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SUMMARIES

SUMMARY (IN ENGLISH)

Extreme weather events can have large and long-lasting impacts on lake ecosystems. Wind storms mix stratified
water layers and resuspend sediment, heatwaves promote stratification and may cause heat stress for aquatic
organisms, and high rainfall events affect nutrient inflows into the lake. The intensity and frequency of such
events are shifting as part of anthropogenic climate change, but simultaneously the changing lake conditions
will also affect how extreme events interact with lakes. For example, earlier and stronger stratification will
change vertical profiles of nutrients and increase resistance to wind mixing, which may alter the link between
storms and phytoplankton.

The terms “resistance” and “resilience” describe how an ecosystem responds to and recovers from a
perturbation. Extreme weather events are natural perturbations and in this thesis we investigate the resistance
and resilience of lake ecosystems to such events, and how this may change with climate warming. The main
methodology explored here is process-based modelling, which has recently been applied more and more to
study the effect of extreme weather events on lakes. There is uncertainty connected to model simulations, but
a large advantage is the ability to explore many different climate and extreme event scenarios. This thesis is a
small part of the larger MANTEL project, which oversees multiple PhD theses on the topic of studying the effects
of extreme weather events on lakes.

Before starting with modelling, we need to explore the links between thermal stratification and lake biology that
extreme weather events will act upon. The first chapter of this thesis is a review in which we discuss the overall
effects of climate warming on lake physics, chemistry, and biology, with a specific focus on mixing regimes, i.e.
seasonal patterns in lake density stratification. The paper then proceeds by identifying feedback loops between
lake processes that could lead to an accelerated shift to a new mixing regime or that could make a mixing regime
resistant to change. Three mixing regime shifts are investigated: 1) from polymictic to seasonally stratified, 2)
from dimictic to monomictic, and 3) from holomictic to either oligo- or meromictic. Polymictic lakes mix multiple
times per year, but if such lakes are deep enough (c. 3-10 m mean depth) they may experience temporary
stratification events due to decreases in water transparency. Under select circumstances, this stratification may
trigger a further decrease in transparency (through increased dissolved carbon or phytoplankton
concentrations) and so the stratified regime may stabilise. However, this feedback is unlikely to provide stability
over multiple years, as stratification is lost in winter. Ice-covered (dimictic) lakes are shifting to ice-free
(monomictic) lakes due to climate warming, and a reduced ice-albedo feedback may accelerate this transition
in very deep lakes (mean depth 50 m or more). However, the majority of studies on this topic suggest that a
gradual transition is more likely. Holomictic lakes mix from top to bottom in winter, oligomictic lakes experience
irregular top-to-bottom mixing, and meromictic lakes never mix completely due to a heavier deep-water layer
(due to accumulated solutes). Climate warming induces a trend towards less frequent complete mixing.
Normally, the warming of deep waters ensures that complete mixing occurs occasionally, therefore promoting
oligomixis. However, if water density increases due to the accumulation of solutes, and exceeds the water
density decrease due to warming, a meromictic regime may form. At the end of the chapter, we mention
modelling as a potential pathway to study some of these feedback loops, specifically those related to the loss of
polymixis and the possible formation of meromixis.

The second chapter was a necessary step before starting modelling studies on short-term effects of extreme
events. Model performance is commonly assessed on a calibration or validation period, usually spanning
multiple years. However, model performance on short time scales during extreme weather events was largely
unknown. Here we assessed the performance of one-dimensional hydrodynamic models to reproduce observed
trends in water temperature and stratification metrics. We included three lake models (Simstrat, GOTM, GLM)
and high-frequency data from three lakes (Lough Feeagh - IR, Lake Erken - SW, and Miggelsee - DE), and in each



lake we defined ten storms and ten heatwaves to test the models on. The models reproduced the direction and
magnitude of change during both storms and heatwaves well. Statistically significant over- or underestimation
was only found in a few cases. Any time lags of the simulated changes tended to be less than 1 hour. However,
compared to reference (i.e. non-extreme) time periods, the model error during the extreme events was 30-100%
higher (with the exception of storms in the shallowest lake). In conclusion, we can use 1D hydrodynamic models
to assess effects of extreme weather events on lakes, but we should take into account the decreased accuracy.
The latter could be done for example by adopting a model ensemble approach. Together, the first two chapters
form the basis for the rest of the thesis: theoretical framework and methodology. Additionally, both studies can
be used as building blocks for further studies on extreme events.

Ensemble modelling is a promising step forward for the aquatic modelling community, especially when
modelling extreme weather events. To facilitate the use of ensemble modelling within the lake modelling
community, we developed an R package, LakeEnsembIR, which is presented in Chapter 3. Users will require only
a single set of input files and one configuration file to run and calibrate five different one-dimensional
hydrodynamic models (FLake, GLM, GOTM, Simstrat, and MyLake) and to store the results in a single output file.
The package can also be used to visualise and analyse the model output. In the paper we also demonstrated the
use of the package on two lakes, Lough Feeagh in Ireland and Langtjern in Norway. The advantage of the
ensemble approach was apparent in the generation of a credible confidence band around the mean prediction,
but also in the fact that the ensemble mean sometimes outperformed the best single-model fit. The potential
for ensemble modelling was one of the outcomes of the second chapter, but was also widely recognised in the
lake modelling community. More widespread use of this method could lead to improvements in forecasting
studies, both short- and long-term.

The last chapter of the thesis followed from the first two chapters, and looked at the effect of multiple potential
drivers on how phytoplankton reacts to storms. The investigated drivers were wind speed, mixed layer depth,
surface water temperature, incoming shortwave radiation, and hypolimnetic nutrient concentration. Each driver
was scaled independently in a full factorial design while inducing a 24-hour wind perturbation. Wind speed had
a non-monotonic effect, where moderate wind speeds (c. 5-10 m/s) could increase phytoplankton
concentrations after storms, but high wind speeds (> 10 m/s) had weaker or even negative effects. When the
mixed layer was deeper than approximately 8 m, the effect of the storm was strongly reduced. Incoming
shortwave radiation, surface temperature, and hypolimnetic nutrients also affected how storms influenced
phytoplankton, with higher radiation and nutrients promoting positive effects of storms, and higher surface
temperature stimulating negative effects of a storm on phytoplankton. Lastly, the effect of climate warming was
assessed by scaling the air temperatures to a level projected in 2040-2070 according to the RCP8.5 emission
scenario. While climate warming affected summer averages of many lake variables, the response of
phytoplankton to storms did not markedly change in a warmer climate. This chapter includes the modelling of
lake ecosystems, rather than only lake physics as in chapters 2 and 3. It also focuses on the study of the resistance
(i.e. magnitude of response) of lakes to an extreme weather event, under the influence of climate warming. At
the same time, one of the key results is that not only the extremes are important, but rather the entire range of
possible weather conditions. The diverging responses of phytoplankton to storms, observed in other studies, are
caused by both storm characteristics and antecedent lake conditions. Our modelling approach could study the
effects of the different drivers individually and provided an assessment of potential future effects.

In conclusion, this thesis has contributed to a further process-based understanding of how extreme events
influence lake thermal structure and biogeochemistry. Process-based understanding is instrumental to assess in
what types of lakes certain responses occur, and also to construct predictive models that can inform lake
management. The thesis also showed some of the interactions between long-term climate warming and short-
term extreme weather events that may be expected to occur. This topic is not often considered and may be
important for forecasting efforts. Lastly, the chapters in this thesis form further evidence that process-based
modelling is a viable approach to study the effects of extreme weather events on lakes. More exciting new paths



for further investigation remain open, which are especially important considering the rising global temperature
trends and the increasing role of extreme weather. Lakes are important ecosystems, both considering their
unique biodiversity and their role for humans. Better understanding of the impacts of extreme events on lakes
helps us to improve management of these systems and to anticipate future conditions.



RESUME (EN FRANCAIS)

Les événements météorologiques extrémes peuvent avoir de graves conséquences sur les écosystémes lacustres
a long terme. Les tempétes mélangent la colonne d’eau et remettent les sédiments en suspension ; les vagues
de chaleur stimulent la stratification et peuvent causer un stress thermique pour des organismes aquatiques ;
et des événements de forte précipitations affectent I'apport des nutriments dans les lacs. L'intensité et la
fréquence de tels événements changent dans le cadre du réchauffement climatique, mais simultanément,
I’évolution des conditions lacustres affectera également la maniére dont les événements extrémes interagissent
entre lacs. Par exemple, une stratification plus t6t et plus forte modifiera les profils verticaux des nutriments et
renforcera la résistance au mélange par le vent, ce qui pourrait modifier le lien entre les tempétes et le
phytoplancton.

Les termes « résistance » et « résilience » décrivent comment un écosystéme répond a une perturbation et s’en
remet. Des événements extrémes météorologiques sont des perturbations naturelles et dans cette thése nous
étudions la résistance et la résilience des écosystemes lacustres contre de tels événements, et comment cela
peut changer avec le réchauffement climatique. La principale méthodologie explorée est la modélisation basée
sur les processus. Cette derniére est de plus en plus appliquée pour rechercher I'effet des extrémes
météorologiques aux lacs. Il existe une incertitude liée aux simulations de modeles. Néanmoins, I'avantage de
cette méthode est la possibilité d’explorer beaucoup de scénarios climatiques et des différents événements
extrémes. Cette thése est une petite partie du projet MANTEL, qui comprend plusieurs theses doctorales sur le
sujet des effets des événements climatiques extrémes sur les lacs.

Avant de commencer avec la modélisation, il est nécessaire d’explorer les connections entre la stratification
thermique et la biologie lacustre, sur lesquelles les événements extrémes agiront. Le premier chapitre de cette
these est une revue sur effets globaux du réchauffement climatique sur la physique, la chimie, et la biologie des
lacs, avec un accent spécifique sur les régimes de mélange, i.e. les tendances saisonniéres de la stratification
thermique des lacs. Par la suite, I'étude identifie des boucles de rétroaction entres des processus lacustres, qui
pourraient conduire a un passage accéléré a un nouveau régime de mélange ou qui pourraient rendre un régime
de mélange résistant aux changements. Nous avons examiné trois changements de régimes de mélange : 1) de
polymictique a stratifié, 2) de dimictique a monomictique, et 3) de holomictique a oligo- ou méromictique. Des
lacs polymictiques se mélangent plusieurs fois par année, mais si ces lacs sont suffisamment profonds (c. 3-10
m de profondeur moyenne), ils peuvent avoir des événements de stratification temporaires en raison de la
diminution de la transparence de I'eau. Dans certaines circonstances, cette stratification peut déclencher une
nouvelle diminution de la transparence (par une augmentation du carbone dissous ou des concentrations de
phytoplanctons) et le régime stratifié peut alors se stabiliser. Cependant, il est peu probable que cette
rétroaction assure la stabilité sur plusieurs années, car la stratification disparait en hiver. Des lacs gelées
(dimictique) se transforment en lacs sans glace (monomictique) a cause du réchauffement climatique, et la
rétroaction de I'albédo de la glace peut accélérer cette transition dans les lacs trés profonds (plus de 50 m de
profondeur moyenne). Cependant, la majorité des études sur ce sujet suggérent qu’une transition graduelle est
plus probable. Les lacs holomictiques se mélangent de haut en bas en hiver, et les lacs oligomictiques subissent
un mélange irrégulier de haut en bas, et les lacs méromictiques ne se mélangent completement jamais a cause
d’une couche d’eau profonde plus lourde (en raison des solutés accumulées). Le réchauffement climatique cause
une tendance a un mélange complet moins fréquent. Normalement, le réchauffement des eaux profondes
assure un mélange complet occasionnel, ce qui favorise I'oligomixie. Néanmoins, si une augmentation de la
densité en raison d’accumulation des solutés dépasse un abaissement de la densité en raison de réchauffement,
un régime méromictique peut se former. A la fin du chapitre, nous mentionnons la modélisation comme une
possibilité pour étudier certaines de ces boucles de rétroaction, plus précisément celles liée a la perte de
polymixie et la formation éventuelle de méromixie.

Le deuxiéme chapitre était une étape nécessaire avant de commencer avec les études de modélisation sur les
effets a court terme des événements extrémes. La performance d’un modele est normalement évaluée sur une



période de calibration ou validation, qui couvre habituellement plusieurs années. Toutefois, la performance des
modeles sur des échelles de temps courtes pendant des événements météorologiques extrémes était largement
inconnue. Ici, nous avons évalué la performance des modeéles unidimensionnels hydrodynamiques a reproduire
des tendances observées dans la température de I'eau et des parametres de stratification. Nous avons pris trois
modeles lacustres (Simstrat, GOTM, GLM) et des données a haute-fréquence de trois lacs (Lough Feeagh-
Irlande, Lac Erken — Suéde, et Miiggelsee — Allemagne), et pour chaque lac nous avons identifié dix tempétes et
dix vagues de chaleur pour tester les modeéles. Les modéles ont bien reproduit la direction et la magnitude du
changement pendant les tempétes et les vagues de chaleur. Une sur- ou sous-estimation statistiquement
significative n’a été observé que dans quelques cas. Les décalages temporels des changements simulés avaient
tendance a étre moins de 1 heure. Néanmoins, en comparaison avec des périodes de référence (i.e. non
extrémes), I'erreur du modele pendant les événements extrémes était 30-100% plus élevée (a I'exception des
tempétes dans le lac le moins profond). En conclusion, on peut utiliser des modeles unidimensionnels
hydrodynamiques pour étudier les effets des événements météorologiques extrémes aux lacs. Cependant, il faut
prendre en compte que la précision des modeles est abaissée. Cette derniére pourrait étre réalisée par exemple
en adoptant une approche d’ensemble. Les deux premiers chapitres le cadre théorétique et la méthodologie de
la these. De plus, les deux études peuvent étre utilisées comme soutiens pour les prochaines études sur les
événements extrémes.

La modélisation des ensembles est une étape prometteuse pour la communauté de la modélisation aquatique,
spécialement quand on modélise des événements météorologiques extrémes. Afin de faciliter I'usage des
ensembles dans la communauté de modélisation des lacs, nous avons créé un package sur le logiciel de R,
LakeEnsemblR, qui est présenté au Chapitre 3. Les utilisateurs du logiciel n"auront besoin que d’une seule
collection de fichiers d’entrée et de configuration pour exécuter et calibrer cinq différents modeles
unidimensionnels hydrodynamiques (FLake, GLM, GOTM, Simstrat, et MyLake) et pour sauvegarder les résultats
dans un seul fichier de sortie. Le logiciel peut aussi étre utilisé pour visualiser et analyser les résultats des
modéles. Dans le manuscrit, nous avons aussi démontré I'usage du logiciel sur deux lacs, Lough Feeagh en Irlande
et Langtjern en Norvege. L’avantage d’une approche d’ensemble était évident dans la génération d’une zone
d’incertitude crédible autour de la prédiction moyenne, mais aussi dans le fait que le moyenne du ensemble
parfois performait mieux que le meilleur résultat d’'un des modeles individuels. Le potentiel de la modélisation
d’ensemble était un des résultats du deuxieéme chapitre, mais était aussi largement reconnu par la communauté
de modélisation lacustre. Un usage plus répandu de cette méthode pourrait conduire a des améliorations dans
les études de prédiction, tant a courte qu’a longue terme.

Le dernier chapitre de cette theése s’inscrit dans la continuité des deux premiers chapitres, et il concerne les
effets de plusieurs facteurs causals potentiels sur comment le phytoplancton réagit aux tempétes. Les facteurs
examinés sont la vitesse du vent, la profondeur de la couche mélangée, la température de I'eau de surface, le
rayonnement solaire entrant, et la concentration en nutriments dans I’hypolimnion. Chaque facteur était varié
indépendamment des autres dans un plan factoriel complet tout en induisant une perturbation du vent sur 24
heures. La vitesse du vent a eu un effet non-monotone, ol des vitesses de vent modérées (c. 5-10 m/s) pouvaient
augmenter les concentrations du phytoplancton aprés les tempétes, mais des vitesses de vent élevées (> 10
m/s) avaient des effets moins forts ou méme des effets négatifs. Lorsque la couche mélangée était plus profonde
que = 8 m, I'effet de la tempétes était fortement réduit. Le rayonnement solaire, la température de I'eau de
surface, et la concentration des nutriments dans I’"hypolimnion ont aussi un effet sur I'influence des tempétes
sur le phytoplancton. Des niveaux plus élevés de rayonnement solaire et de nutriments causaient une
augmentation du phytoplancton apres les tempétes. Des niveaux plus chauds d’eau de surface montraient un
effet négatif sur la concentration de phytoplancton apres une perturbation du vent. Enfin, I'effet du
réchauffement climatique a été évalué en mettant a I'échelle les températures de I’air a un niveau prévu en
2040-2070, suivant le scénario d’émission RCP8.5. Méme si le réchauffement influencait les moyennes d’été de
plusieurs variables lacustres, la réponse du phytoplancton aux tempétes ne changeait pas évidemment dans un
climat plus chaud. Ce chapitre inclut la modélisation des écosystemes lacustres, plutot que seulement la



physique des lacs comme dans les chapitres 2 et 3. Il se concentre aussi sur I'étude de la résistance (i.e.
magnitude de réponse) des lacs a un événement météorologique extréme, sous l'influence du réchauffement
climatique. En méme temps, un des résultats critiques ce ne sont pas seulement les extrémes qui sont
importants, mais plutdt la distribution totale des conditions météorologiques possibles. Les réponses
divergentes de phytoplancton aux tempétes, observées dans des autres études, sont causés par des
caractéristiques de tempétes et les conditions lacustre précédents, et notre approche de modélisation nous
permettait d’étudier les effets des plusieurs facteurs individuels et de faire une prédiction pour des effets
potentiels a I'avenir.

En conclusion, cette thése a contribué a une plus grande compréhension des mécanismes de comment les
événements extrémes ont des effets sur la structure thermique et biogéochimique d’un lac. Une compréhension
mécanistique est essentiel pour évaluer dans quels types des lacs certains réponses se produisent, et aussi pour
construire des modeéles prédictifs qui peuvent informer la gestion des lacs. La thése montre également quelques
interactions que peuvent avoir le réchauffement climatique a long terme et les événements météorologiques
extrémes a court terme. Ce sujet n’est pas souvent considéré, mais pourrait étre important pour des efforts de
prédiction. Finalement, les chapitres de cette thése constituent une preuve supplémentaire que la modélisation
mécanistique est une approche valable pour étudier les effets d’événements météorologiques extrémes sur les
lacs. De nouvelles voies d’investigation restent ouvertes, qui sont particulierement importantes si I'on considere
les tendances a la hausse des températures mondiales et le réle croissant des phénoménes météorologiques
extrémes. Les lacs sont des écosystéemes importants, tant par leur biodiversité unique que par leur réle pour
I’'humaine. Une meilleur compréhension des impacts des événements extrémes sur les lacs nous aide a mieux
gérer ces systemes et a anticiper des conditions a I'avenir.



SAMMANFATTNING (PA SVENSKA)

Extremt vader kan ha stora och langvariga effekter pa sjéar. Stormar blandar olika vattenlager och satter
sediment i rorelse. Hoga temperaturer stimulerar stratifiering och kan orsaka varmestress for vattenorganismer,
och hog nederbord paverkar infléden av naringsamnen till sjéar. Intensiteten och frekvensen av dessa handelser
forandras med globala klimatférandringarna, men samtidigt paverkar de fordndrade processerna i sjoar ocksa
hur extremt vader samverkar med sjoar. Tidigare och starkare stratifiering férandrar till exempel vertikala
profiler av naringsamnen och 6kar motstandet mot omblandning pa grund av vind, vilket kan fordndra
kopplingen mellan stormar och vaxtplanktons produktion.

Begreppen “"motstand” och ”resiliens” beskriver hur ett ekosystem reagerar pd och aterhamtar sig fran en
stérning. Extremt vader bestar av naturliga stérningar och i denna avhandling undersokte vi motstandet och
resiliensen av sjdar mot sadana stérningar, och hur de kan férandras med global uppvarmning. Huvudmetoden
som anvands har ar processbaserad modellering, vilket har anvants i allt storre utstrdackning de senaste aren for
att undersoka effekterna av extremt vader pa sjoar. Det finns osdkerhet i simulationsmodeller, men en stor
fordel ar mojligheten att utforska manga olika scenarier vid klimatférandringar och extremt vader. Denna
avhandling &r en liten del av ett storre MANTEL projektet, vilket innehaller flera doktorsavhandlingar som ocksa
undersoker effekterna av extremt vader pa sjoar.

Innan man boérjar modellera, maste man utforska kopplingar mellan termisk stratifiering och sjéarnas biologi
som extremt vader ska ha effekter pa. Forsta kapitlet i denna avhandling bestar av en 6versikt om allmanna
effekter av klimatuppvarmning pa sjoars fysik, kemi, och biologi, med ett specifikt fokus pa blandningsregimer,
bestdende av sdsongsdynamik i sjoarnas stratifiering. Sedan fortsitter studien med att identifiera
aterkopplingscykler mellan processer i sjdar som kan orsaka en forandring till en ny blandningsregim eller som
kan ge en blandningsregim som &r motstandskraftig mot férandring. Tre skiften i blandningsregimer har
undersokts: 1) fran polymiktisk till stratifierad, 2) fran dimiktisk till monomiktisk, och 3) fran holomiktisk till oligo-
eller meromiktisk. Polymiktiska sjoar blandas flera ganger om aret, men om sadana sjoar ar tillrackligt djupa (c.
3-10 m medeldjup), kan kortsiktiga stratifieringar uppsta pa grund av minskningen av vattnets klarhet. Under
vissa omstandigheter kan en san stratifiering leda till en ytterligare minskning av klarhet (pa grund av mer lost
kol eller vaxtplankton), och stratifieringen kan darmed stabilisera sig. Denna feedback kommer dock sannolik
inte att ge stabilitet 6ver flera ar, eftersom stratifieringen forsvinner pa vintern. Sjéar med istacke pa vintern
(dimiktiska sjoar) overgar till ofrysta (monomiktiska) sjdar pa grund av klimatuppvarmning, och is-albedo
aterkopplingen kan paskynda denna 6vergangen i mycket djupa sjéar (mellandjup 50 m eller mer). Majoriteten
av studierna kring detta @mne antyder dock att ett gradvist skifte ar mer troligt. Holomiktiska sjéar blandas fran
vattenytan till botten pa vintern varje ar, oligomiktiska sjoar blandas oregelbunden fullstandigt, och
meromiktiska sjoar blandas aldrig fran ytan till botten pa grund av ett tyngre djupt vattenlagar (pa grund av
ackumulerade |6sta amnen). Klimatuppvarmning orsakar en trend mot mindre frekvent fullstindig
omblandning. | vanliga fall sdkerstaller uppvarmningen av djupa vattenlager att fullstandig blandning sker ibland,
och dérmed stimuleras oligomixis. Men om 6kningen i vattendensitet pa grund av ackumulering fran l6sta
amnen overstiger minskningen i vattendensitet pa grund av uppvarmning, kan en meromiktisk regim uppsta. |
slutet av kapitlet ndmner vi modellering som ett maojligt satt att studera nagra av dessa aterkopplingscykler,
sarskilt de som relaterar till férlusten av polymixis och majlig formationen av meromixis.

Det andra kapitlet utgjorde ett nédvandigt steg for att borja modellera kortlivade effekter fran extremt vader.
Modellkvalitet faststédlls ofta under en kalibrerings- eller valideringsperiod, som stracker sig 6ver flera ar.
Modellkvalitet dver korta perioder under extremt vader har dock i stort sett varit okand. Har utvarderade vi
modellkvalitet pa en-dimensionella hydrodynamiska modeller med syftet att reproducera observerade trender
i vattentemperatur och stratifiering. Vi anvande tre sjomodeller (Simstrat, GOTM, GLM) och hog-frekvens data
fran tre sjoar (Lough Feeagh i Irland, Erkensjon i Sverige, och Miggelsee i Tyskland), och i varje sjo identifierade
vi tio stormar och tio varmevagor pa vilka vi testade vara modeller. Modellerna reproducerade bra riktningen
och omfattningen av forandringar under bade stormar och varmevagor. Statistiskt relevanta 6ver- och



underskattningar observerades i bara fa fall. Tidsfordrojningar av simulerade fordndringar brukade vara mindre
an en timme. Dock var felmarginalen under extremt vader 30-100% hogre jamfort med referensperioder (i.e.
normalfall), med ett undantag fér stormar i den grundaste sjon. Vi konstaterar att vi kan anvanda 1D
hydrodynamiska modeller for att utvardera effekter av extremt vader pa sjoar, men vi behover ta hansyn till en
lagre precision av sana modeller. Detta kan till exempel gboras genom att anvanda ett ensemble-
tillvdgagangssatt. Tillsammans bygger de tva forsta kapitlen grunden av avhandlingen: det teoretiska ramverket
och metodiken. Dessutom kan bada studierna anvandas som grund for ytterligare studier till extrema handelser.

Ensemble modellering ar en lovande metodik for vattenmodellerare, sarskilt for de som modellerar extremt
vader. For att underldtta anvandningen av ensemble-modeller, har vi utvecklat ett mjukvarupaket i R,
LakeEnsemblR, vilket presenteras i kapitel 3. Anvandare behdver bara en enda uppsattning av inmatningsfiler
och en konfigurationsfil for att kora och kalibrera fem olika en-dimensionella hydrodynamiska modeller (FLake,
GLM, GOTM, Simstrat, och MyLake) och dven for att spara resultaten i en resultatfil. Paketet kan ocksa anvandas
for att visualisera och analysera modellresultatet. | studien anvander vi paketet pa tva sjoar, Lough Feeagh i
Irland och Langtjern i Norge. Fordelen med ensemblemodellering var uppenbar i skapandet av en trovardig
osdkerhetsmarginal kring medelprognosen, men ocksa i det faktum att medelprognosen av ensemblen var
ibland battre dn den basta individuella modellprognosen. Anvandingspotentialen av ensemble modellering var
ett av resultaten fran andra kapitlet, men den ar dven allmant erkdnd bland sjémodellerare. En bredare
anvandning av denna metod kan leda till forbattringar i forutsagelser, bade under korta och langa perioder.

Avhandlingens sista kapitel bygger pa de tva forsta kapitlen, och fokuserar pa potentiella drivkrafter fér hur
vaxtplankton reagerar pa stormar. De undersokta drivkrafterna ar vindhastighet, blandningslagerdjup,
ytvattentemperatur, inkommande kortvagig stralning, och halter av ndringsdmne i hypolimnion. Varje variabel
skalerades sjalvstandigt i en faktoriell design, medan vi inducerade en 24-timmars vindstorning. Vindhastighet
hade en icke-monoton effekt, dar mattliga vindhastigheter (c. 5-10 m/s) kunde 6ka vaxtplanktonkoncentrationer
efter stormar, men héga vindhastigheter (> 10 m/s) hade svagare eller negativa effekter. Nar blandningslagret
var djupare an ungefar 8 m, minskade stormens effekt kraftigt. Inkommande solstralning, ytvattentemperatur,
och hypolimnisk koncentration av naringsamnen hade ocksa effekt pa hur stormar paverkar vaxtplankton: hogre
stralning och naringsamnen fraimjade effekter av stormar, och hogre ytvattentemperatur hade negativa effekter
av stormar pa vaxtplankton. Slutligen undersdktes effekten av klimatuppvarmning med en lufttemperatur
beraknat for perioden 2040-2070 och enligt RCP8.5 klimatscenariot. Medan klimatuppvarmning hade en effekt
pa sommergenomsnitt av flera variabler i sjon, forandrades reaktionen av vaxtplankton till stormar inte mycket
i ett varmare klimat. Det héar kapitlet inkluderar modelleringen av sjéekosystem, inte endast av sjofysik som i
kapitel 2 och 3. Kapitlet fokuserar dven pa sjoars motstand (i.e. storleken av reaktion) mot extremt vader, som
ett resultat av klimatuppvarmning. Samtidigt ar ett av de viktigaste resultaten inte bara att extrema handelser
ar viktiga, utan snarare hela fordelningen av mojliga vaderférhallandena. Vaxtplanktons olika reaktioner av
stormar, observerade i denna studie, orsakas av bade stormens egenskaper och befintliga forhallanden av sjon,
och var modelleringsmetod kunde undersoka effekterna av flera variabler individuellt och skapa en uppskattning
av mojliga framtida effekter.

Sammanfattningsvis har denna avhandling bidragit till en ytterligare processbaserad forstaelse av hur extremt
vader paverkar den termiska strukturen och biokemin i sjéar. Processbaserad forstaelse ar viktigt for att bedoma
i vilka typer av sjOar vissa reaktioner kommer att uppsta, och ocksa for att konstruera prediktiva modeller som
kan bidra till sjoforvaltning. Avhandlingen visade dessutom pa nagra av interaktionerna mellan
klimatuppvarmning och kortsiktigt extremt vader. Detta amne behandlas sdllan och kan vara viktigt for att
forutse det framtida klimatet. Avhandlingens kapitel visar ytteligare att modellering ar en vardefull metod for
att understka effekterna av extremt vader pa sjoar. Det finns flera spannande och nya maéjligheter for ytteligare
forskning, som ar sarskilt viktiga med tanke pa hur den globala temperaturen kommer att 6ka i framtiden, och
den 6kande betydelsen av extremt vader. Sjoar ar viktiga ekosystem, bade med tanke pa deras unika biologiska



mangfald och ocksa deras roll for manniskor. En battre forstaelse av effekterna av extremt vader pa sjoar hjalper
oss att forbattra forvaltningen av dessa ekosystem och att forutse deras framtid.



INTRODUCTION

LAKE RESPONSES TO EXTREME WEATHER EVENTS

Extreme weather events represent atmospheric conditions that are only rarely experienced. As many processes
in the environment are nonlinear, environmental responses to extreme conditions might be more extreme still
and can be hard to predict. Therefore, extreme events are periods of additional interest, and they can indeed
affect ecosystems for a prolonged duration (Jennings et al. 2012). The focus in this thesis is on the effect of
extreme weather events (Box 1) on lakes, and how the response of lakes to these events may change under a
warming climate. Many physical lake conditions are directly influenced by atmospheric conditions, such as
surface water temperature, ice cover, light availability, and mixing dynamics (e.g. Magnuson et al. 2000; Kirillin
2010; Woolway et al. 2021). These lake conditions again influence, and interact with, chemical and biological
variables, for example oxygen, nutrient, and phytoplankton concentrations (Nowlin et al. 2005; Wilhelm and
Adrian 2008; Mackay et al. 2014). Precipitation patterns additionally control catchment discharge and nutrient
inflow into lakes (De Eyto et al. 2016; Carpenter et al. 2017).

Box 1. What is an extreme event?

Extreme events 1) represent occurrences near the ends of a probability distribution, above (or below) a
certain threshold value, and 2) have a certain start and end date, which only describes a small part of the full
period under consideration. The term “extreme event” does not specify what variable we are talking about.
We often use an adjective to specify the nature of what type of event we consider, e.g. “extreme climatic
events”, “extreme weather events”, or “extreme flooding events”. An extreme event (e.g. extreme weather)
may not always have an extreme impact (Seneviratne et al. 2012). Definitions or thresholds can vary between
studies (Seneviratne et al. 2012; Ummenhofer and Meehl 2017; Van de Pol et al. 2017) and may involve a
level of arbitrariness; therefore they should be well-defined in each specific study.

There is not a clear difference between “extreme weather events” and “extreme climatic events”, although
the former tends to focus more on short-term events (e.g. storms) and the latter more on seasonal-or-longer
timescales (e.g. dry summers) (Seneviratne et al. 2012).

Four types of extreme weather events have received special attention from limnologists in the past decades:
wind storms, heatwaves, rainfall events, and droughts. Extreme wind events mix water layers, and this causes
upwelling of nutrients, deepening of the mixed layer, cooling of the surface water, and overall relocation of
compounds and organisms (Crockford et al. 2015; Andersen et al. 2020; Mesman et al. 2020). Consequences of
storms diverge strongly, but can include phytoplankton blooms (Soranno et al. 1997; Kasprzak et al. 2017). In
shallow (parts of) lakes, wind storms can resuspend large amounts of sediment or uproot macrophytes (Havens
et al. 2001). Heatwaves are the apparent opposite of storms, as they promote separation of water layers (i.e.
increased stratification) and warmer surface layers (Wilhelm and Adrian 2008). The high water temperatures
experienced by water bodies during heatwaves, often accompanied by oxygen shortages near the lake bottom,
can be especially problematic for macrofauna and fish (Ficke et al. 2007; Kangur et al. 2013). High precipitation
events can cause flushing of a lake, but also bring large amounts of dissolved organic matter and nutrients into
the system, potentially making up a large percentage of the annual budget (Weyhenmeyer et al. 2004; Shrestha
et al. 2020). Droughts can lower water levels in lakes, affect nutrient balances, and during droughts lakes may
simultaneously exhibit similar patterns as during heatwaves (Zohary and Ostrovsky 2011; Tilahun and Kifle
2019). A quick visual summary of these main processes is provided in Figure 1.
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Figure 1. A graphical representation of some of the effects of four extreme weather events: wind storms, heatwaves, rainfall events, and
droughts. Green and solid arrows indicate increasing effects and red and dashed arrows decreasing effects.

STORMS AHEAD: EXTREME EVENTS AND CLIMATE CHANGE

The above-mentioned examples and citations showcase some of the large impacts that extreme weather events
can have on lake ecosystems, and this partially explains the scientific interest in the topic. However, studies on
extreme events are increasing in number during the last years due to a rising awareness that climate change will
include a change in frequency and intensity of extreme weather events. Both low and high precipitation
extremes are becoming more frequent, albeit in different regions of the world (IPCC 2014). Increases in storm
frequency and intensity also show a spatially-diverging pattern, but with clearly identifiable trends in storm
occurrence in specific regions (Moélter et al. 2016; Sainsbury et al. 2018). Cold extremes are decreasing as warm
extremes increase (IPCC 2014), although there are indications that, at least in Europe, temperature extremes
shift at similar rates as central temperature trends (Rey et al. 2020) — that is, the temperature probability
distribution shifts towards warmer temperatures, but does not change its shape.

Shifting intensities and frequencies of extreme weather events in a future climate add additional relevance to
studies on their impacts. Furthermore, long-term climatic trends in lakes will affect how extreme events
influence lakes. For example, as atmospheric warming promotes stronger stratification (e.g. Kraemer et al.
2015), this increases resistance to (wind) mixing (Schmidt 1928). One could then expect less impact of
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comparable storms under a warmer climate. However, this must also account for trends in mixed layer depth —
a shallower mixed layer means a higher impact of a storm — but these trends are more uncertain (Pilla et al.
2020). Earlier onset of stratification (Woolway et al. 2021) means that hypolimnetic nutrients start building up
earlier in the season, so that a similar amount of upwelling would bring up more nutrients in a future climate.
And the list of potential interactions between extreme events and climate warming could go on further. Isolated
effects of climate warming and, to a lesser extent, extreme events are well-studied, but this interaction is not
too often considered (Gal et al. 2020).

PERTURBATIONS AND ECOLOGICAL STABILITY

Up to now, we have been talking about extreme events, yet the title of this thesis is centred around the term
“resilience”. The relation between the two can be found in the topic of “ecological stability”. Ecological stability
is a “multidimensional concept that tries to capture the different aspects of the dynamics of the system and its
response to perturbations” (Donohue et al. 2016). Maybe more than many other fields, “ecological stability”
(and connected terms such as resistance and resilience) has experienced a wide variety in naming conventions,
hypothesis testing, and schools of thought (Pimm et al. 2019; Stelzer et al. 2021; Van Meerbeek et al. 2021). As
such, | will avoid elaborating too much on the topic, but will stress that ecological stability is inherently
connected with perturbations, and that “resilience” — one aspect of stability - has to do with how systems
recover from a perturbation —either the degree of recovery (Thayne et al. 2021) or its rate (Donohue et al. 2016).
“Resistance”, on the other hand, is another aspect of stability and measures the direct response of a system to
a perturbation (Donohue et al. 2016; Thayne et al. 2021), i.e. before its recovery.

Extreme weather events are amongst the most common natural perturbations that ecosystems experience.
Studying how ecosystems respond to such events is therefore a valuable way of furthering our understanding
of ecosystems and ecosystem stability (Altwegg et al. 2017). But the stability of lake ecosystems to extreme
events is not only relevant for ecologists; a large variety of ecosystem services provided by lakes (e.g. drinking
water provisioning) are affected by extreme weather events (Khan et al. 2015), and therefore the resistance and
resilience of a lake is also important from an anthropocentric point of view.

It is largely unavoidable that lakes experience extreme weather events, even without climate change, but if we
better understand lake ecosystem stability in relation to extreme events, some action may be taken. For
example, in the shallow-lake theory outlined by Scheffer (1998) it is shown that while a clear-water state may
occur over a wide range of nutrient concentrations, the risk of a sudden shift to a turbid state (e.g. due to an
extreme event) decreases when nutrient concentrations are lower (Scheffer et al. 2001). Moreover, if we
understand enough about our system to make forecasts based on weather predictions, lake managers could
take preventive measures before extreme events occur based on these forecasts (Carey et al. 2021).

MANAGEMENT OF CLIMATIC EXTREME EVENTS IN LAKES AND RESERVOIRS FOR THE PROTECTION
OF ECOSYSTEM SERVICES — THE MANTEL PROJECT

The chosen approach of studying resilience from the perspective of extreme weather events also originated
from the placement of this PhD project within the wider MANTEL project (Management of climatic extreme
events in lakes and reservoirs for the protection of ecosystem services). MANTEL is a Marie Sktodowska-Curie
Action European Joint Doctorate Innovative Training Network (MSCA EJD ITN), a project that oversees the
training of 12 PhD students in multiple universities and institutes in Europe, funded by the European Union. The
common focus of the PhD projects within MANTEL is to investigate the effects of extreme climatic events on
lakes and reservoirs, from a multitude of angles. Foci of the individual MANTEL PhDs include mixing dynamics,
calcite precipitation, greenhouse gas emissions, microbial dynamics, and ecosystem services. More information
can be found on https://www.mantel-itn.org/.

Within MANTEL, this PhD project combines the topics of modelling, resilience, and climate change. Additionally,
it assesses both physical and biological variables (more on this in the next section). As with all individual MANTEL
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PhD project, this project is especially closely connected to a subset of other MANTEL projects. Ana Ayala is based
in Uppsala and uses physical models to understand how climate change and extreme events affect lake heat
fluxes and thermal structure. Michael Thayne, based in Berlin, Germany, assesses long-term, high-frequency
ecological data to discover critical thresholds in how lake ecosystems respond to storms. Julio Stelzer, stationed
in Geneva, performs perturbation experiments, on multiple scales of complexity, to investigate how resource
availability modifies ecosystem stability in microbial communities. Collaboration with these PhDs was an integral
part of this PhD project and placed the research done in this thesis in a broader perspective of perturbation
ecology and climate forecasting.

ON THE TIGHTROPE BETWEEN PHYSICS AND BIOLOGY

Studying the effects of extreme weather events on lake ecosystems involves walking on a fine line between
physics and biology. While the initial cause (i.e. the extreme weather event) is purely physical, effects work their
way down to lake biogeochemistry, macrofauna, and the microbial community (e.g. Maclntyre and Jellison 2001;
Jennings et al. 2012; Calderd-Pascual et al. 2020; Hoke et al. 2020). And sometimes the effects on
biogeochemistry work their way back up to again affect the physical lake conditions, which is the central topic
of the first chapter of this thesis (Mesman et al. 2021). To study extreme events in lakes therefore requires one
to be knowledgeable both in physics and biology. Fortunately, the field of limnology almost by definition includes
physics and biology and has in fact from its origins studied both aspects (Forel 1880; Forbes 1887). There is
therefore a good amount of literature to start from, although as said before, the interest in extreme weather
events is relatively recent and still developing.

Following the definition of an extreme weather event (Box 1), the event itself is short, at least with respect to
the period one is assessing. Lake responses may prove to be short-term as well (or even hardly affected by the
event), but many examples exist of extreme events that caused long-lasting changes in lakes. Effects of storms
on lake physics may vary from hours to months (Andersen et al. 2020), and potentially longer if water
transparency is affected, and Mi et al. (2018) showed in a modelling study that the timing of the event matters
as well; during a critical timing window (= June until mid-July in their study lake), physical changes may persist
for the rest of the stratified season, whereas outside that window, effects subside quickly. When events alter
vertical profiles of biogeochemical compounds, effects may last long as well, for example in the German Lake
Stechlin, where a deep phytoplankton community was brought to the surface by a storm and this caused a bloom
that lasted for weeks (Kasprzak et al. 2017). Another example is Lake Lugano, where two cold winters in a row
caused complete turnover in this otherwise meromictic lake, which greatly affected the biogeochemistry of the
lake (Lehmann et al. 2015). High precipitation events affect lake catchments, and this may affect inflow
characteristics, lake levels, and lake chemistry for multiple months, such as in 2009 in the Irish Lough Feeagh (De
Eyto et al. 2016), orin 2011-2012 in the German Gollinsee (Brothers et al. 2014). However, the most spectacular
long-term effects of extreme weather events may be found in shallow lakes, where extreme wind events may
affect lakes for multiple years due to uprooting of macrophytes and mobilisation of large amounts of sediment,
such as in lakes Okeechobee and Apopka in Florida, USA (Bachmann et al. 2000; Ji et al. 2018).

Many of these examples clearly show the potential links and feedback loops between physics and
biogeochemistry. Storm and precipitation events cause more homogenisation of the water column and may
increase solute concentrations in the surface water, affecting light availability and primary production.
Heatwaves and droughts may promote more spatial heterogeneity in the water column, and this may lead to
anoxia and temperature stress. The energy and compound fluxes induced by extreme weather events act like a
trigger, and basin morphometry, thermal structure, water chemistry, and community traits control how far the
effects reach.

LEARNING FROM EXTREMES USING OBSERVATIONAL STUDIES AND EXPERIMENTS

Extreme events are rare by definition and often unexpected; therefore, we need a long data record and/or data
from multiple sites to collect enough observations and to arrive at valid and coherent conclusions. For this, long-
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term ecological monitoring is essential (Dodds et al. 2012; Lindenmayer et al. 2012; Wiiest et al. 2021), while we
also need to report on individual events, from which we can indeed learn a lot (Altwegg et al. 2017). As some
extreme events act on short timescales (e.g. hours or days), high-frequency data collection may be crucial
(Jennings et al. 2012).

Review or meta-analysis papers can combine the findings from multiple sites into an overview to deduce
emergent patterns. As examples, Reichwaldt and Ghadouani (2012) published a meta-analysis of the influence
of rainfall patterns on cyanobacterial blooms; Stockwell et al. (2020) compiled a synthesis on the effects of
storms on phytoplankton; and Cann et al. (2013) reviewed the link between extreme water-related weather
events and waterborne diseases. Alternatively, combining data from multiple sites adds a spatial dimension in
studying continental or sub-continental events. This was done for example by Klug et al. (2012), who analysed
the impact of Hurricane Irene on nine lakes in north-eastern North America, and by Woolway et al. (2020), who
used satellite-data to validate their model results, studying the effects of the 2018 summer heatwave in Europe.
We can get our most valuable data from observational studies, but it may take effort (long-term high-frequency
monitoring, international research collaborations, etc.) to collect and analyse sufficient data.

As a way to avoid waiting for an extreme event to occur and simultaneously obtaining a “baseline” or “control”
situation (insofar that is possible in nature), one can perform experiments to study extreme events. This yields
real data where effects can be causally attributed to the occurrence of an event. A caveat here is that the level
of complexity only rarely approaches that of a real lake, but advantages include a better possibility for detailed
measurements, a more complete understanding of your study system, and an increased possibility to construct
a causal pathway.

At the basis of this experimental approach are perturbation experiments where mortality events (mimicking the
effects of an extreme weather event) are induced and the response of the aquatic community is assessed.
Examples of such experiments include Veraart et al. (2011) and Stelzer et al. (in preparation). However, the
nature of the induced perturbation can include more aspects of an extreme weather event, with effects on both
physics and biology. Such an approach was used by Hansson et al. (2020) and Urrutia-Cordero et al. (2020) to
study the effect of heatwaves on phytoplankton composition using oscillating temperature regimes in
mesocosms. Zhan et al. (under review) also applied heatwave treatments to mesocosms to assess phosphorus
release rates from the sediment, including treatments with phosphorus-binding clay. As one of the most
impressive examples, Giling et al. (2017a) induced thermocline deepening — simulating extreme wind mixing —
in 20 m deep mesocosms to study effects of mixing on phytoplankton and lake metabolism, in the Lakelab
facility in Lake Stechlin, Germany.

NEW FRONTIERS: PROCESS-BASED MODELLING OF EXTREME EVENTS

This thesis mainly focuses on another approach to study extreme events, namely process-based modelling (but
see Chapter 1). This approach has its own respective advantages and disadvantages compared to observational
and experimental studies, but has been applied less frequently in limnology with regard to extreme events. One
of the reasons for this is that process-based models (from now, models) are usually applied to test scenarios on
seasonal or decadal time scales, such as in climate forecasting (e.g. Sahoo et al. 2013; Schwefel et al. 2016; Ayala
et al. 2020; Woolway et al. 2021). Only in short-term forecasting we find significantly shorter time scales, from
hours to days (Thomas et al. 2020). Lake models are known to be rather skilful at replicating at least the physical
lake conditions at seasonal time scales, but we do not know how well models perform at shorter (e.g. hourly)
time scales, particularly during extreme events. We tackle this issue in Chapter 2.

Regarding daily to monthly time scales, we do find several examples of lake modelling studies on extreme
weather events, all from the last few years. Bueche et al. (2017) and Woolway et al. (2020) applied physical lake
models to look at changes in thermal structure during heatwaves, while Chen et al. (2020) also assessed impacts
on ecological variables. Soares et al. (2019) looked at the impact of droughts on the thermal structure of a
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Brazilian drinking water reservoir, and explored withdrawal scenarios to minimise effects of droughts on drinking
water provisioning. Mi et al. (2018) used a model to explore the effects of different timings and intensities of
wind storms on lake thermal structure. Lastly, Perga et al. (2018) used a model to support their observations-
based study on storm effects. The recency of these studies shows that the modelling of extreme weather events
is a novel and emergent field of research.

As described above, the interactions between extreme weather events and lake ecology are manifold and
complex, covering atmosphere-water interactions, turbulence, sediment dynamics, nutrient update dynamics,
and phytoplankton traits. A model therefore also needs to be sufficiently complex to describe such processes.
But a too complex model, with many parts that cannot be validated, may lead to a lower quality of simulations
(Shimoda and Arhonditsis 2016; but see Hellweger 2017). In Chapter 4 we take an intermediate path by coupling
a complex (yet one-dimensional) hydrodynamic model to a biogeochemical model of intermediate complexity.
We used this combined model to investigate the different drivers that may control the effect of wind
perturbations on phytoplankton dynamics. Using this approach, we could study how wind speed, thermal
structure, nutrient concentration, and climate warming might affect how phytoplankton respond to storms.
Although the model does not include some potentially relevant processes, such as varying nutrient ratios, it can
give an indication of the global responses of phytoplankton concentration to changing in-lake and
meteorological variables.

One way to estimate uncertainty in model output is by using ensembles. An “ensemble” means that multiple
models and/or model parametrisations are used to generate a single simulation result. Ensembles have as main
advantage that there is a quantification of the uncertainty connected to a forecast, but also the ensemble mean
(weighted or otherwise) often outperforms the best individual member, as biased simulations are filtered out
(e.g. Trolle et al. 2014). Moreover, valuable information can be extracted from all ensemble members, rather
than only from the single “best” fit (Baker and Ellison 2008). In other fields, such as climatology and weather and
flood forecasting, the use of ensembles is well-established (Leutbecher and Palmer 2008; Mu et al. 2017; Wu et
al. 2020), but in limnology this is not so common. One of the reasons for this is the lack of a common framework;
each model requires different file formats and inputs, making the creation of a multi-model ensemble a
demanding task. In Chapter 3, we present a software package — “LakeEnsemblIR” — that greatly facilitates the
use of ensembles in lake modelling. For now, this package only works for physical lake models, but we are
working on a similar project for water quality models as well
(https://gleon.org/research/projects/lakeensemblr-wg, last accessed: 2021-07-19). The connection to this

thesis can be found in the fact that extreme weather events represent periods of additional model uncertainty,
considering meteorological inputs into the model, model assumptions, and often a lack of relevant validation
data. An ensemble approach may therefore be especially helpful in forecasts involving extreme events.

Figure 2 shows the overall coverage of the papers in this thesis along the short-term/long-term and
physics/biology spectra.

15


https://gleon.org/research/projects/lakeensemblr-wq

Paper II Paper III

Short- - Long-
term term

Y

Biology

Figure 2. Diagram that shows what topics the papers in this thesis cover, considering short-term/long-term dynamics and
physical/biological lake processes.

ADVANTAGES AND LIMITATIONS OF PROCESS-BASED MODELLING

The main advantage of a modelling approach lies in the possibility to test scenarios that would be impossible in
an experimental setting, yet retaining a causal understanding, which may get lost in data-driven approaches (i.e.
statistics or machine learning). Especially long-term climate warming scenarios, including realistic rates of
warming and seasonal effects (such as earlier onset of stratification), are hard to assess in mesocosms. Also, the
importance of thermal stratification in deep lakes is hard to replicate in an experimental setup, and requires
costly facilities such as the one used by Giling et al. (2017a). Using process-based models, climate and wind
perturbation scenarios can be explored with relative ease, and the physical constraints and clearly-defined
structure of these models (compared to data-driven approaches) add to the confidence in such extrapolation
scenarios.

Nevertheless, there are many obvious and important limitations to a modelling approach, and these should be
taken into consideration when interpreting model outcomes. The primary disadvantage of the modelling
approach is that we are not dealing with real data. Modellers try to increase the reliability of their models by
validating their simulations on measured data, by building their models (as much as possible) on empirically-
established relationships, and by choosing realistic estimates of parameter values (e.g. Jorgensen 1995). But we
can never be sure that our model is accurate, especially when exploring imaginary scenarios, or forecasting the
future. Additionally, any model, no matter its complexity, always simplifies the system it describes (Soetaert and
Herman 2008). While this helps to make predictions and to understand the response of the model, there is
always the risk that an important process is omitted, or described incompletely. While models may reveal
important new information to us, we should always keep in mind the limitations of the models and be careful
to not take our predictions for pure truth.

One particular problem that emerges from complex models is the concept of “equifinality”. This describes the
mathematical possibility that multiple combinations of parameter value generate the same outcome (Beven
2006). For example, you can deepen your simulated mixed layer depth by increasing wind speed or by increasing
transparency, and both could cause your model to fit your results better. But in reality, only one of these options
may be true. In other words, models may give the right answers for the wrong reasons. This can be a problem,
because these alternative model setups - equally correct from a calibration perspective - could diverge in their
predictions when assessing certain scenarios. Equifinality is mostly unavoidable in complex models (Beven
2006), but can be mediated by having good data availability (e.g. in the above example, if you have accurate
measurements of transparency, you do not have to vary them in your simulation), and also by using an ensemble
approach.
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Up to now, we used the following words to describe a model fit to data: “accurate”, “well”, “better”, “reliable”.
But when is a fit “good” or “reliable”? We often calculate goodness-of-fit metrics, such as the Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), or the coefficient of determination (R?) to describe our model fit to
data. Nevertheless, these metrics can be deceiving; especially for spiky timeseries (e.g. discharge nutrient input),
standard goodness-of-fit metrics are notoriously inaccurate and may give a pessimistic view of model
performance (Elliott et al. 2000; Jachner et al. 2007). Conversely, if the data have strong seasonal cycles, such as
for surface water temperature, one would probably not even need a model to reproduce the observed trend
with an R? of above 0.8 (pers. comm. Rafael Marcé), which would be considered a good fit for most applications.
Using a combination of metrics is a more promising approach to assess model fit (Elliott et al. 2000). However,
to date we have no commonly agreed-upon guidelines or thresholds to approve or reject a model (Hipsey et al.
2020). While development of standardised thresholds may be an unobtainable goal, more critical assessments
of model behaviour can lead to improvement, as outlined by Hipsey et al. (2020).

GOOD THINGS COME IN THREES: OBSERVATIONS, EXPERIMENTS, AND MODELLING

Modelling offers exciting new possibilities for scenario exploration and forecasting compared to other
approaches, but has its limitations as well. Rather than promoting (or excluding) one method, we need to learn
from observational studies, experiments, and modelling together to gain a better understanding of how extreme
weather events influence lakes. Each approach has its specific strengths and should be valued for its merits.
While this PhD thesis focuses mostly on the modelling aspect, the MANTEL project indeed focuses on all three
facets. It is as part of MANTEL, and as a small part of a larger network of limnologists, that this thesis should be
viewed, and hopefully it can contribute to a better understanding of the combined effects of extreme weather
events and climate change on lakes.

AIMS OF THE THESIS

A process-based understanding of the impact of climate warming and extreme weather events on lakes is
essential in order to make future predictions and to adapt lake management to changing conditions. Longer and
higher-frequency records of lake variables make it possible to increase our insight in the physical, chemical, and
biological consequences of extreme weather, while state-of-the-art models can be used to study a variety of
scenarios regarding meteorological and lake conditions. The main aim of this thesis is to use these developments
to better understand how climate warming and extreme weather events influence lake ecosystems, and how
these two processes interact with each other.

The following research questions were addressed:

- How do extreme weather events influence lakes? (Chapters 2 and 4)

- How do effects of climate warming and extreme weather events interact? (Chapters 1 and 4)

- Is process-based modelling a viable approach to study effects of extreme weather events? (Chapters 2
and 3)
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ABSTRACT

1. Climate warming is causing changes in the physics of deep lakes, such as longer summer stratification,
increased water column stability, reduced ice cover, and a shallower depth of winter overturns. An
ultimate consequence of warming would be a transition to a different mixing regime. Here we
investigate the role of physical, chemical, and biological feedback mechanisms that unfold during a shift
in mixing regime, and whether these feedbacks could prompt and stabilise the new regime. Although
climate, interannual temperature variation, and lake morphometry are the main determinants of a
mixing regime, when climate change causes shifts in mixing regime, internal feedback mechanisms may
gain in importance and modify lake ecosystem functioning.

2. We review the role of these feedbacks in three mixing regime shifts: from polymictic to seasonally
stratified, from dimictic to monomictic, and from holomictic to oligomictic or meromictic.

3. Polymictic lakes of intermediate depth (c. 3-10 m mean depth) could experience seasonal stratification
if a stratification event triggers phytoplankton blooms or dissolved organic matter release, reducing
transparency and therefore further heating the surface layer. However, this feedback is only likely to
have influence in small and clear lakes, it would be easily disturbed by weather conditions, and the
resulting stratified state does not remain stable in the long term, as stratification is lost in winter.

4. The ice-albedo feedback might cause an accelerated shift from ice-covered (dimictic) to ice-free
(monomictic) winters in sufficiently deep (mean depth 50 m or more) lakes, where temperature
memory is carried over from one winter to the next. Nevertheless, there is an ongoing debate into
whether this process can persist during natural weather variations and overcome self-stabilising
mechanisms such as thermal insulation by snow. The majority of studies suggest that a gradual
transition from dimictic to monomictic is more likely than an abrupt transition.

5. A shift from a holomictic to a meromictic regime can occur if anoxia is triggered by incomplete mixing
and an increase in deep-water density - through the accumulation of solutes - exceeds a density
decrease by hypolimnetic warming. A shift to meromixis would strongly alter the biology of a lake and
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might be difficult to reverse. If solutes accumulate only minimally in the hypolimnion, an oligomictic
regime is formed, in which years with complete and incomplete mixing alternate.

6. Understanding the importance of feedback mechanisms and the role of biogeochemistry when lakes
shift in mixing regime could lead to a better understanding of how climate change affects lake
ecosystems.

Keywords: climate change, meromixis, mixing regime, stratification, water transparency

INTRODUCTION

Temperatures in lakes all over the world have been rising over the past century as a consequence of global
warming (O'Reilly et al. 2015). This warming has resulted in an overall increase in thermal stability, with longer
periods of summer stratification and steeper thermoclines, restricting exchange of substances between the epi-
and hypolimnion (Shimoda et al. 2011; Kraemer et al. 2015). Climatic trends driving the thermal stability in deep
lakes have also had profound impacts on lake chemistry and biology. For instance, reduction of deep mixing can
result in the depletion of oxygen (anoxia) in the hypolimnion (Schwefel et al. 2016). A longer duration of
stratification and reduction of deep mixing can increase the heterogeneity of vertical nutrient profiles, with
nutrient-rich deep waters and nutrient-poor surface waters (Winder and Sommer 2012; Schwefel et al. 2019).
In turn, this altered vertical nutrient distribution affects lake biota such as phytoplankton and fish (O'Reilly et al.
2003; Winder and Sommer 2012). Moreover, observational studies of lake thermal structure and numerical
climate simulations have pointed towards climate-induced shifts in mixing regime (Box 1), implying structural
changes in lake ecosystems (Peeters et al. 2002; Ficker et al. 2017; Shatwell et al. 2019; Woolway and Merchant
2019).

In the present review paper, we look at the physical, chemical, and biological consequences of climate warming
and increased density stratification in deep lakes, defined here as lakes that stratify during at least one season.
We then identify internal feedbacks that can reinforce (positive feedbacks) or slow down (negative feedbacks)
shifts between mixing regimes. The scope of this paper only includes regime shifts where such feedback loops
were identified in the existing literature, or where they could be constructed using individual processes, and
considers mixing regime shifts in the context of increasing atmospheric temperatures. The potential importance
of feedbacks is well illustrated by the alternative macrophyte- (clear-water) and algae-dominated (turbid) states
in shallow lakes (Ibelings et al. 2007). Regime shifts between these two states involve feedback loops between
turbidity, nutrients, and trophic interactions that retain either state, also in the face of changing external
processes such as eu-/oligotrophication or perturbations such as storms (Scheffer 1998; Scheffer et al. 2001).

In deep, stratified lakes the vertical distribution of oxygen, nutrients, and phytoplankton are strongly influenced
by density stratification, which hints at the potential of mixing regimes to act as important drivers of ecosystem
functioning. Mixing regimes are primarily driven by physical processes, and therefore under direct influence of
climate change (Livingstone 2008; for definitions of mixing regimes, see Box 1). Mixing regimes in deep lakes
differ from one another in several physical, chemical, and biological aspects (e.g. Boehrer and Schultze 2008;
Adrian et al. 2009; North et al. 2014).

According to the classical view on mixing regimes (Hutchinson and Loffler 1956; Lewis Jr 1983), local climate and
morphometry are the main factors determining the mixing regime of a lake. However, factors other than depth
and climate, such as transparency (Brothers et al. 2014) and solute content (Boehrer and Schultze 2008), can
also influence lake mixing. Conversely, mixing regimes might influence these factors. Thus, lake-internal
feedbacks could stabilise and even determine the mixing regime, especially in situations where morphometry
and climate can support multiple mixing regimes. It is in these situations that mixing regime shifts are to be
expected, and already unfolding, in response to ongoing climate change. If self-sustaining feedback mechanisms
hold the new regime in place, shifts in mixing regime may prove to be resilient.
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Quantitative observations and numerical simulations specifically focusing on shifts in mixing regime by factors
other than temperature are scarce, as long-term observations and detailed studies are needed to observe such
shifts and identify the drivers. However, individual processes that could lead to feedback loops stabilising mixing
regimes, are well described. In what follows, we review the literature on the physical trends related to increased
duration and strength of density stratification, and the chemical and biological consequences thereof (Figure 1).
Following this literature review, we derive processes at play during a transition in mixing regime and discuss
their interaction in typical lake regime shifts. The observed feedbacks are brought together, visualised, and
placed into the perspective of shifts in mixing regime under increasing temperatures. We also discuss the
limitations of the relevance of each feedback and specify for what types of lakes these feedbacks may be
considered. In this way, we believe our review provides new and pertinent information on how climate warming
may affect lake ecosystems, extending beyond direct effects of temperature alone.

Box 1: Types of lake mixing regimes

Categorising lakes on the basis of their mixing regime is a well-established practice (Forel 1880; Hutchinson
and Loffler 1956). Lakes are classified according to the number of mixing events per year and the degree of
mixing. Depending on local climate, depth, salinity, and lake morphology, a lake mixes a certain number of
times per year (never - amictic, once -monomictic, twice - dimictic, three or more times - polymictic), either
completely — always from top to bottom (holomixis) —, only sometimes from top to bottom (oligomixis) or
always partially (meromixis). Shallow lakes tend to be polymictic, i.e. they mix multiple times per year,
although below what depth a lake is to be considered shallow has been the topic of discussion (see Padisak
and Reynolds 2003). In most cases, the occurrence of polymixis is used to define a lake as shallow. Depending
on lake fetch, transparency, and wind speeds, polymixis tends to occur below mean depths of 3 to 20 m
(Padisdk and Reynolds 2003; Kirillin and Shatwell 2016). This shallowness makes the lake prone to mixing
events, either wind-induced or caused by convective cooling, although stratification events lasting multiple
days or weeks are also possible (Mischke 2003; Wilhelm and Adrian 2008).

The presence of long-term, i.e. over at least a season, density stratification is used here to define what
constitutes a deep lake. In deep lakes, seasonal temperature variation largely controls the mixing regime. Near
the poles, lakes, for now, have permanent ice cover (amictic lakes) or only experience inverse stratification
(i.e. cold above warmer water, as the maximum density of freshwater is achieved at 4°C) and these cold
monomictic lakes only mix in summer. Moving to lower latitudes, winter temperatures are still low enough for
inverse stratification and ice formation, but air temperatures in summer are high enough to allow formation
of a warm epilimnion; these are dimictic lakes, that mix before and after a winter period with inverse
stratification. Where winters are not cold enough for ice formation, stratification only occurs in summer and
deep lakes only mix in winter: these are warm monomictic lakes (Lewis Jr 1983). The absence of strong
seasonal temperature variation in tropical regions causes a different yearly pattern near the equator, with a
more dynamic development of the epilimnion. However, mixing seasons often still exist as a result of seasonal
patterns in radiation, rainfall, or wind, and tropical deep lakes are classified as warm monomictic, following
Lewis Jr (1996). In the main text the term monomictic refers to warm monomictic lakes.

Winter mixing does not necessarily reach the deepest location of the lake. Complete mixing is called holomixis
and incomplete mixing is termed meromixis. In permanent or “true” meromictic lakes, stratification is caused
by an increased concentration of solutes that raises the density of the deep water, for example by sea water
or saline groundwater influx (Hutchinson 1957; Gulati et al. 2017). The two chemically different layers do not
mix for multiple years. However, in many temperate and tropical deep lakes, mixing depths vary year-to-year
and complete winter mixing occurs at varying frequencies, ranging from on average once every year to once
every 5 decades. These lakes are not holomictic, but no permanent chemical stratification is formed either. In

this paper, we define these lakes as oligomictic (following Lewis Jr 1973). We reserve the term meromictic for
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lakes with chemically different layers and stable density stratification due to the effect of solutes (following
Gulati et al. 2017).

We therefore define the mixing regime of a lake both in terms of the frequency of mixing (poly-, di-,
monomictic) and the extent of mixing (holo-, oligo-, meromictic). For a more complete description of mixing
regimes and potential further subdivisions, we refer the reader to Boehrer and Schultze (2008).

PHYSICAL, CHEMICAL, AND BIOLOGICAL CONSEQUENCES OF ENHANCED STRATIFICATION

P i —O% Physics ‘ Biogeochemistry

Figure 1: Overview of the physical and biogeochemical components and processes in deep lakes considered in the text. P denotes a
physical and B a biogeochemical process. Energy fluxes at the air-water interface (P1) represent the interaction between climate and the
lake. Thermal stratification (P2) is important for transport between water layers and is formed primarily by higher water temperatures
(P3) in the surface layers compared to bottom layers. Light penetration (P4) causes heating of surface layers and is essential for
phytoplankton growth. Deep-water mixing (P5) can occur as a result of strong convective cooling and marks the end of the stratified
season. Wind stress (P6) also promotes mixing and deepening of the mixed layer. Ice cover (P7) affects surface heat fluxes and reduces
effects of wind on the lake interior. Oxygen concentration (B1) is linked to many chemical and biological processes in the water column.
Nutrient concentrations (B2) in the epilimnion are essential for the growth of phytoplankton. Nutrients and other type of solutes can be
released from the sediment (B3). Coloured dissolved organic matter (CDOM, B4) reduces light penetration in the water column.
Greenhouse gases can be emitted from the sediment (B5). If the deep-water layers of a lake are heavier than the overlying water due to
solute content, meromixis is formed (B6). Phytoplankton biomass (B7) grows through consumption of resources such as nutrients and
light in the photic zone of the lake. Some cyanobacteria have variable buoyancy (B8) that enables uptake of nutrients from below the
thermocline, or they may use their buoyancy to form deep chlorophyll maxima in the metalimnion of the lake.

WATER TEMPERATURES AND STRATIFICATION
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(Figure 1: P1, P2, P3) The increase in global surface air temperature (IPCC 2014) has an impact on lake
temperature and water column stratification. Global surveys of surface water temperatures report an increase
in epilimnetic temperatures with rates roughly between 0.2 and 1°C per decade (Shimoda et al. 2011; Kraemer
et al. 2015; O'Reilly et al. 2015). The temperature difference between epi- and hypolimnion often increases,
causing longer and stronger thermal stratification in summer (Fang and Stefan 1999; Foley et al. 2012; Kraemer
et al. 2015). Even when temperature differences remain the same, the density difference becomes greater with
warming, as the water density-temperature relation is steeper at higher temperatures (Wetzel 2001). As the
density difference between epi- and hypolimnion increases, mixing of the two layers is reduced, which further
heats the surface layer and increases density differences, as less heat is transported downwards. The stability of
the water column is often expressed as the Schmidt stability (i.e. the potential energy stored in stratification per
unit area) (Schmidt 1928; Idso 1973). Between 1970 and 2010, average Schmidt stability in lakes worldwide has
increased by up to 25% (Kraemer et al. 2015).

(Figure 1: P2) A larger density difference between the epilimnion and hypolimnion increases the local
stability of the water column. An increase in stability reduces the vertical turbulent diffusivity K,, which indicates
the rate of vertical mixing (Ravens et al. 2000; Wiest et al. 2000). Hence, a stronger stratification implies that
dissolved substances less easily traverse the thermocline, promoting separation between surface and bottom
waters.

OXYGEN DYNAMICS IN DEEP LAKES

(Figure 1: P2, P4, P5, B1) Oxygen sources (reaeration and photosynthesis) are mainly restricted to the epi- and
metalimnion (Wetzel 2001; Obrador et al. 2014; Giling et al. 2017b), and in most lakes oxygen is constantly being
depleted in the hypolimnion, especially near the sediment. Generally, deep convective mixing is often the major
source of oxygen replenishment in the deep-water layers (Straile et al. 2003), although river intrusion can also
notably affect hypolimnetic oxygen conditions (Fink et al. 2016). The extent of the oxygen-depleting processes
in the water column and the sediment, the volume of the hypolimnion, and the sediment area to hypolimnion
volume ratio define the rate at which oxygen concentrations fall after installation of the thermocline (Schwefel
et al. 2018). Hypolimnia of highly productive systems have a higher oxygen depletion rate (Rippey and McSorley
2009; Miiller et al. 2012). Deeper lakes contain more oxygen due to a thicker hypolimnion, and oxygen depletion
rates tend to decrease with depth, so deeper lakes are less prone to become anoxic in one summer (Miller et
al. 2012; Schwefel et al. 2018). However, they are less likely to experience complete vertical mixing, and climate
warming further decreases this likelihood. In the case of incomplete mixing, the oxygen is only partially
replenished and the hypolimnion will experience lower oxygen levels the following year. Therefore, a shift from
holomictic to oligomictic behaviour implies a greater risk of anoxic conditions, for productive lakes in particular.

(Figure 1: P3, P5, B1) Numerous observations of hypolimnetic anoxia are attributed to shifts in the extent
of mixing exist in both temperate (Foley et al. 2012; Ito and Momii 2015) and tropical regions (O'Reilly et al.
2003; Fukushima et al. 2017), and climate change is expected to amplify this trend (Peeters et al. 2002; Fang and
Stefan 2009; Sahoo et al. 2013). While eutrophication is often seen as the main cause of anoxia, changes in deep-
water mixing can be at least as important in deep lakes (Schwefel et al. 2016). Aside from the increase in
stratification, climate change can affect hypolimnetic oxygen through increased temperatures as well, as
mineralisation and metabolic rates are higher at higher temperatures, in the order of a 3%-6% increase per °C
(Fang and Stefan 2009; Gudasz et al. 2010). In this way, hypolimnetic warming could increase the intensity of
oxygen depletion in the hypolimnion and sediments (Straile et al. 2003).

INFLUENCE OF ANOXIA ON NUTRIENT DISTRIBUTION AND OTHER SUBSTANCES

(Figure 1: B1, B2, B3) Anoxia near the sediment can induce enhanced internal phosphorus loading through
reduction of the benthic redox potential, so that iron-bound phosphate is released from the sediment
(Sgndergaard et al. 2003). While this enhanced release can be relevant on short time scales, on seasonal (or
longer) time scales internal P budgets are mostly dependent on settling and mineralisation rates, as well as
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sediment characteristics (Hupfer and Lewandowski 2008). During stratification, P tends to accumulate in the
hypolimnion as nutrients are not mixed into the photic zone while mineralisation in the sediment and pelagic
continues. When deep mixing occurs, large amounts of P can enter the photic zone, potentially boosting
productivity (Lehmann et al. 2015; Lepori et al. 2018). Nitrogen can also be released from the sediment under
anoxic conditions in the form of ammonium (Wetzel 2001). Denitrification occurs in anoxic hypolimnia and,
especially, sediments (Wetzel 2001). It is a major loss term of nitrogen in lakes. When anoxia of the hypolimnion
is ended by a mixing event, nitrogen, like phosphorus, can enter the photic zone and boost productivity.
However, large losses of nitrogen to the atmosphere can occur through denitrification, as nitrate-rich water is
brought in contact with the anoxic sediment (De Brabandere et al. 2015; Lehmann et al. 2015).

(Figure 1: P5, P6, B1, B2, B3) The stratification that is at the root of this build-up of nutrients in the
hypolimnion, however, also prevents nutrients from entering the epilimnion, as increased stratification implies
that dissolved substances are retained more in their respective layers. Reduced entrainment of deeper water
layers and less intense winter mixing could cause decreased nutrient concentrations in the epilimnion, despite
the higher nutrient concentrations in the hypolimnion (Yankova et al. 2017; Schwefel et al. 2019). As nutrients
accumulate in the hypolimnion because of increased stratification with climate change, the amount of nutrients
released to the epilimnion when complete mixing does occur goes up.

(Figure 1: B1, B3, B4, B5, B6) Apart from nitrogen and phosphorus, other substances are affected by
hypolimnetic shortages of oxygen as well. Iron-oxide-bound carbon can be released as coloured dissolved
organic matter (CDOM) under anoxia when iron is reduced (Hamilton-Taylor et al. 1996; Brothers et al. 2014).
In the deep layers of meromictic lakes, the anoxic conditions enable the occurrence of reduction processes
involving iron, manganese, and sulfide, which are often essential for creating and maintaining meromixis
(Friedrich et al. 2014; Lehmann et al. 2015; Schultze et al. 2017). These elements can occur in dissolved form
under anoxic conditions and accumulate in deep-water layers of meromictic lakes, where they increase deep-
water density (Imboden and Wiest 1995; Gulati et al. 2017). Strong stratification and anoxia can also induce
more methane emissions from lakes (Grasset et al. 2018; Vachon et al. 2019). Like dissolved solutes, dissolved
methane and dissolved carbon dioxide can occur in high concentrations in deep, anoxic water layers, and affect
density, with methane reducing and carbon dioxide increasing water density (Imboden and Wiest 1995; Schmid
et al. 2002). The effect of dissolved gases on density can be especially important in lakes where there is a high
influx of gases from the sediment, for example as a result of volcanic activity (Schmid et al. 2002).

INFLUENCE OF MIXING DYNAMICS ON LAKE PHYTOPLANKTON

(Figure 1: B2, B7) A change in nutrients in the epilimnion will strongly control phytoplankton
development. As mentioned above, increased stratification might actually reduce nutrient levels in the surface
water of lakes. Longer stratification in such a case means a longer period of nutrient limitation for phytoplankton
(Yang et al. 2016a) and therefore a bigger advantage for species that efficiently use or store nutrients (Winder
and Sommer 2012), and potentially for mixotrophic species, which have access to additional organic nutrient
sources (Jansson et al. 1996). However, the effects of increased stratification and warming of surface waters
differ between oligotrophic and eutrophic systems. In oligotrophic systems, a higher metabolic rate driven by
higher temperatures in combination with nutrient shortage can lead to lower levels of biomass compared to
colder temperatures, while in eutrophic systems, the higher temperature may boost growth and biomass (Johnk
et al. 2008; Kraemer et al. 2017).

(Figure 1: P2, P4, B7, B8) Stratification also affects the phytoplankton’s ability to remain near the surface and
in the euphotic zone. Formation of a thermocline reduces the depth over which phytoplankton is mixed,
effectively increasing their chance to remain in the photic zone (Huisman et al. 1999). At the same time,
however, stratification reduces turbulence and vertical mixing deeper down in the water column, and sinking
becomes a major loss term for many dense phytoplankton species (Diehl et al. 2002). A lower water viscosity at
higher temperatures (Hutter and J6hnk 2004) increases sinking rates and facilitates migration through buoyancy
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regulation (Paerl and Huisman 2009). Stronger density stratification and suppression of turbulence thus may
give an advantage to motile phytoplankton species (Huisman et al. 2004; Winder and Hunter 2008).

(Figure 1: P5, B2, B7, B8) Higher nutrient concentrations in the hypolimnion do not directly promote
phytoplankton growth because of the lack of light at depth, with the exception of phytoplankton species that
produce a deep chlorophyll maximum in the metalimnion (e.g. Planktothrix rubescens), or buoyancy regulators
that are perceived to make excursions into the hypolimnion (e.g. Microcystis) (Fee 1976; Paerl and Huisman
2009). The strong vertical heterogeneity in nutrient levels induces the possibility that mixing events causing
entrainment of hypolimnetic water into the epilimnion can lead to spikes of epilimnetic nutrient concentrations
(Lehmann et al. 2015), stimulating phytoplankton blooms (Giling et al. 2017a). These events can be caused by
extreme weather events such as storms, cold spells, or river floods (Jennings et al. 2012). With increased
stratification in summer, the amount of energy needed for these deep mixing events increases, but the nutrient
pulse after such an event tends to be stronger (Coats et al. 2006).

SHIFTS IN MIXING REGIME

In this section, we identify which processes could form positive or negative feedbacks that could lead to a shift
in mixing regime. As these shifts are already unfolding and likely to continue into the future (Woolway and
Merchant 2019), it is important to assess which changes to expect and if they are able to self-amplify under a
given condition. The shifts in mixing regime that are treated here are: (1) from a polymictic to a seasonally
stratified regime; (2) from a dimictic to a monomictic regime, where ice cover and inverse stratification in winter
are disappearing; and (3) from a holomictic to an oligomictic or a meromictic regime. Here we investigate if and
under what conditions feedback mechanisms can reinforce shifts in mixing regimes.

Two other shifts in mixing regime can also be expected with climate change, mediated through changes in
hydrology. In lakes where water level is projected to decrease with climate change, a shift from stratified to
polymictic can be expected if the water level falls below a critical value to sustain seasonal stratification (Zohary
and Ostrovsky 2011; Kirillin and Shatwell 2016). Increase in water level could cause a shift in the opposite
direction. Both temperature and water level can be a driver of a shift between polymictic and stratified regimes,
and the feedbacks we discuss in the following section apply to both. In saline lakes, a reduction of freshwater
inflow can cause a shift from meromictic to holomictic, as the freshwater layer on top of the heavier saline layer
diminishes (Gertman and Hecht 2002; Kaden et al. 2010) and vice versa with an increase in precipitation (Melack
and Jellison 1998). We are not aware of literature that describes feedbacks from the new mixing regime to the
hydrological input, or changed biogeochemical conditions under the new regime that affect the vertical salt
distribution in a way that affects the new regime’s stability. Our view is therefore that such a response of the
saline lake mixing regime is a direct function of the discharge and seasonality of the external inflow (although a
threshold response is possible), and because of the lack of known internal feedbacks, we will not treat this
regime shift further.

SHIFT FROM A POLYMICTIC TO A SEASONALLY STRATIFIED REGIME

Lakes of intermediate depth (c. 3—10 m mean depth, Kirillin and Shatwell 2016) can support both polymictic and
seasonally stratified (dimictic or monomictic) regimes, based on morphometry, transparency, wind speed, and
annual mean solar radiation flux (Kirillin and Shatwell 2016). A shift from polymixis to seasonal stratification
might occur as a result of climate warming in these lakes (Kirillin 2010; Woolway and Merchant 2019). This trend
can be amplified by reduced water transparency and lower wind speeds in summer (Shatwell et al. 2016). If
transparency is reduced, less energy penetrates to deeper layers, as more solar radiation is absorbed near the
surface. This can result in warming of the surface layer, cooling of the hypolimnion, and overall stronger
stratification (Jones et al. 2005; Tanentzap et al. 2008), but the influence of transparency on stratification is
significantly stronger in smaller lakes due to a lower contribution of wind mixing to turbulence formation (Fee
et al. 1996). A decrease in transparency can be caused by phytoplankton growth or increased CDOM content,
for example as a consequence of catchment-based inflow of nutrients or organic matter. CDOM loading from
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peatlands or forests may increase as a function of climate change, for example through increased decomposition
rates at higher temperatures (Jennings et al. 2010). Wind is a crucial factor in exchanging heat between
atmosphere and lakes by inducing mixing (Imboden and Wiest 1995), and can be a decisive factor for
hypolimnetic temperature trends. Indeed, decreasing wind speeds cause a cooling of the hypolimnion by
reducing heat transfer to deep-water layers (Magee and Wu 2017). Regional trends in wind speed might have
the potential to cause a shift in mixing regimes (Woolway et al. 2019). However, wind forcing is external to the
lake system, and we are not aware of literature describing feedbacks between wind forcing and lake conditions
that reinforce either the polymictic or stratified mixing regime.

Periods with warm and calm weather are promoted by climate change, and can induce stratification events in
polymictic lakes, lasting multiple days or even weeks (Wilhelm and Adrian 2008). However, strong inter-annual
variation in the duration of stratification within the same lake has been documented that cannot be explained
by temperature changes alone (Riis and Sand-Jensen 1998; Brothers et al. 2014). Water transparency was
determined to be a major factor of shifts in mixing regime in the studies of Riis and Sand-Jensen (1998), Brothers
et al. (2014), and Shatwell et al. (2016), and is, as stated, influenced by phytoplankton growth and CDOM
content.

In this paper, we are interested in feedbacks that would stabilise a newly established stratified regime, such as
mechanisms that would perpetuate lower transparency. Brothers et al. (2014) described such a feedback in a
eutrophic German lake with an average depth of 1.7 m (maximum 2.9 m) and a surface area of 3.3 ha. Strong
rainfall flooded surrounding peatlands, leading to increased CDOM and nutrient concentrations and higher
water levels (about 1 m) in the lake. Transparency was reduced due to a combination of increased CDOM and
phytoplankton, which caused stratification and anoxia near the sediment, and promoted internal loading of
CDOM and nutrients from the sediment, stabilising the stratified state. For a different lake, Riis and Sand-Jensen
(1998) describe almost a doubling of the duration of stratification over a period of 40 years due to increased
CDOM concentrations in an oligotrophic Danish lake of 8.1 m mean depth (maximum 12 m) and a surface area
of 12 ha, but no stabilising feedbacks were identified. Model simulations of two eutrophic German lakes
(maximum depths 8 and 9.5 m) by Shatwell et al. (2016) suggested that phytoplankton can have a decisive
influence on mixing regimes in lakes of intermediate depth. The presence or absence of a clear-water phase in
spring could change the mixing regime for that year. Again, no feedbacks are described. Still, in shallow lakes a
heatwave or period of calm can trigger a period of stratification and potentially cause anoxia when oxygen
depletion is sufficiently high, followed by nutrient release to the photic zone when stratification ends (Wilhelm
and Adrian 2008). When the accumulated nutrients become available to phytoplankton during stratification, for
example due to buoyancy regulation, the ensuing bloom could reduce transparency, leading to stronger heating
of the upper water layers (Jones et al. 2005), and thus stabilise the stratified regime.

However, despite the crucial role of transparency in regulating thermal stratification and the study of Brothers
et al. (2014) showing the potential of the transparency-reduction feedback in environmental data, this feedback
might only apply to a select set of lakes. Below, we give three arguments why the likelihood that this feedback
will cause bi-stability of polymixis and seasonal stratification might be limited: (1) the feedback can regularly be
overridden by external perturbations unless a specific set of lake conditions, regarding morphometry and
transparency, is present; (2) stratification hinders exchange between sediment and surface water, effectively
weakening the feedback; and (3) there is a reset of lake conditions in winter and no carry-on of the feedback to
the next year.

The feedback therefore requires a specific set of conditions to effectively influence lake mixing regime. Lakes
that are too shallow cannot sustain seasonal stratification as commonly recurring convective or wind mixing
events break down stratification completely. Conversely, deeper lakes often already have a stratified regime,
thus restricting bi-stability to lakes with an intermediate depth range (c. 3-10 m, Kirillin and Shatwell 2016). In
lakes larger than approximately 5 km?, wind and convective mixing are the decisive factors to determine the
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depth of stratification and transparency only has a minor effect (Fee et al. 1996), whereas Kirillin and Shatwell
(2016) report a decreasing effect of transparency on mixing regime above a lake length of about 1-10 km based
on an analysis of 379 lakes. Therefore, the feedback described above would only be relevant in small lakes of
intermediate depth. Additionally, Persson and Jones (2008) show that in already turbid water, a change in
transparency has little effect on thermal stability, which would suggest that the transparency-reduction
feedback requires an initially low turbidity. If all light was already absorbed in the mixed layer before the
reduction of transparency unfolds, a further drop in transparency would not make a large difference in heat
distribution (Persson and Jones 2008). Along the same lines, a sensitivity analysis in the modelling study by
Shatwell et al. (2019) indicated that the effect of varying transparency on stratification is strongest in small lakes
with low to medium (up to c. 1.0 m™) extinction coefficients.

Stratification restricts exchange of dissolved materials between deep and shallow water layers. Therefore,
sediment release of CDOM and nutrients would only marginally reach the epilimnion and affect light
penetration. Nutrients would reach the surface layer after a mixing event, as is supported by findings of blooms
after the end of stratification events (Wilhelm and Adrian 2008), but this would break the transparency-
reduction feedback. Buoyant cyanobacteria could — potentially - use the nutrients in the hypolimnion and move
across the thermocline into the light to grow (Paerl and Huisman 2009), keeping the feedback loop intact,
although the reality of this remains under discussion (Bormans et al. 1999). In the study of Brothers et al. (2014),
sediment release of substances did influence the pelagic despite consistent stratification, but the role of the
thermocline was not discussed. The presence of a thermocline limits turbulence reaching the sediment, so
stratification reduces resuspension of particles that sink to the bottom and promotes sedimentation losses.
Formation of stratification can thus reduce particle-based turbidity. The reduced turbidity in turn decreases
stratification, completing a negative feedback loop (Figure 2a). If the turbidity is caused by sinking particles (e.g.
non-buoyant phytoplankton cells), this negative feedback inhibits sustenance of the stratified state.

Lastly, in winter, phytoplankton biomass is low and complete mixing occurs, so the feedback loop is broken.
Therefore, there is no carry-over of mixing regime from year to year. Years with enhanced stratification could
easily be followed by a year with polymictic behaviour since the occurrence of seasonal stratification in one year
does not influence the likelihood of stratification in the next year. Stratification can be triggered by a period of
warm and calm weather, which makes timing a relevant issue. A heatwave in spring/early summer can affect
the mixing regime for the rest of the year, but a similar event at the end of summer has only a brief effect.

Summarising, in a polymictic lake of intermediate depth, a seasonally stratified regime can establish under lower
wind speeds, decreased transparency, or a higher water level (Kirillin and Shatwell 2016). Changes in
transparency can strongly influence thermal stability (Persson and Jones 2008; Tanentzap et al. 2008), and even
shift mixing regimes (Brothers et al. 2014; Shatwell et al. 2016). Feedback loops could sustain the stratified state
(Figure 2a), which might cause a sudden shift from a polymictic to a seasonally stratified regime for a particular
year (Figure 2b). However, as discussed above, there is a suite of reasons why these feedbacks may not be
dominant in most lakes.
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Figure 2: (a) The associated feedbacks for a shift from a polymictic to a seasonally stratified regime. Solid arrows denote a stimulating
(positive) effect and dashed arrows a reducing (negative) effect. The effect of climate warming is shown in red. Three feedback loops are
potentially formed. Both the purple and the orange feedback loops are positive (i.e. self-reinforcing). The blue, negative feedback loop is
activated when the turbidity that supports the stratification is reduced because of sinking particles. (b) State diagram of a shift from a
polymictic lake of intermediate depth to a seasonally stratified regime. Climate warming increases the duration of stratification events.
When these periods become long enough to trigger a reduction in transparency, in some years there might be a sudden jump to a longer
stratified period. This is most likely to occur in small lakes, where transparency has the strongest control on stratification patterns (blue
line). If the turbidity is caused by sinking particles, sedimentation of these particles will result in clearer water and the breakdown of
stratification. In larger lakes, or lakes where the positive feedbacks are only weak, the increase in duration of stratification will be more
linear (green line). In a seasonally stratified regime, a reduction in transparency will not, or only marginally, increase the length of the
stratified period.

SHIFT FROM A DIMICTIC TO A MONOMICTIC REGIME

Near the poles, loss of ice cover in deep lakes is likely to turn amictic lakes into cold monomictic lakes, and cold
monomictic into dimictic lakes (Noges et al. 2009). In temperate regions, it forces the two separate mixing events
at the end of autumn and the end of spring into one period with a more-or-less uniform temperature profile; a
shift from dimixis to monomixis (Ficker et al. 2017; Sharma et al. 2019).

For a freshwater lake of a given morphometry, weather conditions and water temperature determine whether
ice forms or not (Lepparanta 2015). Climate change drives the atmosphere towards warmer conditions, but due
to natural variation in weather, perpetuation of ice-free conditions after one ice-free winter is unlikely unless
water temperatures express a memory of previous winters. Such a memory might be established due to the
large thermal heat capacity of deep lakes and a dominant effect of ice-albedo. Ice has a higher albedo than water
(i.e. ice reflects more shortwave radiation), reducing heating of an ice-covered lake. When ice disappears, the
surface water warms faster through absorption of solar radiation (Austin and Colman 2007). A modelling study
on the Laurentian Great Lakes under a prescribed weather cycle, atmospheric noise, and slow climatic forcing,
showed that ice in deep lakes can prevent lake warming by its high albedo and promotes ice cover in following
years (Sugiyama et al. 2017), which we define as a memory effect. Once ice disappeared, deep water layers
warmed up to a larger degree, making it harder for water temperature to reach freezing levels in following years.

Only sufficiently deep lakes have the necessary thermal heat capacity to transfer the effect of ice cover to the
next winter; Sugiyama et al. (2017) investigated lakes with an average depth of at least 50 m, but do not give a
minimum depth required to generate a memory effect. Bi-stability occurred in ranges of annual mean air
temperatures of c. 0.5°C (for lakes of 50 m depth) and c. 1.5°C (for lakes of 150 m depth). Outside of these
ranges, the lakes were always ice-covered, or always ice-free, regardless of the ice cover in previous winter.

Apart from its higher albedo, ice insulates the lake from the atmosphere, limiting heat loss to the atmosphere
in winter (Leppéaranta 2015; Zhong et al. 2016). This insulation works in an opposite direction as the ice-albedo
feedback (Figure 3a), and it weakens the memory effect. The relative importance of both processes is still
disputed, but Sugiyama et al. (2017) find a dominant ice-albedo feedback with a one- to three-column model. In
contrast, at a higher spatial resolution, Zhong et al. (2016) and Ye et al. (2019) did not find a dominant memory
effect and state that the role of ice albedo is small, suggesting a smoother transition from dimictic to monomictic
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with a warming climate. All three modelling studies were performed in a similar environment (the Great Lakes
region) and actively investigated the role of ice-albedo in determining thermal structure. Similar to Zhong et al.
(2016) and Ye et al. (2019), the modelling study of Shatwell et al. (2019) reported a gradual shift from ice-covered
to ice-free winters in two lakes of 20-30 metres mean depth in Europe, rather than an abrupt shift. Other studies
on the ice-albedo feedback and thermal memory in lakes are scarce. However, this topic has been addressed for
sea ice; modelling studies suggest that the response of sea ice to atmospheric temperature changes might show
lags, but is not truly bi-stable (Ridley et al. 2012; Li et al. 2013), and therefore a gradual loss of ice cover is to be
expected.

In brief, although the role of ice albedo in lakes is still debated, it is generally considered that memory effects of
ice cover in lakes have only a minor influence. In case of a dominant memory effect caused by a large thermal
heat capacity and a dominant ice-albedo feedback, shifts in mixing regime between monomictic and dimictic
lakes would have a sudden nature (Figure 3b, blue lines). If destabilising positive feedbacks are weak, a smoother
transition from monomictic to dimictic is expected, with alternating dimictic and monomictic years (Figure 3b,
green line). Both the ice-albedo feedback and the insulation effect could be relevant for the shifts from amictic
to cold monomictic and from cold monomictic to dimictic as well. However, literature on these mixing regime
shifts is limited.
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Figure 3: (a) The associated feedbacks for a shift from a dimictic to a monomictic regime. Solid arrows denote a stimulating (positive)
effect and dashed arrows a reducing (negative) effect. The effect of climate warming is shown in red. Two feedback loops are formed.
The blue feedback loop is negative (i.e. self-stabilising), while the orange loop is positive (self-reinforcing). (b) State diagram of a shift
from a dimictic to a monomictic regime. Inter-annual thermal memory is supported by a large heat storage capacity and the positive
feedback in (a). In case of a dominant memory effect, shifts in mixing regime would have a sudden nature (blue line and arrows), while
if the memory effect is not dominant (green line), there is a smoother transition, with alternating dimictic and monomictic years. The
length of the dotted arrows denotes the probability of a regime shift from one mixing regime to another.

SHIFT FROM A HOLOMICTIC TO AN OLIGO- OR MEROMICTIC REGIME

Some lakes that are (becoming) monomictic are experiencing less complete mixing events, and decreases in the
maximum mixing depth as indicated by oxygen profiles (North et al. 2014; Saulnier-Talbot et al. 2014).
Hydrodynamic models driven by climate scenarios predict this trend to continue, resulting in a progressively
decreasing maximum mixing depth (Matzinger et al. 2007; Sahoo and Schladow 2008; Schwefel et al. 2016).
Complete mixing —i.e. top to bottom - can even disappear entirely and maximum mixing depth could decrease
by up to 80% (Matzinger et al. 2007; Sahoo and Schladow 2008). Perroud and Goyette (2010) predict a decrease
in duration of fully mixed conditions for the peri-alpine Lake Geneva (Switzerland/France). These findings imply
that complete mixing in monomictic lakes will decrease in the future and parts of the hypolimnion can stay
isolated from the atmosphere for multiple years.

However, in oligomictic lakes there is an interplay between the increase in hypolimnetic temperature and the
frequency of complete mixing events. The hypolimnion slowly heats over the year as a result of the geothermal
heat flux and as warmer water from the epilimnion is gradually mixed into the deeper layers by turbulence.
Incomplete winter mixing fails to cool the hypolimnion, resulting in a warming trend. This increase in
hypolimnetic temperature facilitates complete mixing in subsequent years, as less cooling is required for an
overturn. Additionally, the higher thermal expansivity of water at higher temperatures can increase the
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likelihood of complete mixing in lakes with elevated salt concentrations in the hypolimnion (Matzinger et al.
2006). When deep mixing finally occurs during a colder winter, hypolimnetic temperatures show a sudden drop
and the resistance to full mixing in subsequent years would increase again. This is why this process is referred
to as a sawtooth pattern (Livingstone 1993; 1997). This pattern has been observed in several deep lakes (e.g.
Straile et al. 2003; Coats et al. 2006; Lepori and Roberts 2015), and might facilitate sporadic overturn events
even under milder temperatures. Climate warming is predicted to lengthen the warming periods and reduce the
frequency of turnovers and subsequent cooling (Livingstone 1997). In accordance with the sawtooth-pattern
feedback, a decrease in the extent of winter mixing is expected during ongoing climate warming. However, if a
new plateau in air temperatures is reached, the frequency of complete mixing is likely to return to its previous
level as hypolimnetic temperatures catch up with winter temperatures, unless meromixis develops.

In both oligomictic and meromictic lakes, oxygen replenishment in the hypolimnion is strongly reliant on
sporadically occurring winter mixing, and a reduced frequency of overturns means an increased likelihood of
anoxia (Foley et al. 2012; Schwefel et al. 2016). As a secondary effect of the increased anoxia, internal nutrient
loading and harmful effects for lake productivity and fish can be expected as a lake shifts from a holomictic to
an oligomictic regime (O'Reilly et al. 2003). Internal loading in stratifying lakes changes the distribution of
nutrients in the system, by increasing the concentration in the hypolimnion, but affecting the epilimnion only to
a lesser extent. As eutrophication also increases oxygen depletion in the hypolimnion, eutrophication and
climate warming both increase the risk of anoxia.

Model studies of deep-water mixing predict a reduced frequency of complete turnovers or even a complete
disappearance, but as a gradual trend (Danis et al. 2004; Sahoo et al. 2013; Schwefel et al. 2016). The sawtooth
pattern of hypolimnetic temperatures in oligomictic lakes facilitates deep mixing events after years with
incomplete mixing (Livingstone 1993). However, most of the studies above did not include an effect of solutes
(i.e. salinity) on water density - a decisive factor in the formation of meromixis (Boehrer and Schultze 2008;
Camacho et al. 2017). Meromictic lakes have a denser, chemically different water layer below the hypolimnion,
which is rarely mixed into the upper layers. Meromictic lakes can behave strikingly differently from thermally
stratified lakes in terms of temperature profile, water renewal, chemistry, and ecology (Gulati et al. 2017; Lepori
et al. 2018). The causes of meromixis are diverse (see Gulati et al. 2017), but a common characteristic is that the
density difference is sustained. For example, in case of high iron concentrations below an oxic water layer, iron
that is mixed into oxic water tends to precipitate and sink back into the anoxic water, where it dissolves again
and maintains the density stratification (Boehrer and Schultze 2008). Internal processes like this make meromixis
generally a very stable mixing regime.

Endogenic meromixis is a form of meromixis that is sustained by decomposition and increased concentrations
of dissolved substances by biogeochemical cycles in the deep water layer (for full explanation, see Boehrer and
Schultze 2008). This leads to the hypothesis of anoxia as a potential trigger for endogenic meromixis (Hutchinson
1957; Julia et al. 1998). In this situation, the onset of anoxia sets off the formation of a heavier water layer by an
increased build-up of solutes in the hypolimnion and complete mixing becomes too infrequent to distribute
these solutes through the water column. This build-up of solutes suppresses further mixing and could cause a
more abrupt and permanent formation of meromixis. In Lake Lugano (ltaly/Switzerland), a large (49 km?) and
deep (maximum depth 288 m) per-alpine lake, endogenic meromixis might have formed as a result of
anthropogenic eutrophication (Lepori et al. 2018). The possibility of meromixis caused by climate change has
not been addressed often in scientific literature. Julia et al. (1998) mentioned climate-induced anoxia as a
potential cause of meromixis in the Spanish Lake La Cruz. In a modelling study of the oligotrophic, monomictic
Lake Ohrid (North Macedonia/Albania, maximum depth 289 m), Matzinger et al. (2007) found that above an
atmospheric warming rate of 0.02°C/yr, hypolimnetic temperature increase would fall behind surface water
warming rates. Additionally, solute accumulation in the hypolimnion would further increase the density of deep
waters, preventing complete overturns in future scenarios (Matzinger et al. 2007). The increase in solute
concentration must be strong enough to offset a reduction of density by hypolimnetic warming (Figure 4a).
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Several physical lake processes can mix surface water into the hypolimnion, even when a chemical gradient is
present, therefore reducing density differences. Wind-induced internal waves increase turbulence around the
thermocline, and therefore mixing between both layers (Imboden and Wiest 1995). Differential cooling is the
process where shallow areas experience fast convective cooling and this water mass moves downwards along
the lake slopes in cases where morphology is suitable. This can lead to transport of water from the surface to
deep water layers (Peeters et al. 2003; Ambrosetti et al. 2010). Intrusion of river inflow is another potentially
important factor for deep-water renewal (Ambrosetti et al. 2010). Depth of river intrusion depends on inflow
water temperature and lake thermal structure, amongst others (Fink et al. 2016). High sediment densities in the
inflow can increase water density and allow penetration into the hypolimnion (Loizeau and Dominik 2000; Fink
et al. 2016). In lakes where these processes cause significant deep-water renewal, a shift to meromixis is less
probable. Formation of meromixis due to climate warming is also not likely in dimictic or polymictic lakes where
complete mixing is frequent, but could occur in monomictic lakes in multiple climate zones.

It is difficult to determine in which lakes a shift towards meromixis is most likely to occur. Prime candidates are
lakes that did not experience prolonged periods of anoxia and incomplete mixing until now, but are susceptible
to experience these with the effects of climate change. Deeper lakes in particular seem to be vulnerable due to
their tendency to mix incompletely (Danis et al. 2004). However, these are not the only factors, as also the
chemical composition of the sediment and underlying bedrock determines the nature and quantity of
compounds that can be released under anoxic conditions (Del Don et al. 2001; Boehrer and Schultze 2008).
Additionally, Matzinger et al. (2007) suggest that meromixis is stimulated under a high rate of warming, which
puts lakes at risk that lie in parts of the world that are experiencing rapid warming. Altogether, the likelihood of
formation of meromixis with climate change is not obvious, and lake-specific approaches are necessary to
evaluate this risk. Modelling efforts such as the one by Matzinger et al. (2007) are a promising approach, which
should be supplemented by lake-specific information on sediment release rates of major density-affecting
solutes.

In summary, as a holomictic lake warms, the likelihood of incomplete mixing increases, especially under rapid
warming rates (Matzinger et al. 2007). This creates an oligomictic regime, where the sawtooth pattern
(Livingstone 1997) may result in complete mixing in some years. This oligomictic regime increases the chance of
anoxia and solute accumulation in the hypolimnion, potentially culminating in a sudden shift to meromixis
(Figure 4b). Once a lake becomes meromictic, it might be difficult to reverse this change (Lepori et al. 2018).
Lakes with the potential of strong solute release from the sediment and weak deep-water renewal are most
susceptible to such a shift.

(a) Y A
Density of Incomplete Climate Holomictic
hypolimnion mixing warming
w 7

Temperature Effects

+ hypolimnion ‘— Positive
@ 4---- Negative

Solute build-up ‘ Hy polimnetic

in hypolimnion anoxia

-~
=

Oligomictic

Solute-release feedback

Percentage of years with
complete mixing
-

Meromictic

v

Warming rate

Figure 4: (a) The associated feedbacks for a shift from a holomictic to an oligo- or meromictic regime. Solid arrows denote a stimulating
(positive) effect and dashed arrows a reducing (negative) effect. The effect of climate warming is shown in red. The negative (self-
stabilising) feedback loop, in blue, causes a decrease in the density of the hypolimnion after incomplete mixing, while the positive (self-
reinforcing) feedback loops, in purple and orange, stimulate a density increase. (b) State diagram of a shift from a holomictic to either an
oligomictic or a meromictic regime. When incomplete mixing occurs as a result of warming, an oligomictic regime is formed. This increases
the chances of forming anoxia and solute accumulation, potentially resulting in a meromictic regime if the density increase by solute
build-up (positive feedbacks) exceeds the density decrease by hypolimnetic warming (negative feedback). The length of the dotted arrows
denotes the probability of a regime shift from an oligomictic to a meromictic regime, but the possibility for this shift depends on lake-
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specific characteristics. A shift is most likely to occur in lakes with little deep-water renewal, where large quantities of solutes can be
released from the sediment.

CONCLUSION

Climate change can cause shifts in the mixing regime of deep lakes, which will change their behaviour in terms
of physics, chemistry, and biology. In this study, we investigated whether certain feedbacks could affect these
regime shifts. The investigated potential shifts are from polymictic to seasonally stratified, from dimictic to
monomictic, and from holomictic to oligo- or meromictic. All these shifts in mixing regime display reinforcing
feedback mechanisms, but these feedbacks are likely to be relevant under certain conditions only. In lakes of
intermediate depth, polymixis and seasonal stratification can be alternative states, based on transparency and
wind sheltering. If a period of stratification can trigger a strong reduction in transparency, for example due to
phytoplankton bloom formation or release of CDOM, a stratified regime can form. However, this feedback is
valid only under a narrow range of lake conditions, and the stratified state is not carried over from year to year,
which is a full reset occurs each year. Dimictic lakes can become monomictic due to loss of ice cover. One study
found that a shift from dimixis to monomixis could show bi-stability because of the ice-albedo feedback coupled
to thermal heat capacity in sufficiently deep (at least 50 m average depth) lakes, but other studies in lakes and
the sea suggest the opposite. The majority of studies would predict only a minor influence of memory effect of
ice cover on lake dynamics, and therefore a gradual shift from mostly ice-covered to mostly ice-free winters. A
climate-induced shift from holomixis to meromixis can occur if a density increase of the deep water layer by
solute build-up outweighs a density decrease due to hypolimnetic warming. Such a shift would have profound
influences on aquatic ecosystems, but more research is needed on this topic to assess where and when this can
happen. If incomplete mixing does not result in a net density increase of the deep waters, an oligomictic regime
is formed.

Although climate, interannual temperature variation, and morphometry are the main determinants of a mixing
regime, transparency, water level, and internal feedbacks can facilitate and stabilise shifts between mixing
regimes. Without denying the value of studies investigating mixing regime shifts driven by warming alone, we
hope this paper places those findings in the perspective that several other components of lake ecosystems can
influence mixing regimes as well. A change in mixing regime can mean a step-change in a physico-chemical
parameter (e.g. anoxia) that can feed back to the vertical density distribution or heat budget. If we consider
these processes as well, we may get a better understanding of how climate change affects lake mixing regimes.
Given the great importance of mixing regime for functioning of lakes, more knowledge on the likelihood of
transitions and the stability of such changes would be important for lake management. Observations of shifts in
mixing regime due to internal lake processes are important, but may be hard to realise due to the long timescales
and required data involved. For each of the three mixing regime shifts studied in this paper, modelling
approaches have made important contributions. Inclusion of biogeochemistry in modelling could lead to further
advances when investigating the shifts polymictic-stratified and holomictic-meromictic. The study of feedback
loops in lake processes has so far been focussed mainly on shallow lakes (e.g. Scheffer 1998). Our review is one
of the first studies to systematically explore the potential feedbacks occurring in deep lakes, as well as the
climate dependency of these mechanisms.
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ABSTRACT

Numerical lake models are useful tools to study hydrodynamics in lakes, and are increasingly applied to extreme
weather events. However, little is known about the accuracy of such models during these short-term events.
We used high-frequency data from three lakes to test the performance of three one-dimensional (1D)
hydrodynamic models (Simstrat, GOTM, GLM) during storms and heatwaves. Models reproduced the overall
direction and magnitude of changes during the extreme events, with accurate timing and little bias. Changes in
volume-averaged and surface temperatures and Schmidt stability were simulated more accurately than changes
in bottom temperature, maximum buoyancy frequency, or mixed layer depth. However, in most cases the model
error was higher (30-100%) during extreme events compared to reference periods. As a consequence, while 1D
lake models can be used to study effects of extreme weather events, the increased uncertainty in the simulations
should be taken into account when interpreting results.

Keywords: Storm, heatwave, model validation, Simstrat, GOTM, General Lake Model

INTRODUCTION

Over the last few years, limnologists have devoted increased attention to extreme weather events (e.g. Bertani
et al. 2016; Kasprzak et al. 2017; Andersen et al. 2020; Chen et al. 2020). These are predicted to become more
frequent and intense with climate change (IPCC 2014; Bailey and Pol 2016), and can have profound effects on
lake ecosystems. Extreme weather events, such as storms and heatwaves, have a direct effect on lake physics.
Wind storms can induce mixing events, cooling of the surface layer, resuspension of sediments, and deepening
of the thermocline (Jennings et al. 2012; Andersen et al. 2020). Heatwaves have effects that are largely opposite
to storms, as these cause heating of the water column and strengthen thermal stratification (Jankowski et al.
2006; Huber et al. 2012). The disturbance in the thermal profile and inflow conditions caused by these events
often mediates further changes in nutrients, oxygen, and phytoplankton community (Huber et al. 2010; Klug et
al. 2012; Kasprzak et al. 2017). Physical disturbances in the water column due to an extreme event are often
short-lived (Wilhelm and Adrian 2008; Jennings et al. 2012; Kuha et al. 2016; Stockwell et al. 2020), although
they can also have a longer effect (Huber et al. 2012; Andersen et al. 2020), depending on the time of year when
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they occur (Mi et al. 2018), or whether water transparency is affected as part of the event (e.g. dissolved organic
carbon loading, or suspended particles) (Klug et al. 2012; De Eyto et al. 2016; Perga et al. 2018). Moreover, a
short physical disturbance does not automatically imply a short-lived effect on biogeochemistry and ecology.
For example, short-term mixing events can be a major factor affecting the transport of nutrients, stimulating
phytoplankton growth (Soranno et al. 1997; Crockford et al. 2015).

Numerical lake models are useful tools for understanding aquatic processes, disentangling causal factors, and
for estimating future trajectories of the system (forecasting, climate scenarios). Recently, several studies have
applied one-dimensional (1D) lake models to study the effects of extreme weather conditions on lake thermal
structure or lake ecology (Bueche et al. 2017; Mi et al. 2018; Perga et al. 2018; Soares et al. 2019; Chen et al.
2020). However, there is still a lack of understanding on how accurately lake models actually simulate observed
conditions during these short-term events. It is common practice to assess models on the basis of their
goodness-of-fit (e.g. root mean square error or mean absolute error) over the whole calibration and/or
validation period, but these long timescales obscure any potential errors during disturbance by and recovery
from short-term events. Evaluating event-specific errors will help to understand and minimise the uncertainty
in model studies concerning ecosystem effects of extreme weather events. Showing that a model is capable to
accurately simulate system changes caused by extreme weather events, will increase our confidence in their
capability to provide reliable estimates for future effects of climate change. This advanced model testing is an
important step in a multi-level model assessment (Hipsey et al. 2020).

In the present validation study, we used more than 10 years of hourly and sub-hourly in-situ measurements of
meteorological variables and water temperature from three lakes of varying depths and mixing dynamics, to
assess model performance during short-term extreme wind and temperature events. The analyses were done
with three 1D hydrodynamic models - Simstrat (Goudsmit et al. 2002; Gaudard et al. 2019), GOTM (General
Ocean Turbulence Model, Umlauf et al. 2005), and GLM (General Lake Model, Hipsey et al. 2019). These three
models differ in turbulence schemes, calibration procedures, forcing variables, and parameterisations.
Additionally, we report on observed changes in lake thermal metrics during storms and heatwaves in lakes with
different morphology and mixing regimes. We focus our analysis on lake temperature (full profile, volume-
averaged, surface, and bottom temperatures) and stratification metrics (Schmidt stability, maximum buoyancy
frequency, and mixed layer depth), based on high-frequency temperature profile observations and simulations.
Changes in these thermal metrics can translate into further changes in water transparency, and distribution and
transport of oxygen and nutrients, with repercussions on biological processes.

We assessed whether the models could reproduce the direction, magnitude, and timing of change during an
event, what the accuracy of the models was during extreme events compared to standard conditions, and if
there was a consistent tendency of the models to over- or underestimate changes during an event. Following
this, we draw conclusions on the implications of our findings for applying 1D hydrodynamic models to short-
term extreme wind and temperature events in different types of studies.

METHODS

OBSERVATIONAL DATA

Meteorological and water temperature profile data from Lough Feeagh (Ireland), Lake Erken (Sweden), and
Muggelsee (Germany) were used for this study. Long-term records of sub-hourly water temperature profile and
surface meteorological data were available for the period 2004-2017 at Miiggelsee and between 2005 and 2017
for Lough Feeagh and Lake Erken. Measurements of air temperature, wind speed and wind direction, relative
humidity, incoming solar radiation, and air pressure were collected at each lake. Cloud cover was available at
hourly intervals in the database generated by Moras et al. (2019) for Lake Erken and from the airport Berlin-
Schoénefeld for Miiggelsee (10 km distance from the lake), and daily observations on-site were made for Lough
Feeagh.
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Lough Feeagh (53°56'21" N, 9°34'33" W; mean depth 14.5 m; maximum depth 46 m) is a monomictic lake,
located on the west coast of Ireland. It experiences high rainfall and wind speeds, has no winter ice cover, and
is rich in dissolved organic carbon (DOC) as a result of drainage from surrounding peatlands (De Eyto et al. 2016).
Meteorological records and lake temperature profile data are available with measurement frequencies of 1 and
2 min, respectively. Meteorological data were collected on the shore of the lake (Met Eireann 2018). The water
temperature profiles were measured by an automated monitoring buoy above the deepest point of the lake,
with temperature sensors at 0.9, 2.5, 5, 8, 11, 14, 16, 18, 20, 22, 27, 32, and 42 m below the surface (De Eyto et
al. 2020).

Lake Erken (59°50'37" N, 18°35'38" E; mean depth 9 m; maximum depth 21 m) is a dimictic lake in the eastern
part of Sweden. It has a surface area of 24 km? and experiences ice cover in winter and stratification in summer
(Persson and Jones 2008). High-frequency (30-min) lake temperature data from 2005 onwards were used for
this study. Meteorological forcing data with a 5-min frequency are available from July 2008 onwards, and hourly
forcing data were used before this point in time. Meteorological data were collected from a station on a small
island 500 m off shore, while water temperature was measured at a monitoring buoy that was located a further
500 m from the island, at 15 m depth. Water temperature measurements were made at 0.5 m depth intervals
prior to 2016, and at 0.25 m intervals after 2016.

Miggelsee (52°26'24" N, 13°38'58" E; mean depth 4.9 m; maximum depth 8 m), located in Berlin, Germany, is
the shallowest lake in this study. It has a surface area of 7.3 km?, is wind-exposed, and classifies as a polymictic
lake (Wilhelm and Adrian 2008). It experiences ice cover in most winters and stratifies during summer at high
air temperatures and moderate wind conditions. Lake temperature data were collected by a floating monitoring
station anchored 300 m from the northern lake shore at a depth of 5.5 m. Water temperature at 2 m depth was
measured every 5 min, and a profile with 0.5 m depth intervals from the surface up to 5 m depth was measured
every hour. Meteorological data were available every 5 min, measured at the monitoring station (for more
details on used sensors and methodology, see Wilhelm et al. 2006).

Precipitation and in- and outflows were not included in this study, and the water level was kept constant in the
simulations. The reason for this is that these data were available at lower frequencies than the forcing and model
time steps, and potentially at lower frequencies than the effects of the investigated events. Additionally, annual
water level fluctuations are generally less than 1 m in Lough Feeagh and Lake Erken (Moras et al. 2019; Kelly et
al. 2020), and only around 0.25 m in Muggelsee (Driescher et al. 1993), so water level was assumed to be of
minor importance for thermal stratification patterns. Water transparency was also kept constant in all three
models. The light attenuation coefficient was calculated from the average Secchi depth (S4) observed over the
simulated period with equations specific for the conditions in each lake; attenuation coefficient = 2.7 / Sy
(Feeagh; Koenings and Edmundson 1991), 2.4 / S4 (Lake Erken; based on observed Secchi depths and light
profiles, unpublished data), and 1.3611 * 55,2719 (Miiggelsee; Hilt et al. 2010).

For information on gap-filling procedures, see Suppl. Mat. A.

LAKE THERMAL METRICS

Model fit was assessed for the following thermal metrics: lake temperature (full profile), volume-averaged
temperature, surface temperature (< 1 m depth), bottom temperature (deepest observation), Schmidt stability
(Schmidt 1928; Idso 1973), maximum buoyancy frequency squared (N?, hereafter referred to as “maximum
buoyancy frequency”), and mixed layer depth. The R package “rLakeAnalyzer” (Winslow et al. 2019) was used
to calculate volume-averaged temperature, Schmidt stability, and maximum buoyancy frequency, see Read et
al. (2011) for formulas. The mixed layer depth was defined using an absolute density difference from the surface
(following De Boyer Montégut et al. 2004; Wilson et al. 2020). A threshold of 0.15 kg/m? was chosen, which gave
robust estimates of the depth of stratification for all three lakes. If the density of the deepest measured
temperature was within this density threshold, the water column was assumed to be completely mixed and
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mixed layer depth was set to the deepest measurement. The relation between water temperature and density
by Martin and McCutcheon (1999) was used.

LAKE MODELS

Three 1D hydrodynamic lake models were used in this study: Simstrat, GOTM, and GLM. The models take into
account lake morphology in turbulence equations, but otherwise assume horizontal homogeneity. These models
all simulate the vertical thermal lake structure and are forced by the same meteorological input, but are different
in their code structure, processes included (such as seiche-induced mixing, or different wavelengths of light),
and parameterizations for surface fluxes and turbulence, so that each model could result in potentially different
outcomes. A full description of the governing equations used by each of these open source models can be found
in Goudsmit et al. (2002) for Simstrat, Umlauf et al. (2005) for GOTM, and Hipsey et al. (2019) for GLM, in
addition to manuals and support on the respective websites (Simstrat: https://github.com/Eawag-
AppliedSystemAnalysis/Simstrat, GOTM: https://gotm.net/, GLM:
http://aed.see.uwa.edu.au/research/models/GLM/. Last access: 2021-08-13). Specific settings for each model

used in this study are provided in the Suppl. Mat. B. The main differences between the models are mentioned
below.

Simstrat and GOTM have a fixed layer structure, resolving turbulent kinetic energy production and diffusion
between layers of fixed thickness. Layers in GLM can vary in thickness or merge depending on the degree of
turbulent kinetic energy. Simstrat was forced with wind direction as an additional input variable; this is used to
resolve mixing caused by seiches. Ice cover modules are present in Simstrat and GLM, while there is no ice
module in the version of GOTM used in this study. Air pressure is a constant value in Simstrat and GLM, and the
average value over the simulated period was used in this study, while measured air pressure was used as input
in GOTM. Additionally, the used version of GLM could not be run with sub-hourly forcing due to the inherent
structure of the code, while a forcing frequency of 10 min was used for Simstrat and GOTM. To account for this
difference, additional runs with hourly forcing were performed for Simstrat and GOTM. Whenever these hourly
forcing runs were used instead of the ones with 10-min forcing, this is specifically mentioned.

CALIBRATION

A period of one year was used for model spin-up and calibration. Automatic calibration procedures were applied
to minimise the error in water temperature at all depths. The standard calibration procedures available for each
model were different. Simstrat applied the PEST (model-independent Parameter ESTimation and uncertainty
analysis) software to minimise the sum of squares of the error (Doherty 2015). The ParSAC python package was
used for GOTM. It maximises the log-likelihood using a differential evolution method. GLM was calibrated with
the “nloptr” R package (Johnson 2014), using the Nelder-Mead simplex algorithm (Nelder and Mead 1965) to
minimise the root mean square error. Model parameters and calibration ranges can be found in Suppl. Mat. C.
The remainder of the data series was used as validation period and to identify extreme events.

STORM AND HEATWAVE EVENTS
Model performance during extreme weather events was assessed on a selection of ten storms and ten
heatwaves per lake.

The storm events were defined using 10-min wind speed observations. For the purpose of identifying storms
missing data were not filled (Suppl. Mat. A) so that only actual measured data were used. The period April-
October was used due to the frequent absence of winter profile data in Lake Erken and Muggelsee, due to ice
cover. We chose to base the events on the turbulent wind energy flux at 10 m above the surface (P10, W m?)
instead of wind speed, because it is a more direct measure of the amount of energy transfer to the lake, and
thus a more direct measure of the atmospheric impact on thermal stratification. P;o was calculated as P;, =
PairCpUio>, using a fixed drag coefficient (Cp) of 0.9*103 (Wiiest et al. 2000), where p; is air density (kg m™3)
and Ujp is wind speed at 10 m above the surface (m s?). The top 5% of daily sums of Py were selected, and days
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within this selection were considered as a single event if they occurred within two days from each other. Events
with less than 10 h of measured water temperature data, or no prior thermal stratification (Lough Feeagh and
Lake Erken only), were excluded. The exact timing of the start and end of an event were defined when the 8-h
moving average of wind speed passed the 75" percentile of all observed wind speed data. Lastly, P;y was
recalculated for the whole duration of an event, but the 75t percentile of all P1o data was subtracted, to attach
value only to the periods with extremely high wind speeds. The events were then ordered by the summed P;o
and the top 10 events were selected.

The heatwave events were defined using air temperature data. To select warm spells relative to the time of the
year, that is, also outside of the middle of summer, the two warmest three-day degree-day periods for each
month in the period April-August were taken, always in two separate years. If the temperature on the days
before and after this three-day period was above the 95" percentile of that month, these days were also
included in the event. Events that had insufficient water temperature data, or that were within one week of
another heatwave event, were excluded. In that case, the next warmest period was chosen, until an event with
enough lake data was found. For Lake Erken, only one event of the four warmest degree-day periods in April
had enough data. Instead of picking a colder period in April, an extra event in August was selected.

In order to compare the response of the models during extreme events with average weather conditions, ten
“reference” wind and temperature periods were defined. The selection methods and time periods were identical
to the methods and periods used for the extreme events, but instead of selecting events with the highest daily
sums of Py or highest three-day summed temperature, periods with values closest to the median were chosen.
Reference events could not be within one week of an extreme event and the duration was fixed to 24 h for wind
periods, and three days for temperature periods (Figure 1). For Lake Erken, reference temperature periods were
shifted one month (May-September), due to frequently missing data in mid-April because of ice cover.

Simulations were initialised one week before each event. This initialisation was done to minimise model error
and differences between models at the onset of an event, but at the same time to allow spin-up time of the
simulation. Restricting the simulation period before the extreme event allowed for direct quantification of model
performance during extreme weather conditions and isolation of the effects of the event, avoiding the effects
of accumulated model error during pre-event normal weather conditions.

Events Feeagh
Reference temperature events | | || | H | | |
Extreme temperature events 1]
Reference wind events H ‘ || | | ” |
Extreme wind events |\| | | | | | |
2005 2008 2011 2014 2017

Events Erken
Reference temperature events | \ | Il | | | | |
Extreme temperature events ] | | Il |
Reference wind events |\ | | | | | | | |
Extreme wind events H| | |H | |
2005 2008 2011 2014 2017

Events Mueggelsee
Reference temperature events | || | | I \ | |
Extreme temperature events | | | | Il [ | |
Reference wind events || | \ | | | | ‘ |
Extreme wind events ‘ | | | | | | | | |
2005 2008 2011 2014 2017

Figure 1. Timing of the extreme and reference events used in the analyses. The start and end dates of all events can be found in Suppl.
Mat. D.
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ASSESSMENT OF MODEL PERFORMANCE

Model performance was evaluated by comparing measured and simulated temperature profiles and the lake
thermal metrics calculated from them, using Mean Absolute Error (MAE) as a measure for goodness of model
fit. MAE was first calculated for the calibration and validation periods. Then, the MAE of the water temperature
profile was compared between extreme and reference events with a t-test or a Wilcoxon rank-sum test (in case
of non-normality or outliers) for each lake and storms and heatwaves separately. To see if different lakes and
event types had a different effect on model fit, a two-way ANOVA on the MAE during extreme events only was
performed. A post hoc Tukey test was done to compare lakes with each other. A one-way ANOVA on the MAE
was done to compare the performance of the different models during extreme events, followed by a post hoc
Tukey test.

In addition, the difference in thermal metrics between the two pre-event days and the two post-event days was
defined as the change in a metric during an event. This change for each metric in observations was tested for
significance with a t-test, or with a Wilcoxon sign test in case of non-normal data (assessed by QQ-plots and
Shapiro-Wilk tests) or outliers. The performance of the models in simulating the change in a metric during events
was assessed by inspecting plots and by calculating the Concordance Correlation Coefficient (CCC; Lin 1989)
between the simulated and observed change in metric. The CCC is similar to Pearson’s correlation coefficient,
but penalises for a deviation from the 1:1 line and was therefore deemed a more accurate statistic for model
comparison. To test for consistent bias in model simulations during events, a one-way ANOVA was performed
on the change during an extreme event, for each lake, event type (storm/heatwave), and metric. A post hoc
Tukey test was used to compare models with observations. In case the data was non-normally distributed
(assessed by Shapiro-Wilk tests), a Kruskal-Wallis test and post hoc Dunn test were performed instead, using the
“dunn.test” R package (Dinno 2017).

To evaluate model accuracy in simulating the timing of events, a temporal cross-correlation analysis was
performed on the simulated and observed datasets for each event and each metric. The cross-correlation
analysis temporally shifted the two datasets relative to each other, and the time lag with the highest cross-
correlation coefficient was taken as the time lag in the simulation. Data gaps up to two h were linearly
interpolated. Larger gaps were considered exclusion criteria for the cross-correlation analysis. Also, if the
maximum cross-correlation coefficient between simulation and observations was below 0.3, the simulation was
deemed too inaccurate to determine a time lag.

All analyses were done with the software R (version 3.6.2, R Core Team 2019). In those cases where the p-value
of a statistical test was used to distinguish between significant and non-significant, an alpha of 0.05 was used.

RESULTS
MODEL PERFORMANCE FOR THE WHOLE SIMULATION PERIOD

The models successfully reproduced the seasonal cycles of temperature and stratification (Suppl. Mat. E). All
models performed reasonably well, although GLM showed a poorer performance compared to the other two
models, based on MAE during the calibration and validation periods (Figure 2).
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Figure 2. Bar graph of Mean Absolute Error (MAE) of lake temperature in °C for the calibration (first year) and validation period of each
model and lake. For the exact values and other measures of goodness-of-fit, see Suppl. Mat. E.

OBSERVATIONS DURING EVENTS

The observed data confirmed the opposite effects of storms and heatwaves on surface temperature, volume-
averaged temperature, Schmidt stability and maximum buoyancy frequency (Figure 3, Suppl. Mat. F).
Differences between lakes could be observed. In the two deeper lakes of this study, Lough Feeagh and Lake
Erken, Schmidt stability decreased and the mixed layer deepened during extreme wind events. Volume-averaged
temperature was not strongly affected, but surface temperature decreased and bottom temperatures
increased, indicating mixing between top and bottom waters. In Miiggelsee, complete mixing occurred during
all studied storm events, and the water column was often well-mixed already before the start of the actual event
due to the lake’s shallow depth (data not shown). For four out of the ten storms in Miggelsee, stratification
formed again within a few days after the end of an event, which caused no change in Schmidt stability or mixed
layer depth compared to before the event. Cooling of all water layers occurred during all ten storm events in
Miggelsee.

During high temperature events, Schmidt stability tended to increase in Lough Feeagh and Lake Erken (Figure
3). There was no change in the mixed layer depth during these events. Water temperatures at all depths
increased, but the increase was stronger near the surface than near the bottom. After heatwave events in
Miggelsee, temperature in all water layers had increased to a similar extent, because effects of the heatwaves
on stratification dissipated soon after the end of the events. Stratification occurred during nine of the ten events,
but increases in Schmidt stability and mixed layer depth did not remain significant after the events.

In all lakes and during both storm and heatwave events, changes in maximum buoyancy frequency tended to
follow the same trend as Schmidt stability, but were not significantly different from zero.
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Figure 3. Boxplots showing the observed changes in temperature metrics, Schmidt stability, maximum buoyancy frequency, and mixed
layer depth during the identified storms and heatwaves. Change during the event is calculated as the average over the two days after the
event minus the average over the two days before the event. The boxplots show the median and first and third quartile. Whiskers extend
to the smallest and largest value within 1.5 times the inter-quartile range from the nearest quartile (see geom_boxplot function in ggplot2
R package, Wickham 2016). Values outside this range are defined as outliers (). * indicates a significant difference from zero change (See
Suppl. Mat. F).

MODEL PERFORMANCE DURING EVENTS

Generally, models performed better during the reference events compared to the extreme events. Only the
simulations for Lough Feeagh had significantly higher MAE during storm events compared to reference wind
events, while MAE during storm events in Miggelsee was significantly lower than the reference (Figure 4). In all
lakes, the MAE of the water temperature profile was higher during the heatwave events compared to the MAE
during the reference temperature events. A two-way ANOVA on the MAE during extreme events showed that
different lakes (F=18.58, p<0.001), different event types (storm/heatwave, F=6.54, p=0.01) and the interaction
between the two (F=6.91, p=0.001) had significant effects on MAE. Lough Feeagh had the lowest MAE’s during
storm and heatwave events, compared to the other lakes (0.3-0.4 °C lower, Tukey test, p<0.001), and MAE’s
were slightly higher during the heatwave events compared to the storm events (0.16 °C higher, Tukey test,
p=0.01). During the extreme events, Simstrat and GOTM had a similar MAE (mean of 0.62 °C), while the MAE for
GLM was 0.24 °C (39%) higher (One-way ANOVA, F=5.32, p=0.005, Tukey test, p<0.05, Suppl. Mat. G).
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Figure 4. Mean Absolute Error (MAE) of the water temperature profile, comparison between extreme and reference events. The bars
denote the average MAE during extreme or reference events, averaged over all models, and the error bars represent one standard
deviation. Statistical differences in MAE were tested with t-tests, or Wilcoxon rank sum tests for Lough Feeagh storms and Miiggelsee
heatwaves due to non-normal distributions. Statistically significant results (p<0.05) are indicated with a * (Suppl. Mat G).

Despite these increases in model error, the direction and magnitude of change during extreme events was often
reproduced by the models (Figure 5, 6); during storms, the changes in surface- and volume-averaged
temperature were accurately reproduced by all models (Concordance Correlation Coefficient, CCC > 0.7, Figure
6), while the bottom temperature was reproduced with less accuracy. Simstrat and GOTM reproduced changes
in Schmidt stability and buoyancy frequency during storms better than GLM (Figure 6). The change in mixed
layer depth during storms was reproduced with an average CCC of 0.5 for all models. The simulated changes
during heatwaves had slightly lower performance for surface- and volume-averaged temperature than during
storms (Figure 6). During the heatwaves, Simstrat and GOTM performed better than GLM for all metrics, except
for bottom temperature, where GOTM and Simstrat performed poorly. Simstrat and GOTM simulated the
change in mixed layer depth better during heatwaves compared to storm events. On average, changes in surface
temperature, volume-average temperature, and Schmidt stability were simulated more accurately than bottom
temperature, maximum buoyancy frequency, and mixed layer depth.
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Figure 5. Boxplots showing the change in temperature metrics, Schmidt stability, maximum buoyancy frequency, and mixed layer depth
during the identified storms and heatwaves. The change during the event is calculated as the average over the two days after the event
minus the average over the two days before the event. The boxplots show the changes in the observations (white), Simstrat (red), GOTM
(blue), and GLM (green) for a) Lough Feeagh, b) Lake Erken, and c) Miiggelsee. The boxplots show the median and first and third quartile.
Whiskers extend to the smallest and largest value within 1.5 times the inter-quartile range from the nearest quartile (see geom_boxplot
function in ggplot2 R package, Wickham 2016). Values outside this range are defined as outliers (e).
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Figure 6. Average concordance correlation coefficient (CCC) between simulated and observed changes in temperature and stratification
metrics, for each model and metric during storms and heatwaves. For the exact values and a comparison between CCC and Pearson’s
correlation coefficient, see Suppl. Mat. H.

Simstrat and GLM underestimated the increases in bottom temperature during heatwaves in Lough Feeagh
(Kruskal-Wallis test, Chi-sq=21.1, p<0.001). GLM overestimated the increases in both surface (Kruskal-Wallis test,
Chi-sq=8.2, p=0.04) and bottom temperatures (one-way ANOVA, F=9.1, p<0.001) during heatwaves in
Miggelsee. None of the other extreme events showed a statistically significant difference in the mean change
during the event between models and observations, for any metric. However, GLM underestimated the change
in bottom temperature during reference wind events as well (Kruskal-Wallis test, Chi-sq=15.5, p=0.001). This
was likely due to GLM showing very little heating of deep-water layers during the reference wind events in Lough
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Feeagh, resulting in low variance and a significant difference with observations. Some heating of bottom layers
is expected even under non-extreme conditions, for example as a result of vertical turbulent diffusion
(Livingstone 1997).

Temporal cross-correlation could be performed for more than 80% of the events for Schmidt stability and
volume-averaged and surface temperature, to calculate the simulation lag. Where the lags were calculated for
these metrics, they were less than 1 h in more than 80% of the events (Suppl. Mat. I). For bottom temperature,
maximum buoyancy frequency, and mixed layer depth, lags could only be calculated for about half of the events
due to inaccurate simulations (see Material & Methods). About 70% (maximum buoyancy frequency) and 80%
(bottom temperature and mixed layer depth) of the calculated lags were below 1 h. GLM was slightly worse in
reproducing the timing of the simulations compared to the other models, but still had more than 50% (Schmidt
stability, maximum buoyancy frequency, mixed layer depth) or more than 80% (temperature metrics) of the lags
at or below 1 h. Differences between lakes varied per metric, but the timing of the simulations was not
consistently better in any of the lakes.

In Suppl. Mat. J we show the temperature profiles and the corresponding detailed model simulations for three
example events.

DiscussION

In the present study we tested the model performance of three 1D models to capture responses to two kinds of
extreme weather events in three different lakes. Firstly, we assessed the model performance during the generic
validation period. The model fit for the full validation period was comparable to other studies (RMSE ranging
from 0.5 to 2.0 °C, e.g. Fang et al. 2012; Stepanenko et al. 2013; Bruce et al. 2018; Moras et al. 2019; Schwefel
et al. 2019). All models performed within the margins commonly found in literature, although GOTM and
Simstrat performed better than GLM. A potential reason for this could have been a consequence of forcing GLM
with hourly data, as compared to 10-min data for GOTM and Simstrat. However, this was found not to be the
reason for the lower performance of GLM, because when GOTM and Simstrat were calibrated and run with
hourly data, model errors were still about 40% lower than for GLM (Suppl. Mat. E). Model validation studies like
this are valuable to better understand in which systems the models perform well and where they may have
limitations. It could be that the different layer structure is beneficial for GOTM and Simstrat in this case of short-
term extreme events, whereas GLM with adaptive layers may perform better in water bodies with fluctuating
water levels. The different calibration routines between the models might also have influenced the model fit.
More studies of this type are required to understand structural uncertainty in lake models (Frassl et al. 2019).

In agreement with previous studies (Jennings et al. 2012; Kasprzak et al. 2017; Andersen et al. 2020), wind events
caused reduced Schmidt stability, deepened mixed layers, and cooled surface waters while the bottom water
warmed in the two deep lakes (Lough Feeagh and Lake Erken). The shallow Miiggelsee was always completely
mixed during the storm events. Heatwaves are associated with increased surface water temperatures and
stronger stratification (Jankowski et al. 2006; Johnk et al. 2008). In this study, temperatures in all water layers
increased during the high temperature events. In Lough Feeagh and Lake Erken, the surface temperature
increase was stronger than near the bottom and stratification strengthened. In Muggelsee, stratification
occurred during most of the heatwave events, in line with the findings of Wilhelm and Adrian (2008). However,
within two days after the heatwave events, stratification had reached levels similar to before the event. This
caused the temperature increase between two days before and two days after the events to be more or less
uniform with depth.

In general, all models were able to reproduce the overall trends during either heating or wind events. Changes
in surface and volume-averaged temperature and Schmidt stability were simulated most accurately, while
changes in bottom temperatures especially during heatwaves were simulated less well. Also, the simulations of
changes in maximum buoyancy frequency during storms and heatwaves, and of changes in mixed layer depth
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during heatwaves, were less accurate. The present study is amongst the first to look at model performance
during short-term events. In the scenario study by Mi et al. (2018), GLM also simulated credible changes in
hypolimnetic temperature, mixed layer depth, and Schmidt stability after a wind perturbation, although a
comparison with observations during wind events was not performed.

In addition to reproducing the general trends, only in a few cases did models consistently over- or underestimate
a change during events. Increases in bottom temperatures were underestimated during heatwaves in Lough
Feeagh by Simstrat and GLM, which suggests that these models fail to adequately simulate increases in bottom
temperatures in deep lakes, at least over the short time intervals evaluated here. However, the increases in
Lough Feeagh bottom temperatures during heatwaves were only around 0.2 °C. GLM overestimated
temperature increase in the whole water column during heatwaves in Miiggelsee, often by more than 1 °C, while
not showing such a bias over the full validation period. We have not explored further why only GLM showed this
overestimation during heatwaves. It may be related to the combination of GLM’s flexible grid structure and the
depth of the lake, with Miiggelsee being a shallow lake. The positive bias to warmer temperatures during a
heatwave was not observed in the GLM simulations of Lough Feeagh and Lake Erken. This aligns with a GLM
simulation of Lake Ammersee (mean depth 38.6 m), where surface temperature was also not overestimated
during a heatwave year (Bueche et al. 2017).

As with the overall model performance in this study, GLM displayed higher model errors than Simstrat and
GOTM during extreme events. Like the performance during the calibration and validation periods, we found that
even when Simstrat and GOTM were forced with hourly inputs, these models still showed lower errors than GLM
(Supp. Mat. G). The example results show that the surface heat fluxes had different values for each model (Suppl.
Mat. J). This is partially the result of different calibration outcomes. The heat fluxes in the different models
followed the same pattern, except for the longwave heat flux, which was notably different in GLM than in the
other two models. This was likely due to a different parameterisation of the incoming longwave radiation. The
behaviour of Simstrat and GOTM under extreme weather conditions was more similar to each other than to
GLM (e.g. Suppl. Mat. J). This similarity is likely the result of a similar model structure, as both are k-epsilon
turbulence models (Rodi 1980), while GLM calculates mixing based on energy and density gradients (see Hipsey
et al. 2019). The reason for using multiple models in this study was to ascertain if certain models performed
significantly better than others, but also to provide results that are representative of 1D models in general,
rather than any one particular model. Because all three models, despite their differences, tended to simulate
the same general trends, but showed a higher MAE during extreme weather events, we can assume that
strengths and weakness in event simulations found here are likely to occur to a similar extent in other 1D
hydrodynamic lake models as well.

Most simulations captured the observed timing of the extreme events, that is, most of the effects were
simulated within 1 h of the observations, and more than 90% of the modelled events had lags of less than 4 h,
for all metrics. It should be noted, however, that we could only determine the lag if a reasonable model fit after
the cross-correlation analysis was obtained (cross-correlation coefficient of 0.3 or higher). So, there is a bias
towards events that were simulated well. For Schmidt stability, volume-averaged, and surface temperature, lags
could be determined in 80-90% of the cases, but for the other metrics only in 40-60% of the cases. To our
knowledge, accuracy of timing of short-term events in hydrodynamic lake models has rarely been tested, yet it
is a crucial aspect of model performance, especially for forecasting purposes. In studies aimed at forecasting
phytoplankton blooms, timing is sometimes included in model assessment (Gurkan et al. 2006; Page et al. 2018),
and changes in hydrodynamics can be an important driver in phytoplankton dynamics (Wilhelm and Adrian 2008;
Kasprzak et al. 2017).

Despite the reproduction of the overall trends, the low degree of bias, and the accurate timing of simulations,
model error increased during extreme events compared to the reference periods by roughly 30% during storm
events in Lough Feeagh, and during heatwaves by 30% (Lough Feeagh, Lake Erken) to 100% (Muggelsee). This
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lower performance shows that predictions made by hydrodynamic models during extreme weather events
should be treated with additional caution. Notable exceptions were the storm events in Mlggelsee, where the
model error was 40% lower than during the reference periods. This likely has to do with the shallow depth of
Muggelsee and might be systematic for shallow lakes in general; the selected storm events were some of the
most extreme in a 14-year period and as a result this shallow lake mixed completely. This was correctly simulated
by the models, and errors estimating these isothermal conditions tended to be lower than the errors than during
the reference periods, when stratification sometimes occurred.

The larger errors during the storms in the deep lakes and during heatwaves can have multiple causes. Firstly,
many of the models’ parameterizations are nonlinear, and thus the magnitude of energy and turbulence fluxes
might increase faster than linearly under more extreme conditions. By using high-frequency driving data,
averaging errors relating to removing high frequency variation in meteorological forcing data were reduced.
However, it is still possible that the values assigned to model coefficients during long-term calibration may not
be appropriate for the extreme conditions of specific events and this would then automatically cause a larger
error. Secondly, the assumption of one-dimensionality in the models holds less well during extreme events.
During storms, the leeside of a lake and bays experience notably less wind forcing, internal waves can form, and
wave breaking creates turbulence on underwater slopes (Wiest et al. 2000; Macintyre and Jellison 2001).
Shallow areas tend to stratify earlier and warm faster than deep areas (Woolway and Merchant 2018),
potentially creating more horizontal heterogeneity during heatwaves. These three-dimensional processes are
not included in 1D models, and these sources of error may be accentuated during extreme events. Lastly,
extreme events could also increase the importance of processes that were not included or kept constant in this
study, such as precipitation, inflow, or turbidity.

We found that extreme weather generally resulted in momentarily less accurate simulation of lake conditions,
even with high-frequency forcing data collected on-site, and with all three models. But to what extent is this a
problem? Numerical process-based lake models are still amongst the best tools we have to simulate thermal
dynamics in lakes during extreme weather events and the fact that uncertainty increases during these conditions
does not invalidate their usefulness. In flood and hurricane forecasting, it is acknowledged that numerical
models have large uncertainty during extreme weather conditions (Todini 2004; Heming et al. 2019). The
uncertainty connected to these forecasts is an important aspect of the output that is included when informing
decision makers and the public. In the case of extreme events in lakes, uncertainty can be taken into account
partially by simply being aware of it. For example, since the timing of event impacts was simulated accurately,
for some purposes of modelling it might be sufficient to take the timing of the event as information and knowing
that the magnitude of the impact could differ from the simulations. However, to quantify the uncertainty during
extreme events, a potential pathway would be ensemble modelling with forcing scenarios of varying intensity.
Because we found little consistent bias, model runs with higher and lower wind speeds or temperatures could
provide an uncertainty band during extreme weather events. More research would be needed to determine
what methods would be best suited to quantify uncertainty during extreme events.

The models in this study captured the overall trends, and the range of error during the extreme events (MAE 0.4
—1.2°C) is similar to the level of uncertainty found in other lake modelling studies during regular conditions (e.g.
Soulignac et al. 2018; Moras et al. 2019). Larger model uncertainty during extreme events is, to a certain extent,
expected because of greater spatial variations in lake thermal structure, larger energy fluxes, and more rapid
changes in thermal gradients in the water column at small temporal scale, compared to non-extreme
circumstances. It depends on the objective of the modeller if this reduced accuracy poses a problem. Larger
error during extreme events might not pose a problem for long-term climate forecasting, as model fit during
these short periods is generally not of interest for this type of studies. An exception to this statement would be
if there are long-term consequences of extreme events, as in the case of tipping points (Scheffer et al. 2001).
For short-term forecasting, however, extreme events are amongst the most important events to capture. This
study shows that 1D lake models can be used to simulate these events, but the short-term predictions may be
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less precise than would occur under more normal conditions. This should be kept in mind when interpreting the
forecasts. The results in the present study suggest that forecasts for temperature data and Schmidt stability will
be more precise than for maximum buoyancy frequency and mixed layer depth. For scenario studies (as in Mi et
al. 2018), the increased uncertainty during events is likely not a major issue. The absolute magnitude of the
effect of an event might differ from observations, but the overall response is simulated. Coupling of physical
models and biogeochemical models involves a risk of error propagation; a wrong estimation of water
temperature could lead to wrong growth rates, or a too shallow mixing event results in less nutrient upwelling
than in reality. Because of this, it is likely that uncertainty during extreme events also increases for
biogeochemical models.

CONCLUSION

Extreme weather events are projected to increase in magnitude and frequency and can have large and diverse
effects on lake ecosystems. One-dimensional hydrodynamic lake models could help in elucidating their impacts
on lakes, but so far no studies have investigated how well these models perform during such events. In this
study, Simstrat, GOTM, and GLM were run during multiple selected storms and heatwaves in three lakes in order
to assess model performance. The overall effects of extreme weather on lake temperature and stratification
metrics were captured by the models with correct timing and little bias, but the precision of the model output
was reduced compared to non-extreme conditions. As with the model fit during calibration and validation,
Simstrat and GOTM performed better during extreme events than GLM.

The implications of these findings ultimately depend on a modeller’s objectives, but we are convinced that the
findings in this paper can help to elucidate the uncertainty of model predictions during extreme weather events.
This would lead to a more responsible use of 1D lake models, as uncertainty is an important part of model
simulations. We propose that 1D lake models can be adequate tools to evaluate changes in hydrodynamics
during extreme weather events, provided that the increased uncertainty during these events is kept in mind
when interpreting the results.
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ABSTRACT

Model ensembles have several benefits compared to single-model applications but are not frequently used
within the lake modelling community. Setting up and running multiple lake models can be challenging and time
consuming, despite the many similarities between the existing models (forcing data, hypsograph, etc.). Here we
present an R package, LakeEnsemblR, that facilitates running ensembles of five different vertical one-
dimensional hydrodynamic lake models (FLake, GLM, GOTM, Simstrat, MyLake). The package requires input in
a standardised format and a single configuration file. LakeEnsemblR formats these files to the input required by
each model, and provides functions to run and calibrate the models. The outputs of the different models are
compiled into a single file, and several post-processing operations are supported. LakeEnsemblR’s workflow
standardisation can simplify model benchmarking and uncertainty quantification, and improve collaborations
between scientists. We showcase the successful application of LakeEnsemblR for two different lakes.

Keywords: Ensemble modeling, Vertical one-dimensional lake model, R package, Calibration, Thermal structure,
Hydrodynamics

1. INTRODUCTION

Numerical process-based lake models are powerful tools to simulate processes occurring in aquatic ecosystems.
These models enable the users to investigate scientific and engineering hypotheses or scenarios, which would
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otherwise not be feasible (or even possible) to field-test for physical, logistical, political or financial reasons.
Over recent decades, the understanding of fluid dynamics and physical transport processes in lakes has
improved thanks to enhanced field monitoring and intensive laboratory studies (Kitaigorodskii and Miropolsky
1970; Imboden 1973; Csanady 1975; Spigel and Imberger 1980; Imberger and Hamblin 1982; Imberger 1985;
Spigel et al. 1986). With better empirical relationships and physical understanding of processes, the pioneer lake
models that emerged from these studies were essential to addressing emerging water quality issues like
eutrophication (French and Imberger 1984).

Today, one-dimensional (1D) lake models are frequently used to characterise lake hydrodynamics. These models
assume complete and instantaneous horizontal mixing. In many systems this is a reasonable assumption,
because vertical thermal gradients are typically much larger than horizontal thermal gradients. The assumption
holds for lakes with a small to moderate surface area that are not affected by Coriolis acceleration or other
significant horizontal transport processes (Patterson et al. 1984). To model water column thermal dynamics
resulting from atmospheric exchange processes, inflow entrainment and turbulence, different theoretical
approaches have been developed and applied in lake models, e.g., bulk models, energy-balance approach
models, and models that use a pure turbulence approach to account for mixing (Goudsmit et al. 2002).
Alternative approaches apply simpler schemes to solve advection-diffusion equations or use constants for
transport processes.

Since the 1980s, there has been a rapid expansion in the publication of process-based aquatic ecosystem models.
However, the aquatic ecosystem community has not fully exploited the diversity of available models by
comparing the performance of models against one another, which affords both the opportunity to identify
technical improvements but also improve overall model predictions (Janssen et al. 2015). Critical voices still
highlight the problem that modelling teams tend to ‘reinvent the wheel’ (Mooij et al. 2010) instead of building
on existing software. The Lake Model Intercomparison Project (LakeMIP) had several key findings regarding the
current state of lake modelling: (1) the majority of lake models replicate surface temperature dynamics
coherently well (Stepanenko et al. 2013), (2) individual lake models clearly outperform others for specific lake
sites (Thiery et al. 2014), and (3) models that explicitly incorporate sediment heating and resolve turbulence
over lake depth are better suited to represent lakes in numerical meteorological studies and to research
hydrodynamic processes for deep lakes (Stepanenko et al. 2013; Thiery et al. 2014). Most authors agree that
open community approaches as well as publishing the model as open-source code are the best steps for
sustainable development and to ensure future technical improvements (Janssen et al. 2015; Read et al. 2018;
Frassl et al. 2019). Still, a lack of common community framework for model calibration, validation, and
processing has resulted in few studies that quantify model performance (benchmarking) and minimal progress
in improving code and applications (Arhonditsis et al. 2014; Hipsey et al. 2020).

In the 1990s, atmospheric researchers popularised the use of ensemble modeling in operational forecasting and
uncertainty predictions (Parker 2013). Ensemble modeling involves either running the same model multiple
times with different settings or running multiple models on the same study site. One of the main advantages of
model ensembles is that the uncertainty in the model predictions can be estimated (Trolle et al. 2014; Wu et al.
2020). This allows the modeller to assess the likelihood of occurrence of certain model predictions. Connected
to this, ensemble runs of an individual model are a means of taking into account nonuniqueness (i.e. equifinality
- see Beven 2006) in parameter sets (Gal et al. 2014; Nielsen et al. 2014). The average of individual model runs
from different models can be a more robust predictor than any of the individual model runs (Trolle et al. 2014
and sources therein; Kobler and Schmid 2019). If only the “best” model is retained, valuable information in other
model fits is disregarded (Baker and Ellison 2008). An ensemble of multiple models supports the identification
of methodological and technical differences and shortcomings between the different models, and covers a wide
set of different parameterisations of processes. This can improve the understanding of model performance and
guide future model development (Janssen et al. 2015; Frassl et al. 2019).
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Model ensembles are now widely used in meteorological forecasting (Gneiting and Raftery 2005; Leutbecher
and Palmer 2008), flood forecasting (Wu et al. 2020), and climate studies (Parker 2010; Mu et al. 2017).
Ensemble models have gained momentum in large-scale water quality studies (van Vliet et al. 2019), but their
adoption in limnology has been slow. We believe the limnology community recognises the benefits of using
ensembles and multi-model simulations (Stepanenko et al. 2010; Nielsen et al. 2014), but lacks scientific
software to facilitate lake ensemble modelling. Past efforts to apply multiple lake models to the same study
systems (Stepanenko et al. 2010 (LakeMIP); Nielsen et al. 2014; Trolle et al. 2014; Yao et al. 2014, Frieler et al.
2017 (ISIMIP); Kobler and Schmid 2019; Gal et al. 2020) have often been the result of large international
collaborations. While these initiatives have revealed pertinent new information, the labour required to build
these networks is a barrier to broader implementation.

To remove these barriers and facilitate running ensembles of lake models, we developed LakeEnsemblR. Here,
we describe the package version 1.0.0 and apply it to predict temperature and ice cover in two lakes.
LakeEnsemblIR is a numerical framework to run five 1D hydrodynamic lake models simultaneously (see
Supplement - Table C1), using the same configuration and driver data, in the form of a package in the R software
environment (R Core Team 2020). The model source codes are open-source and the model executables can be
run on Windows, MacOS, and Linux platforms. The two main objectives of LakeEnsemblR are a) to improve the
accessibility of different hydrodynamic models for new users and b) to allow experienced users to utilise the
powerful approach of running an ensemble of lake models in a consistent and coherent framework. These two
aims are achieved through six key aspects of its functionality: 1) facilitating easy setup and configuration of
model files; 2) running all models with standardised input files; 3) standardising model output; 4) providing tools
for convenient post-processing; 5) standardising calibration routines; and 6) aggregating and enabling for
ensemble averaging to account for different sources of uncertainty between the models. The structure of the
package allows future development and addition of more models, and the code is freely accessible under a GNU
General Public License v2.0.

2. METHODS

2.1 MODEL DESCRIPTIONS

2.1.1 FLAKE

FLake (Freshwater Lake model, see Supplement - Table C1) is a bulk model that was developed primarily for fast
lake-to-atmosphere coupling within numerical weather prediction models (Mironov 2005; Mironov 2008). FLake
simulates lake systems using a two-layer parametric representation focusing on the heat budget. The upper,
well-mixed layer is considered thermally homogeneous, whereas the temperature in the lower, stably stratified
layer is approximated by a self-similar (dimensionless shape) profile. FLake also uses self-similarity to model ice
and sediment temperatures. Due to its computational efficiency, FLake has been widely used in numerical
weather prediction models (Mironov et al. 2010; Separovi¢ et al. 2013) and lake studies on both global and local
scale (Voros et al. 2010; Thiery et al. 2014; Woolway et al. 2019). LakeEnsemblR version 1.0.0 uses a version of
FLake that has been adapted to include heat input through inflows (pers. comm. Georgiy Kirillin). The default
FLake model option implemented in LakeEnsemblR simulates the vertical temperature dynamics up to the mean
depth of the lake, as FLake assumes a rectangular shape of the basin and does not incorporate the lake’s specific
hypsography. The assumptions of FLake match best when using the mean depth of the lake, therefore the FLake
simulations extend to a shallower depth than the other hydrodynamic models.

2.1.2 GLM

The General Lake Model (GLM, see Supplement - Table C1) is a vertical 1D hydrodynamic lake model developed
by the University of Western Australia (Hipsey et al. 2019). GLM applies a flexible Lagrangian structure to
replicate mixing dynamics. Here, neighboring layers either split or merge depending on the density of the layers.
Surface mixing dynamics are calculated via an energy balance approach, where the available kinetic energy is
compared to the potential energy of the water column. The model has been widely applied, for example to
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simulate seasonal dynamics of temperature and ice cover (Bueche et al. 2017; Fenocchi et al. 2018), project
impacts of water management measures on lake ecosystems (Weber et al. 2017; Ladwig et al. 2018; Feldbauer
et al. 2020), and to assess scenarios regarding extreme events (Mi et al. 2018; Soares et al. 2019). It has also
been rigorously tested in a large number of lakes (Bruce et al. 2018). In the version 1.0.0 of LakeEnsemblR,
version 3.1.0 of GLM is used.

2.1.3 GOTM

The General Ocean Turbulence model (GOTM, see Supplement - Table C1) was developed by Burchard et al.
(1999). It is a vertical 1D hydrodynamic water column model that includes important hydrodynamic and
thermodynamic processes related to vertical mixing in natural waters (Umlauf et al. 2005). It was initially
developed for modelling turbulence in the ocean (Burchard et al. 2006), but it has been adapted for use in
hydrodynamic modelling in lakes (Sachse et al. 2014). GOTM has been used to model the dissolution of CO; in
lakes (Enstad et al. 2008), extreme events in a eutrophic marine system (Ciglenecki et al. 2015), impact of
macrophytes on water quality (Sachse et al. 2014) and hindcasting and future climate change projections of the
thermal structure of a lake (Moras et al. 2019; Ayala et al. 2020). LakeEnsemblR version 1.0.0 uses version 5.4.0
of the lake branch of GOTM.

2.1.4 SIMSTRAT

Simstrat is a vertical 1D hydrodynamic lake model (see Supplement - Table C1), combining a buoyancy-extended
k-epsilon model with seiche parameterisation, and was originally developed by Goudsmit et al. (2002). Simulated
variables include surface energy fluxes, and vertical profiles of turbulent diffusivity and water temperature.
Multiple options for external forcing are available, as well as variable wind drag coefficients, inflow settings, and
ice and snow formation (Gaudard et al. 2019). Simstrat has been successfully applied in lakes and reservoirs of
varying morphometry in different climate zones, and in scenarios regarding climate warming (Stepanenko et al.
2013; Thiery et al. 2014; Schwefel et al. 2016; Kobler and Schmid 2019). The model is currently maintained by
the “Surface Waters - Research and Management” Department of EAWAG (Switzerland) and version 2.4.1 is
currently used in LakeEnsemblR.

2.1.5 MYLAKE

MyLake (Multi-year Lake simulation model, see Supplement - Table C1) is a vertical 1D lake model developed
and hosted by the Norwegian Institute for Water Research (NIVA), the University of Helsinki (Finland), and
Université Laval (Canada) (Saloranta and Andersen 2007). MyLake simulates daily vertical profiles of lake water
temperature, density stratification, seasonal ice and snow cover, sediment-water dynamics, and phosphorus-
phytoplankton interactions (Saloranta and Andersen 2007). The model has been used to simulate water
temperature, ice and phytoplankton dynamics in mostly Northern and alpine regions (Saloranta et al. 2009;
Couture et al. 2018; Kobler and Schmid 2019). The version used in LakeEnsemblR version 1.0.0 is written in R
and corresponds to the MyLake Matlab version 1.2.

2.2 R PACKAGE DESCRIPTION

R is an open-source and freely available statistical program that is widely used in the limnological community
and has previously been used for community-developed tools, such as rLakeAnalyzer (Read et al. 2011; Winslow
et al. 2019) and LakeMetabolizer (Winslow et al. 2016). All core functions in LakeEnsemblR version 1.0.0 have
associated documentation with replicable examples all of which can be accessed through help functions within
R (tested with versions 3.6.2 and 4.0.2, R Core Team 2020).
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Figure 1. Conceptual overview of the LakeEnsemblR package showing the main folder structure and important functions.

2.2.1 MAIN WORKFLOW

The package works with one centralised configuration file, in which the user defines the settings of the model
run and provides the locations of the standardised input files (see Box 1). The package exports the settings in
the configuration file and the standardised input files to the requirements of each individual model
(export_config() function), after which the models can be run (run_ensemble() function). The resulting water
temperatures, densities, and ice cover thickness of the individual models are then compiled into a netcdf file
and can be extracted or plotted in R (Figure 1). If observations are provided, these are added to the netcdf file
as well. Optionally, this process can be repeated with different forcing files or different parameter sets, to add
multiple ensemble members to the netcdf (run_ensemble() function, add=TRUE argument). This supports multi-
model ensembles as well as simulations of multiple parameterisations of the same model(s). The combined
model output can either be stored in text or netcdf format. In case observations are provided, parameter values
of the different models can be calibrated (cali_ensemble() function), see section “Calibration algorithms” (Figure
1).

Box 1. Settings controlled by the LakeEnsembIR configuration file. Whenever it is stated “Link to ... file”, the file
path to the LakeEnsemblR standardised file should be given. The configuration file is written in yaml text format
and is easily readable in any text editor. Comments are provided in the example configuration file to explain what
each parameter does and what the input options are.

- Location
0 Coordinates
0 Elevation
0 Depth
0 Hypsograph
- Time
0 Start and end date of simulation
0 Model integration time step
- Config files
0 Links to model-specific configuration files
- Observations
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0 Links to observational data (water temperature, ice thickness)

0 Link to meteorological forcing
0 Link to initial temperature profile
0 Light extinction coefficient (constant or varying over time)
0 Switch ice models on or off
- Inflows
0 Switch on or off
0 Link to inflow file
- Output settings
O File format
0 Depth resolution
0 Output time step
0 Variables to generate output for
- Meteorological scaling factors (optional)
- Model-specific parameter values
0 In this section, the user can change values in the model-specific configuration files
- Calibration settings
0 Initial value, lower and upper boundaries for calibration of either model-specific parameters or
scaling factors for the meteorological forcing.

2.2.2 DATA REQUIREMENTS

The minimum data requirements to run LakeEnsemblR are a hypsographic file, a light extinction coefficient, an
initial temperature profile, and a time-series of meteorological forcing variables. In the LakeEnsemblR
configuration file, the user needs to provide the location of the files. The files should have specific headings, so
the program can identify what information is provided (see Supplement A).

In the hypsographic file, the surface area (m?) per depth (m) of the lake is given. The light extinction coefficient
(m™) can be either given as a single value or varying over time. An initial temperature profile is needed if
temperature observations are not provided for the simulation starting date. The meteorological forcing must
have a constant time step and not contain missing values. Required meteorological forcing data include air
temperature (°C) and downwelling shortwave radiation (W/m?2). Wind speed (m/s) needs to be given as well,
either as a scalar or a vector (including wind direction). Either relative humidity (%) or dewpoint temperature
(°C) needs to be provided, and if relative humidity is not provided, it is calculated from dewpoint temperature
and air temperature according to the weathermetrics package (Anderson et al. 2013). Downwelling longwave
radiation (W/m?2) can either be provided directly to the models, or if it is not, will be calculated internally from
cloud cover (-), air temperature (°C), and humidity (relative humidity or dewpoint temperature), according to
Konzelmann et al. (1994). Air pressure at lake surface level is also needed to run the models, but air pressure at
sea level can be provided instead, in which case air pressure at lake surface level is estimated using the
barometric formula, assuming a sea level temperature of 15 °C (Berberan-Santos et al. 1997). Lastly, providing
precipitation (mm/h or mm/d) is optional, but omitting it will cause the models that require precipitation (GOTM
and GLM) to be run with a precipitation of 0, which may result in issues with the water balance. The influence
of direct precipitation on the heat budget tends to be minimal (Imboden and Wiiest 1995).

Optional data that can be provided are discharge (m3/s), temperature (°C) and salinity (PSU) of inflows, as well
as water temperature and ice thickness observations. In the present version of LakeEnsemblR, outflow
discharges can only be set to be identical to inflows, due to the many differences between the models in water
balance calculations. Varying water levels are therefore not yet supported, although users can change model-
specific settings related to the water balance. Observations are used for initialising temperature profiles,
calibration, and plotting. If provided, observations are added to the output netcdf file.
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2.2.3 GETTING STARTED

The LakeEnsemblR code is available on GitHub (https://github.com/aemon-j/LakeEnsemblR) and needs to be
installed into the R environment, following instructions on the GitHub page. LakeEnsemblR itself cannot run the
models, but instead this is done through supporting R packages (FLakeR, GLM3r, GOTMr, SimstratR, MyLakeR),
which contain ways of running each model on the platforms Windows, MacQS, or Linux, through executables
contained in the packages or having the model code in R.

After LakeEnsemblR is installed, a folder containing the setup for the ensemble run should be created. This can
be done by editing the template folder provided within the package or by copying a setup from
https://github.com/aemon-j/LER examples. The LakeEnsemblR configuration file (in yaml format) contains all

modifiable settings and input file paths. The input files themselves (e.g. for meteorology or inflows) need to be
in comma-delimited format and need to have the correct column headers. Templates for any file can be
generated through the get_template() function. Once the configuration file and the input files have been set up,
the export_config() function can be run. This function exports the settings in the LakeEnsemblIR configuration
file and the LakeEnsemblR input files as required by each individual model. This means that for some models,
units are converted, model parameters are changed, or input files are saved in a different format. The setup for
each individual model is placed in its own directory.

After running export_config(), the ensemble can be run through the run_ensemble() function. In each model
folder, the model-specific output is generated, which is then compiled into a netcdf file or text files (user choice)
in a shared “output” folder. run_ensemble() runs the models without calibration. The cali_ensemble() function
runs the calibration, following the specifications in the calibration section of the LakeEnsemblR configuration
file, and stores the results of the calibration in the folder specified by the out_f argument. If netcdf output is
chosen, several functions are available in the package to visualise the output (plot_heatmap(), plot_ensemble(),
plot_resid()), load the data into R (load_var()), determine start and end of stratification and ice cover
(analyse_ncdf{()), or calculate goodness-of-fit (calc_fit()). Each function has documentation that can be loaded in
R by typing ?name_function.

While the running and calibration of the models is controlled by the R code, both the input and output files are
in formats that are accessible by a wide array of software. Therefore, it is possible for users to do the pre- and
post-processing with different software. A vignette is available on the LakeEnsemblIR GitHub repository, which
describes step-by-step how to run an ensemble, with multiple code examples. A wiki is available with additional
information and frequently asked questions.

2.2.4 CALIBRATION ALGORITHMS

The LakeEnsemblIR package provides functionality for automated parameter estimation using one of three
methods. A simple calibration method based on Latin hypercube sampling, a Markov Chain Monte Carlo
approach (MCMC), and a method for constrained fitting of the models to data using one of several available
standard optimisation algorithms. The last two methods are implementations of the R package FME (Soetaert
and Petzoldt 2010) using the functions modMCMC() and modFit(), respectively. Details about the MCMC and
constrained fitting can be obtained from Soetaert and Petzoldt (2010) and the sources given therein. The Latin
hypercube sampling method uses upper and lower bounds for all parameters that are to be calibrated and then
samples evenly within the parameter space given by these bounds (e.g. McKay et al. 2000). Then the models are
run and evaluated for all sampled parameters sets. By default, six measures of model performance are
calculated: root mean square error (RMSE), Nash—Sutcliffe efficiency (NSE), Pearson correlation coefficient (r),
mean error (bias), mean absolute error (MAE), and normalised mean absolute error (NMAE) (see Table C2 in the
supplement). The user can also supply their own quality function which calculates measures of fit from modeled
and observed data. Each of the three calibration methods can be run in parallel computation, where the models
are distributed over the available cores. The parameters which are to be estimated, and their upper and lower
bounds (if applicable) are specified in the master configuration file.
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Scaling factors of meteorological forcing are parameters that are often calibrated in models (e.g. Gaudard et al.
2019; Ayala et al. 2020). Some models within LakeEnsembIR have internal parameters that scale the
(meteorological) forcing, but not all. In order to be able to use the same scaling factors for all five models, the
calibration section of the master configuration file distinguishes between model-specific parameters and
meteorological (scaling) parameters. All three calibration methods can be used to obtain parameters that
optimise the chosen model performance measure for the individual models. If common optimum scaling factors
for all models in the ensemble are wanted, the user needs to apply their own method to aggregate the scaling
factors of the models.

2.2.5 COMBINING MULTIPLE ENSEMBLE RUNS

Uncertainty of lake model output comes from different sources that are related to: forcing data, initial
conditions, model parameter values, or structural reasons like process description and numerical methods
(Thomas et al. 2020). LakeEnsemblR foremost tackles the uncertainties related to structural differences between
different models. But, LakeEnsemblR can also be used to address other sources of uncertainties; the
run_ensemble() function allows to add different model runs to a single netcdf file. Using this functionality, model
runs with different parameterisations, forcing data, or initial conditions can be run and compared. Many
diagnostic functions like calc_fit() or plot_ensemble() have two additional arguments dim and dim_index to
select which dimension should be used.

3. EXAMPLE APPLICATION OF LAKEENSEMBLR

We applied the LakeEnsemblR package to two lake case studies: Lough Feeagh (IE) and Langtjern (NO). Lough
Feeagh is a temperate monomictic lake with a maximum depth of 46 m and a surface area of 3.9 km?. Langtjern
is a shallow dimictic lake with a maximum depth of 12 m and a surface area of 0.23 km?. Langtjern is separated
into three distinct basins and our modelling efforts concentrated in the north basin with a maximum depth of 9
m and surface area of 0.06 km?. A detailed description of Lough Feeagh can be found in Allott et al. (2005), or
De Eyto et al. (2016), and a detailed description of Langtjern can be found in Couture et al. (2015), Henriksen
and Wright (1977), and Wright (1983).

The Latin hypercube sampling method with 500 parameter sets was applied to both study cases. For each model,
the parameter set with the lowest RMSE was selected. One full year was used to calibrate the models (2013 for
Lough Feeagh, May 2014 to May 2015 for Langtjern), and the following year was reserved for validation of the
simulated temperatures. Scaling factors for wind speed and shortwave radiation were calibrated for all five
models, and in addition model-specific parameters k_min (GOTM), coef_mix_hyp (GLM), c_relax_C (FLake),
a_seiche (Simstrat), and C_shelter (MyLake) were calibrated as well. These parameters were selected from
parameters used for calibration in previous studies (see Supplement - Table C3). The inflows and outflows were
omitted in all simulations. For the Langtjern simulation, hourly meteorological forcing was used to explore water
temperature and ice dynamics, whereas for Lough Feeagh, the models were calibrated and validated using both
hourly and daily averaged values to compare performance of water temperature, except for MyLake which only
operates at the daily time scale.

In this section, we provide an example of how LakeEnsembIR can be used to partition and quantify different
sources of uncertainty; boundary conditions, initial conditions, parameter and structure uncertainty. In order to
do this, the Lough Feeagh ensemble was run a total of 300 times over a period of 16 days during the stratified
period (June 12th to June 27th 2013), while different factors were varied to estimate their impact on the
simulation output. To isolate the effect of initial conditions, the models were run using 100 different initial
temperature profiles, that were drawn from a normal distribution around the observed value with a standard
deviation of 0.1 °C. For boundary conditions the models were forced with 100 different versions of the
meteorological data, where random noise was added to air temperature and wind speed from normal
distributions with a mean of 0 °C and a standard deviation of 0.5 °C, and a mean of 0 m/s and a standard deviation
of 0.5 m/s, respectively. For parameter uncertainty, 100 parameter values were drawn for each calibrated
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parameter using either a normal or lognormal distribution (Table C4). To quantify and compare the variation of
the different model runs between the different sources of uncertainty, the standard deviation of the water
temperature for each time step at two depths (0.9 m and 16 m) of the output was calculated across the 100
ensembles, for each model separately.

For Lough Feeagh, we additionally ran an ensemble with different parameterisation of the five models to
compare the uncertainty related to the chosen model with the uncertainty related to the calibrated parameters
and scaling factors for each individual model. Starting from the Latin hypercube calibration (using daily forcing
data), we first selected the best 10% parameter sets in terms of their RMSE for each model. From these sets, we
extracted the range of the calibrated parameter and scaling factors and then sampled 20 parameter sets for
each model within this range using Latin hypercube sampling. Then we ran the ensemble using these parameter
sets and combined all ensemble runs in one netcdf file.
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Figure 2. Calibrated ensemble output for simulated water temperature in 2013 for Lough Feeagh using daily forcing data, showing: a time
series of model output at 0.9 m depth for all models, b residuals for the time series at 0.9 m depth, c filled contour maps from each of
the models and observations, and d the ensemble modelled depth profile for 17 June 2013.

3.1 LOUGH FEEAGH: WATER TEMPERATURE DYNAMICS

Both simulations in Lough Feeagh using daily and hourly meteorological forcing generally produced satisfactory
results of simulated temperature in the calibration period, compared to other simulations (e.g. Arhonditsis and
Brett 2004; or Arhonditsis et al. 2006) with RMSE < 1.3 °C for daily forcing (Table 1, Figure 2) and RMSE < 0.9°C
for hourly forcing (Table 2). Except for FLake, even the uncalibrated model runs had satisfactory model
performance, and calibration improved the model fits further. Compared to the calibration period, most models
performed worse during the validation period (Table 1 for daily data and Table 2 for hourly data). Except for
Simstrat, during the calibration phase all models tended to underestimate water temperatures over all depths
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and throughout the year (Figure 3), on average ranging from about 0.1 °C (GLM, hourly forcing, Table 2) to 1 °C
(GOTM, daily forcing, Table 1).

In general, the calibrated model performance was better using hourly forcing data compared to daily forcing
data. Of the five models, FLake performed poorest when using daily forcing data and GLM performed poorest
when using hourly forcing data. The best performing model differed between hourly and daily forcing data with
GOTM performing best when using hourly data (calibration phase), and Simstrat performing best when using
daily data (calibration and validation phase). In all models the largest residuals were seen at observed
temperatures of 10 to 15 °C, during the time of the onset and end of summer stratification, and around the
depth of the thermocline (Figure 3). Using daily average forcing data, the ensemble average was amongst the
best performing fits and when using hourly forcing data the ensemble mean outperformed the individual models
in most of the calculated performance measures, due to errors of individual models cancelling each other out in
the ensemble mean (Table 1 and 2).
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Figure 3. Water temperature residual diagnostic outputs from the calibrated ensemble run for Lough Feeagh in the year 2013 using daily
forcing data. (a) Observed water temperature vs. residuals; (b) residuals vs depth, with the absolute simulated temperature in °C; (c) day
of the year vs residuals and (d) distribution of the residuals.

Table 1. Model results or goodness-of-fit - uncal(ibrated), cal(ibrated), and val(idated) - for water temperature (°C) in Lough Feeagh using
daily forcing data. Calibration was done for the year 2013 and validation for the year 2014. The best model performances are marked in
bold. Shown are Root Mean Square Error (RMSE), Pearson’s r (r), Nash-Sutcliffe Efficiency (NSE), Normalised Mean Absolute Error (NMAE),
Mean Absolute Error (MAE), and Bias (or mean error).

measure period FLake GLM GOTM Simstrat MylLake Ensemble mean
RMSE uncal 3.057 0.846 1.698 0.625 1.719 1.189

cal 1.210 0.670 1.261 0.502 0.656 0.629

val 2.297 0.847 1.425 0.693 0.780 0.916
R uncal 0.682 0.979 0.965 0.977 0.946 0.974

cal 0.804 0.983 0.969 0.983 0.983 0.985
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val 0.756 0.981 0.964 0.986 0.988 0.984
NSE uncal 0.631 0.948 0.788 0.971 0.783 0.896
cal 0.942 0.967 0.883 0.982 0.968 0.971
val 0.776 0.944 0.840 0.962 0.952 0.934
NMAE uncal 0.175 0.082 0.165 0.044 0.131 0.101
cal 0.072 0.070 0.133 0.035 0.065 0.064
val 0.132 0.081 0.132 0.045 0.067 0.079
MAE uncal 2.011 0.691 1.501 0.438 1.318 0.962
cal 0.812 0.558 1.152 0.337 0.533 0.534
val 1.610 0.720 1.286 0.467 0.628 0.760
Bias uncal -1.909 -0.575 -1.484 0.038 -1.308 -0.955
cal -0.720 -0.347 -0.986 0.028 -0.436 -0.458
val -1.560 -0.362 -1.048 -0.352 -0.526 -0.664

Table 2. Model results or goodness-of-fit - uncal(ibrated), cal(ibrated), and val(idated) - for water temperature (°C) in Lough Feeagh using

hourly forcing data. MyLake cannot be run with hourly time steps and was therefore not included in this table. Calibration was done for

the year 2013 and validation for the year 2014. The best model performances are marked in bold. Shown are Root Mean Square Error
(RMSE), Pearson’s r (r), Nash-Sutcliffe Efficiency (NSE), Normalised Mean Absolute Error (NMAE), Mean Absolute Error (MAE), and Bias

(or mean error).

measure period FLake GLM GOTM Simstrat Ensemble
mean
RMSE uncal 2.957 0.943 0.801 1.107 0.726
cal 0.617 0.819 0.594 0.599 0.469
val 0.607 1.174 0.855 0.701 0.570
R uncal 0.682 0.971 0.977 0.966 0.976
cal 0.816 0.977 0.983 0.979 0.985
val 0.824 0.972 0.984 0.985 0.992
NSE uncal 0.655 0.935 0.953 0.910 0.961
cal 0.985 0.951 0.974 0.974 0.984
val 0.984 0.891 0.942 0.961 0.974
NMAE uncal 0.157 0.081 0.074 0.072 0.063
cal 0.040 0.066 0.058 0.046 0.045
val 0.044 0.087 0.070 0.047 0.051
MAE uncal 1.909 0.718 0.634 0.756 0.581
cal 0.413 0.600 0.477 0.445 0.378
val 0.461 0.874 0.672 0.496 0.466
Bias uncal -1.749 -0.340 -0.489 0.567 -0.305
cal -0.191 -0.091 -0.318 0.074 -0.126
val -0.300 0.096 -0.548 -0.345 -0.272

3.2 LANGTJERN: LAKE ICE DYNAMICS

The models FLake, GOTM, MyLake and Simstrat accurately captured the onset of ice cover on Langtjern (-5 to

+9 days) while GLM had larger errors (+10 to +17 days) (Figure 4). The ensemble mean, which was calculated by

taking the average of the day of year when ice onset and ice-off occurred, was also relatively accurate (+3 to +6

days). For capturing the disappearance of ice cover, there was larger variability between the models compared

to ice onset. In both years, GOTM and Simstrat predicted ice-off too early (-44 to -16 days). GLM overestimated

ice-off in 2015 and 2016 by 27 to 19 days, respectively, whereas FLake and MyLake predicted ice-off relatively

accurately both years (-1 to +8 days).
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Figure 4. Calibrated ensemble model time series output for ice thickness for Langtjern, Norway. Dashed lines indicate the observed onset
of ice and dotted lines indicate observed ice-off.

The temperature profiles had a larger RMSE for the calibration and validation period in general for Langtjern
compared to Lough Feeagh, particularly MyLake (3.62 to 4.24 °C) and GOTM (3.36 to 4.70 °C) (Table 3). These
models failed to accurately simulate the stratification structure with increased mixing during the summer
months leading to larger errors. FLake had the lowest uncalibrated RMSE (2.02 °C), which was further reduced
following calibration (1.08 °C). For summary plots of Langtjern of the model ensemble and residuals see Figure
B1 and B2.

Table 3. Model results or goodness-of-fit - uncal(ibrated), cal(ibrated), and val(idated) - for water temperature (°C) in Langtjern using
hourly forcing data (as MyLake requires daily input, LakeEnsembIR averages sub-daily input to daily time steps for MyLake simulations).
Calibration was done for the year 2014-15 and validation for the year 2015-16. The best model performances are marked in bold. Shown
are Root Mean Square Error (RMSE), Pearson’s r (r), Nash-Sutcliffe Efficiency (NSE), Normalised Mean Absolute Error (NMAE), Mean
Absolute Error (MAE), and Bias (or mean error).

Measure Period FLake GLM GOTM Simstrat MylLake Ensemble Mean
RMSE uncal 2.020 2.394 4.696 3.437 4.416 2.838
cal 1.084 2.164 3.364 2.568 3.626 3.013
val 1.135 1.764 4.045 4.171 4.242 3.699
R uncal 0.887 0.868 0.786 0.833 0.807 0.874
cal 0.983 0.906 0.865 0.913 0.845 0.881
val 0.983 0.938 0.818 0.755 0.786 0.824
NSE uncal 0.895 0.760 0.074 0.504 0.181 0.662
cal 0.963 0.794 0.501 0.709 0.420 0.622
val 0.962 0.862 0.275 0.229 0.203 0.433
NMAE uncal 0.453 0.530 0.910 0.632 0.659 0.492
cal 0.450 0.433 0.817 0.569 0.599 0.587
val 0.454 0.362 0.828 0.677 0.636 0.602
MAE uncal 1.260 1.601 3.515 2.637 3.126 1.929

59



cal 0.830 1.469 2.686 2.211 2.818 2.189
val 0.863 1.022 3.017 3.059 2.880 2.361
Bias uncal 0.985 -0.298 1.076 -0.515 0.409 0.344
cal 0.274 -0.575 0.313 -0.834 -0.615 0.019
val 0.399 -0.104 0.823 -1.062 0.160 0.328
3.3 UNCERTAINTY PARTITIONING
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Figure 5. Partitioning of the different sources of uncertainty for ensemble simulations in Lough Feeagh; boundary conditions, initial
conditions and parameters between models at depths of 0.9 m and 16 m. Each model was simulated 100 times for 16 days with
adjustments to the boundary conditions, initial conditions, and model parameters accordingly. Standard deviation was calculated across
all 100 simulations for each day.

Parameter uncertainty had the largest effect on the standard deviation of water temperatures at the depth of
0.9 m compared to initial conditions and boundary conditions for all the models except FLake in Lough Feeagh
(Figure 5). Each of the parameters chosen were to account for mixing within the water column but their
implementation in each model is different due to the different formulation of mixing equations in each model.
Also, the distributions of these parameters were not comparable between models with some being normally
distributed while others were log-normal distributed (Table C4). As such, parameter-uncertainty cannot
accurately be compared between models, but it can be accounted for when using a one-model ensemble. Across
the different models, boundary conditions were more sensitive for GLM than for the other models, at both 0.9
m and 16 m depth. With regards to uncertainty in the initial conditions, FLake and GLM had higher standard
deviation at 0.9 m compared with GOTM, Simstrat and MyLake. GLM had a much higher standard deviation at
16 m for initial conditions, boundary conditions and parameter uncertainty. This is partly due to the strong
stratification which is seen in GLM (Figure B3). For parameter uncertainty, GOTM, Simstrat and GLM had a high
standard deviation at 0.9 m and 16 m, while it was lower for MyLake and FLake had the lowest uncertainty.

3.4 MULTI-PARAMETER ENSEMBLE
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Figure 6. Uncertainty of the simulated water temperature due to the calibrated model parameter and scaling factors for the five models
in Lough Feeagh, at 0.9 m depth and 16 m depth. The shaded areas give the range of values of an ensemble of 20 model runs with different
parameterisation.

The model-specific parameters and scaling factors that resulted in good model performance had a broad
distribution (see Figure B4 in the Supplement as an example). For the model-specific parameters of FLake, GLM,
and Simstrat as well as for the shortwave radiation scaling factor for FLake and Simstrat this distribution spanned
more than 75% of the range given in the calibration process. This suggests that the chosen parameters are
interrelated and there might not be a single best parameter set, that the parameters were non-sensitive, or that
the parameter range in the calibration was too narrow. The application of a multi-parameter ensemble is
showing the uncertainty related to not being able to clearly identify a single best parameter set (Figure 6). The
uncertainty of the simulated water temperature was larger during summer months and at greater depths for all
models. For the water temperature close to the surface (0.9 m depth) the uncertainty due to the chosen model
was slightly larger than the one related to the calibrated parameters throughout the year, for all models. At 16
m depth the uncertainty due to the calibrated parameter was about the same as the one related to the used
model.

3.5 DISCUSSION

As the simulations with hourly time step in Lough Feeagh show, the ensemble mean can outperform individual
lake models, which is in line with the findings of Kobler and Schmid (2019) and Trolle et al. (2014). For the Lough
Feeagh simulations with a daily time step, the Simstrat model performed best, followed by the ensemble mean
and MyLake. Using hourly time steps, GOTM performed best of the four models individually, albeit not as good
as the ensemble mean. In Langtjern, FLake simulated water temperature profiles best, while Simstrat and
MyLake performed the worst, although these two models simulated ice-on and ice-off well. In both Lough
Feeagh and Langtjern, most models performed worse in the validation period than in the calibration period,
which is to be expected due to the short (1 year) calibration period.
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As shown in this study, and also observed while testing LakeEnsemblR in multiple other lakes (unpublished
results), the best-performing model could vary per study case, and no single model consistently outperformed
others. This shows an advantage of using ensembles compared to single model simulations, which are not likely
to provide an optimal fit in every circumstance, while ensembles can incorporate individual strengths of multiple
models. Similarly, ensemble modelling can highlight weaknesses of individual models compared to others which
can further aid in model selection or refinement.

Ensemble predictions also give an indication of the uncertainty due to a different process description or
parameterisation. This uncertainty may vary over depth or time (e.g. Figure 2 and Figure 5). An increased
uncertainty in ensemble predictions represents diverging behaviour of different ensemble members. It might be
important to interpret model predictions during periods with increased uncertainty with additional caution, and
ensembles are a way to identify these periods. For a single set of parameters, the investigation of model-specific
residuals in particular (e.g. Figure 3) supports the quantification of uncertainty and the identification of better
suited models for specific case studies. In the Lough Feeagh case study, the models GOTM, MyLake and Simstrat
had a bias for simulated water temperatures near the lake bottom and during fall mixing (Figure 3 a and Figure
3 b). By looking at the depth-discrete residual dynamics (Figure 3 c) as well as the density distribution of residuals
(Figure 3 d), the model with the lowest overall bias for Lough Feeagh was GLM (scattering over the whole vertical
axis) and Simstrat (negative bias at surface and positive bias at bottom). Running a calibrated model ensemble
allows the user to quantify these model-specific biases and uncertainties, making scenario projections or
forecastings more robust. Additionally, running ensembles with different parameterisations, initial conditions,
or different boundary conditions can help to quantify the uncertainties related to the respective source.

Similarly to Kobler and Schmid (2019) and Yao et al. (2014), there was large variation between the different
models in predicting ice cover phenology (Figure 4). However, most models captured the overall timing of ice-
on and ice-off, which play a key role in the subsequent timing of stratification and several ecological processes
in a lake. The ensemble represents the large uncertainty that is inherent in modelling lake ice cover (Sharma et
al. 2019), which is important to account for when modelling lakes with periodic ice cover. It has recently been
shown that the ensemble mean of ice timing and thickness can perform better than the individual models
(Kobler and Schmid 2019), which was supported here.

A key part of modeling is being able to identify and quantify the different sources of uncertainty. This is especially
important if the model is to be used in a forecasting framework. Thomas et al. (2020) used a single one-
dimensional hydrodynamic model and partitioned out the sources of uncertainty over a 16-day forecast of water
temperature profiles in a reservoir. Using the LakeEnsembIR framework, this can be explored and quantified
further, using multiple models. The brief examples that are shown in Figure 5 and Figure 6 are a way in which
such an analysis can be conducted and the information gained from this exploration can inform decisions on
model and parameter selection.

4. SUMMARY

4.1 FRAMEWORK

LakeEnsemblR facilitates the pre-processing of data that is needed to run multiple 1D models and combines the
results into a single, standardised output file. Each model in the package requires a different format and
structure of its configuration and input files. This has been standardised in LakeEnsemblR by requiring only one
set of input and configuration files and by using the same format for all input files. By having to specify a specific
header for each column of an input file, mistakes involving column order and units are avoided, and in the
configuration file only a reference to the file location needs to be given, instead of having to specify which
column contains what information.

LakeEnsemblR relies on R packages for each model, hosted on GitHub and archived in Zenodo (see Software
Availability). These packages contain pre-compiled model executables for the platforms Windows, MacOS, and
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Linux, or the model code in R. This greatly facilitates user access to the models, as the ability to run the models
is gained fully within the R environment. Some models provide pre-compiled executables on their respective
websites, but often for only one platform, which regularly requires users to compile the model themselves.
LakeEnsemblR removes this initial hurdle for modellers who want to apply one or multiple models.

The calibration methods provided in LakeEnsemblR can all be applied to the models without requiring the user
to write custom calibration scripts. The ability to use the same calibration method for multiple models increases
the comparability of the simulations. Results in the present study confirm that LakeEnsemblR’s calibration
methods can markedly improve model fit.

Like the input, each model generates its own specific output, often in different file types and consisting of
different variables and units. LakeEnsemblIR combines these outputs into one standardised format, either in text
or netcdf. This allows quick application of the post-processing functions provided in LakeEnsemblR (e.g.
analyse_ncdf() and plot_heatmap()), but also makes it easier for users to extract output and process the results
in their preferred way. The standardised output is only generated for variables that are shared between the
models. However, the full model-specific output is still available in the model output folders and can be accessed
by the users.

By facilitating pre-processing, running, calibration, and post-processing, LakeEnsemblIR supports accessible
model ensemble applications by aquatic modellers new to the field. However, because all files required to run
the models are present in the model folders, it in no way restricts more experienced users from using the full
functionality of each of the different models. The “model parameters” section of the LakeEnsemblR
configuration file allows the user to change any parameter in the model-specific configuration files, and files
generated by LakeEnsemblR’s export_config() function can be manually altered before starting the ensemble
run.

4.2 RECOMMENDATIONS FOR USE

LakeEnsemblR eases the configuration, running and processing of a hydrodynamic lake model ensemble, and
allows the user to explore the results in various ways. However, by making it easier to apply multiple models,
there is the risk that less attention will be paid to individual model setup and that models may be applied to
situations beyond what they were designed and tested for. For example, by considering five models at once, the
overall number of parameters increases markedly and the user might be tempted to only use default parameter
settings without critical consideration of the consequences.

In order to properly calibrate a model and avoid problems such as nonuniqueness of calibrated parameter sets
(i.e. equifinality - see Beven 2006) it is important to make deliberate decisions and employ rigorous model
validation. In addition to looking at single performance metrics for the simulated state variables, it is advisable
to assess the model’s capability to reproduce fluxes and emerging properties, patterns, and relationships (Hipsey
et al. 2020). In order to find and select the right parameters to calibrate, the best practice approach would be
to apply a sensitivity analysis (e.g. Andersen et al. 2021). Many methods for sensitivity analysis are available, but
the Latin hypercube sampling method included in LakeEnsemblIR can be used as an initial approach to quantify
sensitivity. Where a complete sensitivity analysis is not feasible, expert or a priori knowledge on the models
should be used to select the calibration parameters. In the present study, we aimed at demonstrating the
possibility of calibration with LakeEnsemblR rather than exploring the parameter sensitivity of each model, and
we chose model parameters based on the parameter selection done in previous studies (see Table C3 in the
Supplement for parameters that were calibrated in previous studies).

However, the possibility to combine runs with multiple models and parameterisations also is an opportunity to
tackle issues regarding sources of uncertainty. LakeEnsemblIR can be used to quantify different sources of
uncertainty (boundary conditions, initial conditions, parameter, model structure), increase understanding about
what model works best under different circumstances, and also within-model comparisons can be made.
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Although not applied in the present study, post-processing techniques applied in other research fields, such as
blending (Vannitsem et al. 2021), can be applied to the ensemble result so that ensemble members are weighted
and more information is retrieved from the ensemble. However, we advocate the use of LakeEnsemblIR within
established modelling practices (e.g. Arhonditsis and Brett 2004; Hipsey et al. 2020), rather than as a
replacement.

4.3 OUTLOOK

The simulations in Lough Feeagh and Langtjern showcase the main functionalities of the package. However,
LakeEnsemblIR can be applied to a wider range of locations and scenarios. In long-term climate simulations, lake
model ensembles have been applied as part of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP)
(Frieler et al. 2017; Vanderkelen et al. 2020), and LakeEnsemblIR can facilitate similar efforts. Ensembles offer
several possibilities for weekly or seasonal forecasting efforts (e.g. Krishnamurti et al. 2000; Thomas et al. 2020),
and LakeEnsemblR can be run not only with multiple models, but also forced with several different weather
forecasts. Studies of processes in lake physics that are difficult to model, such as consequences of extreme
weather events (Mesman et al. 2020) or lake ice phenology (Yao et al. 2014), can especially benefit from an
ensemble approach. While LakeEnsemblR currently only covers hydrodynamic models, its predictions can also
serve as input for water quality models. Such a water quality ensemble can ultimately serve to assess and qualify
the performance of multiple aquatic ecosystem models (Hipsey et al. 2020), while also giving uncertainty to the
ecological impacts of management scenarios on ecosystems. More applications are possible, and the modular
structure of the LakeEnsemblR code allows for the addition of new models and continued development.

Although the advantages of ensemble modelling have been acknowledged by the lake modelling community,
until now no software to run multiple lake models for a single study site was available. LakeEnsemblR provides
the necessary tools to widely apply ensembles of 1D lake models. Additionally to facilitating pre-processing of
data, running of an ensemble of models, and standardising output, LakeEnsemblIR allows the aquatic science
community to start rigorous intra-model comparison studies of alternative process-based vertical 1D
hydrodynamic lake models. Prior to the development of LakeEnsemblIR, having an ensemble of models bound
together with a consistent application programming interface, rigorous tests and comparison of alternative
model codes were rare. We sincerely hope that LakeEnsemblIR can provide a consistent framework for lake
ensemble studies, uncertainty partitioning investigations, and intra-comparison modelling studies.
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SOFTWARE AND DATA AVAILABILITY

The LakeEnsemblIR code is available at https://github.com/aemon-j/LakeEnsemblIR. LakeEnsembIR and the
packages it relies upon (FLakeR, GLM3r, GOTMr, SimstratR, MyLakeR, glmtools, gotmtools) can be installed in R
following the instructions on the GitHub page, using the install_github() function of the devtools package

(Wickham et al. 2020). The packages to run the models do not contain the source code of each model, only the
executables for Windows, MacOS, and Linux. Links to the websites of the respective models are provided on
GitHub. Example set-ups of LakeEnsemblR are provided at https://github.com/aemon-j/LER examples. For

further instructions on how to run LakeEnsemblR, we refer the reader to the AEMON-J GitHub page
(https://github.com/aemon-j/LakeEnsemblR), where a vignette and a Wiki are available with detailed

instructions and code examples.

LakeEnsemblR version 1.0.0 and the model packages have been archived in Zenodo under the following DOls:
LakeEnsemblR: 10.5281/zenodo0.4146899

FLakeR: 10.5281/zenodo.4139807

GLM3r: 10.5281/zenodo.4146848

GOTMr: 10.5281/zenodo.4139780

SimstratR: 10.5281/zenodo.4139731

MyLakeR: 10.5281/zenodo0.4067998

When using LakeEnsemblR for a publication, please also cite the sources of the respective models that you are
including in your ensemble (see citation(“LakeEnsembIR”)).
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ABSTRACT

Extreme wind events affect lake phytoplankton amongst others by deepening the mixed layer and increasing
internal nutrient loading. Both increases and decreases of phytoplankton biomass after storms have been
observed, but the precise mechanisms driving these responses remain poorly understood or quantified. In this
study, we coupled a one-dimensional physical model to a biogeochemical model to investigate the factors
regulating short-term phytoplankton responses to summer storms, now and under expected warmer future
conditions. We simulated physical, chemical and biological dynamics in Lake Erken, Sweden, and found that wind
storms could increase or decrease the phytoplankton concentration one week after the storm, depending on
antecedent lake physical and chemical conditions. Storms had little effect on phytoplankton biomass if the mixed
layer was deep prior to storm exposure. Higher incoming shortwave radiation and hypolimnetic nutrient
concentration boosted growth, whereas higher surface water temperatures decreased phytoplankton
concentration after storms. Medium-intensity wind speeds resulted in more phytoplankton biomass after
storms than high-intensity wind. Simulations under a future climate scenario did not show marked differences
in the way wind affects phytoplankton growth following storms. Our study shows that storm impacts on lake
phytoplankton are complex and likely to vary as a function of local environmental conditions.

Keywords: Stratification, Storms, Extreme events, Modelling, Phytoplankton, Climate change, Nutrient
entrainment, Mixing

INTRODUCTION

High wind speeds during storms reshape the lake physical and chemical environment in ways that alter
phytoplankton biomass and growth. At the start of a chain of processes, wind stress at the lake surface induces
internal mixing and this deepens the thermocline (Andersen et al. 2020). These processes affect the vertical
distributions of oxygen and nutrients, and in turn phytoplankton growth and vertical distribution. Upwelling of

66



nutrient-rich water occurs during mixing events and can alleviate nutrient limitation, potentially causing
phytoplankton blooms (Soranno et al. 1997; Kasprzak et al. 2017; Whitt et al. 2019). At the same time, surface
temperature tends to decrease during storms (Kuha et al. 2016; Mesman et al. 2020), potentially reducing light-
saturated phytoplankton growth rates (Trombetta et al. 2019). Additionally, a deeper mixed layer can increase
light limitation for growth (Diehl et al. 2002) and deepening dilutes concentrations by mixing phytoplankton over
a larger volume of water (Kuha et al. 2016). Sediment resuspension due to shear stress in shallower parts of the
lake may simultaneously release nutrients and limit light availability (Ji et al. 2018). As such, there are conflicting
effects of storms on nutrient and light availability (Stockwell et al. 2020), and the net effect of a storm on
phytoplankton concentrations may depend on lake physiography and lake state prior to the event.

Changes in storm characteristics and lake thermal structure will affect phytoplankton responses to storms. As a
result of climate change, extreme wind events will likely shift in frequency and intensity, with different parts of
the globe experiencing increases or decreases (Molter et al. 2016; Sainsbury et al. 2018). Concurrent with these
changes in meteorological conditions, as surface water temperatures increase and stratification strengthens
(O'Reilly et al. 2015; Pilla et al. 2020), more energy is needed to mix the water column (Schmidt 1928), so that
in a warmer climate a wind event of a given magnitude and duration may cause less mixing. The depth of the
mixed layer, at the time when a storm hits, also determines the degree of lake mixing; a deeper pre-storm mixed
layer reduces entrainment of hypolimnetic water by surface waves (Imboden and Wiiest 1995). Long-term
climate effects on mixed layer depth (MLD) are still ambiguous; both shoaling and deepening mixed layers have
been observed, in addition to non-significant trends (e.g. Kraemer et al. 2015; Pilla et al. 2020) and it is likely
that local trends in transparency or wind speed are at least equally important as trends in warming to determine
changes in MLD (Persson and Jones 2008; Woolway et al. 2019). Lastly, stratification is expected to occur earlier
in the year as the climate warms (Woolway et al. 2021), and this will lead to a longer separation of epilimnion
and hypolimnion. Therefore, there will be a greater build-up of nutrients in the hypolimnion during the stratified
period (Pettersson et al. 2003; Nowlin et al. 2005), which could be entrained into the mixed layer during a storm
and become available for phytoplankton growth.

Understanding mechanistically how complex lake ecosystems are reshaped by storm events under present and
projected future conditions is a challenging task. Process-based models have the advantage of allowing a
guantitative comparison between different scenarios and identifying clear causal pathways even in complex
systems and in conditions yet to be observed. Also, experiments that incorporate deep-water mixing and
different scenarios regarding stratification, nutrient concentrations and climate warming are very demanding to
set up (but see Giling et al. 2017a), whereas models can relatively easily explore such a wide range of scenarios.
Another issue involving the study of extreme events, is that such events are rare by definition and hard to
predict. Moreover, storms act on short timescales (hours to days), while lake monitoring programs often include
only weekly or monthly samples. Therefore, biogeochemical data describing responses to storm events are
scarce. In the present study, we use the General Ocean Turbulence Model (GOTM) model coupled to a
biogeochemical model to study the impact of storms on phytoplankton dynamics. In Mesman et al. (2020), one-
dimensional process-based models (including GOTM) were shown to simulate physical effects of storms with
reasonable accuracy. This means that we can have some confidence that processes related to the transport and
mixing of biogeochemical particles and solutes during storms are accurately simulated. Our approach allows us
to draw conclusions about potential regulating factors for the response of phytoplankton to storms, and how
climate warming may affect this response.

The main process under investigation here is the effect of storms on the redistribution of biogeochemical
compounds between the epi- and hypolimnion. We use Lake Erken, a Swedish mesotrophic dimictic lake, as a
case study, because of the available long-term time series of physical and biological variables that we used to
calibrate the model. However, the findings in this study increase our understanding of the processes regulating
phytoplankton responses to storms across stratifying lakes in general. Phytoplankton communities in these lakes
are shaped by their need for both nutrients and light, which show opposing gradients in availability. Shallow
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polymictic lakes are likely to react differently to storms, with more emphasis on sediment resuspension and
uprooting of macrophytes (Ji et al. 2018), and our model results are not applicable there. We assess scenarios
covering a broad range of atmospheric and lake conditions, that reflect conditions present in many temperate,
stratifying lakes.

Here, we investigate 1) how storm intensity, thermal structure, light availability, and nutrient availability control
phytoplankton response to storms during summer stratification, and 2) how climate warming may influence the
response of phytoplankton to storms. To answer these questions, we performed two numerical experiments. In
the first experiment, we repeatedly simulate a storm event while changing storm intensity, incoming shortwave
radiation, and pre-event mixed layer depth, surface water temperature, and hypolimnetic nutrient
concentration in a full factorial design. In the second numerical experiment, we compare the response of
phytoplankton to wind perturbations between present-day and future-climate air temperatures, at different
times of the year and at different storm intensities. These simulations help us to disentangle and better
understand the dynamic response of primary producers to storms in a changing world.

METHODOLOGY

SITE DESCRIPTION

Lake Erken is a mesotrophic lake in Sweden (59°50'37"" N, 18°3538" E), with a mean depth of 9 m and a maximum
depth of 21 m. The lake has a surface area of 24 km? and its retention time is 7 years (Blenckner et al. 2002).
Lake Erken is dimictic, meaning that it experiences both winter ice cover and summer stratification, although
short-term partial or complete mixing events are possible in summer in response to wind-induced mixing (Yang
et al. 2016a). During summer stratification, both nitrogen (N) and phosphorus (P) can limit phytoplankton growth
in the lake (Vrede et al. 1999), whereas during deep mixing or fully mixed conditions, light availability is the main
limiting factor (Yang et al. 2016a). During summer, nutrient concentrations build up in the hypolimnion, and
these nutrients are circulated through the complete water column after the autumn turnover (Pettersson et al.
2003).

In most years, Lake Erken experiences a distinct spring bloom followed by a clear water phase, and then a second
phytoplankton biomass peak in summer/autumn (Yang et al. 2016b), a pattern followed by many monomictic
and dimictic lakes across the globe (e.g. Sommer et al. 2012). The spring bloom in Lake Erken is dominated by
diatoms such as Aulacoseira spp., Stephanodiscus spp., and Asterionella formosa (Weyhenmeyer et al. 1999;
Yang et al. 2016b). In summer, a major bloom-forming species is the cyanobacterium Gloeotrichia echinulata
(Karlsson-Elfgren et al. 2003; Yang et al. 2016b).

DATA COLLECTION

In this study, we used meteorological, water temperature, and biogeochemical data for the period 1999 to 2020.
Meteorological data (wind speed, air temperature, air pressure, relative humidity, shortwave radiation, cloud
cover, and precipitation) were collected using a weather station on a small island in the lake at hourly frequency.
Moras et al. (2019) replaced missing meteorological data from nearby stations, selected by artificial neural
network analysis, and we continued to use this dataset, supplemented by data until the end of 2020.

Discharge into Lake Erken was calculated by the HYPE model (Lindstrom et al. 2010), and validated using
measured data from the main tributary of the lake. In this main tributary, discharge and temperature data were
automatically monitored and summarised to daily values, while phosphate, total phosphorus, nitrate, and
particulate organic matter concentrations in the inflow were measured once or twice per month. These data
were collected only from 2004 onwards, and the first 5 years of the recorded nutrient loadings were recycled
for 1999-2003, which was the spin-up period of the model (see below).

In the lake, hourly water temperature data were collected during the ice-free season with a thermocouple chain
above the deepest point of the lake, every 0.5 m down to 15 m depth. Starting in 2017, these data were collected
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year-round. Schmidt stability (Schmidt 1928; Idso 1973) and mixed layer depth were calculated from the water
temperature profiles. Schmidt stability was calculated using the “rLakeAnalyzer” R package (Winslow et al.
2019). The mixed layer depth was defined as the depth where water density had increased by 0.15 kg/m?3 relative
to the uppermost measurement (similar method as Wilson et al. 2020).

Water samples to determine nutrient concentrations (phosphate, total phosphorus, nitrate, and ammonium)
were collected every two weeks during the ice-free season. During stratification, separate integrated samples
of the epilimnion and hypolimnion were taken. In winter, if the ice was accessible, a single integrated nutrient
sample was taken through a hole in the ice approximately every month. Nutrients were analysed using standard
laboratory techniques, described in Ahlgren and Ahlgren (1976) and Goedkoop and Sonesten (1995).
Chlorophyll-a data were collected at the same time and depth resolution as the nutrient data. Material
concentrated by filtration on glass fibre filters were analysed using spectrophotometry as described in Ahlgren
and Ahlgren (1976).

MODEL DESCRIPTION AND SETUP

The General Ocean Turbulence Model (GOTM) is a one-dimensional (1D) k-epsilon model that simulates vertical
thermal and turbulence dynamics in freshwater and marine water bodies (Umlauf et al. 2005). GOTM is
interfaced to the Framework for Aquatic Biogeochemical Models (FABM), which allows coupling of a physical
model with a biogeochemical model (Table 1, Bruggeman and Bolding 2014). At every simulation time step in
this coupled setup, the biogeochemical equations are applied to each layer in GOTM, including surface and
sediment exchange, and GOTM regulates the transport of biogeochemical substances between the layers. Using
FABM, GOTM was coupled to a modified version of the SELMA model, which itself is a modular version of the
ERGOM model (Table 1, Neumann et al. 2002). This new version was named “Selmaprotbas”, because apart
from several code improvements, we implemented several features from the PROTBAS model described by
Markensten and Pierson (2007).

The Selmaprotbas model describes oxygen, detritus, nitrogen, phosphorus, phytoplankton and zooplankton
dynamics. Processes described in the model include (de-)nitrification, sediment resuspension, sediment solute
release, mineralisation of detritus, phytoplankton growth regulated by nutrients and light, and grazing by
zooplankton (Neumann et al. 2002). Chlorophyll-a content and biomass are linked through a fixed chlorophyll-
to-carbon ratio. We modified the SELMA model code by 1) expressing biomass in carbon instead of nitrogen; 2)
adding a silica cycle; 3) adding an option to use the phytoplankton light limitation and temperature growth
dependence function described in Reynolds et al. (2001), 4) relating chlorophyll-a concentration directly to the
carbon biomass of phytoplankton; 5) adding the possibility for buoyancy regulation of phytoplankton; and 6)
allowing varying nutrient ratios over time in detritus and sediment. Advantages of these changes include a more
comparable set-up to other biogeochemical models and a more complete description of potentially relevant
processes. A more detailed common-language description of the model has been supplied in Supplement A and
the model code is publicly available (see Software Availability).

Table 1. Software used or referred to in this study. Supplement A contains more information on how GOTM and Selmaprotbas are coupled
to each other, and how the Selmaprotbas model was derived from the SELMA and PROTBAS models.

Abbreviation Full name Description Reference
GOTM General Ocean Turbulence | One-dimensional hydrodynamic model. | Umlauf et al.,
Model Used in this study to simulate the vertical | 2005

thermal structure

FABM Framework for Aquatic | Framework to couple a hydrodynamic to a | Bruggeman &
Biogeochemical Models biogeochemical model. Used in this study | Bolding, 2014

to couple GOTM and Selmaprotbas.
Selmaprotbas | Selmaprotbas Biogeochemical model. Used in this study | This study
(combination of the | to simulate oxygen, nutrient, and

69



SELMA and PROTBAS | phytoplankton dynamics. Based on SELMA
models) and PROTBAS.
SELMA Simple Ecological Model | Biogeochemical model. A modular (i.e. | -
for the Aquatic compartmentalised) version of ERGOM
that can be coupled to FABM.
ERGOM Ecological ReGional Ocean | Biogeochemical model. Neumann et
Model al., 2002
PROTBAS PROTech-Based Algal | One-dimensional physical and | Markensten &
Simulations biogeochemical model. Based on | Pierson, 2007
PROTECH.
PROTECH Phytoplankton RespOnses | One-dimensional biogeochemical model. Reynolds et al.,
To Environmental CHange 2001
ParSAC Parallel Sensitivity Analysis | Software for sensitivity analysis and | Bruggeman &
and Calibration calibration. Used in this study to perform a | Bolding, 2020
sensitivity analysis and calibrate the GOTM-
Selmaprotbas coupled model.

The meteorological conditions and inflow data collected at Lake Erken were used as inputs for the model, and
the GOTM model was run with an integration time step of 1 hour and 0.5 m thick layers. A fourth order Runge-
Kutta time integration scheme was chosen for the Selmaprotbas model. The Selmaprotbas model was run with
two phytoplankton groups: diatoms and cyanobacteria, both of which had growth regulated by light,
temperature, and the concentrations of phosphorus and nitrogen. The diatom group was calibrated specifically
for the spring period, had high sinking rates, and was also regulated by silica; cyanobacteria could fix nitrogen
and regulated buoyancy based on light availability, with the same settings as Anabaena (now Dolichospermum)
described by Reynolds et al. (2001). For the files used to run the model, see Software Availability.

CALIBRATION

After 5 years of spin-up, 13 years (2004-2016) were used for calibration, which was done using the ParSAC
software (Table 1, Bruggeman and Bolding 2020), employing a differential evolution method to optimise the
maximum likelihood objective function of RMSE between observations and simulations. A single set of
parameter values was retrieved from the calibration. The calibration was split into two steps. First, the water
temperature data was optimised using 10,000 iterations, by calibrating five parameters based on a previous
study (Ayala et al. 2020): minimum turbulent kinetic energy, the extinction coefficient of visible light, and scaling
factors for heat fluxes, wind speed, and incoming shortwave radiation. In the second step, 400,000 model
iterations were done, varying 50 parameters that were determined in a sensitivity analysis (see next section).
The objective function compared simulated in-lake concentrations of ammonium, nitrate, phosphate, total
phosphorus, chlorophyll-a, water temperature, and oxygen with measured lake data. Physical parameters from
the first step were also included in the second step of the calibration, but their ranges were constrained to +/-
10% of the value obtained in the first calibration step. Since the nutrient and chlorophyll-a samples were based
on integrated samples for the epilimnion and hypolimnion, for the calibration we assumed these samples to be
representative of 3 m and 15 m depth, respectively.

The ParSAC calibration attaches equal weight to each observation, so to avoid attaching too much value to the
water temperature and oxygen measurements (which were collected at higher frequency) in the second step,
we excluded temperature and oxygen measurements that were not collected on the same day as the nutrients,
and we reduced the vertical resolution from 0.5 to 1.0 m. The full time series were used to assess goodness-of-
fit.

The results of the calibration can be found in Supplement B.
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SENSITIVITY ANALYSIS

To determine what parameters to include in the calibration of the Selmaprotbas model (biogeochemistry), we
performed a sensitivity analysis using the ParSAC software (Bruggeman and Bolding 2020; Andersen et al. 2021),
which applies the Sensitivity Analysis Library (SALib, Herman and Usher 2017) in Python. All parameters in the
Selmaprotbas model, scaling factors for inflow discharge and concentrations, and the five calibrated parameters
in GOTM were included in the sensitivity analysis (totalling 55 parameters), and responses in simulated mean
values of ammonium, nitrate, phosphate, total phosphorus, chlorophyll-a, and oxygen were assessed.

We followed a density-based delta-sensitivity method (Borgonovo 2007), which has been described by Andersen
et al. (2021) for the GOTM-FABM-PCLake model. First, a Latin hypercube sampling (McKay et al. 2000) was done
to generate a number of parameter sets equal to 200 times the number of parameters. This number was based
on a convergence test, where we found that values for sensitivity started to converge at this number (results of
convergence test not shown). We then ran the model for all parameter sets in the Latin hypercube and used the
delta-sensitivity analysis as described by Borgonovo (2007) on the results to do the sensitivity analysis. In this
method, the global importance of a parameter is calculated based on its effect on the entire output distribution,
which can be calculated even when parameters are correlated (Borgonovo 2007). A 95-percent confidence
interval around the sensitivity values was obtained by 100 resamples using a bootstrapping approach (Plischke
et al. 2013). To distinguish sensitive from insensitive parameters, we introduced a dummy parameter in the
sensitivity analysis (Andersen et al. 2021). If a parameter’s sensitivity value fell within the 95-percent confidence
interval of the dummy for all variables (ammonium, nitrate, phosphate, chlorophyll-a, oxygen), that parameter
was excluded from the calibration. For parameters that were repeated for the two phytoplankton groups, the
parameter was excluded only if it fell in the dummy confidence interval for both groups. If not, the parameter
was retained for both phytoplankton groups. The parameters that were excluded during the sensitivity analysis
can be found in Supplement B.

VALIDATION

We calculated Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Error (ME), and Nash-Sutcliffe
Efficiency (NSE, Nash and Sutcliffe 1970) from the simulated and measured values of water temperature,
nutrients, oxygen, and chlorophyll-a as measures for the goodness-of-fit. All measured values at each depth
were compared to the corresponding simulated values, by linear interpolation of simulated values if necessary.
The last 4 years of the time series (2017-2020) were used for validation, and thus not used to train the model.
The measures for the goodness-of-fit were compared between the calibration and validation period to assess
the quality of the simulation. The simulation from 1999-2020 using the observed weather conditions and the
calibrated parameter values is termed the “long-term simulation”.

All calculations and data handling were done in the R software, version 4.0.1 (R Core Team 2020).

NUMERICAL EXPERIMENT 1: VARYING INITIAL CONDITIONS BEFORE A STORM

The aim of our first numerical experiment was to investigate which variables control the response of
phytoplankton concentrations to storms. In order to achieve this aim, we induced a one-day storm event for
different values of several meteorological and pre-event lake variables. Five variables were chosen that were
expected to impact phytoplankton response to storms:

- Storm intensity (i.e. wind speed during the event); this represents the magnitude of the disturbance
induced by the storm

- Mixed layer depth (MLD); MLD prior to the storm is a measure of the vulnerability of the thermal
structure to mixing and controls the volume of the epilimnion

- Shortwave radiation; incoming solar radiation regulates the availability of light

- Surface water temperature; increases the strength of stratification, and therefore the resistance to
mixing
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- Hypolimnetic nutrients; these regulate the potential for nutrient upwelling

Ten levels of each variable were taken into consideration in a full factorial design, therefore totalling 10> =
100,000 simulations. The storm perturbation had a duration of 24 hours and was initiated 24 hours after
initialisation of the model run (Figure 1a).

We focused on the month of July to generate the weather conditions for this numerical experiment. This is
because Lake Erken was always stratified in this month and stratification would have existed for a long enough
time to allow for the build-up of hypolimnetic nutrients. In order to have a representative period with natural
weather variations, we have selected the year in our dataset with the most generic weather conditions during
this month. To that purpose, we calculated the mean and standard deviation for the meteorological driving
variables measured in July (wind, pressure, temperature, relative humidity, shortwave radiation, and cloud
cover) for each year separately and for the full period (1999-2020). For each year, we then calculated the root
mean squared relative error (e.g. Despotovic et al. 2016) between the year and the full period values for both
mean and standard deviation. July 2006 had the lowest error value and therefore most closely matched the
long-term mean and variance, so these weather conditions were used as baseline in the first experiment (Figure
1, panels a-d).

This numerical experiment required calculation of generic in-lake conditions to be used as initial conditions, for
all model variables. We used the long-term simulation during July to determine these, because we decided that
this was more representative of average summer conditions in Lake Erken rather than using the initial profiles
for July 2006. Due to the scenarios with different MLD and the importance of MLD for vertical profiles of
temperature and solutes, we calculated average profiles for the epilimnion and hypolimnion separately. Both
profiles were defined as ten equidistant values, interpolated from surface to the MLD for the epilimnion, and
from the MLD to the maximum depth for the hypolimnion. As an example, when the MLD was 8 m, the
epilimnetic profile would consist of ten values, a linear interpolation of the simulated values over 0 — 8 m, and
when the MLD was 4 m, the epilimnetic profile would still have ten values, but interpolated over 0 — 4 m depth.
Dates with a density difference between top and bottom of less than 0.15 kg/m3 were excluded, as well as dates
with an MLD shallower than 2 m or deeper than 15 m. The average of all calculated epilimnetic and hypolimnetic
profiles during July were taken as initial conditions for our simulations, for each model variable. Because these
initial conditions were defined relative to MLD, profiles for any value of MLD could be generated (see dashed
lines in Figure 1, panels e-g).
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Figure 1. Set-up of the first numerical experiment. Panels a-d show the weather conditions used in the experiment — a) wind speed, b) air
temperature, c) incoming shortwave radiation, and d) cloud cover. The solid lines were used in all simulations and the dashed lines
indicate the different scenarios used in the numerical experiment, which were varied independently of one another. In panels e-g, the
initial vertical profiles of e) water temperature, f) nitrate, and g) phosphate are shown. The initial profiles varied in both mixed layer
depth (MLD, dashed lines) as well as the epilimnetic value for water temperature and the hypolimnetic value for nitrate and phosphorus
(solid lines). Since it was a full factorial design, each of the panels e-g could contain hundred lines (varying both MLD and absolute value),
but instead variation in either MLD (keeping the absolute value constant) or absolute value (keeping MLD constant) is shown. Nitrate
and phosphate were part of the same scenario (i.e. “nutrients”) and therefore did not vary independently. These initial profiles were
based on the average conditions during July in the long-term simulations. The values of the levels used in the scenarios can be found in
Supplement C.

The ten different levels of wind speed, MLD, incoming solar radiation, surface temperature, and hypolimnetic
nutrient concentration used in the simulations were also determined from the long-term simulation (1999-2020)
using data from July. The 5th and 95th percentile of the daily averages were computed, and a linear sequence
of ten values between these percentiles was used for the experiment (Figure 1). The only exception was wind
speed. Since the main interest of the present study was high wind speed, the lowest wind speed considered was
the median, and the highest wind speed was set to 3 m/s above the maximum recorded daily average wind
speed, to anticipate the possibility of increased storm intensity in the future due to climate change (Molter et
al. 2016). Each combination of the independently-changed variables was a separate simulation.
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As output of each model run, concentrations of chlorophyll-a, nitrate, and phosphate were volume-averaged
over the euphotic zone for the first week after the end of the storm. The depth of the euphotic zone (i.e. the
depth where 1% of the light remains) was kept constant and was calculated as -In(0.01) times the calibrated
value of the e-folding depth of visible light (“g2” parameter) in the GOTM model, which gave a euphotic zone
depth of 8.0 m. We decided to average over the euphotic zone, because phytoplankton below this zone are
unlikely to contribute to primary production and will likely degrade over time, yet they are still present as
biomass in the model. Averaging over the full water column would therefore lead to underestimation of the
effects of storms on production and chlorophyll-a due to mixed layer deepening. In addition to the average
concentrations, average Schmidt stability was also calculated for the first week after the storm.

As the last step of this experiment, we fitted the volume-averaged chlorophyll-a concentrations in the
experiment with a random forest model to discern what variables affected the result most, using permutation
variable importance. The random forest model contained 1000 trees, and all data from the experiment were
used - so no holdout -, as the aim was to find out what variables were most important, not prediction. The fitting
of the random forest model and the calculation of the permutation importance were done using the “ranger” R
package (Wright and Ziegler 2017).

NUMERICAL EXPERIMENT 2: INDUCING STORMS IN LONG-TERM SCENARIOS

Where the first numerical experiment investigated the effect of individual variables, the second experiment
aimed at discerning the net effect of a warming climate on phytoplankton response to storms. The long-term
simulation, from 1999 to 2020, under observed weather conditions, was taken as the baseline. To this baseline,
every year (N = 22) a 24-hour wind perturbation was added. To avoid cumulative effects, only one perturbation
was applied to each 22-year simulation. For the rest of the period, observed weather data were used. Based on
average seasonal patterns of stratification, this perturbation occurred early (9th of June, corresponding to the
first day-of-the-year when the averaged Schmidt stability over all the years exceeded 50% of the maximum) or
later (4th of July, 80% of maximum stratification) in the year, and with moderate (7.2 m/s, i.e. 95th percentile of
daily average wind speed) or high (9.0 m/s, 99th percentile) intensity (Table 2; for the determination of these
thresholds, see Supplement D).

Table 2. Design for the second numerical experiment. Starting from the long-term simulation (1999-2020), 24-hour wind perturbations
were added either early or late in the year, and with moderate or high intensity. These wind perturbations were added to every year in
separate simulations, to avoid accretion of effects. This setup was repeated for a future-climate scenario, in which air temperatures were
scaled to the level of 2040-2070 according to an RCP (Representative Concentration Pathway) 8.5 climate scenario.

Present-climate RCP8.5
(observed meteorological data) (scaled air temperatures)
Control (no perturbations) 1 simulation 1 simulation
Early, moderate intensity 22 simulations 22 simulations
(1 perturbation for each year 1999-2020)
Early, high intensity 22 simulations 22 simulations
Late, moderate intensity 22 simulations 22 simulations
Late, high intensity 22 simulations 22 simulations

This design was repeated for a climate scenario in which the air temperature was scaled to the period 2041-
2070 of an RCP8.5 emission scenario of the regional-downscaled output of the HadGEM2-ES global climate
model (Collins et al. 2008) that was created as part of the EURO-CORDEX experiment (Table 2, Jacob et al. 2013).
The measured Lake Erken air temperature was scaled according to the delta-decile method described in Perroud
and Goyette (2010); for every month and every decile of daily-averaged air temperature (0-10th percentile, 10th
to 20th percentile, etc.) the increase in temperature was calculated and applied to the historical time series. The
other meteorological conditions, including relative humidity and wind speed, were kept the same. This approach
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was chosen to isolate the effects of warming alone and to draw conclusions for a wider range of lakes, as local
trends in other variables that may be specific to Lake Erken were not included. Atmospheric warming not only
influences surface temperature and strength of stratification, but can also change the mixed layer depth and
lead to an earlier onset of stratification and thus to different vertical profiles of nutrients and oxygen. As such,
increased air temperature influences multiple potentially important lake variables that affect the relationship
between storms and phytoplankton, which were investigated in isolation in the first numerical experiment.

In each simulation, the volume-averaged chlorophyll-a concentration between 0 and 8.0 m depth (the euphotic
zone) was calculated. The maximum difference in concentration between the control and storm scenario, within
one week after the storm, was compared between present-day and future climate.

RESULTS

CALIBRATION AND VALIDATION

During the calibration period, the model simulated water temperature with an RMSE of 0.9 °C. Seasonal cycles
in oxygen, nitrate, and phosphate, were also reproduced, as indicated by NSE values above 0 (Table 3). The main
cause for the low fit statistics of chlorophyll-a was the substantial underestimation of the spring chlorophyll-a
peak (Supplement E). In the validation period, the model fit worsened slightly for phosphate, nitrate and
chlorophyll-a, as indicated by the NSE values. Inspection of the time series (Supplement E) confirmed that
seasonal cycles in water temperature were well simulated. Deep-water oxygen concentrations were also
simulated accurately, except that under ice, oxygen depletion was underestimated by the model, and in 2014-
2016 deep-water anoxia events were missed. Chlorophyll-a concentrations showed distinct spring and summer
peaks, but in almost all years, the spring peak concentrations were underestimated, and sometimes simulated
too late. Summer chlorophyll-a levels tended to be close to observed levels, with the exception of some summer
blooms. Epilimnetic concentrations of both nitrate and phosphate were simulated to be low in summer, typical
of values measured in the lake. However, the increase in nitrate concentrations in autumn was reproduced too
early, and winter concentrations of phosphate tended to be underestimated.

Table 3. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Error (ME), and Nash-Sutcliffe Efficiency (NSE) for the
calibration (“Cal.”, 2004-2016) and validation (“Val.”, 2017-2020) periods. For RMSE, MAE, and ME, values close to 0 indicate an optimal
fit, whereas for NSE a value close to 1 indicates an optimal fit. These metrics are calculated for the epilimnion in case of nitrate, phosphate,
and chlorophyll-a, and for the full water column for oxygen and temperature.

Variable RMSE MAE ME NSE

Cal. Val. Cal. Val. Cal. Val. Cal. Val.
Phosphate (mg P/I) 0.011 0.012 0.007 0.008 -0.003 | -0.001 | 0.406 0.234
Nitrate (mg N/I) 0.050 0.051 0.037 0.038 0.017 0.024 0.375 0.346
Oxygen (mg O/1) 2.106 2.115 1.152 1.321 0.659 0.775 0.511 0.720
Chlorophyll-a (ug/l) 6.163 6.820 3.544 4.437 -1.797 | -2.741 | -0.054 | -0.156
Water temperature (°C) | 0.880 0.818 0.580 0.511 -0.065 | -0.018 | 0.957 0.976

NUMERICAL EXPERIMENT 1: VARIABLES CONTROLLING PHYTOPLANKTON RESPONSE TO STORMS

Storm intensity, MLD, surface water temperature, hypolimnetic nutrient concentration, and incoming shortwave
radiation all affected the phytoplankton response to storms. Wind speed had a nonlinear effect on the average
phytoplankton biomass in the first week following the storm: moderate wind speeds increased chlorophyll-a
concentrations, but strong winds (in the order of 10 m/s or higher) had a less positive, or even a reducing effect
on chlorophyll-a concentration (Figure 2, panel b, inset). With an initial mixed layer deeper than about 8 m, even
strong winds had substantially less effect on chlorophyll-a concentrations (Figure 2b).

Of the other variables included in the experiment, incoming shortwave radiation had the strongest influence
(Table 4). At low incoming radiation (< 150 W/m? averaged), the effect of storms on phytoplankton was largely
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negative, although at moderate wind speeds some increases could still be seen (Figure 2b). When incoming
radiation increased above 200 W/m?, storms had an overall positive effect on phytoplankton concentration,
moderate wind speeds more so than high wind speeds. Hypolimnetic nutrients were less influential than light
or surface water temperature (Table 4), but higher concentrations resulted in increased phytoplankton biomass
following storms at mixed layers deeper than about 4 m when incoming radiation was high (Figure 2b). At the
shallowest mixed layer (2 m), wind speed had a negative effect on chlorophyll-a when hypolimnetic nutrients
were high. This was caused by the setup of the experiment (Figure 1), as even under the lowest wind speed a
large amount of the hypolimnetic nutrients entered the epilimnion, and high wind speed therefore mostly
reduced growth due to mixed layer deepening. Surface water temperature before the storm (and therefore
Schmidt stability) also influenced phytoplankton response to storms; a higher initial surface temperature caused
a decrease of phytoplankton after storms (Supplement F-2).

Apart from changes in chlorophyll-a, we also looked at changes in Schmidt stability, and nutrient concentrations.
The strongest decrease in Schmidt stability was diagnosed at strong wind speeds and shallow MLD (Supplement
F), an indication of intense mixing. Although mixing events always entrained nutrients into the epilimnion,
noticeable as a peak directly after the storm (not shown), the nutrient concentration averaged over the euphotic
zone in the first week after the storm could be lower compared to no-storm conditions, especially for moderate
wind speeds (5— 10 m/s, Supplement F-1), due to enhanced phytoplankton uptake. If the initial mixed layer was
deeper, the effect of the storms on thermal structure and nutrients was less strong (Supplement F-1).
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Figure 2. The figure shows two main panels, a and b, which are each composed of 16 sub-panels. Panel a shows the volume-averaged
chlorophyll-a concentration in the euphotic zone (upper 8.0 m of the water column), averaged over the first week after an induced storm
event in numerical experiment 1. In panel b the same data as in panel a are shown, but relative to no-storm conditions, while keeping
MLD, nutrients, and light the same. The sub-panels each represent a scenario with a different hypolimnetic nutrient concentration (low
on the left, high on the right; N and P concentrations are indicated on top) and a different average incoming shortwave radiation (low on
top, high on bottom, values indicated on the left). Each sub-panel has the wind speed of the storm event on the horizontal axis and the
mixed layer depth (MLD) on the vertical axis (see labels in the inserts), and each small rectangle inside each sub-panel corresponds to
one simulation. The change in main panel b is calculated relative to the simulation with a wind speed of 3.7 m/s (which is why the left
column of each sub-panel always has a value of 0). The numerical experiment was performed using ten levels of shortwave radiation and
nutrient levels. Only four by four sub-panels are shown for visualisation purposes, as it turned out that the results for intermediate input
values can be interpolated from the ones that are displayed in the figure.

Table 4. Permutation-based variable importance of wind speed, mixed layer depth, hypolimnetic nutrients, incoming shortwave
radiation, and surface water temperature for predicting change in volume-averaged chlorophyll-a over the euphotic zone (i.e. the colours
shown in Figure 2, panel b) in the first numerical experiment, based on a fitted random forest model. The out-of-the-bag R2 was 0.992.
The importance values represent the degree to which the mean squared error of the fitted random forest model increases if the input
column for that variable is randomly permuted. The greater the error after permutation, the more the model relies on the variable for
making predictions, and therefore the more important the variable is to the model.

Permutation-based importance
Incoming shortwave radiation 0.21
Wind speed 0.15
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Surface water temperature 0.09
Mixed layer depth 0.07
Hypolimnetic nutrients 0.02

NUMERICAL EXPERIMENT 2: EFFECT OF A WARMER CLIMATE ON PHYTOPLANKTON RESPONSE TO STORMS
Figure 3 compares the simulated lake conditions under the present climate with those in the RCP8.5 scenario.
Under the warming scenario, surface temperatures in summer increased by roughly 1.6 °C while deep-water
temperatures remained around the same level, and therefore the Schmidt stability increased (increase in
median by 43%, Figure 3). The mixed layer shoaled by 1.2 m (14%), and stratification tended to both form earlier
and vanish later in the year (medians are 3.5 days earlier and 6.5 days later in the RCP8.5 scenario, respectively).
Median deep-water oxygen concentrations decreased by 20% (1.17 mg/l), while deep-water nitrate and
phosphate concentrations increased (nitrate increase in median of 50%, 14.4 ug/l; phosphate increase in median
of 28%, 8.8 pg/l). Average summer chlorophyll-a concentration tended to be higher in the warming scenario as
compared to the present-day conditions (0.56 pg/I higher, 10% increase, Figure 3).
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Figure 3. Comparison of summer long-term averages (June-August) between the unperturbed present-day and RCP8.5 climate scenarios
of the Lake Erken simulations. Surface temperature and chlorophyll-a are taken from a depth of 3 m, and the variables marked “deep-
water” are taken from 15 m depth. Onset and end of stratification were calculated as the first and last day-of-the-year that Schmidt
stability continuously exceeded 10 J/m2 for the duration of at least one week. The boxplots show the median and quartiles (N = 22).
Whiskers extend to the smallest and largest value within 1.5 times the inter-quartile range from the nearest quartile, and values outside
this range are marked as outliers (¢) (made using the geom_boxplot function of the ggplot2 R package, Wickham 2016).

Overall, impacts of identical storms under the RCP8.5 climate scenario did not have a drastically different effect
compared to the present-day situation in our simulations (Figure 4). Both increasing and decreasing effects of
storms on chlorophyll-a were found early and later in the stratified season and also with either moderate or high
storm intensity (Figure 4). Storms with a higher intensity tended to have more effect than moderate-intensity
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storms, but without shifting towards either more positive or more negative effects on chlorophyll-a. Moreover,
the difference in effect between high- and moderate-intensity storms was small (Figure 4).
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Figure 4. Comparison of the effect of storms on phytoplankton between present-day and RCP8.5 climate forcing in numerical experiment
2. Each histogram represents the maximum difference in volume-averaged chlorophyll-a concentration in the euphotic zone between
storm and no-storm conditions in the simulations on the y-axis. The back-to-back histograms compare the present-climate (bars to the
left, in light grey) against the RCP8.5-scaled climate scenario (bars to the right, in black). The four panels compare these outcomes in
simulations when storms are moderate or severe (left, respectively right hand panels), and when they occur early in the season (9th of
June) vs. later in the season (4th of July; top vs bottom panels). Each panel represents the outcome of multiple simulated storms, one for
each year in the long-term simulation (N = 22).

DiScUsSION

MODEL VALIDATION

In this study, we applied a coupled physical-biogeochemical model, GOTM-Selmaprotbas, to investigate the
effect of wind events on lake phytoplankton under present and future conditions. The model successfully
reproduced the seasonal cycles of all variables. Water temperature was simulated well, and with an RMSE of 0.9
°C the fit was similar to those in previous studies in Lake Erken (Moras et al. 2019; Ayala et al. 2020). Periods of
summer hypolimnetic hypoxia were captured well by the model in most years, although the clear
underestimation of under-ice oxygen consumption did point towards an incomplete description of winter
oxygen dynamics by the model. Also, the dynamics of dissolved nutrients (nitrate and phosphate) were
reproduced rather well, with concentrations close to observed values in summer, the period under study.
However, winter concentrations of phosphate and nitrate tended to be underestimated and the increase in
nitrate in autumn was simulated too early, potentially due to a missing recalcitrant organic matter component,
such as macrophytes near the shore. Additionally, expanding the model description of sediment dynamics may
lead to improvements in oxygen and nutrient simulations. Compared to recent applications of the GLM-AED2
model in Lake Mendota, USA, (Ladwig et al. 2021) and of the CE-QUAL-W2 model in Rappbode Reservoir,
Germany, (Mi et al. 2020), the nutrient fit statistics of the present study are similar.

The goodness-of-fit statistics were worst for the chlorophyll-a dynamics. This was largely due to the significant
underestimation of the magnitude of the spring peak, and this peak was also simulated too late in some years.
In Lake Erken, under-ice growth and resting stages can play an important role in phytoplankton dynamics
(Weyhenmeyer et al. 1999; Yang et al. 2016b), and since these processes were not included in the model, this
could be an explanation for why the model did not replicate the magnitude of the spring peak. However, in
summer, during stratification, the long-term simulations matched the observed conditions well in most years,
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except that short-term summer blooms were not well captured by the model. This may have been due to
temporary surface accumulations of buoyant cyanobacteria, which were not reproduced by the model.

CAUSAL FACTORS REGULATING PHYTOPLANKTON RESPONSE TO STORMS

Storm intensity, mixed layer depth, surface water temperature, incoming shortwave radiation, and hypolimnetic
nutrient concentrations all regulated phytoplankton response to wind perturbations in the first experiment. The
variables also interacted with each other. The random forest permutation importance suggested that light had
the strongest effect and hypolimnetic nutrients the least. However, this also depended on the numerical ranges
of the variables used in the experiment, which were based on the summer conditions in Lake Erken. In lakes
where the summer conditions are substantially different, the order of variable importance may therefore look
differently.

The effect of storm intensity was non-monotonic, in the sense that the wind effect had a maximum around 5-
10 m/s. Itis possible that such moderate wind speeds caused nutrient upwelling without strongly deepening the
mixed layer, and as such promoted growth. Stronger wind speeds, however, may have caused stronger nutrient
upwelling, but also more mixed layer deepening, which led to stringent light limitation. This explanation is
supported by the volume-averaged nutrient concentrations over the depth of the euphotic zone after storms
(Supplement F); strong wind speeds increased nutrient concentrations in the mixed layer, but this was not
accompanied by increased phytoplankton concentrations. Negative influence of wind on phytoplankton
concentrations has been shown in various systems (e.g. Fitch and Moore 2007; Kuha et al. 2016; Jalil et al. 2020).
However, a positive effect (relative to low wind speed) of moderate wind speed but a negative effect of high
wind speeds has, to our knowledge, not often been shown in the literature. Due to the effect of storms on light
and nutrient limitation, this non-monotonic relation of wind and phytoplankton could occur more frequently in
stratifying lakes. It should be noted that we do not make a definite distinction between what is a storm and what
is not, but rather explore the full range between median wind speeds and wind speeds that are higher than
experienced in the past 22 years at Lake Erken. The non-monotonic effect of wind speed suggests that this entire
wind speed distribution is relevant for lake ecosystem functioning, not just the extreme storms.

Storms had most effect on the investigated lake variables when the mixed layer was around 8 m deep or
shallower prior to the storm. In case of a deeper antecedent mixed layer, the mechanical mixing generated at
the water surface is largely dissipated at the depth of the maximum density gradient (Imboden and Wiiest 1995),
so that storms have less effect on thermal, nutrient, and phytoplankton vertical profiles. This threshold of 8 m
did not change substantially when we averaged the response variables over a different depth than the euphotic
zone depth (results not shown). A modelling study by Mi et al. (2018) also showed that storm-induced mixing
has only a small effect on mixed layer depth and entrainment when stratification is deep and strong. While
increases in surface temperature and Schmidt stability by climate warming have been reported in multiple
studies (e.g. Fang and Stefan 2009; Kraemer et al. 2015; Pilla et al. 2020), trends in depth of stratification are
more uncertain and might change only slightly (Pilla et al. 2020). Our simulations indicated that surface
temperature and Schmidt stability in Lake Erken will increase under a warmer climate, but that the mixed layer
depth will become shallower, similar to what was found by Ayala et al. (2020). A shoaling of the mixed layer
would suggest a larger role of storms in the dynamics of stratified lakes.

Whether the net effect of a storm on phytoplankton concentration was positive or negative also depended on
the other variables that were varied as part of the first numerical experiment. The effects of nutrients, light, and
temperature could be understood from the perspective of nutrient and light limitation. If light conditions are
optimal, nutrients are more likely to be limiting, and therefore nutrient upwelling during a storm is likely to
promote an increase phytoplankton biomass. On the contrary, if light is the main limiting factor for growth,
further deepening of the mixed layer due to mixing is likely to decrease phytoplankton concentrations. The
results of the experiment were largely consistent with this. Higher nutrient concentrations in the hypolimnion
slightly promoted higher chlorophyll-a concentrations after a storm, but only under high light conditions. The
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potential of phytoplankton growth being boosted by storm-induced nutrient upwelling in lakes has been
reported by observational studies (e.g. Soranno et al. 1997; MaclIntyre and Jellison 2001; Crockford et al. 2015;
Giling et al. 2017a). Increases in phytoplankton after storms in the first numerical experiment were also seen
when incoming shortwave radiation was high. Observed decreases in phytoplankton concentration after a storm
have been explained by a combination of dilution due to mixed layer deepening and exposure to more stringent
and dynamic light conditions (Ibelings et al. 1994; De Eyto et al. 2016; Kuha et al. 2016). Lastly, a higher pre-
storm surface temperature resulted in more negative effects of wind on phytoplankton concentration in the first
experiment. As water temperature only has a slight positive effect on cyanobacterial growth rates in the model,
this result was mostly caused by the effect of surface water temperature on the thermal structure. Since we
kept the hypolimnetic temperature constant, a higher surface temperature caused a higher Schmidt stability
and therefore stronger stratification. Stronger stratification resisted mixing, as found by Mi et al. (2018), and as
such less nutrients ended up in the epilimnion.

EFFECTS OF STORMS ON PHYTOPLANKTON UNDER A WARMER CLIMATE

Summer-averaged chlorophyll-a concentrations increased in simulations with warmer air temperatures in the
second numerical experiment. This is in line with some previous studies, which report increases in phytoplankton
with warming (Markensten et al. 2010; Trolle et al. 2014; Gray et al. 2019). However, trends in chlorophyll-a
under atmospheric warming also depend on nutrient availability. The present study and the aforementioned
studies were done in meso-/eutrophic systems. Under oligotrophic conditions, however, no change or
decreasing trends are more likely because of the more stringent nutrient limitation due to earlier onset of
stratification and higher nutrient requirements at increased temperatures (Tadonléké 2010; Kraemer et al.
2017).

The projected increases in deep-water nutrient concentrations are also in line with previous studies. Climate
warming mediates an increase in hypolimnetic nutrient levels in deep lakes through an increase in hypolimnetic
anoxia (Sahoo et al. 2013; North et al. 2014) and incomplete winter mixing (Salmaso 2005; Yankova et al. 2017).
Additionally, an earlier onset of stratification separates the epilimnion and hypolimnion earlier in the year,
therefore both increasing nutrient concentrations in the hypolimnion and exacerbating nutrient limitation in the
epilimnion. Earlier onset of stratification, lower oxygen concentrations, and increases in hypolimnetic nitrate
and phosphate in a warmer climate were indeed reproduced by our simulations.

In the second experiment, model predictions suggested that the response of phytoplankton to summer storms
would not deviate strongly from the present-day situation when air temperatures were increased to a level
consistent with a RCP8.5 climate scenario. Based on the results of the first numerical experiment and projections
for summer-average lake conditions in a warmer climate, either stimulating or reducing effects of storms were
expected in the second experiment. The reason for this was that of the variables included in the first experiment,
the mixed layer tended to become shallower, and hypolimnetic nutrient concentrations and surface water
temperature (and therefore strength of stratification) increased as a consequence of atmospheric warming. The
opposing effects of these trends in surface temperature and nutrient conditions may have compensated each
other. Another potential reason for the lack of difference in the response to wind events between present
climate and RCP8.5 could be that even under this high-emission scenario, the changes in the variables were
rather small compared to the ranges that were included in the first numerical experiment (i.e. the variation
experienced in July at Lake Erken over the past 22 years). Additionally, no strong response would be expected
in years when the mixed layer stayed deeper than about 8 m, the depth below which the first numerical
experiment showed a marked reduction of storm effects. It follows from the result of numerical experiment 2
that changes in atmospheric warming alone are not likely to strongly change the response of phytoplankton
biomass to storms of similar intensity in Lake Erken.

IMPLICATIONS BEYOND LAKE ERKEN
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The present study was set up for Lake Erken, and thus the range of the scenarios (surface temperature, nutrients,
solar radiation, mixed layer depth, and wind speed) and morphometry were specific to this lake. The simulated
phytoplankton groups (diatoms and cyanobacteria) were intentionally generic and not unique to Lake Erken, but
during calibration the phytoplankton parameters were optimised to match the seasonal patterns of the
phytoplankton community in Lake Erken. Different phytoplankton communities respond differently to storms
(Stockwell et al. 2020). However, the effects of storms on light and nutrient availability occur widely (Stockwell
et al. 2020), and the scenarios tested in the first numerical experiment covered a wide range of lake and
atmospheric conditions. Therefore, the processes observed in Lake Erken are expected to be similar in other
stratifying, mesotrophic lakes. Although the absolute thresholds found in the study may differ from lake to lake
and are prone to model uncertainty, the findings in the present study are applicable to more lakes than Lake
Erken alone and may facilitate general understanding of lake responses to storms.

Trends in extreme wind speeds (both frequency and intensity) strongly vary with geographic location (Sainsbury
et al. 2018). In the area of Lake Erken, future trends in storm intensity and frequency are uncertain (Molter et
al. 2016). However, in regions where storm intensity and frequency are predicted to increase, such as western
Europe, an increased importance of storms for phytoplankton dynamics can be expected. Our first experiment
showed that the effect of wind on phytoplankton can be non-monotonic, and that moderate wind speeds have
different effects than high wind speeds. Therefore, any shift in the probability-distribution of wind speeds is
relevant, not just trends in extreme wind speeds.

Air temperatures are increasing globally and this causes a rise in strength of stratification, but trends in mixed
layer depth remain uncertain (Pilla et al. 2020). In the present study, mixed layer depth was identified as a key
variable in responses to storms, so local trends in this variable may partially control storm impacts. Next to air
temperature, mean wind speed (Stetler et al. 2021) and water transparency (Read and Rose 2013) determine
mixed layer depth, and may change on local or regional scales. In regions that experience atmospheric stilling
(Woolway et al. 2019) or lake brownification (Jennings et al. 2010), mixed layers might shoal and these lakes
may be more strongly impacted by storm events. We only scaled air temperature in our climate warming
scenario, by applying a change factor correction to a historical time series of air temperature. This allowed the
comparison of identical storms under identical pre-event weather conditions, and the differences could be
attributed to air temperature alone. However, a different experimental design using the full output from a
climate scenario could give an indication of how the full effect of climate change will influence storm-effects on
lakes, including trends in, for example, average wind speed.

Nutrient concentrations and their vertical profiles modulate the effect of storms on phytoplankton. Trends in
nutrient loading are mostly controlled by human activities, and developing countries especially may experience
increasing trends (Fink et al. 2018). Earlier onset of stratification with climate warming (Woolway et al. 2021)
causes more nutrient build-up in the hypolimnion, so if nutrients are limiting in the epilimnion, phytoplankton
increase after storms may become more prominent, although this was not observed in our second numerical
experiment. In lakes where nutrients are high in the epilimnion throughout the year, a wind episode that
deepens the mixed layer is likely to decrease phytoplankton concentration due to dilution and reduced light
availability.

This study revealed new insights on the effects of storms on phytoplankton, but only certain aspects of this topic
were tested. For example, we focused on summer only. In Europe, winter storms tend to be the most severe,
but summer storms may have the most impact on a lake by mixing stratified waters (Andersen et al. 2020) and
it is in summer that phytoplankton blooms occur most frequently. Additionally, we focused solely on wind.
Passing storms tend to affect not only wind speed, but also air temperature and incoming solar radiation.
Moreover, precipitation during storms will affect both the quantity and quality of catchment runoff. The
retention time of Lake Erken is around 7 years, indicating that catchment runoff during storms is likely to have
a minor influence, but in lakes with short residence times (e.g. < 1 year) this change in inflow can be at least as

82



impactful as wind (Klug et al. 2012; Reichwaldt and Ghadouani 2012; De Eyto et al. 2016). In addition, in the first
experiment, only a limited number of variables that could affect the lake state prior to and after an event were
assessed. Like for the effect of precipitation, the results in the present study do not discard the possibility that
such other variables are important too.

The effect of phytoplankton community composition on the response to storms was not systematically explored
in the present study. We only calibrated and validated total chlorophyll-a concentration, despite using two
separate phytoplankton groups in the model. The diatoms dominated the spring peak and the summer peak
contained more cyanobacteria, which was in line with the seasonal dynamics at Lake Erken. The chlorophyll-a
data was more readily available and at higher frequency than taxonomic data. In order to assess the effect of
storms on individual groups, the model would have to be calibrated and validated on group-specific data, and
parameter values would have to be informed by a trait-based approach. Traits such as buoyancy regulation,
nutrient storage, nutrient acquisition, growth rates, and photoadaptation are likely to be highly relevant for how
a phytoplankton community responds to a storm (e.g. Visser et al. 1996; Kasprzak et al. 2017; Stockwell et al.
2020). As such, different communities may show distinct responses to storms under physically and chemically
comparable situations. If storms already occur frequently in a system, the phytoplankton community may be
adapted to such conditions (Stockwell et al. 2020), and therefore shifts in frequency of storms may be especially
relevant when considering community composition. Acquisition of data of sufficient frequency and quality to
investigate these topics is a key problem, but a combination of experiments, use of novel monitoring techniques,
and modelling may elucidate some of this uncertainty in the near future. Also, our model results pointed at
average concentrations and responses, not at phytoplankton bloom or scum formation. Prediction of blooms
with data-driven or process-based models still remains a challenge (Rousso et al. 2020), and may require
inclusion of processes that are not parameterised in our model, such as life cycles (Hense and Beckmann 2010)
or selective grazing by zooplankton (Sommer et al. 2012). This may be part of the reason for why the spring peak
and occasional summer spikes in chlorophyll-a were missed by the model used in this study.

CONCLUSION

High wind speeds (£ 10 m/s) always had more negative effects than moderate wind speeds (= 5 — 10 m/s), but
the direction of the effect depended mostly on the level of incoming radiation, surface water temperature, and
hypolimnetic nutrients. The effect of storms decreased markedly when the mixed layer depth was about 8 m or
deeper. Higher incoming radiation and hypolimnetic nutrient concentrations promoted increases in chlorophyll-
a concentrations after storms, whereas increases in surface temperature had a decreasing effect. These
outcomes confirmed the conflicting effects of storms on phytoplankton light and nutrient limitation, and provide
a mechanistic framework to better understand under what conditions storms tend to either increase or decrease
phytoplankton biomass. A simulation forced by a future climate scenario showed earlier onset of stratification
and a higher summer chlorophyll-a concentration, averaged over the euphotic zone. However, the response of
phytoplankton to storms did not strongly change with warming air temperatures.

Increased understanding of the drivers of storm impacts on lakes can help short-term forecasting, and in some
cases may be used to inform lake or reservoir management. Additionally, it facilitates assessment of how
atmospheric trends will affect lakes, specifically those caused by climate change. Different regions are expected
to experience different trends in air temperature, (extreme) wind speed, and nutrient loading. Studies evaluating
the combined effects of these trends to assess the impacts of storms on lake phytoplankton could further our
understanding of the global impact of extreme weather events on lake ecosystems.
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SYNTHESIS

The central topics of this thesis are the effects of extreme weather events on lakes, the interactions between
physical and biogeochemical lake variables, and process-based lake modelling. Perhaps more than usual in a
doctoral thesis, the methods and scopes of the chapters diverged rather strongly, with some chapters only
looking at lake physics, others also at biogeochemistry, with some chapters being strongly focussed on the
methodology, and others at the effects in the lake ecosystem, and Chapter 1 not using a modelling approach.
However, the chapters did inform each other and build towards a novel understanding of the processes involved
in extreme weather events, lake ecosystem dynamics, and climate change. In the final part of this doctoral thesis,
| reflect upon the new knowledge generated by the thesis and discuss potential next steps for research into
these topics.

LESSONS LEARNED

A FURTHER PROCESS-BASED UNDERSTANDING OF THE INTERACTIONS BETWEEN LAKE PHYSICS AND

BIOGEOCHEMISTRY DURING EXTREME EVENTS

Understanding the interactions between biology and physics has been studied since the start of limnology as a
research field, and there is a growing body of literature on extreme weather events as well. However, due to a
lack of data during extreme events we often cannot link observations to processes, and we cannot be sure to
what extent observed responses translate to other systems. Single-lake studies that discuss processes involved
in a lake’s response to an extreme event (e.g. De Eyto et al. 2016; Kasprzak et al. 2017; Tilahun and Kifle 2019)
are immensely valuable, but it is often unclear if these processes are common in other lakes as well. The review
by Stockwell et al. (2020) indeed confirmed that the response of lake variables to storms may diverge markedly
between lakes. Process-based understanding is essential to work towards predicting future lake responses to
extreme weather events.

This thesis contributed to a further process-based understanding on the interaction of lake thermal structure
and biogeochemistry, and on lake responses to extreme weather events. In Chapter 1, we showed multiple
feedback mechanisms that exist between thermal structure and lake biogeochemistry, and how they may
influence mixing regimes. In Chapter 4, we investigated the influence of multiple drivers (in isolation and in
interaction) of phytoplankton response to storms, for example showing novel patterns of how wind speed and
mixed layer depth affect phytoplankton concentration shortly after a storm. Moreover, an important part of
these chapters was the discussion about which lakes these patterns occur in, and to what extent. Chapter 1’s
transparency-reduction feedback is likely restricted to a small subset of lakes, and a shift to meromixis due to
climate warming is most likely in lakes with a potential for strong solute release from the sediment and weak
deep-water renewal. The results of the first numerical experiment in Chapter 4 are somewhat specific to Lake
Erken, but the processes involved in the models occur in a wide range of stratifying lakes. By exploring large
ranges of nutrient, light, and stratification conditions, the chapter also reveals important information for other
stratifying lakes.

While these are small steps towards full process understanding, they provide starting points for further studies.
They will be especially valuable for further scenario assessments using process-based models, as captured in the
term “process-based”. The future is looking bright for this research topic, as the necessary long-term high-
frequency data needed to drive and evaluate these models is becoming increasingly common, due to advances
in sensor development and continued long-term monitoring sites.

COMPLEX INTERACTIONS BETWEEN LONG-TERM CLIMATE WARMING AND SHORT-TERM EXTREME EVENTS

Long-term changes in lake variables due to climate warming interact with the consequences of extreme short-
term events. This was shown in Chapter 1, where climate warming pushes lake mixing regimes in a certain
direction, but a short-term event may tip the balance. This is the case for holomictic lakes, for example; climate
warming makes incomplete mixing more likely, but it is a series of warm winters in a row that could potentially
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cause a shift to a meromictic regime. Events in Lake Lugano in 2005 and 2006 show that the opposite is also
possible, with a series of cold winters interfering with long-term trends (Lehmann et al. 2015).

The interaction between climate warming and lake responses to extreme weather is not often considered, but
in Chapter 4 we compared the effect of storms on phytoplankton between present-day and future (RCP8.5-
scaled air temperatures, 2040-2070 conditions) weather conditions. This revealed that differences do not need
to be large; phytoplankton in Lake Erken did not react markedly different to storms in the warmer scenario
compared to present-day conditions, according to the simulations. Inter-annual variation in lake variables had
substantially larger effects than a shift in mean temperature due to warming. However, the relations between
lake variables and phytoplankton dynamics found in the first numerical experiment in Chapter 4 did place this
finding in perspective; would we expect such little changes also in other lakes? This is difficult to say without
further study, but we found that several variables (e.g. mixed layer depth and strength of stratification) could
affect phytoplankton biomass after storms. In Lake Erken, the projected changes in these variables were not so
impactful, or compensated each other. But in other lakes, this may be different, and if trends in mixed layer
depth, hypolimnetic nutrients, and surface temperature can be estimated, we can make a more educated guess
of how phytoplankton response to storms will change. Other trends that are experienced in many lakes, such as
browning and eutrophication, can factor in as well. Studies on multiple lakes are needed to see how transferable
these relations are between lakes.

MODELLING AS A VIABLE APPROACH TO STUDY SHORT-TERM EFFECTS OF EXTREME EVENTS

This thesis showed that process-based modelling is a suitable method to study short-term effects of extreme
weather events on lakes. Chapter 2 provided new data on model performance of one-dimensional
hydrodynamic lake models during storms and heatwaves, adding credibility to studies that use such models. The
results were overall favourable regarding the capacity of these models to replicate lake physics during extreme
events, with the caveat that model uncertainty did increase compared to non-extreme conditions. Chapter 4 did
not include validation of short-term effects on real data due to a lack of sufficient data for this purpose. However,
the model responses were consistent with theory and revealed credible patterns. This evidence that models can
be used to study extreme weather events is supported by other recent studies on this topic (e.g. Mi et al. 2018;
Soares et al. 2019; Chen et al. 2020).

Chapter 3 discusses the ensemble technique. Although extreme events were not explicitly included in the
chapter, ensemble modelling may be especially relevant for extreme events. Using an ensemble can be seen as
a way of translating the limitations of process understanding into an uncertainty band around a model
prediction. Uncertainty in meteorological forcing and process description are both higher in times of extreme
weather, and therefore ensemble modelling can add to credibility in forecasting efforts involving extreme
weather conditions.

NEXT STEPS

INCORPORATION OF THREE-DIMENSIONAL PROCESSES

This thesis involved the use of one-dimensional models, which have as advantages faster runtimes, less data
requirements, and easier coupling of physics and ecology, compared to multi-dimensional models (Hamilton et
al. 1997). However, the omission of horizontal processes may lead to an incomplete description of lake
dynamics, particularly during extreme weather events. One such process is the excitation of internal waves by
storm events, which can cause mixing over a prolonged period after a storm (Imboden and Wiest 1995),
although some one-dimensional models take internal waves into account (Goudsmit et al. 2002; Stepanenko et
al. 2020). Internal waves can be important for nutrient upwelling; thermocline tilting as a consequence of
internal waves may lead to nutrient upwelling near-shore (MaclIntyre and Jellison 2001), and breaking internal
waves can entrain nutrients into the epilimnion (Kelly et al. 2019). As such, especially for looking at storm effects,
using a multi-dimensional lake model could be a promising pathway for further investigation.
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PRECIPITATION EVENTS AND CATCHMENT INFLOWS

One important type of extreme weather event, that is also projected to shift under influence of climate change
(IPCC 2014), was not considered in this thesis: extreme precipitation events. Floods caused by such events have
the potential to strongly influence lake ecosystems, by temporarily decreasing water residence time (i.e.
flushing) and by importing large quantities of nutrients and organic material (Weyhenmeyer et al. 2004;
Reichwaldt and Ghadouani 2012). One of the reasons for omitting flood events from this thesis was that
catchment modelling of extreme weather events becomes a consideration as well, with its own data
requirements, assumptions, and uncertainties. However, this topic is at least as relevant as storms or heatwaves
and coupling catchment modelling scenarios involving extreme precipitation events (e.g. Ye et al. 2020) to lake
(or coastal) models would be a promising path for further study.

BIOGEOCHEMICAL MODELLING TO STUDY SHIFTS IN MIXING REGIMES

Chapter 1 could have been the introduction for another thesis as well: one focused on modelling shifts in mixing
regimes. Of the shifts discussed in this chapter, the change of holomictic to meromictic lakes would have the
largest ecological implications, as meromictic lakes behave strikingly different from other lake mixing regimes
(Gulati et al. 2017). Woolway and Merchant (2019) showed that changes to meromixis may become common
under a warming climate, although it needs to be said that they followed a different definition of meromixis and
did not consider biogeochemistry. Modelling the chance of formation of meromixis under climate warming with
effects of biogeochemistry would involve simulation sediment solute release rates and redox conditions. In order
to combine this with thermal stratification, the FABM software (Bruggeman and Bolding 2014), which was also
used in Chapter 4, may be a promising pathway for this type of studies.

REPEATED PERTURBATIONS AND DIFFERENT DURATIONS OF PERTURBATIONS

Recent evidence suggests that repeated perturbations and different durations of perturbations also have
important effects on phytoplankton communities (Thayne et al. 2021; Stelzer et al. in preparation). These effects
are likely mediated through changes in community composition and the model used in Chapter 4 might not be
complex enough to capture such changes. However, the changing frequencies of extreme events as part of
climate change bring forward questions such as what happens when a second extreme event occurs before
recovery from the first.

EFFECT OF SHORT-TERM EVENTS ON LONG-TERM DYNAMICS

One of the foundations of this PhD project was to stress the effect of long-term change (climate warming) on
short-term effects of extreme weather events. In Chapter 4 we studied amongst others what the effect of
climate warming was on phytoplankton response to storms. That is, we looked at effects of long-term change
on short-term dynamics. However, short-term effects may also influence long-term dynamics. Prime examples
in limnology are lakes Okeechobee and Apopka in Florida, USA, that were affected for multiple years by a series
of hurricanes (Bachmann et al. 2000; Ji et al. 2018), but also local extinctions of for example fish caused by
extreme events (Till et al. 2019). In Chapter 1 we looked at some effects of short-term events (e.g. a series of
winters without complete mixing) on long-term dynamics, but we did not apply a modelling approach. For the
topics included in this thesis, it would be interesting to study the effect of extreme weather events on long-term
phytoplankton community composition.

CONCLUDING REMARKS

Altogether, this thesis increased process-based understanding of thermal structure and phytoplankton dynamics
during extreme weather events, and helped to pioneer a mechanistic lake modelling approach to study extreme
events. As we better understand how lake physics are affected by climate warming and extreme weather events
and how this impacts biology, we can make informed projections of future conditions, assisted by mechanistic
models. In this thesis, we reviewed existing literature involving feedbacks in lakes, assessed model performance
during extreme events, developed new modelling tools, and lastly we used models to investigate drivers of
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phytoplankton responses to storms and assess future effects of extreme events on lake ecosystem stability. This
work is placed in a suite of other research articles produced in the MANTEL project, and contributes to further
insight in the effects of extreme events and climate warming on lakes, which is of growing importance in these
times of increasing human impacts on ecosystems and global climate change.
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SUPPLEMENTARY MATERIAL

Chapters 2, 3, and 4 refer to supplementary material. These can be found online at:

- Chapter 2: https://doi.org/10.1016/j.envsoft.2020.104852

- Chapter 3: https://doi.org/10.1016/j.envsoft.2021.105101

- Chapter 4:
https://docs.google.com/document/d/17acOn7r95tn70WGM8Z1RGb9knFPxx210/edit?usp=sharing&o
uid=117780408238442231298&rtpof=true&sd=true
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