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Abstract

Purpose of Review During the last decades, the field of regenerative medicine has been rapidly evolving. Major progress has
been made in the development of biological substitutes applying the principles of cell transplantation, material science, and
bioengineering.

Recent Findings Among other sources, amniotic-derived products have been used for decades in various fields of medicine as a
biomaterial for the wound care and tissue replacement. Moreover, human amniotic epithelial and mesenchymal cells have been
intensively studied for their immunomodulatory capacities.

Summary Amniotic cells possess two major characteristics that have already been widely exploited. The first is their ability to
modulate and suppress the innate and adaptive immunities, making them a true asset for chronic inflammatory disorders and for
the induction of tolerance in transplantation models. The second is their multilineage differentiation capacity, offering a source of
cells for tissue engineering. The latter combined with the use of amniotic membrane as a scaffold offers all components necessary
to create an optimal environment for cell and tissue regeneration. This review summarizes beneficial properties of hAM and its
derivatives and discusses their potential in regenerative medicine.

Keywords Amniotic membrane - Amniotic epithelial cells - Amniotic mesenchymal cells - Regenerative medicine -
Immunomodulation

Introduction the principles of cell transplantation, material science, and

bioengineering [1]. Historically, the first attempt of the tissue

Regenerative medicine is a rapidly evolving, interdisciplinary
field that aims to develop approaches for regeneration and
repair of damaged tissues and organs. Major progress has been
made in the development of biological substitutes applying
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replacement was skin grafting [2], establishing the basis for
what would become plastic and reconstructive surgery. Since
the turn of the millennium, the field of regenerative medicine
has evolved rapidly along with the development of cell cryo-
preservation techniques, use of biocompatible materials, 3D
bioprinting and generation of stem cell-derived tissue [3].
Mesenchymal stromal cells (MSC), especially from bone mar-
row (BM-MSC), embryonic stem cells (ESC), and, more re-
cently, induced pluripotent stem cells (iPSC), have been in-
tensively studied for their multilineage differentiation capaci-
ties, their anti-inflammatory and immunomodulatory proper-
ties, and are all candidate cell sources for regenerative medi-
cine. They have demonstrated impressive capacities to im-
prove outcomes of several inflammatory disorders [4].
However, in spite of significant advances, MSC-based therapy
still faces several challenges: invasive extraction procedures to
harvest the cells, loss of MSC potency during culture, clear-
ance of the transplanted MSCs by the recipient and evidence
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of immuno-stimulatory properties of MSC under certain con-
ditions [5, 6]. Furthermore, some studies reported a role for
MSC in tumor growth [7-10]. Regarding ESC and iPSC, they
have shown very promising results thanks to their ability for
multilineage differentiation. However, they have also demon-
strated a certain genetic instability rendering them vulnerable
to mutation and tumorigenicity [11, 12]. Finally, achieving a
sufficient cell mass for clinical application is a very labor-
intensive endeavor in terms of logistics and equipment needed
[13]. Altogether, stem cell-based therapy is not ready for
large-scale clinical application and alternatives are required.

Human amniotic membrane (hAM) and its derivatives ex-
press similar characteristics and advantages as BM-MSC and
exhibit a multilineage differentiation capacity. They are wide-
ly available, inexpensive, have limited ethical issues, and have
no risk of tumorigenicity [14]. The hAM has been studied
since many years and is used in the treatment of burns, skin
defects, and corneal injuries [15, 16]. Because of their anti-
inflammatory and immunomodulatory properties, human am-
niotic cells have been considered as valid candidates for cell
therapy in several degenerative disorders [17-20].

In this article, we present an overview of the immunomod-
ulatory properties of amniotic-derived tissues and their poten-
tial for application to regenerative medicine strategies.

Placenta and Maternal Tolerance

The placenta is a temporary discoid-shaped organ forming
barrier between fetal and maternal blood and representing
the source of fetal antigens [21, 22]. The fetal part of the
placenta originates from the blastocyst; in contrast, the mater-
nal decidua is derived from the endometrium. The fetal sur-
face of the organ consists of the chorionic plate covered by
amniotic membrane and umbilical cord; the maternal surface
of the placenta adjacent to endometrium is called the basal
plate. Between these plates there is the intervillous space con-
taining the placental cotyledons.

Pregnancy is a unique state in which a semi-allogenic fetus
coexists inside the mother without being rejected by the mater-
nal immune system [23]. This phenomenon of maternal toler-
ance is a complex process mediated by the restriction and mod-
ulation of leukocytes that permeate the maternal-fetal interface.
Animal studies demonstrated significant reduction of T cell
activation due to the indirect allorecognition of the fetus [24,
25]. Furthermore, low numbers of dendritic cells (DC) have
been found in decidua, in spite of the natural killer (NK) cell
abundance. This was explained by the absence of local lym-
phatic vasculature in the endometrium [26]. The effect of preg-
nancy and circulating fetal or placental antigens on T cell pop-
ulation has been also studied. It was shown that maternal T cells
that can indirectly recognize the fetus are poorly primed and
instead undergo clonal deletion [24]. Furthermore, studies on
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mice have demonstrated recruitment and induction of fetal-
specific T regulatory (Treg) cells at the maternal-fetal interface,
thus inducing tolerance to fetal antigens. Fetal-specific Treg
cells are capable of persisting beyond parturition while main-
taining their functionality [27, 28].

Human Amniotic Membrane and Its
Derivatives

The hAM is the innermost layer of the placenta and encloses the
fetus in amniotic cavity. The hAM is avascular tissue composed
of five layers: a monolayer of epithelial cells, an acellular base-
ment membrane, a compact layer containing proteins of the ex-
tracellular matrix (ECM), a mesenchymal cell (hAMC) layer,
and a spongy layer separating the amnion from the chorion
(Fig. 1a) [29]. The compact layer and the fibroblast layer repre-
sent the amniotic mesoderm [30]. Among all amnion compo-
nents, the hAM, the human amniotic epithelial cells (hAECs),
and the human amniotic mesenchymal stem cells (hHAMSC) are
the most studied for their anti-inflammatory and immunomodu-
latory properties and will be the focus of this review.

Human Amniotic Membrane

With its embryonic origin and protein contents, the hAM has
long been considered to be a candidate as a biocompatible ma-
terial for regenerative medicine. It has been used as a biological
dressing for wounds healing for more than a century, since its
first application by Davis in 1910, as a biologic material for the
skin replacement [31]. Since then, hAM has been utilized for
post-operative and post-traumatic skin defects, burn injuries,
chronic ulcers, peritoneal, intra-oral and genital reconstruction,
hip arthroplasty, tendon and nerve repair, dural defects, vascular
reconstruction, and ophthalmologic disorders, mainly corneal
defects [22, 32]. Interestingly, in contrast to skin allograft where
immunosuppression is mandatory, hAM transplantation for skin
or corneal defect has been performed without signs of rejection,
in the absence of immunosuppression [22, 33]. Because it fails to
induce an allogenic or xenogenic immunologic reaction, hAM
has triggered great interest in transplantation and tissue engineer-
ing. This phenomenon results most likely from the combination
of anti-inflammatory properties, low immunogenicity, and im-
munomodulatory properties. This favorable micro-environment
is mainly created by the hAEC and hAMSC, notably by the
secretion of growth factors, anti-inflammatory cytokines such
as [L-10, and by expression of immunomodulatory proteins such
as the non-classical MHC class I antigen HLA-G. In addition to
the immunomodulatory properties of the cells residing in the
hAM, its ECM has shown great promise as a biomaterial for
tissue engineering thanks to its composition and properties.
Several groups have decellularized amniotic membrane by
established decellularization techniques, with which the cells
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Fig. 1 Amniotic membrane derivatives and their properties. a Graphical
representation of amniotic membrane. hAM is made up of two main parts,
the amniotic epithelium and the amniotic mesoderm, separated by a
basement membrane. hAECs (brown) are found in amniotic epithelium
adjacent to the first ECM layer, basement membrane (purple). The
amniotic mesoderm consists of fibroblast (beige), spongy (black), and
reticular (light green) layers containing hAMCs (purple). b Schematic
diagram summarizing differentiation potential of hAECs and hAMCs
into three embryonic germ layers, specifically ectoderm, mesoderm, and
endoderm. ¢ Immunosuppressive/immunomodulatory properties of

are removed from tissues and organs using a combination of
physical methods and chemical and biologic agents, only leaving
an ECM scaffold from the original tissue. The decellularized
hAM (dHAM) has shown prominent anti-inflammatory proper-
ties and provided mechanical protection and functional support
for cell attachment, proliferation, and migration [34, 35]. It has
been successfully used for peripheral nerve regeneration [36],
neural differentiation [37], cartilage regeneration [38], as well
as substrate for neo-vascularization development [39] and encap-
sulation. The extracellular matrix (ECM) of hAM is very similar
to many other tissues of the body and the decellularization pro-
cess does not alter its composition [40]. It is made of glycopro-
teins such as laminin, fibronectin, vitronectin, and nidogen, as
well as a collagen types I, III, IV, V, and VI [41]. Furthermore, it
contains fetal hyaluronic acid, which suppresses the expression
of TGF-f1, (32, and (33, as well as TGF-receptor expression,
providing an anti-fibrogenic effect [42]. The anti-inflammatory
properties of hAM are believed to be both cytokine-mediated and
mechanical. Solomon et al. observed a reduction of IL-1¢c and 3
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hAECs and hAMCs. hACs are known to suppress the proliferation,
inflammatory cytokine production, and differentiation of T cells. At the
same time, they stimulate generation of Treg cells. Soluble factors
secreted by hACs including PGE2, TGF-f3, Fas-L, AFP, MIF, TRAIL,
and HLA-G block dendritic cell and M1 macrophage differentiation and
promote differentiation of monocytes into anti-inflammatory M2
phenotype. Moreover, hACs are known to be responsible for
modulating host immune system, mainly through downregulation of
TNF-«, IFN-y, MCP-1, and IL-6 and upregulation of anti-
inflammatory cytokines

expression and an increase of the anti-inflammatory cytokine IL-
IRA in cells cultured on hAM after exposition to LPS [43]. A
mechanical anti-inflammatory effect of hAM was observed in
studies in vivo, where leucocytes trapped inside hAM stromal
matrix rapidly entered apoptosis [44]. Finally, hAM possesses
anti-microbial properties, making this an ideal biological dressing
for wound healing. This effect is partially mechanical, offering
protection against infectious organisms [45], but is also attribut-
able to the presence of transferrin, bactricidin, 3-lysin, lysozyme,
and 7-S immunoglobulins in the amniotic fluid [46, 47]. Those
molecules showed anti-bacterial effects against groups B and A
streptococcus, Enterococcus faecalis, Escherichia coli,
Staphylococcus saprophyticus, Lactobacillus, Pseudomonas
aeruginosa, and Acinetobacter [48].

In summary, hAM is an inexpensive, widely available, bi-
ologically active and biocompatible tissue that can be banked
for large utilization. This material is undoubtedly a major po-
tential agent in the design of biological tissue engineering
strategies.
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Amniotic Cells

hAEC and hAMSC can both be isolated from the hAM. hAECs
reside on the first layer, directly in contact with the amniotic fluid
and the fetus, while hAMSCs are found deeper, in the amniotic
mesoderm. Freshly isolated hAECs usually express CD324 (E-
Cad), CD326, CD9, CD24, CD29, CD104, and CD49f as well
as the stem cell marker stage-specific embryonic antigens 3 and 4
(SSEA-3 and SSEA-4) and the tumor rejection antigen 1-60 and
1-81 (TRA-1-60 and TRA-1-81) (Fig. 1b). Finally, they also
express Oct4, Sox2, Nanog, and Rex-1, members of the plurip-
otent stem cell transcription factor family [49, 50]. hAMSCs
possess similarities with BM-MSCs and express mesenchymal
markers such as CD90, CD44, STRO-1, and CD105 [51]. Like
hAECs, they also express Oct4 and SSEA-4 [52]. Moreover,
hAECs and hAMSCs have common cell surface markers
(CD73, CD29, CD49d, CD49¢, CD166, and CD44) and are both
negative for the hematopoietic makers CD34 and CD45 and the
monocytic marker CD14 [29]. By their potential to differentiate
into the three germ lines (endoderm, mesoderm, and ectoderm)
and their capacity to downregulate innate and modulate adaptive
immunity, hAECs and hAMSCs have been studied and used in
the treatment of inflammatory and immune-based disorders.

Anti-Inflammatory Properties of Amniotic Cells

The downregulation of inflammation by amniotic cells (AC) is
the result of their action on several key role players of the innate
immunity. These suppressive effects have been demonstrated in
cell-cell contact studies between ACs and immune cells, but also
without contact, in a transwell model, or even only with condi-
tioned medium (CM) from AC culture. For instance, neutrophil
and macrophage migration is inhibited in vitro, as the result of
migration inhibitor factor (MIF) secretion by hAECs [53]. A
more recent in vivo study analyzed the ability of hAMSCs to
improve corneal repair in a rabbit model and reported also a
reduction of neutrophil migration to the injured site [52].
Furthermore, ACs have demonstrated the capacities to inhibit
NK cell cytotoxicity by downregulating NK-activated receptors
(NKp30, NKp44, NKp46, NKG2D, and CD69), and to reduce
IFN-y expression in a dose-dependent manner in vitro [54]. This
suppressive activity was partially explained by an increased pro-
duction of IL-10 and prostaglandin 2 (PGE,) by ACs when co-
cultured with NK cells and was reversible when using anti-IL.10
antibody or a specific PGE, inhibitor. An immunosuppressive
activity toward monocytes was also observed in this study. LPS-
stimulated monocytes showed a reduction of pro-inflammatory
cytokine (TNF-a and IL-6) production when cultured with ACs.
Magatti et al. demonstrated that amniotic mesenchymal cells and
their CM shift differentiation of monocytes toward an anti-
inflammatory M2 phenotype [55¢¢]. Furthermore, they observed
a reduction of pro-inflammatory cytokine secretion (IL-1«, IL-
13, IL-12, IL-8, TNF-o, MIP1x, MIP1 3, MIG, Rantes, and IP-
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10) by M2 macrophages, and an increased secretion of the anti-
inflammatory cytokine IL-10. Finally, it was observed that M1
macrophages cultured with AC or their CM expressed less co-
stimulatory proteins (CD80, CD86, and CD40) and induced a
poor T cell response and a reduced number of IFN-y-producing
CD4" T cells. They also demonstrated an increasing number of
activated Tregs when purified T cells were co-cultured with ei-
ther M1 macrophages exposed to CM during differentiation or
M2 macrophages. The benefits of the shift toward the anti-
inflammatory M2 phenotype was confirmed in several in vivo
studies, for example, in liver fibrosis, lung fibrosis, and multiple
sclerosis mouse models [56-59].

In summary, ACs strongly impair the development of an
immune response by inhibiting neutrophil and macrophage
migration, inducing M2 macrophage generation, reducing cy-
tokine production by monocytes and NK cells and blocking
the NK cytotoxicity.

Immunomodulatory Properties of Amniotic Cells

It was thought for many years that one major characteristic of
ACs was that they were not immunogenic and therefore under
a state of immune tolerance. It has become clear that they are
able to elicit immune responses, notably by expressing MHC
class I (HLA-A,-B,-C) and II (HLA-DR), under certain con-
ditions, for instance when cultured without serum or subjected
to IFN-y exposition [60]. This was demonstrated by in vitro
and in vivo studies, in which an immune response was trig-
gered by amniotic cells (Fig. 1c) [61, 62]. This means that the
immune protection of ACs is the result of an active mecha-
nism of suppression or modulation of the immune system.

In addition to downregulating the innate immune response,
ACs have demonstrated their ability to suppress T cell prolifera-
tion in vitro in a dose-dependent manner [61-64]. Suppression
was observed after T cell exposition to alloantigen in the presence
of ACs, either after CD3/CD28 stimulation or in classic mixed
lymphocyte reaction models. As for innate immunity suppres-
sion, the ability to strongly suppress T cell proliferation was
observed with cell-cell contact, in a transwell system and with
CM.

DCs are essential for the initiation of an immune response
[65]. They present foreign or self-antigens to T cells, which can
induce (i) CD4™ T cell clonal expansion and polarization in the
Thl, Th2, or Th17 phenotypes, and (i) CD8" effector T cell
proliferation and activation or, depending on co-stimulation fac-
tors, shift T cell differentiation toward Treg cells [66—68]. They
also act on B and NK cells [69, 70] and are involved in the
development of tolerance to self-antigens. Their interaction with
immune cells in association with the environment will determine
if the presented antigen will trigger a stimulatory of tolerogenic
immune reaction. This critical role is obviously a target for cell-
based therapy as tolerance can be induced by DC manipulation
[71ee]. It has been demonstrated that amniotic cells severely
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impair the function of monocyte-derived DCs by inhibiting their
generation and maturation in vitro [53, 71e¢]. This phenomenon
was observed not only in cell-to-cell contacts and transwell sys-
tems but also when monocytes were just exposed to CM.
Although a direct cell contact is not necessary for this inhibition
to occur, it was demonstrated that the negative effect on DC
generation and function was stronger in cell-to-cell experiments.
Furthermore, inhibition of DC generation seemed to decrease
when hAECs with higher numbers of passages were used, most
likely resulting from hAEC epithelial to mesenchymal transition
[71e]. In addition to impair DC generation, it was observed that
DCs exposed to ACs (in cell-to-cell or transwell systems) had
significantly reduced capacities to stimulate CD4* and CD8" T
cell proliferation. Finally, DCs exposed to ACs secreted higher
level of anti-inflammatory cytokine IL-10 and reduced amounts
of pro-inflammatory cytokines and chemokines (TNF-co, IL-
12p70, IL-8, and MIP-1x) [71e°].

One key element responsible for the immunomodulatory
properties of ACs is the expression of the tolerogenic HLA-G
[72]. This immunosuppressive molecule possesses 4
membrane-bound isoforms (HLA-G1, G2, G3, and G4) and 3
soluble isoforms (HLA-G5, G6, and G7). In addition to be
present on hAECs, HLA-G expression can be induced on
DCs when exposed to ACs during differentiation [73].
Furthermore, HLA-G expression is enhanced by IL-10 [74],
IFN-«, -3, and -y [75, 76]. The immunomodulatory properties
of HLA-G result from the interaction with its corresponding
receptors (ILT2, ILT4, and KIR2DL4) present on immune
cells. While ILT4 is present on monocytes and DCs, ILT2
can be found on most immune cells (NK, CD4*, CD8", B cells,
monocytes, and DC). HLA-G interaction with DCs was studied
in vitro and in vivo by Liang et al. and resulted in the inhibition
of DC maturation and induced a differentiation toward the
tolerogenic pathway [77]. Furthermore, DC function was al-
tered by the reduction of MHC class II expression resulting in
a decreased capacity to activate immune cells. It was also dem-
onstrated that DCs exposed to HLA-G inhibited NK cell acti-
vation [78]. HLA-G interaction with T cells results in inhibition
of proliferation, shift toward a Treg phenotype, CD8" effector T
cell inactivation, and apoptosis of previously activated CD8" T
cells [79]. With regard to B cells, HLA-G inhibits proliferation,
immunoglobulin secretion, and chemotaxis. Finally, HLA-G
also acts on innate immunity by suppressing NK cytotoxicity,
through interaction with ILT2 and KIR2DLA4 receptors, and by
inhibition of ROS production and phagocytic capacity of neu-
trophils [80]. Those results were also observed in clinical stud-
ies, where HLA-G was associated with better allograft accep-
tance in transplanted patients [81, 82].

In addition to HLA-G, induction of tolerance by amniotic
cells has been linked to their expression of the immune check-
point proteins programmed death-ligands 1 and 2 (PD-L1 and
PD-L2) [83]. In the placenta, these molecules are present on
hAMSCs and in the syncytiotrophoblasts, but they can be

induced in hAECs by IFN-y exposition [60]. The interaction
of PD-L1 and PD-L2 with their receptors will inhibit inflam-
matory cytokine secretion (IFN-y, TNF-«, IL-2), and suppress
T cell differentiation and proliferation [84].

In summary, ACs are able to block the initiation of an
immune reaction by strongly altering the APC role of DCs.
Furthermore, they inhibit CD4* and CD8" T cell proliferation,
T cell cytotoxicity, and induce the development and expan-
sion of the Treg cell population. For these reasons, ACs have
been implicated in numerous inflammatory and immune dis-
ease models. They also represent an interesting source of cells
in regenerative medicine thanks to the anti-inflammatory and
immunomodulatory properties they are able to confer.

Application in Regenerative Medicine

After having described the numerous advantages of amniotic
membrane derivatives, this review will address their potential
application in regenerative medicine, according to types of
disorders to be treated. There are actually more than 180 on-
going or completed clinical trials registered worldwide, in
which amniotic membrane derivatives are utilized, in almost
every field of medicine: ophthalmology, plastic surgery, der-
matology, cardiology, neurology, urology, diabetology, ne-
phrology, pneumology, hepatology, transplantation, dental
surgery, gynecology, orthopedic surgery, and ENT (ear nose
throat).

Amniotic Membrane Derivatives as Wound Dressing

As previously mentioned, amniotic membrane derivatives
have been used for decades as wound dressings for skin burns
[85], chronic ulcers of arterial, venous, or diabetic origin [86],
in abdominal wall [87] and dural defects [88] and in corneal
injuries (traumatic or chemical) [52]. The benefit provided
was a mechanical protection, in association with anti-
fibrogenic, anti-inflammatory, and anti-microbial properties.
In vitro and in vivo results reported an increased cell migration
and epithelization resulting in accelerated wound healing.
HAM has also been studied in orthopedic surgery where it
showed capacities to prevent the formation of adhesions in
tendon repair [89]. Finally, hAM wrapped around nerve auto-
grafts in animal models of nerve injury was able to prevent
perineural scarring and adhesion, increasing functional recov-
ery [36, 90]. However, this improvement was only observed
in short-term outcome, possibly because of degradation of
hAM after a few weeks.

Tissue Engineering and Cell-Based Therapy

ACs have been studied in several inflammatory diseases because
of their anti-inflammatory properties but also for their potential to
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differentiate into many cell types, inducing tissue regeneration.
Lung fibrosis can be idiopathic or secondary to chemical or
physical insults. Several studies have demonstrated the benefit
of hAEC transplantation in the bleomycin-induced mouse mod-
el. In addition to reduce fibrosis, inflammatory cell infiltration,
and cytokine production, hAEC showed the capacity to differen-
tiate into alveolar epithelial cells in vitro and in vivo, making
them a promising material for lung regeneration [57, 91].

Similar results were observed in a liver fibrosis mouse
model in which HAEC transplanted intravenously de-
creased fibrosis, inflammation, and apoptosis [92]. The
same results were observed in a recent study, using a mu-
rine model of steatohepatitis [19]. The improvement was
observed by injection of hAECs but also only with their
CM. Furthermore, hAECs have been successfully differen-
tiated into hepatocytes and cholangiocytes, in vitro and
in vivo, improving tissue recovery [93, 94]. It is notewor-
thy that hAECs were able to improve liver function in
those studies without being rejected, despite the fact that
animals were immunocompetent.

HAMSCs have also demonstrated their capacity to im-
prove kidney function in a kidney fibrosis rat model by reduc-
ing collagen deposition, inflammatory cell infiltration, and
apoptosis [95].

Type 1 diabetes is a worldwide health issue. Replacing
the lost 3 cells has been successfully performed by pan-
creas and islet transplantation. However, the scarcity of
organ donors and the need for lifelong immunosuppression
are the two major obstacles to generalize these therapies to
the whole type diabetes patient population. ACs have been
identified as a robust option to overcome these issues, by
using two types of strategies. The first is to improve islet
survival and engraftment by co-transplanting them with
ACs as organoids. This has been successfully achieved
by our group and others. Islets co-cultured with hAECs
showed a better survival in hypoxic conditions and an in-
creased functional potency compared with unmodified is-
lets [96]. These results have been confirmed in immunode-
ficient [72, 96] and xenogeneic mouse models [97¢]. In
addition to improved glycemic control in vivo, histological
assessments have demonstrated an increased vasculariza-
tion of the grafts. The second is to use the stemness char-
acteristics of amniotic cells as a source for differentiation
into insulin-producing cells. hAECs have been successful-
ly differentiated into cells with a 3 cell phenotype, with the
capacity to control glycemia in streptozotocin-induced di-
abetic mice [98, 99].

Cell therapy using ACs, among other cell types, have also
been used in cerebral ischemic stroke models and showed
promising results by improving tissue recovery and reducing
the volume on infarcted tissue [100—102].

DHAM has also been successfully used as a scaffold where
adipose-derived mesenchymal stem cells were seeded and the
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whole construct was used in a myocardial infarction rat
models. Regeneration of cardiomyocytes and reduced fibrosis
were observed [103].

Finally, amniotic cells also have the capacity to differenti-
ate into chondrocytes, osteocytes, myocytes, and adipocytes
and have been studied for osteochondral disorders [104, 105].

The anti-inflammatory and immunomodulatory capacities
of ACs have also been evaluated in T cell-mediated disease
such as autoimmune disorders, and allo-rejection in transplan-
tation models. Intravenous injection of hAECs improved clin-
ical outcomes in an experimental model of autoimmune en-
cephalomyelitis, used for the study of multiple sclerosis [59].
Cellular infiltration and demyelination were significantly re-
duced in the animals treated with hAECs and a T cell shift
toward the Th2 phenotype was observed. HAEC injection in a
mouse allogeneic skin transplantation model improved en-
graftment and survival, arguably by tolerance induction
[106]. This was also demonstrated in a kidney graft model in
the rat, in which amniotic cells inhibited acute rejection, in-
flammatory cell infiltration, and supported graft function
[107].

Conclusions

In this review, we have described the unique characteristics of
amniotic membrane derivatives, making them an attractive
resource for application to a large number of strategies in
regenerative medicine. ACs possess two major characteristics
that have already been widely exploited. The first is their
ability to modulate or even suppress the innate and adaptive
immunity, making them a true asset for chronic inflammatory
disorders and for the induction of tolerance in autoimmune
and transplantation models. The second is their multilineage
differentiation capacity, offering a source of cells for tissue
engineering. The latter, combined with the use of hAM as a
scaffold, offers all components necessary to create an optimal
environment for cell and tissue regeneration.

One limitation of amniotic cells is the progressive loss of
their beneficial capacities over culture passages. This has been
demonstrated for example in experiments studying liver and
lung fibrosis where the anti-inflammatory effects exerted by
hAECs were markedly reduced after several passages. It was
partially explained by an increased expression and secretion of
MCP-1 (monocyte chemoattractant protein-1) by hAEC after
5 passages, and resulted in greater infiltration by inflammatory
cells [64, 91]. Magatti et al. also observed a reduced capacity
to inhibit monocyte-derived DC differentiation with passaged
amniotic cells. The difference through passages was more
obvious with hAECs [71¢¢]. This differentiation through pas-
sages impairs the capacity to expand those cells and should be
overcome in order to obtain a sufficient cell amount for clin-
ical use.
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It has been demonstrated that the expression of immuno-
modulatory proteins by amniotic cells differs depending on
their location on the amniotic membrane. More precisely,
hAM can be divided in two regions, the placental and reflected
areas [ 108]. Differences in morphology and functional activity
have been observed between those areas, notably in the ex-
pression of HLA-G and TGF-f3 by the amniotic cells [109].
Finally, there are conflicting reports in the literature
concerning amniotic cell expression of classical MHC class 1
and class II, as well as their capacity to induce an immune
reaction. Some studies report low or only inducible expression
of HLA-A, B, C by INF-y [57, 110, 111], while others ob-
served a clear constitutional expression of these molecules
[63, 71+, 112]. This may mostly be indicative of a high level
of cell heterogeneity between placentas, but also between pla-
centa regions, and amount of cell passages. It is therefore
important to always assess the expression and the suppressive
capacities of the ACs before using them.

Much work still has to be done in order to reduce het-
erogeneity and to improve the immunosuppressive activity
over the time. The impact of culture conditions and medi-
um components on cell surface markers should be analyzed
carefully. Selection of cells by cell sorting based on their
phenotypes before expansion can increase the homogenei-
ty. Finally, gene editing by clustered regularly interspaced
short palindromic repeats (CRISPR-Cas9) can offer a nov-
el and accurate mechanism by which these cells can be
manipulated in order to extract their best capacities and
to render them the most adapted cell source for regenera-
tive medicine.
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