ > 0 such that ρ(p, χ)
is unsteerable. We define the completely positive linear map

ΩB(σ) = FBσF
†
B , FB = |0〉 [〈0, 0, · · · , 0|+ 〈1, 1, · · · , 1|] ,

which projects the systems of B1 · · ·BN onto a N -qubit GHZ state. We may
now define the N -party state ρA1···AN by using ρ(p, χ) and ΩB in (6.8). One
can show (see [Paper E] Appendix B) that the concurrence of this state for a
fixed N , p, χ is given by

C(ρA1···AN ) =

2 sinN (2χ)

(
pN +

[
1+p

2

]N
+
[

1−p
2

]N
− 1

)

[1 + p cos 2χ]N + [1− p cos 2χ]N
. (6.12)

It follows that for any N , one can find parameters p, χ such that (i) con-
dition (6.11) is satisfied (ensuring that ρ(p, χ) has a LHS model), and (ii)
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Figure 6.1: Construction of multipartite states admitting a fully local model.
(a) Construction of the state. First, place N copies of a bipartite state ρ in a
star-shaped network. Then, apply a map ΩB at the central node (i.e. on parties
B1 · · ·BN), and trace out these parties. We thus obtain an N -partite state,
ρA1···AN (represented by the blue wiggly line), shared by parties A1 · · ·AN .
(b) LHV model. If ρ admits a LHS model, one can simulate the correlations
of the star-shaped network for ρ⊗N , whereby the central node receives the
hidden states σλi independently from each source and the parties Ai receive
hidden variables λi. One may now correlate the individual λi’s by having the
map ΩB act on the hidden states, i.e. we can define a new distribution over
~λ = (λ1, · · · , λN) that depends on Tr[ΩB(⊗i σλi)]. If each party Ai uses the
same response function as in the LHS model for ρ, then the resulting statistics
on parties A1 · · ·AN simulate exactly the state ρA1···AN .
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C(ρA1···AN ) > 0, proving that ρA1···AN is GME. To give a specific example, take
p = 1 − 1/N2 and χ > 0 such that (6.11) is saturated. One sees that the
denominator of (6.12) and sinN 2χ are both positive. We therefore need

pN +

[
1 + p

2

]N
+

[
1− p

2

]N
> 1 (6.13)

to be positive for all N ≥ 2. For the case N = 2 one has p = 3/4 and this is
easily verified. For N > 2, upon substituting p = 1− 1/N2 the left hand side
becomes

[
1− 1

N2

]N
+

[
1− 1

2N2

]N
+

[
1

2N2

]N

> 2

[
1− 1

N2

]N
> 2

[
1− 1

N

]
> 1 (6.14)

where for the first inequality use the fact that [1−1/N2]N < [1−1/2N2]N and
[1/2N2]N > 0, and the second inequality follows from Bernoulli’s inequality.
Thus, these states are GME and admit a LHV model for projective measure-
ments.

6.4.2 POVM measurements

Since the LHS model for ρ(p, χ) is valid only for projective measurements, the
previous model is only valid for local projective measurements ρA1···AN . One
would therefore like to extend this to include POVM measurements. While the
states ρ(p, χ) are not known to admit a LHS model for POVMs, we can nev-
ertheless proceed differently. Starting from ρA1···AN , we can construct another
state, ρGME, which is both GME and local for POVM measurements.

Specifically, define ρA1···Ak = TrAk+1···AN [ρA1···AN ] and denote by 	 [ρ] the
unnormalised and symmetrised version of ρ. Then the state

ρGME =
1

2N

[
ρA1···AN +

N−1∑

j=0

	
[
ρA1···Aj ⊗ |2〉〈2|⊗N−j

]]
(6.15)

admits a fully local model, for arbitrary local POVMs. Note that |2〉〈2| denotes
the projector onto a subspace orthogonal to the qubit subpace. The above
follows from a straightforward extension of Protocol 2 of Ref. [49] to the case
of N parties.

Finally, we have to show that the state is GME. Note that if each party
makes a local projection on the qubit subspace |0〉〈0|+ |1〉〈1| then the resulting
(renormalised) state is ρA1···AN , which is GME. Since one cannot create GME
using stochastic local operations, it follows that ρGME is GME.
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6.5 Genuine multipartite hidden nonlocality

We have shown that GME states can admit a fully local LHV models for
arbitrary non-sequential measurements. A natural question now is whether
these states have hidden nonlocality [49, 57, 58]. This is possible if one can
transform the original state via local stochastic operations, i.e. local filters,
to another state that violates some Bell inequality. Below we will see that
the states ρGME have genuine multipartite hidden nonlocality. Furthermore,
the activation of nonlocality is maximal, in the sense that the filtered state
exhibits GMNL, despite the initial state being fully local.

Consider N parties sharing ρGME. Let each party perform a local filtering
operation given by

Gε = ε|0〉〈0|+ |1〉〈1|, (6.16)

hence transforming ρGME to the state

ρε =
G⊗Nε ρGMEG

⊗N
ε

Tr[G⊗Nε ρGMEG⊗Nε ]
. (6.17)

For ε = tanχ (where χ is the parameter in (6.10)), the filtered states is essen-
tially a pure N -party GHZ state [|0〉⊗N + |1〉⊗N ]/

√
2. Specifically, the fidelity

between the two states is given by

F(ρε, |GHZ〉〈GHZ|) = 〈GHZ|ρε|GHZ〉

=
1

2

[
pN +

(
1 + p

2

)N
+

(
1− p

2

)N]
. (6.18)

which tends to 1 when p is sufficiently close to 1 (p is the parameter appearing
in the state (6.10) used to construct ρGME). Since the GHZ state is known
to exhibit GMNL for any N , in particular via violation of the Svetlichny
inequalities [65, 66] (which are robust to noise), it follows that ρε can also be
made GMNL.

6.6 Outlook

The study of LHV models for multipartite entangled states is almost unex-
plored. The tools in this chapter (i.e. Lemma 6.3.1) are likely to be useful in
future studies. Even in the simplest case where one starts with two unsteerable
states and obtains a bipartite state after the map ΩB, we have explored very
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little the set of possible states one could obtain. Our methods could thus find
new LHV models for entangled quantum states even in the bipartite scenario,
as well as the multipartite scenario. The concept of steering has also recently
been extended to the multipartite setting [47] and our tools may also prove to
be useful here.

Finally, we note that even though the states presented here admit LHV
models for single measurements, this fails dramatically when sequential mea-
surements are made, since the state becomes GMNL. It is thus desirable to
look for multipartite entangled states (if such states exist) that remain local
even if sequences of measurements are performed. Note that this is still open
even in the bipartite scenario - for progress here see the previous section 5.3.4.
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Chapter 7

Simulation of entangled
quantum states with finite
resources

By this point it is well established that there exist entangled quantum states
that admit LHV models and thus do not violate any Bell inequality. In this
sense, these states can be seen as classical since they can be simulated using
purely classical resources (namely classical shared randomness). However, all
examples presented thus far (and in all other works) share one property in
common: they all require a shared classical variable of infinite dimension.
What precisely we mean by dimension is as follows. Consider a LHV model
which makes use of a shared variable λ ∈ Λ. Define the dimension of the
shared variable to be the cardinality of the set Λ, D = |Λ|, that is, the number
of labels that we need to describe a general λ. Since all models presented thus
far use a continuous shared variable ~λ = (sin θ cosφ, sin θ sinφ, cos θ) requiring
two real numbers θ, φ, for these we have |Λ| =∞.

One could thus argue that such models are in some sense unphysical, since
they require the transmission of an infinite amount of classical information.
This disparity is particularly evident when one compares to the case of quan-
tum systems: to produce the correlations of a (Bell local) two-qubit Werner
state we require an entangled quantum system of total Hilbert space dimen-
sion 4, or, using Werner’s LHV model, classical systems of infinite dimension.
The central motivation of this work is to investigate the classical cost of simu-
lating correlations of entangled states: is it possible to construct LHV models
for entangled quantum states with D < ∞? And if so, what is the minimum
D required to simulate these states? We prove the existence of entangled
quantum states that can be simulated by LHV models with classical shared

61
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resources of finite dimension [Paper F]. We also consider a related problem
of simulating the correlations of nonlocal quantum states using finite classical
communication and finite classical shared resources.

7.1 Simulating separable states

Any separable state is trivially local and can decomposed as [71,72]

ρ =
D∑

λ=1

pλρ
λ
A ⊗ ρλB (7.1)

where D = d4 is the local Hilbert space dimension of ρ. This follows from
Carathéodory’s theorem [73] since the set of d × d states lives in a convex
space of dimension d2 − 1. Hence we have a shared variable λ, distributed
according to pλ. Choosing pλ(a|x) = Tr[ρλAMa|x] and pλ(b|y) = Tr[ρλBMb|y] for
Bob, we simulate the state ρ. Hence, for separable states we have D ≤ d4

(note that for two-qubit separable states D = 4 is enough [74]).

7.2 Simulating entangled Werner states

If we wish to simulate an entangled state using a λ of finite dimension, we
clearly cannot use the same method as for separable states, since by definition
they do not admit a separable decomposition. We nevertheless show that this
can be done, first by considering the simulation of entangled two-qubit Werner
states of a finite number of measurements for one party, then extending this
to the set of all measurements on a more noisy version of the state. After this
we present a general construction. For more details see Appendix [Paper F].

7.2.1 Fixed measurements

Consider measurements for Alice given by Ma|~xi = 1
2
[1 + a~xi · ~σ] with a = ±1.

We restrict ourselves to a finite number of measurements given by the Bloch
vectors {~xi}, i = 1, · · · , 12 which are the vertices of a icosahedron inscribed
inside the Bloch sphere (see Fig. 7.1). For now, Alice will be restricted to
making only measurements from this set and no others. For Bob, we allow
arbitrary projective measurements Mb|~y = 1

2
[1 + b~y · ~σ], ±1 given by Bloch

vectors ~y. Our aim is to reproduce the correlations of the Werner state

ρα = α |ψ−〉〈ψ−|+ (1− α)
1
4

(7.2)
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Figure 7.1: Vertices of the icosahedron inscribed in the Bloch sphere used as
finite shared randomness to construct our LHV model for the Werner state.

whose correlations for local projective measurements given by Bloch vectors
~x, ~y are defined by:

〈ab〉 = −α~x · ~y ; 〈a〉 = 〈b〉 = 0. (7.3)

Here, 〈ab〉 =
∑

ab ab p(ab|~x~y) is the expectation value of the product of out-
comes a, b = ±1 (and similarly for 〈a〉, 〈b〉).

We now describe the LHV model for these measurements. We introduce
the local hidden variable λ = 1, · · · , 12 distributed uniformly, qλ = 1

12
. Since

D = 12 we are using a finite amount of shared randomness. Each value of λ
corresponds to each of the ~xλ from Alice’s measurement set. Hence, the shared
randomness can be thought of as a uniform distribution over the vertices of
the same icosahedron. We then define the response functions

pλ(a|~xi) =
1− a sgn[~xi · ~xλ]

2
; pλ(b|~y) =

1 + b ~y · ~xλ
2

. (7.4)

Notice that the icosahedron is such that

∀ ~xλ ∃ ~xλ′ s.t. ~xλ = −~xλ′ ;
∑

λ s.t ~xλ·~xj≥0

~xλ = γ ~xj ∀ j. (7.5)

The second condition says that if one sums all the vectors in one half of the
sphere defined by ~xj, one recovers a vector proportional to ~xj given by the
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factor γ. For the icosahedron, one has

γ = 1 +
√

5. (7.6)

With these properties it is then easy to see that

〈a〉 =
1

12

∑

λ

−sgn[~xi · ~xλ] = 0 ; 〈b〉 =
1

12

∑

λ

~y · ~xλ = 0. (7.7)

and that

〈ab〉 =
1

12

∑

λ

−sgn[~xi · ~xλ] ~y · ~xλ

=
1

12

[
−

∑

λ s.t ~xλ·~xi≥0

~xλ · ~y +
∑

λ s.t ~xλ·~xi<0

~xλ · ~y
]

= −1

6

∑

λ s.t ~xλ·~xi≥0

~xλ · ~y = −γ
6
~xi · ~y. (7.8)

For these measurements we therefore simulate the Werner state with α =
γ/6 ≈ 0.54. Note that we could have chosen other polyhedra satisfying the
properties (7.5) (such as all platonic solids except the tetrahedron), resulting
in different visibilities (see Table I of Appendix [Paper F]).

7.2.2 Shrinking the sphere

We now explain how this may be extended to all projective measurements.
Our first step is to notice that the noisy projective measurement

M `
a|~x =

1 + a ` ~x · ~σ
2

(7.9)

can be simulated if `~x lies inside the convex hull of {~xi}, that is, if one can
find a decomposition

` ~x =
∑

i

ωi~xi ;
∑

i

ωi = 1 ; ωi ≥ 0. (7.10)

This follows from the linearity of quantum mechanics since using the above
one has

Tr
[
M `

a|~x ⊗Mb|~y ρ
]

=
∑

i

ωiTr
[
Ma|~xi ⊗Mb|~y ρ

]
(7.11)

= qλ
∑

λ

[∑

i

ωi pλ(a|~xi)
]
pλ(b|~y), (7.12)
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where in the last line we have used the fact that the state admits a model
for the fixed measurements {~xi}. Hence, if upon receiving λ Alice chooses to
simulate the measurement of ~xi with probability ωi, we simulate M `

a|~x.
For any polyhedron there will be a maximum ` such that all vectors ~x admit

a decomposition (7.10). We call this ` the shrinking factor of the polyhedron.
Geometrically this corresponds to the radius of the largest sphere centred on
the origin that one can inscribe inside the polyhedron. For the icosahedron we
find

` =

√
(5 + 2

√
5)/15 ≈ 0.795. (7.13)

It follows that given a model for the fixed measurements {~xi} for Alice, one
has a model for all noisy measurements M `

a|~x, where ` is the shrinking factor
of the polyhedron.

The final ingredient is to realise that this noise in the measurements can
be passed onto the state, since one has

Tr
[
M `

a|~x ⊗Mb|~y ρ
]

= Tr

[
Ma|~x ⊗Mb|~y (`ρ+ (1− `)1

2
⊗ ρB)

]
. (7.14)

The statistics are therefore equivalent to the projective measurements Ma|~x
on the state `ρ + (1 − `)1 ⊗ ρB. Since we have the Werner state, which has
ρB = 1/2 this noise changes the state ρα to

ρα → ` ρα + (1− `)1
4

= ρ` α, (7.15)

i.e. we reduce the visibility by a factor `. For the fixed icosahedron one
therefore finds a final visibility

`γ

6
≈ 0.43, (7.16)

which is larger than 1
3

hence entangled. Compactly, we have the full protocol:

Protocol 1. Alice and Bob share λ ∈ {1, . . . , 12}, uniformly distributed.
Upon receiving setting ~x, Alice calculates the subnormalised vector ~x′ = `~x.
This ensures that ~x′ lies inside the convex hull of V and so Alice can find a
convex decomposition ~x′ =

∑
i ωi~xi with

∑
i ωi = 1 and ωi ≥ 0. Then, with

probability ωi, she outputs a = ±1 with probability (1∓ sgn[~xλ · ~xi])/2. Bob,
upon receiving ~y, outputs b = ±1 with probability (1± ~y · ~vλ)/2.
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7.2.3 General construction for Werner states

The above model will not work for general polyhedra, since they will not nec-
essarily satisfy the properties (7.5). One can, however, relax these conditions
and work with polyhedra satisfying only the first of the two conditions. We
thus now have polyhedra, defined by a set of normalised vertices {vλ} such
that

∀~vλ ∃~vλ′ s.t.~vλ = −~vλ′ . (7.17)

Again, we will first be interested in a finite set of measurements {~xi} for Alice
and arbitrary projective measurements for Bob, however this time the set {xi}
is defined by

∑

λ s.t~vλ·~vi≥0

~vλ = γi ~xi. (7.18)

Hence, for each ~vi we have a corresponding ~xi and γi. We further define
γmin = mini γi. Following a similar reasoning to before, we see that if we take
the uniform distribution qλ = 1/D and Alice outputs with

pλ(a|~xi) =
1− a sgn[~xi · ~xλ]

2
(7.19)

with probability γmin/γi and uniformly pλ(±|~xi) = 1/2 otherwise, we find (see
[Paper F])

〈ab〉 = −γmin

D
~xi · ~y. (7.20)

Hence, we simulate a Werner state with α = γmin/D. Again the property
(7.17) ensures that 〈a〉 = 〈b〉 = 0. Finally we may extend this to all projective
measurements for Alice at the cost of reducing the overall visibility by consid-
ering the convex hull M of the set of fixed measurements ~xi with corresponding
shrinking factor `. This leads to a final visibility

α =
2`

D
γmin. (7.21)

The full protocol is as follows:

Protocol 2. Alice and Bob share λ ∈ {1, . . . , D} uniformly distributed.
Upon receiving setting ~x, Alice calculates the subnormalised vector ~x′ = `~x
where ` is the radius of the largest sphere fitting inside M and centred on the
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Figure 7.2: Visibility of the Werner state simulated using finite shared ran-
domness as a function of the number of bits needed to encode λ. The rounded
dots correspond to the model described here. Higher visibilities (crosses) can
be obtained by generalising this idea and using linear programming techniques
(see Section 7.3).

origin. This ensures that ~x′ lies inside the convex hull of M and Alice can
therefore find a convex decomposition ~x′ =

∑D
i=1 ωi~xi. Then, with probability

pi = ωiγmin/γi she outputs a = −sgn(~vi · ~vλ), and with probability (1−∑i pi)

she outputs a random bit. Bob, upon receiving ~b, outputs b = ±1 with prob-
ability (1± ~b · ~vλ)/2.

One can now define a sequence of polyhedra tending to a sphere such that

γmin

D
→ 1

4
; γ → 1 (7.22)

as D →∞. In this limit we thus recover Werner’s model α = 1/2 and for all
other polyhedra we have α < 1

2
. An example of such a sequence is as follows

(for example, starting from the icosahedron). Define a polyhedron that is the
union of the icosahedron and its normalised dual (which is the dodecahedron).
This defines the next polyhedron in the sequence. This is then repeated, at
each step taking the union of the current polyhedron and its normalised dual.
In Fig. 7.2 (round dots) the visibility versus the number of bits required
to encode the shared randomness is plotted for the first 5 members of this
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sequence.

7.3 General method

The above ideas can be generalised to find LHV simulations of other entangled
quantum states. Specifically we have the following

Theorem 7.3.1. Consider a state ρ (of dimension d × d) admitting a LHV
model for all projective measurements. Then, a LHV model using only finite
shared randomness can simulate all projective measurements on the state

ρ(η) = η2ρ+ η(1− η)

(
1
d
⊗ ρB + ρA ⊗

1
d

)
+ (1− η)2 1⊗ 1

d2

for any 0 ≤ η < 1. Here ρA,B = TrB,A(ρ).

Proof. Notice that the ability to pass noise in the measurements on to noise on
the state works for general quantum states. Consider the set of all projective
measurements {Aa} for Alice and {Bb} for Bob. Define the sets of noisy
projective measurements {Aa(η)} and {Bb(η)} given by

Aa(η) = ηAa + (1− η)
1
d

; Bb(η) = ηBb + (1− η)
1
d
. (7.23)

Then one has

Tr[Aa ⊗Bbρ(η)] = Tr[Aa(η)⊗Bb(η)ρ], (7.24)

i.e. one can pass noise in the measurement on to the state, resulting in a new
state ρ(η). Now, for any η one can find a finite set of projective measurements
such that the set of noisy projective measurements lies inside their convex hull,
that is

∑

i

ωiM
i
a = Ma(η) ;

∑

j

νjM
j
b = Mb(η). (7.25)

One can thus simulate the noisy measurements using a LHV for the fixed set
of measurements since via the linearity of quantum mechanics

Tr [Ma(η)⊗Mb(η) ρ] =
∑

ij

ωiνj Tr
[
M i

a ⊗M j
b ρ
]
. (7.26)
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Hence to simulate Ma(η) Alice should used the LHV simulation for the fixed
measurement M i

a with probability given by ωi (and similarly for Bob). Fi-
nally, if the probability distribution p(ab|xy) resulting from these fixed sets of
measurements admits a LHV model, then it can be decomposed as the convex
combination of a finite set of local deterministic functions (since the set of local
distributions forms a polytope). Hence, one can simulate these measurements
(and therefore the set of noisy measurements) using a finite amount of shared
randomness. Passing this noise on to the state completes the proof.

Using tools of linear programming and the above method, we are then able
to extend the range of α for which we simulate the Werner state past α = 1/2.
This is presented in Fig.7.2.

7.3.1 Extension to POVM measurements

So far we have been considering the simulation of the set of projective mea-
surements only. Using the tools of [Paper D] (protocol 2) one can extend our
results to POVM measurements. Specifically, one has that if the state ρ admits
a LHV with finite shared randomness then the state

ρ′ =
1

(d+ 1)2

(
ρ+ d(ρA ⊗ F + F ⊗ ρB) + d2F ⊗ F

)
(7.27)

admits a local model for POVMs using also k bits of shared randomness. Here
F = |d+ 1〉〈d+ 1| denotes a projector onto a subspace orthogonal to the
support of ρ, hence ρ′ is entangled iff ρ is entangled and of local dimension
d+ 1.

7.4 Classical communication cost of simulat-

ing nonlocal correlations

We now discuss the case of simulating nonlocal (i.e. Bell inequality violating
quantum states). Here, we will need classical communication since no LHV
model exists. Previous protocols required either infinite communication or
infinite shared randomness (see e.g. [75–77]). Here we construct protocols
using finite classical resources.



70 Chapter 7

7.4.1 Communication protocols without shared random-
ness

We first note that any full rank quantum state can be simulated using finite
(although potentially large) classical communication and no shared random-
ness. This is achieved as follows. Any full rank state can be written in the form
ρ = α|Ψ〉〈Ψ|+(1−α)1/d2, where |Ψ〉 is an arbitrary entangled state of dimen-
sion d × d, and α < 1. Upon receiving her measurement setting A = {Aa},
Alice outputs a according to the distribution p(a) = Tr(ρAAa) where ρA is
Alice’s reduced state. For output a, Bob should hold the (normalized) state
ρaB = TrA(Aa⊗ 1ρ)/p(a). Since ρaB is full-rank (by construction), then for any
α < 1, there exists a polyhedron V (with D vertices, each representing a pure
quantum state |φi〉〈φi| ∈ V of dimension d) such that Alice can decompose ρaB
as a convex combination

ρaB =
D∑

i

ωi|φi〉〈φi| (7.28)

of the vertices of V . With probability ωi (the coefficient of vertex i in the
decomposition) Alice sends label i to Bob, who can then locally reconstruct
the corresponding pure state (knowing V ). The model thus reproduces the
statistics of ρ using log2(D) bits of communication, however this will diverge
when α is large.

7.4.2 Communication protocols with shared random-
ness

We now consider the case where we allow for a finite amount of shared random-
ness. This allows us to reduce the dimension of the classical communication
needed to simulate entanglement. Specifically, we construct communication
models for Werner states using finite communication and finite shared ran-
domness. Consider a polyhedron V with D vertices satisfying (7.17), with
corresponding γmin and shrinking factor `. Our model uses n log2(D) bits of
shared randomness and log2 n bits of communication (in the worst case), and
simulates ρW (α) for

α =
γmin

γmax

(
1− [1− 2γmin

D
]n
)
`2 (7.29)

where γmax = maxi(γi). Note that by choosing a symmetric enough polyhedron
with ` ≈ 1 and 2γmin/D ≈ 1/2 we can simulate a ρW (α) for α → 3/4 with
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n = 2 (when D →∞). Hence, using finite shared randomness and a single bit
of communication suffices to simulate a nonlocal quantum state. See [Paper
F] Appendix D for details.

7.5 Outlook

This work has inspired subsequent work on algorithmic methods for the con-
struction of LHV models of entangled quantum states [78,79]. Here, the ideas
of above are generalised so that linear programming and SDP methods can
be used to computationally find LHV and LHS models for entangled states
of (in principle) any dimension. This has led to the first LHV simulation of
non-full rank and bound entangled states [78], as well as thousands of new
examples of bipartite and genuinely multipartite entangled states admitting
LHV models [79]. However fundamental questions still remain. For example,
what is the absolute minimum required number of bits needed to simulate en-
tangled states of dimension d? Is it strictly larger than the 2 log2 d bits needed
to simulate a separable state? Similarly, do there exist entangled states that
necessarily require an infinite amount of shared randomness to simulate?
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Chapter 8

Certification of dimension in
network scenarios

The concept of dimension plays a important role in the areas of computation,
communication, complexity, to the physics of thermodynamics/statistical me-
chanics. From a quantum information processing perspective, dimension (that
is, Hilbert space dimension) is a valuable resource and it is therefore desirable
to develop methods that can be used to certify the dimension of a given phys-
ical system under consideration, which is precisely the aim of this chapter.

Here we will work in the device-independent framework, which means that
we may treat the devices used in the certification protocol as black boxes and
work only with the statistics of measurement outcomes. Interestingly, one can
stil certify the dimension of physical systems in this scenario. This problem
was originally posed in the Bell scenario [80–82], where the amount of violation
of certain Bell inequalities can be used as a certification of the dimension of
bipartite entangled quantum states. These ideas were then later formalised in
a prepare-and-measure scenario, where devices prepare, communicate and sub-
sequently measure physical systems [15]. Here, we develop this latter scenario,
extending the prepare-and-measure scenario to include networks of devices
that can communicate and process physical systems [Paper G]. We construct
new tests which certify the dimension of the systems used in several simple
networks involving three devices. We also study the relative power of quan-
tum and classical systems, and show that quantum systems can outperform
classical systems of the same dimension. We then show that the advantage
offered by quantum systems of a given dimension over their classical counter-
parts is significantly stronger in our simple networks of devices compared to
the original prepare-and-measure scenario.

We will focus on a device independent approach, first introduced in [15],

75
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Figure 8.1: A possible network scenario featuring preparation, transforma-
tion and measurement. Vertical arrows represent classical inputs and outputs
into the devices. Horizontal lines represent communication channels (either
quantum or classical) between devices

where one makes very few assumptions on the functioning of the devices used.

8.1 General scenario

The general scenario we wish to consider is a network of devices exchanging
and processing information, as represented in Fig. 8.1. Devices are represented
by black boxes. An arrow connecting two devices represents a (one-way) com-
munication channel between them.

A network consists of three levels: (i) a number of preparation devices,
(ii) a number of transformation devices and (iii) a number of measurement
devices. In each round of the experiment, the observer chooses the preparations
x, the transformations t and the measurement settings y. He then obtains
measurement outcomes b; note that transformation devices can also provide
outcomes, denoted s. More precisely, we have that the choice of preparations
is given by x = {xi}, where xi denotes the input for device i. The choice of
transformations is t = {tj}, where tj denotes the input for device j, and the
(possible) outcomes are s = {sj}, where sj denotes the output of device j.
Finally, the choice of measurement settings is y = {yk}, where yk denotes the
input for measurement device k, and gives outcomes b = {bk}, where bk is the
output of measurement device k. The experiment is therefore characterized
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by the data

p(b, s|x, t,y), (8.1)

that is, the conditional probabilities of observing outputs b, s given inputs
x, t,y. A general scenario is thus specified by a directed graph representing
the network, and the number of inputs and outputs for each of the devices
(which we will here consider to be finite).

In this network, the devices exchange information encoded in physical sys-
tems. For instance, upon receiving input xi, each preparation device emits a
system, the state of which is adapted depending on xi. Which physical system
is used, and what mechanism is used to encode information in it, is completely
unknown to the observer, who has only access to inputs and outputs of the
black boxes. That is, we work in a device-independent scenario.

Now the main point is the following. Clearly, the amount of information
about xi which can be encoded in the system will depend on its dimension
(i.e. the number of independent degrees of freedom of the system). Therefore,
we expect that a restriction on the dimension will in general limit the possible
observable data (8.1). Consider for instance the case in which the outputs b
contain all information about the inputs x. This implies that the mediating
physical systems had enough dimensions for encoding x perfectly.

The main question we will discuss in the present work is to understand
the limitations on the data, arising from constraints on the dimension of the
mediating systems. This will allow us to find lower bounds on the dimension
of the systems present in a network for given data (8.1). In particular, we will
discuss bounds for both classical and quantum systems. Notably, we will see
that for a fixed dimension, quantum systems outperform classical ones.

8.2 Classical networks

For the sake of clarity, we will focus on the network consisting of one prepa-
ration device, followed by a single transformation device, and finally a single
measurement device (see Fig. 8.2). The data is thus given by the conditional
distribution p(b, s|x, t, y); we consider a finite (but otherwise unspecified) num-
ber of inputs and outputs. Note that the methods discussed below can be
straightforwardly generalised to more general networks.



78 Chapter 8

Figure 8.2: A simple network consisting of a preparation, a transformation
and a measurement device. The set of possible distributions of inputs and
outputs, p(bs|xty), will depend on the dimension of the communication allowed
between the devices and whether the communication is classical or quantum.

8.2.1 Basics

We start our analysis by considering classical communication between the de-
vices. Denote by c0 the communication sent from the preparation device to the
transformation device, and c1 the communication sent from the transformation
device to the measurement device. We consider communication of bounded
dimension d, that is

c0, c1 ∈ {1, · · · , d}. (8.2)

Upon receiving input x, the preparation device sends communication c0, with
probability p(c0|x). In turn, upon receiving input t and communication c0

(from the preparation device), the transformation device outputs s and sends
communication c1 to the measurement device with probability p(s, c1|t, c0).
Finally, upon receiving measurement setting y and communication c1, the
measurement device outputs b with probability p(b|y, c1). We thus have that

p(b, s|x, t, y) =
d∑

c0,c1=1

p(c0|x)p(s, c1|t, c0)p(b|y, c1). (8.3)

We first consider the case in which all devices act deterministically. That
is, each of the previously mentioned probabilities are either 0 or 1. It follows
that each probability p(b, s|x, t, y) also takes only values 0 or 1. We refer to
these sets of data as ‘deterministic strategies’.

In general, we also want to include the possibility that the devices in the
network output probabilistically, and moreover that they follow a common
strategy. That is, the behaviour of the devices might be correlated, due to some
(common) internal variable λ ∈ Λ (referred to as shared randomness). The set
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of possible distributions now becomes all convex combinations of deterministic
strategies:

p(b, s|x, t, y) =

∫

Λ

qλdλ
d∑

c0,c1=1

pλ(c0|x)pλ(s, c1|t, c0)pλ(b|y, c1),

where qλ is a normalized probability density over λ and pλ(c0|x) denotes the
probability for the preparation device to send c0, given input x and internal
variable λ, and so on.

Any set of data that cannot be decomposed in the form (8.4) therefore
requires the use of communication (c0 and/or c1) of dimension strictly greater
than d. In the next sections we will see how to test whether a given set of data
can be decomposed in the above form or not. This will provide the ‘dimension
witnesses’ we are looking for.

8.2.2 Geometrical interpretation

The above ideas admit an elegant description in geometrical terms. The idea
is essentially the same as for Bell nonlocality as described in chapter 1 adapted
here to the prepare-and measure-scenario [15].

The goal is to characterize the set of distributions (8.4) in geometrical
terms. Consider first one particular set of data p(b, s|x, t, y). This distribution
can be viewed as a vector p where each component of the vector corresponds
to one of the probabilities p(b, s|x, t, y) appearing in the data. Hence p ∈ RD,
where

D = |b| |s| |x| |t| |y| (8.4)

with |b| denoting the alphabet size of b, that is the number of possible outcomes
b, and similarly for other symbols.

Next, consider the entire set of distributions admitting a decomposition
of the form (8.4), that is, all sets of data that can be obtained by using
communication c0 and c1 of dimension d. This set, denoted Pd, thus forms
a subspace of RD. In fact, Pd forms a convex polytope. Its extremal points
(or vertices) correspond to the deterministic strategies, that is, the set of
distributions of the form (8.3), for which p(b, s|x, t, y) ∈ {0, 1} for all b, s, x, t, y.
Alternatively, the polytope Pd can also be characterized by its facets (of which
there is a finite number, since the number of vertices is finite). Formally, facets
are given by linear inequalities

p · I =
∑

b,s,x,t,y

αb,sx,t,y p(b, s|x, t, y) ≤ Cd (8.5)



80 Chapter 8

where αb,sx,t,y and Cd are real numbers (usually integers). I is the D-dimensional

vector, with components αb,sx,t,y, associated to the facet, i.e. orthogonal to the
hyperplane given by the facet. Therefore we have that

p ∈ Pd ⇐⇒ p · I n
d ≤ Cn

d (8.6)

where the I n
d ’s represent all the facet inequalities (labelled by n). Moreover,

we have that Pd ⊆ Pd+1, since all strategies involving d-dimensional com-
munication can always be realised using communication of dimension d + 1.
Note also the similarity to (2.12), since the set of local distributions in a Bell
scenario also forms a convex polytope.

In practice, the polytope Pd can be constructed for simple networks, i.e.
few devices and small alphabets for the inputs and outputs. Specifically, one
starts by listing the deterministic strategies, i.e. the vertices of the polytope.
Then, appropriate software (see e.g. [22, 23]) allows one to find the facets of
the polytope. As with nonlocality, the problem however becomes intractable
beyond simple scenarios on standard computers.

Finally, note that one can slightly reduce the complexity of the problem by
taking into account certain constraints on the data p(b, s|x, t, y). This allows
one to discard certain (redundant) components of p. In particular, we have
here the normalization conditions

∑

b,s

p(b, s|x, t, y) = 1 ∀x, t, y (8.7)

and the condition that
∑

b

p(b, s|x, t, y) = p(s|x, t) ∀s, x, t, y. (8.8)

That is, the output s of the transformation device does not depend on the
choice of input y for the measuring device. This follows from the fact that y
can in principle be chosen after the output s is obtained. For more general
networks, it is important to take all such ‘no-signaling’ conditions into account
in order to reduce the complexity of the problem.

8.2.3 Classical dimension witnesses

Our main goal is to develop methods for testing whether a given set of data
p(b, s|x, t, y) is compatible with a particular network sending communication of
bounded dimension. To address this question, we will now discuss the concept
of ‘dimension witnesses’, hence generalising the ideas of Ref. [15] to networks.
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Consider linear combinations of the form:

W = w · p =
∑

b,s,x,t,y

ωbsxtyp(b, s|x, t, y) ≤ Cd, (8.9)

where w is a D-dimensional vector, with real components ωbsxty, and Cd is a
real number. We say that an inequality of the above form is a linear classical
dimension witness of dimension d, if (i) the inequality holds for any distri-
bution p(b, s|x, t, y) realisable with classical communication of dimension d,
and (ii) there exists at least one distribution p(b, s|x, t, y) (involving systems
of dimension at least d+ 1) for which the inequality is violated.

The geometrical ideas discussed in the previous subsection are relevant
here, as they will allow us to construct dimension witnesses. Take one facet
inequality of the polytope Pd : property (i) above will immediately be satisfied.
In general, there will also exist a vector p ∈ Pd′ with d < d′ that will violate
the facet inequality, and hence (ii) is also satisfied. Such facet inequalities will
be called ‘tight dimension witnesses’. In fact, the complete list of the facets of
Pd will provide a complete list of dimension witnesses, which allow one to find
the minimal dimension of the communication necessary to reproduce a given
set of data.

In the section 8.5, we will present several examples of dimension witnesses.

8.3 Quantum networks

We now move to the case of quantum communication networks. Here, the
classical channels are replaced by quantum channels. Our goal is thus to
characterize the sets of data compatible with sending quantum communication
of bounded Hilbert space dimension in the network. For the sake of clarity,
we will also focus on the simple network of Fig. 8.2.

8.3.1 Basics

Consider again the network consisting of one preparation device, followed by
a transformation device, and finally by a measurement device. The devices
can now produce, process, and measure quantum systems. The constraint we
consider is that the quantum systems transmitting information between the
devices are of Hilbert space dimension bounded by d.

Let us first consider the preparation device. Upon receiving input x, the
device prepares a d-dimensional quantum system in state ρx, which is sent to
the transformation device. In turn, the transformation device receives input t,
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as well as the quantum communication ρx, produces an outcome s, and sends a
d-dimensional quantum system to the measurement device. The action of the
transformation device can thus be represented by a set of completely positive
(CP) maps {Φs|t} (acting on Cd), such that

∑
s Φs|t is completely positive and

trace preserving (CPTP): this ensures that
∑

s p(s|x, t) = 1 for all x, t. Note
that, since we impose that all communication is of bounded dimension d, we
restrict to CP maps which do not increase the Hilbert space dimension. With
probability Tr[Φs|t(ρx)] the transformation device outputs s, and sends the
quantum state

Φs|t(ρx)/Tr[Φs|t(ρx)] (8.10)

to the measuring device. Finally, upon receiving this quantum communication
and the input y, the measuring device provides an output b. This is represented
by a set of measurement operators Mb|y (acting on Cd), such that Mb|y ≥ 0
and

∑
bMb|y = 1.

Putting all this together we obtain that

p(b, s|x, t, y) = Tr
(
Φs|t(ρx)Mb|y

)
. (8.11)

Any set of data admitting a decomposition of this form is thus realisable
with quantum communication of dimension d. On the contrary, if such a
decomposition cannot be found, then higher dimensional quantum systems
must have been used.

As in the case of classical networks, it is also relevant to allow for the devices
to act according to a common strategy λ. In this case, the set of compatible
distributions is therefore the convex hull of those of the form (8.11):

p(b, s|x, t, y) =

∫

Λ

Tr
(
Φλ
s|t(ρ

λ
x)M

λ
b|y
)
π(λ)dλ, (8.12)

where now the states, transformations and measurements are written with λ
dependence. Finally, note that one could also consider the case in which the
devices share quantum correlations, i.e. initial entanglement (see Section 8.5.4
for an example).

8.3.2 Quantum dimension witnesses

The problem is now to test whether a given set of data p(b, s|x, t, y) is compat-
ible with a particular network sending quantum communication of bounded
Hilbert space dimension. Similarly to the classical case discussed above, we
now define ‘quantum dimension witnesses’.
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Consider again linear inequalities of the form

W = w · p =
∑

b,s,x,t,y

ωbsxty p(b, s|x, t, y) ≤ Qd, (8.13)

with w a D-dimensional vector, with real components ωbsxty, and Qd a real
number. In analogy to the classical case, W is a linear quantum dimension
witness of dimension d if (i) the above inequality is satisfied by all sets of
data p(b, s|x, t, y) realisable with quantum communication of dimension d, and
(ii) using quantum communication of dimension greater than d allows one
to violate the inequality. Note that the set of distributions p admitting a
quantum d-dimensional realisation is generally not a polytope. Therefore a
more efficient characterisation of these sets involve witnesses that are nonlinear
in the observed probabilities, see for example [83].

Finding quantum dimension witnesses is generally a harder task than in the
classical case. To the best of our knowledge, there are no known efficient com-
putational methods for this problem; see however Refs [84] for recent progress.

8.4 Testing non-classicality

An interesting development related to dimension tests is the possibility of certi-
fying non-classicality of communication in a device-independent way, assuming
an upper-bound on the dimension. This aspect was discussed in Ref. [15] for
simple prepare-and-measure scenarios. Here we consider this problem in the
context of more general networks.

Before moving on, it is important to understand why an assumption on
the dimension is necessary in order to make the problem non-trivial. Consider
for instance the network of Fig. 2. If the dimension is not limited, then the
input settings of the preparation and transformation devices, x and t, can be
perfectly transmitted to the final measurement device. Since the transforma-
tion device has all information about x and t, and the measuring device has
all information about x, t, y, it follows that any possible statistics p(b, s|x, t, y)
can be reproduced. This implies that nontrivial bounds can only be placed if
|c0| < |x| and/or |c1| < |x||t|.

8.4.1 Non-classicality tests based on dimension witnesses

Considering systems of a fixed dimension, quantum communication can out-
perform classical communication. This advantage can be revealed by using
dimension witnesses. Specifically, by using a well-chosen quantum strategy
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involving states of Hilbert space dimension d, it is possible to violate certain
classical dimension witnesses of dimension d. More formally, we say that a
dimension witness with the following property

W = w · p ≤ Cd < Qd (8.14)

can be used as non-classicality tests for systems of dimension d. Consider
a set of data pQ such that W = w · pQ > Cd. This implies the use of
genuinely quantum systems for reproducing pQ, under the assumption that
the experiment involves systems of dimension d. In Section 8.5, we will discuss
several examples.

8.4.2 Quantifying quantum advantage

It is useful to quantify the advantage offered by quantum resources over clas-
sical ones. In the present context, several figures of merit can be considered.
First, the amount of violation of a given dimension witness could be used,
however this will generally depend on how the witness is expressed, and will
not allow one to compare different witnesses. Hence, here we use the notion
of noise tolerance, which has a more physical interpretation, and will allow us
to compare various witnesses.

Consider a quantum experiment (with systems of dimension d) and its
corresponding set of data pQ, which is found to violate a classical dimension
witness, i.e. W = w · pQ > Cd. The noise tolerance of the quantum point pQ
for this dimension witness is defined as the minimal fraction of white noise, η,
such that the distribution

p0 = (1− η)pQ + ηp1 (8.15)

does not violate the witness, i.e. W = w · p0 = Cd. Here p1 denotes white
noise, i.e. p1(b, s|x, t, y) = 1

|b| |s| is the uniform distribution for all x, t, y. In

a practical context, considering noisy distributions of the form (8.15) is quite
natural, due to unavoidable technical imperfections, e.g. losses or misalignment
of the preparations.

8.4.3 Bounded noise tolerance in prepare-and-measure
scenarios involving qubits

It turns out that the noise tolerance of qubit strategies is bounded for any di-
mension witness in the prepare-and-measure scenario. More precisely, any set
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of data obtained from qubits and projective measurements can be reproduced
using one classical bit if the noise level η satisfies

η ≥ η∗ = 1− 1

k3

≈ 0.34, (8.16)

where k3 is the Grothendieck constant [85] of order three1. Hence, in the
prepare-and-measure scenario, no dimension witness for classical bits and pro-
jective measurements can be violated for η ≥ η∗. This can be proven using
a known LHV model for projective measurements for the Werner state of di-
mension 2 for weight 1

k3
[31]. For a proof of the above see Paper G Section

V.

As mentioned, the above result holds only if the measurement device per-
forms a projective measurement. Since any two outcome qubit measurement
can be written as a convex mixture of projective measurements, the result can
be extended to all two outcome scenarios. One can extend further to gen-
eral positive operator-valued measurements at the cost of a larger η∗ by using
Werner’s model [13] for the state (2.17) with α = 1

2
, leading to η∗ = 1

2
.

8.5 Case studies

We now present several case studies, illustrating the relevance of the concepts
and tools discussed above. We first discuss two examples of networks where
preparation, transformation, and measurement devices are ‘in a line’. We
then discuss two examples based on a different network, featuring two sep-
arate preparations devices and one measurement device. Note that such a
network has been considered in different contexts. Notably, this was studied
in communication complexity, in the so-called simultaneous message passing
model [86], e.g. quantum fingerprinting [87], but also for the black-box certi-
fication of entangled measurements [88–90], and the Pusey-Barrett-Rudolph
theorem [91].

In all cases quantum systems are shown to provide significant advantage
over classical systems of the same dimension. Moreover, in all examples (except
for the third one), this quantum advantage is stronger compared to the simple
prepare-and-measure scenario, in terms of noise tolerance. This suggests that
the simulation of quantum strategies becomes significantly harder in the case
of networks, even if they feature only few devices.

1Note that only upper and lower bounds are known for k3; see e.g. T. Vértesi, Phys.
Rev. A 78, 032112 (2008).
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8.5.1 Three devices in a line: simple case

We start with the network of Fig. 8.2, considering one of the simplest (non-
trivial) configurations in terms of the number of inputs and outputs. Specif-
ically, we have |x| = 3 and |t| = |y| = |b| = 2. Note that the transformation
device does not give any outcome (i.e. |s| = 1). We label the inputs and
outputs: x ∈ {0, 1, 2} and t, y, b ∈ {0, 1}. Hence a set of data is charac-
terised by D = 24 probabilities p(b|x, t, y). However, considering normalisa-
tion conditions, this number is reduced to 12; specifically, the probabilities
p(1|x, t, y) = 1− p(0|x, t, y) are redundant and can thus be omitted.

Applying the method described in Section 8.2.2 we have fully characterised
the polytope P2, that is, the set of distributions achievable for c0, c1 ∈ {0, 1}.
Using the software PORTA, we could find the complete list of facets of P2,
which can be grouped (under relabeling of inputs and outputs) into 1870 in-
equivalent classes of dimension witnesses2.

Here, we present one class of tight dimension witnesses, a member of which
can be written in simple form:

WJ =p011 + p101 + p110 + p200 − p000 − p001 − p010 − p211 ≤ 2, (8.17)

where we write pxty = p(b = 0|x, t, y). Using qubits we can significantly
outperform this bound. Consider general pure qubit preparations:

|ψ(θ, φ)〉 = cos(
θ

2
)|0〉+ sin(

θ

2
) exp(iφ)|1〉. (8.18)

Specifically, for preparations x = 0, 1, 2 take |ψ(π
2
, 0)〉, |ψ(π

2
, 3π

4
)〉 and |ψ(π

2
, −3π

4
)〉

respectively. Next consider the transformation device, parametrized by

Φt=0 = 12 , Φt=1 = exp(−iπ
4
σz), (8.19)

where σz = diag(1,−1) is the Pauli z matrix. Finally, for the measuring device,
we have the measurement operators

M0|0 = |ψ(
π

2
,
−3π

4
)〉〈ψ(

π

2
,
−3π

4
)| ; M0|1 = |ψ(

π

2
,
3π

4
)〉〈ψ(

π

2
,
3π

4
)|. (8.20)

Calculating the resulting probabilities, via Eq. (8.11), and inserting them into
(8.17), we obtain

WJ = 2 +
√

2 ≈ 3.41. (8.21)

2For the full list of inequalities, contact joseph.bowles@unige.ch
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The above qubit strategy thus clearly violates the witness (8.17), and can
therefore not be reproduced with classical bits; classical trits must be used.
Numerical optimization strongly suggests that this qubit strategy is optimal.

The noise tolerance of the above qubit strategy is

η =
√

2− 1 ≈ 0.41. (8.22)

Notably, this value exceeds the bound η∗ ≈ 0.34 (see Section 8.4.2) for any
prepare-and-measure scenario. Hence the advantage offered by qubits com-
pared to classical bits is stronger compared to any witness in the prepare-and-
measure scenario.

8.5.2 Distributed 3→ 1 random access code

As a second example, we consider a task inspired from the information-theoretic
task of a random access code (RAC) [92]. Specifically, we consider a dis-
tributed version of the 3→ 1 RAC featuring three devices in a line. Consider
3 bits a0, a1, a2 randomly taken from a uniform distribution. These bits will
determine the inputs of the preparation and transformation devices, namely:
x = (a0, a1) and t = a0 ⊕ a2. Again, the transformation device has no output.
The measuring devices has a ternary input y = 0, 1, 2. Similarly to a RAC, the
goal is to have the output b = ay. Hence we can define the following witness
(for the scenario |x| = 4, |t| = |b| = 2, |y| = 3, and |s| = 1) which is the
average success probability:

WD-RAC =
1

24

∑

a0a1
a2y

p(b = ay|x = (a0, a1), t = (a0 ⊕ a2), y) ≤ Cd. (8.23)

We first discuss the case of classical communication. For bits we obtain the
bound C2 = 2

3
. For the case of classical trits, c0, c1 ∈ {0, 1, 2}, we get C3 =

19/24. In order to achieve success with probability one, i.e. WD-RAC = 1, eight-
dimensional systems are required. Using qubits, we can achieve up to

WD-RAC = Q2 =
1

2
(1 +

1√
3

) ≈ 0.79. (8.24)

For the quantum strategy which achieves this see Paper E. The noise tolerance
of this strategy is given by

η = 1− 1√
3
≈ 0.43 (8.25)

which again exceeds the bound for the prepare-and-measure scenario, η∗ ≈
0.34.
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8.5.3 Two preparation devices, one measurement de-
vice: simple case

Finally we consider a scenario with two preparation devices sending communi-
cation to a measurement device (see Fig. 8.3 (a)). A simple non-trival scenario
here is one in which both preparation devices receive a ternary input. We de-
note the input of the first device x0 ∈ {0, 1, 2}, and the input of the second
x1 ∈ {0, 1, 2}. The measurement device has no input (i.e. a fixed measurement)
and provides a binary output b = {0, 1}. That is, we have |x0| = |x1| = 3,
|y| = 1 and |b| = 2.

We consider the case in which the channels carry classical bits, i.e. c0, c1 ∈
{0, 1}. In this case we have fully characterised the polytope P2: it features
13 non-trivial classes of facets (see Paper E Appendix). Here we focus on one
particular class (witness 1 in Appendix), represented by the following witness:

WK = −p00 + p01 + p02 − p10 − p12 + p20 + p21 − p22 ≤ 2.

With qubit strategies one can achieve a value of 5
2

with a corresponding noise
tolerance η = 0.2 (See Paper E).

One can derive an upper bound on WK for separable measurement opera-
tors of the form Mb =

∑
iM

i
b,1⊗M i

b,2 where M i
b,k is a positive operator acting

on the system sent by preparation device k. Numerical tests suggest that the
optimal value is WK ≈ 2.337. This suggests that WK may also be used as a
test of the non-separability of a set of measurement operators.

8.5.4 Nonlocal dense coding

As the last example, we present a dimension witness for a task which can be
viewed as a nonlocal version of dense coding [93]. As in the previous example,
we consider the case of two preparation devices and one measuring device.

Here each preparation device receives two input bits: x0 = (u0, u1) for the
first and x1 = (v0, v1) for the second. The measurement device receives y = 0, 1
as input, and provides two output bits b = (b0, b1). The rules of the game are
the following (see Fig. 8.3(b)). On the one hand, for y = 0, the outputs should
satisfy (b0, b1) = (u0 ⊕ v0, u1 ⊕ v1). On the other hand, for y = 1, the output
bits should satisfy (b0, b1) = (u0⊕ v1, u1⊕ v0). Furthermore, there is a penalty
if both b0 and b1 are guessed incorrectly. This corresponds to the witness

WD =〈(b0, b1) = (u0 ⊕ v0ȳ ⊕ v1y, u1 ⊕ v1ȳ ⊕ v0y)〉
− 〈(b̄0, b̄1) = (u0 ⊕ v0ȳ ⊕ v1y, u1 ⊕ v1ȳ ⊕ v0y)〉 ≤ Cd, (8.26)
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Figure 8.3: (a) A simple network involving two preparation devices (left and
right) and a single measurement device (center). (b) A dimension witness for
this network, referred to as nonlocal dense coding.

where ȳ = y ⊕ 1, and the average 〈·〉 is taken over all inputs:

〈(b0, b1)〉 =
1

32

∑

u0,u1
v0,v1,y

p(b0, b1|u0, u1, v0, v1, y). (8.27)

For classical bits, we have C2 = 1
4
. Using classical trits, we get C3 = 9

16
.

Sending four dimensional systems achieves success probability one. Consider-
ing qubit strategies (see Paper E Appendix) we can achieve

WD = Q2 =
1

2
(8.28)

which appears optimal from numerical tests. This corresponds to a noise tol-
erance of η = 1

2
, which represents a considerable improvement over the simple

prepare-and-measure scenario. Additionally, one may also wish to consider the
possibility that the devices share quantum correlations (i.e. initial entangle-
ment). Allowing for this considerably enhances the success probability (still
using qubit communication), which becomes maximal, that is WD = 1. The
strategy is the following. The preparation devices now share a singlet state.
Upon receiving the inputs x0 = (u0, u1) and x1 = (v0, v1), the preparation
devices locally rotate the singlet state to

(σu1x σ
u0
z )⊗ (σv1x σ

v0
z )|ψ−〉. (8.29)
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The measurement device then performs a projective measurement onto the
entangled basis

Mb0b1|y = σb1x σ
b0
z ⊗Hy|ψ−〉, (8.30)

where |ψ−〉 = 1√
2
(|01〉 − |10〉) is the singlet state and H = 1√

2

(
1 1
1 −1

)
is the

Hadamard matrix. The noise tolerance for this strategy is η = 3
4
.

8.6 Outlook

Most of the work on dimension witnesses (and related work on communication
complexity) has so far focused on the prepare-and-measure scenario [83,84,94–
97]. One notable exception is that of [98], which looks are a sequence of N
devices in a line and shows that in the limit N → ∞ one requires classical
systems of infinite dimension in order to simulate the communication of a
qubit. Given that we have seen a significant improvement over the prepare-
and-measure scenario by adding a third device, it would be interesting to
investigate whether qubit communication requires infinite classical dimension
in a network featuring a finite number of devices, with continuous inputs. For
example, how much communication is needed to simulate the preparation of
an arbitrary qubit, arbitrary unitary, followed by arbitrary measurement in
the line network of Section 8.5.1?

Going to more complex networks, the computational techniques used here
to find dimension witnesses will no longer be tractable. It is therefore desirable
to develop methods to construct dimension witnesses for networks

The techniques of dimension witnesses can also be used to construct quan-
tum randomness certification [99, 100] as well as quantum key distribution
protocols [101], where one makes an assumption of an upper bound of the
dimension of the communicated systems (see also the following chapter). It
is likely that the witnesses presented in this section could also be of use here,
and would likely have higher tolerances to experimental errors.



Chapter 9

Certification of dimension and
randomness using independent
devices

In the previous chapter we presented methods to certify device independently
the dimension of physical systems placed in a network of devices. Here, we
consider a similar problem in which the devices are independent, meaning
that they do not have access to shared classical randomness. This renders the
problem somewhat difficult mathematically, since it introduces non-convexity
into the sets of probability distributions obtainable using a given dimension.
Nevertheless, we find families of (nonlinear) dimension witnesses that charac-
terise these sets [Paper H] (see also [102]). The performance of classical vs
quantum systems of the same dimension was also discussed in the previous
chapter. Here, we will see that under the assumption of independence, quan-
tum systems vastly outperform classical systems of the same dimension and
allow for arbitrary tolerance to noise.

To tools of dimension certification have also recently been applied to the
certification of random numbers from quantum systems [99, 100]. We present
random number certification protocols based on our tests of dimension un-
der the assumption that we have independent preparation and measurement
devices [Paper J]. Unlike previous protocols, the additional assumption of
independence allows for extremely high tolerance to experimental noise, which
has made possible a corresponding experimental implementation [Paper J].

91
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Figure 9.1: The prepare-and-measure scenario. Alice receives a classical input
x and sends the d-dimensional state ρx to Bob. Bob, upon receiving his classi-
cal input y and the sent state, outputs b. The experiment is then characterised
by the probability distribution p(b|xy).

9.1 The prepare-and-measure scenario

We consider the simplest possible scenario of a single preparation and mea-
surement device (see Fig. 9.1), which we call a prepare-and-measure scenario.
Alice receives an input x and sends a system of dimension d to Bob. Bob then
receives his input y and outputs b by performing a measurement on the system
sent by Alice. We hence obtain a set of distributions p(b|xy) from which we
would like to conclude something about the dimension of sent system.

9.1.1 Classical systems

We first consider deterministic strategies. Alice receives x, sends a classical
message m = 1, · · · d to Bob, who outputs b given y and m. Summing over the
possible messages we have

p(b|xy) =
d∑

m=1

p(m|x)p(b|ym) (9.1)

where p(m|x), p(b|ym) = 0, 1 are deterministic functions. We can then intro-
duce local variables λ ∈ Λ and µ ∈ M for Alice/Bob with joint distribution
Qλ,µ to allow for mixed strategies:

p(b|xy) =

∫

Λ

∫

M

Qλ,µ

d∑

m=1

pλ(m|x)pµ(b|ym)dµdλ. (9.2)

Here, we will be interested in independent devices. This means that the vari-
ables λ, µ should be uncorrelated Qλ,µ = qλrµ. Integrating the above over λ,
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µ one then obtains

p(b|xy) =
d∑

m=1

∫

Λ

qλpλ(m|x)dλ

∫

M

rµpµ(b|ym)dµ (9.3)

=
d∑

m=1

p(m|x)p(b|ym). (9.4)

That is, we have the same form as (9.1), however p(m|x), p(b|ym) can now
be arbitrary probability distributions. Note that since in general one has
p qλ1rµ1 + (1− p)qλ2rµ2 6= qλ3rµ3 the set of distributions given by (9.3) is non-
convex.

9.1.2 Quantum systems

In the case of independent quantum systems Alice prepares a state ρx and Bob
measures according to measurement operators Mb|y. We therefore have

p(b|xy) = Tr
[
ρxMb|y

]
, (9.5)

where ρ and Mb|y act on Cd.

9.2 Classical dimension witnesses for dimen-

sion 2

9.2.1 BB84 witness

We first focus of the case of dimension 2 with four preparations x = 0, ..., 3
and two measurements y = 0, 1. Consider the following matrix

W2 =

(
p(0, 0)− p(1, 0) p(2, 0)− p(3, 0)
p(0, 1)− p(1, 1) p(2, 1)− p(3, 1)

)
(9.6)

where we write p(x, y) = p(b = 0|x, y) for simplicity. For any strategy involving
a classical bit (i.e. its statistics admits a decomposition of the form (9.3) with
d = 2), one has that

W2 = |det(W2)| = 0. (9.7)

The proof is straightforward. Note that for any statistics of the form (9.3)
with d = 2, we have that using p(1|x) = 1− p(0|x)

p(x, y) = p(0|x)[p(0|0, y)− p(0|1, y)] + p(0|1, y). (9.8)
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Figure 9.2: Qubit strategy that achieves |detW2| = 1. Note that due to the
rotational invariance (in the plane) of the vector cross product, the angle θ
can be chosen freely.

Hence we write

p(x, y)− p(x′, y) = [s(0|x)− s(0|x′)][t(0|0, y)− t(0|1, y)] = Sxx′Ty (9.9)

from which it follows that

W2 =

∣∣∣∣
S01T0 S23T0

S01T1 S23T1

∣∣∣∣ = 0. (9.10)

Note that due to the non-convexity of the set of classical distributions using a
classical bit, the witness is nonlinear (quadratic) in the observed probabilities
p(b|xy). In fact, this witness turns out to characterise fully the set of ex-
periments involving a classical bit. Specifically, for any experiment achieving
W2 = 0 (for all relabelings of the preparation x), there exists a decomposition
of the form (9.3) with d = 2 (see Paper F Appendix A).

Next we consider the performance of qubit strategies, i.e. statistics of the
form (9.5) with d = 2. States are given by density matrices ρx = (I2 +~sx ·~σ)/2

and measurement operators by M0|y = cyI2 + ~Ty · ~σ/2, where ~sx and ~Ty are

Bloch vectors and |~Ty| ≤ |cy| ≤ 1− |~Ty|/2. Similarly to above, we write

p(x, y)− p(x′, y) = Tr[(ρx − ρx′)M0|y] = ~Sxx′ · ~Ty (9.11)
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where ~Sxx′ = (~sx − ~sx′)/2. Finally, we get

W2 =

∣∣∣∣
~S01 · ~T0

~S23 · ~T0

~S01 · ~T1
~S23 · ~T1

∣∣∣∣ = (~S01 × ~S23) · (~T0 × ~T1) ≤ 1 (9.12)

since |~S01× ~S23| ≤ 1 and |~T0× ~T1| ≤ 1. This bound for qubit strategies is tight,
and can be reached as follows: choose the preparations to be the pure qubit
states given by ~s0 = −~s1 = ẑ, ~s2 = −~s3 = x̂, and the measurements by the
vectors ~T0 = cos θẑ+sin θx̂ and ~T1 = sin θẑ−cos θx̂. Notice that we are free to
choose any angle θ here, due to the rotational invariance of the cross product
in the plane. For θ = 0 we get the usual BB84 states and measurements.
The value of W2 for qubit strategies has a simple geometrical interpretation
presented in Fig 9.2.

9.2.2 Tetrahedral witness

We now consider a second witness which appears to be maximally violated
by choosing preparations that form a tetrahedron in the Bloch sphere and
measurements of σx, σy, σz. We therefore have 4 preparations x = 0, 1, 2, 3 and
3 measurements y = 0, 1, 2. Define the matrix

Wtet =



p(0, 0)− p(1, 0) p(1, 0)− p(2, 0) p(2, 0)− p(3, 0)
p(0, 1)− p(1, 1) p(1, 1)− p(2, 1) p(2, 1)− p(3, 1)
p(0, 2)− p(1, 2) p(1, 2)− p(2, 2) p(2, 2)− p(3, 2)


 . (9.13)

The witness is then again determined by taking the determinant Wtet =
|detWtet|. Converting this to Bloch vector notation we have

Wtet =

∣∣∣∣∣∣

~S01 · ~T0
~S12 · ~T0

~S23 · ~T0

~S01 · ~T1
~S12 · ~T1

~S23 · ~T1

~S01 · ~T2
~S12 · ~T2

~S23 · ~T2

∣∣∣∣∣∣
(9.14)

This can be expressed using the generalised cross product defined as follows.
The cross product ~S0 × ~S1 × · · · × ~Sk−1 of k vectors in Rk+1 is defined as
the unique vector ~u ∈ Rk+1 such that ~V · ~u = det(V, ~S0, ~S1, · · · , ~Sk−1) for all
~V ∈ Rk+1 (see e.g. [103]). We may therefore rewrite the above as

Wtet = (~S01 × ~S12 × ~S23) · (~T0 × ~T1 × ~T2). (9.15)

Here, one must extend all vectors so that they are defined in R4 so that the
cross product is properly defined. Numerical evidence strongly suggests that
this is maximised by taking preparations ~sx that form a tetrahedron in the
Bloch sphere and measurements in the directions x, y, z. This strategy scores
Wtet = 2

3
√

3
.
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9.3 Tolerance to noise

In the previous section ((8.4.3)), we saw that assuming the devices have ac-
cess to shared classical randomness, the maximum tolerance to white noise
in the prepare-and-measure scenario is η∗ = 0.34 for projective measurements
and η∗ = 0.5 for POVM measurements (although smaller bounds may be
achievable). Note that if one assumes the devices are independent as above,
essentially any qubit strategy scores |W2| > 0, suggesting a high tolerance to
noise of qubits compared to classical bits. Indeed, one finds that if one starts
with a distribution pQ(x, y) which achieves |W2| = Q, then the noisy strategy

p(x, y) = (1− η)pQ + η pN(y) (9.16)

achieves |W2| = (1 − η)2Q. Here, pN is any noise distribution which depends
upon y only (the same result also holds for the witness Wtet for the same
reasons). Hence, one may tolerate an arbitrary amount of noise, such as low
detector efficiencies or background noise. This is in stark contrast to the case
where the devices share classical correlations where typically high efficiencies
are required [102].

The above witnesses also display interesting tolerance to misalignment er-
rors in the preparations/measurements. Note that due to the rotational in-
variance (in the plane) of the cross product, the value of W2 is unaffected by
applying any unitary rotation (in the relevant plane) to either the preparations
of measurements. For example, this corresponds to the freedom of choosing θ
in Fig. 9.2. For the witnesss Wtet this is even more extreme. Since both cross
products appearing in (9.15) are by definition orthogonal to the subspaces de-
fined by {~sx} and {~my} (i.e. they both point into the 4th dimension), one may
apply an arbitrary unitary to all preparations and/or measurements without
affecting the value of the witness. This is of practical interest since there is
therefore no need to align the preparation and measurement devices.

9.4 Dimension witnesses for all dimensions

We now generalise the above witness for testing classical and quantum sys-
tems of arbitrary dimension (we again consider binary outcomes). Consider
a scenario with 2k preparations and k binary measurements. Construct the
k × k matrix

Wk(i, j) = p(2j, i)− p(2j + 1, i) (9.17)
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with 0 ≤ i, j ≤ k − 1. As above, the witness is given by Wk = |det(Wk)|. For
classical systems of dimension d, one has that

Wk = 0 for d ≤ k, (9.18)

while one can have Wk ≥ 1 for d > k. For quantum systems of dimension d,
we get

Wk = 0 for d ≤
√
k, (9.19)

while Wk > 0 is possible whenever d >
√
k. Hence we obtain a quadratic sep-

aration between classical and quantum dimensions, using a number of prepa-
rations and measurements that grows only linearly with the dimension. The
origin of the quadratic separation arises from the fact that quantum systems
require quadratically many more real parameters (d2 − 1 for Hilbert space
dimension d) to parameterise them than their classical counterparts (which
require only d− 1).

9.5 Semi-device independent randomness cer-

tification

The generation of high quality random numbers is an important problem that
finds application in cryptography, simulation and gambling. However, essen-
tially all methods used commercially to generate random numbers use classical
processes (for example complex mathematical functions or electronic/atmospheric
noise) and are hence fundamentally deterministic. This makes for a reliable
estimate on the quality of such sources particularly troublesome.

The fact that the outcomes of measurements on quantum systems are inher-
ently probabilistic has sparked a field of research focused on exploiting quan-
tum systems for the generation and certification of random numbers [16–20].
In this section we apply the techniques of dimension witnesses to the certifi-
cation of randomness in prepare-and-measure scenarios (see [Paper I]).

9.5.1 The semi-device independent scenario

One may easily generate perfect random numbers if one assumes perfect control
and knowledge of the experimental setup: simply prepare for example the qubit
state |0〉 and measure in the σx basis. The Born rule then tells us that the
outcome of the measurement of σx

p(±|σx) = |〈±|0〉|2 =
1

2
(9.20)
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is uniform and random (here |±〉 denote the ± eigenstates of σx). In prac-
tice, however, one cannot prepare perfect eigenstates and the certification of
randomness becomes more difficult. For example, if the preparation device
malfunctions and instead prepares the state |+〉 with probability 1

2
and |−〉

with probability 1
2

(say due to some classical source of noise in the prepa-
ration device) then one will also find p(±|σx) = 1

2
. Hence, upon observing

p(±|σx) = 1
2

one cannot be sure if the corresponding bits produced by the ex-
periment come from the intrinsic randomness present in quantum mechanics
or from some classical source of noise present in the devices.

The aim of the semi-device independent scenario is to overcome this diffi-
culty by relaxing some of the experimental requirements, so that randomness
can still be certified if the experimenters do not have perfect control over the
devices. Specifically we work in the prepare-and-measure scenario and assume
the following:

• Settings x, y may be chosen independently of the devices. i.e. the devices
do not know x, y prior to inputting.

• Independent, identically distributed rounds (i.i.d).

• Independent preparation and measurement devices (i.e. the devices do
not share classical correlations).

• Qubit channel capacity: The information about the choice of preparation
x retrieved by the measurement device (via a measurement on the sent
particle) is contained in a 2-dimensional quantum subspace (a qubit).

Hence, one does not assume perfect knowledge of the functioning of the devices,
but simply the above list of assumptions which must be justified by a particular
experimental setup (see [Paper I] for an in depth discussion of this). The aim
is now to certify quantum randomness under these assumptions, which we do
with the aid of the witness W2.

9.5.2 Randomness certification based on W2

Defining again λ and µ to be local classical variables for the preparation and
measurement devices, a general experiment satisfying the above can be written

p(b|xy) =
∑

λ,µ

qλrµpλµ(b|xy) (9.21)

where pλµ(b|xy) = Tr[ρλxM
µ
b|y] and ρx, M

µ
b|y act on C2. We would like to ensure

that the randomness produced in the experiment does not come from the
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Figure 9.3: Measurement vectors are given by the vectors ~T µb and their cor-
responding probabilities given a state |ψ〉. In order to maximise the second
line of (9.24) one should chose a state which lies in the middle of these two
vectors. This gives guessing probability (1 + cos(θµ/2))/2.

classical random variables λ, µ. We therefore define the guessing probability
for a given strategy and inputs x, y

pxyg =
∑

λ,µ

qλrµ max
b
pλµ(b|xy). (9.22)

If the probabilities pλµ are deterministic then one has maxb pλµ(b|xy) = 1 and
any indeterminism in the statistics can be explained by the classical random
variable λ, µ. The corresponding guessing probability is therefore 1. Any
pxyg < 1 therefore indicates genuine quantum randomness.

Given some experimental data p(b|xy), in order to certify randomness, we
need to maximise this guessing probability over all possible strategies. Fur-
thermore, we take the average over the uniformly chosen inputs x = 0, · · · , 3,
y = 0, 1. The maximal average guessing probability associated to the data
p(b|xy) is therefore

p∗g[p(b|xy)] = max
qλ,rµ,ρ

λ,µ
x Mµ

b|y

1

8

∑

xy

pxyg , (9.23)

such that (9.21) is satisfied. One may now use the witness W2 given in (9.12)
to certify randomness. We first fix a particular choice of the variables λ, µ.
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We then have

pg =
1

8

∑

x,y

max
b
pλµ(b|x, y) (9.24)

≤ 1

2
max
x

∑

y

max
b
pλµ(b|x, y) (9.25)

≤ 1 + cos(θµ/2)

2
(9.26)

where θµ denotes the angle between Bob’s two measurement. The reasoning
of the derivation is as follows. The best guessing probability averaged over
inputs of Alice is bounded by the maximum over her inputs. This gives the
first inequality and allows us to focus on the best possible state that Alice
can send. Next, Bob has two measurements described by Bloch vectors ~T µ0,1,
and θµ is the angle between them. The best guessing probability averaged
over his inputs is obtained by sending a state which lies in the middle between
his measurements on the Bloch sphere (see Fig. 9.3). For such a state, the
outcome probabilities for the two values of b are cos2(θµ/4), and sin2(θµ/4).
Choosing the larger value and using the double-angle formula, one arrives at
the second inequality.

Next, we note that from (9.12) for fixed λ, µ one has

W2 ≤ |~T µ0 × ~T µ1 | ≤ sin θµ. (9.27)

After some basic trigonometry, combining this with the above expression for
pg gives

pg ≤
1

2


1 +

√
1 +

√
1−W 2

2

2


 . (9.28)

Finally, to remove the assumption of fixed λ, µ, one can use concavity argu-
ments to show that this bound holds in general, allowing for arbitrary distri-
butions qλ, rµ of the classical random variables. We thus have

p∗g ≤
1

2


1 +

√
1 +

√
1−W 2

2

2


 . (9.29)

Finally, one must also take into account a small correction due to the effect of
finite statistics (see Appendix [Paper I]). The amount of extractable random-
ness (in bits) is then given by the min entropy − log2 pg, plotted in figure 9.4.
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Figure 9.4: Min entropy − log2(pg) as a function of W2, where pg is given
by (9.29). The actual min entropy of the source will be slightly smaller after
finite size effects are taken into account.

The data can then be fed into a randomness extractor to produce a uniformly
random seed given a short random seed.

As expected, the ability to extract randomness from W2 is very robust to
experimental noise. In [Paper I] an all optical experiment implementing the
above randomness certification protocol is presented, generating 23 bits/sec of
certified randomness.

9.6 Outlook

Other works have also investigated the problem of testing dimension using in-
dependent devices. Notably, in [102], the tolerance to detector inefficiencies in
semi-device independent protocols based on dimension was discussed, where
it was also found that extremely high tolerances are possible. Other protocols
for randomness certification based on the assumption of independent devices
have been developed in the semi-device-independent scenario [104–106]. No-
tably, [105] work in the same scenario as we do, however their methods have
the disadvantage that they are based on numerics. Ref. [104] considers a sce-
nario in which the measurement device is assumed to perform measurements
on to a qubit subspace, which effectively fixes the preparation device to pre-
pare qubit states. Their assumptions are thus stronger than those presented
here, leading to higher rates. Further to this, quantum key distribution has
also been considered, assuming independent devices in a prepare-and-measure
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scenario [107].
There is still much work to be done in characterising the set of distributions

obtainable from finite dimensional quantum systems. In the case where the de-
vices are correlated, the problem is known to admit semi-definite programming
relaxations [84], however this is unlikely to be the case for independent devices
due to the non-convexity of the sets. It would be interesting to know, for ex-
ample, if the witnesses |Wk| give a complete characterisation, as was the case
for W2 (although this will probably need dimension witnesses featuring more
than only binary outputs). Also, can one find nonlinear dimension witness
which characterise the set of quantum, rather than classical distributions?

From a semi-device independent perspective, one could argue that the as-
sumptions of independent devices and i.i.d. rounds are too strong. It would
therefore be interesting to either remove the assumption of i.i.d. or develop
sets of different assumptions which can be more easily justified in experimen-
tal setups.

Finally, our methods may be of use in other problems with non-convex
geometry. One possibility is that of the nonlocality in networks of independent
sources [108–111], where new techniques are much needed.
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Conclusion and Future
Directions

The results presented in this thesis shed new light on fundamental questions
about quantum correlations. From the perspective of Bell nonlocality, our
work, as well as settling certain questions, naturally leads to new unanswered
ones, many of which can be found in the outlook sections following each chap-
ter. For example, questions regarding the precise relationship between entan-
glement and Bell nonlocality remain. Perhaps the holy grail in this respect
would be a definitive answer as to whether entanglement always leads to cor-
relations that are in disagreement with any local hidden variable description,
and if so, what is the simplest scenario in which such a demonstration is pos-
sible? Whereas we have seen many examples in this thesis that this is not
the case in the standard Bell scenario of non-sequential measurements on a
single copy of the state, considering more general scenarios relatively little is
known. If one extends the standard scenario to include hidden nonlocality
(i.e. preprocessing of the state by local filters), then we have given consid-
erable evidence that entanglement does not always lead to nonlocality (see
Section 5.3.4). Whether this is also the case if one considers the complete
set of probability distributions resulting from an arbitrary number of sequen-
tial measurements is still unknown. Moving to more complex scenarios, one
could also consider taking multiple copies of the state and performing joint
measurements, combining this with the filtering operations or sequential mea-
surements or consider networks of states subject to independence conditions as
is the case with N-locality [110,112]. Constructing LHV models (if they exist)
for such scenarios is understandably a formidable task, however the tools of
EPR steering may again prove useful here.

We have also seen that it is possible to simulate entangled quantum states
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with finite classical resources (Chapter 7). However, in our general construc-
tion, when one approaches the surface of the set of local states, an infinite
amount of shared randomness is needed. It is therefore of interest to know
whether this will always be the case, or on the contrary, if finite dimensional
local quantum states can always be simulated with finite classical resources.
Similarly, it would be interesting to get lower bounds on the dimension of the
shared randomness needed to simulate a d-dimensional entangled states, and
to know if this is strictly larger than that needed for separable states of the
same dimension. Answers to either of these questions would provide insight
into the connection between entanglement and nonlocality.

Moving to the certification of dimension in networks, much work is still to
be done. The computational methods of Chapter 8 quickly become infeasible,
and so developing more powerful tests in more complex scenarios will require
new ideas. The simple examples presented here may provide the intuition
from which these ideas may come. This is also the case for the scenario of
independent devices of Chapter 9, where it is desirable to extend our witnesses
to handle a larger number of outputs, as this is likely to be more relevant when
considering higher dimensional systems than qubits. Another possible avenue
of research here is the possibility of using such witnesses for the self-testing
of certain ensembles of states and measurements. For example, the witnesses
of Section 9.2 could potentially be used to self-test BB84 type setups and the
preparation of the “tetrahedral” qubit states discussed therein. Progress here
would also likely be useful for constructing more powerful protocols for random
number certification.



Appendix A

Proof of the unsteerability of
ρ(p, χ)

Here we show that for the class of states (6.10), Theorem 1 implies that the
ρ(p, χ) is unsteerable if

cos2 2χ ≥ 2p− 1

(2− p)p3
. (A.1)

To do this, we first consider states in canonical form (5.3), which satisfy ~a =
(0, 0, az) and |Tx| = |Ty|. In order to perform the maximisation of Theorem 1,
we parameterize x̂ using spherical co-ordinates x̂ = (sin θ cosφ, sin θ sinφ, cos θ).
Our criterion may now be written as

max
θ,φ

F (θ, φ) ≤ 1 , (A.2)

F (θ, φ) = (~a · x̂)2 + 2||T x̂||
= cos2 θ a2

z + 2
√
T 2
x + cos2 θ (T 2

z − T 2
x ).

Unsurprisingly, F depends only on θ since the problem is symmetric with
respect to the x and y directions and we may ignore the maximisation over
φ. Note that if |Tz| = |Tx| then the maximisation occurs at θ = 0 and our
condition for unsteerability becomes

a2
z + 2|Tz| ≤ 1. (A.3)

In the case |Tz| 6= |Tx|, one should find the extremal points of F (θ) and prove
that they do not exceed 1. To find these extrema we solve

dF

dθ
= − sin 2θ

(
a2
z +

T 2
z − T 2

x√
T 2
x + cos2 θ(T 2

z − T 2
x )

)
= 0. (A.4)
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From sin 2θ = 0 we have solutions θ = 0, π/2, π, and possibly other solutions
given by

a2
z +

T 2
z − T 2

x√
T 2
x + cos2 θ(T 2

z − T 2
x )

= 0. (A.5)

We now derive conditions such that (A.5) has no solution. After rearranging
(A.5) we have

cos2 θ =
T 2
x

T 2
x − T 2

z

− T 2
x − T 2

z

a4
z

. (A.6)

This has no solution if the RHS is greater than 1 or less than 0. Hence we
have two conditions

T 2
x

T 2
x − T 2

z

<
T 2
x − T 2

z

a4
z

or
T 2
z

T 2
x − T 2

z

>
T 2
x − T 2

z

a4
z

. (A.7)

If one of the above conditions is fulfilled we therefore have extrema for θ =
0, π/2, π only. In this case, and since F (0) = F (π), our condition for unsteer-
ability becomes

max
θ
F (θ) = max{ a2

z + 2|Tz| , 2|Tx| } ≤ 1. (A.8)

We now move to the explicit case of ρ(p, χ). We find a canonical state with
|Tx| = |Ty|, ~a = (0, 0, az) and

az =
(1− p2) cos 2χ

1− p2 cos2 2χ
; Tz =

p(1− cos2 2χ)

1− p2 cos2 2χ
; Tx =

√
p2(1− cos2 2χ)

1− p2 cos2 2χ
.

(A.9)

We now introduce the ansatz (for p ≥ 1
2
)

cos2 2χ =
2p− 1

(2− p)p3
. (A.10)

Eliminating the variable χ we find

a2
z =

(2− p)(2p− 1)

p
; Tz =

(1− p)2

p
; Tx = 1− p. (A.11)
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For the case p = 1
2

we have |Tz| = |Tx| and one finds that (A.3) is satisfied.
For p > 1

2
we show that the second condition of (A.7) holds. To this end, we

calculate

T 2
z

T 2
x − T 2

z

− T 2
x − T 2

z

a4
z

=
(3− p)(1− p)3

(p− 2)2(2p− 1)
. (A.12)

This is easily seen to be positive for p ∈]1
2
, 1], and so F (θ) has extrema at

θ = 0, π, π/2 only. It therefore remains to prove (A.8). We find

a2
z + 2|Tz| = 1 , 2|Tx| = 2(1− p). (A.13)

and so (A.8) is satisfied for p > 1
2
. This proves that the state ρ(p, χ) is

unsteerable if p ≥ 1
2

and p and χ satisfy (A.10), which corresponds to the
black curve of Fig. 5.22 in the main text. Finally, we note that for a fixed χ,
lowering p amounts to putting more weight on the separable part of the state.
Since a convex combination of an unsteerable state with a separable state is
also unsteerable, all points below the curve of Fig. 5.22 are also unsteerable.
Hence, we arrive at (5.22).
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stanten von positiven harmonischen funktionen,” Rendiconti del Circolo
Matematico di Palermo (1884-1940), vol. 32, no. 1, pp. 193–217, 1911.

[74] W. K. Wootters, “Entanglement of formation of an arbitrary state of
two qubits,” Phys. Rev. Lett., vol. 80, pp. 2245–2248, Mar 1998.



116 Chapter A

[75] C. Branciard and N. Gisin, “Quantifying the nonlocality of greenberger-
horne-zeilinger quantum correlations by a bounded communication sim-
ulation protocol,” Physical Review Letters, vol. 107, no. 2, 2011.

[76] B. F. Toner and D. Bacon, “Communication cost of simulating Bell
correlations.,” Physical review letters, vol. 91, no. 18, p. 187904, 2003.

[77] O. Regev and B. Toner, “Simulating quantum correlations with finite
communication,” in Proceedings - Annual IEEE Symposium on Founda-
tions of Computer Science, FOCS, pp. 384–394, 2007.

[78] F. Hirsch, M. T. Quintino, T. Vértesi, M. F. Pusey, and N. Brunner,
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Einstein-Podolsky-Rosen steering is a form of quantum nonlocality exhibiting an inherent asymmetry
between the observers, Alice and Bob. A natural question is then whether there exist entangled states which
are one-way steerable, that is, Alice can steer Bob’s state, but it is impossible for Bob to steer the state
of Alice. So far, such a phenomenon has been demonstrated for continuous variable systems, but with a
strong restriction on allowed measurements, namely, considering only Gaussian measurements. Here we
present a simple class of entangled two-qubit states which are one-way steerable, considering arbitrary
projective measurements. This shows that the nonlocal properties of entangled states can be fundamentally
asymmetrical.

DOI: 10.1103/PhysRevLett.112.200402 PACS numbers: 03.65.Ud

The nonlocality of entangled quantum states, first
pointed out by Einstein, Podolsky, and Rosen [1], was
later proven by Bell [2] to be an inherent feature of the
theory. Nowadays quantum nonlocality is considered as a
fundamental aspect of the theory and plays a central role in
quantum information processing [3,4].
The concept of steering (or Einstein-Podolsky-Rosen

steering), proposed by Schrödinger [5], brings an alter-
native approach to this phenomenon. Consider two remote
observers, Alice and Bob, who share a pair of entangled
particles. By performing a measurement on her system,
Alice can steer the state of Bob’s system. Importantly, it is
the intrinsic randomness of quantum theory that prevents
this effect from leading to instantaneous signaling. First
explored in the context of continuous variable systems
[6,7], quantum steering was recently formalized as an
information-theoretic task by Wiseman et al. [8]. Steering
finds applications in quantum information processing, e.g.,
for cryptography [9] and randomness generation [10].
Experimental investigations have been reported [11] with,
notably, a recent loophole-free experiment [12]. Steering has
also been discussed for detecting entanglement in Bose-
Einstein condensates [13] and atomic ensembles [14].
A characteristic trait of steering—distinguishing it from

both entanglement and Bell nonlocality—is an asymmetry
between the observers. As formalized in [8], a steering test
can be viewed as the distribution of entanglement from an
untrusted party. Hence, in this protocol, Alice and Bob play
different roles which are not interchangeable. Specifically,
Alice tries to convince Bob that they share an entangled
state. However, Bob does not trust Alice, and thus asks her
to remotely steer the state of his particle according to a
different measurement basis. Bob can then verify Alice’s
claim by checking a steering inequality [15], as the
violation of such an inequality implies the presence of

entanglement. Conversely, if the inequality is satisfied, Bob
will not be convinced that entanglement is present, since a
local state strategy can, in principle, reproduce the observed
data. Interestingly, steering turns out to be a form of
quantum nonlocality that is intermediate between entan-
glement and Bell nonlocality, in the sense that not all
entangled states lead to steering, and not all steerable states
violate a Bell inequality [8,11].
A natural question, already raised in Ref. [8], is then

whether there exists one-way quantum steering. That is, are
there entangled states such that steering can occur from
Alice to Bob, but not from Bob to Alice? The properties of
such states would thus be fundamentally different depend-
ing on the role of the observers. On the one hand Alice
can convince Bob that the state they share is entangled. On
the other hand, it is impossible for Bob to convince Alice
that the state is entangled since the observed behavior
can be reproduced by a local state model. Note that such a
phenomenon cannot occur for pure entangled states, which
can always be brought to a symmetric form via local basis
change (using the so-called Schmidt decomposition).
Hence, one-way quantum steering requires mixed entangled
states. So far, it was shown theoretically [16,17] and
experimentally [18] that such phenomena can occur in
continuous variable systems. However, these results hold
only fora restrictedclassofmeasurements, namely,Gaussian
measurements, and there is no evidence that this asymmetry
will persist for more general measurements. In fact, it is
known that non-Gaussian measurements are useful in this
context, as they are necessary to reveal the nonlocality of
certain entangled states [19].
Here we present a simple class of two-qubit entangled

states with one-way steering for arbitrary projective mea-
surements. First we show that steering is not possible from
Bob to Alice by constructing an explicit local hidden state
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model. Then we show that the state is nevertheless steerable
when the roles of the parties are interchanged. Making use
of techniques recently introduced in Skrzypczyk et al. [20],
we construct a steering test for demonstrating steering
from Alice to Bob. The present work thus demonstrates a
fundamental asymmetry in the nonlocal properties of
certain entangled states.
We start by introducing the scenario and fixing notations.

Consider two remote parties, Alice and Bob, sharing
an entangled quantum state ρAB. By performing a local
measurement on her particle, Alice can prepare the state of
Bob’s particle in different ways. In this work we will focus
on the case of two-qubit states ρAB and local qubit
projective measurements. Consider that Alice measures
the observable ~x · ~σ and obtains outcome a ¼ �1; here ~x
denotes a vector on the Bloch sphere and ~σ ¼ ðσ1; σ2; σ3Þ is
the vector of Pauli matrices. Then, Bob’s particle is left in
the (unnormalized) state

ρaj~x ¼ trAðρABMaj~x ⊗ IÞ; (1)

whereMaj~x ¼ ðIþ a~x · ~σÞ=2 is the projector corresponding
to outcome a. The set of unnormalized states fρaj~xg,
referred to as an assemblage, thus characterizes the experi-
ment [8,20,21]. The assemblage characterizes both the
conditional probability ofAlice’s outcome,pðaj~xÞ¼ trðρaj~xÞ,
and the (normalized) conditional state prepared for Bob
ρ̂aj~x ¼ ρaj~x=pðaj~xÞ. Note that all assemblages satisfyP

aρaj~x ¼
P

aρaj~x0 for all measurement directions ~x and ~x0,
ensuring that Alice cannot signal to Bob.
In a steering test [8], Alice wants to convince Bob that

she can steer his state. Bob, who does not fully trust Alice,
wants to verify her claim. In order to do so, he asks Alice to
make a measurement in a given direction ~x (chosen from a
given set of measurements) and then to announce her result
a. By repeating this procedure a sufficient number of times,
Bob can estimate the assemblage fρaj~xg, e.g., via quantum
state tomography. Bob’s goal is now to find out whether
(i) Alice did indeed steer his state by making a measure-
ment on an entangled state ρAB, or whether (ii) she cheated
by using a local hidden state (LHS) strategy, in which no
entanglement is involved. In this second case, Alice would
prepare a single qubit state ρλ and send it to Bob; here λ
represents a classical variable known to Alice, with an
arbitrary distribution ωðλÞ. Upon receiving a measurement
direction ~x from Bob, Alice announces an outcome a
according to a predetermined strategy pλðaj~xÞ. Hence Bob
holds the state

ρaj~x ¼
X
λ

ωðλÞpλðaj~xÞρλ: (2)

Therefore, the problem for Bob is to determine whether the
states in the assemblage fρaj~xg admit a decomposition of
the form of equation (2). If this is the case, then Bob will

not be convinced that Alice can steer his state. On the other
hand, if no decomposition of the form of equation (2) is
possible, then Bob will be convinced that Alice did steer his
state. More generally, we say that a state ρAB is unsteerable
from Alice to Bob, if the assemblage fρaj~xg admits a
decomposition of the form of equation (2) for all possible
measurement directions ~x. On the other hand, if there exists
a set of measurement directions such that the corresponding
assemblage fρaj~xg does not admit a decomposition of the
form of equation (2), we say that ρAB is steerable from Alice
to Bob.
A steering test is thus clearly asymmetrical, as the roles

played by Alice and Bob are different. Hence it is natural
to ask whether there exist entangled states ρAB that can be
steered only in one direction, say from Alice to Bob but not
from Bob to Alice. Here we show that such a phenomenon
of one-way steering occurs for simple two-qubit entangled
states, considering arbitrary projective measurements.
Specifically, we consider states of the form

ρABðαÞ ¼ αΨ− þ 1 − α

5

�
2j0ih0j ⊗ I

2
þ 3

I
2
⊗ j1ih1j

�
;

(3)

where Ψ− ¼ jψ−ihψ−j denotes the projector on the singlet
state jψ−i ¼ ðj0; 1i − j1; 0iÞ= ffiffiffi

2
p

and 0 ≤ α ≤ 1. The state
ρABðαÞ is entangled for α > 1=19ð−6þ 5

ffiffiffi
6

p Þ≃ 0.3288,
as can be checked via partial transposition [4]. We will see
that in the range 0.4983≲ α ≤ 1=2, the state ρABðαÞ is one-
way steerable. The proof is divided into two parts. First,
we show that the state is unsteerable from Bob to Alice
by constructing a LHS model for ρABð1=2Þ. Second, we
show that steering can nevertheless occur from Alice to
Bob by showing that the assemblage resulting from 14
well-chosen projective measurements on the state ρABðαÞ
with α ≳ 0.4983 does not admit a decomposition of the
form of equation (2).
No steering from B to A.—We construct a LHS model,

from Bob to Alice, for arbitrary local projective measure-
ments on ρABð1=2Þ. The model works as follows. Bob first
sends to Alice a pure qubit state of the form

ρλ ¼ ðIþ λ0~λ · ~σÞ=2; (4)

where λ0 ¼ �1, and ~λ ¼ ðλ1; λ2; λ3Þ ¼ ðcosϕ sin θ;
sinϕ sin θ; cos θÞ is a vector on the Bloch sphere distributed
according to the density

ωðθ;ϕÞ ¼ 1

2π
cos2ðθ=2Þ: (5)

That is, the probability of using a given vector ~λ depends on
its height on the Bloch sphere. Note that λ0 and ~λ represent
here the classical variables available to Bob. Upon receiv-
ing an arbitrary measurement direction ~y ¼ ðy1; y2; y3Þ
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from Alice, Bob then announces outcome
b ¼ −λ0sgnð~y · ~λÞ. Finally, Alice characterizes her state.
For convenience, we consider here the case where she
performs an arbitrary projective measurement along direc-
tion ~x ¼ ðx1; x2; x3Þ with outcome a.
Now we compute the statistics of the above model,

focusing first on the case λ0 ¼ 1. Because of the form of the
state, Eq. (3), we can take ~y ¼ ð0; sin θB; cos θBÞ without
loss of generality. Moreover, it will be convenient to use a
new reference frame such that the ê3 ¼ ð0; 0; 1Þ axis is
aligned on Bob’s vector ~y. Angles and axes in the new
frame are denoted with a tilde. First we evaluate the
distribution of ~λ in the new frame. That is, we compute
ωð~θ; ~ϕÞ, with ~λ ¼ ð~λ1; ~λ2; ~λ3Þ ¼ ðcos ~ϕ sin ~θ; sin ~ϕ sin ~θ;
cos ~θÞ. Since the new frame is obtained by performing
a rotation of −θB around the ê1 ¼ ð1; 0; 0Þ axis, we
have that λ3 ¼ − sin θB ~λ2 þ cos θB ~λ3. Moreover, since
θ ¼ arcosðλ3Þ, we have that

ωðθ;ϕÞ ¼ 1

2π
cos2

�
arcosðλ3Þ

2

�
¼ 1þ λ3

4π
: (6)

Hence we get that

ωð~θ; ~ϕÞ ¼ ð1 − sin θB sin ~ϕ sin ~θ þ cos θB cos ~θÞ=4π:

Next, we write Alice’s vector in the new frame,
~x ¼ ðcos ~ϕA sin ~θA; sin ~ϕA sin ~θA; cos ~θAÞ. Using the fact
that trð~x · ~σρλÞ ¼ ~x · ~λ, we obtain the correlation

habi ¼ −
Z

2π

0

d ~ϕ
Z

π

0

sin ~θd~θωð~θ; ~ϕÞð~x · ~λÞsgnð~y · ~λÞ

¼
Z

2π

0

d ~ϕ

�Z
π

π=2
sin ~θd~θωð~θ; ~ϕÞð~x · ~λÞ

−
Z

π=2

0

sin ~θd~θωð~θ; ~ϕÞð~x · ~λÞ
�
: (7)

Since ~x · ~λ ¼ sin ~θ sin ~θA cosð ~ϕ − ~ϕAÞ þ cos ~θ cos ~θA, we
find after a lengthy but straightforward calculation

habi ¼ −
cos ~θA
2

¼ −
~x · ~y
2

: (8)

Note that ~θA is the angle between vectors ~x and ~y.
Finally, we calculate the marginals, i.e., the local expect-

ation values for Bob

hbi ¼ −
Z

2π

0

d ~ϕ
Z

π

0

sin ~θd~θωð~θ; ~ϕÞsgnð~y · ~λÞ

¼ −
cos θB
2

¼ −
y3
2

(9)

and for Alice

hai ¼
Z

2π

0

dϕ
Z

π

0

sin θdθωðθ;ϕÞð~x · ~λÞ

¼ cos θA
3

¼ x3
3
: (10)

Note that for computing Alice’s marginal, it is more
convenient to use the original reference frame.
At this point, it is useful to note that the correlations,

Eq. (8), correspond exactly to those of the state ρABð1=2Þ.
Moreover, the marginals, Eqs. (9) and (10), have the right
form, but are in fact slightly stronger than those of
ρABð1=2Þ. In order to weaken the marginals, while keeping
the correlation unchanged, we now use the variable λ0.
Specifically, consider the distribution pðλ0 ¼ −1Þ ¼ f.
Hence, the marginals are decreased to hai¼ð1−2fÞx3=3
and hbi ¼ ð1 − 2fÞy3=2. Choosing a flipping probability
of f ¼ 1=5, we finally get

hai ¼ x3
5
; hbi ¼ 3y3

10
; habi ¼ −

~x · ~y
2

: (11)

Hence, the model simulates exactly the statistics of local
projective measurements on the state ρABð1=2Þ. The
assemblage fρbj~yg observed by Alice is thus identical to
the assemblage expected for the state ρABð1=2Þ, that is,
ρbj~y ¼ trBðρABð1=2ÞI ⊗ Mbj~yÞ, whereMbj~y¼ðIþb~y · ~σÞ=2.
Therefore, the state ρABð1=2Þ is unsteerable from Bob to
Alice. The extension to the case α < 1=2 is straightforward.
Finally, note that the above model can also be understood

as a local hidden variable model; thus, the statistics of local
projective measurements on ρABðαÞ with α ≤ 1=2 cannot
violate any Bell inequality [22]. This complements a series
of works describing entangled states admitting a local
hidden variable model [23–26].
Steering from A to B.—Wewill see now that the situation

is completely different when the roles of Alice and Bob
are interchanged. Specifically, the state ρABðαÞ with
α≳ 0.4983 is steerable from Alice to Bob. In order to
prove this, we will show that, for a well-chosen set of m
projective measurements for Alice, the resulting assem-
blage fρaj~xg obtained on Bob’s side cannot be reproduced
by any LHS model.
The observables measured by Alice are denoted Ai ¼

~xi · ~σ with i ¼ 1;…; m and outcome a ¼ �1. Bob char-
acterizes the state ρaj~xi by tomography, making measure-
ments represented by the Pauli matrices σj, with j ¼ 1; 2; 3,
outcome b ¼ �1, and σ0 ¼ I. The observed statistics are
then given by

habiij ¼ trðρABðαÞAi ⊗ σjÞ;
hbij ¼ trðρABðαÞI ⊗ σjÞ: (12)

Alice’s marginals are given by haii ¼ habii0.
Considering a given number of measurements m, we

now aim at finding the largest value of α, denoted α�, for
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which the state ρABðαÞ is unsteerable from Alice to Bob.
That is, we want to determine the largest α such that the
statistics (12) can be reproduced by a LHS model, i.e.,

habiij ¼
X
λ

EλðiÞtrðρλσjÞ; hbij ¼
X
λ

trðρλσjÞ; (13)

where EλðiÞ ¼ pλða ¼ 1jiÞ − pλða ¼ −1jiÞ is the expect-
ation value of Alice’s outcome a for a given λ and
measurement i. Note that here the local states ρλ are not
normalized, and one has that

P
λtrðρλÞ ¼ 1.

To solve this problem we make use of a semi-definite
programming (SDP) technique recently developed in [20],
for deciding whether a given assemblage fρaj~xg belongs to
the set of “unsteerable assemblages,” that is, whether fρaj~xg
admits a decomposition of the form equation (2). Our
present problem can be solved by the following SDP:

α� ≡maxα s:t:
X
λ

EλðiÞtrðρλσjÞ ¼ habiij;
X
λ

trðρλσjÞ ¼ hbij; tr
X
λ

ρλ ¼ 1; ρλ ≥ 0 ∀ λ;
(14)

where the optimization variables are α and ρλ, and the
quantities habiij and hbij are computed as in Eq. (12). Note
that we can focus here on LHS strategies for which Alice
provides a deterministic outcome a given λ and i [20], that
is EλðiÞ ¼ �1 for i ¼ 1;…; m. Hence, we have altogether
2m possible strategies for Alice to consider. The above SDP
is then implemented for each strategy.
Using the above SDP, we can thus estimate, for a

particular choice of m measurement directions ~xi (with
i ¼ 1;…; m), the threshold value α� for which the state
ρABðαÞ is steerable from Alice to Bob. For fixedm, we then
minimize α� over all possible choices of measurement
operators for Alice, using a hill-climbing heuristic algo-
rithm. Results for m up to 14 are presented in Table I.
Notably, for m ¼ 14 we get α� ≃ 0.4983, thus implying
that the state ρABðαÞ with α ≳ 0.4983 is steerable from
Alice to Bob.
Finally, from the result of the above optimization

procedure, it is in fact possible to extract an explicit

steering inequality. Once the optimal measurement direc-
tions ~xi (i ¼ 1;…; m) have been found via the hill-climbing
algorithm, the dual of the SDP problem (14) allows us to
extract a linear steering inequality [20] of the form

Xm
i¼1

X3
j¼1

sijhabiij þ
Xm
i¼1

sAi haii þ
X3
j¼1

sBj hbij ≤ L: (15)

Such an inequality is characterized by (i) a set of real
coefficients: sij, sAi , and s

B
j , and (ii) a bound L which holds

for any LHS strategy. In the Supplemental Material [27],
we follow the above method to give explicitly a steering
inequality featuring m ¼ 13 measurements, which is vio-
lated by performing appropriate measurements (which we
give as well) on the state ρABð1=2Þ.
Discussion.—We have shown the existence of entangled

states which are one-way steerable when considering
arbitrary projective measurements. That is, the nonlocal
properties of such states depend on the role played by
the parties: while Alice can steer the state of Bob, it is
impossible for Bob to steer Alice’s state. This shows that
quantum nonlocality can be fundamentally asymmetrical.
An interesting open question is whether the present result
can be extended to the most general measurements, i.e.,
positive operator valued measures. Moreover, it would be
interesting to find an application, e.g., in quantum infor-
mation processing, of the phenomenon of one-way
steering.
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Here we describe explicitly the steering test wit-
nessing the fact that the state ρAB(α) (see eq. (3) of
main text) with α > 1/2 (more precisely the proof
works for α > (2268/2269)(1/2) ' 0.4998) is steer-
able from Alice to Bob.

Here we consider the case of m = 13 measure-
ment settings for Alice, characterized by operators of
the form Ai = ~xi ·~σ with i = 1, ..., m with outcome
a = ±1. Bob performs tomography, making measure-
ments in the Pauli basis σj with j = 1, 2, 3, outcome
b = ±1. The observed data is then given by

〈ab〉ij = tr(ρAB(α)Ai ⊗ σj) (1)
〈b〉j = tr(ρAB(α)I⊗ σj) (2)
〈a〉i = tr(ρAB(α)Ai ⊗ I). (3)

We now construct a linear steering inequality of the
form

m

∑
i=1

3

∑
j=1

sij〈ab〉ij +
m

∑
i=1

sA
i 〈a〉i +

3

∑
j=1

sB
j 〈b〉j ≤ L. (4)

The inequality is characterized by the matrix S, with
real coefficients sij, and the vectors SA and SB, with
real elements sA

i and sB
j , respectively. Specifically, we

have that

S =




1
12

6
175

−12
27−9

79
−1
38

−7
94−1

162
18
133

−1
18

17
157

−6
143

−10
141

5
62

−10
97

−1
62

0 2
103

−9
76−16

105
1

89 0
5

104
−6
79

−11
72−4

73
−6
109

−54
433−3

26
−3
20

−2
83

10
179

9
103

−13
121

1
132

−4
33

−2
49−11

107
14
139

−20
161




, SA = −




1
71
1

53
1

71
2

111
1

244
3

100
0
4

103
2

63
1

163
3

110
1

96
3

95




, SB =




0
0
−15
59


 .

(5)
The local bound of the above inequality, which holds
for any possible LHS model, is L = 1. This can be
verified using e.g. the techniques of Refs [1, 2].

Now we give the measurement operators for Alice,
characterized by Bloch vectors ~xi with i = 1, ..., 13. We
have that

V =




−31
38

−17
54 z1

69
82

6
35 z2

5
111

−103
110 z3

−9
11

7
23 z4

−52
83

53
69 z5

−1
673

−8
49 z6

456
457

−5
83 z7

−128
427

57
124 z8

37
90

35
88 z9

47
77

183
233 z10

−37
94

−53
86 z11

−3
58

116
121 z12

13
23

−76
137 z13




, (6)

where the k-th row of the above matrix is understood
to be ~xk. By normalization of the vectors, we have that
z2

k = 1 − v2
k1 − v2

k2 where vij denote the elements of
matrix V, and zk is chosen to be positive. With this
set of measurements performed on the state ρAB(1/2),
we can evaluate the right hand side of (4) giving us
the value Sq > 2269

2268 > 1 = L hence demonstrating
steering from Alice to Bob.
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Quantum steering can be detected via the violation of steering inequalities, which provide sufficient conditions
for the steerability of quantum states. Here we discuss the converse problem, namely, ensuring that an entangled
state is unsteerable and hence Bell local. We present a simple criterion, applicable to any two-qubit state, that
guarantees that the state admits a local hidden state model for arbitrary projective measurements. Specifically, we
construct local hidden state models for a large class of entangled states, which thus cannot violate any steering
or Bell inequality. In turn, this leads to sufficient conditions for a state to be only one-way steerable and provides
the simplest possible example of one-way steering. Finally, by exploiting the connection between steering and
measurement incompatibility, we give a sufficient criterion for a continuous set of qubit measurements to be
jointly measurable.

DOI: 10.1103/PhysRevA.93.022121

I. INTRODUCTION

Entanglement lies at the heart of quantum physics. Notably,
correlations arising from local measurements performed on
separated entangled systems can exhibit nonlocal correlations
[1,2]. Specifically, the observed statistics cannot be reproduced
using a local hidden variable model, as witnessed by violation
of a Bell inequality.

Recently, the effect of Einstein-Podolsky-Rosen steering
has brought novel insight into quantum nonlocality. Originally
discussed by Schrödinger [3] and used in quantum optics [4],
the effect was recently formalized in a quantum information-
theoretic setting [5]. Considering two distant observers sharing
an entangled state, steering captures the fact that one observer,
by performing a local measurement on one’s subsystem, can
nonlocally steer the state of the other subsystem. Steering can
be understood as a form of quantum nonlocality intermediate
between entanglement and Bell nonlocality [5,6] and is
useful to explore the relation between these concepts. It
was demonstrated experimentally (see, e.g., [7]) and finds
application in quantum information processing [8–10].

Steering can be detected via steering inequalities (analo-
gous to Bell inequalities) [11], the violation of which provides
a sufficient condition for a given quantum state to be steerable.
Derived for both discrete and continuous variable quantum
systems [11–13], such inequalities can be obtained using
semidefinite programming [14–17].

Interestingly, whereas the effect of steering implies the
presence of entanglement, the converse does not hold [5].
Specifically, there exist entangled states that provably cannot
give rise to steering (and hence are referred to as unsteerable)
[5,18], even when general measurements are considered [6].
The correlations of such states can in fact be reproduced
without entanglement, using a so-called local hidden state
(LHS) model [5], and therefore can never violate any steering
inequality. Since a LHS model is a particular case of a local
hidden variable model, any unsteerable state is Bell local.

Determining which entangled states are steerable and which
ones are not is a challenging problem in general. This is mainly
due to the fact that, when constructing a LHS model, one
must ensure that the model reproduces the desired quantum
correlations for any possible measurements. Local hidden state

models have been constructed for entangled states featuring a
high level of symmetry [18–22] (see [23] for a review). For
more general states very little is known, even for the simplest
case of two-qubit states. Based on the concept of the steering
ellipsoid [24], Ref. [25] derived a condition guaranteeing
unsteerability of Bell diagonal two-qubit state. This method,
however, is not applicable to general two-qubit states, for
which unsteerability conditions are still missing.

Here, via the construction of a class of LHS models, we
derive a simple criterion sufficient for guaranteeing that a
two-qubit state is unsteerable, considering arbitrary projective
measurements. In turn, this criterion can also be used to
guarantee one-way steerability [22,26], a weak form of
steering where only one of the observers can steer the state
of the other. We illustrate the relevance of the criterion
with examples, providing in particular the simplest possible
example of one-way steering. Finally, by exploiting the strong
connection between steering and measurement incompatibility
[27,28], we provide a sufficient condition for a continuous
set of dichotomic qubit positive-operator-valued measures
(POVMs) to be jointly measurable.

II. PRELIMINARIES

Consider two distant parties, Alice and Bob, sharing an
entangled quantum state ρ. On her subsystem, Alice makes
measurements, described by operators {Ma|x}, with Ma|x � 0
and

∑
a Ma|x = 1, where x denotes the measurement setting

and a its outcome. The possible states of Bob’s subsystem,
conditioned on Alice’s measurement x and her output a,
are characterized by a collection of (subnormalized) density
matrices {σa|x}a,x , called an assemblage, with

σa|x = TrA(Ma|x ⊗ 1ρ). (1)

Note that it also includes Alice’s marginal statistics p(a|x) =
Tr σa|x . The assemblage {σa|x} is called unsteerable if it can be
reproduced by a LHS model, i.e., it admits a decomposition

σa|x = σ LHS
a|x =

∫
σλp(a|xλ)dλ ∀a,x, (2)

where {σλ} is a set of positive matrices such that
∫

Tr σλdλ = 1
and the p(a|x,λ)’s are probability distributions. The

2469-9926/2016/93(2)/022121(7) 022121-1 ©2016 American Physical Society
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right-hand side of (2) can be understood as follows. Alice sends
the quantum state σλ/ Tr σλ to Bob with probability density
Tr σλ. Given her measurement input x, she then outputs a with
probability p(a|x,λ). In this way, Alice can prepare the same
assemblage for Bob as if the state ρ had been used, without the
need for entanglement. Bob will thus be unable to distinguish
whether he and Alice share the entangled state ρ or if the above
LHS strategy were used. In contrast, if a decomposition of the
form (2) does not exist, which can be certified, for example, via
violation of a steering inequality [11], the use of an entangled
state is certified. In this case, ρ is termed steerable from Alice
to Bob.

Interestingly, not all entangled states are steerable. That is,
there exist entangled states, called unsteerable, which admit a
LHS model for all projective measurements [5,18] and even
considering general POVMs [6]. A natural question is thus
to determine which entangled states are steerable and which
ones are not. This is a challenging problem, mainly due to the
difficulty of constructing LHS models for a continuous set of
measurements.

III. SUFFICIENT CRITERION FOR UNSTEERABILITY

Our main result is a simple criterion, sufficient for a
two-qubit state to admit a LHS model for arbitrary projective
measurements. Consider a general two-qubit state, expressed
in the local Pauli basis

ρ0 = 1

4

⎛
⎝1 + �a0 · �σ ⊗ 1 + 1 ⊗ �b0 · �σ +

∑
i,j=x,y,z

T 0
ij σi ⊗ σj

⎞
⎠,

(3)

where �a0 and �b0 are Alice and Bob’s local Bloch vectors and
�σ = (σx,σy,σz) is the vector of Pauli matrices. Our criterion
for unsteerability is simply based on the local Bloch vectors
and the correlation matrix T 0

ij .
The first step consists in converting the state ρ0 into a

canonical form. For this, based on previous work [6,29], we
make the following observation.

Lemma 1. Let � be a positive linear map on the set of
quantum states and

ρ� = 1 ⊗ �(ρ)/ Tr[1 ⊗ �(ρ)] (4)

be a valid bipartite quantum state. If ρ is unsteerable from
Alice to Bob, then ρ� is also unsteerable from Alice to Bob.
Furthermore, if � is invertible and its inverse map positive,
then ρ is unsteerable from Alice to Bob if and only if ρ� is
unsteerable from Alice to Bob.

Note that � does not have to be completely positive and may
therefore correspond to a nonquantum operation. For a proof
see, e.g., Lemma 2 of [6], where the condition of complete
positivity can simply be relaxed.

Let us now consider the positive linear map

1 ⊗ �(ρ0) = 1 ⊗ ρ
−1/2
B ρ01 ⊗ ρ

−1/2
B , (5)

where ρB = TrA[ρ0]. This map is invertible as long as ρB is
mixed with the inverse (positive) map given by

1 ⊗ �−1(ρ0) = 1 ⊗ ρ
1/2
B ρ01 ⊗ ρ

1/2
B . (6)

The interesting property of this map is that when applied
to an arbitrary state ρ0, the resulting state has �b = 0, i.e.,
Bob’s reduced state is maximally mixed [30]. Given the above
lemma, the application of the map preserves the steerability
(or unsteerability) of ρ0.

Finally, we apply local unitaries (which also cannot change
the steerability of the state) so that our state has a diagonal T

matrix, giving us the canonical form

ρ = 1

4

⎛
⎝1 + �a · �σ ⊗ 1 +

∑
i=x,y,z

Tiσi ⊗ σi

⎞
⎠, (7)

where �a and Ti are in general different from the original �a0 and
T 0

ii . Below we give a sufficient criterion for the unsteerability
of any state ρ expressed in the canonical form. In turn this
provides a sufficient criterion for unsteerability of any two-
qubit state.

Theorem 1. Let ρ0 be a two-qubit state with corresponding
canonical form ρ as given in Eq. (7). If

max
x̂

[(�a · x̂)2 + 2‖T x̂‖] � 1, (8)

where x̂ is a normalized vector and ‖ · ‖ the Euclidean vector
norm, then ρ is unsteerable from Alice to Bob, considering
arbitrary projective measurements.

Proof. We first characterize the assemblage resulting from
projective measurements on a state in the canonical form ρ.
Alice’s measurement is given by a Bloch vector x̂ and output
a = ±1, corresponding to operators M±|x̂ = (1 ± x̂ · �σ )/2.
For a = +1, the steered state is (see, for example, [25])

σ+|x̂ = TrA(M+|x̂ ⊗ 1ρ) = 1
4 [(1 + �a · x̂)1 + T x̂ · �σ ]. (9)

Notice that the above state is diagonal in the basis {|ŝ〉, |−ŝ〉},
with Bloch vector ŝ = T x̂

‖T x̂‖ ; we omit the x̂ dependence to
simplify notation. The corresponding eigenvalues are

α(x̂) = 1
4 (1 + �a · x̂ + ‖T x̂‖), β(x̂) = 1

4 (1 + �a · x̂ − ‖T x̂‖).
(10)

Note that by construction α(x̂) � β(x̂).
Our goal is now to construct a LHS model for this

assemblage. First, the local hidden states σλ are taken to be pure
qubit states and hence are represented by unit Bloch vectors λ̂

and uniformly distributed over the sphere

σλ̂ = |λ̂〉 〈λ̂|
4π

. (11)

Normalization is ensured as
∫

Tr[σλ̂]dλ̂ = 1. This ensures that
we obtain the correct reduced state for Bob:

1

4π

∫
|λ̂〉 〈λ̂| dλ̂ = 1

2
= ρB. (12)

Next we define Alice’s response function to be given by the
distribution

p(±|x̂,λ̂) = 1 ± sgn[ŝ · λ̂ − c(x̂)]

2
, (13)

parametrized by the function −1 � c(x̂) � 1, with ŝ the Bloch
vector of the eigenvector of σ+|x̂ with the largest eigen-
value. The function (13) can be understood as follows (see
Fig. 1). If λ̂ is in the spherical cap centered on ŝ such that

022121-2
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FIG. 1. Illustration of Alice’s response function (13) in our LHS
model. If sgn[ŝ · λ̂ − c(x̂)] � 0 then a = +1 (shaded spherical cap,
with angle θc = arccos[c]); otherwise a = −1. The assemblage (14)
then corresponds to the average (subnormalized) density matrix
obtained by integrating pure qubit states |λ̂〉 over the shaded region.

λ̂ · ŝ � c(x̂), the output is a = +1; otherwise a = −1. Note
that we need only concentrate on the case a = +1; the case
a = −1 is automatically satisfied from σ+1|x̂ + σ−1|x̂ = ρB

and (12). We now calculate the assemblage predicted by this
model, given by

σ LHS
+1|x̂ =

∫
σλ̂p(+|x̂,λ̂)dλ̂ = 1

4π

∫
|λ̂〉 〈λ̂| p(+|x̂,λ̂)dλ̂.

We parametrize the state |λ̂〉 using the Bloch decomposition in
the basis {|ŝ〉, |−ŝ〉}:

|λ̂〉 = |λ̂(θ,φ)〉 = cos
θ

2
|ŝ〉 + sin

θ

2
eiφ |−ŝ〉 . (14)

Working in this basis and integrating over the spherical cap for
which a = +1 (see Fig. 1), (14) becomes∫ 2π

0

∫ θc

0

(
cos2 θ

2 cos θ
2 sin θ

2 e−iφ

cos θ
2 sin θ

2 eiφ sin2 θ
2

)
sin θ dφ dθ

4π
,

where θc = arccos[c(x̂)] is the angle of the spherical cap. Since∫ 2π

0 eiφdφ = 0, the off-diagonal components will be zero and
σ LHS

+1|x̂ is therefore diagonal in the {|ŝ〉, |−ŝ〉} basis, as desired.
From this, the eigenvalues of σ LHS

+1|x̂ , i.e., α′(x̂) and β ′(x̂), are
given by

α′(x̂) + β ′(x̂) = 1

2

∫ θc

0
sin θ dθ = 1 − cos θc

2
, (15)

α′(x̂) − β ′(x̂) = 1

2

∫ θc

0
cos θ sin θ dθ = 1 − cos2 θc

4
. (16)

Upon using θc = arccos[c(x̂)] one then finds

α′(x̂) + β ′(x̂) = 1
2 [1 − c(x̂)], (17)

α′(x̂) − β ′(x̂) = 1
4 [1 − c2(x̂)], (18)

FIG. 2. Plot of the achievable range of eigenvalues (α′,β ′) in our
LHS model (for a fixed direction ŝ). The upper blue curve corresponds
to the condition α′ = √

2β ′ − β ′ and is achieved by the response
functions (13); any point in the light blue area below may be achieved
by taking a suitable convex combination of these functions (e.g., the
dashed line). Since we have α′ � β ′, the gray area is not of interest.

from which we get the eigenvalues as a function of c(x̂) as

α′(x̂) =
√

2β ′(x̂) − β ′(x̂), β ′(x̂) = 1
8 [1 − c(x̂)]2, (19)

corresponding to the curve of Fig. 2. Since this curve is
concave, by fixing ŝ and taking convex combinations of the
response functions (13) with different c(x̂), we may prepare
any steered states corresponding to (α′,β ′) below this curve,
leading finally to

β ′(x̂) � α′(x̂) �
√

2β ′(x̂) − β ′(x̂). (20)

This corresponds to the blue area in Fig. 2. We thus conclude
that the model reproduces the assemblage of any canonical
state ρ, as long as its eigenvalues satisfy the above relation,
i.e., α(x̂) �

√
2β(x̂) − β(x̂), for any measurement vector x̂,

or equivalently

max
�x

{[α(�x) + β(�x)]2 − 2β(�x)} � 0. (21)

Using (10) to convert this maximization into Bloch vector
notation, we arrive at (8). �

A natural question is whether condition (8) is also necessary
for unsteerability. Unfortunately, this is not the case. Consider
the state ρc = 1

2 (|00〉 〈00| + |11〉 〈11|), which does not satisfy
(8) [choose, e.g., x̂ = (0,0,1)], but is separable and hence
clearly unsteerable. Note however that condition (8) can in fact
be strengthened by considering convex combinations with sep-
arable states (see Appendix A). An interesting open question
is then whether there exist unsteerable states, which cannot be
written as convex combinations of unsteerable states satisfying
condition (8) and separable states. Nevertheless, condition
(8) turns out to be useful for proving the unsteerability of
interesting classes of states, as we illustrate below.

IV. APPLICATIONS

We now illustrate the relevance of the above result with
some applications. We consider the class of states

ρ(p,χ ) = p |ψχ 〉 〈ψχ | + (1 − p)ρA
χ ⊗ 1/2, (22)

where |ψχ 〉 = cos χ |00〉 + sin χ |11〉 is a partially entan-
gled two-qubit state, ρA

χ = TrB |ψχ 〉 〈ψχ |, p ∈ [0,1], and
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FIG. 3. Characterization of entanglement and steering for states
ρ(p,χ ). The solid black curve corresponds to (23), obtained from our
unsteerability criterion. The state is separable in the light orange
region, unsteerable (in both directions) in the dark blue region,
unsteerable only from Alice to Bob (hence one-way steerable) in the
light blue region, and two-way steerable in the white region [obtained
from Eq. (19) of Ref. [25]]. What happens in the gray region is an
interesting open question.

χ ∈]0,π/4]. The state is entangled for p > 1/3. From Theo-
rem 1 it follows that ρ(p,χ ) is unsteerable from Alice to Bob
if

cos2(2χ ) � 2p − 1

(2 − p)p3
, (23)

as we show in Appendix B. This result is illustrated in Fig. 3
(black solid line). Note that our result recovers the case of
a two-qubit Werner state ρ(1/2,π/4), which admits a LHS
model [18] (in both directions).

A. One-way steering

Alice and Bob play different roles in the steering scenario.
Hence steerability in one direction (say from Alice to Bob)
does not necessarily imply steerability in the other direction
(from Bob to Alice). This effect of one-way steering was first
observed in the context of continuous variable systems and
Gaussian measurements [26]. More recently, an example of a
two-qubit one-way steerable state was presented considering
arbitrary projective measurements [22]. That is, while Alice
can steer Bob using a finite number of measurements, it would
be impossible for Bob to steer Alice as the state admits a LHS
model (Bob to Alice). Moreover, a qutrit-qubit state was shown
to be one-way steerable considering POVMs [6].

Clearly, our results are also useful for capturing one-way
steering. Consider a given state ρ, the canonical form of
which is found to satisfy condition (8). From Theorem 1 it
follows that ρ is unsteerable from Alice to Bob. Moreover,
if steerability from Bob to Alice can be verified using
standard methods, e.g., via violation of a steering inequality
or using semidefinite programming methods [14,15], one-way
steerability of ρ is proven.

We present different examples of one-way steering. Our
states of interest will be the states ρ(p,χ ) defined above.
This state is unsteerable from Alice to Bob for projective
measurements when (23) is satisfied, corresponding to the

area below the thick black line of Fig. 3. The steerability from
Bob to Alice of the above state was discussed in previous
works. In particular it was shown that ρ(p,χ ) is unsteerable
if p � 1/2 for all χ [20]. However, for p > 1/2, the state
becomes steerable from Bob to Alice for all χ . This can
be seen as follows. By applying on Alice’s side the filter
Fχ = diag(1/ cos χ,1/ sin χ ), we obtain the state

1
2Fχ ⊗ 1ρ(p,χ )Fχ ⊗ 1 = ρ(p,π/4), (24)

which is simply a Werner state with visibility p. Since this state
is steerable for p > 1/2 [5], it follows from Lemma 1 that all
states ρ(p,χ ) with p > 1/2 and satisfying (23) are one-way
steerable from Bob to Alice for projective measurements.

Simplest one-way steering

A relevant question to ask is how many measurements
are needed in order to demonstrate one-way steering. So far,
the only known examples for a two-qubit state required as
many as 13 measurements [22] and considered only projective
measurements and similarly for the qutrit-qubit example of
Ref. [6]. Here we present the simplest possible example of
one-way steering, that is, a two-qubit state such that Alice
cannot steer Bob even with POVMs, although Bob can steer
Alice using only two measurement settings.

We start with the case of projective measurements. We
show that the states ρ(p,χ ) with p > 1/

√
2 and satisfying

(23) are one-way steerable and only two measurements are
required for demonstrating steering from Bob to Alice. To
prove this we proceed as follows. First, from Lemma 1 it is
sufficient to consider the state ρ(p,π/4), i.e., a Werner state
[see Eq. (24)]. Since this state violates the Clauser-Horne-
Shimony-Holt (CHSH) Bell inequality for p > 1/

√
2 [2], it

is nonlocal and thus steerable from Bob to Alice with two
measurements.

Next we move to the case of POVMs, building on the above
example. Following protocol 2 of [31], we construct the state

ρPOVM(p,χ ) = 1
2ρ(p,χ ) + 1

2 |0〉〈0| ⊗ ρB, (25)

where ρB = TrA ρ(p,χ ), which is now unsteerable from Alice
to Bob for POVMs, for p and χ satisfying (23). We now show
that steering from Bob to Alice is possible using only two
measurements. From Lemma 1 we can focus our analysis on
the state

ρF = Fχ ⊗ 1ρPOVMFχ ⊗ 1

Tr (Fχ ⊗ 1ρPOVMFχ ⊗ 1)

= cos2 χ (p|φ+〉〈φ+| + (1 − p)1/4) + 1
2 |0〉〈0| ⊗ ρB

cos2 χ + 1/2
.

(26)

Using the CHSH violation criterion [32], one can find the range
of parameters such that ρF violates the CHSH inequality and
is thus steerable form Bob to Alice with two measurements.
We find a parameter range p > 0.833 53 and corresponding χ

given by condition (23).

B. Sufficient condition for joint measurability

Theorem 1 also finds application in quantum measurement
theory. This follows from the direct connection existing
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between steering and the notion of joint measurability of
a set of quantum measurements [27,28], which has already
found applications (see, e.g., [33]). This allows us to convert
our sufficient condition for unsteerability into a sufficient
condition for joint measurability of a set of qubit dichotomic
POVMs. Notably, this condition is applicable to continuous
sets of POVMs.

A set of measurements {Ma|x} is said to be jointly
measurable [34] if there exists a joint POVM {Gλ} with
outcomes λ and probability distributions p(a|x,λ), from which
the statistics of any of the measurements {Ma|x} can be
recovered by a suitable postprocessing, that is,

Ma|x =
∫

Gλp(a|x,λ)dλ ∀a,x. (27)

Let {M±|x} be a set of dichotomic qubit POVMs

M+|x = 1
2 (kx1 + �mx · �σ ), (28)

with ‖ �mx‖ � kx � 2 − ‖ �mx‖ and M−|x = 1 − M+|x . Then the
set {M±|x} is jointly measurable if

kx(kx − 2) + 2‖ �mx‖ � 0 (29)

for all x. This can be seen as follows. A set of measurements
{M±|x} is jointly measurable if and only the assemblage given
by σ±|x = ρ1/2M±|xρ1/2, where ρ is a full-rank quantum state
[35], is unsteerable. Choosing ρ = 1/2 we get the correspond-
ing assemblage σ±|x = ρ1/2M±|xρ1/2 = 1

2M±|x . Following
Theorem 1, condition (29) ensures the unsteerability of σ±|x
and consequently the joint measurability of {M±|x}.

V. CONCLUSION

We have presented a simple criterion sufficient for a qubit
assemblage to admit a LHS model. Notably, our method can
guarantee the unsteerability of a general two-qubit state and
should thus find applications. We have shown that the criterion
allows one to detect entangled states that are only one-way
steerable and provides the simplest such examples. Moreover,
the criterion is relevant to quantum measurement theory, as
it provides a sufficient condition for a continuous set of
dichotomic qubit POVMs to be jointly measurable. Further to
this, our criterion has also found applications in the connection
between measurement incompatibility and nonlocality [36]
and multipartite nonlocality [37].

It would be interesting to extend this criterion in several
directions. First, can the criterion be strengthened, e.g.,
by considering convex combinations, in order to become
necessary and sufficient? Also, while we focused here on
projective measurements, generalizing the method to POVMs
would be useful.1 Whether the present ideas can be adapted to
the case of higher-dimensional systems (beyond qubits) is also
a natural question. In particular, a natural case to consider is
that of entangled states of dimension d × 2, where our method
should be directly applicable. Applications to multipartite
steering [38,39] would also be interesting.

1Note that, starting from our result, one can construct new entangled
states admitting a LHS model for all POVMs, using Protocol 2 of
Ref. [31].
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APPENDIX A: CONVEX COMBINATIONS
OF UNSTEERABLE STATES

Since our criterion (8) is not linear and since it does not
detect all separable states, it can be useful to consider convex
combination of states. Specifically, consider an entangled
unsteerable state of the form

ρ = pσ + (1 − p)ρSEP, (A1)

where ρSEP is a separable (hence unsteerable) state and σ is
an unspecified state. If σ is unsteerable, then it follows that
ρ is unsteerable. However, it could be that, while ρ violates
condition (8), σ does not. In this case, the unsteerability of ρ

can be shown by finding suitable p and ρSEP such that

σ = ρ − (1 − p)ρSEP

p
(A2)

satisfies condition (8).
As a simple example, consider the state

ρ = 1
2σ + 1

2

(
1
2 |00〉 〈00| + 1

2 |11〉 〈11| ), (A3)

where σ is the two-qubit isotropic state σ = (|φ+〉 〈φ+| +
1/4)/2. Hence ρ is an equal mixture of σ and the separable
classically correlated state. One finds that for ρ, Tz = 3/4 and
so ρ violates (8) for x̂ = (0,0,1). However, the state σ has
T = 1/2 and �a = �0 and therefore satisfies (8), hence proving
the unsteerability of ρ.

APPENDIX B: PROOF OF UNSTEERABILITY OF ρ( p,χ )

Here we show that for the class of states (22), Theorem 1
implies that the ρ(p,χ ) is unsteerable if

cos2 2χ � 2p − 1

(2 − p)p3
. (B1)

To do this, we first consider states in canonical form (7), which
satisfy �a = (0,0,az) and |Tx | = |Ty |. In order to perform the
maximization of Theorem 1, we parametrize x̂ using spherical
coordinates x̂ = (sin θ cos φ, sin θ sin φ, cos θ ). Our criterion
(8) may now be written as

max
θ,φ

F (θ,φ) � 1,

F (θ,φ) = (�a · x̂)2 + 2‖T x̂‖
= cos2 θ a2

z +2
√

T 2
x +cos2 θ

(
T 2

z −T 2
x

)
. (B2)

Unsurprisingly, F depends only on θ since the problem is
symmetric with respect to the x and y directions and we
may ignore the maximization over φ. Note that if |Tz| = |Tx |
then the maximization occurs at θ = 0 and our condition for
unsteerability becomes

a2
z + 2|Tz| � 1. (B3)

In the case |Tz| �= |Tx |, one should find the extremal points
of F (θ ) and prove that they do not exceed 1. To find these
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extrema we solve

dF

dθ
= − sin 2θ

⎛
⎝a2

z + T 2
z − T 2

x√
T 2

x + cos2 θ
(
T 2

z − T 2
x

)
⎞
⎠ = 0.

(B4)

From sin 2θ = 0 we have solutions θ = 0,π/2,π and possibly
other solutions given by

a2
z + T 2

z − T 2
x√

T 2
x + cos2 θ

(
T 2

z − T 2
x

) = 0. (B5)

We now derive conditions such that (B5) has no solution. After
rearranging (B5) we have

cos2 θ = T 2
x

T 2
x − T 2

z

− T 2
x − T 2

z

a4
z

. (B6)

This has no solution if the right-hand side is greater than 1 or
less than 0. Hence we have two conditions

T 2
x

T 2
x − T 2

z

<
T 2

x − T 2
z

a4
z

or
T 2

z

T 2
x − T 2

z

>
T 2

x − T 2
z

a4
z

. (B7)

If one of the above conditions is fulfilled we therefore
have extrema for θ = 0,π/2,π only. In this case, since
F (0) =F (π ), our condition for unsteerability becomes

max
θ

F (θ ) = max
{
a2

z + 2|Tz|,2|Tx |
}

� 1. (B8)

We now move to the explicit case of ρ(p,χ ). We find a
canonical state with |Tx | = |Ty |, �a = (0,0,az), and

az = (1 − p2) cos 2χ

1 − p2 cos2 2χ
,

Tz = p(1 − cos2 2χ )

1 − p2 cos2 2χ
, (B9)

Tx =
√

p2(1 − cos2 2χ )

1 − p2 cos2 2χ
.

We now introduce the ansatz (for p � 1
2 )

cos2 2χ = 2p − 1

(2 − p)p3
. (B10)

Eliminating the variable χ we find

a2
z = (2 − p)(2p − 1)

p
,

Tz = (1 − p)2

p
, (B11)

Tx = 1 − p.

For the case p = 1
2 we have |Tz| = |Tx | and we find that (B3)

is satisfied. For p > 1
2 we show that the second condition of

(B7) holds. To this end, we calculate

T 2
z

T 2
x − T 2

z

− T 2
x − T 2

z

a4
z

= (3 − p)(1 − p)3

(p − 2)2(2p − 1)
. (B12)

This is easily seen to be positive for p ∈] 1
2 ,1] and so F (θ ) has

extrema at θ = 0,π,π/2 only. It therefore remains to prove
(B8). We find

a2
z + 2|Tz| = 1, 2|Tx | = 2(1 − p) (B13)

and so (B8) is satisfied for p > 1
2 . This proves that the state

ρ(p,χ ) is unsteerable if p � 1
2 and p and χ satisfy (B10),

which corresponds to the black curve of Fig. 3. Finally, we note
that for a fixed χ , lowering p amounts to putting more weight
on the separable part of the state. Since a convex combination
of an unsteerable state with a separable state is also unsteerable,
all points below the curve of Fig. 3 are also unsteerable. Hence,
we arrive at (23).
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The observation of quantum nonlocality, i.e., quantum correlations violating a Bell inequality, implies the
use of incompatible local quantum measurements. Here we consider the converse question. That is, can any set
of incompatible measurements be used in order to demonstrate Bell inequality violation? Our main result is to
construct a local hidden variable model for an incompatible set of qubit measurements. Specifically, we show that
if Alice uses this set of measurements, then for any possible shared entangled state and any possible dichotomic
measurements performed by Bob, the resulting statistics are local. This represents significant progress towards
proving that measurement incompatibility does not imply Bell nonlocality in general.
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I. INTRODUCTION

A key aspect of quantum theory is that certain observables
cannot be jointly measured, in strong contrast with classical
physics. This leads to many prominent quantum features, such
as the uncertainty principle and information gain vs distur-
bance tradeoff, and plays a central role in quantum information
processing [1]. The incompatibility of quantum observables is
usually captured via the notion of commutativity: incompatible
observables do not commute. However, quantum theory allows
for more general measurements, so-called positive-operator
valued measures (POVM), the incompatibility of which cannot
be properly captured using commutativity [2]. Here a natural
concept is that of joint measurability [3]. A set of POVMs
is said to be jointly measurable if each one of them can
be derived from coarse graining of one common POVM.
Conversely, if such a joint POVM does not exist, the set is
considered incompatible. The concept of joint measurability
thus arguably provides a natural separation between classical
and nonclassical sets of measurements.

A longstanding question is to understand the relation
between the incompatibility of quantum measurements and
quantum nonlocality [4,5], another key feature of quantum
theory. When performing a set of well-chosen measurements
on a shared entangled state, two distant observers can observe
nonlocal correlations, i.e., which cannot be explained by a local
(i.e., classical) model. The question is then how the nonclas-
sicality of quantum measurements (i.e., their incompatibility)
relates to the nonclassicality of quantum correlations detected
via violation of a Bell inequality. While the observation of
nonlocality implies the use of incompatible measurements (for
both observers), the converse is not known. Specifically, the
question is the following. For any possible set of incompatible
measurements performed by one observer, can we always find
a shared entangled state and a set of measurements for the
second observer such that the resulting statistics will lead to
Bell inequality violation?

In the case of projective measurements, the answer is
positive, as proven many years ago [6]. For the case of POVMs,
however, the question is much more difficult. In the simplest
case of two dichotomic POVMs, Wolf et al. [7] proved that
incompatibility is equivalent to violation of the Clauser-Horne-
Shimony-Holt [8] inequality, confirming previous evidence
[9,10]. However, their proof cannot be extended to the general

case, as the joint measurability problem cannot be reduced
to a pair of POVMs only [2]. For instance, it is possible to
have a set of three POVMs which is incompatible, although
any pair (among the three) is jointly measurable [11,12].
Recently, a strong connection between joint measurability
and Einstein-Podolsky-Rosen (EPR) steering [13], a form of
quantum nonlocality strictly weaker than Bell nonlocality [14],
has been demonstrated [15–17], leading to interesting results
in both areas [18]. More generally, the connection between
measurement uncertainty and nonlocality in no-signaling
theories has been discussed [19–21].

In the present work we show that a set of incompatible
quantum measurements can admit a local-hidden-variable
(LHV) model. Specifically, we consider a bipartite Bell test
in which Alice performs a given nonjointly measurable set
of qubit POVMs. We then show that the statistics of such
an experiment, considering an arbitrary shared entangled
state and any possible dichotomic measurements performed
by Bob, can be exactly reproduced using only classical
shared resources. In other words, this set of incompatible
measurements, despite having some nonclassical feature, can
never lead to nonlocal correlations (considering dichotomic
measurements for Bob). A parallel can be drawn to the study,
initiated by Werner [22], of quantum states which are entangled
(hence nonclassical) but nevertheless admit a LHV model;

FIG. 1. The problem of classically simulating quantum corre-
lations has two facets. (a) Constructing a LHV model for a given
entangled quantum state ρ, considering arbitrary local measurements
for Alice and Bob. (b) Constructing a LHV model for a given set of
incompatible measurements M (performed by Alice), considering
arbitrary entangled states and arbitrary local measurements Bob.
While question (a) has been extensively studied, much less is known
about question (b), which is the focus of this work.

2469-9926/2016/93(5)/052115(5) 052115-1 ©2016 American Physical Society



QUINTINO, BOWLES, HIRSCH, AND BRUNNER PHYSICAL REVIEW A 93, 052115 (2016)

see, e.g., [23–28] and [29] for a recent review. In contrast,
we show that a set of nonclassical measurements admits a
LHV model (see Fig. 1). Finally, we discuss the perspective
of extending our result to the most general Bell test, which
would thus demonstrate that incompatibility does not imply
Bell nonlocality in general.

II. PRELIMINARIES

We start by introducing concepts and notations. Consider
a set of N POVMs, given by operators Ma|x satisfying∑

a Ma|x = 1, Ma|x � 0 for x ∈ {1, . . . ,N}. This set is said to
be jointly measurable if there exists one common POVM, M�a ,
with outcomes �a = [ax=1,ax=2, . . . ,ax=N ], where ax gives the
outcome of measurement x, that is,

M�a � 0,
∑

�a
M�a = 1,

∑
�a\ax

M�a = Ma|x , (1)

where �a \ ax stands for the elements of �a except for ax .
Hence, all POVM elements Ma|x are recovered as marginals
of the joint observable M�a . Notably, joint measurability of
a set of POVMs does not imply that they commute [30].
Moreover, partial joint measurability does not imply full
joint measurability in general [2], contrary to commutation.
More generally, any partial compatibility configuration can be
realized in quantum theory [31].

The focus of this work is to connect the incompatibility
of a set of measurements to quantum nonlocality. We thus
consider a Bell scenario featuring two observers, Alice and
Bob, sharing an entangled state ρ. Alice and Bob perform local
measurements, represented by operators Ma|x and Mb|y . Here
x and y denote the choice of measurement settings, while a and
b denote the outcomes. The resulting probability distribution is
thus given by p(ab|xy) = tr(ρMa|x ⊗ Mb|y). This distribution
is local (in the sense of Bell) if it admits a decomposition of
the form

p(ab|xy) =
∫

dλq(λ)pA(a|x,λ)pB(b|y,λ). (2)

Here the local model consists of a classical (hidden) variable
λ, distributed according to density q(λ), and Alice’s and
Bob’s local response functions represented by the probability
distributions pA(a|x,λ) and pB(b|y,λ). On the contrary, if a
decomposition of the form (2) cannot be found, the distribution
p(ab|xy) is termed nonlocal and violates (at least) one Bell
inequality [4,5].

It is straightforward to show that if the set of Alice’s mea-
surements, MA = {Ma|x}, is jointly measurable, the resulting
distribution p(ab|xy) is local, for any possible entangled
state ρ and arbitrary measurements of Bob; see, e.g., [16].
Indeed, if the set MA is compatible, then Alice can recover all
statistics from one joint observable. Clearly, no Bell inequality
violation can be obtained if Alice always performs the same
measurement.

The main goal of this work is to discuss the converse prob-
lem. Specifically, given that the set MA is incompatible, what
can we say about the locality of the distribution p(ab|xy)?
Previous work [7] demonstrated a striking connection in the
simplest case, when MA consists of two dichotomic POVMs.
Any set MA that is not jointly measurable can be used to

demonstrate nonlocality. Whether this connection holds for
more general sets of POVMs has been an open question
since then. Here we show that for certain incompatible sets
of POVMs, the resulting distribution p(ab|xy) is always
local, considering arbitrary entangled states ρ and arbitrary
dichotomic measurements on Bob’s side [32].

III. MAIN RESULT

We consider the continuous set of dichotomic qubit
POVMs, Mη

A = {Mη

±|x̂}, with elements

M
η

±|�x = 1
2 (1 ± η x̂ · �σ ) (3)

with binary outcome a = ±1. Here x̂ is any vector on the
Bloch sphere denoting the measurement direction, and �σ =
(σ1,σ2,σ3) is the vector of Pauli matrices. Note that the setMη

A

features a parameter 0 � η � 1, representing basically the
purity of the POVM elements. For η = 1, all POVM elements
are projectors,

�±|x̂ = 1
2 (1 ± x̂ · �σ ). (4)

The set Mη=1
A is simply the set of all qubit projective

measurements and is thus clearly incompatible. For η = 0,
the set contains only the identity (thus clearly compatible).
In general the set Mη

A contains noisy measurements, with
elements simply given by M

η

±|x̂ = η�±|x̂ + (1 − η)1/2. In
fact, the set Mη

A is jointly measurable if and only if η � 1/2
[15,16].

Below we will show that there is η∗ > 1/2 such that the
set Mη∗

A is local in any Bell test, considering arbitrary states ρ

and arbitrary dichotomic measurements for Bob. Since Mη∗
A

is not jointly measurable, this shows that incompatibility is
not sufficient for Bell inequality violation in this case. Below
we give a full proof of the result, proceeding in several
steps.

The first step consists in exploiting the symmetries of the
problem in order to find the minimal set of states ρ we need
to consider. By linearity of the problem—the probabilities
p(ab|xy) are linear in ρ, and the set of local correlations is
convex, see, e.g., [5]—we can safely focus on pure states.
Indeed, if there was a mixed state ρ leading to Bell inequality
violation using measurements Mη∗

A , there would also be a pure
state doing so.

Next, given that Mη∗
A consists only of qubit measurements,

Alice’s subsystem can be considered to be a qubit. Moreover,
since we are free to choose convenient local reference frames
(i.e., we can apply any local unitaries on Alice and Bob’s
systems), the shared state ρ (of dimension 2 × d) can therefore
be expressed in the Schmidt form [1], i.e., ρ = |φθ 〉〈φθ |
with

|φθ 〉 = cos θ |00〉 + sin θ |11〉 (5)

and θ ∈ [0,π/4].
Now we introduce the measurements on Bob’s side. Since

Bob’s system is of rank 2, we can focus here on dichotomic
qubit measurements. As any such POVM can be viewed
as a projective qubit measurement followed by classical
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postprocessing [33], it is sufficient to discuss projective qubit
measurements �b|ŷ = (1 + b ŷ · �σ )/2, where ŷ is any vector
on the Bloch sphere and b = ±1.

Our goal is thus to show that there exists η∗ > 1/2 such
that the distribution

p(ab|xy) = tr
(|φθ 〉〈φθ |Mη∗

a|x̂ ⊗ �b|ŷ
)

(6)

is local for any measurement directions x̂ and ŷ, and any state
|φθ 〉. In other words we would like to construct a LHV model
for the incompatible set of measurements Mη∗

A . In order to do
so, we start by reformulating the problem by making use of
the following relation:

tr
(|φθ 〉〈φθ |Mη

a|x̂ ⊗ �b|ŷ
) = tr

(
ρ

η

θ �a|x̂ ⊗ �b|ŷ
)

(7)

where

ρ
η

θ = η|φθ 〉〈φθ | + (1 − η)12 ⊗ ρB (8)

and ρB = trA(|φθ 〉〈φθ |). Thus, the problem of constructing a
LHV model for Mη∗

A (considering dichotomic measurements
for Bob) is equivalent to the problem of constructing a
LHV model for the class of states ρ

η∗
θ (for all θ ∈ [0,π/4])

with arbitrary projective measurements for Alice and Bob.
Importantly, it must be shown that ρ

η∗
θ admits a LHV model

for all θ ∈ [0,π/4] and for a fixed η∗ > 1/2 (independent
of θ ).

The locality of the states ρ
η∗
θ must be discussed in two

steps for different ranges of the parameter θ . First consider the
range θ ∈ [0,π/4 − ε] with ε > 0. Recently, we presented a
sufficient condition for a two-qubit state to admit a LHV model
for projective measurements [28]. For states of the form ρ

η

θ , a
LHV model was shown to exist given that

cos2(2θ ) � 2η − 1

(2 − η)η3
. (9)

Hence for any θ , we get a corresponding value of η for which
the state is provably local; see Fig. 2. This clearly guarantees
that for θ ∈ [0,π/4 − ε], with ε > 0 fixed, we can find

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.5

0.6

0.7

0.8

0.9

1

θ

η

FIG. 2. Parameter region for which the state ρ
η

θ admits a LHV
model: first, below the green curve, as given by Eq. (9), and second,
below the blue dashed curve, as found via the SDP (14). The two
curves cross at η∗ � 0.515. It follows that the state ρ

η

θ is local for
η � η∗ and for all θ , i.e., in the shaded region, below the red horizontal
line.

η∗ > 1/2 such that ρ
η∗
θ is local. However, when θ gets closer

to π/4, this approach will not work. Indeed, there is no fixed
value η∗ > 1/2 for which locality can be guaranteed for any
θ ∈ [0,π/4], as can be seen by continuity of Eq. (9) or from
Fig. 2. We thus need to find a different approach for this
regime.

We proceed as follows. First note that for the case θ = π/4,
the state ρ

η

θ is simply a two-qubit Werner state,

ρ
μ

W = μ|φ+〉〈φ+| + (1 − μ)14 , (10)

with |φ+〉 = (|00〉 + |11〉)/√2. Coincidentally, such states
admit a LHV model for μ � μLHV � 0.66, considering
arbitrary projective measurements [24]. The case θ = π/4
is thus covered. Let us next discuss the case of θ in the
neighborhood of π/4. To do so we consider the problem
of decomposing the target state ρ

η

θ as a mixture of states
admitting a LHV model. Specifically, we demand for which
values of θ and η, we can find a convex combination of the
form

ρ
η

θ = αρ
μLHV

W + (1 − α)σ (11)

with 0 � α � 1. Here σ is an unspecified two-qubit state,
which we are free to choose. As long as σ admits a LHV
model, this implies that ρ

η

θ is local. In order to do so, we
simply ensure that

σ = ρ
η

θ − αρ
μLHV

W

1 − α
(12)

is a valid separable state. By setting α = 1
μLHV

η sin(2θ ), we
obtain a diagonal matrix σ (for all η and θ ). It is straightforward
to check that the eigenvalues of σ are positive when

η � μLHV

(1 + μLHV ) cot θ − μLHV

. (13)

By combining condition (9) and the above result, it follows
that the state ρ

η

θ admits a LHV model for any θ and for
η � η∗ � 0.503. Note that a better bound can be obtained
using numerical methods. Consider again the problem of
finding a decomposition of the form (11) with σ a separable
state. For fixed θ , the optimal decomposition can be found via
semidefinite programming (SDP):

max η

s.t. ρ
η

θ = αρ
μLHV

W + σ

σ � 0, σPT � 0,

Tr σ + α = 1, α � 0. (14)

Here σPT denotes the partial transpose [34] of σ . Verifying
that σPT is positive ensures here that σ is separable [35].
The result of this optimization procedure is shown in Fig. 2.
Combining again with condition (9) we get that ρ

η

θ admits a
LHV model for η � η∗ � 0.515 (for any θ ), for all projective
measurements for Alice and Bob.

We therefore conclude that in the range 1/2 < η∗ � 0.515,
the set of measurements Mη∗

A is incompatible and admits
a LHV model. Specifically, Mη∗

A can never lead to Bell
inequality violation, considering arbitrary shared entangled
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states and arbitrary dichotomic measurements performed by
the second observers.

Finally, it is worth mentioning that this result can be
straightforwardly extended to the case of a set containing only
a finite number of incompatible measurements. For instance,
we have checked that a set of 12 well-chosen POVMs in Mη

A

(chosen rather uniformly on the Bloch sphere) is incompatible
for η > 0.512 via standard SDP techniques [7]. However, this
set clearly admits a LHV model for η � 0.515.

It would be interesting to see if the result also holds in
the simplest case of a set of only three POVMs. Consider,
for instance, the three Pauli operators: σx , σy , and σz. Adding
noise as in Eq. (3), the resulting POVMs are pairwise jointly
measurable, but still not fully jointly measurable, in the range
1/

√
3 < η � 1/

√
2 [11,12]. Could such a set of three POVMs

admit a LHV model?

IV. DISCUSSION

We discussed the relation between measurement incom-
patibility and Bell nonlocality. Specifically, we showed that a
given set of incompatible qubit measurements can never lead
to Bell inequality violation, as it admits a LHV model. Our

construction covers the case of any possible shared entangled
state and all possible dichotomic measurements performed by
the second observer.

The main open question now is whether our result can be
extended to nondichotomic measurements on Bob’s side. If
possible, this would then prove that measurement incompati-
bility does not imply Bell nonlocality in general [36].

We believe that the prospects for extending our LHV model
for the set of measurements Mη

A to general measurements
on Bob’s side is promising. More precisely, following our
approach, this amounts to show that the states ρ

η

θ of Eq. (8)
(for a fixed η > 1/2 and all θ ) admit a LHV model, considering
arbitrary projective measurements for Alice and arbitrary
POVMs for Bob [37]. We conjecture that this is the case,
which is also supported by the fact that, so far, there is no
example of an entangled state admitting a LHV model for
projective measurements but not for POVMs.
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[14] M. T. Quintino, T. Vértesi, D. Cavalcanti, R. Augusiak,
M. Demianowicz, A. Acı́n, and N. Brunner, Inequivalence
of entanglement, steering, and Bell nonlocality for general
measurements, Phys. Rev. A 92, 032107 (2015).

[15] R. Uola, T. Moroder, and O. Gühne, Joint Measurability of
Generalized Measurements Implies Classicality, Phys. Rev. Lett.
113, 160403 (2014).
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The nonlocality of certain quantum states can be revealed by using local filters before performing a

standard Bell test. This phenomenon, known as hidden nonlocality, has been so far demonstrated only for

a restricted class of measurements, namely, projective measurements. Here, we prove the existence of

genuine hidden nonlocality. Specifically, we present a class of two-qubit entangled states, for which we

construct a local model for the most general local measurements, and show that the states violate a Bell

inequality after local filtering. Hence, there exist entangled states, the nonlocality of which can be revealed

only by using a sequence of measurements. Finally, we show that genuine hidden nonlocality can be

maximal. There exist entangled states for which a sequence of measurements can lead to maximal

violation of a Bell inequality, while the statistics of nonsequential measurements is always local.

DOI: 10.1103/PhysRevLett.111.160402 PACS numbers: 03.65.Ud

Performing local measurements on separated entangled
particles can lead to nonlocal correlations, as witnessed
by the violation of a Bell inequality [1]. This phenomenon,
termed quantum nonlocality, has received strong
experimental confirmation. Moreover, entanglement and
nonlocality are now viewed as fundamental aspects of
quantum theory and play a prominent role in quantum
information [2,3].

However, 50 years after the discovery of Bell’s theorem,
we still do not fully understand the relation between entan-
glement and nonlocality, although significant progress was
made [3]. In particular, the most natural question, of which
entangled states can lead to nonlocal correlations and
which ones cannot, is still open. While it is known that
nonlocality is a generic feature for pure entangled states
[4,5], the situation for mixed states turns out to be much
more complex. First, Werner [6] showed that there exist
mixed entangled states (so-called Werner states) that admit
a local model for projective measurements. However, it
could still be the case that such states violate a Bell
inequality when more general measurements, i.e. positive
operator value measures (POVMs), are considered.
Motivated by this question, Barrett [7] showed that certain
noisy Werner states (but nevertheless entangled) admit a
local model even when POVMs are considered (see also
Ref. [8]).

Another twist to this question was given in Refs. [9,10],
proposing Bell tests where observers perform a sequence
of measurements—rather than a single measurement.
Notably, Popescu [9] showed that Werner states of local
dimension d � 5 can violate a Bell inequality when judi-
cious local filters are applied to the state before performing
a standard Bell test. Hence, the local filters reveal the
hidden nonlocality of the quantum state. Importantly,
the use of local filters does not open any loophole, since
the choice of local measurement settings (for the second

measurement) can be performed after applying the filters
[9,11,12]. While this result shows that sequential measure-
ments can be beneficial in Bell tests, it raises the question
of whether they are necessary. Indeed, the crucial point
here is that hidden nonlocality has been so far demon-
strated only for a restricted class of measurements, namely,
projective measurements. Specifically, the Werner states
considered by Popescu admit a local model for projective
measurements but could in principle violate a Bell inequal-
ity when POVMs are considered. Indeed, POVMs are
proven to be relevant in Bell tests, as they can increase
Bell violation compared to projective measurements [13].
Hence, this raises the question of whether there exists
genuine hidden nonlocality. That is, do there exist
entangled states, the nonlocality of which can be observed
only if sequential measurements are used?
Here, we prove the existence of genuine hidden non-

locality. Specifically, we start by presenting a simple class
of two-qubit entangled states, for which we construct a
local model for POVMs, i.e., arbitrary nonsequential mea-
surements. Next, we show that these states violate the
Clauser-Horne-Shimony-Holt (CHSH) [14] Bell inequality
when a judiciously chosen sequence of measurements is
performed. Hence, this shows that sequential measure-
ments outperform nonsequential ones, and that the non-
locality of certain entangled states can be revealed only
through a sequence of measurements. Moreover, our con-
struction provides the simplest example of hidden non-
locality known so far. A central tool for deriving our
result is a technique which allows us, starting from a local
model for simulating dichotomic projective measurements
on a given state, to construct a local model for simulating
POVMs on a related (but in general different) state. Finally,
we demonstrate that genuine hidden nonlocality can be
maximal. Specifically, we present a simple class of qutrit-
qutrit entangled states which admit a local model for
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POVMs but violate maximally the CHSH inequality when
a sequence of measurements is used. Hence, such states are
useful resources for information-theoretic tasks based on
nonlocality [2,3], although they seem useless at first sight.
These results highlight novel aspects of the subtle relation
between entanglement and nonlocality.

We start by introducing the scenario and notations.
Consider a bipartite Bell scenario in which distant parties,
Alice and Bob, perform local measurements on an
entangled state � of local Hilbert space dimension d. The
choice of measurement setting is denoted by x for Alice
(y for Bob), and the measurement outcome by a (b for
Bob). Each setting is represented by a collection of positive
operators acting on Cd, denoted here as Majx and Mbjy,
satisfying the relations

P
aMajx ¼ 1 and

P
bMbjy ¼ 1,

where 1 denotes the identity operator in dimension d.
The experiment is then characterized by the joint proba-
bility distribution

pðabjxyÞ ¼ TrðMajx �Mbjy�Þ: (1)

If the distribution pðabjxyÞ violates (at least) one Bell
inequality, the state � is said to be nonlocal. If, on the
other hand, the distribution admits a decomposition

pðabjxyÞ ¼
Z

d�!ð�Þpðajx�Þpðbjy�Þ (2)

for all possible measurements, the state � admits a local
model and cannot violate any Bell inequality. Here, �
represents the local hidden variable, distributed according
to the density !ð�Þ. We will consider two separate cases.
First, when a decomposition of the form (2) can be found
for all projective measurements (i.e., M2

ajx ¼ Majx and

M2
bjy ¼ Mbjy), we say that � is local for projective mea-

surements. Second, if a decomposition of the form (2) can
be found for all POVMs (arbitrary nonsequential measure-
ments), we say that � is local for POVMs.

So far, we have considered a Bell scenario in which each
party performs a single measurement on its particle. One
can, however, consider a more general measurement sce-
nario, in which each party performs a sequence of mea-
surements [9,10]. For instance, upon receiving their
particle, the parties apply a local filtering. In the case that
the filtering succeeds on both sides, the parties now hold
the ‘‘filtered’’ state

~� ¼ 1

N
½ðFA � FBÞ�ðFy

A � Fy
BÞ�; (3)

where N ¼ Tr½ðFA � FBÞ�ðFy
A � Fy

BÞ� is a normalization

factor, and FA and FB are positive operators acting on Cd

representing the local filtering of Alice and Bob. Finally,
the parties perform local measurements on ~� and can test a
Bell inequality. Here, we will see that such a sequence of
measurements is necessary in certain cases. More pre-
cisely, there exist entangled quantum states, the nonlocality
of which can only be revealed by performing sequential

measurements. Thus, such states exhibit genuine hidden
nonlocality.
To demonstrate our main result, we proceed in several

steps. First, we consider a simple class of entangled two-
qubit states, of the form

� ¼ q�� þ ð1� qÞj0ih0j � 1
2
; (4)

where �� ¼ jc�ihc�j denotes the projector on the sin-

glet state jc�i ¼ ðj0; 1i � j1; 0iÞ= ffiffiffi
2

p
, and 0 � q � 1.

Building upon the models discussed in Refs [15,16], we
will see now that state (4) admits a local model for projec-
tive measurements when q � 1=2, although it is entangled
for all q > 0. Specifically, Alice and Bob receive as input a
vector ~x and ~y and should simulate the statistics of mea-
suring qubit observables ~x � ~� and ~y � ~� on �; here, ~�
denotes the vector of Pauli matrices; hence, the measure-
ment outcomes are �1.
Protocol 1.—Alice and Bob share a three-dimensional

unit vector ~�, uniformly distributed on the sphere. Upon

receiving ~x, Alice tests the shared vector ~�. With proba-

bility j ~x � ~�j, she ‘‘accepts’’ ~� and outputs a¼�sgnð ~x� ~�Þ;
otherwise, she outputs a ¼ �1 with probability ð1�
h0j ~x � ~�j0iÞ=2. Bob simply outputs b ¼ sgnð ~y � ~�Þ.
The protocol consists of two parts. First, when Alice

accepts ~�, which occurs on average with probability 1=2

(independently of ~x), ~� is distributed according to the

density !ð ~�Þ ¼ j ~x � ~�j=2� [15,16]. In this case, the corre-
lation between Alice’s and Bob’s outcomes is

habi ¼ � 1

2�

Z
d ~�j ~x � ~�jsgnð ~x � ~�Þsgnð ~y � ~�Þ ¼ � ~x � ~y;

(5)

where the integral is taken over the sphere. As the margin-
als are uniform, i.e., hai ¼ hbi ¼ 0, we recover the singlet

correlations. Second, when Alice rejects ~�, she simulates
locally the statistics of the state j0i, while Bob’s outcome is
uncorrelated. Hence, the model reproduces exactly the
statistics of the state (4) for q ¼ 1=2, i.e., habi ¼
ð� ~x � ~yÞ=2, hai ¼ xz=2, and hbi ¼ 0. The case q < 1=2 is
a trivial extension.
At this point, it is relevant to note that after local filter-

ing, the state (4) violates the CHSH inequality jSj � 2
[14], where S ¼ E1;1 þ E1;2 þ E2;1 � E2;2 and Ex;y ¼P

a;b¼�1ðabÞpðabjxyÞ. Specifically, applying filters of the

form

FA ¼ �j0ih0j þ j1ih1j; FB ¼ �j0ih0j þ j1ih1j; (6)

with � ¼ �=
ffiffiffi
q

p
to state (4), we obtain the filtered state

~� ’ ffiffiffi
q

p
�� þ ð1� ffiffiffi

q
p Þ j0; 1ih0; 1j þ j1; 0ih1; 0j

2
þOð�2Þ;

which violates CHSH up to S ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ q

p
(for � ! 0)

according the Horodecki criterion [17]. Note that filters
(6) are optimal here [18]. Hence, the state (4) exhibits
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hidden nonlocality for projective measurements. This
shows that hidden nonlocality exists for two-qubit
states—the previous example [9] considered Werner states
of local dimension d � 5. However, at this point, we
cannot ensure that the state (4) is local for all nonsequential
measurements, since Bell violation could in principle be
obtained using POVMs. Nevertheless, we will now build
upon the above construction to present a state featuring
genuine hidden nonlocality.

Our main tool is a protocol for constructing a state which
admits a local model for POVMs. Specifically, starting
from a state �0 of local dimension d which is local for
dichotomic projective measurements, we construct the
state

�0 ¼ 1

d2
½�0 þ ðd� 1Þð�A � �B þ �A � �BÞ

þ ðd� 1Þ2�A � �B�; (7)

which is local for POVMs. Here, �A;B are arbitrary

d-dimensional states, and �A;B ¼ TrB;Að�0Þ.
Alice receives as input a POVM fMag (from now on, we

omit the subscript x). Without loss of generality, each
POVM element Ma can be taken to be proportional to a
rank-one projector Pa (see, e.g., Ref. [7]), i.e.,Ma ¼ �aPa

with �a � 0 and
P

a�a ¼ d by normalization of the
POVM. Bob receives POVM fMbg (with Mb ¼ �bPb).
The protocol is explained below for Alice; Bob follows
the same procedure.

Protocol 2.—(i) Alice chooses projector Pa with proba-
bility �a=d (note that

P
a�a=d ¼ 1). (ii) She simulates the

dichotomic projective measurement fPa;1� Pag on state
�0. (iii) If the output of the simulation corresponds to Pa,
she outputs a. (iv) Otherwise, she outputs (any) a with
probability TrðMa�AÞ.

Let us now show that the protocol simulates �0. Note
first that the probability that Alice outputs in step (iii) is
given by

P
a�a=dTrðPa�AÞ ¼ 1=d. We will now evaluate

the probability that the parties output given values a and b
in the protocol. Four cases are possible: 1. Both Alice and
Bob output in step (iii), which occurs with probability
ð�a=dÞð�b=dÞTrðPa � Pb�0Þ ¼ ð1=d2ÞTrðMa �Mb�0Þ. 2.
Alice outputs in step (iii) and Bob in step (iv), which occurs
with probability

X
k

�a

d

�k

d
Tr½Pað1� PkÞ�0�TrðMb�BÞ

¼ d� 1

d2
TrðMa�AÞTrðMb�BÞ: (8)

3. Alice outputs in step (iv), and Bob in step (iii) has
probability ðd� 1=d2ÞTrðMa�AÞTrðMb�BÞ. 4. Both Alice
and Bob output in step (iv), which occurs with probability
½ðd� 1Þ2=d2�TrðMa�AÞTrðMb�BÞ. Altogether, we have
that pðabÞ ¼ TrðMa �Mb�

0Þ. Hence, the model reprodu-
ces the statistics of arbitrary POVMs on the state �0.

We are now ready to show our main result. We use
protocol 2 with �0 given by the state of Eq. (4), which is

local for projective measurements for q � 1=2, and choos-
ing �A;B ¼ j0ih0j, we obtain a state of the form

�G ¼ 1

4

�
q�� þ ð2� qÞj0ih0j � 1

2
þ q

1
2
� j0ih0j

þ ð2� qÞj0; 0ih0; 0j
�

(9)

which is local for POVMs by construction for q � 1=2.
Nevertheless, �G is nonlocal for any q > 0 when an appro-
priate sequence of measurements is used. In particular,
applying filters of the form (6) with � ¼ �=

ffiffiffi
q

p
to state

�G, we obtain

~�G’
ffiffiffi
q

p
2
��þ

�
1�

ffiffiffi
q

p
2

�j0;1ih0;1jþj1;0ih1;0j
2

þOð�2Þ;

which violates CHSH up to S ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q=4

p
(for � ! 0),

according the criteria of Ref. [17]. Hence, sequential
measurements are necessary to reveal the nonlocality of
the state (9), which therefore exhibits genuine hidden
nonlocality.
Finally, we present a stronger version of this phenome-

non, showing that there exist quantum states with genuine
and maximal hidden nonlocality. That is, although the state
admits a local model for POVMs, it violates maximally the
CHSH inequality when sequential measurements are used,
as the state after filtering is a pure singlet state.
We start here by considering the qutrit-qubit state

�E ¼ q�� þ ð1� qÞj2ih2j � 12

2
; (10)

where 12 denotes the identity in the j0i, j1i qubit subspace.
This state is usually referred to as the ‘‘erasure state,’’ as it
can be obtained by sending half of a singlet state ��
through an erasure channel; with probability q, the singlet
state remains intact, and with probability (1� q), Alice’s
qubit is lost and replaced by the state j2ih2j (orthogonal to
the qubit subspace).
The state (10) is local for dichotomic projective mea-

surements when q � 1=2. Consider Alice receiving an
observable with eigenvalues �1, which can always be
written as an operator of the form c0 ~x � ~�þ c112 þ R,
where c0; c1 2 ½0; 1�, operators ~x � ~� and 12 act on the
j0i, j1i qubit subspace, and operator R has no support in
the qubit subspace. The protocol is similar to protocol 1.

Alice and Bob share a vector ~�. Alice accepts ~�

with probability j ~x � ~�j, in which case she outputs a ¼
�sgnð ~x � ~�Þ with probability c0, and a random bit other-

wise. If she rejects ~�, she outputs �1 with probability
½1� ðc1 þ TrRÞ=2�=2. Bob receives observable ~y � ~� and

outputs b ¼ sgnð ~y � ~�Þ.
Noting that Alice accepts ~� with probability 1=2

on average, we obtain habi ¼ �c0ð ~x � ~yÞ=2, hai ¼
ðc1 þ TrRÞ=2, and hbi ¼ 0, which is the statistics of di-
chotomic projective measurements on state �E for q ¼
1=2. Next, we apply protocol 2 to �E, taking �A;B ¼
j2ih2j. Hence, the state
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�GM ¼ 1

9
½q�� þ ð3� qÞj2ih2j � 12

2

þ 2q
12

2
� j2ih2j þ ð6� 2qÞj2; 2ih2; 2j� (11)

is local for POVMs for q � 1=2. To reveal the nonlocality
of the above state, we apply filters of the form FA ¼ FB ¼
j0ih0j þ j1ih1j. Hence, after successful filtering, we obtain
a pure singlet state, i.e., ~�GM ¼ ��. By performing suit-
able measurements on ~�GM, Alice and Bob can now get

maximal violation of the CHSH inequality, i.e., S ¼ 2
ffiffiffi
2

p
[19]. Therefore, the state (11) has genuine and maximal
hidden nonlocality.

Note also that applying the above filters to the erasure
state (10) gives a pure singlet state for any q > 0. Thus, the
erasure state with 0< q � 1=2 has hidden nonlocality for
dichotomic measurements. Moreover, for q � 1=6, the
erasure state admits a local model for projective measure-
ments, as can be shown by using protocol 2 [20]. Hence,
such states feature hidden nonlocality for projective
measurements.

To summarize, we have shown the existence of genuine
hidden nonlocality. That is, there exist entangled quantum
states the nonlocality of which can be revealed only via
sequential measurements. In certain cases, this nonlocality
can even be maximal.

In the present Letter, we have focused on Bell tests in
which a single copy of an entangled state is measured in
each run of the experiment. It is, however, also relevant to
consider the case in which several copies of the state can be
measured jointly in each run [21–24]. Notably, it has been
shown recently that nonlocality can be superactivated in
this scenario [25]. That is, by performing judicious joint
measurements on sufficiently many copies of a state �, it
becomes possible to violate a Bell inequality (with non-
sequential measurements), although the state � admits a
local model for POVMs. More generally, this phenomenon
occurs for any entangled state � that is useful for tele-
portation [26]. It is thus interesting to ask whether the
nonlocality of the states considered here could also be
revealed by allowing for many copies to be measured
jointly. However, the current results on superactivation of
quantum nonlocality do not detect the states presented here
[27], thus leaving the question open. Another point worth
mentioning is activation of nonlocality in quantum net-
works. It would also be relevant to see whether the non-
locality of the states presented here can be activated by
placing several copies of them in a quantum network [28].
Concerning the erasure state, Ref. [29] shows that it is a
nonlocal resource when placed in a tripartite network;
hence, the local model constructed here confirms that
activation of nonlocality does indeed occur.

Finally, an interesting open question is whether there
exist entangled states for which nonlocality cannot be
observed, even considering sequential measurements on
an arbitrary number of copies of the state.
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The relation between entanglement and nonlocality is discussed in the case of multipartite quantum
systems. We show that, for any number of parties, there exist genuinely multipartite entangled states that
admit a fully local hidden variable model, i.e., where all parties are separated. Hence, although these states
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considering general nonsequential local measurements. Then, we show that the nonlocality of these states
can nevertheless be activated using sequences of local measurements, thus revealing genuine multipartite
hidden nonlocality.
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The relation between quantum entanglement and
nonlocality has been studied extensively in recent years;
see, e.g., Refs. [1,2]. While both notions turn out to be
equivalent for pure states [3,4], the case of a mixed state is
still not understood. This is nevertheless desirable given
the importance of entanglement and nonlocality from the
point of view of the foundations of quantum theory and for
quantum information processing [1].
This research was initiated by Werner [5], who presented

a class of bipartite entangled states admitting a local hidden
variable (LHV) model. This proved that the correlations
obtained by performing arbitrary local projective measure-
ments on such states can be perfectly simulated by a
LHV model, hence using only classical resources. This was
later extended to general nonsequential measurements, i.e.,
positive operator valued measures (POVMs) [6]. Since such
states cannot lead to Bell inequality violation [7], they are
referred to as “local” entangled states [8].
It turns out, however, that certain local entangled states

can nevertheless lead to nonlocality when a sequence of
local measurements is performed [9]. That is, the use of
local filters can help to reveal (or activate) the nonlocality
of the entangled state. This phenomenon, termed “hidden
nonlocality,” occurs even for entangled states admitting a
LHV model for POVMs [10]. Other works showed that
the nonlocality of local entangled states can be activated
by performing joint measurements on several copies of the
state [11–13], or by placing many copies of the state in a
quantum network [14,15].
Whereas the above questions have been intensively

discussed for bipartite states, the relation between entan-
glement and nonlocality for multipartite systems is almost
unexplored thus far. Here, one should nevertheless expect
interesting and novel phenomenona, due to the rich
structure of multipartite entanglement. In particular, there
is a hierarchy of different forms of entanglement in
multipartite systems, the strongest of which is genuine

multipartite entanglement (GME). Similarly, the notion
of genuine multipartite nonlocality (GMNL) has been
discussed [16–18], which represents the strongest form
of nonlocality for multipartite systems. A first natural
question is then whether there exist GME states, the
correlations of which can be simulated by a LHV model.
This was first discussed by Tóth and Acín [19], who
presented a GME state of 3 qubits admitting a LHV model,
but could not extend their construction to more parties.
More recently, Augusiak et al. [20] showed the existence of
GME states of any number of parties that cannot lead to
GMNL. Specifically, the authors discussed a class of GME
states of N parties, and constructed a LHV model in which
the parties are separated into two groups. However,
this model is essentially bipartite, as the N parties cannot
be completely separated. Beyond these few exploratory
works, nothing is known. to the best of our knowledge.
Here we report progress in understanding the relation

between GME and nonlocality. First, we present a general
technique for constructing multipartite entangled states
admitting a fully LHV model, i.e., where all parties are
separated. This allows us to show that there exist GME states
of an arbitrary number of systems, which admit a fully LHV
model for arbitrary POVM measurements. Moreover, we
show that the nonlocality of these states can be activated
using sequential measurements. Notably, the use of local
filters allows us to obtain GMNL. To summarize, there exist
multipartite states, entangled in the strongest possible sense,
that do not exhibit even the weakest form of nonlocality
when considering nonsequential measurements. However,
when using sequences of measurements, the strongest form
of multipartite nonlocality can be obtained. We conclude
with a series of open questions.
Genuine multipartite entanglement.—Consider N parties

sharing a multipartite quantum state ρ acting on
H1 ⊗ � � � ⊗ HN , where Hi is the local Hilbert space of
party i. Denote by ðb; b̄Þ ∈ B a bipartition of the N parties.
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If ρ can be decomposed as a mixture of states that are each
separable on some bipartition of the Hilbert space, then we
have

ρ ¼
X

ðb;b̄Þ∈B
pb

�X
j

qbj jΦjihΦjjb ⊗ jΦjihΦjjb̄
�
; ð1Þ

with
P

bpb ¼
P

jq
b
j ¼ 1, and jΦjihΦjjb acts on the Hilbert

space specified by the partition b (and similarly for
jΦjihΦjjb̄). If ρ does not admit such a decomposition, then
it is GME. Such states can thus not be created via local
operations and classical communication (LOCC) using
only biseparable states.
Determining whether a given state is GME is challeng-

ing, as one must search over all possible decompositions
[Eq. (1)]. However, there are sufficient conditions for
an N-qubit state to be GME [21–23] (see also
Ref. [24]). Write the state ρ in the canonical basis
j0; 0;…; 0i; j0; 0;…; 1i;…; j1; 1;…; 1i as

ρ ¼

0
BBBBBBBBBBBBBBBB@

c1 z1
c2 z2

. .
.

⋰
cn zn
z�n dn

⋰ . .
.

z�2 d2
z�1 d1

1
CCCCCCCCCCCCCCCCA

ð2Þ

(we only write the elements of interest), where n ¼ 2N−1.
Then ρ is GME if

CðρÞ ¼ 2max
i
fjzij − wig > 0; ð3Þ

where wi ¼
P

n
j≠i

ffiffiffiffiffiffiffiffiffi
cjdj

p
. Below, we will use this condition

to ensure that a state is GME. Note that the value of CðρÞ
can also be used to quantify GME [25], an aspect that,
however, will not be discussed here.
Nonlocality.—Consider again the state ρ, where now each

party canmakemeasurements labeled xi obtaining outcomes
ai, specified by the measurement operators Maijxi , with
Maijxi ≥ 0 and

P
aiMaijxi ¼ 1. The probability to see the

outputsa ¼ ða1;…; aNÞ given the inputsx ¼ ðx1;…; xNÞ is
given by

pðajxÞ ¼ Tr½ρð⊗N
i¼1 MaijxiÞ�: ð4Þ

The state ρ is called (fully) local if, for all possible
measurement operators Maijxi , the statistics pðajxÞ can be
reproduced by a LHV model:

pðajxÞ ¼
Z
λ
qλpλða1jx1Þpλða2jx2Þ � � �pλðaN jxNÞdλ; ð5Þ

where qλ is a probability density over the shared variable λ
and pλðaijxiÞ are probability distributions, called local

response functions. Likewise, if Eq. (5) cannot be satisfied,
then the state is said to be nonlocal, as witnessed by the
violation of (some) Bell inequality.
One may also consider a weaker notion of locality,

whereby the correlations are not demanded to be local with
respect to all parties [as in Eq. (5)], but instead to be
(mixtures of) correlations that are each local across some
bipartition. Again denoting by ðb; b̄Þ ∈ B a bipartition of
the parties, these correlations take the form

pðajxÞ ¼
X

ðb;b̄Þ∈B
pb

Z
λ
qbλpλðabjxbÞpλðab̄jxb̄Þdλ; ð6Þ

where ab, xb denote the inputs and outputs for the
bipartition b. Note that Eq. (5) implies Eq. (6), but not
necessarily the converse. Correlations that cannot be
written in the above form are called genuinely multipartite
nonlocal and represent the strongest form of multipartite
nonlocality [16]. Here, for simplicity, we put no restrictions
on the probability distributions pλðabjxbÞ, pλðab̄jxb̄Þ
other than positivity and normalization (for example,
they may be signaling); note that more sophisticated
definitions of GMNL were proposed [17,18]. The N-party
Greenberger–Horne–Zeilinger (GHZ) state, jGHZi ¼
ðj0i⊗N þ j1i⊗NÞ= ffiffiffi

2
p

, is known to produce correlations
that are GMNL, as proven by the violation of the Svetlichny
inequalities [16,27,28].
GME and nonlocality.—The link between GME and

nonlocality is almost unexplored thus far. For N ¼ 3, Tóth
and Acín constructed a genuine tripartite entangled state
admitting a fully LHV model [i.e., of the form Eq. (5)]
for arbitrary local projective measurements [19]. Recently,
Augusiak et al. [20] presented GME states of N qubits
which cannot lead to GMNL. More precisely, they con-
structed a LHV model for some bipartition of N qubits, i.e.,
of the form Eq. (6). However, it is still unknown if there
exist GME states that admit LHV models that are fully
local, i.e., that satisfy Eq. (5), for any possible measure-
ments. This is what we show in the next section.
Method.—Our main tool is a simple method to construct

entangled N-party states which admit a LHV model.
Specifically, we start by considering a bipartite entangled
state ρwhich is “unsteerable,” that is, which cannot be used
to demonstrate steering. Formally, this means that ρ admits
as so-called local hidden state (LHS) model [29]; hence, its
correlations can be decomposed as

pðabjxyÞ ¼ Tr½ρMajx ⊗ Mbjy�

¼
Z

qλpλðajxÞTr½σλMbjy�dλ; ð7Þ

where σλ is the local hidden state, distributed with density
qλ, and Bbjy denotes Bob’s measurement operator. Clearly,
an unsteerable state is local (with pðbjy; λÞ ¼ Tr½σλMbjy�),
while the opposite may not hold in general.
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Next, we combine several copies of ρ in a star-shaped
network (see Fig. 1). This allows one to construct a
multipartite entangled state admitting a fully local model.
Specifically, we have the following.
Lemma 1.—Let ρ be a quantum state acting on

HA1
⊗ HB1

. The state ρ⊗N therefore acts on
HA1

⊗ � � � ⊗ HAN
⊗ HB1

⊗ � � � ⊗ HBN
¼ HA ⊗ HB.

Furthermore, let ΛB be a completely positive linear map
acting onHB. If ρ is unsteerable from A1 to B1, i.e., admits
a decomposition [Eq. (7)], then the N-party state,

ρA1���AN
¼ TrB½1A ⊗ ΛBðρ⊗NÞ�

Tr½1A ⊗ ΛBðρ⊗NÞ� ; ð8Þ

admits a local hidden variable model, of the form Eq. (5),
on the N-partition A1=A2= � � � =AN−1=AN .
The intuition behind the above lemma is given in Fig. 1.

A complete proof is given in Appendix A in Supplemental
Material [30].
Note that we have not specified the class of local

measurements for which the LHV model is valid in the
above lemma. If ρ has a LHS model for projective
measurements, then ρA1���AN

will have a LHV model for
projective measurements, and similarly for POVMs. Note
also that one can generalize slightly the result of Lemma 1
(see Appendix A in Supplemental Material [30]).
Specifically, one can use different unsteerable states in
each arm of the star-shaped network rather than the same
state N times, and one can choose not to perform the trace
over B and keep the center party.
GME states with fully local model.—We now use

Lemma 1 to construct N-qubit states which admit a fully
local model. We then prove these states to be GME for all
N. Specifically, consider the class of two-qubit states,

ρα;θ ¼ αjψθihψθj þ ð1 − αÞρθA ⊗
1
2
; ð9Þ

where 0≤ α≤ 1, 0≤ θ≤ π=4, jψθi ¼ cos θj00i þ sin θj11i,
and ρθA ¼ TrBjψθihψθj. These states are entangled for all
θ ∈�0; π=4�, if α > 1=3. Furthermore, they are unsteerable
from Alice to Bob for arbitrary projective measurements if
the relation

cos2ð2θÞ ≥ 2α − 1

ð2 − αÞα3 ð10Þ

holds [31]. Hence, for any 0 ≤ α < 1, one may find a
corresponding θ > 0 such that ρα;θ is unsteerable. We now
define the completely positive linear map,

ΛBðσÞ ¼ FBσF
†
B; FB ¼ j0i½h0;0;…; 0j þ h1; 1;…; 1j�;

which projects the systems of B1…BN onto an N-qubit
GHZ state. We may now define the N-party state ρA1���AN

by using ρα;θ and ΛB in Eq. (8). In Appendix B in
Supplemental Material [30] we show that the concurrence
of this state for a fixed N, α, θ is given by

CðρA1���AN
Þ ¼

2sinNð2θÞ
�
αN þ

h
1þα
2

i
N þ

h
1−α
2

i
N
− 1

�

½1þ α cos 2θ�N þ ½1 − α cos 2θ�N :

ð11Þ

It follows that for any N, one can find parameters α, θ such
that (i) condition (10) is satisfied (ensuring that ρα;θ has a
LHS model) and (ii) CðρA1���AN

Þ > 0, proving that ρA1���AN
is

GME. To give a specific example, take α ¼ 1 − 1=N2 and
θ > 0, such that Eq. (10) is saturated. One sees that the
denominator of Eq. (11) and sinN 2θ are both positive. We
therefore need

(a) (b)

FIG. 1. Construction of multipartite states admitting a fully local model. (a) Construction of the state. First, placeN copies of a bipartite
state ρ in a star-shaped network. Then, apply a map ΛB at the central node (i.e., on parties B1…BN), and trace out these parties. We thus
obtain anN-partite state, ρA1���AN

(represented by the bluewiggly line), shared by partiesA1…AN . (b) LHVmodel. If ρ admits a LHSmodel,
one can simulate the correlations of the star-shaped network for ρ⊗N, whereby the central node receives the hidden states σλi independently
from each source and the parties Ai receive hidden variables λi. One may now correlate the individual λi’s by having the map ΛB act on

the hidden states; i.e., we can define a new distribution over ~λ ¼ ðλ1;…; λNÞ that depends on Tr½ΛBð⊗i σλiÞ�. If each party Ai uses the
same response function as in the LHS model for ρ, then the resulting statistics on parties A1…AN simulate exactly the state ρA1���AN

.

PRL 116, 130401 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
1 APRIL 2016

130401-3



αN þ
�
1þ α

2

�
N
þ
�
1 − α

2

�
N
> 1 ð12Þ

to be positive for all N ≥ 2. For the case N ¼ 2, one has
α ¼ 3=4 and we find 43=32 > 1. For N > 2, upon sub-
stituting α ¼ 1 − 1=N2 the left-hand side becomes

�
1 −

1

N2

�
N
þ
�
1 −

1

2N2

�
N
þ
�

1

2N2

�
N

> 2

�
1 −

1

N2

�
N
> 2

�
1 −

1

N

�
> 1; ð13Þ

where for the first inequality we use the fact that
½1 − 1=N2�N < ½1 − 1=2N2�N and ½1=2N2�N > 0, and the
second inequality follows from Bernoulli’s inequality.
Extension to general measurements.—A natural question

is now to find a GME state with a fully local model,
considering general POVMs. While the states ρα;θ are not
known to admit a LHS model for POVMs, we can
nevertheless proceed differently. Starting from ρA1���AN

,
we can in fact construct another state, ρGME, which is both
GME and local for POVM measurements.
Specifically, define ρA1���Ak

¼ TrAkþ1���AN
½ρA1���AN

� and
denote by↺½ρ� the unnormalized and symmetrized version
of ρ. Then the state

ρGME ¼ 1

2N

�
ρA1���AN

þ
XN−1

j¼0

↺½ρA1���Aj
⊗ j2ih2j⊗N−j�

�
ð14Þ

admits a fully local model, for arbitrary local POVMs. Note
that j2ih2j denotes the projector onto a subspace orthogonal
to the qubit subpace. The above follows from a straightfor-
ward extension of Protocol 2 of Ref. [10] to the case of N
parties.
To conclude, we have to show that the state is GME.

Note that if each party makes a local projection on the qubit
subspace j0ih0j þ j1ih1j, then the resulting (renormalized)
state is ρA1���AN

, which is GME. Since one cannot create
GME using stochastic local operations, it follows that ρGME
is GME.
Hidden genuine multipartite nonlocality.—We showed

that GME states can admit a fully LHV model for arbitrary
nonsequential measurements. A natural question now is
whether these states have hidden nonlocality [9], that is,
whether nonlocality could be revealed via sequences of
measurements. A sufficient condition for the existence of
hidden nonlocality is the possibility of transforming the
initial state using local stochastic operations, i.e., local
filters, to another state that violates some Bell inequality
(see, e.g., Ref. [32]). Below, we will see that the states ρGME
have genuine multipartite hidden nonlocality. Furthermore,
the activation of nonlocality is maximal, in the sense that
the filtered state exhibits GMNL, despite the initial state
being fully local.
Consider N parties sharing ρGME. Let each party perform

a local filtering operation given by

Gϵ ¼ ϵj0ih0j þ j1ih1j; ð15Þ

hence transforming ρGME to the state

ρϵ ¼
G⊗N

ϵ ρGMEG⊗N
ϵ

Tr½G⊗N
ϵ ρGMEG⊗N

ϵ � : ð16Þ

In Appendix C of Supplemental Material [30] we prove
that for ϵ ¼ tan θ [where θ is the parameter in Eq. (9)]
the filtered state is essentially a pure N-party GHZ state
½j0i⊗N þ j1i⊗N �= ffiffiffi

2
p

. Specifically, the fidelity between the
two states is given by

F ðρϵ; jGHZihGHZjÞ ¼ hGHZjρϵjGHZi

¼ 1

2

�
αN þ

�
1þ α

2

�
N
þ
�
1 − α

2

�
N
�
;

ð17Þ
which tends to 1 when α is sufficiently close to 1. Since the
GHZ state is known to exhibit GMNL for any N, in
particular, via violation of the Svetlichny inequalities
[27,28] (which are robust to noise), it follows that ρϵ
can also be made GMNL.
Conclusion.—We showed that GME states can admit a

fully LHV model, for any number of parties. Thus, while
exhibiting the strongest form of multipartite entanglement
(GME), these states can never lead to any Bell inequality
violation, considering general nonsequential measurements.
This can be viewed as a maximal inequivalence between
multipartite entanglement and nonlocality. Interestingly,
this gap can disappear when sequential measurements are
considered, and the strongest form of nonlocality can be
activated, thus highlighting the relevance of sequential
measurements in multipartite nonlocality.
In the future, it would be interesting to investigate the

above questions in quantitative terms. For instance, could
one find examples of highly entangled GME states admitting
a LHVmodel? In order to do so, one should choose a specific
measure of GME [24] (as there exist no unique measure).
Also, the method we presented for constructing multi-

partite local entangled states could be further explored.
Firstly, one could start from different bipartite unsteerable
states; see, e.g., Refs. [33,34]. Secondly, by keeping the
central node in the network, one can construct multipartite
LHS models where one of the parties has a quantum
response function, and hence may prove useful in the study
of multipartite steering [35].
Finally, one could ask if there exist GME states admitting

LHV models for sequential measurements, although this
question is in fact still open even in the bipartite case.
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Genuinely multipartite entangled quantum states with fully local hidden variable
models and hidden multipartite nonlocality: Supplementary material

Appendix A: General method proof

Here we give a complete proof of Lemma 1. We define the state ρΛ as

ρΛ =
11A ⊗ ΛB(ρ⊗N )

N , (A1)

where

N = Tr[11A ⊗ ΛB(ρ⊗N )] = Tr[ΛB(ρ⊗NB )] (A2)

with ρB = TrA[ρ]. Note that ρA1···AN
= TrB [ρΛ].

We first show that the N + 1 party distribution

p(ab|xy) = Tr
[
(⊗Ni=1Mai|xi

)⊗Mb|y ρΛ

]
(A3)

admits a LHV model on the N + 1 partition A1/A2/ · · · /AN/B. Note that since the parties B1 · · ·BN = B now form
a single party, the operator Mb|y acts on the Hilbert space HB1

⊗ · · · ⊗HBN
and may be entangled across this space.

Since a LHV model for a state clearly implies a LHV model for any subsystems of that state, proving a LHV model
for ρΛ then implies a LHV model for TrB [ρΛ] = ρA1···AN

, proving Lemma 1. To this end, we show the existence of

a shared variable ~λ with corresponding normalised probability density Q(~λ) and response functions for the N + 1
parties such that the corresponding LHV model reproduces the statistics (A3).

Replacing ρΛ by (A1) and denoting the dual map of ΛB by Λ∗B we have

p(ab|xy) =
1

N Tr
[
(⊗iMai|xi

)⊗Mb|y 11A ⊗ ΛB(ρ⊗N )
]

=
1

N Tr
[
(⊗iMai|xi

)⊗ Λ∗B(Mb|y)ρ⊗N
]

=
1

N Tr
[
TrA

[
(⊗iMai|xi

)ρ⊗N
]

Λ∗B(Mb|y)
]

=
1

N Tr
[(
⊗i TrAi

[
Mai|xi

⊗ 11 ρ
])

Λ∗B(Mb|y)
]
. (A4)

Since we assume the state ρ to be unsteerable, it follows that (for examples see [1])

TrAi

[
Mai|xi

⊗ 11 ρ
]

=

∫
qλi
pλi

(ai|xi)σλi
dλi. (A5)

Combining this with the above we have

p(ab|xy) =
1

N Tr

[(
⊗i
∫

λi

qλi
pλi

(ai|xi)σλi
dλi

)
Λ∗B(Mb|y)

]

=

∫

λ1

· · ·
∫

λN

qλ1 · · · qλN

N pλ1(a1|x1) · · · pλN
(aN |xn) Tr

[
(⊗iσλi) Λ∗B(Mb|y)

]
dλ1 · · · dλN

=

∫

~λ

Q(~λ) pλ1
(a1|x1) · · · pλN

(aN |xn) Tr
[
σ~λMb|y

]
d~λ, (A6)

where ~λ = (λ1, · · · , λN ) and we have

σ~λ =
ΛB(⊗iσλi

)

Tr[ΛB(⊗iσλi
)]

Q(~λ) =

∏
i qi
N Tr[ΛB(⊗iσλi

)]. (A7)

Equation (A6) is now in the precise form of a LHV model. The shared variable consists of the vector ~λ = (λ1, · · · , λN )

which is distributed to the N parties with probability density Q(~λ). Conditioned on ~λ, the response functions for

parties A1 · · ·AN remain unchanged whereas party B outputs according to p(b|y,~λ) = Tr[σ~λMb|y], which is a valid

probability distribution since σ~λ is a normalised quantum state. Furthermore since ΛB is positive we have Q(~λ) > 0
and ∫

~λ

Q(~λ)d~λ =

∫ ∏
i qi
N Tr [ΛB(⊗iσλi)] d~λ =

1

N Tr

[
ΛB

(
⊗i
∫

λi

qλiσλidλi

)]
=

1

N Tr
[
ΛB
(
ρ⊗NB

)]
= 1, (A8)

where the third line follows from (A5) by setting say A1|xi
= 11 and consequently p(1|x1, λ) = 1. Hence Q(~λ) is indeed

a probability density.



2

Appendix B: Calculation of C(ρA1···AN
)

Here we give a detailed derivation of (11). We first write the state (9) as

ρα,θ =

[
1 + α

2

] (
c2|00〉〈00|+ s2|11〉〈11|

)
+

[
1− α

2

] (
c2|01〉〈01|+ s2|10〉〈10|

)
+ αcs (|00〉〈11|+ |11〉〈00|) , (B1)

where c, s denote cos θ and sin θ respectively. To begin, we consider the unormalised state

ρF = TrB

[
[11A ⊗ FB ] ρ⊗Nα,θ [11A ⊗ FB ]

]
, (B2)

where

FB = |0〉〈00 · · · 0|+ |0〉〈11 · · · 1| (B3)

acts on HB . Notice that ρA1···AN
= ρF /Tr[ρF ] and so C(ρA1···AN

) = C(ρF )/Tr[ρF ]. After performing the partial
trace of (B2) we obtain

ρF = 11A ⊗ 〈00 · · · 0|B ρ⊗Nα,θ 11A ⊗ |00 · · · 0〉B + 11A ⊗ 〈11 · · · 1|B ρ⊗Nα,θ 11A ⊗ |11 · · · 1〉B
+11A ⊗ 〈00 · · · 0|B ρ⊗Nα,θ 11A ⊗ |11 · · · 1〉B + 11A ⊗ 〈11 · · · 1|B ρ⊗Nα,θ 11A ⊗ |00 · · · 0〉A. (B4)

We consider each of these four terms separately. For the first term, the only non-zero contributions coming from
ρ⊗Nα,θ will correspond the N -fold tensor product of combinations of the projectors |00〉〈00| and |10〉〈10| with their
corresponding weights. Hence, this will contribute diagonal terms to ρF . For example, the diagonal term corresponding
to

|01 · · · 0〉〈01 · · · 0| (B5)

where the projector contains m 1’s and N −m 0’s, will have a corresponding weight

c2(N−m)s2m

[
1 + α

2

]N−m [
1− α

2

]m
. (B6)

For the second term of (B4) we will have a similar situation, this time contributing

c2(N−m)s2m

[
1 + α

2

]m [
1− α

2

]N−m
(B7)

to the same diagonal element. Adding these two contributions, each diagonal entry of ρF containing m 1’s and N −m
0’s will have weight

γ(m) =c2(N−m)s2m

([
1 + α

2

]N−m [
1− α

2

]m
+

[
1 + α

2

]m [
1− α

2

]N−m)
. (B8)

Turning to the third and fourth terms of (B4) we see that the only nonzero contributions from ρ0 correspond to the
N -fold tensor products of |00〉〈11| and |11〉〈00| respectively. These contribute to ρF the two off-diagonal terms

(αcs)N |00 · · · 0〉〈11 · · · 1| , (αcs)N |11 · · · 1〉〈00 · · · 0|. (B9)

Hence, we have a ρF of the form

ρF =




γ(0) (αcs)N

γ(1) . . .
γ(N − 1)

(αcs)N γ(N)



.

We now define the quantity

w0 =
n∑

j=1

√
cjdj , (B10)
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where cj dj correspond to entries in (3). Calculating this for ρF we obtain

w0 =

n∑

j=1

√
cjdj =

1

2

N∑

m=0

(
N

m

)√
γ(m)γ(N −m)

=
1

2
cNsN

( N∑

m=0

(
N

m

)[
1 + α

2

]N−m [
1− α

2

]m
+

N∑

m=0

(
N

m

)[
1 + α

2

]m [
1− α

2

]N−m)

= cNsN
(

1 + α

2
+

1− α
2

)N
= cNsN . (B11)

Due to the form of ρF , we see that |zi| − wi can only be positive for i = 1. We have

w1 = w0 − c1d1 = cNsN −
√
γ(0)γ(N)

= cNsN

(
1−

[
1 + α

2

]N
+

[
1− α

2

]N)
. (B12)

We may now calculate

|z1| − w1 = cNsN

[
αN +

[
1 + α

2

]N
+

[
1− α

2

]N
− 1

]
. (B13)

Finally, to calculate C(ρA1···AN
) = C(ρF )/Tr[ρF ] we need to calculate the normalisation Tr[ρF ]. This is given by

Tr[ρF ] =
N∑

m=0

(
N

m

)
γ(m) =

[
c2

1 + α

2
+ s2 1− α

2

]N
+

[
s2 1 + α

2
+ c2

1− α
2

]N

=

[
1

2
(1 + α cos 2θ)

]N
+

[
1

2
(1− α cos 2θ)

]N
. (B14)

Combining this with (B13) and using cos θ sin θ = 1
2 sin 2θ, we arrive at (11). For ρA1···AN

we thus have

C(ρA1···AN
) =

2 sinN 2θ
(
αN +

[
1+α

2

]N
+
[

1−α
2

]N − 1
)

[1 + α cos 2θ]
N

+ [1− α cos 2θ]
N

.

Appendix C: Genuine multipartite hidden nonlocality

Here we calculate the fidelity between ρtan θ and the N -party GHZ state. The state ρε is given by

ρε =
G⊗Nε ρGMEG

⊗N
ε

Tr[G⊗Nε ρGMEG
⊗N
ε ]

. (C1)

with

Gε = ε|0〉〈0|+ |1〉〈1|. (C2)

Note that since Gε has no support on the |2〉〈2| subspace, only the first term of (14) will survive the filter. We may
therefore replace ρGME in (C1) by ρA1···AN

. To make calculations easier, we begin by working with the unormalised
state

ρ̃ε = G⊗Nε ρA1···AN
G⊗Nε . (C3)

Since the filter (C2) is diagonal, ρ̃ε will have the same structure as ρA1···AN
. It is easy to see that after the filter,

a diagonal element which contains m 1’s and N −m 0’s picks up a factor of ε2(N−m) whereas the two off-diagonal
elements pick up each a factor of εN . We now use the ansatz ε = tan θ. With this we have

ρ̃tan θ = s2N




γ′(0) αN

γ′(1) . . .
γ′(N − 1)

αN γ′(N)



,



4

where

γ′(m) =

[
1 + α

2

]N−m [
1− α

2

]m
+

[
1 + α

2

]m [
1− α

2

]N−m
. (C4)

For this state we have Tr[ρ̃tan θ] = 2s2N and so after renormalising we obtain

ρtan θ =
1

2




[
1+α

2

]N
+
[

1−α
2

]N
αN

. . .

γ′(m)
. . .

αN
[

1+α
2

]N
+
[

1−α
2

]N



.

One can now easily see how this state can be made arbitrarily close to the GHZ state. Taking α close to zero forces
the extreme diagonal and off diagonal elements to 1

2 while forcing all others to zero. Making this quantitative, we

compute the fidelity between ρtan θ and the pure GHZ state |GHZ〉 = (|0〉⊗N + |1〉⊗N )/
√

2:

F(ρtan θ, |GHZ〉〈GHZ|) = 〈GHZ|ρtan θ|GHZ〉 =
1

2

[
αN +

(
1 + α

2

)N
+

(
1− α

2

)N]
(C5)

which tends to 1 when α tends to 1.
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The statistics of local measurements performed on certain entangled states can be reproduced using a
local hidden variable (LHV) model. While all known models make use of an infinite amount of shared
randomness, we show that essentially all entangled states admitting a LHV model can be simulated with
finite shared randomness. Our most economical model simulates noisy two-qubit Werner states using only
log2ð12Þ≃ 3.58 bits of shared randomness. We also discuss the case of positive operator valued measures,
and the simulation of nonlocal states with finite shared randomness and finite communication. Our work
represents a first step towards quantifying the cost of LHV models for entangled quantum states.
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Introduction.—Quantum systems exhibit a wide range
of nonclassical and counterintuitive phenomena, such as
quantum entanglement [1] and Bell nonlocality [2,3].
In recent years, considerable effort has been devoted
to understanding the relation between entanglement and
nonlocality; see [3]. While entanglement is necessary to
demonstrate nonlocality (i.e., violation of a Bell inequal-
ity), it is not yet clear whether all entangled states can lead
to nonlocality when considering the most general scenario
[4,5]. Nevertheless, entanglement and nonlocality are
proven to be different in the simplest scenario in which
local (nonsequential) measurements are performed on a
single copy of an entangled state. As discovered by Werner
[6], there exist entangled states that can provably not violate
any Bell inequality, since the state admits a local hidden
variable (LHV) model. While Werner focused on projective
measurements, Barrett [7] showed that the result holds for
the most general nonsequential measurements, so-called
positive operator valued measures (POVMs).
Following these early results, plenty of works have

investigated these ideas; see [8] for a recent review.
LHV models were reported for entangled states with less
symmetry than Werner states [9–13]. Multipartite states
were discussed as well [14,15]. Interestingly, it was shown
that in certain cases, the nonlocality of local entangled
states can be activated, e.g., by considering sequential
measurements [11,16]. More recently, interest was devoted
to a special class of LHVmodels, referred to as local hidden
state (LHS) models, which naturally arise in the context
of Einstein-Podolsky-Rosen (EPR) steering [17,18], and
essentially require that the local variable represents a
quantum state; see [17] for details, and [6,7,9,12,19] for
examples of LHS models.
Here we discuss novel types of questions in this context,

namely that of quantifying LHV models. Specifically, given
a local entangled state, we ask what resources are required to
construct a LHV model; i.e., what is the cost of classically

simulating the correlations of the state? As a figure of merit,
we consider the minimal dimension of the shared local
(hidden) variable that is needed; that is, how much classical
information (how many bits) is necessary to encode the local
variable? Note that all LHV models constructed so far are
maximally costly according to our measure as they make use
of shared variables which are continuous. Hence, such
models would require a communication channel of infinite
capacity, the physical relevance of which is questionable. For
instance, in Werner’s model, the local variables are unit

vectors ~λ (e.g., vectors on the Bloch sphere). Importantly,
although these vectors are of a given dimension, the model

requires an infinite number of them, as vectors ~λ are taken
from the uniform distribution over the sphere.
Hence, a natural question is whether it would be in fact

possible to simulate the correlations of an entangled state
using shared variables of finite dimension (i.e., a finite
number of shared random bits). Here we show that essen-
tially any entangled state admitting a LHV model can be
simulated with finite shared randomness, considering arbi-
trary local projective measurements. We discuss in detail the
case of Werner states of two qubits. We also show that the
simulation of arbitrary POVMs on certain entangled states is
possible using finite shared randomness. Finally, we con-
sider the simulation of nonlocal entangled states (i.e., which
can violate a Bell inequality), in which case communication
between the parties is necessary. In particular, we show that
the simulation of any full rank entangled state can be
achieved using only finite communication.
Our work provides a perspective on understanding how

the correlations of local entangled states differ from those
of fully separable states. On the one hand, it shows that
there is no fundamental difference between the two cases,
in the sense that finite shared randomness is enough for
both (at least for certain entangled states). Recall that the
correlations of separable states can always be simulated
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using 4log2ðdÞ bits [20], where d denotes the local Hilbert
space dimension of the state. On the other hand, our results
suggest that the simulation of entangled states is in general
more costly compared to that of separable states—despite
the fact that both classes of states can never lead to Bell
inequality violation.
Preliminaries.—We consider a bipartite Bell scenario.

Two distant observers, Alice and Bob, share a quantum
state ρ (of Hilbert space dimension d × d) and perform
local measurements A ¼ fAag and B ¼ fBbg, respectively.
The observed statistics are local (in the sense of Bell),
if they can be decomposed as follows [2,3]:

TrðAa ⊗ BbρÞ ¼
Z

πðλÞpAðajA; λÞpBðbjB; λÞdλ; ð1Þ

where λ represents a shared (hidden) variable, distributed
according to density πðλÞ. If a decomposition of the form
(1) exists for all possible local measurements, we say that
the state ρ is local as it will never violate any Bell
inequality. The LHV model is then characterized by the
distributions πðλÞ, and pAðajA; λÞ, pBðbjB; λÞ which are
Alice’s and Bob’s local response functions.
Trivially, any state ρ that is separable is local. Indeed, one

can write ρ ¼ P
d4
λ¼1 pλρ

λ
A ⊗ ρλB [20,21] with

P
λpλ ¼ 1 and

pλ ≥ 0 (note that for two-qubit states, a more economical
decomposition exists, involving only four product states
[22]). Here the local variable λ is distributed according to pλ,
and the local response functions are simply pAðajA; λÞ ¼
TrðAaρ

λ
AÞ for Alice and similarly for Bob. Note that the

shared variable takes only d4 different values here, and can
thus be encoded in 4 log2ðdÞ bits (for two-qubit states 2 bits
are enough). More interestingly, there exist entangled states
ρ which are local. The most famous example is the Werner
state, which for the case d ¼ 2 takes the form

ρWðαÞ ¼ αjψ−ihψ−j þ ð1 − αÞI=4; ð2Þ

where jψ−i ¼ ðj01i − j10iÞ= ffiffiffi
2

p
is the singlet state and I=4

is the maximally mixed two-qubit state. After showing
that the state ρWðαÞ is entangled for α > 1=3, Werner [6]
constructed a local model for arbitrary projective measure-
ments for α ≤ 1=2; later another local model was con-
structed for α≲ 0.66 [10]. Considering the most general
nonsequential measurements, i.e., POVMs, a local model
was presented for α ≤ 5=12 [7].
A common feature of these local models (and to the best

of our knowledge, of all known LHV models) is the fact
that the shared variable λ takes an infinite number of
different values; typically, λ denotes a (unit) vector, which
is taken randomly from a uniform distribution over the
sphere. Hence λ requires an infinite number of bits to be
encoded, in stark contrast with the case of separable states,
where 4 log2ðdÞ bits are enough. Therefore, it is rather
natural to ask if this represents a fundamental difference
between local entangled states and separable ones. Below

we will show that this is not the case, by exhibiting LHV
models for entangled states requiring only finite resources,
i.e., where λ can be encoded with a finite number of bits.
SimulatingWerner stateswith finite shared randomness.—

We present local models using a finite amount of shared
randomness, simulating the correlations of Werner states
ρWðαÞ for α < 0.5 for all projective measurements; exten-
sions to α≲ 0.66 are given in the next section. Alice and

Bob receive here Bloch vectors ~a and ~b (representing
observables A ¼ ~a · ~σ and similarly for Bob) and should
provide outcomes a; b ¼ �1 such that

hai ¼ hbi ¼ 0; habi ¼ −α~a · ~b: ð3Þ
For clarity, we start by presenting a simple model using

only log2ð12Þ bits of shared randomness, which works for
α≲ 0.43. Our model uses the icosahedron, one of the 5
platonic solids in dimension 3. The icosahedron has 12
vertices represented by the normalized vectors ~vλ ∈ V,
which satisfy the following properties:

∀~vλ∃ ~vj such that ð s:t:Þ ~vλ ¼ −~vj ð4ÞX
j s:t: ~vj·~vλ≥0

~vj ¼ γ~vλ ∀λ; ð5Þ

with γ ¼ 1þ ffiffiffi
5

p
. Note that the radius of a sphere inscribed

inside the icosahedron is given by l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5þ 2

ffiffiffi
5

p Þ=15
q

. In

our model the shared variable λ ∈ f1;…; 12g is distributed
uniformly and represents one of the 12 vertices of the
icosahedron. That is, when Alice and Bob receive λ, they
will use vector ~vλ.
Protocol 1.—Alice and Bob share λ ∈ f1;…; 12g, uni-

formly distributed. Upon receiving setting ~a, Alice calcu-
lates the subnormalized vector ~a0 ¼ l~a. This ensures that ~a0
lies inside the convex hull of V; hence, Alice can find a
convex decomposition ~a0 ¼ P

iωi~vi with
P

iωi ¼ 1 and
ωi ≥ 0 (note that any convex decomposition can be
chosen). Then, with probability ωi, she outputs a ¼ �1

with probability ð1� sgn½~vλ · ~vi�Þ=2. Bob, upon receiving
~b, outputs b ¼ �1 with probability ð1∓ ~b · ~vλÞ=2.
We now show that the protocol reproduces the desired

statistics. We start with the correlator:

habi ¼ −
1

12

X
λ

X
i

ωisgnð~vi · ~vλÞ~vλ · ~b: ð6Þ

Interchanging the sums, we first calculate

X
λ

sgnð~vi · ~vλÞ~vλ · ~b ¼ 2γ~vi · ~b; ð7Þ

which follows from (4) and (5); see details in the
Supplemental Material [23]. Inserting the last expression
in (6), we get
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habi ¼ −
γ

6

X
i

ωi~vi · ~b ¼ −
lγ
6
~a · ~b≃ −0.43 ~a · ~b: ð8Þ

Finally, we compute Alice’s marginal

hai ¼ −
1

12

X
λ

X
i

ωi sgnð~vi · ~vλÞ ¼ 0; ð9Þ

which can be seen from (4). Similarly, we get that hbi ¼ 0.
Therefore, the model simulates ρWðαÞ for α≃ 0.43.
Extension to smaller values of α is straightforward.
The above protocol can be adapted to any polyhedron

satisfying conditions (4) and (5). Natural candidates are the
Platonic solids, except for the tetrahedron which does not
satisfy (4). Among these, the icosahedron turns out to be
optimal here; see Supplemental Material [23]. Hence, in
order to simulate Werner states which are more entangled,
i.e., going beyond α≃ 0.43, we need another method.
We now present a protocol, which will allow us to relax

condition (5). Specifically, we consider again a three-
dimensional polyhedron V with D vertices ~vi, but only
demand that is satisfy condition (4) (which can always be
achieved at the expense of doubling the number of vertices
of a given polyhedron). As before, the shared variable
λ ∈ f1;…; Dg encodes the choice of vertex, and is uni-
formly distributed. Having abandoned condition (5), we
have for each vertex ~vλ:X

j s:t: ~vj·~vλ≥0

~vj ¼ γλ ~mλ; ð10Þ

where ~mλ is a normalized vector and generally ~mλ ≠ ~vλ.
Let us define γmin ¼ minλðγλÞ. Note that there are now two
polyhedra of interest: (i) V, that is defined by the vertices ~vλ
and (ii) M, defined by the vertices ~mλ, which are in one-to-
one correspondence with the ~vλ. Consider the following
protocol.
Protocol 2.—Alice and Bob share λ ∈ f1;…; Dg uni-

formly distributed. Upon receiving setting ~a, Alice calcu-
lates the subnormalized vector ~a0 ¼ l~a where l is the
radius of the largest sphere fitting insideM and centered on
the origin. This ensures that ~a0 lies inside the convex hull
of M and Alice can therefore find a convex decomposition
~a0 ¼ P

D
i¼1 ωi ~mi. Then, with probability pi ¼ ωiγmin=γi

she outputs a ¼ sgnð~vi · ~vλÞ, and with probability
ð1 −P

ipiÞ she outputs a random bit. Bob, upon receiving
~b, outputs b ¼ �1 with probability ð1∓ ~b · ~vλÞ=2.
The resulting correlations are given by

habi ¼ −
1

D

X
λ

X
i

ωi
γmin

γi
sgnð~vi · ~vλÞ~b · ~vλ

¼ −
2γmin

D

X
i

ωi

γi

X
λ s:t: ~vλ·~vi≥0

~vλ · ~b

¼ −
2l
D

γmin~a · ~b; ð11Þ

where we have used Eq. (10) in the last step; see
Supplemental Material [23] for details. As for protocol 1,
using Eq. (4) we get that the marginals hai ¼ hbi ¼ 0.
Hence, the model reproduces the statistics of ρWðαÞ
for α ¼ ð2l=DÞγmin.
Starting from a sufficiently regular polyhedron with a

large number D of vertices ~vλ, we can approximate the unit
sphere and the factor l can become arbitrary close to one.
In the limit D → ∞ we expect to recover the uniform
distribution over the sphere and our model therefore
becomes equivalent to Werner’s model for ρWð1=2Þ [6].
In Fig. 1 we plot upper bounds on the required shared
randomness to simulate ρðαÞ as a function of α obtained
via protocol 2. We use a family of polyhedra, generated
iteratively and starting from the icosahedron. To generate
the second polyhedron, we take the union of the icosahe-
dron and its normalized dual (which is the dodecahedron),
and so on. One can verify that these polyhedra respect
condition (4).
Note that the above protocols are LHS models. Hence

the above results can be straightforwardly extended to
the simulation of entangled states which are obtained via
local filtering on the Werner state, e.g., Ref. [9] (see
Supplemental Material [23]). Also, it would be interesting
to see if more economical models (i.e., using less shared
randomness) exist, and if local entangled states require

FIG. 1 (color online). Simulation of two-qubit Werner states
ρWðαÞ with finite shared randomness. The graph shows the
relation between the visibility α (essentially the degree of
entanglement) and the amount of shared randomness, quantified
in bits. For α ≤ 1=3 (below the solid line) the state is separable;
hence 2 bits of shared randomness suffice (triangle). For
1=3 < α≲ 0.43, the state can be simulated with log2ð12Þ bits
of shared randomness using protocol 1. For 0.43≲ α≲ 0.66,
ρWðαÞ can be simulated with a larger (but nevertheless finite)
amount of shared randomness. For 0.43≲ α < 0.5, we have a
LHS model (using protocol 2). For 0.5 < α≲ 0.66 the state
becomes steerable but can nevertheless be simulated by a LHV
model using finite shared randomness, by applying Result 1 to
the model of Ref. [10] (see main text).
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more shared randomness compared to separable states.
For Werner states, this translates to whether we expect to
see a discontinuity at the separable-entangled boundary for
α ¼ 1=3 (see Fig. 1). We give two partial answers in this
direction: (i) for LHS models, the maximum α one can
simulate with D ¼ 4 is the separable state α ¼ 1=3 (see
Supplemental Material [23]); (ii) Restricting to equatorial
measurements one can achieve α ¼ 1=2 with only D ¼ 4
(see Supplemental Material [23]).
General results.—In the above, we have focused on a

class of highly symmetric states, namely Werner states, and
considered only projective measurements. Here we show
how local models with finite shared randomness can be
constructed for essentially any state that admits a LHV
model. We also discuss the case of general measurements,
i.e., POVMs.
Result 1: Consider a state ρ (of dimension d × d)

admitting a LHV model for all projective measurements.
Then, a LHV model using only finite shared randomness
can simulate all projective measurements on the state

ρðηÞ ¼ η2ρþ ηð1 − ηÞ
�
I
d
⊗ ρB þ ρA ⊗

I
d

�

þ ð1 − ηÞ2 I ⊗ I
d2

for any 0 ≤ η < 1. Here ρA;B ¼ TrB;AðρÞ.
Proof.—First, note that it follows from the relation

tr½Aa ⊗ BbρðηÞ� ¼ tr½AaðηÞ ⊗ BbðηÞρ� ð12Þ

that the simulation of projective measurements (given by
operators Aa and Bb) on ρðηÞ is equivalent to the simulation
of noisy measurements, given by operators AaðηÞ ¼ ηAa þ
ð1 − ηÞðI=dÞ and BbðηÞ ¼ ηBb þ ð1 − ηÞðI=dÞ on the state
ρ. Next, since AaðηÞ and BbðηÞ are full rank for any η < 1,
they are not on the border on the set of measurements [24],
and can thus be decomposed as convex mixtures over a
single set of finitely many projective measurements (more
details in the Supplemental Material [23]). Finally, note that
the simulation of a finite number of projective measure-
ments on ρ requires only finite shared randomness. This
follows from the fact (i) the resulting distribution is local
(as ρ admits a LHV model), and (ii) the set of local
distributions forms a polytope [3].
Note that the amount of shared randomness needed will

depend on the value of η and diverges as η → 1.
Result 2: Let us now discuss more general measure-

ments, i.e., POVMs. Consider an entangled state ρ
(of dimension d × d) admitting a local model with k bits
of shared randomness for projective measurements. We can
then construct the state

ρ0 ¼ 1

ðdþ 1Þ2 ½ρþ dðρA ⊗ F þ F ⊗ ρBÞ þ d2F ⊗ F�;

which admits a local model with k bits of shared random-
ness for POVMs. Here F ¼ jdþ 1ihdþ 1j denotes a
projector onto a subspace orthogonal to the support of ρ;
hence, ρ0 is entangled by construction and of local dimension
dþ 1. This result follows straightforwardly from Protocol 2
of Ref. [11], since the local model obtained for ρ0 makes use
of the same shared randomness as the one for ρ.
Finally, we present two examples illustrating the above

results. First, applying Result 1 the local model of Ref. [25]
allows us to extend our result for two-qubit Werner states.
Specifically, we show that ρWðαÞ can be simulated with
finite shared randomness for α≲ 0.66. Upper bounds on
the amount of shared randomness are given in Fig. 1 (using
again an iterative procedure based on the icosahedron).
Notably, this shows that certain states useful for EPR
steering can be simulated with finite shared randomness.
Second, applying Result 2 to the state [26] ρWð0.43Þ, we
obtain that the state ρ ¼ 1

3
½ρWð0.43Þ þ 2j2ih2j ⊗ ðI=2Þ�

can be simulated for arbitrary POVMs using log2ð12Þ bits
of shared randomness.
Simulating nonlocal states with finite resources.—

Finally, we discuss the simulation of entangled states
which are nonlocal. In this case, classical communication
from (say) Alice to Bob is required. This communication is
sent after Alice has received her input. Two cases can be
considered: (i) Alice and Bob are initially uncorrelated
(i.e., have no shared randomness), and Alice sends classical
information to Bob, (ii) Alice and Bob have access to
shared randomness, and Alice sends classical information
to Bob. Reference [27] presents a model using no shared
randomness and finite expected communication. Other
known protocols (see, e.g., [25,28,29]) require, for case
(ii), finite communication assisted with infinite shared
randomness—hence infinite communication for case (i).
Here we present protocols using only finite resources, even
in the worst-case scenario.
Considering case (i), we first show that the statistics of

any bipartite entangled state ρ of dimension d × d that is
full rank can be simulated with finite communication. Note
that a state of full rank does not lie on the border of the set
of quantum states [20]. Upon receiving her measurement
setting A ¼ fAag, Alice outputs a according to the dis-
tribution pðaÞ ¼ TrðρAAaÞ, where ρA is Alice’s reduced
state. For output a, Bob should hold the (normalized) state
ρaB ¼ TrAðAa ⊗ IρÞ=pðaÞ. Since ρaB is full rank (by con-
struction) there exists a polyhedron V (with D vertices,
each representing a pure quantum state of dimension d)
such that Alice can decompose ρaB as a convex combination
of the vertices of V. With probability ωi (the coefficient of
vertex i in the decomposition) Alice sends label i to Bob,
who can then locally reconstruct the corresponding pure
state (knowing V). The model thus reproduces the statistics
of ρ using log2ðDÞ bits of communication.
For case (ii), we show that any state ρWðαÞ [see Eq. (2)],

with α < 1, can be simulated with finite shared randomness

PRL 114, 120401 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

27 MARCH 2015

120401-4



and finite communication (worst case). In particular, for
α ≤ 3=4 a single bit suffices. To construct such a model, we
combine the ideas of Protocol 1 and the simulation model
(using 1 bit of communication) for the singlet state of
Ref. [28]. See Supplemental Material [23] for details.
Conclusion.—We have shown that the correlations of

essentially all entangled states that admit a LHV model can
be simulated with finite shared randomness for the case of
projective measurements. This shows that the requirement
of infinite shared randomness (hence channels with infinite
capacity) used in previous models can in fact be dispensed
with. Whether this result can be extended to the case of
POVMs is a relevant issue.
An interesting open question is to find the minimal

amount of shared randomness required to simulate a local
entangled state. For a state of local dimension d, are more
than 4 log2ðdÞ bits of shared randomness always required,
that is, is the simulation of local entangled states strictly
more costly than that of separable states? We presented a
model using only 2 bits for Werner states of two qubits, but
our model works only for equatorial measurements; hence,
the question remains open.
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I. LHS MODELS FOR WERNER STATES
USING FINITE SHARED RANDOMNESS

Here, we describe in detail the protocols 1 and 2 of the
main text for the simulation of Werner states ρW (α) with
α < 1/2.

Protocol 1. Consider V to be any of the platonic solids
(except for the tetrahedron) with D vertices ~vi, satisfying
conditions:

∀ ~vλ ∃ ~vj s.t. ~vλ = −~vj (1)
∑

j s.t. ~vj ·~vλ≥0
~vj = γ~vλ ∀λ . (2)

The shared variable is given by λ ∈ {1, · · · , D}, uni-
formly distributed. Upon receiving λ, Alice and Bob use
vector ~vλ, and output according to the following response
functions:

pA(a|λ,~a) = 1 + asgn(~vλ · ~a)
2 , (3)

pB(b|λ,~b) = 1− b(~vλ ·~b)
2 . (4)

To begin with, consider the case where Alice’s measure-
ments corresponds to one of the vertices of V , i.e. ~a = ~vi.
Bob’s measurement ~b is arbitrary. We obtain the correl-
ator:

〈ab〉 = − 1
D

∑

λ

sgn(~vi · ~vλ)~b · ~vλ

= − 1
D

(
∑

λ|~vi·~vλ≥0

~vλ ·~b−
∑

λ|~vi·~vλ<0

~vλ ·~b ).

(5)

From equation (1) we have that
∑

λ|~vi·~vλ≥0

~vλ = −
∑

λ|~vi·~vλ<0

~vλ (6)

hence implying that

〈ab〉 = − 2
D

∑

λ|~vi·~vλ≥0

~vλ ·~b = − 2
D
γ ~vi ·~b

∗ These authors contributed equally to this work.

where we used equation (2) in the last step. Next we
compute the marginals:

〈a〉 = − 1
D

∑

λ

sgn(~vi · ~vλ) = 0 (7)

since for each ~vj there is an opposite vector ~vk = −~vj .
Similarly for Bob:

〈b〉 = − 1
D

∑

λ

(~b · ~vλ) = 0. (8)

Hence the model simulates a Werner state for α = 2γ
D ,

for the case in which Alice’s measurement is one of the
vertices of V .

Next we extend the model to an arbitrary projective
measurement for Alice, represented by vector ~a. Note
that for any ~a one can find a set {ωi}i=1,...,D, with ωi ≥ 0
and

∑D
i=1 ωi = 1 such that

D∑

i=1
ωi~vi = `~a, (9)

with ` < 1. That is, for each ~a one can find a vector lying
in the convex hull of V that lies parallel to ~a and has length
`. Hence, ` is precisely the radius of the sphere (centered
in the origin) inscribed inside V . If upon receiving ~a Alice
uses local randomness to simulate the measurement of ~vi
with probability ωi the overall correlator is given by

〈ab〉 =
D∑

i=1
ωi~vi ·~b = `~a ·~b. (10)

The marginal remains unchanged, i.e. 〈a〉 = 0. Hence, the
model now simulates a Werner state ρW (α) with visibility
α = 2γ`

D . Indeed the ’shrinking factor’ ` depends on the
choice of polyhedron V .
For each platonic solid, we give the visibility α of the

Werner state that is simulated, and the required amount
of shared randomness (see Table I). For the dodecahedron
and the icosahedron, the model simulates the correla-
tions of an entangled state. Note that the visibility α
depends on the ratio of various parameters, hence using
a polyhedron with more vertices may result in a lower
visibility.

Protocol 2. Protocol 1 can be extended to any poly-
hedron V (with D vertices) satisfying (1). Hence we now
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Shared randomness (bits) α Sep/Ent
Octahedron 2.58 0.19 separable

Cube 3 0.29 separable
Dodecahedron 4.32 0.41 entangled
Icosahedron 3.58 0.43 entangled

Table I. For each platonic solid, we give the visibility α of the
simulated Werner state. The amount of required shared ran-
domness is given by the number of vertices of the polyhedron.

relax condition (2), and have the relation
∑

j s.t. ~vj ·~vλ≥0
~vj = γλ ~mλ (11)

where ~mλ is a normalized vector and generally ~mλ 6=
~vλ. Define γmin = minλ(γλ). Hence we obtain a second
polyhedron M , defined by the vertices ~mλ, which are in
one-to-one correspondence with the ~vλ.

Upon receiving λ ∈ {1, ..., D}, Alice and Bob use vector
~vλ. Similarly to above, let us start with the case where
Alice’s measurement corresponds to one of the vectors of
M , ~a = ~mi. Here we will slightly modify Alice’s response
function compared to protocol 1. Specifically, Alice now
outputs according to

pA(a|λ, ~mi) = 1 + asgn(~vλ · ~vi)
2 , (12)

with probability γmin/γi, and outputs randomly otherwise.
Bob receives an arbitrary projective measurement ~b and
outputs as in protocol 1. The correlator is thus given by

〈ab〉 = − 1
D

∑

λ

γmin
γi

sgn(~vi · ~vλ)~b · ~vλ (13)

= − 1
D

γmin
γi

(
∑

λ|~vi·~vλ≥0

~vλ ·~b−
∑

λ|~vi·~vλ<0

~vλ ·~b)

= −2γmin
Dγi

∑

λ|~vi·~vλ≥0

~vλ ·~b

= − 2
D
γmin ~mi ·~b.

Note that condition (1) again ensures that the marginals
are uniform. Hence, the model simulates the correlations
of a Werner state ρW (α) with visibility α = 2

Dγmin when
Alice’s measurement corresponds to one of the vertices of
M . Following the same reasoning as above (for protocol
1), we can extend the simulation model to the case of an
arbitrary projective measurement for Alice. Similarly to
above, the resulting visibility is found to be α = 2γmin`/D,
where ` is the radius of the sphere inscribed inside M
centered on the origin.

Extensions. Protocols 1 and 2 are LHS models. Hence,
they can be extended to the simulation of other entangled
states, which can be obtained from Werner state via a
filtering operation on Bob’s side (the trusted party). For

instance, Ref. [1] discussed states of the form

ρα,θ = α |ψθ〉〈ψθ|+ (1− α) I2 ⊗ ρB (14)

where |ψθ〉 = cos(θ) |00〉 + sin(θ) |11〉 and ρB =
TrA(|ψθ〉〈ψθ|). Our model can be straightforwardly adap-
ted to the above class of states. For a given amount of
shared randomness, the model will simulate ρα,θ with the
same visibility α as for the Werner state.

II. LHS MODELS FOR ENTANGLED WERNER
STATES REQUIRE MORE THAN TWO BITS OF

SHARED RANDOMNESS

Consider LHS models. Bob’s response function is
quantum mechanical, given by the trace rule. In order to
simulate a Werner state ρW (α) with such a model using
only two bits of shared randomness, we must have that

〈ab〉 =
4∑

λ=1
pλAλ(~a) (~vλ ·~b) = −α ~a ·~b. (15)

where
∑
λ pλ = 1 and pλ ≥ 0. Here Aλ(~a) denotes an

arbitrary response function for Alice. For the particular
case of ~b = ~a, this implies

4∑

k=1
pkAλ(~a) (~vk · ~a) = −α (16)

hence we obtain

α ≤ max
λ

(|~vλ · ~a|). (17)

As this holds for all ~a, we have that

α ≤ min
~a

[max
λ

(|~vλ · ~a|)]. (18)

Here the best strategy consists in using the tetrahedron,
leading to α ≤ 1/3. Consequently, any LHS model re-
producing the correlations of an entangled Werner state,
i.e. ρW (α) with α > 1/3, requires more than two bits of
shared randomness.

III. SIMULATING EQUATORIAL
MEASUREMENTS ON WERNER STATES WITH

TWO BITS OF SHARED RANDOMNESS

Here we present a model to simulate the statistics of the
state ρW (α) for α ≤ 1/2, where all measurement Bloch
vectors lie in a plane (taken here to be the x− y plane).
Surprisingly, the model only uses two bits of shared ran-
domness. We parametrize Alice’s and Bob’s measurement
vectors on the Bloch equator as ~a = (cos(θa), sin(θa)) and
~b = (cos(θb), sin(θb)). Imagine the following model which
uses a single bit of shared randomness λ = 0, 1 with equal
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probability. For λ = 0, Alice outputs according to the
probability distribution

pA(a|λ = 0,~a) = 1
2(1 + a cos(θa)) (19)

whereas for λ = 1 she outputs according to

pA(a|λ = 1,~a) = 1
2(1 + a sin(θa)). (20)

Bob does exactly the same up to a flip of his output:

pB(b|λ = 0,~b) = 1
2(1− b cos(θb)) (21)

pB(b|λ = 1,~b) = 1
2(1− b sin(θb)). (22)

A short calculation shows that this gives the correlator

〈ab〉 = −1
2(cos(θa) cos(θb) + sin(θa) sin(θb)) (23)

= −1
2~a ·

~b.

In order to ensure that we have the correct marginals, we
add an additional bit of shared randomness to the model
µ = 0, 1 (again uniform). If we have µ = 1 then Alice and
Bob should both flip their output, i.e.

pA(a|λ = 0, µ,~a) = 1
2(1 + a(−1)µ cos(θa)); (24)

pB(a|λ = 1, µ,~a) = 1
2(1 + a(−1)µ sin(θa)) (25)

and equivalently for Bob. This then gives uniform margin-
als 〈a〉 = 〈b〉 = 0 while keeping the correlator unchanged.
Hence, we simulate exactly the statistics of projective
equatorial measurements on the state ρW (1/2).
It would be interesting to see whether this model can

be extended to the whole sphere. Using the techniques of
Ref. [2], we did not manage to solve the problem, as the
visibility α is reduced in the procedure.

IV. DETAILS OF THE PROOF OF RESULT 1

Here we show that noisy measurements can always be
decomposed using a fixed set of finitely many extremal
measurements.
Let A be a projective measurement (acting on Cd)

with projectors Aa with a = 1, .., d. Let now A(η) be a
d-outcome POVM with elements

Aa(η) = ηAa + (1− η) I
d

(26)

where η < 1. This POVM can be decomposed as

A(η) = ηA+ (1− η)I (27)

where I = {I/d, ..., I/d} is the identity measurement. It is
proven in [3] that a POVM is extremal (i.e. in the border

of the set of POVMs) if and only if one of its elements
is not full-rank. Hence POVM A(η) is not extremal,
since η < 1. Considering now all possible projective
measurements A, and a fixed η < 1, the set of POVMs
A(η) forms a hyper-surface which is strictly contained
in the set of all d-outcome POVMs acting on Cd (i.e.
this hyper-surface does not touch the border of the set).
Therefore it is possible to construct a polyhedron V made
of finitely many points on the border of the set of POVMs
which contains this hyper-surface. Hence any point on
the hyper-surface (or inside) belongs to the convex hull of
V and can then be decomposed as convex combinations
of the vertices of V .

V. SIMULATING NONLOCAL WERNER
STATES WITH FINITE COMMUNICATION AND

FINITE SHARED RANDOMNESS

We now discuss the simulation of a two-qubit Werner
state ρW (α) for all α < 1 with finite communication
and finite shared randomness. Consider a polyhedron V
with D vertices satisfying (1), with corresponding γmin
and shrinking factor `. Our model uses n log2(D) bits of
shared randomness and log2 n bits of communication (in
the worst case), and simulates ρW (α) for

α = γmin
γmax

(
1− [1− 2γmin

D
]n
)
`2 (28)

where γmax = maxi(γi). Note that by choosing a sym-
metric enough polyhedron with ` ≈ 1 and 2γmin/D ≈ 1/2
we can simulate a ρW (α) for α→ 3/4 with n = 2 (when
D → ∞). Hence, using finite shared randomness and a
single bit of communication suffices to simulate a nonlocal
quantum state.

Again we consider a polyhedron V with D vertices sat-
isfying (1) from which we can define a second polyhedron
M via equation:

∑

j s.t. ~vj ·~vλ≥0
~vj = γλ ~mλ . (29)

Let us first discuss the case in which both Alice and
Bob’s measurement Bloch vectors correspond to one of
the vertices of M , i.e. Alice gets vector ~a = ~ml and Bob
~b = ~mk. The protocol is then as follows:

Protocol 4. In each round Alice and Bob receive n
numbers {λ1, λ2, · · · , λn}, where each λi is uniformly
distributed with λi ∈ {1, · · · , D}. Either Alice will select
one of the λi or she will reject all of them. Consider
a variable T to denote Alice’s selection, with T = 0
corresponding to rejection. In the first step, Alice
concentrates on λ1 and does one of the following: (i) with
probability |~ml · ~vλ1 |γmin/γmax she selects λ1 and sets
T = 1 and moves to the final step, (ii) with probability
1 − |~ml · ~vλ1 |γmin/γl she discards λ1 and moves to the
second step (concentrating now on λ2), (iii) she rejects,
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sets T = 0 and moves to the final step. Hence, at step
j (if it is reached), Alice concentrates on λj . In the
final step, Alice may have selected λT or she may have
rejected. In the case of rejection (T = 0), Alice sends
c = 1 to Bob and outputs randomly. Otherwise, she
sends c = T to Bob and outputs a = sgn[~ml · ~vλT ]. Bob
then outputs b = −sgn[~vk · ~vλc ] with probability γmin/γk,
and otherwise outputs randomly.

For the correlator we have

〈ab〉 = (30)

− γmin

Dnγk

∑

{λi}

n∑

t=1

p(T = t|{λi}, ~ml)sgn(~ml · ~vλt)sgn(~vk · ~vλt)

=− γmin

Dnγk

n∑

t=1

D∑

λt

sgn(~ml · ~vλt)sgn(~vk · ~vλt)

×
∑

{λi6=t}

p(T = t|{λi}, ~ml).

From the protocol we have that

p(T = t|{λi}, ~mj) = γmin

γmax
|~mj · ~vλt |

∏

j<t

(1− γmin

γj
|~mj · ~vλj |).

(31)

From (13) it follows that

γmin

γk

∑

λt

|~ml · ~vλt |sgn(~ml · ~vλt)sgn(~vk · ~vλt) (32)

=γmin

γk

∑

λt

~ml · ~vλtsgn(~vk · ~vλt)

=2γmin ~ml · ~mk.

We then have

〈ab〉 = −2γ2
min

Dnγmax
~ml · ~mk

n∑

t=1

∑

{λi6=t}

∏

j<t

(1− γmin

γl
|~ml · ~vλj |)

(33)

and so we simulate a Werner state with α given by

α = 2γ2
min

Dnγmax

n∑

t=1

∑

{λi6=t}

∏

j<t

(1− γmin

γl
|~ml · ~vλj |). (34)

We now proceed to simplify the above expression for α and
show that it is independent of ~ml. Since each term in the
product depends only on a single λj we have:

α = 2γ2
min

γmax

n∑

t=1

1
Dn−t+1

∑

{λi>t}

∏

j<t

D∑

λ=1

1
D

(1− γmin

γl
|~ml · ~vλj |).

From the definition of γl, it follows that
∑D
λ=1

1
D
γmin
γl
|~ml ·

~vλj | = 2γmin/D, and so summing over the {λi>t} as well
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Figure 1. Visibility α of the Werner state ρW (α) as a function
of the average number of communication 〈c〉.

we get

α = 2γ2
min

Dγmax

n∑

t=1

∏

j<t

(1− 2γmin/D) (35)

= 2γ2
min

Dγmax

n∑

t=1
(1− 2γmin/D)t−1

= γmin
γmax

(1− (1− 2γmin/D)n),

where in the last line we have used the fact that
∑n
i=1(1−

x)(i−1) = (1− (1− x)n)/x. Using similar reasoning it is
lengthy but straightforward to check that both Alice and
Bob’s marginals are uniform, i.e. 〈a〉 = 〈b〉 = 0. Finally,
we note that we can extend this model to a model for all
projective measurements in the same way as previously
if Alice and Bob decompose their measurement vectors
as convex combinations of vertices of the polyhedron M .
This will add a factor `2 giving the final visibility

α = γmin
γmax

(
1− [1− 2γmin

D
]n
)
`2. (36)

Average communication. Although the above protocol
requires log2(n) bits of communication in the worst case,
the average amount of communication is typically much
smaller, as each λi is decreasingly less likely to be selected
by Alice. To quantify this, we calculate the average
label that is sent by Alice. i.e. the average value of the
communication c:

〈c〉 = 1
Dn

∑

{λi}

n∑

j=1
j p(c = j|{λi}~a) (37)

= 1 + (1− x)x d

dx
gn(x)

with x = 1− 2γmin/D and gn(x) = 1−xn
1−x . In the limit of

large shared randomness, i.e. D →∞, we get

〈c〉 = 2− 1 + n

2n . (38)
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Hence, in this regime, the average value of the commu-
nication c remains smaller than 2. Figure 2 shows the
visibility α of the simulated state as a function of 〈c〉.

Thus we expect that the model requires only a small
amount of average bits of communication although the
worst case communication is log2 n bits.
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We consider networks featuring preparation, transformation, and measurement devices, in which devices
exchange communication via mediating physical systems. We investigate the problem of testing the dimension
of the mediating systems in the device-independent scenario, that is, based on observable data alone. A general
framework for tackling this problem is presented, considering both classical and quantum systems. These methods
can then also be used to certify the nonclassicality of the mediating systems, given an upper bound on their
dimension. Several case studies are reported, which illustrate the relevance of the framework. These examples
also show that, for fixed dimension, quantum systems largely outperform classical ones. Moreover, the use of
a transformation device considerably improves noise tolerance when compared to simple prepare-and-measure
networks. These results suggest that the classical simulation of quantum systems becomes costly in terms of
dimension, even for simple networks.
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I. INTRODUCTION

The problem of estimating the dimension of an unknown
physical system has attracted attention recently. Following
early works discussing the problem in the context of Bell
inequalities [1–3], a framework was presented for the simplest
case of a prepare-and-measure scenario [4]. Such a setup
features two devices. First a preparation device, which allows
the observers to prepare a physical system in various ways.
Second, a measurement device, which allows the observer
to perform a measurement on the prepared physical system.
It is then possible to find the minimal dimension of the
physical system that is compatible with the data. The method
is device independent (DI), in the sense that dimension can
be certified from the data alone. Techniques tailored for
classical [4,5] and quantum [6–8] systems were reported, as
well as for the case in which the devices are assumed to be
independent [9,10]. The practical relevance of these ideas was
recently illustrated [12,13]. Also, the notion of dimension was
discussed in more general models beyond quantum theory [11].

A closely related problem is that of testing the nonclassi-
cality of communication. More specifically, considering again
the prepare-and-measure setup, it is possible to guarantee
the use of quantum communication, under the assumption
that the dimension of the system is upper bounded [4].
From a conceptual point of view, this approach aims at
quantifying how much classical communication is required to
simulate quantum communication [14,15], a relevant problem
in the foundations of quantum theory and in communication
complexity [16]. Moreover, these ideas are relevant for “semi-
device-independent” quantum information processing [17].
Here the correct implementation of a protocol can be
guaranteed in a device-independent way, with an additional
assumption on the Hilbert space dimension. Protocols for
semi-DI quantum key distribution [17–19], randomness cer-
tification [20,21], and the characterization of quantum sys-
tems [22,23] were discussed, with experimental implementa-
tions recently reported [24–26].

More generally, it is natural to consider the problem of test-
ing dimension and nonclassicality in general communication

networks, in which black-box devices exchange and process
information. To model such a situation, we consider a network
composed of preparation devices, transformation devices,
and measurement devices (see Fig. 1). First, the preparation
devices send out information encoded in physical systems of
certain dimension. In turn, these physical systems (and the
information they carry) are processed in transformation de-
vices. Finally, the systems are measured (i.e., the information
is extracted) using measurement devices. Since we work in
the device-independent picture, all devices are represented by
black boxes. We therefore have access only to measurement
data, that is, the probabilities of obtaining certain measurement
results, given the choices of preparations, transformations, and
measurements made by the observer. From this data, our goal
is then to infer a lower bound on the dimension of the physical
systems mediating the information. We will here consider both
the case of classical and quantum systems. Moreover, we
discuss testing the nonclassicality of communication under
the assumption that the dimension is upper bounded. Note that
the definition of dimension that we employ here is related
to the number of perfectly distinguishable states, i.e., that
there should be precisely d perfectly distinguishable states
in dimension d. For classical and quantum systems this will
coincide with the classical alphabet size and Hilbert space
dimension, respectively.

We start by describing the general scenario we consider in
Sec. II. Next, we discuss a general framework for addressing
this problem for the case of classical systems (Sec. III) and
quantum systems (Sec. IV). For the sake of clarity, we present
the framework in detail for a simple network, featuring one
preparation, one transformation, and one measurement device.
We show that the idea of dimension witnesses [4] can be
generalized to arbitrary networks, and present methods for
deriving optimal witnesses. In Sec. V, we show how dimension
witnesses can be used to certify and measure nonclassicality
of communication. In order to illustrate the relevance of these
methods, we discuss several case studies in Sec. VI, deriving
and characterizing dimension witnesses for simple networks.
An interesting feature shared by most of these examples is
the fact that quantum systems strongly outperform classical
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FIG. 1. (Color online) We consider networks featuring prepara-
tion, transformation, and measurement devices. All devices receive
classical inputs. Transformation and measurement devices provide
classical outputs. The arrows between the devices represent commu-
nication channels, either quantum or classical.

systems of the same dimension. In fact, we observe a
significant enhancement of the advantage offered by quantum
systems over classical ones compared to the usual prepare-and-
measure scenario. This suggests interesting possibilities for
quantum information protocols, and for addressing questions
in the foundations of quantum theory. These issues are
discussed at the end of the paper, in Sec. VII.

II. GENERAL SCENARIO

The general scenario we wish to consider is a network of de-
vices exchanging and processing information, as represented
in Fig. 1. Devices are represented by black boxes. An arrow
connecting two devices represents a (one-way) communication
channel between them [27].

A network consists of three levels: (i) a number of
preparation devices, (ii) a number of transformation devices,
and (iii) a number of measurement devices. In each round of
the experiment, the observer chooses the preparations x, the
transformations t, and the measurement settings y. He then
obtains measurement outcomes b; note that transformation
devices can also provide outcomes, denoted s. More precisely,
we have that the choice of preparations is given by x = {xi},
where xi denotes the input for device i. The choice of
transformations is t = {tj }, where tj denotes the input for
device j , and the (possible) outcomes are s = {sj }, where
sj denotes the output of device j . Finally, the choice of
measurement settings is y = {yk}, where yk denotes the
input for measurement device k, and gives outcomes b =
{bk}, where bk is the output of measurement device k. The
experiment is therefore characterized by the data

p(b,s|x,t,y), (1)

that is, the conditional probabilities of observing outputs b,s
given inputs x,t,y. A general scenario is thus specified by a
directed graph representing the network, and the number of
inputs and outputs for each of the devices (which we will here
consider to be finite).

In this network, the devices exchange information encoded
in physical systems. For instance, upon receiving input xi ,

each preparation device emits a system, the state of which
is adapted depending on xi . Which physical system is used,
and what mechanism is used to encode information in it, is
completely unknown to the observer, who has only access to
inputs and outputs of the black boxes. That is, we work in a
device-independent scenario.

Now the main point is the following. Clearly, the amount
of information about xi which can be encoded in the system
will depend on its dimension (i.e., the number of independent
degrees of freedom of the system). Therefore, we expect
that a restriction on the dimension will in general limit the
possible observable data (1). Consider, for instance, the case
in which the outputs b contain all information about the inputs
x. This implies that the mediating physical systems had enough
dimensions for encoding x perfectly.

The main question we will discuss in the present work is to
understand the limitations on the data, arising from constraints
on the dimension of the mediating systems. This will allow
us to find lower bounds on the dimension of the systems
present in a network for given data (1). In particular, we
will discuss bounds for both classical and quantum systems.
Notably, we will see that for a fixed dimension, quantum
systems outperform classical ones.

III. CLASSICAL NETWORKS

For the sake of clarity, we will focus on the network
consisting of one preparation device, followed by a single
transformation device, and finally a single measurement device
(see Fig. 2). The data is thus given by the conditional
distribution p(b,s|x,t,y); we consider a finite (but otherwise
unspecified) number of inputs and outputs. Note that the
methods discussed below can be straightforwardly generalized
to more general networks.

A. Basics

We start our analysis by considering classical communi-
cation between the devices. Denote by c0 the communication
sent from the preparation device to the transformation device,
and c1 the communication sent from the transformation device
to the measurement device. We consider communication of
bounded dimension d, that is,

c0,c1 ∈ {1, . . . ,d}. (2)

Upon receiving input x, the preparation device sends commu-
nication c0, with probability p(c0|x). In turn, upon receiving

FIG. 2. A simple network consisting of a preparation, a transfor-
mation, and a measurement device. The set of possible distributions
of inputs and outputs, p(bs|xty), will depend on the dimension of
the communication allowed between the devices, and whether the
communication is classical or quantum.
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input t and communication c0 (from the preparation device),
the transformation device outputs s and sends communication
c1 to the measurement device with probability p(s,c1|t,c0).
Finally, upon receiving measurement setting y and communi-
cation c1, the measurement device outputs b with probability
p(b|y,c1). We thus have that

p(b,s|x,t,y) =
d∑

c0,c1=1

p(c0|x)p(s,c1|t,c0)p(b|y,c1). (3)

We first consider the case in which all devices act
deterministically. That is, each of the previously mentioned
probabilities are either 0 or 1. It follows that each probability
p(b,s|x,t,y) also takes only values 0 or 1. We refer to these
sets of data as “deterministic strategies.”

In general, we also want to include the possibility that the
devices in the network output probabilistically, and moreover
that they follow a common strategy. That is, the behavior
of the devices might be correlated, due to some (common)
internal variable λ (referred to as shared randomness). The set
of possible distributions now becomes all convex combinations
of deterministic strategies:

p(b,s|x,t,y)

=
∫

λ

π (λ)dλ

d∑
c0,c1=1

pλ(c0|x)pλ(s,c1|t,c0)pλ(b|y,c1),

(4)

where π (λ) is a normalized probability density over λ and
pλ(c0|x) denotes the probability for the preparation device to
send c0, given input x and internal variable λ, and so on.

Any set of data that cannot be decomposed in the form (4)
therefore requires the use of communication (c0 and/or c1) of
dimension strictly greater than d. In the next sections we will
see how to test whether a given set of data can be decomposed
in the above form or not. This will provide the “dimension
witnesses” we are looking for.

B. Geometrical interpretation

The above ideas admit an elegant description in geometrical
terms. Initially developed in the context of Bell nonlocal-
ity [28], these ideas were also adapted to the prepare-and-
measure scenario [4].

The goal here is to characterize the set of distributions (4)
in geometrical terms. Consider first one particular set of data
p(b,s|x,t,y). This distribution can be viewed as a vector p
where each component of the vector corresponds to one of
the probabilities p(b,s|x,t,y) appearing in the data. Hence
p ∈ RD , where

D = |b| |s| |x| |t | |y| (5)

with |b| denoting the alphabet size of b, that is, the number of
possible outcomes b, and similarly for other symbols.

Next, consider the entire set of distributions admitting a
decomposition of the form (4), that is, all sets of data that can
be obtained by using communication c0 and c1 of dimension
d. This set, denoted Pd , thus forms a subspace of RD . In fact,
Pd forms a convex polytope. Its extremal points (or vertices)
correspond to the deterministic strategies, that is, the set of

distributions of the form (3), for which p(b,s|x,t,y) ∈ {0,1}
for all b,s,x,t,y. Alternatively, the polytope Pd can also be
characterized by its facets (of which there is a finite number,
since the number of vertices is finite). Formally, facets are
given by linear inequalities

p · A =
∑

b,s,x,t,y

αb,s
x,t,y p(b,s|x,t,y) � Cd, (6)

where α
b,s
x,t,y and Cd are real numbers (usually integers). A is

the D-dimensional vector, with components α
b,s
x,t,y , associated

to the facet, i.e., orthogonal to the hyperplane given by the
facet. Therefore we have that

p ∈ Pd ⇐⇒ p · A � Cd, (7)

where the right-hand side means that all facet inequalities
are satisfied. Moreover, we have that Pd ⊆ Pd+1, since all
strategies involving d-dimensional communication can always
be realized using communication of dimension d + 1.

In practice, the polytope Pd can be constructed for simple
networks, i.e., few devices and small alphabets for the inputs
and outputs. Specifically, one starts by listing the deterministic
strategies, i.e., the vertices of the polytope. Then, appropriate
software (see, e.g., [29,30]) allows one to find the facets of the
polytope. Beyond simple cases, however, the problem becomes
intractable on standard computers.

Finally, note that one can slightly reduce the complexity
of the problem by taking into account certain constraints
on the data p(b,s|x,t,y). This allows one to discard certain
(redundant) components of �p. In particular, we have here the
normalization conditions∑

b,s

p(b,s|x,t,y) = 1 ∀x,t,y (8)

and the condition that∑
b

p(b,s|x,t,y) = p(s|x,t) ∀s,x,t,y. (9)

That is, the output s of the transformation device does not
depend on the choice of input y for the measuring device. This
follows from the fact that y can in principle be chosen after the
output s is obtained. For more general networks, it is important
to take all such “no-signaling” conditions into account in order
to reduce the complexity of the problem.

C. Classical dimension witnesses

Our main goal is to develop methods for testing whether a
given set of data p(b,s|x,t,y) is compatible with a particular
network sending communication of bounded dimension. To
address this question, we will now discuss the concept of
“dimension witnesses,” hence generalizing the ideas of Ref. [4]
to networks.

Consider linear combinations of the form

W = w · p =
∑

b,s,x,t,y

ωbs
xtyp(b,s|x,t,y) � Cd, (10)

where w is a D-dimensional vector, with real components
ωbs

xty , and Cd is a real number. We say that an inequality of
the above form is a linear classical dimension witness of
dimension d, if (i) the inequality holds for any distribution
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p(b,s|x,t,y) realizable with communication of dimension d,
and (ii) there exists at least one distribution p(b,s|x,t,y)
(involving systems of dimension at least d + 1) for which
the inequality is violated.

The geometrical ideas discussed in the previous section are
relevant here, as they will allow us to construct dimension
witnesses. Take one facet inequality of the polytope Pd :
property (i) above will immediately be satisfied. In general,
there will also exist a vector p ∈ Pd ′ with d < d ′ that will
violate the facet inequality, and hence (ii) is also satisfied. Such
facet inequalities will be called “tight dimension witnesses.”
In fact, the complete list of the facets of Pd will provide a
complete list of dimension witnesses, which allow one to find
the minimal dimension of the communication necessary to
reproduce a given set of data.

In Sec. VI, we will present several examples of dimension
witnesses.

IV. QUANTUM NETWORKS

We now move to the case of quantum communication
networks. Here, the classical channels are replaced by quantum
channels. Our goal is thus to characterize the sets of data
compatible with sending quantum communication of bounded
Hilbert space dimension in the network. For the sake of clarity,
we will also focus on the simple network of Fig. 2.

A. Basics

Consider again the network consisting of one preparation
device, followed by a transformation device, and finally by a
measurement device. The devices can now produce, process,
and measure quantum systems. The constraint we consider is
that the quantum systems transmitting information between
the devices are of Hilbert space dimension bounded by d.

Let us first consider the preparation device. Upon receiving
input x, the device prepares a d-dimensional quantum system
in state ρx , which is sent to the transformation device. In
turn, the transformation device receives input t , as well as
the quantum communication ρx , produces an outcome s, and
sends a d-dimensional quantum system to the measurement
device. The action of the transformation device can thus be
represented by a set of completely positive (CP) maps {�s|t }
(acting on Cd ), such that

∑
s �s|t is completely positive and

trace preserving: this ensures that
∑

s p(s|x,t) = 1 for all
x,t . Note that, since we impose that all communication is
of bounded dimension d, we restrict to CP maps which do not
increase the Hilbert space dimension [31]. With probability
Tr[�s|t (ρx)] the transformation device outputs s, and sends
the quantum state

�s|t (ρx)/ Tr[�s|t (ρx)] (11)

to the measuring device. Finally, upon receiving this quantum
communication and the input y, the measuring device provides
an output b. This is represented by a set of measurement
operators Mb|y (acting on Cd ), such that Mb|y � 0 and∑

b Mb|y = I.
Putting all this together we obtain that

p(b,s|x,t,y) = Tr(�s|t (ρx)Mb|y). (12)

Any set of data admitting a decomposition of this form is thus
realizable with quantum communication of dimension d. On
the contrary, if such a decomposition cannot be found, then
higher dimensional quantum systems must have been used.

As in the case of classical networks, it is also relevant to
allow for the devices to act according to a common strategy λ.
In this case, the set of compatible distributions is therefore the
convex hull of those of the form (12):

p(b,s|x,t,y) =
∫

λ

Tr
(
�λ

s|t
(
ρλ

x

)
Mλ

b|y
)
π (λ)dλ, (13)

where now the states, transformations, and measurements
are written with λ dependence. Finally, note that one could
also consider the case in which the devices share quantum
correlations, i.e., initial entanglement (see Sec. VI D for an
example).

B. Quantum dimension witnesses

The problem is now to test whether a given set of data
p(b,s|x,t,y) is compatible with a particular network sending
quantum communication of bounded Hilbert space dimension.
Similarly to the classical case discussed above, we now define
“quantum dimension witnesses.”

Consider again linear inequalities of the form

W = w · p =
∑

b,s,x,t,y

ωbs
xty p(b,s|x,t,y) � Qd, (14)

with w a D-dimensional vector, with real components ωbs
xty ,

and Qd a real number. In analogy to the classical case, W is
a linear quantum dimension witness of dimension d if (i) the
above inequality is satisfied by all sets of data p(b,s|x,t,y)
realizable with quantum communication of dimension d, and
(ii) using quantum communication of dimension greater than
d allows one to violate the inequality.

Finding quantum dimension witnesses is generally a harder
task than in the classical case. To the best of our knowledge,
there are no known efficient computational methods for this
problem; see, however, Ref. [8] for recent progress.

V. TESTING NONCLASSICALITY

An interesting development related to dimension tests is the
possibility of certifying nonclassicality of communication in
a device-independent way, assuming an upper bound on the
dimension. This aspect was discussed in Ref. [4] for simple
prepare-and-measure scenarios. Here we consider this problem
in the context of more general networks.

Before moving on, it is important to understand why an
assumption on the dimension is necessary in order to make
the problem nontrivial. Consider, for instance, the network of
Fig. 2. If the dimension is not limited, then the input settings
of the preparation and transformation devices, x and t , can be
perfectly transmitted to the final measurement device. Since
the transformation device has all information about x and t , and
the measuring device has all information about x,t,y, it follows
that any possible statistics p(b,s|x,t,y) can be reproduced.
This implies that nontrivial bounds can only be placed if |c0| <

|x| and/or |c1| < |x||t |.
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A. Nonclassicality tests based on dimension witnesses

Considering systems of a fixed dimension, quantum com-
munication can outperform classical communication. This
advantage can be revealed by using dimension witnesses.
Specifically, by using a well-chosen quantum strategy involv-
ing states of Hilbert space dimension d, it is possible to violate
certain classical dimension witnesses of dimension d. More
formally, we say that a dimension witness with the property

W = w · p � Cd < Qd (15)

can be used as nonclassicality tests for systems of dimension
d. Consider a set of data pQ such that W = w · pQ > Cd . This
implies the use of genuinely quantum systems for reproducing
pQ, under the assumption that the experiment involves systems
of dimension d. In Sec. VI, we will discuss several examples.

B. Quantifying quantum advantage

It is useful to quantify the advantage offered by quantum
resources over classical ones. In the present context, several
figures of merit can be considered. First, the amount of
violation of a given dimension witness could be used, however
this will generally depend on how the witness is expressed, and
will not allow one to compare different witnesses. Hence, here
we use the notion of noise tolerance, which has a more physical
interpretation, and will allow us to compare various witnesses.

Consider a quantum experiment (with systems of dimension
d) and its corresponding set of data pQ, which is found to
violate a classical dimension witness, i.e., W = w · pQ > Cd .
The noise tolerance of the quantum point pQ for this dimension
witness is defined as the minimal fraction of white noise, η,
such that the distribution

p0 = (1 − η)pQ + ηpI (16)

does not violate the witness, i.e., W = w · p0 = Cd . Here pI

denotes white noise, i.e., pI(b,s|x,t,y) = 1
|b| |s| is the uniform

distribution for all x,t,y.
In a practical context, considering noisy distributions of

the form (16) is quite natural, due to unavoidable technical
imperfections, e.g., losses or misalignment of the preparations.

C. Bounded noise tolerance in prepare-and-measure
scenarios involving qubits

It turns out that the noise tolerance of qubit strategies
is bounded for any dimension witness in the prepare-and-
measure scenario. More precisely, any set of data obtained
from qubits and projective measurements can be reproduced
using one classical bit if the noise level η satisfies

η � η∗ = 1 − 1

k3
≈ 0.34, (17)

where k3 is the Grothendieck constant [32] of order three [33].
Hence, in the prepare-and-measure scenario, no dimension
witness for classical bits and projective measurements can be
violated for η � η∗.

We give a proof of the above statement. Consider that the
choice of preparation is specified by a vector �x ∈ R3, which
represents the Bloch vector of the desired qubit state. Similarly
the measurement is specified by a Bloch vector �y, representing

the observable M�y = �y · �σ (with outcomes b = ±1), where
�σ = (σx,σy,σz) denotes the vector of Pauli matrices. The
expected data is therefore

p(b|�x,�y) = 1 + b �x · �y
2

. (18)

Any such data can be reproduced classically by send-
ing two bits [34]. In order to see this, consider that the
preparation and measurement devices share a singlet state
|ψ−〉 = 1√

2
(|01〉 − |10〉). In order to prepare a qubit state

corresponding to vector �x, measure the observable �x · �σ on
(half of) the singlet. The result of this measurement is a = ±1.
Then, the state of the other half of the singlet (held by the
measuring device) is given by the Bloch vector −a�x. By
performing a measurement of the observable −a �y · �σ on this
half of the state, we recover the data (18). The protocol thus
requires one bit of communication (to send a), and one singlet
state. Using only classical resources, the protocol requires two
bits of communication (as the simulation of the singlet state
can be done with one bit of communication [34]).

Now, let us see what one can do using only a single bit
of communication. The main point is that the simulation
of a sufficiently noisy singlet state can be done without
communication. That is, there exists a local hidden variable
model (for projective measurements) for the state

ρ = w |ψ−〉 〈ψ−| + (1 − w)I/4 (19)

for w � 1/k3 � 0.66 [35]. Considering such a noisy singlet
state in the above protocol, we see that it is possible to simulate
the data (18) with probability w; with probability 1 − w we
obtain the distribution pI. Hence, with a noise level η � η∗ =
1 − 1

k3
, any qubit strategy can be simulated with one classical

bit (and shared randomness).
As mentioned, the above result holds only if the measure-

ment device performs a projective measurement. Since any
two outcome qubit measurement can be written as a convex
mixture of projective measurements, the result can be extended
to all two outcome scenarios. One can extend further to general
positive operator-valued measurements at the cost of a larger
η∗ by using Werner’s model [36] for the state (19) with w = 1

2 ,
leading to η∗ = 1

2 . This follows from the fact that Werner’s
model can be seen as a local hidden state model [37], hence
the model is valid if general measurements are performed on
one side (the trusted party).

VI. CASE STUDIES

We now present several case studies, illustrating the
relevance of the concepts and tools discussed above. We
first discuss two examples of networks of the form Fig. 2,
where preparation, transformation, and measurement devices
are “in a line.” We then discuss two examples based on a
different network, featuring two separate preparation devices
and one measurement device. Note that such a network
has been considered in different contexts. Notably, this
was studied in communication complexity, in the so-called
simultaneous message passing model [16], e.g., quantum
fingerprinting [38], but also for the black-box certification of
entangled measurements [23,26,39], and the Pusey-Barrett-
Rudolph theorem [40].
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In all cases quantum systems are shown to provide
significant advantage over classical systems of the same
dimension. Moreover, in all examples (except for the third
one), this quantum advantage is stronger compared to the
simple prepare-and-measure scenario, in terms of noise toler-
ance. This suggests that the simulation of quantum strategies
becomes significantly harder in the case of networks, even if
they feature only few devices.

A. Three devices in a line: Simple case

We start with the network of Fig. 2, considering one
of the simplest (nontrivial) configurations in terms of the
number of inputs and outputs. Specifically, we have |x| = 3
and |t | = |y| = |b| = 2. Note that the transformation device
does not give any outcome (i.e., |s| = 1). We label the inputs
and outputs: x ∈ {0,1,2} and t,y,b ∈ {0,1}. Hence a set of
data is characterized by D = 24 probabilities p(b|x,t,y).
However, considering normalization conditions, this number
is reduced to 12; specifically, the probabilities p(1|x,t,y) =
1 − p(0|x,t,y) are redundant and can thus be omitted.

Applying the method described in Sec. III B we have fully
characterized the polytope P2, that is, the set of distributions
achievable for c0,c1 ∈ {0,1}. Using the software PORTA, we
could find the complete list of facets of P2, which can be
grouped (under relabeling of inputs and outputs) into 1870
inequivalent classes of dimension witnesses [41].

Here, we present one class of tight dimension witnesses, a
member of which can be written in simple form:

WJ = p011 + p101 + p110 + p200

−p000 − p001 − p010 − p211 � 2, (20)

where we write pxty = p(b = 0|x,t,y). A simple strategy
using c0,c1 ∈ {0,1} that reaches WJ = 2 is as follows. The
preparation device sends c0 = 0 for inputs x = 0,2, but
sends c0 = 1 if x = 1. Upon receiving c0 and input t , the
transformation device sends c1 = c0 ⊕ t to the measurement
device (where ⊕ denotes addition modulo 2). Finally, the
measurement device outputs b = c1 ⊕ y. Note also that using
classical trits, c0,c1 ∈ {0,1,2}, we can achieve WJ = 4, the
maximal possible value.

Using qubits we can significantly outperform classical bits.
Consider general pure qubit preparations:

|ψ(θ,φ)〉 = cos

(
θ

2

)
|0〉 + sin

(
θ

2

)
exp(iφ) |1〉 . (21)

Specifically, for preparations x = 0,1,2 take |ψ(π
2 ,0)〉,

|ψ(π
2 , 3π

4 )〉, and |ψ(π
2 ,−3π

4 )〉, respectively. Next consider the
transformation device, parametrized by

�t=0 = I2, �t=1 = exp
(
−i

π

4
σz

)
, (22)

where σz = diag(1,−1) is the Pauli z matrix. Finally, for the
measuring device, we have the measurement operators

M0|0 = ∣∣ψ(
π
2 ,−3π

4

)〉〈
ψ

(
π
2 ,−3π

4

)∣∣, (23)

M0|1 = ∣∣ψ(
π
2 , 3π

4

)〉〈
ψ

(
π
2 , 3π

4

)∣∣. (24)

Calculating the resulting probabilities, via Eq. (12), and
inserting them into Eq. (20), we obtain

WJ = 2 +
√

2 ≈ 3.41. (25)

The above qubit strategy thus clearly violates the witness (20),
and can therefore not be reproduced with classical bits;
classical trits must be used. Numerical optimization strongly
suggests that this qubit strategy is optimal.

The noise tolerance of the above qubit strategy is

η =
√

2 − 1 ≈ 0.41. (26)

Notably, this value exceeds the bound η∗ ≈ 0.34 (see Sec. V B)
for any prepare-and-measure scenario. Hence the advantage
offered by qubits compared to classical bits is stronger
compared to what is possible in the prepare-and-measure
scenario.

B. Distributed 3 → 1 random access code

As a second example, we consider a task inspired from
the information-theoretic task of a random-access code
(RAC) [42].

Specifically, we consider a distributed version of the 3 → 1
RAC featuring three devices in a line [see Fig. 3(a)]. Consider
three bits a0,a1,a2 randomly taken from a uniform distribution.
These bits will determine the inputs of the preparation and
transformation devices, namely, x = (a0,a1) and t = a0 ⊕ a2.
Again, the transformation device has no output. The measuring
device has a ternary input y = 0,1,2. Similarly to a RAC,
the goal is to have the output b = ay . Hence we can define
the following witness (for the scenario |x| = 4, |t | = |b| = 2,
|y| = 3, and |s| = 1) which is the average success probability:

WD-RAC = 1
24

∑
a0a1
a2y

p(b = ay |x = (a0,a1),t = (a0 ⊕ a2),y)

� Cd.

We first discuss the case of classical communication. For
bits we obtain the bound C2 = 2

3 , which can be achieved
as follows. The preparation device sends c0 = a0 to the
transformation device, who in turn sends c1 = c0 to the
measurement device for both inputs t = 0,1. The measurement
device outputs b = c1 = a0. Hence, for y = 0 we always have
b = ay . However, for y = 1,2, success is only achieved with
probability 1/2. Overall, this leads to C2 = 2

3 . For the case of
classical trits, c0,c1 ∈ {0,1,2}, we get C3 = 19/24. In order
to achieve success with probability one, i.e., WD-RAC = 1,
eight-dimensional systems are required.

Next, we discuss quantum strategies. Using qubits, we can
achieve up to

WD-RAC = Q2 = 1

2

(
1 + 1√

3

)
≈ 0.79. (27)

The optimal strategy is the following. For input x = (a0,a1),
choose preparations∣∣∣∣ψ

(
(−1)a1 arccos

(
1√
3

)
+ πa1,

π

4
+ πa0

)〉
, (28)
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(a) (b)

FIG. 3. (Color online) (a) The network corresponding to the distributed 3 → 1 random-access code (case study B). Three random bits
a0,a1,a2 are used to generate the inputs x and t . Upon receiving input y = 0,1,2, the measurement device should output b = ay . The dimension
witness WD-RAC [see Eq. (28)] quantifies the average success probability. (b) Optimal qubit strategy. The four qubit preparations [red dots,
corresponding to (a0,a1)] are given by the vertices of a cube inscribed inside the Bloch sphere. Upon receiving input t = a0 ⊕ a2 = 1, the
transformation device performs a rotation of π/2 around the z axis if t = 1, and the identity otherwise. Finally, by performing a measurement
in the x,y,z directions, maximal information about a0,a1,a2 (respectively) is obtained.

which lie at four of the vertices of the cube inscribed inside the
Bloch sphere [see Fig. 3(b)]. The transformations are given by

�t=0 = I2, �t=1 = exp

(
i
π

4
σz

)
. (29)

Finally, the measuring device performs a measurement in one
of three mutually unbiased bases:

M0|0 = ∣∣ψ(
π
2 ,0

)〉〈
ψ

(
π
2 ,0

)∣∣ = |+x〉 〈+x| ,
M0|1 = |ψ(0,0)〉 〈ψ(0,0)| = |+z〉 〈+z| ,
M0|2 = ∣∣ψ(

π
2 , π

2

)〉〈
ψ

(
π
2 , π

2

)∣∣ = |+y〉 〈+y| . (30)

The noise tolerance of this strategy is given by

η = 1 − 1√
3

≈ 0.43, (31)

which again exceeds the bound for the prepare-and-measure
scenario, η∗ ≈ 0.34.

Finally, let us comment on the relation of the above
game and the standard (prepare-and-measure) 3 → 1 RAC.
We first note that the optimal qubit strategies for WD-RAC

and the standard RAC are in fact essentially the same [43].
Specifically, the qubit states arriving at the measuring device
are identical in both cases [given inputs (a0,a1,a2)]. Hence,
this qubit is unaffected by the fact that the inputs are now dis-
tributed between the preparation and transformation devices.
Indeed, the ability of implementing unitary transformations is
central here.

Interestingly, the situation is very different for the case
of classical bits. While the average probability of success is
3/4 in the standard RAC, the fact that the inputs are now
distributed decreases the average score to 2/3. The reason
for this is that the optimal strategy in the standard RAC is
to send c = maj(a0,a1,a2), where maj(·) denotes the majority
function. However, using this strategy requires access to all the
input bits a0,a1,a2, which none of the devices in distributed
RAC has. The consequence of this is that the noise tolerance
of qubit strategies is enhanced in the distributed version of the
game, as we showed above.

C. Two preparation devices, one measurement
device: Simple case

We now consider a scenario with two preparation de-
vices sending communication to a measurement device [see
Fig. 4(a)]. A simple nontrival scenario here is one in which both
preparation devices receive a ternary input. We denote the input
of the first device x0 ∈ {0,1,2}, and the input of the second
x1 ∈ {0,1,2}. The measurement device has no input (i.e., a
fixed measurement) and provides a binary output b = {0,1}.
That is, we have |x0| = |x1| = 3, |y| = 1, and |b| = 2.

We consider the case in which the channels carry classical
bits, i.e., c0,c1 ∈ {0,1}. In this case we have fully characterized
the polytope P2: it features 13 nontrivial classes of facets
which we present in Appendix A. Here we focus on one
particular class (witness 1 in Appendix A), represented by the
following witness:

WK = −p00 + p01 + p02 − p10

−p12 + p20 + p21 − p22 � 2,

(a)

(b)

FIG. 4. (a) A simple network involving two preparation devices
(left and right) and a single measurement device (center). (b) In case
study D, we discuss a dimension witness for this network, referred to
as nonlocal dense coding.
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where px0x1 = p(b = 0|x0,x1). An optimal classical bit
strategy is as follows. The first preparation device sends
c0 = 0 for x0 = 0,1 and c0 = 1 for x0 = 2. The second
preparation device sends c1 = 1 for x1 = 0,1 and c1 = 0 for
x1 = 2. The measurement device then outputs b = c0c1 ⊕ 1.
Clearly, sending classical trits achieves the maximum WK = 4.

Let us now discuss strategies involving qubits. Via numer-
ical optimization we expect a maximal quantum violation of

WK = Q2 = 5
2 . (32)

This can be achieved using the following strategy. The two
preparation devices prepare the same states, i.e., we have ρx1 =
ρx2 for x1 = x2. For inputs x1 = x2 = 0,1,2, the preparations
are

|ψ(−α,0)〉 , |0〉 , |ψ(α,0)〉 , (33)

respectively, with α = 2 arccos
√

3
8 . The measurement oper-

ator for outcome b = 0 is a projection onto the entangled
subspace:

M0 = |φ−〉 〈φ−| + |ξ (γ )〉 〈ξ (γ )| , (34)

with γ = arccos
√

1
10 and where

|ξ (γ )〉 = cos γ |01〉 − sin γ |10〉 . (35)

The corresponding noise tolerance is η = 0.2.
It is relevant to consider a situation in which one channel

sends a qubit, while the other one sends a classical bit.
Performing numerical optimization, we find a maximal value
of WK ≈ 2.337 for this case.

Finally, one may also ask if this witness could be
used to detect entangled measurements, similarly to
Ref. [23]. Specifically, one can derive an upper bound on
WK for separable measurement operators of the form Mb =∑

i M
i
b,1 ⊗ Mi

b,2 where Mi
b,k is a positive operator acting on the

system sent by preparation device k. Numerical tests suggest
that the optimal value is WK ≈ 2.337. Hence we find the
same value as for the above case of hybrid qubit/bit channels.
Therefore, we expect that a value WK > 2.337 certifies that
(i) both channels send qubits and (ii) the measurement is
nonseparable, i.e., has (at least) one entangled eigenstate.
Note that the witness (33) has been discussed before in [44]
in a similar context, where upper bounds of WK ≈ 2.506
and WK ≈ 2.377 were found for the case of general and
unentangled measurements, supporting our findings.

D. Nonlocal dense coding

As the last example, we present a dimension witness for
a task which can be viewed as a nonlocal version of dense
coding [45]. As in the previous example, we consider the case
of two preparation devices and one measuring device.

Here each preparation device receives two input bits:
x0 = (u0,u1) for the first and x1 = (v0,v1) for the second.
The measurement device receives y = 0,1 as input, and
provides two output bits b = (b0,b1). The rules of the game
are the following [see Fig. 4(b)]. On the one hand, for
y = 0, the outputs should satisfy (b0,b1) = (u0 ⊕ v0,u1 ⊕ v1).
On the other hand, for y = 1, the output bits should satisfy
(b0,b1) = (u0 ⊕ v1,u1 ⊕ v0). Furthermore, there is a penalty

if both b0 and b1 are guessed incorrectly. This corresponds to
the witness

WD = 〈(b0,b1) = (u0 ⊕ v0ȳ ⊕ v1y,u1 ⊕ v1ȳ ⊕ v0y)〉
−〈(b̄0,b̄1) = (u0 ⊕ v0ȳ ⊕ v1y,u1 ⊕ v1ȳ ⊕ v0y)〉� Cd,

(36)

where ȳ = y ⊕ 1, and the average 〈·〉 is taken over all inputs:

〈(b0,b1)〉 = 1

32

∑
u0,u1

v0,v1,y

p(b0,b1|u0,u1,v0,v1,y). (37)

Let us discuss the case of classical communication. For bits,
we have C2 = 1

4 which can be achieved as follows. The first
preparation device sends communication c0 = u0u1. Similarly,
the second device sends c1 = v0v1. The measurement device
then outputs (b0,b1) = (c0 ⊕ c1,c0 ⊕ c1). Using classical trits,
we get C3 = 9

16 . Indeed, sending four-dimensional systems
achieves success probability 1.

Next, consider qubit strategies (see Appendix B for more
details). Here we can achieve

WD = Q2 = 1
2 , (38)

which appears optimal from numerical tests. This corresponds
to a noise tolerance of η = 1

2 , which represents a considerable
improvement over the simple prepare-and-measure scenario.
The strategy is the following. The preparation devices send
qubit states

σu1
x σ u0

z

∣∣ψ(
π
4 ,0

)〉
, (39)

σv1
x σ v0

z

∣∣ψ( − 3π
4 ,0

)〉
(40)

for the first and second preparation devices, respectively. The
measurement device then performs a projective measurement
onto the entangled basis

Mb0b1|y = |φ(b0,b1,y)〉 〈φ(b0,b1,y)| , (41)

where

|φ(b0,b1,y)〉 = σb1
x σ b0

z ⊗ Hy |ψ−〉 , (42)

|ψ−〉 = 1√
2
(|01〉 − |10〉) is the singlet state, and H =

1√
2
(1 1
1 −1) is the Hadamard matrix. Note that by using

qutrits, one can reach Q3 ≈ 0.598 according to numerical
optimization. Hence we obtain the following relations C2 <

Q2 < C3 < Q3.
Additionally, one may also wish to consider the possibility

that the devices share quantum correlations (i.e., initial entan-
glement). Allowing for this considerably enhances the success
probability (still using qubit communication), which becomes
maximal, that is WD = 1. The strategy is the following. The
preparation devices now share a singlet state. Upon receiving
the inputs x0 = (u0,u1) and x1 = (v0,v1), the preparation
devices locally rotate the singlet state to(

σu1
x σ u0

z

) ⊗ (
σv1

x σ v0
z

) |ψ−〉 . (43)

The measurement device performs the same measurement as
above [see (41)]. The noise tolerance for this strategy is η = 3

4 .
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VII. DISCUSSION

We have discussed the problem of testing the dimension
and nonclassicality in communication networks. We have
presented methods for addressing these problems, generalizing
the concept of dimension witnesses to networks, and discussed
several illustrative examples.

We believe our results raise several natural questions. First,
it would be interesting to investigate the separation between
classical and quantum dimension in more general networks.
In particular, what is the classical communication cost (i.e.,
how many classical dimensions are required) for simulating
qubit networks? A potential direction for tackling this problem
would be to find a family of dimension witnesses for a scenario
featuring one preparation device and one measurement device,
but any number of transformation devices in between (here we
gave examples for the case of a single transformation device).
Notably, Galvão and Hardy [14] proved that, in the case of an
infinite number of transformation devices, classical systems of
infinite dimension are required for simulating a single qubit.
The game discussed in [14] can be recast as a dimension
witness. Proving a similar result for the case of a finite number
of transformation devices would be relevant. Going beyond
qubits is also interesting. In fact, for quantum systems of
dimension d � 3, it is not known whether an exact simulation
is possible with classical systems of finite dimension, even in
the simplest prepare-and-measure scenario.

From a more applied perspective, the ideas discussed could
find applications in quantum information processing. Recent
works discussed protocols for which the security is based
on dimension witnesses, so-called semi-device-independent
protocols [17,19–22]. For instance, quantum key distribution
and randomness expansion can be achieved, assuming only
that the devices prepare and measure qubit systems. Moving to
more general networks may allow for more robust and efficient
protocols, and other information-theoretic tasks.
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APPENDIX A: ALL DIMENSION WITNESSES
FOR A SIMPLE NETWORK

Here we present all dimension witnesses for the scenario
of Fig. 4(a) with |x0| = |x1| = 3, |y| = 1, and |b| = 2. In
this scenario, considering classical communication c0,c1 ∈
{0,1}, there exist 13 nontrivial facets (i.e., facets that do not
correspond to the normalization of probabilities). We present
the witnesses in tabular form, using the notation⎛

⎝w00 w01 w02

w10 w11 w12

w20 w21 w22

⎞
⎠ � C2 (A1)

to describe the witness
2∑

x0=0

2∑
x1=0

wx0x1p(0|x0,x1) � C2. (A2)

The 13 witnesses are

(1)

⎛
⎝−1 1 1

−1 0 −1
1 1 −1

⎞
⎠ � 2, (2)

⎛
⎝2 −1 1

2 0 −2
0 −1 1

⎞
⎠ � 4,

(3)

⎛
⎝1 −1 1

1 −2 −3
0 2 −2

⎞
⎠ � 2, (4)

⎛
⎝1 1 0

1 −1 0
0 1 −1

⎞
⎠ � 3,

(5)

⎛
⎝ 2 2 0

1 −2 0
−1 1 −1

⎞
⎠ � 4, (6)

⎛
⎝ 1 −2 3

2 0 −2
−1 2 1

⎞
⎠ � 6,

(7)

⎛
⎝ 1 −1 2

1 0 −1
−1 1 1

⎞
⎠ � 4, (8)

⎛
⎝ 1 −1 2

2 0 −2
−1 1 0

⎞
⎠ � 4,

(9)

⎛
⎝ 2 −2 4

4 −1 −5
−2 1 −1

⎞
⎠� 6, (10)

⎛
⎝ 1 −1 2

2 −3 −5
−1 3 −3

⎞
⎠� 3,

(11)

⎛
⎝ 2 2 −1

1 −1 0
−1 1 0

⎞
⎠ � 4,

(12)

⎛
⎝ 1 −2 3

3 1 −2
−2 3 1

⎞
⎠ � 8, (13)

⎛
⎝1 −1 1

1 0 −1
0 0 0

⎞
⎠ � 2.

Note that the last witness, (13), is in fact a lifting from
the simplest prepare-and-measure scenario featuring three
preparations and two binary measurements. This can be seen
by imagining that the first preparation device in our scenario
simply acts as a classical input for the measurement device,
i.e., x1 takes the role of y in the prepare-and-measure scenario.
Since the channel supports bits, then we must have y = 0,1.
In the final witness we see that x1 = 0,1 corresponds to
y = 0,1 and x1 = 2 is never used (since we have all zeros
on the bottom row of the witness). Upon interpreting x1 as
y in a prepare-and-measure scenario, the final witness then
corresponds to Eq. (6) of [4].

APPENDIX B: QUANTUM VIOLATION IN NONLOCAL
DENSE CODING

Here we calculate explicitly the values of (36) for strategies
using qubits. We first consider the case where the devices do
not share initial entanglement. To ease notation we define

|h+〉 = ∣∣ψ(
π
4 ,0

)〉
; |h−〉 = ∣∣ψ( − 3π

4 ,0
)〉
. (B1)

Following the preparations and measurements given in the
main text, we have

p(b0,b1|u0,u1,v0,v1,y)

= | 〈ψ−| σb1⊕u1
x σ b0⊕u0

z ⊗ Hyσv1
x σ v0

z |h+〉 |h−〉 |2

= | 〈ψ−| σb1⊕u1⊕v1ȳ⊕v0y
x σ b0⊕u0⊕v0ȳ⊕v1y

z ⊗ I |h+〉 |h−〉 |2,
(B2)

where in the last line we have used

Hσv1
x σ v0

z = σv0
z σ v1

x H (B3)
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and

H |h±〉 = ± |h±〉 . (B4)

By writing |ψ−〉 = 1√
2
(|h+〉 |h−〉 − |h−〉 |h+〉) we see that the

probability that (b0,b1) = (u0 ⊕ v0ȳ ⊕ v1y,u1 ⊕ v1ȳ ⊕ v0y)
is given by

|〈ψ−||h+〉|h−〉|2 = 1
2 . (B5)

The probability that both bits are guessed
incorrectly, i.e., (b̄0,b̄1) = (u0 ⊕ v0ȳ ⊕ v1y,u1 ⊕ v1ȳ ⊕ v0y)

is

|〈ψ−|σxσz ⊗ I|h+〉|h−〉|2 = 0. (B6)

Hence, we achieve WD = 1
2 . In order to treat the case in

which the preparation devices share entanglement, we need to
replace the state |h+〉 |h−〉 by the singlet state |ψ−〉. Hence the
probability that (b0,b1) = (u0 ⊕ v0ȳ ⊕ v1y,u1 ⊕ v1ȳ ⊕ v0y)
becomes

| 〈ψ−|ψ−〉 |2 = 1 (B7)

and the game is won perfectly.
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We consider the problem of testing the dimension of uncharacterized classical and quantum systems in a
prepare-and-measure setup. Here we assume the preparation and measurement devices to be independent,
thereby making the problem nonconvex. We present a simple method for generating nonlinear dimension
witnesses for systems of arbitrary dimension. The simplest of our witnesses is highly robust to technical
imperfections, and can certify the use of qubits in the presence of arbitrary noise and arbitrarily low
detection efficiency. Finally, we show that this witness can be used to certify the presence of randomness,
suggesting applications in quantum information processing.
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The problem of estimating the dimension of uncharac-
terized physical systems has recently attracted attention.
From a fundamental point of view, this problem is well
motivated, as it shows that dimension—the number of
(relevant) degrees of freedom—of an unknown system can
be determined in a device-independent way. That is,
dimension can be tested from measurement data alone,
in a scenario in which all devices used in the experiment,
including the measurement device, are uncharacterized;
i.e., no assumption about the internal working of the
devices is needed. Beyond the fundamental interest, this
problem is also relevant in the context of quantum
information, where the dimension of quantum systems—
i.e., the Hilbert space dimension—represents a resource
for performing information-theoretic tasks. Specifically,
higher dimensional quantum systems can increase the
performance of certain protocols, and/or simplify their
implementation.
First approaches to this problem considered Bell inequal-

ity tests [1–6], random access codes [7], and monitoring of
an observable of a dynamic system [8]. More recently, a
general formalism was developed to estimate the dimension
of classical and quantum systems in a prepare-and-measure
setup [9], the simplest but also the most general scenario.
Consider two uncharacterized devices, hence described as
black boxes (see Fig. 1). The first device prepares upon
request a physical system in an unknown state ρx. A second
device then performs a measurement on the system. The
observer tests the devices, by choosing a preparation x and
a measurement y, then receiving measurement outcome b.
Repeating the experiment many times, the observer obtains
the probability distribution pðbjx; yÞ, called here the data.
The goal for the observer is then to give a lower bound
on the dimension of the unknown set of states fρxg from
the data alone. This can be achieved using “dimension
witnesses” [9–11] (see also Refs. [12,13] for different

approaches). These ideas were shown to be relevant
experimentally [14,15], and for quantum information
processing [16,17].
Herewe discuss this problem assuming the preparation and

measurement devices to be independent. This assumption is
rather natural in a device-independent estimation scenario,
where devices are uncharacterized but do not conspire
maliciously against the observer. The main difficulty of this
problem is that it is nonconvex, a feature that makes generic
problemswith independent variables hard to tackle. Note that
previousworksondimensionwitnesses allowed thedevices to
be correlated via shared randomness (hence relaxing the
independence assumption), making the problem convex.
Although these techniques can in principle be applied in
our case, they are far from optimal, as we shall see below.
It is therefore desirable to develop novel methods, which

is the goal of this work. Specifically, we present a simple
technique for deriving nonlinear dimension witnesses,
tailored for device-independent tests of dimension assum-
ing independent devices. We derive witnesses for systems
of arbitrary dimension, obtaining a quadratic gap between
classical and quantum dimensions. The simplest witness is
discussed in detail. We show that it is extremely robust to
technical imperfections, and can be used to certify the
presence of randomness.
Scenario.—We consider the setup of Fig. 1. The experi-

ment is characterized by the set of conditional probabilities

FIG. 1. Prepare-and-measure setup.
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pðbjx; yÞ (i.e., the data) which gives the probability of
obtaining outcome b when performing measurement y on
preparation x.
Consider first the case of quantum systems. We say that

the experiment admits a d-dimensional quantum represen-
tation when there exist states ρx and measurement operators
Mbjy both acting on Cd, such that

pðbjx; yÞ ¼ TrðρxMbjyÞ: (1)

Next consider the situation of classical systems of dimen-
sion d. Given the choice of preparation x, the first device
sends a classical message m ¼ 0;…; d − 1. Note that the
device may have an internal source of randomness (rep-
resented by a random variable λ1). Hence, which message
m is sent depends on both x and λ1. The measurement
device, upon receiving message m, and input y from the
observer, delivers an outcome b. As it also features a source
of randomness (random variable λ2), the output b depends
onm, y, and λ2. The behavior observed in the experiment is
then given by

pðbjx;yÞ¼
Z

dλ1dλ2ρðλ1;λ2Þ
Xd−1
m¼0

pðmjx;λ1Þpðbjm;y;λ2Þ:

The main point now is to consider the joint distribution of
random variables λ1;2. If ρðλ1; λ2Þ ≠ ρ1ðλ1Þρ2ðλ2Þ, the
variables are correlated; hence, the devices may follow a
(preestablished) correlated strategy. Previous works
focused on this situation. As the set of behaviors of the
above form is convex, it can be fully characterized with
linear dimension witnesses [9].
Here we consider the situation in which the devices

are independent, i.e., ρðλ1; λ2Þ ¼ ρ1ðλ1Þρ2ðλ2Þ. That is,
although each device features an internal source of random-
ness, the devices have no shared randomness. In this case,
the observed statistics can be written as

pðbjx; yÞ ¼
Xd−1
m¼0

sðmjxÞtðbjm; yÞ (2)

where sðmjxÞ ¼ R
dλ1ρ1ðλ1Þpðmjx; λ1Þ is the distribution

of possible messages m for each preparation x, and
tðbjm; yÞ ¼ R

dλ2ρ2ðλ2Þpðbjm; y; λ2Þ is the distribution
of outcomes b for measurement y when receiving message
m. Below we will see how to characterize the set of
behaviors of the form Eq. (2). This will require nonlinear
dimension witnesses as the set is nonconvex.
Determinant witness.—In this work we focus on experi-

ments with binary outcomes, denoted b ¼ 0, 1. We will
construct nonlinear witnesses based on the determinant of a
matrix. We first discuss the simplest case, with four
preparations x ¼ 0;…; 3 and two measurements y ¼ 0,
1. Consider the following matrix

W2 ¼
�
pð0; 0Þ − pð1; 0Þ pð2; 0Þ − pð3; 0Þ
pð0; 1Þ − pð1; 1Þ pð2; 1Þ − pð3; 1Þ

�
(3)

where we write pðx; yÞ ¼ pðb ¼ 0jx; yÞ for simplicity. For
any strategy involving a classical bit [i.e., its statistics
admits a decomposition of the form Eq. (2) with d ¼ 2],
one has that

W2 ¼ detðW2Þ ¼ 0: (4)

The proof is straightforward. Note that for any statistics of
the form Eq. (2) with d ¼ 2, we have that pðx; yÞ ¼
sð0jxÞ½tð0j0; yÞ − tð0j1; yÞ� þ tð0j1; yÞ. Hence we write

pðx; yÞ − pðx0; yÞ ¼ ½sð0jxÞ − sð0jx0Þ�½tð0j0; yÞ − tð0j1; yÞ�
¼ Sxx0Ty (5)

from which it follows that

W2 ¼
���� S01T0 S23T0

S01T1 S23T1

���� ¼ 0: (6)

An interesting feature of the above witness is that it is given
by an equality, whereas linear witnesses are given by
inequalities [9]. Moreover, our witness turns out to char-
acterize fully the set of experiments involving a classical
bit. Specifically, for any experiment achievingW2 ¼ 0 (for
all relabelings of the preparation x), there exists a decom-
position of the form Eq. (2) with d ¼ 2 (see Supplemental
Material [18]). Note that if the preparation and measure-
ment devices are correlated, then classical bit strategies can
reach W2 ¼ 1. Consider for instance the equal mixture of
the two following deterministic strategies: (i) sð0jxÞ ¼ 1 iff
x ¼ 0; 3 and tð0jm; yÞ ¼ mþ y mod 2, (ii) sð0jxÞ ¼ 1 iff
x ¼ 0, 2 and tð0jm; yÞ ¼ m. Hence we get W2 ¼ I2 and
W2 ¼ 1. This shows that our witness is tailored for the case
in which the devices are independent.
Next we investigate the performance of qubit strategies,

i.e., statistics of the form Eq. (1) with d ¼ 2. States are
given by density matrices ρx ¼ ðI2 þ ~sx · ~σÞ=2 and meas-
urement operators byM0jy ¼ cyI2 þ ~Ty · ~σ=2, where ~sx and
~Ty are Bloch vectors and jcyj ≤ 1 [19]. Similarly to above,
we write

pðx; yÞ − pðx0; yÞ ¼ Tr½ðρx − ρx0 ÞM0jy� ¼ ~Sxx0 · ~Ty (7)

where ~Sxx0 ¼ ð~sx − ~sx0 Þ=2. Finally, we get

W2 ¼
���� ~S01 · ~T0

~S23 · ~T0

~S01 · ~T1
~S23 · ~T1

���� ¼ ð~S01 × ~S23Þ · ð~T0 × ~T1Þ ≤ 1

(8)

since j~S01 × ~S23j ≤ 1 and j~T0 × ~T1j ≤ 1. This bound for
qubit strategies is tight, and can be reached as follows:
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choose the preparations to be the pure qubit states given by
~s0 ¼ −~s1 ¼ ẑ, ~s2 ¼ −~s3 ¼ x̂, and the measurements by the
vectors ~T0 ¼ cos θẑþ sin θx̂ and ~T1 ¼ sin θẑ − cos θx̂.
Notice that we are free to choose any angle θ here, due
to the rotational invariance of the cross product in the plane.
For θ ¼ 0 we get the usual BB84 states and measurements.
It is relevant to note that essentially any qubit strategy

achieves jW2j > 0. Only very specific alignments of the
qubit preparations and measurements (a set of measure
zero) achieve W2 ¼ 0. Therefore, a generic qubit strategy
always outperforms the most general strategy involving
a bit.
This suggests that our witness is well suited for dis-

tinguishing data involving classical bits and qubits. To
illustrate the robustness of our witness, we investigate the
effect of technical imperfections, such as background noise
and limited detection efficiency (of the detector inside the
measurement device), on a generic qubit strategy given by
the data pQðx; yÞ achieving jW2j ¼ Q > 0. Say that an
error occurs with probability 1 − η, for instance the emitted
particle is lost. Hence the observed statistics is given by

pðx; yÞ ¼ ηpQðx; yÞ þ ð1 − ηÞpNðyÞ; (9)

where we consider a noise model of the form
pNðx; yÞ ¼ pNðyÞ; i.e., the noise is independent of the
choice of preparation x. The difference in probabilities
entering the witness is then independent of the noise term:
pðx; yÞ − pðx0; yÞ ¼ η½pQðx; yÞ − pQðx0; yÞ�, and thus the
observed value of the witness is W2 ¼ η2Q, which is
strictly positive whenever Q > 0. Hence, for an arbitrary
amount of background noise and/or an arbitrarily low
efficiency, a generic qubit strategy will outperform any
classical bit strategy; see Ref. [20] for a related result. This
is indeed in stark contrast with previous witnesses, which
can only tolerate a finite amount of noise and require a high
efficiency [11].
Finally, we comment on strategies involving higher

dimensional systems. Using a classical trit one achieves
jW2j ≤ 1 [21], while numerical analysis shows that jW2j ≤
1.299 for qutrit strategies. This shows that the value of W2

is useful to assess dimension. To reach the algebraic
maximum of W2 ¼ 2, systems of dimension (at least)
d ¼ 4 (either classical or quantum) are required.
Determinant witness for all dimensions.—We now gen-

eralize the above witness for testing classical and quantum
systems of arbitrary dimension. Consider a scenario with
2k preparations and k binary measurements. Construct the
k × k matrix

Wkði; jÞ ¼ pð2j; iÞ − pð2jþ 1; iÞ (10)

with 0 ≤ i; j ≤ k − 1. As above, the witness is given by
Wk ¼ j detðWkÞj. We will see that, for classical systems of
dimension d, one has that

Wk ¼ 0 for d ≤ k; (11)

while one can haveWk ≥ 1 for d > k. For quantum systems
of dimension d, we get

Wk ¼ 0 for d ≤
ffiffiffi
k

p
; (12)

while Wk > 0 is possible whenever d >
ffiffiffi
k

p
. Hence we

obtain a quadratic separation between classical and quan-
tum dimensions, using a number of preparations and
measurements that grows only linearly.
To prove the above claims, it is enough to focus on

quantum strategies. Consider matrices of the form

ρx ¼
1

d
ðId þ ϕd~sx · ~λÞ; (13)

with ~sx ∈ Rd2−1, j~sxj ≤ 1, ~λ the vector of the d2 − 1 Gell-
Mann matrices (generalized Pauli matrices, satisfying
trðλiÞ ¼ 0 and trðλiλjÞ ¼ 2δij) and ϕd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½dðd − 1Þ�=2p
.

While all matrices of the above form are valid quantum
density matrices for j~sxj ≤ 2=d [22], this is not the case in
general (although this will not affect our argument).

Similarly we write measurement operators as M0jy ¼
cyId þ ϕd

~Ty · ~λ=d with ~Ty ∈ Rd2−1, j~Tyj,jcyj ≤ 1[19], and
get that

Wkði; jÞ ¼ Tr½ðρ2j − ρ2jþ1ÞM0ji� ¼ ~Sj · ~Ti (14)

with ~Sj ¼ ð1 − ð1=dÞÞð~s2j − ~s2jþ1Þ. Thus, as before, the
entries of the matrix Wk are given by scalar products of
vectors. Similarly to the qubit construction of Eq. (8), the
witness Wk can be expressed using cross products, gener-
alized here to arbitrary dimensions.

Specifically, the cross product ~S0 × ~S1 × � � � × ~Sk−1 of k
vectors in Rkþ1 is defined as the unique vector ~u ∈ Rkþ1

such that ~V · ~u ¼ detð~S0; ~S1; � � � ; ~Sk−1Þ for all ~V ∈ Rkþ1

(see, e.g., Ref. [23]). It follows that ~S0 × � � � × ~Sk−1 ¼ 0 iff
~S0; � � � ; ~Sk−1 are linearly dependent. Furthermore, similarly
to Eq. (8), we have that

Wk ¼ j detðWkÞj
¼ jð~S0 × � � � × ~Sk−1Þ · ð~T0 × � � � × ~Tk−1Þj:

To conclude, we relate the dimension of the quantum

systems to the linear (in)dependence of the set of vectors ~Sj
and ~Ti. Note that we must ensure here that the vectors ~Sj, ~Ti

are in Rkþ1, via an embedding or by using only a restricted
set of parameters. As d-dimensional quantum systems have

d2 − 1 parameters, we see that the vectors ~Sj (and similarly

for ~Ti) can span a subspace of dimension at most d2 − 1.
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Hence, if d ≤
ffiffiffi
k

p
, the vectors ~Sj cannot be linearly

independent, and we get Wk ¼ 0. On the contrary if

d >
ffiffiffi
k

p
, the vectors ~Sj and ~Ti can be chosen to be linearly

independent, and we have Wk > 0. Take for instance ~Sj to

be parallel to ~Ti, and j~sjj, j~Tij ≤ 2=d ensuring that all
preparations and measurements are represented by valid
operators. Note, however, that this construction is sub-
optimal in general, as one can obtainWk ¼ 1 with quantum
states of dimension d >

ffiffiffi
k

p
(with d an integer prime

power), using a mutually unbiased basis (see
Supplemental Material [18]).
The proof for classical systems can be derived by noting

that any classical strategy using d-dimensional states can be
recast as a quantum strategy using diagonal density
matrices acting onCd. Since we have only d − 1 parameters
in this case, it follows from the above that Wk ¼ 0 when
d ≤ k. For d > k, one can get Wk ≥ 1. The lower bound is
obtained by considering the following strategy: if x is even,
then send m ¼ x=2, else send m ¼ d; for the measurement
device, output b ¼ 0 iff y ¼ m. Note that for this strategy,
we get Wk ¼ Ik, hence Wk ¼ 1. An interesting question is
to find the algebraic maximum of Wk, and the minimal
dimension for classical and quantum systems required to
attain it. Note that this problem is related to that of finding
the determinant of a Hadamard matrix. Hence we get the
boundWk ≤ kk=2, which is tight iff there exists a Hadamard
matrix of size k × k.
Certifying randomness.—The fact that the determinant

witness can distinguish between classical and quantum
systems (given a bound on the dimension) suggests
applications in randomness certification. Here we inves-
tigate the connection between the amount of violation of
the witness W2 and the intrinsic randomness of the of the
underlying statistics, assuming that the preparation device
emits qubit states.
Consider the quantity

p̄ ¼ 1

4

X
x;y¼0;1

max
b

pðbjx; yÞ; (15)

i.e., the average guessing probability of the outcome b for
preparations x ¼ 0, 1. Randomness can be quantified by
the min-entropy of p̄, i.e., Hminðp̄Þ ¼ − log2ðp̄Þ, which
gives the number of random bits extractable from the
experiment (per run). Now for a given amount of violation
of the witness W2 ¼ Q > 0, we want to find out the
maximal value of p̄ over all qubit strategies which are
compatible with the value W2 ¼ Q > 0. In other words,
what is the minimal amount of randomness compatible with
a certain violation of the witness? To answer this question,
we solve numerically the following problem. We maximize
p̄ subject to the constraints: W2 ¼ Q, pðbjx; yÞ ¼
TrðρxMbjyÞ where ρx, Mbjy are arbitrary qubit states and
measurement operators.

In Figure 2, we plot the amount of randomness Hminðp̄Þ
as a function of the value Q of the witness W2. We see that
for any amount of violation, randomness can be certified. In
other words, from the sole knowledge of the value of W2,
one can upper bound the probability of correctly guessing
the output b, for any observer knowing the detailed qubit
strategy that is being used. Importantly, the quantity
Hminðp̄Þ captures here the intrinsic quantum randomness
of the experiment, but is independent of any randomness
generated locally in the devices (used, e.g., to create mixed
state preparations). These issues will be discussed in detail
in a forthcoming work [24], where a protocol for random-
ness certification will be presented.
Discussion.—We have presented a method for testing the

dimension of classical and quantum systems of arbitrary
dimension. Moreover, the simplest of our witnesses is
highly robust to noise and can be used to certify random-
ness without the need of high visibilities and efficiencies.
Hence we believe these ideas are relevant in practice. In this
perspective, it will be necessary to make a statistical
analysis in the spirit of Refs. [25] for taking finite size
effects into account [24]. Finally, from a more abstract
point of view, the ideas presented here could be useful in
other nonconvex problems involving independent varia-
bles, such as Bell tests with independent sources [26,27],
and more general marginal problems [28].
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FIG. 2 (color online). Average certifiable randomness Hminðp̄Þ
using the witness W2. For any amount of violation of the witness
W2 ¼ Q > 0, randomness can be certified.
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2H.H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, United Kingdom

A. Full characterisation of the set of classical bit strate-
gies with the witness W2— In the main text we showed
that W2 = 0 for strategies involving a classical bit.
Here we will see that the converse holds. That is, any
statistics achieving W2 = 0 for all possible relabelings
of the preparation label x, can be realised with a clas-
sical bit strategy.

Consider the matrix W2, here rewritten as

W2 =

(
a1 − a2 b1 − b2
c1 − c2 d1 − d2

)
(1)

with a1 = p(0, 0), a2 = p(1, 0) and so on. Without
loss of generality, we take d2 ≥ d1 ≥ c2 ≥ c1 which
can be achieved via a relabelling of the preparations x.
The conditions W2 = 0, considering all relabelings of
x, are then given by

(a1 − a2)(d1 − d2) = (b1 − b2)(c1 − c2)

(a1 − b2)(d1 − c2) = (b1 − a2)(c1 − d2) (2)
(a1 − b1)(c2 − d2) = (a2 − b2)(c1 − d1)

where the second and third equations correspond
to relabelling x according to 1 ↔ 3 and 1 ↔
2 respectively. To show that there exists a de-
composition of the form (??) with d = 2, we
solve for {s(m|x)}, {t(0|m, y} (with m = 0, 1, x =
0, ..., 3, and y = 0, 1) the set of equations given
by the conditions (2) and the 8 conditions given by
p(x, y) = ∑m=0,1 s(m|x)t(0|m, y). A solution is given
by t(0|0, 0) = b1, t(0|0, 1) = d1, t(0|1, 0) = b2,
t(0|1, 1) = d2, s(0|0) = (d2 − c1)/(d2 − d1), s(0|1) =
(d2 − c2)/(d2 − d1), s(0|2) = 1 and s(0|3) = 0. Hence
any matrix (1) satisfying conditions (2) admits a de-
composition of the form (??) with d = 2. Thus the de-
terminant witness characterises fully the set of distri-
butions obtained from strategies involving a classical
bit.

B. Quantum strategy using mutually unbiased bases—
Consider a quantum system of dimension d, for which

we have n ≤ d + 1 mutually unbiased bases (MUBs)
denoted by Mα = {|ψi|α〉}, where α = 0, · · · , n − 1
and i = 0, · · · , d− 1. Due to the properties of MUBs
the projectors πi|α = |ψi|α〉〈ψi|α| satisfy tr(πi|απj|α) =
δij and tr(πi|απj|β) = 1/d for α 6= β. The main idea
now will be to construct a quantum strategy for which
we get Wk = Ik and so Wk = 1.

Consider first the upper left block of Wk of size
d − 1 × d − 1. Concentrating on the first basis M0,
we choose the preparations as ρ2j = πj|0 and ρ2j+1 =
πd−1|0, (with j = 0, · · · , d− 2) and measurement pro-
jectors as M0|i = πi|0, (where i = 0, · · · , d− 2). Hence
for this block we have that

p(2j, i)− p(2j + 1, i) = tr([πj|0 − πd−1|0]πi|0) = δij
(3)

sinceM0 is an orthonormal basis, and so the first d−
1× d− 1 block of Wk is the identity matrix Id−1.

We then move on to the next d− 1 preparations and
measurements, keeping the same pattern but using
the next basis M1. That is, we choose ρ2j+2(d−1) =
πj|1, ρ2j+1+2(d−1) = πd−1|1 and M0|i+d−1 = πi|1
(i, j = 0, · · · , d − 2). We continue this pattern un-
til we have used up all n MUBs. This will give us a
(d− 1)n× (d− 1)n matrix. Via the same argument as
above, each d− 1× d− 1 block on the diagonal of Wk
will be equal to Id−1. All off-diagonal blocks are the
zero matrix since they contain preparations and mea-
surements that belong to different MUBs. Indeed we
have that tr([πi|α − πj|α]πk|β) = 0 when α 6= β.

Hence when (d − 1)n ≥ k, we get that Wk = Ik,
hence Wk = 1. If the Hilbert space dimension d is
an integer power of a prime, then there exist d + 1
MUBs [W. Wooters, B. Fields, Annals of Phys. 191,
363 (1989)]. In this case, one has that Wk = 1 for
d ≥
√

k + 1, or equivalently d >
√

k.
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The generation of random numbers is a task of paramount importance in modern science. A central
problem for both classical and quantum randomness generation is to estimate the entropy of the data
generated by a given device. Here we present a protocol for self-testing quantum random number
generation, in which the user can monitor the entropy in real time. Based on a few general assumptions, our
protocol guarantees continuous generation of high quality randomness, without the need for a detailed
characterization of the devices. Using a fully optical setup, we implement our protocol and illustrate its self-
testing capacity. Our work thus provides a practical approach to quantum randomness generation in a
scenario of trusted but error-prone devices.

DOI: 10.1103/PhysRevLett.114.150501 PACS numbers: 03.67.Ac, 42.50.Ex

Given the importance of randomness in modern science
and beyond, e.g., for simulation algorithms and for cryp-
tography, an intense research effort has been devoted to the
problem of extracting randomness from quantum systems.
Devices for quantum random number generation (QRNG)
are now commercially available. All of these schemes work
essentially according to the same principle, exploiting the
randomness of quantum measurements. A simple realization
consists in sending a single photon on a 50=50 beam splitter
and detecting the output path [1–3]. Other designs were
developed, based on measuring the arrival time of single
photons [4–7], the phase noise of a laser [8–10], vacuum
fluctuations [11,12], and even mobile phone cameras [13].
A central issue in randomness generation is the problem

of estimating the entropy of the bits that are generated by a
device, i.e., how random is the raw output data. When a
good estimate is available, appropriate postprocessing can
be applied to extract true random bits from the raw data (via
a classical procedure termed randomness extractor [14]).
However, poor entropy estimation is one of the main
weaknesses of classical RNG [15], and can have important
consequences. In the context of QRNG, entropy estimates
for specific setups were recently provided using sophisti-
cated theoretical models [16,17]. Nevertheless, this
approach has several drawbacks. First, these techniques
are relatively cumbersome, requiring estimates for numer-
ous experimental parameters which may be difficult to
precisely assess in practice. Second, each study applies to a
specific experimental setup, and cannot be used for other
implementations. Finally, it offers no real-time monitoring
of the quality of the RNG process, hence no protection
against unnoticed misalignment (or even failures) of the
experimental setup.
It is therefore highly desirable to design QRNG tech-

niques which can provide a real-time estimate of the output
entropy. An elegant solution is provided by the concept of

device-independent QRNG [18,19], where randomness can
be certified and quantified without relying on a detailed
knowledge of the functioning of the devices used in the
protocol. Nevertheless, the practical implementation of such
protocols is extremely challenging as it requires the genuine
violation of Bell’s inequality [19,20]. Alternative approaches
were proposed [21] but their experimental implementation
suffers from loopholes [22]. More recently, an approach
based on the uncertainty principle was proposed but
requires a fully characterized measurement device [23].
Here, we present a simple and practical protocol for self-

testing QRNG. Based on a prepare-and-measure setup, our
protocol provides a continuous estimate of the output
entropy. Our approach requires only a few general assump-
tions about the devices (such as quantum systems of
bounded dimension) without relying on a detailed model
of their functioning. This setting is relevant to real-world
implementations of randomness generation, and is well
adapted to a scenario of trusted but error-prone providers,
i.e., a setting where the devices used in the protocol are not
actively designed to fool the user, but where implementa-
tion may be imperfect. The key idea behind our protocol is
to certify randomness from a pair of incompatible quantum
measurements. As the incompatibility of the measurements
can be directly quantified from experimental data, our
protocol is self-testing. That is, the amount genuine quan-
tum randomness can be quantified directly from the data,
and can be separated from other sources of randomness
such as fluctuations due to technical imperfections. We
implemented this scheme with standard technology, using a
single photon source and fibered telecommunication com-
ponents. We implement the complete QRNG protocol,
achieving a rate 23 certified random bits per second, with
99% confidence.
Protocol.—Our protocol, sketched in Fig. 1, uses two

devices which, respectively, prepare and measure an
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uncharacterized qubit system. In each round of the
protocol, the observer chooses settings among four
possible preparations, x ¼ 0; 1; 2; 3, and two measurements
y ¼ 0; 1, resulting in a binary outcome b ¼ �1. To model
imperfections, we represent the internal state of each device
by a random variable—λ for the preparation device and μ
for the measurement device—which are unknown to the
observer. As we work in a scenario where the devices are
not maliciously conspiring against the user, we assume the
devices to be independent, i.e., pðλ; μÞ ¼ qðλÞrðμÞ, whereR
dλqðλÞ ¼ R dμrðμÞ ¼ 1.
In each round of the experiment, the preparation device

emits a qubit state ρλx which depends on the setting x and on
the internal state λ. Similarly, the measurement device
performs a measurement Mμ

y. Thus the distributions of λ
and μ determine the distributions of the prepared states and
the measurements. As the observer has no access to the
variables λ and μ, he will observe

pðbjx; yÞ ¼
Z

dλqðλÞ
Z

dμrðμÞpðbjx; y; λ; μÞ

¼ Tr

�

ρx
1þ bMy

2

�

¼ 1

2
ð1þ b~Sx · ~TyÞ; ð1Þ

where

ρx ¼
Z

dλqðλÞρλx ¼
1

2
ð1þ ~Sx · ~σÞ; ð2Þ

My ¼
Z

dμrðμÞMμ
y ¼ ~Ty · ~σ: ð3Þ

Here, ~Sx and ~Ty denote the Bloch vectors of the (average)
states and measurements, and ~σ ¼ ðσ1; σ2; σ3Þ is the vector
of Pauli matrices.
The task of the observer is to estimate the amount of

genuine quantum randomness generated in this setup,
based only on the observed distribution pðbjx; yÞ. This

is a nontrivial task as the apparent randomness of the
distribution [0 < pðbjx; yÞ < 1] can have different origins.
On the one hand, it could be genuine quantum randomness.
That is, if in a given round of the experiment, the state ρλx
is not an eigenstate of the measurement operator Mμ

y,
then the outcome b cannot be predicted with certainty,
even if the internal states λ and μ are known, i.e.,
0 < pðbjx; y; λ; μÞ < 1. On the other hand, the apparent
randomness may be due to technical imperfections, that is,
to fluctuations of the internal states λ and μ. Consider the
following example: The preparation device emits the states
ρλ¼0
x ¼ j0ih0j and ρλ¼1

x ¼ j1ih1j with qðλ ¼ 0; 1Þ ¼ 1=2.
For a measurement of the observable My ¼ ẑ · ~σ, one
obtains that pðbjx; yÞ ¼ 1=2. However, these data clearly
contain no quantum randomness, since the outcome b can
be perfectly guessed if the internal state λ is known.
Our protocol allows the observer to separate quantum

randomness from the randomness due to technical noise.
The key technical tool of our protocol is a function recently
presented in [24], which works as a “dimension witness.”
Given data pðbjx; yÞ, the quantity

W ¼
�
�
�
�
pð1j0; 0Þ − pð1j1; 0Þ pð1j2; 0Þ − pð1j3; 0Þ
pð1j0; 1Þ − pð1j1; 1Þ pð1j2; 1Þ − pð1j3; 1Þ

�
�
�
� ð4Þ

captures the quantumness of the preparation and measure-
ments. Specifically, if the preparations are classical (i.e.,
there exists a basis in which all states ρλx are diagonal), one
has that W ¼ 0, while a generic qubit strategy achieves
0 ≤ W ≤ 1 [24]. W > 0 guarantees that the measurements
performed by Bob are incompatible (see [25]) and since it is
then impossible to simultaneously assign deterministic
outcomes to them, this enables us to bound the guessing
probability and certify randomness. Given x, y, and knowl-
edge of the internal states λ, μ, the best guess for b is given
by maxbpðbjx; y; λ; μÞ. Assuming uniformly distributed x
and y, the average probability of guessing b fulfils the
following inequality (see [25]):

pguess ¼
1

8

X

x;y;λ;μ

qλrμmax
b

pðbjx; y; λ; μÞ

≤
1

2

 

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −W2

p

2

s !

: ð5Þ

Therefore, the guessing probability can be upper bounded
by a function of W, which can be determined directly
from the data pðbjx; yÞ. Finally, to extract random bits from
the raw data, we use a randomness extraction procedure.
The number of random bits that can be extracted per
experimental run is given by the min-entropy Hmin ¼
−log2pguess [27]. Hence Hmin is the relevant parameter
for determining how the raw data must be postprocessed.
Note that randomness can be extracted for anyW > 0, since
pguess < 1 in this case.

FIG. 1 (color online). Sketch of the protocol. The self-testing
QRNG protocol consists of three distinct steps. (1) First, an
experiment is performed where, in each round, the user chooses a
preparation x and a measurement y, and obtains an outcome b.
(2) From the raw data, the distribution pðbjx; yÞ can be estimated
leading to an estimate for the value of the witnessW, from which
the entropy of the raw data can be quantified. (3) Based on the
entropy bound, appropriate postprocessing of the raw data is
performed, in order to extract the final random bit string.
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The maximal value ofW ¼ 1 can be reached using the set

of preparations and measurements: ~S0 ¼ −~S1 ¼ ~T0 ¼ ẑ and
~S2 ¼ −~S3 ¼ ~T1 ¼ x̂, which correspond to the BB84 QKD
protocol [28]. In this case, we can certify randomness with
min-entropy Hmin ≃ 0.2284. Using other preparations and
measurements, e.g., if the system is noisy or becomes
misaligned, one will typically obtain 0 < W < 1.
Nevertheless, for any value W > 0, randomness can be
certified, and the corresponding min-entropy can be estimated
using Eq. (5). Our protocol is therefore self-testing, since
the evaluation of W allows quantifying the amount
of randomness in the data. In turn, this allows one to perform
adapted postprocessing in order to finally extract random bits.
To conclude this section, we discuss the assumptions

which are required in our protocol: (i) Choice and dis-
tribution of settings.—The devices make no use of any
prior information about the choice of settings x and y.
(ii) Internal states of the devices are independent and
identically distributed (i.i.d).—The distributions qðλÞ and
rðμÞ do not vary between experimental rounds.
(iii) Independent devices.—The preparation and measure-
ment devices are independent, in the sense that
pðλ; μÞ ¼ qðλÞrðμÞ. (iv) Qubit channel capacity.—The
information about the choice of preparation x retrieved
by the measurement device (via a measurement on the
mediating particle) is contained in a two-dimensional
quantum subspace (a qubit).
Assumptions (i) and (iii) are arguably rather natural in a

setting where the devices are produced without malicious
intent. They concern the independence of devices used in
the protocol, namely the preparation and measurement
devices, and the choice of settings. When these are
produced by trusted (or simply different) providers, it is
reasonable to assume that there are no (built-in) preestab-
lished correlations between the devices and that the settings
x, y can be generated independently, e.g., using a pseudo
RNG. Assumptions (ii) and (iv) are stronger, and will have
to be justified for the particular implementation at hand.
The content of assumption (ii) is essentially that the devices

are memoryless (internal states do not depend on previous
events). We believe this assumption can likely be weak-
ened, since randomness can in fact be guaranteed in the
presence of certain memory effects, in particular, the
experimentally relevant afterpulsing effect (see [25]).
Finally, note that assumption (iv) restricts the amount of
information about x that is retrieved by the measuring
device (via a measurement on the mediating particle), but
not the information about x contained in the mediating
particle itself. In other words, it might be the case that
information about x leaks out from the preparation device
via side channels, but we assume that these side channels
are not maliciously exploited by the measurement device.
Experiment.—We implemented the above protocol using

a fully guided optical setup [see Fig. 2(a)]. The qubit
preparations are encoded in the polarization state of single
photons, generated via a heralded single-photon source
based on a continuous wave (CW) spontaneous parametric
down conversion (SPDC) process in a periodically poled
lithium niobate (PPLN) waveguide [29]. The idler photon
is detected with a ID220 free-running InGaAs/InP single-
photon detector (SPD) (herald) with 20% detection effi-
ciency and 20 μs dead time. The polarization is rotated
using a polarization controller (PC) and an electro-optical
birefringence modulator (BM) based on a lithium niobate
waveguide phase modulator. The preparations x ¼
f0; 1; 2; 3g correspond, respectively, to the diagonal (D),
antidiagonal (A), circular right (R), and circular left (L)
polarization states. For the measurement device, polariza-
tion measurements are done using a BM and a PC followed
by a polarization beam splitter and two ID210 InGaAs/InP
SPDs (with a 1.5 ns gate and 25% detection efficiency)
triggered by a detection at the heralding detector. The
measurements y ¼ f0; 1g correspond, respectively, to the
fD;Ag basis and the fR;Lg basis. The number of photon
pairs generated by the SPDC source is set to obtain a count
rate at the heralding detector of about 30 kHz, which
corresponds to a probability of single photon emission of
p1 ¼ 6.5 × 10−4 per gate, and a two photon emission

FIG. 2 (color online). Implementing the self-testing QRNG. (a) Experimental setup. (b) Real-time evolution of the witness value W
(blue) and randomness generation rate (bits extracted per second; red). After 3 h, the air conditioning in the laboratory is switched off,
which leads to misalignment of the optical components. In turn, this leads to a significant drop of the witness valueW and corresponding
entropy.
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p2 ¼ p2
1=2 ¼ 2.1 × 10−7 per gate. A field-programmable-

gate-array board (FPGA) continuously generates sequences
of three pseudorandom bits. Upon successful heralding,
these three bits are used to choose (x; y). Finally, the FPGA
records the outcome b (whether each ID210 detector has
clicked or not).
We briefly discuss to which extent the assumptions of

the protocol fit to our implementation. First, the choice
of preparation and measurement, x and y, are made by the
FPGA using a linear-feedback shift register pseudo RNG
[30]. This RNG provides a deterministic cyclic function
sampled by the heralding detector. Since the sampling is
asynchronous with respect to the RNG rate, the output is
uniform and (i) is fulfilled. The BMs are separated spatially
by 1 m, their temperature is controlled independently, and
the voltages are applied with independent electronic cir-
cuits. Any cross talk between them, e.g., due to stray
electric fields, can be safely neglected; hence, (iii) is also
satisfied. Concerning assumption (ii), we evaluate the
distribution pðbjx; yÞ after every minute of acquisition.
Therefore, we need to consider memory effects with time
characteristics shorter than one minute. Two main effects
should be considered: charge accumulation in the birefrin-
gence modulator, and afterpulsing in the detectors, which is
a common issue in standard QRNG approaches [4,16].
Importantly, our protocol is robust to afterpulsing (see
[25]). Charge effects in the modulator are relevant only for
modulation slower than 1 Hz [31]. Finally, the qubit
assumption (iv) is arguably the most delicate one. As
the choice of preparation x is encoded in the polarization
of a single photon, (iv) seems justified. However, a small
fraction of heralded events corresponds to multiphoton
pulses, in which (iv) is not valid. To take these events into
account, we extend our theoretical analysis (see [25]). We
show that quantum randomness can still be guaranteed
even when (iv) is not fulfilled in all experimental events,
provided that the fraction of events violating (iv) can be
bounded and is small enough compared to the total number
of successful events. To verify this assumption, the prob-
ability of single and multiphoton pulses must be properly
calibrated. For our single-photon source, the ratio of multi-
photon events vs heralds is given by ∼p1=2 ¼ 3.25 × 10−4,
and our method can be applied.
We ran the experiment estimating W for the data

accumulated each minute. As discussed in [25], the estima-
tion of W considers finite-size effects and the size of the
randomness extractor is determined based on the value ofW
[16,32]. In the best conditions, our setup generates about
402 bits=s of raw data (before the extractor). The witness
corresponds to a value ofW ¼ 0.76. After extraction, we get
final random bits at a rate of 23 bits=s with a confidence of
99%. Note that the confidence level is set when accounting
for finite size effects; a higher confidence can be chosen at
the expense of a lower rate. Note also that this rate is limited
by the slow repetition rate of the experiment (limited by the

dead time of the heralding detector) and by the losses in the
optical implementation (channel transmission is ∼8%; total
efficiency∼2%). Figure 2(b) shows the estimated value ofW
over 3.5 h and the rate at which the final random bits are
generated. To demonstrate the self-testing capacity of our
protocol, we switched off the air conditioning in the room
after 3 h. This impacts the alignment of the setup. As can be
seen from Fig. 2(b), thewitness valueW drops, reflecting the
fact that the distributions of internal states [qðλÞ and rðμÞ]
changed. In turn, this forces us to perform more postpro-
cessing, resulting in a lower randomness generation rate.
Nevertheless, the quality of the final random bits is still
guaranteed. This shows that our setup can warrant the
generation of high quality randomness, without active
stabilization or precise modeling of the impact of the
temperature increase.
The quality of the generated randomness can be assessed

by checking for patterns and correlations in the extracted
bits. We performed standard statistical tests, as defined by
NIST, and although not all tests could be performed due to
the small size of the sample, all performed tests were
successful (see [25]). We stress that these tests do not
constitute a proof of randomness (which is impossible);
however, failure to pass any of them would indicate the
presence of correlations among the output bits.
Finally, we comment on the influence of losses. In the

above analysis, we discarded inconclusive events in which
the photon was not detected at the measuring device,
although the emission of a single photon was heralded
by the source. Therefore, our analysis is subject to an
additional assumption, namely, that of fair sampling, which
we believe is rather natural in the case of nonmalicious
devices. Note, however, that this is not necessary strictly
speaking, as our protocol is in principle robust to arbitrarily
low detection efficiency [24]. Performing the data analysis
without the fair-sampling assumption (in which case the
inconclusive events are attributed the outcome −1) we
obtain witness values of W ∼ 1.5 × 10−4, corresponding to
Hmin ∼ 2.0 × 10−9. In this case, the rate for generating
random bits drops considerably to 6 × 10−5 bits=s, but
importantly does not vanish. Hence, our setup can be used
to certify randomness without requiring the fair-sampling
assumption. We note that even a small increase in efficiency
would lead to a large improvement in rate. E.g., an increase
from our current 2% to 10% would already give
∼0.04 bits=s while an overall efficiency of 50% would
be enough to reach 23 bits=s without postselection, equal
to our current postselected rate.
Conclusion.—We have presented a protocol for self-

testing QRNG, which allows for real-time monitoring of
the entropy of the raw data. This allows adapting the
randomness extraction procedure in order to continuously
generate high quality random bits. Using a fully optical
guided implementation, we have demonstrated that our
protocol is practical and efficient, and illustrated its
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self-testing capacity. Our work thus provides an approach
to QRNG, which can be viewed as intermediate between
the standard (device-dependent) approach and the device-
independent one.
Compared to the device-dependent approach, our pro-

tocol delivers a stronger form of security requiring less
characterization of the physical implementation, at the price
of a reduced rate compared to commercial QRNGs such as
ID Quantique QUANTIS which reaches 4 Mbits=s. A fully
device-independent approach [18,19], on the other hand,
offers even stronger security [in particular assumptions
(ii)–(iv) can be relaxed, hence offering robustness to side
channels and memory effects], but its practical implemen-
tation is extremely challenging. Proof-of-principle experi-
ments require state-of-the-art setups but could achieve only
very low rates [19,20]. Our approach arguably offers a
weaker form of security, but can be implemented with
standard technology. Our work considers a scenario of
trusted but error-prone devices, which we believe to be
relevant in practice.
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In this Supplementary material we provide a proof of randomness for our protocol along with
the required assumptions in Sec. I. We show that our protocol is robust to detector afterpulsing in
Sec. II. We show how to account for multi-photon events in Sec. III, and we account for finite-size
effects in Sec. IV. Finally, we discuss statistical tests applied to the output data.

I. PROOF OF RANDOMNESS

Here we provide a lower bound on the randomness
in the observed output using the dimension witness of
Ref. [1]. The devices are assumed to be independent,
but each device features an internal source of random-
ness, represented by the variable λ for Alice, and variable
µ for Bob. Our goal is to upper bound the probability of
guessing the output b that one would have if λ and µ were
known, averaged over all inputs and values of the local
random variables. Before proceeding with the proof, we
first establish the setting in which we will work and state
the assumptions made.

A. Setting and assumptions

A priori, the probability of observing a certain output
in a given round of the experiment could depend on ev-
erything that happened before, and later events could be
correlated with the observation of a certain output. How-
ever, we will introduce several assumptions which ensure
that we can speak about output probabilities without re-
ferring to specific rounds as well as the independence of
the devices. Let us associate random variables Bi, Xi,
Yi, Λi, Mi with the output, the inputs, and the internal

variables in round i, and let us write ~Bi for the set of
variables B1, ..., Bi etc. Also, let us denote the probabil-
ities for the random variables to take on specific values
by lower case symbols, e.g. p(xi) = P (Xi = xi) and

p(~bi|~xi, ~yi) = P ( ~Bi = ~bi| ~Xi = ~xi, ~Yi = ~yi).
Our first assumption is that all inputs are independent

of each other and the devices. Formally, Xi is indepen-

dent of Xj for any j 6= i and of ~Yi−1, ~Λi−1, ~Mi−1, and
similarly for Yi. Our second assumption is that the out-
put in a given round depends only on the inputs in that
round and the current state of the devices. Formally, Bi is

conditionally independent of ~Bi−1, ~Xi−1, ~Yi−1, ~Λi−1, and
~Mi−1 given Xi, Yi, Λi, and Mi. Our third assumption is

that the devices do not record the outputs. Formally, Λi
and Mi are independent of ~Bi−1. Under these assump-
tions, the probability for a certain string of outputs to

∗ These authors contributed equally to this work.

occur factorises

p(~bn|~xn, ~yn, ~λn, ~µn) =

n∏

i=1

p(bi|xi, yi, λi, µi). (1)

This can be seen by repeated application of Bayes’ rule.

The probability to correctly guess the output string ~bn
knowing all the inputs and internal variables in an ex-
periment with n rounds is

pg
~xn~yn~λn~µn

= max
~bn

p(~bn|~xn, ~yn, ~λn, ~µn)

=
n∏

i=1

max
b
p(b|xi, yi, λi, µi), (2)

and it follows that

log(pg
~xn~yn~λn~µn

) =
n∑

i=1

log(max
b
p(b|xi, yi, λi, µi))

≤ n log(
1

n

n∑

i=1

max
b
p(b|xi, yi, λi, µi)).

(3)

We now assume that the distribution of the internal ran-
domness is fixed for the duration of the experiment. For-

mally, the ~Λn are identically distributed, and the ~Mn as
well. With this assumption, for n → ∞ the sum in the
last line above is equivalent to averaging over the inputs
and internal variables, that is, it equals

∑

x,y

∑

λ,µ

max
b
p(b|x, y, λ, µ)p(x, y)p(λ, µ). (4)

With the final assumption that the devices are inde-

pendent, formally that the ~Λn are independent of the
~Mn, it follows from our proof below that this quantity

is bounded by a function of the observed witness value
f(W ). This implies that in the limit of large n

pg
~xn~yn~λn~µn

≤ f(W )n, (5)

and hence the entropy per bit in the output string is
bounded by

H = − 1

n
log2(pg

~xn~yn~λn~µn
) ≥ − log2(f(W )). (6)
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We have assumed that the internal random variables
are identically distributed in every round. On the phys-
ical level, the corresponding requirement is that any ex-
ternal parameters which influence the distributions qλ,
rµ, such as e.g. temperature, vary slowly on the time-
scale of one experimental run, i.e. the time required to
gather enough data to estimate the witness value W . In
our experimental implementation this time-scale is about
one minute. Between different experimental runs there
is no requirement for qλ, rµ to stay unchanged. We have
also assumed that the internal variables are independent
of the outputs. Note however that we believe that these
assumptions can be relaxed. For example, detector after-
pulsing breaks the second assumption, but randomness
can nevertheless be certified in our protocol as demon-
strated in Sec. II.

B. Proof

Having established the above assumptions, we can now
go ahead with our randomness proof without reference to
any specific round of the experiment, i.e. we can work just
with the distribution p(b|x, y, λ, µ). For given inputs and
λ, µ, the guessing probability for this distribution is

pgxyλµ = max
b
p(b|x, y, λ, µ). (7)

The average guessing probability pg is the average of
pgxyλµ over the distribution of inputs and local random-
ness. To proceed, however, we will first derive an upper
bound on pgλµ, defined to be the average over the inputs
only.

We consider the witness W of the main text. We thus
have four preparations, x = 0, 1, 2, 3 and two measure-
ments y = 0, 1. Consider choices of preparations and
measurements which are uniformly random (as explained
in the main text, pseudorandomness is sufficient here),
i.e. each combination x, y occurs with probability 1/8.
We have that

pgλµ =
1

8

∑

x,y

max
b
p(b|x, y, λ, µ)

≤ 1

2
max
x

∑

y

max
b
p(b|x, y, λ, µ)

≤ 1 + cos(θµ/2)

2

(8)

where θµ denotes the angle between Bob’s two measure-
ment. The reasoning of the derivation is as follows. The
best guessing probability averaged over inputs of Alice
is bounded by the maximum over her inputs. This gives
the first inequality and allows us to focus on the best
possible state that Alice can send. Next, Bob has two

measurements described by Bloch vectors ~Tµ0,1, and θµ is
the angle between them. The best guessing probability
averaged over his inputs is obtained by sending a state
which lies in the middle between his measurements on

FIG. 1. Cut through the Bloch sphere showing the measure-
ments of Bob, and a state |ψ〉 lying in the same plane. The
probabilities of outcome, say, b = 1 are given by the projec-
tions of |ψ〉 onto Tµ0,1. The probabilities when |ψ〉 makes an
angle φ with Tµ0 are indicated. To maximise the average of
these, one must choose φ = θµ/2. Note that choosing a state
out of the plane of the measurements can only decrease the
guessing probability.

the Bloch sphere (see Fig. 1). For such a state, the out-
come probabilities for the two values of b are cos2(θµ/4),

and sin2(θµ/4). Choosing the larger value and using the
double-angle formula, one arrives at the second inequal-
ity.

Now we use the fact that a bound on the angle θµ can
be derived from the witness value for fixed local random-
ness Wλ,µ. One has that (see [1])

Wλ,µ ≤ |~Tµ0 × ~Tµ1 | ≤ sin θµ (9)

For maximally anti-commuting measurements, we get
Wλ,µ = 1. Combining (8) and (9), we get

pgλ,µ ≤
1

2


1 +

√√√√1 +
√

1−W 2
λ,µ

2


 ≡ f(Wλ,µ). (10)

We note that the function f is concave and decreasing.

Next, we establish the following convexity property of
the witness (in a slight abuse of notation, W denotes the
observed value of the witness when λ, µ are not known)

W ≤
∑

λ,µ

qλrµWλ,µ. (11)

To see that this holds, consider the entries of the matrix
defining W . They are of the form p(1|x, y) − p(1|x′, y).
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When the devices have internal randomness, we can write

p(1|x, y)− p(1|x′, y) =
∑

λ,µ

qλrµ

(
Tr[ρλxΠµ

1|y]− Tr[ρλx′Π
µ
1|y]
)

=
∑

λ,µ

qλrµ~S
λ
xx′ · ~Tµy

=

(∑

λ

qλ~S
λ
xx′

)
·
(∑

µ

rµ ~T
µ
y

)

≡ ~Sxx′ · ~Ty, (12)

where ρλx are the states produced by Alice’s box, and
Πµ

1|y = (1 + Mµ
y )/2 are the projection operators of Bob

corresponding to outcome 1, ~Tµy is the Bloch vector cor-

responding to Mµ
y and Sλxx′ is the difference of the Bloch

vectors for ρλx and ρλx′ (see [1]). Now, from [1] it follows
that

W = (S01 × S23) · (T0 × T1) (13)

=
∑

λ,λ′,µ,µ′

qλqλ′rµrµ′(S
λ
01 × Sλ

′
23) · (Tµ0 × Tµ

′

1 ) (14)

=
∑

λ,λ′,µ,µ′

qλqλ′rµrµ′ |Sλ01 × Sλ
′

23||Tµ0 × Tµ
′

1 | cosφλ,λ′,µ,µ′

(15)

where φλ,λ′,µ,µ′ denotes the angle between the vectors

(Sλ01 × Sλ
′

23) and (Tµ0 × Tµ
′

1 ). Next we notice that, for
fixed λ, µ, µ′, there will be a value of λ′ such that |Sλ01 ×
Sλ
′

23| cosφλ,λ′,µ,µ′ is maximal. If we label this value λ
and set qλ′ = 1 when λ′ = λ this can only increase the
expression. We thus obtain:

W ≤
∑

λ,µ,µ′

qλrµrµ′ |Sλ01 × Sλ23||Tµ0 × Tµ
′

1 | cosφλ,µ,µ′ (16)

Using a similar argument, we can eliminate µ′:

W ≤
∑

λ,µ

qλrµ|Sλ01 × Sλ23||Tµ0 × Tµ1 | cosφλ,µ (17)

=
∑

λ,µ

qλrµWλ,µ. (18)

We are now ready to bound the guessing probability pg.
Using the definition of pg, (10), and (11) we have

pg =
∑

λ,µ

qλrµp
g
λ,µ (19)

≤
∑

λ,µ

qλrµf(Wλ,µ) (20)

≤ f(
∑

λ,µ

qλrµWλ,µ) (21)

≤ f(W ) (22)

where in the third line we have used Jensen’s inequality
and concavity of f , and in the last line we have used that
f is decreasing. Hence, we finally get

pg ≤ 1

2


1 +

√
1 +
√

1−W 2

2


 (23)

which gives the desired upper bound on the guessing
probability as a function of the observed value of the
witness W . This bound is tight when maximal viola-
tion of the witness is achieved, i.e. W = 1. In Sec. IV,
we provide the calculation for the maximum number of
extractable random bits.

Finally, we provide a proof of the relation between W
and the commutativity of the measurements. We write

Mµ
y = ~Tµy · ~σ, and we have

∫
dµr(µ)|| [Mµ

0 ,M
µ
1 ] || =

∫
dµr(µ)||

[
~Tµ0 · ~σ, ~Tµ1 · ~σ

]
||

=

∫
dµr(µ)||2i(~Tµ0 × ~Tµ1 ) · ~σ||

= 2

∫
dµr(µ)|~Tµ0 × ~Tµ1 |

≥ 2

∫
dλdµq(λ)r(µ)Wλ,µ

≥ 2W, (24)

where we have used (9) and (11).

II. CERTIFYING RANDOMNESS IN THE
PRESENCE OF AFTERPULSING

In the following we show that although afterpulsing a
priory violates the i.i.d. assumption (iii), the self-testing
nature of our protocol captures the effect. When after-
pulsing is present, the witness value is reduced corre-
spondingly and randomness can still be certified.

To see this, we first consider a hypothetical experi-
ment in which the outputs are generated as follows: in
a fraction η of events, the experiment follows and ideal
quantum qubit implementation while for the remaining
events an outcome is generated at random by the mea-
surement device, determined only by some internal ran-
dom variable µ independent of the inputs. Let us denote
the witness value computed from the whole dataset W ,
and the value which would be obtained from only the
quantum events W̃ . To an observer who does not know
µ, the non-quantum events look just like uniform noise
and the witness values fulfil W = η2W̃ [1]. At the same
time, this scenario meets all of the assumptions in the
proof of randomness of Sec. I. Therefore, for an observer
with perfect knowledge of µ, who can hence perfectly pre-
dict the output for the non-quantum events, the guessing
probability on the whole dataset is bounded by

pg ≤ f(W ) = f(η2W̃ ). (25)
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We now show that the witness value is reduced in a sim-
ilar way for afterpulsing, and hence even if the outputs
from afterpulsing events can be perfectly predicted, our
bound on the randomness still holds.

Consider an experiment generating a set S =
{(b1, x1, y1), . . . , (bN , xN , yN )} of N events. The first
thing to notice is that afterpulsing is probabilistic: in
any given event either there is an afterpulse or there is
not. We can therefore think of S as consisting of a set S̃
of Ñ events with no afterpulse and N − Ñ additional af-
terpulsing events. Let Nbxy denote the number of events

in S with outcome b and inputs x, y, and Ñbxy the events

in S̃, and define Nxy, Ñxy similarly. For simplicity let us
consider the limit of large N such that finite size effects
can be neglected. Since the inputs are chosen uniformly
Nxy = N/8. We note that the probability for an af-
terpulse to occur in a given round i of the experiment
does not depend on the inputs xi, yi in that round. The
number of afterpulses is therefore the same for all com-
binations of x,y, and Ñxy = ηN/8 with η = Ñ/N . In
any afterpulsing event, the outcome bi is also uncorre-
lated to the inputs xi, yi in that round (since bi = bi−1).
This means that the effect of afterpulsing when counting
events can be written

Nb,x,y = Ñb,x,y + cb, (26)

where, importantly, cb is independent of x (also of y and
indeed it may be independent of b, but this is not impor-
tant in the following).

The witness value on the dataset S is computed from
the frequencies νb|xy = Nb,x,y/Nx,y. Using the above, we
can write

νb|xy =
Ñb,x,y + cb

N/8
=
ηÑb,x,y
ηN/8

+
8cb
N

= ην̃b|xy+
8cb
N
, (27)

where ν̃b|xy = Ñb,x,y/Ñx,y is the frequency one would

have obtained considering only the set S̃. Now, since the
last term above is independent of x and since the witness
is computed solely from terms of the form ν1|xy − ν1|x′y,
we have that

W = η2W̃ , (28)

where W̃ is the witness value which one would obtain
from the events S̃ without afterpulsing. Since the re-
duction in W when afterpulses are added is exactly the
same as in the scenario above where events with perfectly
predictable outputs were added, it follows that even if af-
terpulse events would be perfectly predictable, the bound
(25) on the guessing probability still holds.

III. ACCOUNTING FOR MULTI-PHOTON
EVENTS

For real-world sources it is challenging to guarantee
that they are of qubit nature. In particular, single-
photon sources based on spontaneous parametric down

conversion process or weak coherent sources have non-
zero probability of emitting more than one photon, vio-
lating the qubit assumption.

Given an imperfect source which does not always sat-
isfy the qubit assumption, we would like to say something
about the witness violation corresponding to events that
do satisfy the assumption. In particular, we would like a
lower bound on this violation in terms of the observed,
experimental probability distribution and some guaran-
tee on the fraction of non-qubit events. Even without a
detailed model of the source, it is possible to determine
this fraction e.g. using knowledge of the photon statistics.

A. Bounding the violation for given qubit fraction

To derive a bound on the quantum violation, we will
assume that each experimental round either satisfies the
qubit assumption, or not. That is, the conditional prob-
ability distribution for the experiment can be modeled
as

p(b|xz) = αpqa(b|xz) + (1− α)pq̄a(b|xz), (29)

where α is the fraction of qubit events, pqa is the distri-
bution corresponding to the qubit events, and pq̄a is an
unrestricted distribution. The witness value is given in
terms of the probabilities by |W |, where

W =

∣∣∣∣
p(1|0, 0)− p(1|1, 0) p(1|2, 0)− p(1|3, 0)
p(1|0, 1)− p(1|1, 1) p(1|2, 1)− p(1|3, 1)

∣∣∣∣ . (30)

From the model (29), it follows that the expected witness
value must satisfy

W = |α2Wqa + (1− α)2Wq̄a + α(1− α)(G+G′)|, (31)

where Wqa, Wq̄a are the determinants corresponding to
distributions pqa and pq̄a respectively, and

G =

∣∣∣∣
pqa(1|0, 0)− pqa(1|1, 0) pqa(1|2, 0)− pqa(1|3, 0)
pq̄a(1|0, 1)− pq̄a(1|1, 1) pq̄a(1|2, 1)− pq̄a(1|3, 1)

∣∣∣∣

G′ =

∣∣∣∣
pq̄a(1|0, 0)− pq̄a(1|1, 0) pq̄a(1|2, 0)− pq̄a(1|3, 0)
pqa(1|0, 1)− pqa(1|1, 1) pqa(1|2, 1)− pqa(1|3, 1)

∣∣∣∣

To bound the qubit violation for a given expected ob-
served violation we should minimise |Wqa| subject to the
constraint (31). However, if a certain value W can be at-
tained for a fixed value of |Wqa|, then attaining all smaller
values requires even less qubit violation. We may there-
fore just as well look for the maximal W for fixed |Wqa|.
Any value above this maximum guarantees a qubit viola-
tion of at least |Wqa|. The maximum has a simple form.
It is given by

maxW = max

{
4α(1− α) + α(2α− 1)Wqa

2(1− α) + αWqa

}
. (32)
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The first thing we notice is that when maxW in (32) is
less than 1, it is always given by the first line. This is the
relevant case for certifying randomness in practice. Solv-
ing for the qubit violation, given an observed violation
less than unity we have the bound

Wqa ≥
1

α(2α− 1)
[W − 4α(1− α)]. (33)

Second, we note that for α > 1/2 the maximum (32) is
always larger than 1. This means that to be able to cer-
tify randomness in practice, we need a minimal fraction
of events satisfying the qubit assumption of

α >
1

2
. (34)

Third, for a given value of α there is a minimal observed
violation below which the bound (33) becomes trivial and
no randomness can be certified. We must have

W > 4α(1− α). (35)

B. Estimating the qubit fraction

For an implementation with a particular source, we
need an estimate or a lower bound on the fraction of qubit
events α. Source and detector inefficiency, and transmis-
sion losses lead to inconclusive events, and our estimate
of α should be consistent with how these events are dealt
with.

In the scenario of non-malicious, error-prone devices
considered here, it is rather natural to discard inconclu-
sive events (e.g. assuming fair-sampling) and then com-
pute W from the remaining data. To be able to evaluate
(33) in this case, one needs to estimate α when incon-
clusive events are discarded. It is also natural to assume
that all events with at most one photon emitted obey the
qubit assumption.

With these assumptions, let q denote the probability
for the source to emit at most one photon and consider an
experiment with N events and M conclusive events. Be-
fore post-selection, asymptotically the fraction of events
that obey the qubit assumption is then α = q. For a
finite number of events, we can put a conservative esti-
mate, i.e., a lower bound, on the number of events Nα
that satisfy the qubit assumption, within a given confi-
dence. In particular, under the assumption that we know
q, the behaviour of the source is modelled by a family
of N Bernoulli trials parameterized by q, and thus the
estimation problem can be solved by using the Chernoff-
Hoeffding tail inequality. More formally, let ν > 0 be the
failure probability of the estimation process and t > 0 be
the margin parameter, then

P (Nα ≤ qN − t) ≤ exp(−2Nt2) = ν, (36)

which implies that Nα > qN − t is true with probability
at least 1− ν. Equivalently, the fraction of qubit events

without post-selection is α > q− t/N with probability at
least 1− ν. The margin parameter t can be expressed in
terms of N and ν as t =

√
1/(2N) log(1/ν).

To account for post-selection, we conservatively as-
sume that all multi-photon events are conclusive.
Asymptotically, the fraction of non-qubit events will be
(1 − q)N/M , so α = 1 − (1 − q)N/M . For finite N we
have that after post-selection

α ≥ 1− (1− q)N
M
− t

M
(37)

with probability at least 1 − ν, with ν and t given by
(36).

IV. SECURITY ANALYSIS

In this section, we show that with the observed ex-
perimental statistics, it is possible to provide a bound
on the number of random bits that can be extracted
from the raw data set, Z, which takes values from a set
of all binary strings, Z of length m. Our approach es-
sentially uses the (quantum) leftover hash lemma, which
states that the amount of private randomness is approx-
imately equal to the min-entropy characterization of the
raw data Z. More specifically, it says that the number
of extractable random bits (that is independent of vari-
ables X,Y, L) is roughly given by Hmin(Z|XY L). Here,
we recall that variables X and Y are the inputs of Alice
and Bob, respectively, and L is the classical register cap-
turing all information about the local variables λ and µ.
The min-entropy of Z given XY L has a clear operational
meaning when casted in terms of the guessing probabil-
ity, i.e., Hmin(Z|XY L) = −m log2 pguess: it measures the
probability of correctly guessing Z when given access to
classical side-information XY L.

On a more concrete level, the leftover hash lemma em-
ploys a family of universal hash functions to convert Z
into an output string S (of size `) that is close to a
uniform string conditioned on side-information XY L. In
particular, we say that the output string S is ∆-close to
uniform conditioned on XY L, if

1

2

∑

s,x,y,l

|PSXY L − USPXY L| ≤ ∆, (38)

where US is the uniform distribution of S. The quality
of the output string is directly related to the number of
extractable random bits, i.e.,

` =

⌊
Hmin(Z|XY L)− 2 log2

1

2∆

⌋
. (39)

Therefore, to bound `, we only need to fix a security level
εsec ≥ ∆ and find a lower bound on the min-entropy term.
Using the definition of conditional min-entropy and the
assumption that Z is generated from an iid process, we
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have

` =

m−m log2


1 +

√
1 +
√

1−W 2

2


− 2 log2

1

2∆

 .

(40)
Accordingly, the rate of extraction is `/m, and it con-
verges to the min-entropy rate when m → ∞ (therefore
∆ → 0). At the moment, our bound on ` is written in
terms of the expected value of W , which is not directly
accessible in the experiment. In order to relate the W to
the set of experimental statistics E := {n+

x,y/nx,y}x,y, we
first use the Chernoff-Hoeffding tail inequality [2], which
provides an upper bound on the probability that the sum
of random variables deviates from its expected value. We
get

p(1|x, y)− t(εpe, nx,y)
εpe

≤ n+
x,y

nx,y

εpe

≤ p(1|xy) + t(εpe, nx,y),

(41)

where t(εpe, nx,y) :=
√

log(1/εpe)/(2nx,y). Here, re-
lations with oversetting εpe means that the relations
are probabilistically true, i.e., the relations hold except
with probability εpe. For our purposes later, we denote
p±x,y := p(1|x, y)± t(εpe, nxy). In the following, we intro-
duce an estimate of the expected W , i.e.,

W
ε′

≥Wmin := min
qx,y∈(p−x,y,p

+
x,y)
|W ({qx,y})| , (42)

where ε′ = 8εpe and

W ({qx,y}) := det

[
q0,0 − q1,0 q2,0 − q3,0

q0,1 − q1,1 q2,1 − q3,1

]
. (43)

Next, we need to bound the maximum fraction of non
qubit events, 1− α. Following the discussion in Sec. III,
with post-selection we expect α to be 1− p2

p1+p2
(p2 and p1

are the probabilities of the SPDC to emit, respectively,
a double pair or a single-photon pair). In the scenario
where N preparations are made, by using the Chernoff-
Hoedffing tail inequality, we have that

α
ε′′

≥ α̂ := 1−
[

p2

p1 + p2
+ t(ε′′, N)

]
. (44)

Plugging this into Eq. (C5), we get

Wqa

ε′+ε′′

≥ Wmin − 4α̂(1− α̂)

α̂(2α̂− 1)
. (45)

Therefore, the effective violation is

Ŵeff :=
Wmin − 4α̂(1− α̂)

2α̂− 1
. (46)

Note that the effective violation is obtained by fixing the
violation due to non qubit contribution to be zero. In

FIG. 2. (a) NIST tests of the data at the output of the ex-
tractor. (b) Binary image (500×500) of the extracted random
bits.

other words, the effective violation measures the amount
of randomness in Z. That is, we have

` =

m−m log2


1 +

√√√√1 +
√

1− Ŵ 2
eff

2


− 2 log2

1

2∆

 .

Finally, by choosing ∆ = ε and fixing εpe = ε′′ = ε, the
output string S is 10ε-close to uniform conditioned on
XY L. In the actual implementation we chose ε = 10−3.

V. OUTPUT DATA ANALYSIS

We performed tests for assessing the quality of the gen-
erated randomness, looking for patterns and correlations
in the output data. We performed standard statistical
test, as defined by NIST. For each test, the p-value is the
result of the Kolmogorov-Smirnov test, and must satisfy
0.01 ≤ p ≤ 0.99 to be considered successful. Although
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Measurement
D/A R/L

D1 D2 D1 D2

P
re

p
a
ra

ti
o
n D 5903 97 3515 2485

A 172 5828 2950 3050

R 2825 3175 5914 86

L 3565 2435 199 5801

TABLE I. Sample of raw data taken during one minute under
good alignment conditions.

not all tests could be performed due to the small size
of the sample, all performed tests were successful (see
FIG. 2-(a)). A more visual approach to detecting pat-
terns is illustrated in FIG. 2-(b), where we display 250000
bits in a 500×500 matrix as a black-and-white image.
Any repeated pattern or regular structure in the image
would indicate correlations among the bits. No pattern
appears.

VI. EXAMPLE OF RAW DATA

Here, for completeness, we present an extract of the
raw data from our experiment, see Tab. I. The data cor-

responds to one minute of integration, under good align-
ment conditions. We give the detector counts observed
for each detector (D1 and D2), for each measurement
setting y and preparation setting x. As mentioned in the
main text, the preparations x = {0, 1, 2, 3} correspond
respectively to the diagonal (D), anti-diagonal (A), cir-
cular right (R) and circular left (L) polarization states.
The measurements y = {0, 1} correspond respectively to
the {D,A} basis and the {R,L} basis. In other words,
we use the preparations and measurements of the BB84
protocol.

Based on the raw data, we evaluate the asymptotic
probability distribution p(b|x, y) using the method pre-
sented in Section IV, and then evaluate the witness value
W . While perfect BB84 preparations and measurements
would give W = 1 in the asymptotic limit, the observed
value is reduced. This is partly due to alignment errors,
but especially to finite-size effects. To illustrate, we com-
pute the W value corresponding to the data in Tab. I
with and without accounting for finite-size effects. We
find W = 0.92 and W = 0.79 respectively. These val-
ues correspond to visibilities of V =

√
W ≈ 0.96 and

V ≈ 0.89 respectively, with respect to the ideal BB84
preparations and measurements mixed with white noise.
Note that W = 0.79 is not far from the average W = 0.76
observed under good conditions (see the main text).

[1] J. Bowles, M. T. Quintino, and N. Brunner, Phys. Rev.
Lett. 112, 140407 (2014).

[2] W. Hoeffding, Journal of the American Statistical Associ-
ation 58, 13 (1963).
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Abstract
Motivated by recent progress in electron quantumoptics, we revisit the question of single-electron
entanglement, specifically whether the state of a single electron in a superposition of two separate
spatialmodes should be considered entangled.Wefirst discuss a gedanken experiment with single-
electron sources and detectors, and demonstrate deterministic (i. e. without post-selection)Bell
inequality violation. This implies that the single-electron state is indeed entangled and, furthermore,
nonlocal.We then present an experimental schemewhere single-electron entanglement can be
observed viameasurements of the average currents and zero-frequency current cross-correlators in an
electronicHanbury Brown–Twiss interferometer driven by Lorentzian voltage pulses.We show that
single-electron entanglement is detectable under realistic operating conditions. Ourwork settles the
question of single-electron entanglement and opens promising perspectives for future experiments.

1. Introduction

Thefield of electron quantumoptics has witnessed strong experimental advances over a short period of time [1].
Electronic analogues of theMach–Zehnder [2], Hanbury Brown–Twiss [3] andHong-Ou-Mandel
interferometers [4] can nowbe implementedwith edge channels of the integer quantumhall effect functioning
aswave guides for electrons. At the same time, the recent realization of coherent single-electron emitters is
opening up avenues for the controlledmanipulation of few-particle electronic states [5–8]. In parallel to these
developments, a number of theoretical proposals have been put forward to entangle electrons, e.g.in edge
channels [9–13], using either the electron spin or the orbital degrees of freedom. The entanglement is detected by
violating a Bell inequality [14, 15] formulated in terms of zero-frequency current cross-correlations [16–18].
While early proposals focus on electron sources driven by static voltages,more recent works investigate the on-
demand generation of entangled states using dynamic single-electron emitters [19–23].

For spin or orbital entanglement, several particles are involved and the particles are entangled in the spin or
the orbital degrees of freedom, respectively. A conceptually different notion of entanglement is provided by
entangled states of different occupation numbers. In this case, the entanglement is between differentmodes, and
the relevant degree of freedom is the particle number in eachmode. It is a question that has beenmuch debated
whether a state of a single particle in a superposition of two spatially separatemodes should be considered
entangled [24–30]. For photons (and other Bosons) it is by nowwell established that the answer is yes, and that
the entanglement is in fact useful in quantum communication applications [31, 32]. For electrons (and other
Fermions), the situation is different because of charge and parity superselection rules, and the question still
causes controversy [33–37].

Here, we revisit this questionmotivated by the recent development of dynamic single-particle sources in
electron quantumoptics.We demonstrate rigorously that the answer for electrons is affirmative based on the
situation sketched infigure 1(a): two independent sources each produce a single electronwhich is delocalized
with one part transmitted to locationA and the other toB. Using only local operations (LOs) andmeasurements
at each location, a Bell inequality betweenA andB is violated deterministically, i.e. without post-selection. This
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necessarily implies that there is entanglement betweenA andB. Since the sources are independent this in turn
implies that the state emitted by a single source is entangled between regionsA andB. Specifically, we show that
such a situation can be realized in an electronicHanbury Brown–Twiss interferometer driven by Lorentzian
voltage pulses as illustrated infigure 1(b). Notably, the single-electron entanglement can be observed from
current cross-correlationmeasurements at the outputs of the interferometer.

2. Single-particle entanglement

We start with a brief introduction to single-particle entanglement. A single particle in a superposition of two
different locations can be described by the state

:§ � § § � § §∣ ( ∣ ∣ ∣ ∣ ) ( )1

2
0 1 1 0 , 1A B A B

where the numbers in the kets indicate the particle numbers in the spatially separatedmodes. The basic question
is whether such a state is entangled. One can ask the question both for Bosons and for Fermions, in particular for
photons and electrons. To answer affirmatively, the entanglementmust be experimentally detectable.

Entanglement should be verified directly frommeasurements on each spatialmode in equation (1), e.g.by
testing the observations against a Bell inequality [14, 15]. If arbitrarymeasurements were possible, equation (1)
should indeed be considered entangled since it for example violates the Clauser–Horne–Shimony–Holt (CHSH)
Bell inequality [38]. However, the possiblemeasurementsmay be limited because the stateequation (1) is a
single-particle state. Violating theCHSH inequality requiresmeasurements which are not diagonal in the
occupation number basis, i.e. they should contain projections onto superpositions of states with different
particle numbers such as § � §(∣ ∣ )0 1 2 . Onemay therefore expect a fundamental difference between
photons and electrons because global charge conservation and parity superselection [39, 40] forbids such
superpositions for electrons [30, 41].

Figure 1. Schematic setup. (a)Two independent single-electron sources emit delocalized electrons towards the locationsA andB.
A Bell test is performed using local operations andmeasurements atA andB. If the resulting data ( ∣ )p ab xy violates a Bell inequality,
A andBnecessarily share entanglement. Hence, the sourcesmust emit entangled states. (b)ElectronicHanbury Brown–Twiss
interferometer realizing the idea in (a) for an experimental demonstration of single-electron entanglement. Single-electron excitations
are generated at the source contacts S1 and S2 and travel to the outputs oA and oB . The contactsG1 andG2 are grounded.

2
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For photons it is by now established that the stategiven in equation (1) is entangled and in fact useful for
applications in quantum communication [32, 42]. Experimental demonstrations of single-photon
entanglement have been reported using homodyne [43, 44] andweak displacementmeasurements [45, 46].
Thesemeasurements require the use of coherent states of light (laser light), which introduces additional
particles. These particles provide a reference frame between the observers [30, 47]. Alternatively, single-photon
entanglement can be converted into entanglement between two atoms [31]. In equation (1), the numbers 0, 1
then represent internal atomic states and entanglement can be verified straightforwardly. Importantly, since the
conversion process involves only LOs, one concludes that the original single-photon stategiven in equation (1)
must have been entangled. These procedures, however, cannot be straightforwardly applied to Fermions (for
example, there is no equivalent of coherent states for Fermions). Hence, amore careful analysis is necessary aswe
show in the following.

3. Single-electron entanglement andnonlocality

Weconsider the experiment pictured infigure 1(b) and now argue that single-electron entanglement is
observable. To keep the analysis simple, wework at zero temperature and assume that the sources create single
electronic excitations above the Fermi seawhich can be detected one by one. These assumptions do not
contradict any fundamental principle such as charge conservation.We consider the possibility of an
experimental implementationwith current technology later on.

Single electrons are excited above the Fermi sea at the sources S1 and S2, and are coherently split and
interferred on electronic beamsplitters—quantumpoint contacts (QPCs) tuned to half transmission. Tunable
phasesKA andKB can be applied in one armon either side of the interferometer. The phases can be tuned using
side gates or by changing themagnetic fluxΦ through the device. In the latter case, we have
Q K K' ' � �2 A B0 , where ' � h e0 is themagnetic flux quantum.

Labelling themodes as indicated in thefigure, in second quantized notation the top beam splitter
implements the transformation l �( )† † †a a a 2S A B1 1 1

, l �( )† † †a a a 2G A B1 1 1
and similarly for the others.

Here, we have introduced the Fermionic creation and annihilation operators B
†a and aα for electrons above the

Fermi sea inmodeα. Considering just the top source (S1), the state created after the beam splitter is thus

� §( ) ∣ ( )† †a a
1

2
0 , 2A B1 1

where the state §∣0 represents the undisturbed Fermi sea. This is the electronic version of equation (1), andwe
use the interferometer to demonstrate that the state indeed is entangled between the regionsA andB.

The joint initial state of the two sources is §∣† †a a 0S S1 2
, and the state evolution up to the output of the

interferometer is then

§l � � §

l � � �

� � � �

� � §

K K

K K

K K

K K

� � � �

� � � �

� � � �

∣ ( )( ) ∣

[ ( ) ( )

( ) ( )
] ∣ ( )

† † † † † †

† † † †

† † † †

† † † †

a a a a a a

a a a a

a a a a

a a a a

0
1

2
e e 0

1

4
e 1 e 1

e 1 e 1

2e 2e 0 , 3

S S A B A B

A B A B

A B A B

A A B B

i i

i i

i i

i i

A B

A B

1 2 1 1 2 2

whereK K K� �A B andwe have used the Fermionic anti-commutation relations E�{ }†a a,i j ij and
� �{ } { }† †a a a a, , 0i j i j .We omit termswhere two electrons go to the same output since these are ruled out by

the Pauli exclusion principle4.
Assuming that single-electron detection is possible, the stategiven in equation (3) can be seen to violate the

CHSH inequality using the following strategy: the phasesKA
x andKB

y are determined by the inputs x, y=0, 1,
and the binary outputs � oa b, 1are determined by outputting±1when one click is observed in detector oA
(similarly forB). In cases where both or none of the detectors click, the outputs are defined to be+1 and−1
respectively.We denote the probability for outputs a, b given inputs x, y by ( ∣ )P ab xy . The correlator defined as

�� ( ∣ ) ( )E abP ab xy 4xy
a b,

4
Such terms vanish due to the Fermionic anti-commutation relations, e.g. � �( ) { }† † †a a a2 , 0A A A

2
1 1 1

.
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is then given by

K K
� �

� �( ) ( )E
1 cos

2
. 5xy

A
x

B
y

If the experiment can be explained by a local hidden variablemodel, then theCHSH inequality holds [38]

� � � �∣ ∣ ( )-S E E E E 2. 600 01 10 11

Now,with the choiceK � 0A
0 ,K Q� 2A

1 ,K Q� �3 4B
0 , andK Q� 3 4B

1 , wefind

� � � ( )S 1 2 2. 7

Thus, the CHSH inequality is clearly violated. Since the state given in equation (3) violates a Bell inequality
betweenA andB, itmust necessarily be entangled. Note that this Bell inequality violation is not subjected to the
detection loophole [15], as our scheme does not involve any post-selection. Furthermore, the state given in
equation (3)was created by LOs on two copies of the state given in equation (2) coming from two independent
sources. Since any product of separable states is separable, it follows that the stategiven in equation (2)must
itself be entangled.We thus conclude that the state of a single electron split between twomodes is entangled.

It should be pointed out that the setup infigure 1(b) is similar to theHanbury Brown–Twiss interferometer
for electrons, as theoretically proposed [12] and experimentally realized [3] using edge states of a two-
dimensional electron gas in the integer quantumhall regime.However, in theseworksmaximal CHSH
inequality violation ( �S 2 2 ) is achieved by post-selection on the subspace of one electron on each side of the
interferometer (effectively post-selecting amaximally entangled state), which is interpreted as two-electron
orbital entanglement. Here, by contrast, our scheme involves no post-selection andwe do not achievemaximal
CHSHviolation, but in turnwe can demonstrate single-electron entanglement.

It should also be noted that the possibility of using two copies of a single electron entangled state in order to
distill one entangled two-electron state has been discussed in [29, 48]. There, the idea is that each observer
performs a nondemolitionmeasurement of the local electron number and then post-selects on the cases where a
single electron is detected on each side. Alternatively, the distilled entanglement can be transferred to a pair of
additional target particles [49], inwhich case however single-electron nonlocality cannot be unambiguously
concluded. Again, as argued above, our setup involves no post-selection and is thus conceptually different.
Moreover, the setup does not require nondemolitionmeasurements.

The scheme described so far is a thought experiment, demonstrating that single-electron entanglement in
theory is observable. In principle, nothing prevents its realization. Single-electron sources [5, 7, 8] and electronic
beam splitters have been experimentally realized and the first steps towards single-electron detectors [6, 50]have
recently been taken. Still, realizing our thought experiment is at present challenging,mainly because of the
requirement to detect single electrons. To relax this constraint, we discuss in the next section an experiment
which only relies onmeasurements of the average current and the zero-frequency current-correlators. These are
standardmeasurements whichwould also demonstrate single-electron entanglement, albeit under slightly
stronger assumptions about the experimental implementation.

4.Observing single-electron entanglement

Weconsider again the setup infigure 1(b), but nowdiscuss a detection schemewhich is feasible using existing
technology. Specifically, we considermeasurements of zero-frequency currents and current correlators as an
alternative to single-electron detection.We give a detailed description of the single-electron sources and the
interferometer based on Floquet scattering theory [51–54]. This allows us to investigate realistic operating
conditions such as finite electronic temperatures and dephasing. Aswewill see, it is possible to demonstrate
single-electron entanglement under one additional assumption, namely that themeasurement of themean
current and the zero-frequency current correlators amounts to taking ensemble averages over the state in each
period of the driving. This is a reasonable assumption if the period of the driving is so long that only one electron
from each source is traversing the interferometer at any given time.

For the single-electron sources, we consider the application of Lorentzian-shaped voltage pulses to the
contacts [7, 8, 55–58]. A drivenmesoscopic capacitor [5] can be used instead. Electrons leaving a contact pick up
a time-dependent phase

¨K � � a a
�d

( ) ( ) ( )
�

t
e

V t td , 8
t

4
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where the voltage applied to the contact has the form

��
(

� � (��d

d

( )
( )

( )�
,

eV t
t n

2
. 9

j
2 2

At zero temperature, this results in the excitation of exactly one electron out of the Fermi sea (and one hole going
into the contact)without any additional electron-hole pairs. This quasiparticle is called a leviton [7, 8]. In
equation (9), the temporal width of the pulse is denoted asΓ and , is the period of the driving.

Floquet scattering theory provides uswith a convenient theoretical framework to describe the periodically
driven interferometer [51–54]. By Fourier transforming equation (8), we obtain the Floquet scatteringmatrix of
the driven contacts as

�
� 8( �

�
�

� 8(

�8(( )
( )

( )+
⎧
⎨⎪
⎩⎪

n
n

n
n

2e sinh 0

e 0
0 0.

10l

n

These are the amplitudes for an electron at energy E to leave the contact at energy � � 8�E E nn , having
absorbed ( �n 0) or emitted ( �n 0) ∣ ∣n energy quanta of size 8� , where Q8 � ,2 is the frequency of the
driving.

The scatteringmatrix of the interferometer can be found as follows. Since there are eight terminals in total
(four inputs and four outputs), the scatteringmatrix of the interferometer is an 8×8matrix. However, due to
the chirality of the edge states, electrons leaving an input contact can only travel to an output. This allows us to
workwith an effective 4×4 scatteringmatrix connecting every possible input to every possible output.
Including the phasesKA andKB, that the particles pick upwhen travelling from input 1 to locationA or from
input 2 toB, the scatteringmatrix reads

�
� �

� �
� �

K K

K K

K K

K K

( )+

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

r r r t t t t r

t r t t r t r r

t t t r r r r t

r t r r t r t t

e e

e e

e e

e e

. 11

A A B B

A A B B

A A B B

A A B B

1
i

1
i

1 1

1
i

1
i

1 1

2 2 2
i

2
i

2 2 2
i

2
i

A A

A A

B B

B B

Here, ( )t1 2 refers to the transmission amplitude of theQPCs after source ( )1 2 and ( )tA B is the amplitude for the
QPC located atA(B). The rʼs are the corresponding reflection amplitudes. The rows number the possible inputs
S1,G1, S2 andG2 (in this order) and the columns the possible outputs �A , �A , �B and �B .We have chosen all
amplitudes to be real and inserted factors of−1 for half of the reflection amplitudes to ensure the unitarity of the
scatteringmatrix. Below,we consider only half-transparent beam splitters and thus set all amplitudes to 1 2 .

To obtain the combined Floquet scatteringmatrix of the interferometer and the single-electron sources, we
multiply everymatrix element of the stationary + -matrix corresponding to a voltage-biased input (i. e. thefirst
and third rows) by ( )+ nl and every element corresponding to a grounded input (i. e. the second and fourth rows)
by En0. In doing so, we assume that the two electron sources are perfectly synchronized and all arms of the
interferometer have the same length. The resulting Floquet scatteringmatrix w( ) ( )+ +E E n,nF F is the basis of
all calculations below.

The current operator in outputα is given by [59]

¨� �B B B B B
�d

d
{ ( ) ( ) ( ) ( )} ( )† †I

e

h
c E c E b E b E Ed , 12

where the operators B ( )c E ( B ( )b E ) annihilate an incoming (outgoing) electron in leadα at energy E. Outgoing
electrons from the leads are distributed according to the Fermi–Dirac distribution function

E E� a § � � a
�B C BC( ) ( ) ( ) ( )†

( )b E b E E E
1

e 1
, 13

E k TB

whereT is the electronic temperature andwe have set the Fermi level in all reservoirs toEF=0. The scattered
electrons are not in thermal equilibrium.Wefind their distribution by relating the incoming electrons to the
outgoing ones via the Floquet scatteringmatrix as [53]

� ��B
C

BC C
��d

d

( ) [ ( )] ( ) ( )+c E E E b E, . 14
n

n nF

4.1. Zero temperature
At zero temperature, the average currents and the zero-frequency current correlators can be calculated
analytically using equations (12) and (14). For example, the average current at output �A reads

5
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� § � �� ( ) ( )
,

I
e

T T T R , 15A A A2 1

where � ∣ ∣T ti i
2 and � ∣ ∣R ri i

2 ( �i A B1, 2, , ). The zero-frequency current cross-correlator is defined as

� � § � � §� §BC B C B C ( )P I I I I . 16

For the cross-correlator between the �A and �B outputs we obtain

� � �K K
� �

�∣ ∣ ( )
,

P t t r t t r r r
e

e e . 17A B A B A B

2

2 2
i

1 1
i 2B A

Note that the average currents are insensitive to the phasesKA andKB, whereas the current cross-correlators
depend on their sumK K�A B. This is known as the two-particle Aharonov–Bohmeffect [12].

We now formulate theCHSH inequality [38] for our system. The leviton annihilation operator is [58]

�� (B B
�

�( ( ) ( )�a b E2 e . 18
E

E

0

At zero temperature, we can express the operator of the number of levitons emitted from leadα per period in
terms of the current operator as

�B B B ( )† ,
a a

e
I . 19

This allows us to relate the current operator for a given detector atA orB to an operator on themodes on sideA
orB before thefinal beam splitter and the phase shift, see figure 1(b). Taking for instance the detector �A and
transforming equation (19) through the beam splitter and the phase shift, we get

l � �

� � � �

K K

K K

�

�

� � ( )( )

( ) ( ) ( )

† † †

† † † †

a a a a a a

a a a a a a a a

1

2
e e

1

2

1

2
e e . 20

A A A A A A

A A A A A A A A

i i

i i

A A

A A

1 2 1 2

1 1 2 2 1 2 2 1

To gain an intuitive understanding of this operator, we consider its restriction to the single-electron
subspace, i.e. the casewhere there is exactly one electron on sideA of the interferometer. In this case, the first
term in equation (20) is just 1/2. TheHilbert space is two-dimensional and the states §∣†a 0A1

, §∣†a 0A2
form a

basis. In this basis, the second term in equation (20) is K T K T�( ( ) ( ) )cos sin 2A x A y , with Tx, Ty, Tz being the usual
Paulimatrices. Thus, in the single-electron subspacewe have

T� � K� ( ) ( )
,

I
e

2
1 , 21A

A
A

where T K T K T� �K ( ) ( )cos sinA
A x

A
A y

A
A

is the rotated Paulimatrix in the x–y plane, acting on sideA. From this

we see that, in the single-electron subspace,measuring �IA is equivalent tomeasuring TK
A

A
. Similar expressions

can be obtained for the currents at the other detectors, and thus, bymeasuring the currents at the four outputs,
we canmeasure any combination of Pauli operators in the two-qubit subspacewith a single electron on each side
of the interferometer.

With this inmind, we define the observables

� � � �K K K K
� �

( ), ,
X

e
I X

e
I

2
1,

2
1, 22A A B B

A A B B

where the current for a given phase settingj is denoted as B
KI . In the subspacewith one electron on each side of

the interferometer, these correspond tomeasuring (rotated)Pauli operators. Events where two or no electrons
arrive on the same sidewill give contributions of+1 or−1 respectively, seeequation (19), independent of the
phase settings, analogously to the output strategy in the previous section. At zero temperature the correlator
becomes

K K
� § � �

� �K K ( ) ( )X X
1 cos

2
, 23A B

A BA B

showing that the joint statistics is the same as in section 3, where single-electron detectionwas assumed.Here,
however, we interpret the current expectation values entering in the correlator, such as � §K

�
IA

A , as the result of
time-integratedmeasurements.We thus assume that ameasurement of the time-integrated current and the
zero-frequency current correlators amounts to taking ensemble averages over the state in each period of the
driving. The statistics obtained from the time-integrated currentmeasurement is then the same as what one
would obtain by averaging over several periods of the drivingwith single-electron detection. Under this
assumption, we can again consider theCHSH inequality

� � � � � §K K K K K K K K∣ ∣ ( )-S X X X X X X X X 2. 24A B A B A B A B
A B A B A B A B
0 0 0 1 1 0 1 1
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It is easy to see that the choiceK � 0A
0 ,K Q� 2A

1 ,K Q� �3 4B
0 ,K Q� 3 4B

1 leads to a violation, giving

� � � ( )S 1 2 2. 25

Thisfinally shows us that this schememakes it possible to observe single-electron entanglement using zero-
frequencymeasurements only.

We note that our results for the current and the zero-frequency noise do not depend on the pulse widthΓ. As
such, ourmeasurement strategy based on equation (22)would alsoworkwith constant voltages as realized in the
experiment byNeder et al [3], and theCHSHviolation of equation (25)would be obtained.However, to
unambiguously demonstrate single-electron entanglement, in linewith the thought experiment described in
section 3, it is important that only one electron from each source is traversing the interferometer at any given
time.We therefore need toworkwith a long period andwell-separated pulses, as opposed to constant voltages.

It is instructive to compare our proposal to the previous work of Samuelsson et al [12]. Although the two
setups are similar, the detection scheme discussed here is different. This significantly changes the interpretation
of the observations. Themeasurement scheme suggested by Samuelsson et alis formulated in terms of
coincidence rates [12, 60]. The corresponding observable is then sensitive only to the part of the state with a
single electron on each side of the interferometer. Thus, themeasurement effectively corresponds to performing
post-selection, discarding the part of the state where two electrons are on the same side. In this case, the CHSH
inequality ismaximally violated ( �S 2 2 ), as the post-selected state is amaximally entangled two-qubit state.
The Bell inequality is then violated because of the two-electron orbital entanglement [12]. By contrast, our
measurement strategy is sensitive to the entire state (including termswith two electrons on the same side) and
does not imply any effective post-selection. For this reasonwe reach a lowerCHSHviolation, � �S 1 2 .
However, we observe in turn single-electron entanglement.

4.2. Finite temperatures and dephasing
Atfinite temperatures, additional excitations in terms of electron-hole pairs are expected. Consequently,
equation (19) does not hold any longer. The operators in equation (22) are thus not strictly bounded between –1
and+1, although values outside this range should be rare at low temperatures. Since theCHSHparameter S is a
monotonically decreasing function of temperature, a violation of theCHSH inequality atfinite temperatures
indicates that the corresponding zero temperature state is unambiguously entangled.Wewill thus continue to
use equation (24) to detect single-particle entanglement.

Atfinite temperatures, the average current and the zero-frequency current correlators can be calculated
numerically. Figure 2 shows themaximal value of theCHSHparameter (using the same phase settings as above)
as a function of the electronic temperature. In the absence of any additional dephasingmechanisms (blue curve),
the CHSH inequality can be violated up to a temperature of x 8�k T 0.5B . For a typical driving frequency of
5 GHz [7, 8], this corresponds to a temperature of about 120mK,which is well within experimental reach.

Due to interactions with the electrons in the underlying Fermi sea aswell as with nearby conductors, the
injected single-electron statesmay experience decoherence and dephasing. Herewe do not give amicroscopic

Figure 2.Maximal value of theCHSHparameter as a function of temperature. The Bell angles are K � 0A , K Qa � 2A , K Q� � 4B
and K Qa � 5 4B . The dephasing parameter T2 is the variance of the distribution of the sumof the phases K K�A B. The dashed line
indicates theCHSHbound.
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model for theses interactions, but insteadwe introduce a phenomenological dephasing parameter T2 which
denotes the variance of the total phaseK K�A B in amodel that leads toGaussian phase averaging. Previous
experiments have shown that this is the dominant effect of the interaction of electronic interferometers with
their environments [2, 61]. At zero temperature, the correlator in equation (23) then becomes

K K
� § � �

� �K K
T� ( ) ( )X X

1 e cos

2
, 26A B

A BA B

2

making a Bell violation possible up to T 1 0.352 . Atfinite temperatures, an analogous expression can be found
[60] and the dephasing has a similar qualitative effect. Figure 2 shows that for small values of the dephasing
parameter, a CHSHviolation is still possible at low enough temperatures, while for T 2 0.352 , the entanglement
cannot be detected any longer.We note that the visibility of the current correlators observed in the experiment
byNeder et al [3] is too low to violate equation (24) in this setup. It corresponds to a dephasing parameter of
T x 1.392 (light blue line infigure 2). Nevertheless, by a careful design of the interferometer the dephasingmay
be further reduced, bringing themeasurement described herewithin experimental reach.

5. Conclusions

Wehave revisited the question of single-electron entanglement. Specifically, we have demonstrated theoretically
that the state of a single electron in a superposition of two separate spatialmodes is entangled. Aswe have shown,
single-electron entanglement can in principle be observed in an electronicHanbury Brown–Twiss
interferometer based on single-electron sources, electronic beam splitters, and single-electron detectors. Unlike
earlier proposals for generating entanglement in electronic conductors, our scheme does not rely on any post-
selection procedures. Since single-electron detectors are still under development, we have devised an alternative
experimental scheme based on existing technology using average current and cross-correlationmeasurements.
With these developments, the experimental perspectives for observing single-electron entanglement seem
promising.
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We investigate the phenomenon of anonymous quantum nonlocality, which refers to the existence of
multipartite quantum correlations that are not local in the sense of being Bell-inequality-violating but where
the nonlocality is—due to its biseparability with respect to all bipartitions—seemingly nowhere to be
found. Such correlations can be produced by the nonlocal collaboration involving definite subset(s) of
parties but to an outsider, the identity of these nonlocally correlated parties is completely anonymous. For
all n ≥ 3, we present an example of an n-partite quantum correlation exhibiting anonymous nonlocality
derived from the n-partite Greenberger-Horne-Zeilinger state. An explicit biseparable decomposition of
these correlations is provided for any partitioning of the n parties into two groups. Two applications of these
anonymous Greenberger-Horne-Zeilinger correlations in the device-independent setting are discussed:
multipartite secret sharing between any two groups of parties and bipartite quantum key distribution that is
robust against nearly arbitrary leakage of information.
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Quantum correlations that violate a Bell inequality [1],
a constraint first derived in the studies of local-hidden-
variable theories, were initially perceived only as a
counterintuitive feature with no classical analog. With
the discovery of quantum information science, these
intriguing correlations have taken the new role as a
resource. For instance, in nonlocal games [2], the presence
of a Bell-inequality-violating (hereafter, referred to as
nonlocal) correlation signifies the usage of strategies that
cannot be achieved using only shared randomness. They
are also an indispensable resource in quantum information
and communication tasks such as the reduction of com-
munication complexity [3], the distribution of secret keys
using untrusted devices [4,5], as well as the certification
and expansion of randomness [6], etc. (see [7] for a review).
Thus far, prior studies of quantum nonlocality have

focussed predominantly on the bipartite setup. However, as
with quantum entanglement [8,9], correlations between
measurement outcomes can exhibit a much richer structure
in the multipartite setup. Consider a multipartite Bell-type
experiment with the ith party’s choice of measurement
setting (input) denoted by xi ¼ 0; 1 and the corresponding
outcome (output) by ai ¼ �1. Already in the tripartite
setting [10], quantum mechanics allows for correlations—a
collection of joint conditional probability distributions
~P ¼ fPð~aj~xÞg ¼ fPða1a2a3jx1x2x3Þg—that cannot be
reproduced even when subsets of the parties are allowed
to share some nonlocal resource R [11,12]. (Throughout,
we focus on nonlocal resources R that respect the non-
signaling conditions [13,14] which dictate, e.g., that each
marginal distribution of PR

i ðajakjxjxkÞ can be defined

independent of the input of the other party.) Such genuinely
tripartite nonlocal correlations are, by definition, those that
cannot be written in the so-called biseparable form:

Pð~aj~xÞ ≠
X
ν

pνPνða1jx1ÞPR
ν ða2a3jx2x3Þ

þ
X
μ

pμPμða2jx2ÞPR
μ ða1a3jx1x3Þ

þ
X
λ

pλPλða3jx3ÞPR
λ ða1a2jx1x2Þ; ð1Þ

where
P

i∈fλ;μ;νgpi ¼ 1, pi ≥ 0 for all i ∈ fλ; μ; νg and
PR
i ðajakjxjxkÞ is any bipartite correlation allowed by the

resourceR [11,12]. In a Bell-type experiment, the presence
of genuine multipartite nonlocality [15–19] is a manifes-
tation of genuine multipartite entanglement [8]; it thus
facilitates the detection of the latter in a device-independent
manner, i.e., without relying on any assumption about the
measurements being performed nor the dimension of the
underlying Hilbert space. (It is also possible to detect
genuine multipartite entanglement in a device-independent
manner without the detection of genuine multipartite
nonlocality; see [18,20]). In contrast, correlations that are
biseparable, cf. Eq. (1), receive almost no attention. Apart
from being a tool in the derivation of Bell-type inequalities
for genuine multipartite nonlocality, is this kind of correla-
tion interesting in its own right? Here, we answer this
question affirmatively via the phenomenon of anonymous
nonlocality (ANL), an intriguing feature that is only present
in biseparable correlations. We will also provide evidence
showing that ANL can be a powerful resource, allowing
one to design device-independent quantum cryptographic
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protocols that can guard against a particular kind of attack by
any postquantum, but nonsignaling adversary.
Biseparable correlations and anonymous nonlocality.—

To appreciate the peculiarity manifested by ANL, let us
start by considering the simplest, tripartite scenario.
Clearly, among the subsets of correlations that can be
decomposed in the form of the right-hand side of Eq. (1) are
those that satisfy

Pð~aj~xÞ ¼
X
ν

pνPνða1jx1ÞPR
ν ða2a3jx2x3Þ; ð2aÞ

¼
X
μ

pμPμða2jx2ÞPR
μ ða1a3jx1x3Þ; ð2bÞ

¼
X
λ

pλPλða3jx3ÞPR
λ ða1a2jx1x2Þ; ð2cÞ

where pν, pμ, pλ ≥ 0 for all ν, μ, and λ, but in contrast with
Eq. (1), we now have

P
νpν ¼

P
μpμ ¼

P
λpλ ¼ 1.

Equations (2a)–(2c) imply that the correlation can be
produced without having any nonlocal collaboration
between the isolated party and the remaining two parties
(as a group). Naively, one may thus expect that all
correlations satisfying these equations must also be local
in the sense of being non-Bell-inequality-violating (hence-
forth abbreviated as local). However, there exist [21]
quantum correlations that satisfy Eqs. (2a)–(2c) as well as

Pð~aj~xÞ ≠
X
θ

pθPθða1jx1ÞPθða2jx2ÞPθða3jx3Þ; ð2dÞ

for any conditional distributions PθðaijxiÞ and any normal-
ized weights pθ. In other words, ~P satisfying Eq. (2) is
nonlocal but this nonlocality is (i) not genuinely tripartite (it
is biseparable), (ii) not attributable to any of the two-partite
marginals [Eqs. (2a)–(2c) imply that all marginals are local],
and (iii) not attributable to any bipartition of the three parties.
The nonlocality present in any correlations satisfying Eq. (2)
is thus in some sense nowhere to be found.
We now provide a very simple example of a correlation

satisfying Eq. (2), and more generally the property of
being (1) nonlocal and (2) biseparable with respect to all
bipartitions in an arbitrary n-partite scenario. Consider the
n-partite Greenberger-Horne-Zeilinger (GHZ) state [22]
jGHZin ¼ 1=

ffiffiffi
2

p ðj0i⊗n þ j1i⊗nÞ and the local measure-
ment of σx and σy. The resulting correlation is

Pð~aj~xÞ ¼ Pn
GHZð~aj~xÞ ¼

1

2n

�
1þ cos

�
x
π

2

�Yn
i¼1

ai

�
; ð3Þ

where x ¼ P
ixi, and we have identified xi ¼ 0 ð1Þ as the

σx (σy) measurement [see, e.g., Eq. (23) of [23]]. For all
n ≥ 3, we show [24] that n-partite correlations of the form
of Eq. (3) admit a biseparable decomposition with respect
to any partitioning of the n parties into two groups.
Specifically, for n ¼ 3, this decomposition, cf. Eq. (2a),
involves pν ¼ 1

4
for all ν, Pνða1jx1Þ ¼ 0; 1 and

PR
ν ða2a3jx2x3Þ is the correlation associated with the

so-called Popescu-Rohrlich (PR) box [13]—a hypothetical,
stronger-than-quantum, but nonsignaling resource. [In the
tripartite scenario, the biseparability of the GHZ correlation
was also discovered independently in [25] (see also [26])].
To see that these correlations are nonlocal, it suffices to
note [24] that Eq. (3) violates the Mermin-Ardehali-
Belinskiı̌-Klyshko-Bell inequality [27,28] (even maximally
[29] for all odd n ≥ 3).
Consider now an alternative way to understand the

nonlocality associated with Eq. (2). Operationally, Eq. (2c)
implies that ~P can be produced by, e.g., party 1 signaling
classically to party 2, and all parties responding according
to the information that they received and some predefined
strategy λ. By symmetry of Eqs. (2a)–(2c), the same can
be achieved by having only nonlocal collaboration between
any two out of the three parties. Thus, while the correlation
can be produced by having only a definite subset of parties
collaborating nonlocally, the identity of these nonlocally
collaborating parties is anonymous to an outsider who only
has access to ~P. Indeed, even if an outsider is given the
promise that a fixed subset of the parties have collaborated
nonlocally, it is impossible for him to tell if, say, party 1 and 2
have collaborated nonlocally in generating ~P. Importantly,
the anonymity present in these correlations differs from the
case where a classical mixture of the different bipartitions
is necessary, cf. Fig. 1 (see [30,31] for examples of such
classical anonymity). In this latter case, it is indeed possible
to identify the parties that must have collaborated non-
locally, even though this identification is generally not
possible at any single run of the experiment.
As noted above, for all n ≥ 3, the GHZ correlations of

Eq. (3) are nonlocal but can nevertheless be produced by
splitting the parties into any two groups, and disallowing
any nonlocal collaboration between these groups. Thus, the

FIG. 1 (color online). Schematic representation of the various
sets of tripartite correlations. Correlations biseparable with
respect to party i in one group and parties j and k in the other
lie in the (light blue) rectangle labeled by “ijjk”. The convex hull
of the three biseparable sets ijjk, where i; j; k ∈ f1; 2; 3g is
represented by the filled convex region and gives correlations
decomposable as the right-hand side of Eq. (1). The blank region
between the outermost box and the filled convex region represents
correlations that are genuinely tripartite nonlocal. Intersection of
the three biseparable subsets ijjk gives correlations satisfying
Eqs. (2a)–(2c); its subset featuring ANL is the tiled region while
local correlations lie in the (cyan) rectangle L. Hatched regions
represent biseparable correlations where classical mixture of
different bipartitions is necessary for their production.
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anonymity present in these correlations is even more striking
in the n > 3 scenarios: not only are the groups of parties
sharing R unidentifiable in an unambiguous manner, even
the size of the groups are also not identifiable (see Fig. 2).
For example, when n ¼ 4, the correlations satisfy

Pð~aj~xÞ ¼
X
λ1

qλ1Pλ1ða1jx1ÞPR
λ1
ða2a3a4jx2x3x4Þ; ð4aÞ

¼
X
λ2

qλ2Pλ2ða2jx2ÞPR
λ2
ða1a3a4jx1x3x4Þ; ð4bÞ

¼ � � � ; ð4cÞ
¼

X
μ3

qμ3P
R
μ3ða1a4jx1x4ÞPR

μ3ða2a3jx2x3Þ; ð4dÞ

Pð~aj~xÞ ≠
X
θ

qθ
Y4
i¼1

PθðaijxiÞ; ð4eÞ

where
P

λi
pλi ¼

P
μj
pμj ¼ 1, pi ≥ 0 for all i; j, and “� � �”

indicates other possible biseparable decompositions that
have been omitted. From Eq. (4), we see that the quadri-
partite GHZ correlation could have been produced by having
any three parties collaborating nonlocally, or any two groups
of two parties collaborating nonlocally within each group.
From the correlation itself, it is simply impossible to
distinguish these possibilities apart (Fig. 2).
Let us now briefly comment on the relationship between

ANL and multipartite entanglement. Clearly, one expects that
there must also be features analogous to ANL in the studies
of multipartite entanglement. Indeed, the first of such
examples dates back to the three-qubit bound entangled
[32] SHIFT state [33] where its entanglement was dubbed
delocalized [34] since it is separable with respect to all
bipartitions, yet not fully separable. A more recent example
[21] involves a three-qubit bound entangled state which even
violates a Bell inequality, thus giving also an example of
anonymous quantum correlation. An important difference
between their example and the tripartite case of our GHZ
example is that their correlation can be produced by a
biseparable tripartite entangled state whereas ours necessarily
requires a genuinely tripartite entangled state. More gener-
ally, for all odd n ≥ 3, we show [24] that the correlations

of Eq. (3) can only be produced by genuinely n-partite
entangled state. Our examples thus show that the generation
of ANL does not require delocalized entanglement.
Perfect correlations with uniform marginals.—From

Eq. (3), we see that whenever an odd number of parties
measure in the σy basis, the product of outcomes

Q
iai gives

�1 with equal probability; otherwise, it is either perfectly
correlated or perfectly anticorrelated. Moreover, it follows
from Eq. (3) that all marginal distributions of these
correlations are uniformly random. Next, we present two
quantum cryptography protocols that exploit these strong
but anonymous correlations.
Application I: Multipartite secret sharing (MSS).—

Imagine that n parties wanted to share a secret message
between any two complementary subgroups as they desire,
i.e., between any subgroup of k parties (k ≤ n − 1) and the
subgroup formed by the remaining parties. Suppose, more-
over, that the shared secret is to be recovered by these
subgroups only when all parties within each group collabo-
rate (so that it is unnecessary to trust all parties within each
group). A possibility to achieve this consists of (i) the n
parties share (many copies of) jGHZni, (ii) each party
randomly measures either the σx or the σy observable,
(iii) the n parties are randomly separated into two groups
and all parties assigned to the same group collaborate to
compare their inputs and outputs, (iv) both groups announce
their sum of inputs, (v) parties in the same group compute the
product of their measurement outcome and deduce, using
Eq. (3), the shared secret bit upon learning the sum of inputs
of the other group, (vi) parties in one group use the shared
secret keys to encrypt the message and send it to the other.
In the device-independent setting, security analysis is

carried out by treating each physical subsystem together
with their measurement device as a black box; conclusions
are drawn directly from the measurement statistics. Indeed,
the above protocol does not rely on the assumption of aGHZ
state nor the particular measurements being performed, but
rather the strong correlation present in Eq. (3)—for the right
combination of inputs, the product of outputs are perfectly
(anti-) correlated. (This happens in half the cases. In the
other cases, the correlation is useless for key generation.)
Thus, the protocol essentially works by first distributing the
correlated data needed to establish the secret keys, and
performing the secret sharing [35] between any two com-
plementary subgroups of the n participating parties as they
deem fit. Since the product of outcomes for each group is
uniformly random, the protocol is secure against cheating by
any dishonest parties within the group; no one can retrieve
the shared key without collaborating with everyone else
within the same group. What about eavesdropping by an
external, postquantum but nonsignaling adversary Eve?
Since the GHZ correlations of Eq. (3) are biseparable, a

naive attack by Eve may consist in preparing for the n
parties the biseparable, nonsignaling boxes that reproduces
exactly Eq. (3). For instance, in the tripartite case, in
accordance with the biseparable decomposition, she would

FIG. 2. ANL in the quadripartite scenario. Each participating
party is abstractly represented by a box labeled by the party
number. The correlations were produced by having parties 1 and
2, as well as 3 and 4 collaborated nonlocally (symbolized by ∼).
To an outsider who only has access to ~a and ~x, even if one is given
the promise that the correlations were produced by the four parties
separated into two fixed groups, it is impossible to tell which
actual partitioning of the parties generated these correlations.
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prepare with equal probability four different versions of a
deterministic box for one of the parties, and, correspond-
ingly, four different versions of a PR box for the remaining
two parties. If the decomposition that she chooses matches
exactly the way the parties are separated into two groups,
then after step (iv), she learns exactly the key and hence the
message shared by these parties. In this case, the product of
outcomes for each group is a deterministic function
(of the sum of inputs) known to Eve. The secret sharing
protocol of Hillery, Bužek, and Berthiaume [36] is thus
insecure against this kind of attack by a nonsignaling
adversary. However, as the grouping is decided only after
the measurement phase, she can guess the bipartition
correctly only with a chance of 1

3
in the tripartite case,

and more generally ð2n−1 − 1Þ−1 in the n-partite scenario.
Evidently, this guessing probability rapidly approaches 0
as n increases, making it extremely difficult for Eve to
succeed with this eavesdropping strategy for large n.
Application II: Bipartite leakage-resilient QKD.—Next,

let us describe a quantum key distribution (QKD) protocol
between two parties, A and B, which is as leakage resilient
[37] as one could hope for. The protocol consists of
(i) preparation of many copies of jGHZni, (ii) for each
of these n-partite systems, a randomly chosen subset,
say, k of the n subsystems are distributed to A, while
the remaining n − k subsystems are distributed toB, (iii) for
each of these subsystems, A and B randomly measure σx or
σy, (iv) both parties announce their sum of inputs, (v) for
each n-partite system distributed from the source, A and B
compute the product of their local measurement outcomes
and deduce, using Eq. (3), the shared secret bit upon
learning the sum of inputs of the other party.
As with the MSS protocol described above, the secret

key is established through the perfect (anti-) correlation
present in the product of the outputs. Moreover, the gist of
the protocol only relies on the correlation given by Eq. (3),
rather than the actual state and measurement giving rise to
this correlation, rendering the protocol ideal for device-
independent analysis. However, in contrast with usual
device-independent cryptography where leakage of informa-
tion is not allowed, the above protocol is as leakage resilient
as one can hope for—the adversary Eve can certainly recover
the secret key if all the output bits from either party leak to
her, but if she misses merely one output bit from each party,
the additional information that she gains from the leakage
cannot improve her guess of the secret key. Now, if we
assume that Eve has no control over how the subsystems are
distributed in step (ii) [38], but otherwise only constrained by
the nonsignaling principle, then as with the MSS protocol,
for n sufficiently large, her advantage of preparing some
biseparable, nonsignaling boxes for A and B is minimal.
Discussion.—Let us now comment on some possible

directions for future research. Clearly, we have only provided
intuitions onwhy the protocols proposed abovemay be secure
even in a device-independent setting. For odd n ≥ 3, since the
GHZ correlations violate the Mermin-Bell inequality

maximally (see [24]), the result of Franz et al. [39] implies
that these correlations are necessarily monogamous with
respect to any potential quantum eavesdropper. This strongly
suggests that if we assume an independent and identically
distributed scenario, a formal security proof of these protocols
against a quantum adversary may be given even in the case
with noisy correlations (because of the noise robustness of the
Mermin-Bell violation of ~Pn

GHZð~aj~xÞ, the ANL of ~Pn
GHZð~aj~xÞ

is also extremely robust to noise), and in a device-independent
setting. Evidently, a security proof without this assumption is
even more desirable, and a possible path towards this is to
prove that the protocols are even secure against an adversary
that is only constrained by the nonsignaling principle [13].
Our arguments as to why the protocols are not immediately
susceptible to a straightforward attack by such an eaves-
dropper, despite the fact that the correlations are biseparable,
is an evidence pointing in this direction.
For leakage-resilient QKD, one could also imagine,

instead of the above protocol, doing an existing QKD
protocol many times in parallel and then using the XOR of
the secret key bits to generate the final secret key. Although
such a protocol requires many more qubits to establish the
final secret key, it can clearly offer a high level of leakage
resilience. How would such a protocol perform compared
with the above protocol based on jGHZni? This certainly
deserves some further investigation.
Coming back to ANL itself, let us note that the require-

ment of (1) nonlocality and (2) biseparability with respect
to all bipartitions may arguably not, by themselves, imply
that an outsider cannot attribute unambiguously the non-
locality to any definite subset(s) of the n parties. For
instance, one may start with the tripartite GHZ correlation
P3
GHZð~aj~xÞ, cf. Eq. (3), and trivially construct an example

P0 ¼ P3
GHZð~aj~xÞ

Q
n
i¼4 PðaijxiÞ for arbitrary n parties by

introducing parties that are uncorrelated with the first three.
While such an n-partite correlation P0 indeed satisfies the
two requirements stated above, one can unambiguously
attribute the nonlocality present only to the three parties
that give rise to P3

GHZð~aj~xÞ. Note, however, that such an
identification is incomplete since the production of such a
biseparable correlation only requires the nonlocal collabo-
ration between two parties, and it is still impossible for an
outsider to determine which two parties have collaborated
nonlocally in producing the given correlation (Fig. 1 and
Fig. 2). A more precise definition of ANL may thus require
also a specification of the extent (size) of the nonlocal
resource needed in producing the given correlation, a task
that shall be pursued elsewhere [31]. For our GHZ
examples, except for the cases where n is even with n=2
odd, it can be shown [24] using the result of [16] that the
correlations of Eq. (3) are not triseparable, i.e., not
producible by a partitioning of the parties into three groups
(where only parties within the same group are allowed to
collaborate nonlocally). Hence, the generation of these
correlations indeed requires the nonlocal collaboration of at
least ⌈n=2⌉ parties in one group; an analogous statement for
the remaining cases would be desirable.
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Appendix A: An explicit biseparable decomposition
of the n-partite GHZ correlations

For the n-partite Greenberger-Horne-Zeilinger
(GHZ) [1] state and the situation where all parties mea-
sure either the 0th-observable σx or the 1st observable
σy, the resulting correlation of Eq. (3) can be rewritten
in terms of the correlator, i.e., the expectation value of
the product of outcomes:1

E(~x) =
∑

a′
1,a

′
2,...,a

′
n=0,1

(−1)
∑

i a
′
iP (~a′|~x) = cos

(
x
π

2

)
(3)

where for conciseness of subsequent presentation we have
used, instead, a′i =

ai+1
2 = 0, 1 to denote the output and

as before, x =
∑

i xi to denote the sum of inputs. Note
that all the full n-partite correlators depend only on the
parity of x and x/2 whereas all the marginal correlators
vanish.
We now move on to the proof that the correlation (3)

is biseparable with respect to all bipartitions whenever
parties in each group are allowed to share arbitrary
post-quantum but non-signaling [3, 4] (NS) resources,
while parties in different groups can only be correlated
through shared randomness. Note that the biseparability
of Eq. (3) under the NS constraint implies that if parties
in the same group are allowed to share a stronger re-
source, such as a Svetlichny resource [5], or some other
one-way signaling resource discussed in [6, 7], the corre-
lation must remain biseparable.
For clarity we first give a proof for the 3-partite case.

The extension to arbitrary numbers of parties follows by
generalizing these ideas. We note that for the three party
GHZ state, if we have x = 0 modulo 2, the correlation
can be written as:

a′1 + a′2 + a′3 = cos
(
x
π

2

)
x=0,2
= x1x2 + x3, (A1)

where the addition is modulo 2. For the other choices
of inputs with x = 1 there is zero correlation, and
all one and two party marginals are random for all
inputs. We note 4 different strategies that are capa-
ble of reproducing the correlation (A1) for the case x = 0:

(i) Parties 1 & 2 share a Popescu-Rohrlich (PR)
box [3] a′1 + a′2 = x1x2 and the third party owns a
deterministic box a′3 = x3.

1 To arrive at this n-partite correlator, see, eg., Eq. (23) of [2].

(ii) Parties 1 & 2 share an ‘anti’ PR box a′1+a
′
2 = x1x2+1

and the third party owns a deterministic box a′3 = x3+1.
(iii) Parties 1 & 2 share an input flipped PR box
a′1 + a′2 = (x1 + 1)(x2 + 1) and party 3 owns the
deterministic box a′3 = 1.
(iv) Parties 1 & 2 share an ‘anti’ input flipped PR box
a′1 + a′2 = (x1 + 1)(x2 + 1) + 1 and party 3 owns the
deterministic box a′3 = 0.

From the form of Eq. (A1) it is clear that strategy
(i) and (ii) will give the correct full correlation. Strate-
gies (iii) and (iv) follow from the fact that if x = 0 we
have x1x2 + x3 = x1x2 + x1 + x2 = (x1 + 1)(x2 + 1) + 1.
Hence for x = 0 we always simulate the correct
correlation. For the cases x = 1, we note that now
x1x2 + x3 = (x1 + 1)(x2 + 1) and so strategies (iii)
and (iv) will give exactly the opposite correlation to
strategies (i) and (ii) for these inputs. Mixing equally
all four strategies therefore gives no correlation for these
inputs. The mixture of the different PR box symmetries
and deterministic strategies for party 3 then ensures that
all 1 and two party marginals are random. Due to the
symmetry of the GHZ correlation, the same construction
will therefore work for any bipartition of the 3 parties.
Let us now give a proof for the n-partite case. Consider

the four families of n-partite NS boxes, labeled by µ1, µ2,
µ3 and µ4:

Pn
µ1
(~a′|~x) = 1

2n−1
δ∑n

i=1 a′
i−Hn

0 (~x)−Hn
3 (~x) mod2,

Pn
µ2
(~a′|~x) = 1

2n−1
δ∑n

i=1 a′
i−Hn

0 (~x)−Hn
1 (~x) mod2,

Pn
µ3
(~a′|~x) = 1

2n−1
δ∑n

i=1 a′
i−Hn

1 (~x)−Hn
2 (~x) mod2,

Pn
µ4
(~a′|~x) = 1

2n−1
δ∑n

i=1 a′
i−Hn

2 (~x)−Hn
3 (~x) mod2,

(A2)

where Hn
ℓ (~x) =

∑⌊n−ℓ
4 ⌋

j=0 F (4j + ℓ, ~x),

F (k, ~x) =
∑

G

∏

i∈G

xi
∏

j∈G′

(xj + 1) (A3)

and the sum
∑

G is over all G ⊆ [n] = {1, 2, . . . , n} with
group size |G| = k, and G′ is the complement of G in
[n]. Essentially, each term involved in the summand in
F (k, ~x), and hence Hn

ℓ (~x) defines a distinct combination
of inputs ~x = ~x′ such that Hn

ℓ (~x
′) = 1mod 2, and hence

making the outputs anti-correlated. For instance, F (0, ~x)
only makes a nontrivial combination to Hn

0 (~x) if all the
inputs xi are 0.
From Eq. (A2), it is easy to verify that for all 1 ≤

k ≤ n − 1, the k-partite marginals of Pn
j (~a

′|~x) are 1/2k



2

and these correlations indeed define NS probability dis-
tributions. Moreover, from Eq. (A2) and these marginal
distributions, one can show that these NS boxes give rise
to vanishing marginal correlators and the following full
n-partite correlators:

E(~x)µ1 = (−1)H
n
0 (~x)⊕Hn

3 (~x) = −E(~x)µ3 ,

E(~x)µ2 = (−1)H
n
0 (~x)⊕Hn

1 (~x) = −E(~x)µ4 ,
(A4)

where in Eq. (A4), ⊕ denotes sum modulo 2 and in ar-
riving at the second equality in each line, we have em-
ployed the identity

∑n
j=0 F (j) = 1 that holds for all

n-bit strings ~x.2 To gain some intuition on these NS
boxes, we note that for n = 1, the µ1/3 boxes correspond
to the deterministic strategies a′ = x ⊕ 1 and a′ = x
whereas the µ2/4 boxes correspond to the determinis-
tic strategies a′ = 1 and a′ = 0. Similarly, for n = 2,
the µ1/3 boxes correspond to the PR boxes defined by
a′1+a

′
2 = (x1+1)(x2+1) and a′1+a

′
2 = (x1+1)(x2+1)⊕1

whereas the µ2/4 boxes correspond to the PR boxes de-
fined by a′1 + a′2 = x1x2 ⊕ 1 and a′1 + a′2 = x1x2. For
n = 3, all these NS boxes correspond to some version of
NS box 46 described in [8]. It is conceivable that these
boxes are extremal NS distributions for all n.
To reproduce the correlations given in Eq. (3) using

biseparableNS resources with k parties in one group and
the remaining (n−k) parties in the other group, it suffices
to consider an equal-weight mixture of the following four
strategies:

1. The group of k parties share the k-partite version
of the µ1 box and the remaining parties share the
(n− k)-partite version of the µ2 box.

2. The group of k parties share the k-partite version
of the µ3 box and the remaining parties share the
(n− k)-partite version of the µ4 box.

3. The group of k parties share the k-partite version
of the µ2 box and the remaining parties share the
(n− k)-partite version of the µ1 box.

4. The group of k parties share the k-partite version
of the µ4 box and the remaining parties share the
(n− k)-partite version of the µ3 box.

For n = 3, the above strategy corresponds to a mix-
ture of 4 different versions of the NS box 2 in [8]. In
general, to verify that the above strategy indeed gives
rise to Eq. (3), we first remark that each of these strate-
gies also reproduces Eq. (3) for the case when

∑
i xi is

even. To see this, we use the fact that NS box µ1 gives
anti-correlation (i.e., expectation value -1) only if either∑

i xi/2 or (1 +
∑

i xi)/2 is even; NS box µ2 gives anti-
correlation only if

∑
i xi/2 is even or (1+

∑
i xi)/2 is odd;

NS box µ3 gives anti-correlation only if either
∑

i xi/2 or

2 This last sum involves all possible combinations of inputs and
thus for all input bit strings ~x, there is exactly one term in the
expression that does not vanish, therefore giving the identity.

(1 +
∑

i xi)/2 is odd; NS box µ4 gives anti-correlation
only if

∑
i xi/2 is odd or (1 +

∑
i xi)/2 is even. More-

over, since strategy 1 and 3 are such that the correlation
produced by parties in the same group are exactly op-
posite (likewise for strategy 2 and 4), we see that all
the less-than-n-partite correlators, as well as the full n-
partite correlator when

∑n
i=1 xi is odd, indeed vanishes

as claimed.

Appendix B: Mermin-Bell violation of the GHZ
correlations

Here, we compute the quantum expectation value of
the GHZ correlations for the Mermin Bell inequality [9,
10] (here written in the form derived in [2])3

∣∣Bn
±
∣∣ = 2

1−n
2

∣∣∣
∑

~x∈{0,1}n

cos
{π
4
[1± (n− 2x)]

}
E (~x)

∣∣∣ ≤ 1.

(B1)
The above Bell expression can be rewritten as:

2
n−1
2

∣∣Bn
±
∣∣ =

∣∣∣
∑

~x∈{0,1}n

cos
{π
4
[1± (n− 2x)]

}
E(~x)

∣∣∣,

=
∣∣∣

∑

~x∈{0,1}n

cos
[π
4
(1 ± n)

]
cos

(
x
π

2

)
E(~x)

±
∑

~x∈{0,1}n

sin
[π
4
(1± n)

]
sin

(
x
π

2

)
E(~x)

∣∣∣.

For the GHZ correlation of Eq. (3), this simplifies to

∣∣Bn
±
∣∣ =2

1−n
2

∣∣∣
∑

~x∈{0,1}n,x even

cos
[π
4
(1± n)

]
cos2

(
x
π

2

)∣∣∣,

=2
n−1
2

∣∣∣cos
[π
4
(1± n)

]∣∣∣,

giving

max
±

∣∣Bn
±
∣∣ =

{
2

n−1
2 : n odd

2
n−2
2 : n even

, (B2)

i.e., achieving maximal [11] possible quantum value of∣∣Bn
±
∣∣ for odd n.

Appendix C: Quantum biseparable bound of the
n-partite Mermin-Bell expression

For arbitrary odd n ≥ 3, the Mermin-Bell expression
Bn
+ given on the left-hand-side of Eq. (B1) is equivalent

to a special case of a general family of permutationally
invariant Bell expression described in Eq. (22) of [12],

Ωn,2,2;δx,0·r = 2n−2 − 2
n−3
2 Bn

+ (C1)

3 Bn
+ is the same Bell expression as the usual one obtained through

the recursive formula [10]; it can also be obtained by flipping all
the inputs in Bn

−.
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From Eq. (23) of [12], it can be shown that the above
expression admits the following upper bound on the
quantum biseparable bound:

Ωn,2,2;δx,0·r ≥ 2n−3(2−
√
2). (C2)

Combining these two equations and after some straight-
forward computations, we get the following upper bound
on the quantum biseparable bound for the Mermin-Bell
expression:

Bn
+ ≤ 2

n
2 −1. (C3)

For arbitrary even n ≥ 2, the Mermin-Bell expression
Bn
+ given on the left-hand-side of Eq. (B1) is equivalent to

the following Bell expression described in Eq. (1) of [12],

In,2,2 = 2n−1 − 2
n−2
2 Bn

+ (C4)

From Eq. (25) of [12], we know that the above expres-
sion admits the following upper bound on the quantum
biseparable bound:

In,2,2 ≥ 2n−2. (C5)

Combining these two equations, we arrive, again, at
Eq. (C3).
To see that the biseparable bound of Eq. (C3) is tight,

it suffices to note that the biseparable quantum state

|ψ〉 = |GHZn−1〉 ⊗ |0〉 (C6)

and the local observables

Axi = cosαxiσx + sinαxiσy ∀ i = 1, . . . , n− 1,

Axi = βxi1 for i = n.
(C7)

with α0 = − π
4(n−1) , α1 = −π

2 − π
4(n−1) , β0 = −

√
2 sin nπ

4 ,

and β1 =
√
2 cos nπ

4 indeed give rise to a quantum value

of Bn
+ of 2

n
2 −1. Since Bn

− can be obtained from Bn
+ by

flipping all the inputs, the same quantum biseparable
bound holds for Bn

−.
Since the GHZ correlations of Eq. (3) give Eq. (B2),

we see that for odd n, the generation of these correlations
necessarily requires a genuinely n-partite entangled state,
independent of the underlying Hilbert space dimension.

Appendix D: m-separability and multipartite
nonlocality underlying the n-partite GHZ

correlations

For odd n, we know from the main theorem of [13]

that a quantum violation of
∣∣Bn

±
∣∣ = 2

n−1
2 implies that it

is impossible to reproduce these GHZ correlations using
any 3-separable resource (i.e., a partitioning of the par-
ties into three groups, and where the parties within each
group can share even arbitrary nonlocal resource).
For even n, let us evaluate the the quantum value of

the following Bell expression [13]:

|Bn
Σ| =

1√
2

∣∣Bn
+ + Bn

−
∣∣ ,

=
1√
2

∣∣∣
∑

~x∈{0,1}n

∑

s=0,1

cos
π

4
[1 + (−1)s(n− 2x)]E(~x)

∣∣∣,

=
1√
2

∣∣∣
∑

~x∈{0,1}n

2 cos
π

4
cos

[π
4
(n− 2x)

]
E(~x)

∣∣∣,

=
∣∣∣

∑

~x∈{0,1}n

cos
[π
4
(n− 2x)

]
E(~x)

∣∣∣. (D1)

For even n and E(~x) of Eq. (3), this becomes

∣∣∣
∑

~x∈{0,1}n,x even

cos
nπ

4
cos2 x

π

2

∣∣∣ = 2n−1
∣∣∣cos nπ

4

∣∣∣ ,

giving a value of 2n−1 for even n
2 and 0 for odd n

2 .

Again, note from the main theorem of [13] that for
even n, any correlation producible by a partition of the
n parties into 3 groups (each sharing some Svetlichny re-
source S [5–7]) can at most give a value of Bn

Σ = 2n−2.
This means that, as with odd n, the n-partite GHZ cor-
relation for even n with even n

2 is not producible by any
partition of the parties into 3 groups, even if parties in
each group are allowed to share whatever nonlocal re-
source.

Together with the biseparable decomposition obtained
for these correlations, the above results onm-separability
imply that for (1) odd n and (2) even n with even n

2 ,
generation of the GHZ correlations of Eq. (3) requires
the nonlocal collaboration of at least ⌈n

2 ⌉ parties in one
group.
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