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Abstract

We prove that the numerical solution of partitioned Runge-Kutta
methods applied to constrained Hamiltonian systems (e.g., the Rattle
algorithm or the Lobatto IITA-IIIB pair) is formally equal to the exact
solution of a constrained Hamiltonian system with a globally defined
modified Hamiltonian. This property is essential for a better under-
standing of their longtime behaviour. As an illustration, the equations
of motion of an unsymmetric top are solved using a parameterization
with Euler parameters.

Keywords. Constrained Hamiltonian systems, symplectic integra-
tors, partitioned Runge-Kutta methods, generating functions, back-
ward error analysis, modified Hamiltonian.

1 Introduction

It is well-known that symplectic integrators applied to Hamiltonian systems
have an improved long-time behaviour (no secular terms in the preservation
of the Hamiltonian, linear error growth for generic integrable systems). This
is explained by a backward error analysis which states that the numerical so-
lution is exponentially close to the exact solution of a modified Hamiltonian
system which is given by a formal series

H(p,q) = H(p,q) + hHa(p,q) + hHs(p,q) + ...

in powers of the step size h (see for example [3, Chap.IX]). For this expla-
nation it is crucial that all H;(p, q) of the modified Hamiltonian are globally
defined, i.e., they have to be single-valued. This holds true for all known
symplectic integrators.

For constrained Hamiltonian systems, a backward error analysis has first
been elaborated by Reich [13]. It is based on an extension of the integrator
to an open neighbourhood of M so that standard techniques can be ap-
plied. For simple methods such as the Rattle algorithm (Table 1) and the
symplectic Euler method (Table 2) this extension is given explicitly in [4,



Sect. VIL.8] and a globally defined modified Hamiltonian is obtained in this
way. In the general case, however, Darboux’ Theorem on the transforma-
tion of a Poisson structure to canonical form is involved, and only the local
existence of a modified Hamiltonian is guaranteed.

A different approach (considered in [3]) is based on the use of a parame-
terization of the constrained manifold, which transforms the constrained
Hamiltonian system to an unconstrained Poisson system. Backward er-
ror analysis can be applied in the parameter space and the results can be
rewritten in the original variables. Also this approach is in general of a local
character.

The main contribution of the present article is to derive a globally defined
modified Hamiltonian for all partitioned Runge-Kutta methods including the
Lobatto ITIA-ITIB pair of arbitrary order. In Sect.2 we present Hamilto-
nian systems that are subject to holonomic constraints, we give the formulas
for partitioned Runge-Kutta methods, and we state the main result of this
article. The key for the proof is an extension of the approach of Lasagni
(unpublished manuscript with the same title as [9], see also Sanz-Serna &
Calvo [14, Sect. 11.4]) to partitioned Runge-Kutta methods for constrained
Hamiltonian systems (Sect.3). We give in Sect.4 a constructive derivation
of the globally defined modified Hamiltonian. An illustrative numerical ex-
periment (Sect. 5) solving the equations of motion for an unsymmetric top
concludes this study.

2 Problem, Numerical Method, and Main Result
We consider the numerical integration of constrained Hamiltonian systems

p = —VH(p,q) — Vag(a)A 2.1)
Here, p and q are vectors in R", g(q) = (gl(q), . ,gm(q))T is the vector
of constraints, V,H and V,H are column vectors of partial derivatives,
Veg = (ngl, ... ,ngm) is the transposed Jacobian matrix of g(q), and
A € R™ is the vector of Lagrange multipliers.

Differentiating the constraint 0 = g(q(t)) with respect to time yields

0= V,e9(¢)" VpH(p,q) (2.2)

(the so-called hidden constraint) which is an invariant of the flow of (2.1).
A second differentiation gives the relation

0

0 = a—q(ng(Q)TVpH (p, Q)) VpH(p,q)

(2.3)
—~Va9(@)" VEH (p,0) (VoH (p,9) + Vag(a)A),



which allows us to express A in terms of (p, ¢), if the matrix
ng(q)TV?,H(p, q)Vq9(q) is invertible (2.4)

(V;H denotes the Hessian matrix of H). Inserting the so-obtained function
A(p, q) into (2.1) gives a differential equation for (p,q) on the manifold

M ={(p,q) | 9(q) =0, Va9(q)" V,H(p,q) = 0}. (2.5)

Partitioned Runge-Kutta Methods. For the numerical integration of
problem (2.1) with initial value (po,qo) € M we consider the discretization

P, = po—h ilaij (VqH(Pja Qj) + ng(Qj)Aj> (2.6)
i

Qi = q+ hzs;aijva(Pjan)a 0 = g(Qi) (2.7)
iz

po=po—h Z; bi(VoH (P Q) + V49(Q0)As) (2.8)

@ = q+h _il b;V,H(P;, Q;). (2.9)

Due to the conditions 0 = ¢g(@Q;) in (2.7), which have to be satisfied by choos-
ing suitably the A;, the existence of the numerical solution is not guaranteed
without any assumptions on the coefficients of the method. Following Jay
[7] (see also [4, Sect. VIL.8]) we assume that

alj =0, asj = bj, ais =0
s s (2.10)
bs # 0, (Zk:l a’ikakj)ij:Q invertible.
The assumptions a;; = 0 and a,; = b; imply Q1 = ¢o and Qs = ¢1, so

that g(Q1) = 0 gives no extra condition and g(g;) = 0 is automatically
satisfied because of g(Qs) = 0. Since a;s = 0, the equation (2.6) does not
depend on Ajg, and the invertibility of the matrix in (2.10) together with
(2.4) allow us to determine Aj,...,A; 1 in such a way that ¢g(Q;) = 0
for i = 2,...,s. If by # 0, the freedom in choosing A; can be exploited
to satisfy V,g9(q1)TV,H (p1,q1) = 0. Consequently, the numerical solution
(p1,q1) after one step remains in the manifold M.

Example 2.1 (Rattle Algorithm) The most prominent example is the
so-called Rattle algorithm, developed by Ryckaert, Ciccotti & Berendsen
and by Andersen for separable Hamiltonians, and extended to general con-
strained Hamiltonian systems by Jay. It is defined by (2.6)-(2.9) with s =2
and coefficients a;; (left tableau), a;; (right tableau), and b; (bottom rows)
given in Table 1. This method is symmetric and of order two.



Table 1: Coeflicients of the Rattle algorithm

0 0 1/2 0
/2 1/2 1/2 0
/2 1/2 12 1/2

Example 2.2 (Lobatto IIIA-IIIB Pair) A natural extension of the Rat-
tle algorithm to higher order has been found by Jay [7]. The idea is to
take for b; the weights of the Lobatto quadrature of order 2s — 2, for the
coefficients @;; the Lobatto ITIA collocation method, and for a;; the Lo-
batto ITIB method. For details of the coefficients we refer to [4] and to [3,
Chap.II]. With these coefficients the method (2.6)—(2.9) is symmetric and
of order 2s — 2. A new proof of the order of convergence is presented in [3,
Sect. VIL.1].

Example 2.3 (Methods with b; = 0: Symplectic Euler) If the condi-
tions of (2.10) are satisfied with the exception of bs # 0, the numerical so-
lution still exists and satisfies g(g1) = 0, but in general (pg,qo) ¢ M. To
achieve (po, qo) € M we subtract the term hV,g(g1)As to (2.8) and deter-
mine A, such that V,9(q1)V,H (p1,¢1) = 0 holds. An important special case
is given by the coefficients of Table 2. The order of the resulting method is
one.

Table 2: Symplectic Euler for Constrained Systems

0 0 0
1 0 0
1 0 1 0

Backward Error Analysis. We are now in the position to formulate and
discuss the main result of this article. We denote by ¢; : M — M the exact
flow of the system (2.1), and by &5, : M — M the discrete flow of one of
the above methods applied with step size h to (2.1).

Theorem 2.4 Let H(p,q) and g(q) be defined and smooth on a neighbour-
hood D of M and let (2.4) be there fulfilled. Assume that the method (2.6)-
(2.9) satisfies (2.10) and the symplecticity condition

bia;j + bjaj; = b;b; for all 1, 3. (2.11)
Then, there exist functions Hy(p,q) defined and smooth on D, satisfying
Ve9(a) VpHi(p,q) =0 for (p,q) € M, (2.12)



such that for arbitrary N > 1 and with
H(p,q) = H(p,q) + hH2(p,q) + ...+ h" " Hy(p,q) (2.13)
we have
@1(y) — Gnly) = O,
where @y : M — M denotes the ezxact flow of
P = —VeH(p,q) = Vg(g)X
¢ = VpH(p,q), 0= g(q)

The proof of this theorem is the subject of this article.

(2.14)

3 Generating Function

The numerical solution of (2.6)—(2.8) is well-defined only for (pg.qo) € M.
However, if we replace the condition “0 = ¢(Q;)” in (2.7) by

0 = g(Qs) — 9(q0) — hiV4g(a0)" Vi H (po, o) (3.1)
(i =2,...,s) and the condition “0 = V,g(q1)TV,H (p1,q1)” defining A, by
0 = Vqg(q1)" VpH (p1,q1) — Vg(90)" VpH (p0, 90), (32)

then the numerical solution is well-defined for all (pg, gg) in an open neigh-
bourhood of M (cf. [4, page 546]). Unfortunately, the so-obtained extension
of (2.6)—(2.8) is not symplectic.

Inspired by the formulas of Lasagni for the generating functions of (un-
constrained) symplectic Runge-Kutta methods, we define

S(p1,q0,h) = hzbi(H(BaQi)+9(Qi)TAi) (3.3)

— 0 Y by (VoH (P, Q) + Vg(@)A) VpH(P,Q)),

ij=1

where P;, Q; and A; are considered as functions of (p1, ), what is possible
because p1 = pg + O(h). This function S permits us to find a symplectic
extension of our method on the manifold M.

Lemma 3.1 Let the coefficients b;, a;j,a;; satisfy (2.10) and (2.11). Then,
the numerical method given by

Po =p1+vqos(plaq07h)’ q1 :q0+vp15(p1aQOah) (34)

defines a symplectic extension of the partitioned Runge-Kutta method (2.6)—
(2.9) to an open neighbourhood of M.



Proof. As a consequence of the theory of generating functions the transfor-
mation (po, go) — (p1,41), given implicitly by (3.4), is a symplectic mapping
for every smooth S(p1,qo, h).

We still have to prove that (3.4) is an extension of the partitioned Runge-
Kutta method (2.6)—(2.9). For this we compute the partial derivatives of
S(p1,4q0,h). Observing that the derivatives of P;, Q;, po with respect to p;
and ¢p can be obtained from (2.6)—(2.8) by implicit differentiation, and using
the symplecticity condition (2.11), a straightforward computation yields

VoS = B3 bi(VeH(P, Qi) + Vg(@0)As) +h Y bi(Veohi)g(Qs)
=1 =1

VS = hY_ bVpH(P, Qi) +h Y bi(Vp,Ai)g(Qi).

i=1 1=1
Since g(Q;) = 0 for (po,q0) € M (cf. (3.1)), this proves that the method
(3.4) is on the manifold M the same as (2.6)-(2.9). O

For methods satisfying (2.11) and (2.10) with the exception of bs # 0 we
have to include the term —hV4g(q1)A; in formula (2.8) to be able to fulfill
(3.2). In this case the statement of Lemma 3.1 holds true, if the expression

hg(Q)" A — 1Y (Vg(@oAL) VoH(PLQ)  (35)
j=1

is added to S of (3.3).
We observe, and this is crucial for the rest of this paper, that the gener-
ating function can be written as

S(p, q, h') = hSl(paQ) + hZSQ(pa Q) + h353(p, q) +., (36)

where the functions S;(p, ¢) are smooth and well-defined on D (the domain
where H(p, q) and g(q) are defined and where (2.4) holds). In fact, they are
composed of derivatives of H and g, and of multiplications with the inverse
of the matrix (2.4). This is illustrated with the following example.

Example 3.2 For the symplectic Euler method of Table 2 it follows from
(3.3) and (3.5) that

S(p1,q0,h) = h(H(P1,q0) + 9(q0)" A1+ g(q1)T A2)
— h2V,H(P1,q0)" Vg(q1)As,

where P, q1,A1,A2 have to be interpreted as functions of (pi,q). This
generating function has an expansion of the form (3.6) with

Si(p,q) = H(p,q) +9(a)" (XN(p,q) + X3(p, q))
Sa(p,q) = VpH(p,q)" Veg(9)X3(p,q) + 9(9)" (M (p,9) + X3(p,9)),
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where )\g (p1,q0) are the coefficients of the h-expansion of A;(p1,qo,h). In
fact, A(p, q) + AY(p, q) equals the function A(p, q) defined in (2.3), the func-
tion AJ is given by

(Veg" V2H V9) X3 = ¢" (VpH)? + Veg" VypeH VyH,

(the obvious argument (p, ¢) is omitted in this formula), and for Al + A} we
have a similar formula with a much more complicated right-hand side.

Remark 3.3 (Symmetric Extension) For symmetric partitioned Runge-
Kutta methods (2.6)—(2.9), i.e., methods for which a;; + as41-is+1—j = b;
and @;j + Gs41-4,s+1—; = b; hold, the extension (3.4) is not symmetric. This
is due to the unsymmetric relation (3.1) and can easily be repaired by re-
placing it with

0 = 9(Q) — 5(9(q0) +9(a1)) = h(@ = 3)Vgg(@0) VpH (po,q0).  (3.7)

Examples of symmetric methods are the Rattle algorithm (Table 1) and the
Lobatto IITA-IIIB pair.

4 Global Modified Hamiltonian

For numerical methods (3.4) with a globally defined generating function the
modified Hamiltonian can be obtained from the Hamilton-Jacobi differential
equation (see Benettin & Giorgilli [2], the thesis of Murua [11, p.100], and
also [3, Sect.I1X.3.2]). We briefly recall this construction of the modified
Hamiltonian. It consists of three steps:

First Step. We consider a formal modified Hamiltonian

and use the fact that the exact solution (P, Q) = @¢(po,qo) of the Hamilto-
nian system with H(p, q) is formally given by

p0:P+vq§(Paq01t), Q:q0+vp§(P,qo,t)a

where S(p, g,t) is the solution of the Hamilton-Jacobi differential equation

95 (p,q,t) = H(p,q+ VpS(p,q,t)), S(p,q,0) =0 (4.2)

ot
We express S (p,q,t) as a series (observe that H and hence S depend on h)
g(pa qat) =1 gl(pa q, h) + t2§2(pa q, h) + t3§3(pa q, h) +...,

insert it into (4.2), expand H (p,q+...) into a Taylor series, and compare
like powers of t. This yields recurrence relations for S;j(p, g, h) expressed in

7



terms of derivatives of H : for example, we obtain Sy (p,q,h) = H (p,q) and
292(p,q,h) = (VeH"'V,,51) (p, g, h), ete.

Second Step. We write §j as a formal series

insert it and the expansion (4.1) for H into the relations obtained in the
first step, and compare like powers of h. This yields glk(p,q) = Hy(p,q),
289, = ;:11 V HI V,H_;, and also for j > 3 the function S;x(p,q) is
expressed in terms of derivatives of H; with [ < k.

Third Step. To obtain the modified Hamiltonian for our extended method
(3.4) we require that the generating function (3.6) is equal to S(p, g, k). This

gives Sl@a q) = gll(p,q)a SZ(pa q) = §12(p7 q) + SQl(pa q)7 etc., and hence

S1 = H
Sy = Hy+  V,HIV,H,

Sy = Hy+ 5V HIVyHy + sV HIV,Hy
1 1
+ SVH I Vy(VoH{ VpHy) + 3V, HI Vo H V, Hy

so that S;(p, q) is seen to be equal to H;(p, q) plus terms containing deriva-
tives of Hy(p,q) with £k < j. For a given generating function (3.6), this
recurrence relation allows us to determine successively the H;(p,q). We see
from these explicit formulas that the functions H; are defined on the same
domain as the Sj.

Properties of the Modified Hamiltonian. We consider a consistent
partitioned Runge-Kutta method satisfying the assumptions of Theorem 2.4.
The modified Hamiltonian (4.1) constructed above has the following prop-
erties:

(a) The Hamiltonian system

p = —Vqﬁ(p, q)a q = VPH( ,Q), (44)

where H is an arbitrary truncation of the series (4.1), defines a dif-
ferential equation on the manifold M, i.e., for all £ > 1 the vector
(—Vqu(p, q), VpHy(p, q)) lies in the tangent space of M at (p,q).
This is seen by induction on the truncation index (starting with the
zero-vector field), because the numerical method (3.4) has M as in-
variant manifold (cf. [3, Sect. IX.5]).

(b) As a consequence of property (a), all functions Hy(p,q) satisfy

Vo9(9)" VpHir(p,q) =0 for (p,q) € M (4.5)



(c) On the manifold M the differential equation (4.4) is equivalent to
p = ~VeH(p,q) ~ Vyg(a)A

with a function A that vanishes identically.
(d) In the formulation (4.6), terms of the form

(4.6)

9(0)" u(p, q)

can be removed from the functions Hy without changing the problem
on M. This makes the function A non-zero. After this modification
the function H;(p, ¢) can be assumed to be equal to the original Hamil-
tonian H (p,q) of (2.1).

These properties altogether complete the proof of Theorem 2.4. We should
mention that due to the arbitrariness in choosing the extension of the method
to an open neighbourhood of the manifold M, the functions Hy(p, ¢) in (4.1)
are not unique. However, their restriction to the manifold M is unique up to
an additive constant (this is a consequence of the uniqueness of the modified
differential equation).

5 Numerical Illustration

Let us consider the movement of a rigid body with a fixed point chosen at
the origin. We express a point of the body by a € R? in the coordinate
system connected to the body, and by Q(t)a in a stationary coordinate
system. The matrix Q(¢) is orthogonal and describes the movement of the
body. This means that the configuration manifold is the three-dimensional
rotation group SO(3). If we denote by Iy, I3, I3 the moments of inertia of
the body, its kinetic energy is

T = J(090% + O3 + ,93),

where the angular velocity in the body Q = (Q1,Q5,Q3)7 is defined by

~ 0 —-Q5 O _
Q=1 Q3 0 -0 | =070,
—Qy O 0

(see [1, Chap.6]). Expressed in terms of Q or Q, the kinetic energy on the
manifold {Q | QT Q = I'} becomes

T= %trace (SAZDKAZT) = %trace (QTQDQTQ) = %trace (QDQT),



where D = diag (d1, d2, d3) is given by the relations I1 = dy+d3, I = d3+di,
and I3 = d; + dy. Introducing conjugate variables P = 0T/0Q) = QD, we
are thus concerned with

H(P,Q) = ; trace (PD"'PT) + V(Q),
and the constrained Hamiltonian system becomes

P = -VoV(Q) — QA

Q@ =PD', 0=Q"Q-1, (5-1)

where A is a symmetric matrix consisting of Lagrange multipliers. This is
of the form (2.1) and satisfies the regularity condition (2.4).

Every partitioned Runge-Kutta method satisfying the assumptions of
Section 2 can be applied. E.g., the Rattle algorithm of Example 2.1 yields

h h
Py = By —5VQV(Qo) — QM
@ = Qo+hPpD7 QIQu =1 (5.2)
P1 = P1/2 - gVQV(Ql) - gQ1A2, DilPiTQl + Q’{PlDil = O’

where both, A1 and Ay, are symmetric matrices. For consistent initial values,
Qo is orthogonal and Qf PyD~! = € is skew-symmetric. Working with

%=Q(Q=QIRD", Qp=QIPsD", W=Q[AD!
instead of Py, P/, P1, the equations (5.2) become the following integrator
(Qo,€0) = (Q1,€1):

(i) find an orthogonal matrix I+ hﬁl /2 such that
Qo = Q- 5QIVQV(Q0)D ' = 2AD !
holds with a symmetric matrix Aq;
(i) compute Q1 = Qo(I + hQ2);
(iii) compute a skew-symmetric matrix Q, such that
0 = §1/2 - gQ{VQV(Ql)D_I - (ﬁl/2 + ﬁ1T/2) - %AQD_I
holds with a symmetric matrix As.

This algorithm for the simulation of the heavy top is proposed in [10]. A

variant, based on the first order method of Table 2, is considered in [12].
We emphasize that the above algorithm can be implemented efficiently

with the use of quaternions, sometimes called Euler parameters (see [8, page
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| scaled energy error
MRS S R S|

Figure 1: Scaled energy error (H(pn, an) — H (po, qo))/h2 as a function of the
time ¢, for step sizes h = 0.2,0.1,0.05,0.025; smaller step sizes correspond
to thicker lines.

76] for an introduction to quaternions, and Sections 9.3 and 11.3 of [5] for the
use of Euler parameters in numerical simulations). In fact, every orthogonal
matrix can be written as

0 —€3 €9
Q = T+2qge+2¢é, e=[es 0 —e],
—€2 €1 0

where e3+e?+e3+e3 = 1. The parameters eg, e1, €3, e3 are the coordinates of
a quaternion. In the above algorithm we represent the orthogonal matrices
Qo, Q1 and I + hﬁl /2 by quaternions. This reduces the dimension of the
system, simplifies the nonlinear system in step (i) of the algorithm, and due
to the simple product formula of quaternions gives an efficient program. A
Fortran version is available from the author.

For our numerical experiment we let V = g33 = €5 — €2 — €3 + €3 be the
potential energy due to gravity, so that the above equations describe the
movement of a top. We let I; = 0.5, I = 0.9, I3 = 1, and we consider initial
values e(0) = (0.4,0.2,0.4,0.8)T, and Q(0) = (0.2,1.0,0.4)7. We apply the
above algorithm, and we plot in Fig.1 the scaled error in the Hamiltonian
(H(pn,qn) — H(po,q0))/h? as a function of the time ¢,. We observe that
this scaled error behaves like Hs(p(tn), g(t)) +O(h?), which is in agreement
with (2.13) and with the fact that symmetric methods have an expansion
in even powers of h. Computations on longer time intervals confirm that
not only H(p,q) but also H3(p,q) remains bounded along the numerical
solution.

Remark 5.1 There exist several numerical approaches to the solution of the
equations of motion for the heavy top. Let us just mention the widely used
splitting method as described in [15], or Lie-group methods as studied in [6].
Limited numerical tests indicate that the above algorithm is comparable to
the most efficient integrators among them.
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