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Abstract
Recent works have shown that the variable neighborhood search (VNS) algorithm can be improved by using a reactive compo-
nent. A component is reactive if its behavior changes dynamically depending on the information obtained from the current run,
or depending on the instance to solve. This paper gives a review of these recent works, and proposes a new scheme to select
reactively the move used in the shaking step of VNS. This new mechanism is particularly relevant to solve problems involving
various types of decisions. For instance, an application ofthe resulting Reactive-VNS to a short-term production-planning
problem is given. Experimental results show that Reactive-VNS outperforms the classical VNS approach on the latter problem.
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1 Introduction

Variable Neighborhood Search (VNS) is an optimization method able to find high-quality solutions to complex
and large problems in a short computation time. Good performances of VNS have been reported for different types
of problems [5]. Recent works have shown that a reactive component can improve VNS. The reactive component
is modified dynamically (during the search) depending on theinstance to solve, or depending on the history of the
search process. The resulting extension of VNS is calledReactive Variable Neighborhood Search (RVNS).

The contributions of this paper are three fold. First, a review of the works proposing to extend VNS with a reactive
component is given (Section 2). Second, a new reactive mechanism is proposed (Section 3). This mechanism helps
RVNS to escape from the attraction area of the best found solution so far. Finally, the resulting method is applied
to a short-term supply chain problem (Section 4). Experiments show that RVNS outperforms VNS in terms of
solution quality. A conclusion ends the paper.

2 Literature review

Combinatorial optimization methods aim at finding the solution with minimal cost among a finite set of feasible
solutions (called solutions space). For large instances ofNP-hard problems, finding the optimal solution in a
reasonable amount of time is not possible. In such cases, a good-quality solution can be found in a reasonable
amount of time using a meta/heuristic (e.g., greedy procedures, local search techniques, evolutionary algorithms).
VNS belongs to the family of local search approaches. Two streamline local search methods are first discussed
below (namely, descent and tabu search), followed by VNS andRVNS.

Local search algorithms are meta/heuristics, which navigate in the solution space from a solution to a neighbor
solution. A neighbors′ of a solutions is a solution with a close structure tos, obtained by applying one or multiple
perturbations (called moves) tos. The set of neighbors of a solution is called neighborhood. The descent algorithm
is a simple local search that selects the best solution of theneighborhood at each iteration. However, every descent
gets trapped in the first local optimum, as non-improving moves are forbidden. Tabu search (TS) overcomes this
issue (i.e., it is able to escape from a local optimum) with a tabu list which prevents performing the reverse of
recently performed moves. TS terminates when a given stopping criterion (e.g., a time limit) is reached.

Despite some escaping mechanisms, the outcome of TS (as manystreamline local search procedures) depends on
the single provided initial solution. Based on this observation, as long as a stopping condition is not met, VNS
[5] successively applies a local search LS with different, well-chosen initial solutions. These initial solutions are
generated during the so-called shaking step of VNS. This step requires the definition of multiple neighborhood
structures (Nimin , . . . ,Nimax ). The neighborhoods are sorted such that the neighborhoodNi

(

s
)

contains solutions
more similar tos (with respect to its overall structure) thanN j

(

s
)

if i < j. Thereforei is an indicator of the
distance between the solution inNi

(

s
)

ands. For instance, the solutions ofNi
(

s
)

can be generated by sequentially
applyingi basic moves tos (e.g., a swap of two elements if a solution can be encoded as a list). In each iteration
of VNS, the shaking step randomly generates a solutionsi in the neighborhoodNi

(

s⋆
)

of the currently best found
solutions⋆. The neighborhood distancei is set to its minimal value (imin) at the beginning of the search, but also
each time a new best solution is found (in order to intensify the search around this updateds⋆ solution). However,
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if the solution returned by LS does not improves⋆, i is increased in order to gradually explore zones of the search
space away froms⋆. Though, a maximal distance value (imax) is defined to avoid a random search (indeed, without
such a restriction, generating a too distant neighbor solution corresponds to a restart of the method).

In this paper, RVNS denotes the extension of VNS where any component or parameter is adjusted during the
search. Note that various names are used in the literature (e.g., adaptive VNS, guided VNS). The choice of the
reactive element depends on the problem to solve. In [7], therandom generation of a neighbor in the shaking phase
is biased. Multiple ways to bias the shaking step are defined,and one is chosen reactively. Such an approach is
efficient when the random selection of the neighbor leads to bad solutions. The authors of [2] propose to select the
local search reactively among multiple options (each one using a different move). The reactive component in [3]
and [6] is the neighborhood used in the shaking step.

Multiple strategies for controlling the behavior of the reactive component have been proposed. The most common
is to use a learning mechanism [2, 3, 7]. In this case, the reactive component has multiple variants, and one variant
is chosen at each iteration. A simple learning mechanism [3,7] associates a score with each possible variant, and
the probability to select a variant is proportional to its score. After each iteration, the score of the selected variant
is increased if a new record is found. Advanced learning mechanisms can also be used to allow different reactions
depending on the state of the search. For instance, in [2], reinforcement learning is used to learn a policy which
defines the local search (reaction) to use next, given the previously used local search (state). Using a learning
mechanism is relevant when the performance of the componentvariants depends on the instances to solve, or on
the current search state.

Reactive strategies for VNS are not always based on learning. For instance, an approach to order the neighborhoods
when no obvious ordering exists is proposed in [6]. First, the problem of finding the best neighbor in each neigh-
borhood is solved by relaxing the integrality constraints.The solutions to these relaxed problems approximate the
quality of the neighborhoods, and the neighborhoods are then ordered by decreasing quality. In [1, 4], the behavior
of VNS is modified when the last neighborhood (i.e., wheni = imax) is reached. This is relevant when the new
behavior diversifies the search, as reaching the largest value ofi indicates that the method struggles to improves⋆.
In [4], a large move is applied to the current solution, whereas in [1], the objective function is reactively adjusted
to drive the search away from local optima.

3 Reactive move selection

This section proposes a new scheme to select reactively the move used to generate a neighbor solution in the
shaking step. Based on the information obtained from the last performed run of LS (i.e., the employed local search
within VNS), the process selects a move allowing to escape from the attraction zone of the incumbent solution,
simply denoted here ass.

In local search methods, the neighborhood is often generated with multiple basic moves. In fact, using multiple
moves helps to connect the search space, as for any given pairof solutionss1 ands2, it must be possible to navigate
from s1 to s2 by performing a succession of moves. Moreover, an increasing number of studies tackle problems
by integrating decisions of different types (e.g., job selection and job scheduling). For such problems, it is natural
to define one move for each type of decision. In a classical local search method, these multiple moves are used
jointly to create a single neighborhood for each solution (e.g., job selection moves and job scheduling moves are
used at the same time within the same neighborhood). In the proposed RVNS, multiple neighborhood structures are
defined. LetNk

i be the neighborhood with distancei generated with a move of typemk. For instance, the solution
in Nk

i can be generated by applyingi moves of typemk. In the proposed approach, the move used to generate
the solution in the shaking step is selected reactively, andthe distancei follows the usual VNS pattern (i.e.,i is
set toimin when the solution obtained after local search is better thanthe incumbent solution, andi is increased
otherwise).

When solving the short-term production-management problem defined in the next section, we observe that LS
uses one type of move more frequently than the others. The most used move depends on the instance and on
the initial solution of LS. Such a behavior indicates that the search is in a strong local optimum for one type of
decision. If modifying decisions of a specific type leads to significant cost augmentations, LS naturally focuses on
the modification of other types of decisions. Consequently,some decisions are never changed, and the search stays
in a specific zone of the search space. To help escaping from this zone, the shaking step generates a solution with
the least used move during the last LS run.
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Algorithm 1 summarizes the proposed RVNS approach. It is relevant for problems involving various types of
decision. A simple strategy to control the reactive component is proposed above. Although this control strategy
performs well on the tested problems (see the next section),other strategies could be of course relevant for other
problems. The principle is to define a strategy detecting that the search is trapped in a restricted area of the search
space, and able to select a move which allows to escape from this region. For instance, a learning mechanism sim-
ilar to the one proposed in [2] can be used to infer a policy returning the move to use depending on characteristics
of the last LS runs.

Algorithm 1 Reactive Variable Neighborhood Search (RVNS)

Generate an initial solutions, seti = imin, and set randomlyk to one of the move type.

While no stopping criterion is met,do

(1) Shaking: generates′ randomly in the neighborhoodNk
i .

(2) Local search: apply LS tos′, using jointly all the move types in each iteration. Lets′′ be the resulting
solution, and setk to the least used move type in LS.

(3) Move or not: if s′′ is better thans, sets = s′′, and continue the search withi = imin; otherwise, increasei, but
if i > imax, seti = imax.

4 Application to short term supply chain management

This section presents the RVNS designed in [8] to solve a short-term supply-chain-management problem (P). The
proposed reactive scheme is generalized in this paper, and this section aims at quantifying the benefit of RVNS for
(P).

Given a set of orders, (P) consists in dimensioning production lots and scheduling them on parallel production lines.
The decision maker is located at the plant level and the objective function includes four types of costs: (1) order
rejection costs; (2) tardiness penalties (as the shops willbe delivered later than expected); (3) sequence-dependent
setup costs between the production lots; (4) raw material express delivery costs (to be paid to the suppliers to have
the raw material earlier than initially planned). Specific features and constraints of (P) are not detailed here because
they do not impact the design of RVNS (as well as the parametertuning). In the next three paragraphs, considering
(P), TS, VNS and RVNS are successively summarized.

The neighborhood of TS is generated with two types of moves: (m1) insert an ordero in a production lot (o is
either a rejected order or an order planned in a different production lot); (m2) modify the production day and the
production line of a lot. After performing a movem1, the ordero gets a tabu status. Similarly, when movesm2 are
performed, all the orders of the lot get the tabu status. An order with a tabu status (or a lot containing a tabu order)
cannot be moved for some iterations (parameter). To accelerate TS, only a random proportion (parameter) of the
neighborhood is evaluated.

The local search in VNS is TS with a stopping criterion of 500 iterations. The neighborhoodNi used for the shaking
step is generated by applyingh

(

i
)

(i.e., a function increasing withi) random moves inm1∪ m2. In the shaking step,
p (parameter) solutions are randomly generated inNi, and the best one is the initial solution of TS. If the solution
provided by TS does not improve the input solution, the distancei is increased.

RVNS enhances VNS by reactively selecting a single type of movem (m1 or m2) to generate the neighborhood in
the shaking step. More precisely,Nm1

i (resp.Nm2
i ) is generated by performing againh

(

i
)

moves of typem1 (resp.
m2) on s. In the shaking step, RVNS chooses reactively to useNm1

i or Nm2
i . During each run of TS, the number

of performed moves of each type (for bothm1 andm2) is counted, and the least performed move is selected to
generate the neighborhood in the next shaking step.

To measure the benefit of RVNS, the following comparisons areuseful. First, comparing VNS (which uses TS as
an intensification procedure) with TS allows capturing the added value of the shaking step (with the involved nested
neighborhoods). Second, comparing RVNS with VNS allows quantifying the added value of the reactive scheme.
The tests were performed on more than 50 instances, on a processorIntelR XeonR CPU E5− 2660 2.20GHz,
with a time limit of 20 minutes, and replicated with ten different seeds. Table 1 presents the results aggregated by
number|P | of products. For each group (i.e., line), Table 1 gives the average number|O | of orders, the best cost
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obtained by any of the tested method (averaged per group), and the average percentage gap with respect to the best
cost (for each method). VNS outperforms TS with an average gap of 3.10% versus 5.32% for TS. The reactive
move selection leads to an even better performance, as RVNS outperforms VNS with an average gap of 2.24%. In
addition, RVNS obtains better solutions for each instance type.

|P | |O | Best cost T S V NS RVNS

10 286 682,256.0 1.99 2.27 1.27

20 571 439,528.0 2.64 3.10 1.94

30 849 577,411.3 3.43 2.20 1.22

50 1426 805,332.8 5.27 3.62 2.70

100 2869 879,835.0 13.27 4.32 4.09

Average 5.32 3.10 2.24

Table 1: Comparison of TS, VNS and RVNS for (P).

5 Conclusion

This paper presents RVNS, a method obtained by adding a reactive mechanism to the standard VNS approach. It is
relevant for combinatorial optimization problems involving different types of decisions. The reactive mechanism
decides which optimization component to employ, either by using some learning techniques or some specific rules
depending on the problem. We show that the discussed reactive scheme helps to better escape from local optima.
Research on RVNS are relatively recent, but good performances are already reported. Investigating RVNS more
deeply would be an interesting avenue of research. For instance, in most studies, a single component is reactive, and
thus the use of multiple reactive elements could be considered. Except in [2], only simple learning mechanisms
were proposed. Advanced learning methods could help to better predict which variant of a component would
perform best in a particular state of the search.
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