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Abstract

Recent works have shown that the variable neighborhoodls€eNS) algorithm can be improved by using a reactive compo-
nent. A component is reactive if its behavior changes dynaltyi depending on the information obtained from the curran,

or depending on the instance to solve. This paper gives awevi these recent works, and proposes a new scheme to select
reactively the move used in the shaking step of VNS. This neetranism is particularly relevant to solve problems iniav
various types of decisions. For instance, an applicatiothefresulting Reactive-VNS to a short-term productiompiag
problem is given. Experimental results show that ReactidS outperforms the classical VNS approach on the lattelpro.
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1 Introduction

Variable Neighborhood Search (VNS) is an optimization method able to find high-qualitylg@ns to complex
and large problems in a short computation time. Good peidoas of VNS have been reported for different types
of problems [5]. Recent works have shown that a reactive corapt can improve VNS. The reactive component
is modified dynamically (during the search) depending orirte&ance to solve, or depending on the history of the
search process. The resulting extension of VNS is c&dtive Variable Neighborhood Search (RVNS).

The contributions of this paper are three fold. First, asemdf the works proposing to extend VNS with a reactive
componentis given (Section 2). Second, a new reactive mérhas proposed (Section 3). This mechanism helps
RVNS to escape from the attraction area of the best foundisnlso far. Finally, the resulting method is applied
to a short-term supply chain problem (Section 4). Expertmishow that RVNS outperforms VNS in terms of
solution quality. A conclusion ends the paper.

2 Literature review

Combinatorial optimization methods aim at finding the dolutwith minimal cost among a finite set of feasible
solutions (called solutions space). For large instancedRhard problems, finding the optimal solution in a
reasonable amount of time is not possible. In such casesp@guaality solution can be found in a reasonable
amount of time using a meta/heuristic (e.g., greedy proediocal search techniques, evolutionary algorithms).
VNS belongs to the family of local search approaches. Tweastline local search methods are first discussed
below (namely, descent and tabu search), followed by VNSRAMS.

Local search algorithms are meta/heuristics, which nagigathe solution space from a solution to a neighbor
solution. A neighbos' of a solutionsis a solution with a close structuregpobtained by applying one or multiple
perturbations (called moves)$oThe set of neighbors of a solution is called neighborhod descent algorithm

is a simple local search that selects the best solution oféfgghborhood at each iteration. However, every descent
gets trapped in the first local optimum, as non-improving esoare forbidden. Tabu search (TS) overcomes this
issue (i.e., it is able to escape from a local optimum) witlalautlist which prevents performing the reverse of
recently performed moves. TS terminates when a given stgapiterion (e.g., a time limit) is reached.

Despite some escaping mechanisms, the outcome of TS (assimaagnline local search procedures) depends on
the single provided initial solution. Based on this obstorg as long as a stopping condition is not met, VNS
[5] successively applies a local search LS with differergllvwehosen initial solutions. These initial solutions are
generated during the so-called shaking step of VNS. This itquires the definition of multiple neighborhood
structures i ;... - - -, Nin)- The neighborhoods are sorted such that the neighboer@) contains solutions
more similar tos (with respect to its overall structure) théi (s) if i < j. Thereforei is an indicator of the
distance between the solutionNih(s) ands. For instance, the solutions bf (s) can be generated by sequentially
applyingi basic moves ts (e.g., a swap of two elements if a solution can be encodediaf.alh each iteration
of VNS, the shaking step randomly generates a soligiémthe neighborhootl; (s*) of the currently best found
solutions*. The neighborhood distancés set to its minimal valuei ) at the beginning of the search, but also
each time a new best solution is found (in order to intensié/gearch around this upda®dsolution). However,
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if the solution returned by LS does not imprasfei is increased in order to gradually explore zones of the searc
space away froms*. Though, a maximal distance valugd) is defined to avoid a random search (indeed, without
such a restriction, generating a too distant neighbor mmurresponds to a restart of the method).

In this paper, RVNS denotes the extension of VNS where anypoomnt or parameter is adjusted during the
search. Note that various names are used in the literatige &laptive VNS, guided VNS). The choice of the
reactive element depends on the problem to solve. In [7};aghdom generation of a neighbor in the shaking phase
is biased. Multiple ways to bias the shaking step are defiaed,one is chosen reactively. Such an approach is
efficient when the random selection of the neighbor leadsitbdnlutions. The authors of [2] propose to select the
local search reactively among multiple options (each omregus different move). The reactive component in [3]
and [6] is the neighborhood used in the shaking step.

Multiple strategies for controlling the behavior of the ctiae component have been proposed. The most common
is to use a learning mechanism [2, 3, 7]. In this case, thaiveamomponent has multiple variants, and one variant
is chosen at each iteration. A simple learning mechanisi][8ssociates a score with each possible variant, and
the probability to select a variant is proportional to itergc After each iteration, the score of the selected variant
is increased if a new record is found. Advanced learning raeisims can also be used to allow different reactions
depending on the state of the search. For instance, in [Bforeement learning is used to learn a policy which
defines the local search (reaction) to use next, given thaqugly used local search (state). Using a learning
mechanism is relevant when the performance of the compaagiaints depends on the instances to solve, or on
the current search state.

Reactive strategies for VNS are not always based on learkimgnstance, an approach to order the neighborhoods
when no obvious ordering exists is proposed in [6]. Firg,ghoblem of finding the best neighbor in each neigh-
borhood is solved by relaxing the integrality constraifiise solutions to these relaxed problems approximate the
quality of the neighborhoods, and the neighborhoods aredhdered by decreasing quality. In [1, 4], the behavior
of VNS is modified when the last neighborhood (i.e., wheninay) is reached. This is relevant when the new
behavior diversifies the search, as reaching the largast wdl indicates that the method struggles to imprgue

In [4], a large move is applied to the current solution, wiasri [1], the objective function is reactively adjusted
to drive the search away from local optima.

3 Reactive move selection

This section proposes a new scheme to select reactively tive msed to generate a neighbor solution in the
shaking step. Based on the information obtained from thek$ormed run of LS (i.e., the employed local search
within VNS), the process selects a move allowing to escapm fhe attraction zone of the incumbent solution,
simply denoted here as

In local search methods, the neighborhood is often gercereite multiple basic moves. In fact, using multiple
moves helps to connect the search space, as for any givenf gailutionss; ands,, it must be possible to navigate
from s to s, by performing a succession of moves. Moreover, an incrgasimber of studies tackle problems
by integrating decisions of different types (e.g., job s&ta and job scheduling). For such problems, it is natural
to define one move for each type of decision. In a classicall lsearch method, these multiple moves are used
jointly to create a single neighborhood for each solutiag.(gob selection moves and job scheduling moves are
used at the same time within the same neighborhood). In tipoged RVNS, multiple neighborhood structures are
defined. Le1Nik be the neighborhood with distancgenerated with a move of typa,. For instance, the solution

in Nik can be generated by applyingnoves of typery. In the proposed approach, the move used to generate
the solution in the shaking step is selected reactively,thadlistance follows the usual VNS pattern (i.€.,is

set toimin When the solution obtained after local search is better tharincumbent solution, arids increased
otherwise).

When solving the short-term production-management proldefined in the next section, we observe that LS
uses one type of move more frequently than the others. The¢ msesl move depends on the instance and on
the initial solution of LS. Such a behavior indicates that #earch is in a strong local optimum for one type of
decision. If modifying decisions of a specific type leadsigmgicant cost augmentations, LS naturally focuses on
the modification of other types of decisions. Consequestiyne decisions are never changed, and the search stays
in a specific zone of the search space. To help escaping friemdhe, the shaking step generates a solution with
the least used move during the last LS run.
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Algorithm 1 summarizes the proposed RVNS approach. It isvegit for problems involving various types of
decision. A simple strategy to control the reactive compoimeproposed above. Although this control strategy
performs well on the tested problems (see the next sectdm@ strategies could be of course relevant for other
problems. The principle is to define a strategy detectingttieasearch is trapped in a restricted area of the search
space, and able to select a move which allows to escape fiemetfion. For instance, a learning mechanism sim-
ilar to the one proposed in [2] can be used to infer a policyrreng the move to use depending on characteristics
of the last LS runs.

Algorithm 1 Reactive Variable Neighborhood Search (RVNS)

Generate an initial solutiog) seti = iyin, and set randomllg to one of the move type.

While no stopping criterion is metlo
(1) Shaking: generates’ randomly in the neighborhod\qk.
(2) Local search: apply LS tod, using jointly all the move types in each iteration. ltbe the resulting
solution, and sek to the least used move type in LS.
(3) Moveor not: if s’ is better thars, sets= 5", and continue the search withk: iin; otherwise, increasie but
if | > imax, Seti = imax.

4 Application to short term supply chain management

This section presents the RVNS designed in [8] to solve at¢bon supply-chain-management problem (P). The
proposed reactive scheme is generalized in this paperh@nsiction aims at quantifying the benefit of RVNS for

(P).

Given a set of orders, (P) consists in dimensioning produadtits and scheduling them on parallel production lines.
The decision maker is located at the plant level and the Gbgefunction includes four types of costs: (1) order
rejection costs; (2) tardiness penalties (as the shopsevillelivered later than expected); (3) sequence-dependent
setup costs between the production lots; (4) raw materjaess delivery costs (to be paid to the suppliers to have
the raw material earlier than initially planned). Specifiatures and constraints of (P) are not detailed here because
they do not impact the design of RVNS (as well as the paramatérg). In the next three paragraphs, considering
(P), TS, VNS and RVNS are successively summarized.

The neighborhood of TS is generated with two types of moves) {hsert an ordep in a production lot @ is
either a rejected order or an order planned in a differerdyction lot); np) modify the production day and the
production line of a lot. After performing a mowe,, the ordelo gets a tabu status. Similarly, when mowesare
performed, all the orders of the lot get the tabu status. Aeowith a tabu status (or a lot containing a tabu order)
cannot be moved for some iterations (parameter). To aatel@S, only a random proportion (parameter) of the
neighborhood is evaluated.

The local search in VNS is TS with a stopping criterion of 5@@dtions. The neighborhodél used for the shaking
step is generated by applyihg') (i.e., afunction increasing witl) random moves imy U m,. In the shaking step,
p (parameter) solutions are randomly generated jrand the best one is the initial solution of TS. If the solntio
provided by TS does not improve the input solution, the dista is increased.

RVNS enhances VNS by reactively selecting a single type ofeno(my or mp) to generate the neighborhood in
the shaking step. More precisel;t{nl (resp.NimZ) is generated by performing agah(i) moves of typam (resp.

mp) ons. In the shaking step, RVNS chooses reactively to M@é or Nimz. During each run of TS, the number
of performed moves of each type (for bath andmy) is counted, and the least performed move is selected to
generate the neighborhood in the next shaking step.

To measure the benefit of RVNS, the following comparisonsiaegul. First, comparing VNS (which uses TS as
an intensification procedure) with TS allows capturing ttidesd value of the shaking step (with the involved nested
neighborhoods). Second, comparing RVNS with VNS allowsnjfiang the added value of the reactive scheme.
The tests were performed on more than 50 instances, on agsmtatel R XeonR CPU E5— 2660 220GH z,

with a time limit of 20 minutes, and replicated with ten difet seeds. Table 1 presents the results aggregated by
number|P| of products. For each group (i.e., line), Table 1 gives therage numbeO| of orders, the best cost
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obtained by any of the tested method (averaged per grougp}haraverage percentage gap with respect to the best
cost (for each method). VNS outperforms TS with an averagea§&.10% versus 382% for TS. The reactive
move selection leads to an even better performance, as Rulp@rorms VNS with an average gap 022%. In
addition, RVNS obtains better solutions for each instagpe.t

|P| 0] Best cost TS VNS RVNS
10 286 682,256.0 1.99 2.27 1.27
20 571 439,528.0 2.64 3.10 1.94
30 849 577,411.3 3.43 2.20 1.22
50 1426 805,332.8 5.27 3.62 2.70
100 2869 879,835.0 13.27 4.32 4.09
Average 5.32 3.10 2.24

Table 1: Comparison of TS, VNS and RVNS for (P).

5 Conclusion

This paper presents RVNS, a method obtained by adding aveantchanism to the standard VNS approach. Itis
relevant for combinatorial optimization problems invelgidifferent types of decisions. The reactive mechanism
decides which optimization component to employ, either fipgisome learning techniques or some specific rules
depending on the problem. We show that the discussed reattiveme helps to better escape from local optima.
Research on RVNS are relatively recent, but good perforemace already reported. Investigating RVNS more
deeply would be an interesting avenue of research. Fomiostéa most studies, a single componentis reactive, and
thus the use of multiple reactive elements could be consitiExcept in [2], only simple learning mechanisms
were proposed. Advanced learning methods could help terptedict which variant of a component would
perform best in a particular state of the search.
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