% UNIVERSITE Archive ouverte UNIGE

) &~
2% DE G E N EVE https://archive-ouverte.unige.ch

This version of the publication is provided by the author(s) and made available in accordance with the

copyright holder(s).

Towards robustness in algorithms: accelerated domain decomposition,
multisecant equations, and simplicial intersections

Mccoid, Conor Joseph

How to cite

MCCOID, Conor Joseph. Towards robustness in algorithms: accelerated domain decomposition,
multisecant equations, and simplicial intersections. Doctoral Thesis, 2022. doi: 10.13097/archive-

ouverte/unige:164515

This publication URL: https://archive-ouverte.unige.ch/unige:164515

Publication DOI: 10.13097/archive-ouverte/unige:164515

© The author(s). This work is licensed under a Creative Commons Attribution (CC BY 4.0)

https://creativecommons.org/licenses/by/4.0

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:164515
https://doi.org/10.13097/archive-ouverte/unige:164515
https://creativecommons.org/licenses/by/4.0

UNIVERSITE DE GENEVE FACULTE DES SCIENCES
Section de mathématiques Martin J. Gander

Towards robustness in algorithms:
accelerated domain decomposition, multisecant equations, and simplicial
intersections

Ph.D. THESIS

presented to the Faculty of Science, University of Geneva
for obtaning the degree of Doctor of Mathematics.

by
Conor Joseph McCoid
from

British Columbia, Canada

Ph.D. N° 5681

Atelier d’impression ReproMail
Geneva, October 17, 2022

FACULTE DES SCIENCES

DOCTORAT ES SCIENCES, MENTION MATHEMATIQUES

Thése de Monsieur Conor Joseph MCCOID
intitulée :

«Towards Robustness in Algorithms: Accelerated
Domain Decomposition, Multisecant Equations, and
Simplicial Intersections»

La Faculté des sciences, sur le préavis de Monsieur M. GANDER, professeur ordinaire et
directeur de thése (Section de mathématiques), Monsieur G. VILMART, docteur (Section
de mathématiques), Monsieur M. TRUMMER, professeur (Mathematics Department,
Simon Fraser University, Burnaby, BC, Canada), Monsieur J. RODRIGUEZ GARCIA,
professeur (Department of Applied Mathematics, Universidade de Santiago de
Compostela, Santiago de Compostela, Spain), autorise I'impression de la présente thése,

sans exprimer d’opinion sur les propositions qui y sont énoncées.

Genéve, le 30 aolt 2022

Thése - 5681 - 2 ;‘ﬂw\,\/

Le Doyen

N.B.- La thése doit porter la déclaration précédente et remplir les conditions énumérées dans les "Informations
relatives aux théses de doctorat a I'Université de Genéve".

ii

Summaries

Francais

Le these peut diviser en trois parties: les cycles des méthodes de décomposition de
domaines; 1’équivalence entre les méthodes d’extrapolation et les méthodes de sous-
éspace de Krylov, et; 'intersection des simplexes.

Les méthodes de décomposition de domaines subdivise un probleme en tranches, et
on résoud chaque tranche individuellement avant la recombinaison. La recherche dans
ces méthodes concerne comment on fait cette recombinaison. Elle peut étre lente, alors
on veut 'accélérer, par exemple en utilisant la méthode de Newton.

Il n’existe pas de criteres pour la convergence d’'une méthode de décomposition de
domaines accélérée par Newton. Dans le deuxieme chapitre de ce these je présente
une PDE non-linéaire pour quelle une telle méthode ne converge pas. Au lieu de
convergence, cette méthode cycle entre deux pointes. Je manipule la PDE a trouver le
doublement de la période et les mémes résultats en dimension plus haut.

Pour le troisieme chapitre je considere trois types de méthodes. Principalement il
s’agit des méthodes d’extrapolation, mais aussi les méthodes des sous-éspace de Krylov
et les équations multisécantes. Les dernieres sont ’extension de la méthode sécante
en dimension générale. En fait, il existe beaucoup des méthodes qui généralise cette
méthode, mais toutes se rapprochent les mémes équations. En commencant avec ces
équations on peut construire les méthodes d’extrapolation et apres les méthodes des
sous-éspace de Krylov. Avec cette construction les trois types de méthodes devient
équivalent.

Le reste du these concerne un algorithme d’intersection des simplexes qui est robuste.
On considere premierement 1’algorithme pour les triangles, apres pour les tetrahedra, et
finalement pour les simplexes en dimension arbitraire. L’algorithme utilise le principe
de parcimonie, qui nous dit a faire le plus petit nombre des calculations nécessaire a
trouver le résultat. On enquéte combien d’information chaque calcul nous informe et
on ne repete pas de calculs qui nous donnent la méme information.

Le plupart du dernier chapitre est sur 'implémentation de I’algorithme. Il faut
se préoccuper de quelle intersections a calculer et comment on garde les calculs. Je
développe les téchniques a faire ces choses dans le contexte des simplexes.

iii

iv SUMMARIES

English

This thesis can be divided into three parts: cycles in domain decomposition methods;
the equivalence between extrapolation methods and Krylov subspace methods, and;
the intersection of simplices.

Domain decomposition methods subdivide a problem into subdomains, and resolves
each subdomain individually before recombining them. Research into these methods
concerns how to do the recombination procedure. It can be slow, and so we want to
accelerate it, for example by using Newton’s method.

There are no criteria for the convergence of a domain decomposition method accel-
erated by Newton’s method. In the second chapter of this thesis I present a nonlinear
PDE for which such a method does not converge. Instead, this method cycles between
two points. By manipulating this PDE I find the period doubling and the same results
in higher dimensions.

In the third chapter I consider three types of methods. Principally it concerns ex-
trapolation methods, but also Krylov subspace methods and the multisecant equations.
This latter method is an extension of the secant method to higher dimensions. In fact,
there exist many methods that generalize this method, though most derive from these
equations. By starting with these equations one can construct the extrapolation meth-
ods and afterwards the Krylov subspace methods. With this construction the three
types of methods become equivalent.

The remainder of the thesis concerns an intersection algorithm for simplices which
is robust. We consider first the algorithm for triangles, then tetrahedra, and finally
simplices in arbitrary dimension. The algorithm uses the principle of parsimony, which
tells us to do the smallest number of calculations necessary to find the result. We ask
how much information each calculation tells us and we do not repeat calculations that
tell us the same information.

Most of the last chapter is on the implementation of the algorithm. One must
consider which intersections to calculate and how to store the calculations. I develop
techniques to do these things in the context of simplices.

Acknowledgements

First and foremost, I must thank my supervisor, Prof. Martin J. Gander. I have
been immensely lucky to have had his guidance and support during my PhD. I cannot
imagine completing this work with anyone else. I also wish to thank the members of
my jury for taking the time to read this thesis, ask thoughtful questions and provide
crucial feedback: Prof. Manfred Trummer, Prof. Jeronimo Rodriguez Garcia, and Dr.
Gilles Vilmart. This work was funded by the Swiss National Science Foundation, and
I am grateful for their financial support.

I would next like to thank my coworkers at the Section of Mathematics. They
were always available when help was needed, when a coffee break was called for, or
when there was a serious philosophical discussion to be had. In particular, I'd like to
thank my officemates Pablo Lucero and Michal Outrata. The Section saw many good
people come and go during my tenure here: Adrien, Marco, Tommaso, Aitor, Liudi,
Bastien, Ibrahim, Eiichi, Christine, Thibaut, Louis-Hadrien, Raphael, Renaud, Rik,
Parisa, Pascaline, Giancarlo, Pratik, Ausra, Eugen, Fathi, and Elias, to name but a
few. To each of you goes my thanks.

Finally, I wish to thank the friends I have made while living in the city of Geneva.
Of all the things I leave behind I will miss them the most. Some have been mentioned
here already, and to the rest you know who you are and what you mean to me, and so
I will not sully it with words.

vi

ACKNOWLEDGEMENTS

Contents

Summaries iii
[Acknowledgements| v
1__Introductionl 1
(1.1 Cycling in domain decomposition methods accelerated by Newton-Raphson| 1
(1.2 Robust triangle intersection algorithm| 2
(1.3 Equivalence between extrapolation methods and Krylov methods|. . . . 2

2 ASPN 5
2.1 Introduction|o 5
[2.2 Convergence of generic fixed point iterations and Newton-Raphson|. . . 6
[2.2.1 Convergence of Newton-Raphson in higher dimensions| 10

[2.3 The fixed point iteration of alternating Schwarz{ 10
[2.3.1 Alternating Schwarz and its fixed point iteration in higher di- [

I Mensionsl e 13
[2.4 Accelerated alternating Schwarz with guaranteed convergence] 14
[2.5 Finding the space of counterexamples| 15
2.6 Conclusions 21

[3 Multisecant equations| 23
3.1 Introduction|o 23
[3.2 Multisecant equations|. 23
[3.3 Connection to root-inding methods| 27
[3.4 Connection to extrapolation methods| 27
[3.5 Connection to Krylov methods|. 28
3.6 Conclusions 30

[4 Intersection of triangles| 33
4.1 Introduction| 33
4.2 Review of other algorithms|., 34
4.3 Change of coordinates|, 36
[4.3.1 Alternative to change of coordinates: Reference-tree parametriza- [

I tlond 37
{4.4 Computation of the polygon of intersection|. 38
[4.4.1 Edge Intersections| L. 39

442 Verticesof Yin Xl. 40

443 Verticesof Xin Yl. 42

vii

viii CONTENTS
4.5 Robust algorithm for 2D triangle intersections| 43
[4.5.1 Testof g0 lessthan O 44

[4.6 Consistency errors|o 44
M4.6.1 X-mn-Y errorsl e 45
4.6.2 Intersection errors and Y-in-X errorsl 46

4.7 Graphs of triangle-triangle intersections in 2D| 48
[4.7.1 Degenerate cases| 54

M8 Mamresults 55
4.9 Comparison of algorithms| 56
[4.9.1 Comparison of accuracy and computation time|. 57
4.10 Conclusionsl 59
[4.11 Invalid graph configurations| 59
[4.12 Advancing front algorithm| 0oL 60
[4.13 Additional proofs| 61
[4.14 Apocryphal.o 63
[4.14.1 Unpaired intersection errors| 63
[4.14.2 Graphs created through unpaired intersection errorsf. 68
“4.14.3 Frror in area due to intersection errors 69
5__Intersection of tetrahedral 71
b1 Introductionl 71
[>.2 Change of coordinates] 71
5.3 Corners of the intersectionl 72
[b.3.1 Vertices of X that lieinside Y| 72
[5.3.2 Intersections between edges of X and facesot Y| 73
[5.3.3 Intersections between faces of X and edgesof Y| 74
[5.3.4 Vertices of ¥ that lienside X|. 79

.4 Algorithm| 79
[5.5 Consistency errors| 81
B.o1 X-n—Y errord. 81
.02 X—with-Y errorsl 81
—with— —IN—X errors 83

[>.5.4 Conclusions on consistency|. 84

5.6 Examples| 85
[5.6.1 Intersecting icosahedral 85
[5.6.2 Accuracy and computation time{. 85

b7 Conclusions 88
6 Intersection of simplices| 89
[6.1 Notation and change of coordinates| 89
6.2 Verticesof X'inside ¥1 oo 90
[6.3 Intersections between edges of X and hyperplanesof Y| 90
[6.4 Higher dimensional intersections between X and Y| 91
6.5 Calculation of intersections. L. 91
[6.6 Reverse change of coordinates| 93
6.7 Verticesof Y mmside XI 94
(6.8 Algorithm| 94

(6.9 Implementation of PANG2-nD|. 96

CONTENTS ix

[6.9.1 Combinations of hyperplanes|. 98
[6.9.2 FEnumeration of combinations|o 100
[6.9.3 Connectivity of signs| 106
6.9.4 Alternative calculation of the intersections 109
[6.10 Visualizationl 110
[6.11 Conclusions 114
[6.12 Apocryphal. 114
[6.12.1 Adjacency cycles| 114

[Final remarks and future worksl 119

CONTENTS

Chapter 1

Introduction

In which the history of this thesis is recounted.

1.1 Cycling in domain decomposition methods accelerated by
Newton-Raphson

This research began as an exploration of domain decomposition methods accelerated
by Newton-Raphson. Such methods can instead be thought of as Newton-Raphson
preconditioned by domain decomposition methods. However, we will use the first
perspective exclusively. The purpose of these methods is to solve differential equations,
generally nonlinear ones, on domains that are either too complicated or too large to
resolve with standard methods.

The domain is divided into subdomains and the problem solved on the subdomains.
These subdomains either overlap or meet at their boundaries. The solution of a sub-
domain in the overlap regions or on the boundaries is shared amongst the subdomain’s
neighbours. The problem is resolved on the subdomains using boundary conditions
defined by this shared information. This process is repeated until the solution agrees
across all subdomains, called the global solution.

The iterative step, resolving the problem with new boundary conditions, can be
accelerated by applying the Newton-Raphson method to it. To do so, consider the
boundary conditions on each subdomain as input to a function. This function returns
the boundary conditions found after solving the problem on each subdomain. The
derivative of the function can be found by solving a related problem on each subdomain.
Applying Newton-Raphson to this function will accelerate convergence towards the
global solution, as long as the boundary conditions are near enough to those of the
global solution.

This acceleration is expected to be an improvement on the convergence of domain
decomposition methods, but there are no clear criteria for when it can cause divergence.
The original goal was to find such a set of criteria. The focus of this research was on
a specific method, namely alternating Schwarz preconditioned by Newton-Raphson
(ASPN).

I began by looking for the set of criteria to guarantee convergence for Newton-
Raphson when used to accelerate a fixed point iteration. This provided necessary and,
in certain cases, sufficient conditions for convergence. Applying these criteria to ASPN
resulted in an algorithm for guaranteed convergence of the method for nonlinear ODFEs

1

2 CHAPTER 1. INTRODUCTION

in 1D.

It also provided criteria to find counterexamples, ODEs for which ASPN converged
to stable cycles. Once one was found, with a sinusoidal nonlinearity, I was able to find
others.

1.2 Robust triangle intersection algorithm

I was also tasked with fixing an apparent error in an algorithm that projected infor-
mation between two nonmatching triangular grids. An example was found where two
overlapping triangles returned an empty intersection. After investigating I found the
intersection calculation had produced inconsistent results between its subfunctions.

I then wrote a new intersection algorithm intended to keep consistency between
these subfunctions. Primarily, the algorithm used a change of coordinates to keep
all geometry consistent between calculations. It also created a hierarchy in the type
of points that can arise in intersection calculations. Points higher in the hierarchy
informed the number of points to find lower on the hierarchy.

This algorithm was submitted to Transactions on Mathematical Software, a jour-
nal published by the Association for Computing Machinery, for review. The referees
pointed out that this hierarchy was not sufficient for robustness. While it ensured a
given step was consistent with the preceding one, it did not provide self-consistency
within that step.

To fix this, I examined the intersection calculations and found they needed to be
paired together. The position of the intersections are linked to one another in groups
of two. If one changes so too must another. This provided the self-consistency of the
steps missing from the first version. This second version was ultimately accepted for
publication.

The principles used in the triangle intersection algorithm have wider ranging ap-
plications. In particular, they can be applied to intersection algorithms for simplices
in general dimension. The same hierarchy applies, and the pairing of intersections
becomes a linking of a varying number of intersections.

In this general dimension the implementation becomes significantly harder. One
must consider several factors, primarily how to enumerate all the calculations that
need to take place.

1.3 Equivalence between extrapolation methods and Krylov
methods

I next explored the equivalence between extrapolation methods and Krylov methods.
Many of these equivalences were already known, and a primary goal was to codify them
under a single framework.

It must be noted that Krylov methods are designed to solve linear problems. Ex-
trapolation methods instead accelerate sequences, including nonlinear ones. When
considering linear sequences the acceleration corresponds exactly to the search direc-
tions of certain Krylov methods.

Both types of methods can trace their underlying mechanisms to the multisecant
equations, a set of equations that extends the secant method to higher dimensions.

1.3. EQUIVALENCE BETWEEN EXTRAPOLATION METHODS AND KRYLOV METHODS 3

These equations also underlie quasi-Newton methods, a type of root-finding method
based on approximating Newton-Raphson in higher dimensions.

The final product of this research is a map showing the interconnectedness of these
various methods. This map should help identify methods that can be used to solve
nonlinear problems using the same techniques as Krylov methods. Since much machin-
ery has been developed for these it would be beneficial to apply them throughout this
tree of methods.

CHAPTER 1. INTRODUCTION

Chapter 2

ASPN

In which one examines Newton-Raphson preconditioned by alternating Schwarz as a
means to discuss all methods in this family; discusses cycling behaviour in fixed point
iterations, Newton and secant methods; provides a class of counter-examples where
this cycling may be seen when applied to ASPN.

2.1 Introduction

Domain decomposition methods subdivide problems into subproblems. These sub-
problems are solved iteratively and information is passed between one another until
they arrive at a solution. This iterative process can be slow and so one seeks ways to
accelerate it.

Equivalently [I§], one may consider these domain decomposition methods to be
preconditioning some other method such as Newton-Raphson or a Krylov subspace
method. This preconditioning makes the problem easier or faster to solve by splitting
it into subproblems, as described above. ASPIN [9], RASPEN [I3], and MSPIN [29]
rely on various Schwarz methods to precondition either Newton-Raphson or inexact
Newton.

Let us begin by presenting the algorithm for alternating Schwarz, one of the simplest
domain decomposition methods. Suppose we seek to solve the boundary value problem

F(z,u,u’,u") =0, x€lab], ula)=A, ulb)=DB

for some function F(x,u,v,w). The domain [a, b] is split into two parts, [a, 5] and [« D]
with o < . The problem is solved on each subdomain and boundary data is passed
from one subdomain to the other. One iteration of alternating Schwarz can then be
summarized in the following three steps:

(1) F(x,ul,ull,u'{) =0, ui(a) = A, ur(B) = Y,
(2) F(x,ug,uy,uy) =0, ug(ar) = uy (@), uy(b) = B,
(3) Tnt1 = uz(B) = G(m).

The function G() thus represents one iteration of alternating Schwarz in substruc-
tured form. It takes as input «y the value of u;(f), and returns as output the value of
uz(B). The process is repeated until convergence, i.e.

(GoGo--0G)(y)=G"(7) » G (y) = (GoG") (7).

5

6 CHAPTER 2. ASPN

This is naturally a fixed point iteration applied to the function G().

To accelerate the method one applies Newton-Raphson to the function f(vy) =
G(v) — 7, which has a root at the fixed point. If the fixed point is unique, this is the
only root of f(). To apply Newton-Raphson, one needs to know the value of G'(v),
which may be found by adding two new steps, (1') and (2’), to alternating Schwarz:

(1> F(xvulvulhu/l,) = 07 ul(a) = A? ul(ﬁ) T

(1) J(uy) - (v1,v7,0v7) =0, v1(a) = 0, v1(B) =1,

(2) F(x,ug, uy, uy) = 0, ug(ar) = uy (@), uy(b) = B,

(2) J(ug) - (vg, vh,vh) = 0, vo(a) = 1, ve(b) = 0,
o wB)=m ~ G(m) =M

B = B -1 T Gl =1

where v;(z) = Ou;(z)/0v and J(u;) is the Jacobian of F(x,u;, u;, u!).

While a priori convergence criteria have been found for the underlying Schwarz
method, so far none exist for their combination with Newton-Raphson. We examine
cycling behaviour in this accelerated alternating Schwarz method to show the difficul-
ties with finding such criteria.

2.2 Convergence of generic fixed point iterations and Newton-
Raphson

A generic fixed point iteration z,.1 = g(x,) converges when |g(x,) — z*| < |z, — x|,
where x* is the fixed point, as this indicates g(z,) is closer to z* than z,. This occurs
when g¢(z) lies between x and 22* — x.

The convergence or divergence of the fixed point iteration is monotonic if sign(g(z)—
x*) = sign(z — x*). In this case g(x) and z lie on the same side of x*. If this is not the
case then g(x) finds itself on the opposite side of the fixed point and so oscillates.

This creates four lines, y = =, y = 22* — x, y = 2* and x = x*, that divide the
plane into octants. The four pairs of opposite octants form four regions with distinct
behaviour of the fixed point iteration, see left of Figure or Figure 5.7 from [21]:

1, g(z) <z < x* or g(x) >z > 2*: monotonic divergence;

2, z < g(x) < xz* or x > g(x) > x*: monotonic convergence;

3,z <a*<g(r) <22*—xorx>z">g(xr)>2x*— x: convergent oscillations;
, T <2t < 22" —x < g(x) or x> a* > 22" —a > g(r): divergent oscillations.

If the function g(z) intersects the line y = x at a point other than z* then there
are additional fixed points that the method can converge towards. If it intersects the
line y = 2x* — x then a stable cycle can form. A fixed point iteration is therefore only
guaranteed to converge if g(x) lies entirely between the lines y = x and y = 2z* — «x,
i.e. within regions 2 and 3.

Newton-Raphson can make use of this analysis by considering it as a fixed point
iteration:

Tn+1 = Tn — f/<-Tn) = gf(mn)'

2.2. CONVERGENCE OF GENERIC FIXED POINT ITERATIONS AND NEWTON-RAPHSON7

N (x)

N 9 .
N ,
N ’
N s
N ,

N 4 1 s
N ,

N s
N s
N ,

N s
N ({

N ,

N /

3 N / 2
N s
N /

— S -) - SR
N ’
N 7
N / 1
Q /
a2 1 X
T
[Z S
7 N |
= ENGS
s \
(% N
Z N
v, N\
4 N
2 | & . 3
/ N
/ N
f-=- N
//. S
= o
’] N
7’ N
f— - - N
/1 1 4 N
] N
4 N
/ ! N
/ 1 N
, v N

Figure 2.1: Left: Behaviour of the fixed point iteration x,+; = g(x,), where the origin is the fixed
point, g(0) = 0. Right: Regions of Newton-Raphson, z,+1 = z, — f(z,)/f (x,), where the origin
is the root, f(0) = 0. The tangent line to f(x) can be traced from (x, f(x)) towards the line y = 0.
Where it lands on this line indicates which fixed point iteration behaviour occurs.

Figure 2.2: Borders between respective regions, traced from tangent lines. (a) Regions 1 and 2; (b)
2 and 3; (c) 3 and 4; (d) 4 and 1.

The borders between the regions no longer depend solely on the value of f(z) but also
f'(x). The right of Figure shows which type of behaviour Newton-Raphson will
have based on where the tangent line points.

The borders of the regions are summarized in Figure 2.2 The slopes of most of
these borders are easy to see. If f'(x) = 0 then f(x) lies on the border between regions
1 and 4. If f’(z) = oo then it is between regions 1 and 2. If f(z) is linear then it is
between regions 2 and 3 and converges instantaneously.

The border between regions 3 and 4 changes depending on the value of x. Recall that
this border is represented by y = 22* — x. As stated, if g¢(x) intersects the line y = =
there are additional fixed points, and if it intersects y = 2x* — = there may be stable
cycles. For guaranteed convergence g¢(z) must lie between these lines. Intersections of
gs(x) with y = z occur only if f(z) =0 and f(z) has additional roots or f'(z) = oo.
Both circumstances are assumed not to occur. Intersections of g¢(x) with y = 22* — =z

8 CHAPTER 2. ASPN

Figure 2.3: Left: Solutions fco(x) such that gf(x) intersects y = 22* — « for all 2. Right: Functions
gc(x) = fo(z) + x such that g;(z) for f(z) = gc(x) — z intersects y = 22* — z for all .

may be represented as a first order ODE:

The solution to this ODE is fo(z) = C'\/|x — z*| where C' € R.

If a function f(z) with root z* is tangential to fo(x) for any value of C' then
gr(x) intersects the line y = 2z* — x. The left of Figure shows the functions
fo(z). A function f(z) that is monotonic with respect to this geometry has guaranteed
convergence under Newton-Raphson. That is, if f(x) is nowhere tangential to fo(z)
in a given domain containing z* for any value of C' then g¢(x) converges to the root
for any initial guess in that domain. Since f/(z*) = oo and f(z*) = 0 there is always
a region around the root z* where f(z) crosses all of these lines monotonically. This
conforms with the theory on Newton-Raphson, which states the method has guaranteed
convergence starting sufficiently near the root.

Branin suggests an adjustment to Newton-Raphson [3]:

f (=)

Tp1 = Tp — m

) fC(‘r*) = 0.

This naturally assumes that f(x) > 0 when x < z* and f(z) < 0 when z > z*. If
the reverse is true, one may apply the method to —f(x). Using this method requires
knowledge of the position of x* with respect to x. However, if one has this knowledge
then this method may overcome many of the pitfalls of Newton-Raphson. The lines
fo(z) must also incorporate the sign change for this method:

fo(x) = Csign(x — z*)+/|z — z*|.

The corresponding geometry for a fixed point function accelerated by Newton-
Raphson is skewed such that the line y = 0 is aligned to y = x, as seen in the right of
Figure 2.3] The lines of this figure are the functions go(z) = fo(z) + z. A function
g(x) must be monotonic in this geometry or Newton-Raphson applied to g(x) — z may
exhibit cycling behaviour.

The slopes of the lines go () can then indicate necessary and, in some cases, sufficient
conditions for Newton-Raphson to converge. To use these conditions, one must know
which fixed point region of the left of Figure the function g(x) lies. One can
then find the maximum and minimum slope of go(x) in those regions. If g(z) has a
slope below these values then Newton-Raphson must converge, thus giving sufficient
conditions. If there is not a minimum then ¢'(x) must still adhere to the maximum,
giving necessary conditions.

2.2. CONVERGENCE OF GENERIC FIXED POINT ITERATIONS AND NEWTON-RAPHSON9

Table 2.1: Conditions for convergent behaviour of Newton-Raphson applied to g(z) — x.

g(x) lies in Necessary condition Sufficient condition
1 g (xz)>1

2 g (z) <1 g (x) <1/2

3 g'(z) <1/2 g'(z) <0

4 g'(z) <0

Region 1: Given that \/|z — x*| is non-negative, go(x) < z only if C' < 0 and g¢(x) >
x only if C' > 0. Thus, if go(z) lies within region 1 then sign(C') = sign(z — z*
and gp(x) > 1.

Region 2: The lower boundary is already defined by C' = 0 by the above work. Like-
wise, by the above work sign(C') # sign(z — z*). Next, one examines where
go(z) < z*:

C<u:sign(x*—x)\/|x*—x| :>C2{ " —] x* “

|z* — x| > |z* —x| 2 <.

One can also show that g(z) is bounded within this region:

C 1 1

go(x) =1 +sign(x — %) ———= > 1 + —sign(z — 2*) sign(C) = =,
2¢/|x — x| 2 2

go(x) < 1+sign(x —z*) lim ¢ 1+0=1

c x—):l:oo2 ’m_ic*l ’

= 1/2 < go(z) < 1.

Region 3: As before, the lower boundary is defined by the previous region. For the
upper boundary, one considers where go(x) < 2z* — x:

r+Cyl|r —a¥| < 22" —2x = C <sign(z" — x)2/|z* — 2
C* < |zr —x| z*>u,
4 |>z*—z| 2*<u.

As in region 2, one can show that g¢ () is bounded in region 3:

C
go(x) > 1+ sign(x — x*)m =0.

Region 4: No extra work is required for this region. If go(z) is in region 4 then
sign(C) # sign(z — z*), |2* — x| < C?*/4 and g, (x) < 0.

For convergence it is necessary that g(x) satisfies the same conditions as go(x). If
not, then there exist values of x for which g(x) is parallel to go(x) for some value of
C'. It is also sufficient if ¢'(z) < gi(x) for all possible C' in the region which contains
g(z). The list of these necessary and sufficient conditions is summarized in Table 2.1]

10 CHAPTER 2. ASPN

2.2.1 Convergence of Newton-Raphson in higher dimensions

Newton’s method may be generalized to higher dimensions by replacing the derivative
term with the Jacobian or total derivative, denoted here by Jy(x):

Tasr = T — Ty(en) " f(n). (2.1)

For f(x) a vector field (f : R® — R") Jy(x) is a matrix (of size n x n).

One is concerned with when ||z, — 2*|| < ||z, — 2*||, as this is where the method
converges unconditionally. Divergence occurs when the reverse inequality is true.
Equality is then the boundary between these regions, as in the 1D case. As was
done there we search for an equation that governs when such an equality occurs.

Any vector with the same norm as x,, — x* is a rotation of x,, — x* around the origin.
Thus, if R is a rotation matrix (R' R = I) then

Tnt+1 — x* = Tp — - Jf(zn)_lf(xn)
= R(z, — z").

Simplifying and isolating for f(x,) we arrive at:

fan) = Jp(xn)(I = R)(zn — 27). (2.2)

If f satisfies this equation for a point xz,, € R™ then that point is on the boundary
between convergence and divergence. The existence of such a boundary permits (but
does not guarantee) the existence of cycles. The closest boundary of this nature to the
fixed point is necessarily unstable. A second boundary beyond the first may be either
stable or unstable.

The equation is not readily solvable for general rotations. However, for R = —I (the
antipodal rotation) one can extend the result from 1D to higher dimensions. That is,

the vector field:
vV |21

VAL
is one possible solution for R = —1.
Note that any particular solution immediately defines a family of solutions. Let f(x)
be a solution to the governing equation 2.2 Then Af(z) for any matrix A € R™" is
also a solution:

Jap(en) = Ady(2n) = Af(xn) = Jag(@n)(I — R)(zn — 27).

fx) =

2.3 The fixed point iteration of alternating Schwarz

We now seek to apply this theory to alternating Schwarz. As stated earlier, we consider
alternating Schwarz as a function G(7), taking as input the value of u;(3) and as
output the value of uy(5). Under reasonable conditions we can prove a number of
useful properties of G() without prior knowledge of the fixed point v*.

Theorem 2.1. If the problem F(z,u,u',u") =0 for x € Q, u(z) = h(x) for x € 09
has a unique solution on Q = la,a] and Q = [B,b] and the continuations of these
solutions are also unique, then the function G(7) is strictly monotonic.

2.3. THE FIXED POINT ITERATION OF ALTERNATING SCHWARZ 11

Proof It suffices to show that G(v,) = G(72) implies 71 = 2. Let) solve the problem
on [a, 8] with ui(8) = ;. Likewise, u} solves the problem on [«, b] with u}(a) = u](«).
Suppose u3(8) = u3(8). Then both u and u2 solve the same problem on [3,b]. By
assumption, this must mean v} = u3 and u}(a) = u?(a). By a similar argument, this
implies u} and u? solve the same problem on [a,a]. Again by assumption u! = u? and
M = T2- u

We can even prove that G(7) is restricted to region 2 with additional properties.
As an example, we reprove a result from Lui [30].

Theorem 2.2 (Theorem 2 from [30]). Consider the equation v"(z) + f(z,u,u’) =0
for x € (a,b), u(a) = u(b) = 0 under the assumptions that

e feC(a,b] x RxR),
. %’;’UI) <0 for all x € [a,b] and v € H}([a,b]) ,

o [f(z,v,0")| < C+|N") for all x € [a,b] and v € H}([a,b]) and some C' > 0,
O0<n<l1.

The problem is solved using alternating Schwarz with two subdomains and Dirichlet
transmission conditions. Then G(7) for this problem lies within region 2.

Proof It suffices to prove that the problem is well posed and 0 < G'(y) < 1 for all
v € R. The well-posedness of the problem is guaranteed by Proposition 2 from [30].
As Lui points out, this also means the problem is well posed on any subdomain. Using
Theorem [2.1] this gives monotonicity of G(v). Moreover, if u(x) = 0 for any x € (a, b)
then the problem would be well posed on the domains [a,z] and [x,b]. As such, u(x)
has the same sign as v and G'(y) > 0.
Consider the problem in g;:
glll(x) + %gl + %gll = 07 T € [aaﬂL gl(a) = 07 gl(ﬁ) =1

From the second assumption on f the operator on g; satisfies a maximum principle
(see, for example, [30]). Therefore, g;(z) < 1 for all = € (a, #). By the same reasoning,
g2(x) < g1(a) < 1 for all z € (a,b) and G’'(y) < 1. Incidentally, the same maximum
principle applies for the operator on —g; and —gs, and so G'(y) > 0 as we had before. B

This provides guaranteed convergence of alternating Schwarz. However, it does not
guarantee the convergence when one accelerates it through Newton-Raphson. Using
Table [2.1 we know that such convergence is assured if G’(y) < 1/2 for all , but this
is not true in all cases and cannot be determined a priori.

Take as an example the following second order nonlinear differential equation

u'(z) —sin(pu(x)) =0, =z e (—1,1), (2.3)

with homogeneous Dirichlet boundary conditions. The problem is well posed and
admits only the trivial solution u(z) = 0. It is easy to see that this equation satisfies
the conditions of Theorem 2.2 Therefore, the alternating Schwarz fixed point iteration,
G(7), lies within region 2 and is guaranteed to converge to the fixed point. Sadly, its
Newton-Raphson acceleration will not do so for all initial conditions. Take p = 3.6

12 CHAPTER 2. ASPN

NR accelerated alt Schwarz
o

2 ; .] % “2 - 0 1 2 2 - 0 1 2
Y Y vy

Figure 2.4: Left: Results of Newton-Raphson accelerated alternating Schwarz as a function of initial
condition in solving equation . The value of p is 3.6 and the subdomains are ; = (—1,0.2) and
Oy = (—0.2,1). Middle: G(v) and its Newton-Raphson acceleration. Right: G(v) plotted with the
geometry of the right of Figure

T T
17+
16 -ﬁ"’r
< 4
15F
141
. 1 1
3.55 3.6
o
T T T
14f
>15d§
Py
A7k
1 |
3.55 3.6

Figure 2.5: Period doubling bifurcation in the example caused by Newton-Raphson acceleration.

with an overlap of 0.4 and symmetric regions. The results of the Newton-Raphson
acceleration are found in Figure (left). While for most initial values of v the
method converges to the correct solution u = 0 there are two small intervals where the
method enters a stable cycle.

The function G(y) can be plotted numerically, along with its Newton-Raphson ac-
celeration, see Figure [2.4] (middle), which shows that G(v) does indeed lie within region
2 as predicted by Theorem 2.2 However, G(v) runs tangential to one of the lines g (7),
see Figure (right), and so its Newton-Raphson acceleration crosses into region 4.
Due to symmetry, there is a 2-cycle at each crossing. Depending on the slope of the
acceleration as it crosses into region 4 this cycle may be stable.

Where stable cycles exist so too must there be period doubling bifurcation. Chang-
ing the value of the parameter y we find that the 2-cycle found in Figure (left)
becomes two 2-cycles, then two 4-cycles, and so on until it devolves into chaos, see
Figure 2.5 With enough chaos the cycles are no longer stable and the acceleration

2.3. THE FIXED POINT ITERATION OF ALTERNATING SCHWARZ 13

w
o
=3
o

0O Basin of initial conditions

@
~

O Basin of parameter

Y 0.4 o o o oo

~

o

&
o
o
o
o
o
o
o
o

@«
N
~

@
~

g

™

~
o
w
o
[u]
o
o
[u]
[u]
&

»

o
N

S

1 at cycling
o

w

T

a

~
Basin of cycling

NI
n -
N

A\
o
N
3
a
o
a

Pk 02 o oooo o

[N}
o

18 L L L L L L L 0.15 L L L L L L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 02 022 024 026 028 03 032 034 036 038 04

Overlap Overlap

Figure 2.6: Left: value of p at which bifurcation starts. Right: width of basin of cycling in v and pu.

exits into a convergent region.

While a change in the parameter p is the most obvious way to alter the dynamics,
one can also change the size of the overlap. This has a direct effect on the basin of
cycling in the spaces of both initial condition v and the parameter y. Figure (left)
shows a nonlinear relationship between the first value of p at which cycling is observed
and the size of the overlap. As the overlap grows the parameter g must be larger
and larger for cycling to occur. Figure (right) indicates that the interval of initial
conditions that result in cycling shrinks as the overlap grows. Meanwhile, the length
of the bifurcation diagram increases, meaning there are more values of p with stable
cycling.

2.3.1 Alternating Schwarz and its fixed point iteration in higher dimen-
sions

Now consider a more general alternating Schwarz, again for a second order nonlinear
differential equation but on a domain Q € R%:

F(z,u?, Du}, D*u?) =0 z€Q [F(z,uy, Dul, D*uy) =0 z € Qy
uy(z) = h(z) x €0 uf(x) = h(x) x € 00
ut(r) = uy ' (z) rely |u(z)=u}(z) xr €y,

where T’y = 99 \ 092 and Ty = 9%, \ 9. Note that Du (and D?u) represents the
collection of the partial derivatives (and second partial derivatives, including mixed
derivatives) of the function u(x).

As in the 1D case, one can construct the implicit function G : Lo(T'y) — Lo(T'y)
using the following two steps:

F(x,uy, Duy, D*uy) =0 F(x,uy, Dusy, D*us) = 0
(1) uy(09) = h @) 4 un(09) = 1
u () =~ us(I'2) = wi (I'2)

so that G() = ua(I'y).

We are now interested in modifying the third and fourth steps of the algorithm
presented for 1D so that they may be applied to higher dimensions. Let us focus on
the discrete case, where v € RY for some N. Likewise in the discrete case '} € RY

14 CHAPTER 2. ASPN

and I'; € RM. Then G(v) is a vector field and G'(y) € RV*N for each v. As well, the
derivative of u; with respect to v is now a Jacobian.
Let g1 : Q1 — RY represent 88—“71. Then the third step may be written as:

J(ug) g1 =0
(3) 91(9€2) =0
g1(T'1) = Inxn
where the last line signifies that the i-th entry of g;(x;) is equal to ¢; ; (the Kronecker
delta) for all z; € I';. The object to pass to the second subdomain, ¢;(I'z), is then
a matrix with each column representing a value of I's and each row representing a
differentiation with respect to an element of 4. Thus it is of size N x M.

Using the same representation for the other domain, taking g : Q5 — RM to be the
derivative of uy with respect to ui(I's), one may write the fourth step as:

J(u2) - g2 =0
(4) § 92(02) =0
92(T'2) = Inrxr-
Then go(T'y) € RM*N and G'(v) = g1(Ts)g2(T1).
The fifth step is then standard high dimension Newton-Raphson:
(5) Va1 = Vn — (G/(’WJ - I)_I(G(Vn) — Yn)
= — (91(T2)g2(T1) — 1)~ (u2(T1) — 7n)-
Theorem [2.1] can be generalized to higher dimensions.
Theorem 2.3. If the problem

F(u,Du,D*u) =0 z €
u(z) = h(x) x € 00

is nonsingular on Q\ Qy and Q \ Qg in the sense that there exists a unique solution to
the problem on those domains and the continuations of these solutions are also unique,
then G(7) is injective.

Proof The proof is identical to that for theorem with all objects replaced by their
higher dimension counterparts. []

If G(7) is also continuous (we require differentiable to use Newton’s method) and it
can be proven that alternating Schwarz converges unconditionally to a unique solution
(ex. theorem 2 from [30]) then any starting point defines a path leading to the fixed
point. These paths do not intersect and G(v) is monotonic along each path, in the
sense that if the path were parametrized by a variable s then v(s2) = G((s1)) implies
So > S7.

2.4 Accelerated alternating Schwarz with guaranteed conver-
gence

Given Theorem 2.2 and the conditions of Table 2.1l one can construct a series of tests
to see if the Newton-Raphson acceleration is suitable for a given iteration. We present

2.5. FINDING THE SPACE OF COUNTEREXAMPLES 15

one further useful trick to strengthen convergence, a correction to Newton-Raphson
due to Davidenko and Branin [3, 4] [12]. We replace step (3) in the algorithm with

% ~ . G(’yn)_fyn
N N E)

For G(v) within region 2 the Newton-Raphson acceleration will now always march in
the direction of the fixed point. It may still overshoot and cycle but the direction will
always be correct.

For a problem satisfying the conditions of Theorem or similar that guarantees
that G() lies in region 2 the algorithm proceeds as follows.

Algorithm 2.1. 1. Select some vy € R. Set n = 0.

2. Calculate G(v,) and G'(v,). If G'(v) = 1 then set v,11 = G(7,), increment n
and return to step 2. If this is not true, proceed to step 3.

3. Perform step (3%), which is the Newton-Raphson acceleration using the Davidenko-
Branin trick. If |G'(v,) — 1| > 1/2 then set Y41 = Ay, increment n and return to
step 2. If this is not true, calculate 7,, the average of vy, and ,, and proceed to

step 4.

4. Calculate G(4y). If G(4n) —An has the same sign as G(vn) — Y, then set Y11 = Yn,
increment n and return to step 2. If this is not true, set Y,41 = G(7Vn), increment
n and return to step 2.

Each of steps 2, 3 and 4 contain a test of whether Newton-Raphson will converge. In
step 2, Newton-Raphson will not converge if the derivative of G(y) — 1 is zero. In step
3, convergence is guaranteed if G'(7y) < 1/2 based on Table The Davidenko-Branin
trick strengthens this and also guarantees convergence if G'(y) > 3/2.

In step 4 we test the point halfway between the starting value v, and the Newton-
Raphson acceleration 4,,, denoted 4,,. Since G(7) is in region 2 if G(7y) > v then v < v*
and vice versa. Therefore, we can easily determine whether 4,, is on the same side of
the fixed point as ~,. If it is, then the fixed point +* lies on the same side of 4,, as 7,
and so 7, is closer to v* than ~,. If it is not, then v* lies between ~,, and 4,,. Since 7,
is on the other side of 4, it is further from +* than -, and we have divergence. In such
a case, the fixed point iteration should be used.

Note that while G(v) represents alternating Schwarz in this context, it may be
exchanged for any fixed point iteration, in particular any Schwarz method. All that is
required for the algorithm to function is for G(v) to be within region 2. For Schwarz
methods, this would necessitate a theorem similar to Theorem 2.2

2.5 Finding the space of counterexamples

We seek a larger space of examples where cycling occurs for ASPN. To do so, we employ
optimization techniques. First we must find a functional that takes a nonlinearity and
returns a measure of the chaos that results from applying ASPN.

We consider the set of problems

u'(z) + flu(z)) =0, xze(-1,1) (2.4)

16 CHAPTER 2. ASPN

with homogeneous Dirichlet boundary conditions. The function f(x) satsifies f(0) =0
so that u(z) = 0 is the solution to the ODE.

The counterexample already presented makes use of the antisymmetry in G(7) to
achieve its cycles. We wish the same for all nonlinearities f(x) in our space of coun-
terexamples.

Proposition 2.4. If f(x) is antisymmetric then G(v) is antisymmetric.

Proof Suppose 4 (z) solves step (1) of alternating Schwarz with w;(5) = . Then
—ty + f(=t) = f(i) — f(#) = 0.

Thus, —1u4(x) solves step (1) of alternating Schwarz with u, (5) = —v.
By the same logic, if t () solves step (2) of alternating Schwarz with us(ar) = ()
then —s(x) solves step (2) with us(a) = —uq(a). Thus, —i2(8) = —G(y) = G(—y). &

We therefore restrict our search to nonlinearities which are antisymmetric. It is
then sufficient for the Newton-Raphson acceleration, represented by Gy(7), to cross
the line y = —~ for cycles to exist.

Given that f(z) is antisymmetric it can be decomposed into a Fourier series con-
sisting solely of sinusoids:

flz) = Z cr sin(mkx). (2.5)

Thus, the functional to optimize takes a set {ck},ivzl € RY, passes it through f(x) €
C(—1,1) and G(vy) € C(R) to arrive at a measure for the chaos of the system. We will
represent this functional as L : RN — R. There are many ways to define L({c}), but
we shall use

L{ck}) == Gn(v) + I (2.6)

Thus, L({c}) = 0 if and only if Gy(y) = —v, and ASPN cycles between v and —~ for
all values of ~.

It is well-known that there always exists a region around the root of a function where
Newton-Raphson converges, assuming continuity of G”(y) and G'(y) # 1. We expect
then to find only local minimizers of L({cx}). We use a gradient descent with line
search to optimize the functional L, with restrictions v € [~2,2] and {c;},_, € RV,
with starting condition ¢; = 1, ¢; = 0 for ¢ = 2,...,5. There is an overlap of 0.4
between the domains, which are symmetric about x = 0. We find an exceptional
counterexample using this methodology, as presented in Figure

We now seek counterexamples in 2D. That is, we seek f : R — R such that using
ASPN to solve

Up (T, Y) + uyy(z,y) + f(u(z,y)) =0, z,y € (-1,1)

with homogeneous Dirichlet boundary conditions results in cycling behaviour. The two
domains are split along the x-axis, so that the first domain is x € (=1,), y € (—1,1)
and the second is z € (—a, 1), y € (—1,1).

As before, f(z) is chosen to be antisymmetric so that G() is antisymmetric. Propo-
sition applies to the higher dimensional case by replacing all relevant scalar objects
(v, G(v)) with their corresponding vectors (v, G(7)). The decomposition of f(z) into
sinusoids and the definition of the functional L({c}) remain unchanged.

2.5. FINDING THE SPACE OF COUNTEREXAMPLES 17

Figure 2.7: A counterexample found through optimizing the functional L, equation (2.6). (Left) ASPN
falls into a stable 2-cycle; the basin of attraction of this cycle is most values within [-2,—1) U (1,2].
(Right) The function f(x) for this counterexample; it is the sum of five sinusoids.

If ~ is the discretization of a sinusoid then G/(y) = ¢7, where ¢ € R, up to numerical
error. This can be seen by transforming the solution into a Fourier series in the y
variable. Suppose

3$2u1($7y) + aa_;ul($ y) + f(u1($ay)) =0, z€ (—1,0&), y € (_17 1)
u(=1,y) =wi(z,£1) =0
uy (o, y) = Csin(rmy)

where f(z) is antisymmetric and can therefore be expressed in the form of equation
(2.5). Use as an ansatz u(z,y) = g(z)sin(mmy). Take the Fourier transform of the
equation:

0 :/_ (¢"(x) — m*n2g(x)) sin(wmy) sin(mky) + f(g(z) sin(mmy)) sin(rky)dy

=(¢"(z) — m*7%g(1)) 0 4 Cm +/ chsin(wjg(x)sin(ﬂmy))sin(wky)dy

=0muLy(x) + icj/

j=1 —1 =0

1

3 (ng(m))

2n 1 1) sin(mmy)** ! sin(rky)dy

2n+1

_ m,k;»cg(l') + chi (W]g(x))

2n+ 1) S(2n +1),

j=1 n=0

where S(n) is the integral of sin(mmy)" sin(wky) over (—1,1). We can find a recursive

18 CHAPTER 2. ASPN

formula for S(2n + 1):

1 1
S(2n-+1) = — — cos(wky) sin(mmy) "

-1

''m

+ / E(Qn + 1) cos(mky) cos(mmy) sin(rmmy)*"dy
—1

1

1
=(2n + 1)% (- cos(mmy) sin(mmy)*" sin(rky)
T

-1

1
+ %Zn/ sin(rky) (— sin(mmy)** ™ + cos(mmy)? sin(rmy)>") dy)
-1

=(2n + 1)(2n)% /_1 sin(mmy)** ! sin(mky) — 2sin(rmy)* ! sin(rky)dy

—(2n + 1)(%)%

_ nt+1)e2n)E S@n - 1)
1+2(2n+1)(2n)%

=C(m, k,n)S(1).

(S(2n — 1) —25(2n + 1))

The value of S(1) is zero unless k = m. This proves there exists a function f,,(z) such
that ~
Lg(x) + fn(g(x)) = 0.

Thus, if g(z) satisfies this ODE with boundary conditions g(—1) = 0 and g(a) = C then
uy(z,y) solves the PDE. Since u;(z,y) in this form satisfies the boundary conditions it
is the unique solution to this step of alternating Schwarz. The solution on the second
domain, uy(x,y), then also has the same form by a symmetry argument, and its value
at © = —a is a sinusoid of the same period. Therefore, G(v) = ¢y.

As a direct consequence of this, starting with any single sine wave as boundary
conditions provides a single parameter pathway for the function G : RN — RY. We
take advantage of this fact and use c¢sin(7y) as the boundary condition for the first
subdomain of ASPN, varying ¢ between -0.5 and 0. To seed the optimization we use
the previously obtained counterexample nonlinearity f(z) from the 1D case. The same
optimization method is used.

The resulting nonlinearity does not admit a stable cycle but highlights the chaos
that can result from using ASPN. Figure [2.8| gives this nonlinearity and an example of
a sequence generated by ASPN. The sequence begins on the sine wave path described
previously. It then approaches a nearby stable cycle, having departed from the strict
sine wave path to one that closely resembles sine waves (bottom left of figure). However,
the cycle is not numerically stable and is ultimately abandoned. As it leaves this
pathway it descends into a divergent regime, with the norm growing exponentially
(top left). It quickly ejects onto a convergent pathway (top right). It is possible these
cycles exist on saddlepoints, stable along some pathways but unstable along others. A
small numerical error will then shunt the ASPN sequence away from the cycle, either
to a divergent (top left) or convergent (top right) pathway.

Figure [2.9| provides snapshots of the solution at each of the iterates. The first 24
iterations of ASPN are shown, giving the nearly cycling regime (iterations 1 to 12),

2.5. FINDING THE SPACE OF COUNTEREXAMPLES 19

Norm of NR
n w £ o (o)) ~ oo ©

Norm of NR

v
-
605
o G——

1.5

Final
Initial

1.48F

14671

Norm of NR

1.44}

142}

Figure 2.8: A chaotic ASPN sequence in 2D, at three resolutions (top row, bottom left). The nonlin-
earity (bottom right) is found through optimization on the functional L, equation (2.6). The ASPN
sequence is seeded using a sine wave sin(my) as boundary condition on the first subdomain, but quickly
diverges from this pathway.

20 CHAPTER 2. ASPN

IR o _
IR o _

_.H
N o -
) g

-

'

N o -
_‘H
N o -
N

) %

-

N o -
_‘H
'

N o -
=N

) 5

-

0 0 0 0 1
Iteration 5]) Iteration 6 | Iteration 7 . . Iteration 8

-
-
o
'
N

_‘
e =)
- o

_AH
.= (=}

) S

-

'

= (=} —
A=
.= o

N

) %

-

.= (=3
_‘H
'

- (=}

N

) 5

0 0 0 0 1
Iteration 9] Iteration 10)] Iteration 11] Iteration 12

-

-

o
'

H
- =)
%
KN o -
H
= o
g
RN o
=

- o
N . -
,

L . -

'
N
o
-

'
N
o
-
N
o

0 0 0
| Iteration 13 Iteration 14 |) Iteration 15 | | Iteration 16

-
-
o
'
—_
'
o
-
N

)
>

-
N
o
'
N
'
N
o
—_
'
N
o
—_
N
o
-

RN o
14
N
N\
7
N ° -
AN o
o >’<
.
_=

-
'

-1 0 0 0
| Iteration 17 | | Iteration 18) Iteration 19 . . Iteration 20

—_
N

<

'
N
o
—_

'
N
o
—_
N
o
-

0 0
Iteration 21] ’ Iteration 22 ’] Iteration 23 ’ ’ Iteration 24

o
-
N
o
'
L
-
'
o
-
N

- o
'

- o
- =)
- o
'

- o

, _.
- =)
- o

o
-
o
o
'
L

N (@55

-
'
o
-
N
o
'
N
o
-
'
N
o
-
N
o
-

Figure 2.9: The first 24 iterations of the chaotic ASPN sequence. The left figure of each iteration
shows the overall solution at that step combined from the two subdomains, and the right of each shows
the resulting G(7) in blue and the ASPN result in black. For comparison, the sine wave 0.5sin(my) is
plotted for the cycling regime, with sign that alternates with each iteration.

2.6. CONCLUSIONS 21

the divergent regime (13 to 20) and the convergent regime (21 to 24). The cycling
regime is very nearly a cycle of sine waves, as seen by the comparable sine waves in
red. A small change from these sine waves in iteration 13 causes chaos to take over
until relative stability in iteration 20. From there, ASPN converges quickly, arriving
at the solution by iteration 24. The remaining iterates resolve this solution to higher
precision.

2.6 Conclusions

These results show that acceleration cannot be used without consequences for all
Schwarz algorithms. As with standard Newton-Raphson, there exist problems for which
the sequence diverges, cycles or behaves chaotically.

In 1D, necessary and sufficient conditions for convergence could be found, assuming
certain properties of the problem being solved. Using these conditions as well as known
tricks to stabilize Newton-Raphson, one can construct a convergent algorithm. Higher
dimensions proves more challenging, as more can go wrong.

Starting from a single counterexample we found many more through optimization of
a functional which increases when the iterates become cyclical. This work was extended
into 2D, showing that adding dimensionality does not resolve the problem.

22

CHAPTER 2. ASPN

Chapter 3

Multisecant equations

In which one connects multisecant equations with extrapolation methods, Krylov sub-
space methods and Broyden’s family; discusses the many possible ways in which one
can solve the multisecant equations, with comparison of efficiency and accuracy.

3.1 Introduction

The equivalence between extrapolation methods and Krylov subspace methods is well-
studied [37, 38, 27]. These have largely focused on individual extrapolation methods
and the orthogonalization processes involved in each. Equivalence between Krylov sub-
space methods and quasi-Newton methods, including the multisecant equations, is less
studied but still known [44]. Gragg and Stewart describe using a QR factorization to
solve the multisecant equations [24]; If the function evaluations form a Krylov subspace
this would be exactly GMRES [35].

Sidi [39] has developed a framework for extrapolation methods, while Fang and Saad
[16] have developed one for quasi-Newton methods, but neither includes consideration
of the other type of methods, nor Krylov subspace methods. While the framework
presented here does not include every method considered in both of these previous
frameworks, it shows all three types of methods connect fundamentally.

3.2 Multisecant equations

The multisecant equations are a generalization of the secant method into higher dimen-
sions. Recall that the secant method seeks the root of the function f(x) by computing
an approximation of the derivative f'(z,):

= 2pp1 — (Tnp1 — o) (f (Tng1) — f(xn))il f(@nt1)-

In higher dimensions it is necessary to find an approximation to the Jacobian J(x,,).
To do so, one can expand the function f(x) into a Taylor series about x,,:

f(XnJri) = f(Xn) + J(Xn)(XnJri - Xn) + %(Xnﬂ‘ - Xn)H<Xn>(Xn+i - Xn) +...

As a first order approximation we can take the first two terms of this series, resulting
in the following approximate equation [2]:

f(xn1) — £(x0) = J(Xp) (Xnai — Xn)-

23

24 CHAPTER 3. MULTISECANT EQUATIONS

T

Figure 3.1: Example of the secant method. Two points (z1, f(x1)) and (x2, f(z2)) are used to draw
a line. The zero of this line is then used as the next estimate of the root of f(x).

This system can be solved for J(x,,), though such a system would be underdetermined.
However, if one had as many f(x,;) as there are dimensions in the space then one
could solve

[f(an) f(xn+d)] —f(x,)1" = J ([XnH Xn+d] — xan) (3.1)

where J approximates J(x,). This system is nonsingular given sufficient conditions on
the choice of the x,, ;. R
Now that an approximation J has been found for the Jacobian, an approximate root
may be calculated: R
X =x, — J 'f(x,).

This system is referred to as the multisecant equations. They can be further generalized
by allowing J to be the solution of an underdetermined system, such as by multiplying
both sides of equation by a matrix B'.

The multisecant equations are but one instance of several equivalent methods. We
begin with a specific form of the equations and prove the general form. Let

-1 ... -1

—_

then equation (3.1)) may be rewritten as
j_an,kAn - n,kAn-

We require the vector J~'f (xy,). If there exists a vector @ such that F,, zA,u = f(x,,)

then J~'f (x,) = X, Apa. Thus, the multisecant equations can be represented in the
following compact form:

kaAnfl = f(Xn), X = Xn — kaAnfl (33)

If there are fewer function evaluations than the dimension of the space, k < d, the
equation to solve J is underdetermined. In this instance, the first system of equation
(3.3) is overdetermined. There are two options to then solve this system: either to
pad out the matrix F,, ;, with additional vectors, or add constraints. We will focus on
the latter, but will discuss the former in Section [3.3] Adding constraints results in the
underdetermined Newtonian form of the multisecant equations:

3.2. MULTISECANT EQUATIONS 25

One can replace A,u with 1, transforming equation (3.4)) into

L P & = X — Xl (3.5)
BTFn’k u = BTf<Xn) s X =Xy n7]€u. .

The additional constraint 17@ = 0, that the elements sum to 0, ensures a bijection
between u and 1.

Proposition 3.1. For all i € R* there exists a unique 1 € R**! such that i = Au
where 170 = 0, the columns of A sum to zero, and its first k rows form an invertible
matriz.

Proof Using the constraint 1741 = 0 one can write 04, = —1" R0, where Ry, is the
restriction operator that takes the first k elements of a vector of length £ + 1. Then
u can be found by solving the system RpAu = Rypa. The matrix RiA is square and
invertible, meaning R0 uniquely determines u. Since Rpu also uniquely determines
Uy, 1, there exists exactly one u for any given 1. []

One can then replace a1 with e; — u:

1" 0 .
BTFn L (61 - 11) - BTf(Xn) ’ X =Xp — Xn,k:(el - 11)
1 17
BTf(Xn) - BTFn) u = =X, — X, + Xn,ku-
Rearranging gives the base form of the multisecant equations [47]:
17 1 .
[BTFn IJ u= [O] . X=X, (3.6)

From this base form one can transform into several equivalent forms. One interesting
example is to use the transform u = ua — e;, giving

1T). 0 e xoa
BTFn,k u= BTf(XnJrz') 3 X = Xn+i n,ku-

One can then replace it with Au for any A € R¥"** such that its columns sum to
zero:

an]fAﬁ - f(Xn+i),)A(- Xn_;’_z‘ - Xn,kAﬁ.
Our original A, is a natural choice, but one can also use
-1
A=
-1
1

Since all three forms are equivalent for all choices of 7 and valid A and the mul-
tisecant equations represents a specific choice of i and A, all three forms provide the
same approximation to the root of f(x) as the multisecant equations. Wherever the
multisecant equations are used one may replace them with any of the forms presented
here.

26 CHAPTER 3. MULTISECANT EQUATIONS

The multisecant equations are an example of a quasi-Newton method. A quasi-
Newton method is any method of the form

Xpi1 = X, — Uy, (3.7)
where u,, is an approximate solution to the equation
J(x,)u = f(x,) (3.8)

where J(x) is the Jacobian of f(x) evaluated at x,. In particular, one can use the
multisecant equations in any of their forms to provide such an approximation.

Consider, for example, equation with & = d. The solution may be found
elementwise by Cramer’s rule:

| fxegie1) — £(xn) f(xn) (X)) — f(x0) .

u; = |f(xn+1) —f(x,) ... f(Xpta) — f(Xn)‘
:(_1)i ‘f(Xn) . f(1Xn+z1) f(X;+i+1> f(Xner)l '
‘f(Xn) oo f(xpaa)

The quasi-Newton method defined above may then be expressed as

0 Xptl — Xn --. Xp+d — Xn
. ‘f(xn) f(xnt1) o0 f(Xn4a)
Xpt1 =X, —
1 o 1
’f(xn) oo f(Xpta)
Xn ce Xnid
) - f(Xn4a)
Sl 1
‘f(xn) oo f(xpaa)

where one must expand the determinant along the top row to maintain the correct
dimensions.

Suppose that we do not have enough values of f(x,;) to fully determine J, ie.
k < d. We apply the solution found above to the underdetermined Newtonian form of
the equations, equation (3.4). The quasi-Newton method that results from this may
be written as

Xn ce Xntk
vif(x,) ... v{f(Xp)
TE(x,) ... v]E(x,
g = 1(X) - i (T +4) (3.9)
vif(x,) ... v{f(x,)
vif(x,) ... vif(Xpir)

where v; is the i—th column of B.

3.3. CONNECTION TO ROOT-FINDING METHODS 27

3.3 Connection to root-finding methods

As mentioned in the previous section, as an alternative to adding constraints to equa-
tion (3.1) one can add vectors to the matrix F), ;. For example, the update for Broyden’s
method [7] is chosen such that

Jni1 [XogA Q] = [ForA J,Q]

where Q" X,,;A = 0. The columns of @ are additional search directions, and the
product J,Q) an approximation to function evaluations in these search directions. In
the generalized Broyden’s method [43], 15] X, ; and F), ; are replaced by X, and F),
and () reduced in size by k columns.
Broyden’s family of methods [15], [16] may be written as
jn+1 = jn + f(xn_‘_l)vz
where v, (x,,11 — x,) = 1. If v,, is chosen such that

with possibly other constraints then JAnHXn_k,kA = Fo_kiA.
Anderson mixing [I}, (15 44] solves F,, ;Au = f(x,,4x) in a least-squares sense then
uses the step
Xntht1 = Xppk — XnpAu+ B (F(xp4n) — FopAu).

For g = 0 this is exactly the multisecant equations.

3.4 Connection to extrapolation methods

Extrapolation methods seek to accelerate the convergence of sequences. In general,
these sequences are nonlinear and can lie within a vector space. If one has k+ 1 iterates
of the sequence, {X,,...,X,ix}, then the next element in the accelerated sequence is

k
Xn+1 = E W;Xp4i = Xn,ku
=0

where 1"u = 1. We choose u such that

lim x, =x = X,,;u <= (X, —x1")u=0.

n—oo

The iterate x,,11 may be expressed as

Xn R Xn+k
vir(x,) ... vir(Xpix)
. vir(x,) ... vir(X,ix)
Xn+1 =
1 1
vir(x,) ... v{r(X,ix)
vir(x,) ... Vir(X,ix)

28 CHAPTER 3. MULTISECANT EQUATIONS

where r(X,1) = Xp1ir1 — X1 and {v;} is a linearly independent set of vectors. Note
this is exactly equation replacing f(x) with r(x). Thus, extrapolation methods of
this form are identical to the multisecant equations acting on f(x) = r(x) using {x,,+;}
as search directions. They can therefore be expressed in the form of equation (3.6)).

Methods of this form are called polynomial extrapolation algorithms [39, 27]. Several
extrapolation methods fall in this category:

e minimum polynomial extrapolation (MPE) [§], with v; = r(x,44_1);

e modified minimum polynomial extrapolation (MMPE) [39], with v; some fixed
vector;

e reduced rank extrapolation (RRE) [14], 32 41], with v; = r(X,4:) — r(Xnti-1)-

There is another category of methods known as e-algorithms [49, 22 [5 27]. They
may be connected to the multisecant equations as well, though not in the same manner
as the others. Recall equation . One can take several such equations and arrive
at several approximations of the Jacobian:

FnJrj,k:An = Jn+an+j,kAn-
As before, we seek to solve
Fn—i—j,kAuj = f(Xn+j), Xn+1 = Xp4j — Xn+j7kAllj.

This gives several estimates of X,,.1. Each of these systems can be reduced to a single
equation by taking the inner product with a given vector v. There are then as many
equations as there are values of j. If one assumes all u; are equal then one can
summarize these equations in the following system:

v vTf(x,)
Al = : . Xpg1 = X, — XA

VTFn—i—k—l,k VTf(Xn—i-k—l)

Following the same work as in Section [3.2| one arrives at the solution

Xn e Xntk
vif(x,) ... v f(Xu)
) vif(Xpie1) ... V E(Xpion-1)
Xnt+1 = 1 1
vif(x,) ... v f(Xn)
vif(Xph1) -0 VIE(Xpioko1)

Replacing f(x) with r(x) gives the topological e-algorithm (TEA) [6].

3.5 Connection to Krylov methods

Suppose the extrapolation methods of the previous section are applied to the linear
vector sequence X, 1 = (A+1)x, —b. The limit x of this sequence is then the solution

3.5. CONNECTION TO KRYLOV METHODS 29

to Ax = b. The functions r(x,.;) are then
r(X,pi) = (A+ DXpi = b =Xy = AXpy — b
and they satisfy
r(Xpi) = (A+ DX —b— (A+ DxXppic1 + b= (A+ Dr(Xnpio1).

The vectors r(x,;) then form a Krylov subspace, such that r(x,.;) € K;(A+1,r(x,)).

Under these conditions the extrapolation methods become Krylov subspace meth-
ods. Most notably, since MPE uses the Arnoldi iteration to produce orthogonal search
directions, it is identical to GMRES when applied to this linear sequence [44. [37, 27].
These algorithms are presented as Algorithms and [3.2l The connections to the
linear case are noted in the latter. Since ICx(A+I,v) = Kx(A, v) the search directions
for both algorithms are identical.

Algorithm 3.1 (GMRES).

q: = b/ [|b]|

fork=1ton do
y = Aqx (€ Ki(A, b))
orthogonalize y with respect to Ky_1(A,b)
ar1 =/ [y

end for

minimize ||H,u — ||b|| e1]|

Xnt1 = Qn + Xg

Algorithm 3.2 (MPE).
a1 = r(Xpp1)/ [(xnpa) [(b/||b]| in linear case)
for k=1 ton do
Yy = 1(Xpik) (€ Ki(A+1,b) in linear case)
orthogonalize y with respect to {r(x,),...,v(Xnir-1)} (Ki_1(A+ I,b) in linear
case)
k1 =y/ [yl
end for
minimize ||H,ul|| such that 1Tu = 1
Xpi1 = [XO Xn:| u

The minimization steps of the two algorithms can be shown to be equivalent as well.
Consider the solution found using GMRES: x = Q,y, where @) is derived from the
Arnoldi iteration on K_1(A + I,b). Then we seek

min ||AX — b|| =min ||AQxyxr — b||

since the column space of F,, ;A is equal to the Krylov subspace K;_1(A,b). Recall
in the linear case that f(x,) = b, and so this minimization is equivalent to solving
equation with B = F,, . We've shown in Section that this is equivalent to
minimizing || F}, xux|| under the constraint 1"u = 1. This is exactly the minimization
step in MPE.

For the linear case of TEA, the term v'f(x,;) may now be written as v'(A +
I)"f(xp4;). This means TEA can now be expressed in the form of equation (3.6)

30 CHAPTER 3. MULTISECANT EQUATIONS

Extrapolation ‘ Qr+1-L ‘ Krylov
MPE Ki(A+1,f(x,)) | GMRES
RRE Ki(A,f(x,)) | GMRES

MMPE Ki(G,qo) n/a
TEA Kr(AT,q) BiCG

Table 3.1: Connections between extrapolation methods and Krylov methods. The extrapolation
methods are applied to the sequence x, 11 = (A + I)x,, — b.

+relaxation Anderson
mixing
-
Vodus M k<d [17 7 118 = Fok-
Fo 0 —— | o7 u= > MPE
; = B Fnk 0
Xppu=X -
1k <d —— GMRES
17 17 "= 1 B = F,:A
Fox B 0l > RRE
[ka C] u==x
B=[q ax]
> > MMPE
(CA)T (X, xA) =0,
B=J,_1:C B=[q A'q
> > BiCG
{
Generalized Broyden TEA*

Figure 3.2: Interconnectivity of extrapolation, acceleration and quasi-Newton methods. Red arrows
indicate f(x,,) = X,4+1 — X,, while blue arrows indicate f(x,) = Ax, —b and f(x,+1) = (A+ Df(x,).
Note that TEA* is the linear version of the method; general TEA derives directly from the multisecant
equations.

with v; = (AT +I)'v. TEA then uses the Lanczos biorthogonalization process, making
it equivalent in the linear case to biorthogonal conjugate gradient (BiCG).

Table gives the orthogonalization conditions and corresponding Krylov subspace
methods for these four extrapolation methods when they are applied to linear vector
sequences.

3.6 Conclusions

The multisecant equations form the basis of numerical methods for root-finding in
higher dimensions. They themselves are extensions of the secant method in 1D.

When underdetermined they can be connected to extrapolation methods. Which
particular extrapolation method depends on the additional constraints imposed on the
underdetermined systems.

If these methods are applied to linear problems with vector sequences that lie within
Krylov subspaces, then they become Krylov subspace methods. This is due to the
orthogonalization steps in these methods.

3.6. CONCLUSIONS 31

The three methods are then intrinsically linked. As a direct consequence, extrapola-
tion methods can be thought of as nonlinear Krylov subspace methods, as they use the
same orthogonalization processes but applied to nonlinear problems. Moreover, this
indicates the advanced techniques employed in Krylov subspace methods can be used
to improve extrapolation methods. It also suggests that any Krylov subspace method
has an extrapolation method counterpart, and vice versa.

32

CHAPTER 3. MULTISECANT EQUATIONS

Chapter 4

Intersection of triangles

In which one presents a robust algorithm for the intersection of triangles.

4.1 Introduction

This chapter deals with an algorithm I developed for the intersection of two triangles
as part of a larger advancing front algorithm that calculated the projection from one
triangular mesh to another. The algorithm was published in [31]. The impetus for
this algorithm was a counterexample to an earlier intersection algorithm found by
Jorge Albella Martinez, at the time a PhD student of Jerénimo Rodriguez Garcia
from the Universidade de Santiago de Compostela. This previous algorithm, PANG
[20, 19], failed to correctly identify a valid intersection between two nearly coincidental
triangles.

This counterexample is presented in Figure[4.1 The algorithm identifies two vertices
of the blue triangle as being inside the red triangle (apex and left base). As well, PANG
identifies the left base vertex of the red triangle as being inside the blue triangle, as
the two left base vertices are coincident. However, PANG then calculates only one
intersection: the left base vertex of both triangles. As only two points are found for
the intersection, no volume is calculated. The right of Figure shows that a slight
perturbation in all vertices of the small triangle leads to the correct result. To allow
replication of the example of Figure 4.1 we present in Table the exact positions in
double precision of the triangle vertices.

One can determine the point of failure in this example by examining how PANG finds
vertices of the polygon of intersection. For this task PANG uses two sub-algorithms:
PointsOfXInY (which determines if a vertex of triangle U is inside triangle V') and
Edgelntersections (which calculates the intersections between the edges of two trian-
gles). These routines use different, mathematically equivalent vector projections that,
due to round-off error from floating-point arithmetic, can produce inconsistent results.

Such an inconsistency may be found in the example of Figure 1.1l According to

-2.134346793664016 -1.294592514989478 -1.774411380685791
0.633829593520260 0.622483665789736 1.328933577453528
Nb | -2.134346793664016 -0.454838236314940 -1.414475967707566

0.633829593520260 0.611137738059212 2.024037561386796

Na

Table 4.1: Positions of the triangle vertices of Figure

33

34 CHAPTER 4. INTERSECTION OF TRIANGLES

1.8 1.8
1.6 1.6
1.4 1.4

1.2 1.2

0.8 0.8

Figure 4.1: Left: example of a triangle intersection where an intersection is not calculated despite
one of substantial size clearly existing. Right: perturbing vertices of the smaller triangle allows the
algorithm to find the correct result. Pink shading indicates the calculated intersection.

PointsOfXInY in floating-point arithmetic, the right base vertex of the blue triangle
does not lie within the red triangle. According to Edgelntersections in floating-point
arithmetic, all three vertices of the blue triangle lie inside the red triangle and so no
intersections can be calculated (excepting the vertex that is coincident with a vertex of
the red triangle). In short, the algorithm fails because the subroutines do not agree on
whether one vertex of one triangle lies inside the other. It is clear from this example
that consistency is required amongst the subroutines of the algorithm: All components
must produce consistent results even in the presence of round-off error [36].

We then want to develop an intersection algorithm that provides this level of ro-
bustness to the calculation of the intersection. That is, the error in this calculation is
bounded and continuous with respect to perturbations. To achieve this the algorithm
enforces consistency across its numerical calculations.

4.2 Review of other algorithms

Calculating the intersection of two polygons is well-studied as the polygon clipping
problem, primarily in the field of computer graphics where one wishes to know when
a given ’subject’ polygon U is hidden from an observer by a second ’clipping’ polygon
V. Speed is valued over accuracy in these applications and glitches of varying severity
are commonplace in video games and computer-generated imagery, see Figure for
an example.

A number of algorithms have been proposed for the intersection of polygons. One
may classify them by considering how they handle each of the three types of vertices
found in the polygon of intersection: vertices of U lying inside V'; the intersections
between the edges of U and those of V; and the vertices of V' lying inside U.

Some algorithms divide the plane into sections based on the edges of V' [42], 33, 34]
28]. Each edge defines an infinite reference line of which the edge is a finite interval.
This line then defines a parameter that is positive on one side and negative on the
other. If all parameters associated with all edges are positive for a vertex of U then it
lies inside V.

An alternative approach is to consider the projection of vectors between vertices and

4.2. REVIEW OF OTHER ALGORITHMS 35

Figure 4.2: Example of clipping in the game NBA 2K13 [48].

edges and the respective normal vectors [11], 40]. The goal is to find a vector projection
whose sign indicates whether a vertex is in V. The calculation of an intersection would
then reduce to finding where the projection is zero.

A third option is to trace out the polygon of intersection [25] [46]. One computes all
intersections between all edges of U and V', then chooses an intersection and marches
along the vertices of U, adding each to the polygon of intersection. Once this trace
reaches another intersection between U and V' it switches to march along the vertices of
V. This is repeated until the first intersection is reached. Such a procedure encounters
problems when U and V' share vertices [20].

One can reduce the cost of calculating the intersections between U and V' by first
determining which edges intersect. This can be done on an edge-by-edge basis [42], 40,
28] or considering the polygons as a whole [33], 25].

In computer graphics, the polygon clipping problem often reduces to a line clipping
problem [11, 40}, 28]. As such, vertices of V' lying inside U are often irrelevant. These
can be dealt with by repeating the process for vertices of U inside V', swapping U and
V. Algorithms using a trace procedure [25, [46] make no distinction between U and V/
and find such vertices in the same manner as those of U in V.

The Sutherland-Hodgman algorithm [42] has a unique method for finding vertices
of V in U. The algorithm takes a given edge of V' and finds the corresponding reference
line, defining a positive side of the line which contains V' and a negative side which does
not. It then discards all vertices of U on the negative side of the line and calculates
intersections with the line for each edge of U that had one of its vertices removed in
this way. The result is a new polygon lying entirely on one side of the reference line.
The process is repeated with a new edge of V' until all edges of V' have been used. In
this way, a vertex of V' in U is the last of a sequence of intersections of the edges of
intermediary polygons with reference lines extending from edges of V.

The algorithm found in Section is a successor to PANG, and therefore named
PANG2. This algorithm makes use of reference lines to determine which vertices of U
lie inside V, like some of the algorithms cited above [42] [33] 34], 28]. This information
is then used to identify which edges intersect, similar to [42, 40, 28]. The intersection
points then indicate which vertices of V' lie inside U. As each step uses all available data
from previous steps the algorithm is parsimonious, which is sufficient for robustness

[17].

36 CHAPTER 4. INTERSECTION OF TRIANGLES

0,1)
V2

Vi
Vo

(0,0) (i,O)

Figure 4.3: Coordinate transformation.

4.3 Change of coordinates

The triangle intersection algorithm in PANG [20] implicitly uses a change of coordi-
nates to test whether a vertex of U, the 'subject’ triangle, is inside V', the ’clipping’
triangle. Effectively, the coordinates of all vertices are changed so that all calculations
involving the clipping triangle are as simplified as possible. For PANG2, this change
of coordinates is made explicit and used much more extensively.

We first codify the position and shape of the triangle V. Select a vertex of V. Its
position is labelled by the vector vy. The vectors pointing from this vertex to the other
two vertices of V' are represented by v; and vs, so that the positions of the vertices of
V may be summarized by the matrix vg 1"+ [0 A Vg}, where 1 is a column vector
containing three ones and 0 a column vector containing two zeros. The same is done
for U, resulting in the positions ugl" + [0 u ug}.

We perform a change of coordinates through an affine transformation on both V' and
U. The goal is to transform V into a right angle triangle aligned with the coordinate
axes, called the reference triangle Y. This reference triangle has vertices at (0,0), (0, 1)
and (1,0). It is clear then that the affine transformation Av + b satisfies the equation

Aol +[0 vi VQ})+b1T:[° ! 0].

0 01

It can be deduced that b = —Avy and A [vl VQ] = I, the identity matrix. Thus, A
is the inverse of [Vl Vg}.

The transformation of U, called X, may then be obtained by calculating A(ugl" +
[O uy ug] —vol"). Alternatively, since A is used exclusively in this step, one may
solve the following system for the coordinates of the vertices of X:

[Vl VQ] |:::§i zz :;??,’:| ZUQ1T+ [O uq 1.12} —V01T.

Affine transformations are numerically stable if the matrix involved in the transfor-
mation is well-conditioned. The condition number of A is proportional to the aspect
ratio of the triangle VV: As the columns of A™!, v, and v,, become parallel the angle be-
tween them shrinks, thus making V' thinner [26]. There are two affine transformations
used in this algorithm which are inverses of each other.

The original PANG intersection algorithm performs this procedure twice: once to
find vertices of U lying inside V' and a second time for vertices of V' lying inside U,
resulting in two different affine transformations. An unrelated procedure is used to
calculate the intersections. To achieve our goal of a robust algorithm, PANG2 keeps
the underlying geometry of all calculations consistent: The coordinates created at this

4.3. CHANGE OF COORDINATES 37

p
AN (071)
L /I I
7 ’
W ,/‘\
/I e \
V; J /’, \
.’ Vg
(0,0) (1,0)

Figure 4.4: Reference-free parametrization.

step to describe U and V' will be used exclusively in the remainder of the algorithm to
calculate the intersections between the edges of U and those of V'; which vertices of U

lie inside V' and; which vertices of V' lie inside U. This idea of consistency is key for
the robustness of PANG2.

4.3.1 Alternative to change of coordinates: Reference-free parametriza-
tions

The change of coordinates described above is asymmetric over the vertices of V. The
selection of a vertex of V' as having position vy is not unique, and depending on which of
the three vertices are chosen three different geometries can result. However, this change
of coordinates is not necessary. The parametrizations of the reference lines of Y may
be found directly from the original coordinate system, without any transformation of
VitY.

To proceed, we first re-codify the positions of the vertices of V and U. Let the i-th
vertex of V' lie at the position defined by the vector v;, and let u; represent the same
for the i—th vertex of U. Let w; be the vector running between the i—th and j—th
vertices of V', where j =i (mod 3) + 1.

As before, we seek an affine transformation that maps the i—th vertex to (0,0) and
the j—th vertex to (1,0). Given that we are not concerned with the final position of
the third vertex of V' we ask only that the transformation avoids shearing to minimize
possible error. Ultimately, the affine transformation for the i—th vertex of V' satisfies

T B T 1010

where wi is a vector orthogonal to w;. The transformation of uy, represented by

(qx, pr.), is found by solving

wi wi] {gﬂ s

There is a degree of freedom in the choice of wi. It is natural to choose the triangle
V' to lie on the positive side (p > 0) of the line p = 0. To ensure this, we require
that w]w;~ > 0. This reduces to checking if the vertices of V" are listed clockwise or
counterclockwise.

38 CHAPTER 4. INTERSECTION OF TRIANGLES

An intersection (gp,0) between this edge of V' and a given edge of X must be
transformed back into the original coordinates. This position is found using the formula
Vi + QoW;.

FLOP count comparison

This reference-free parametrization of the edges of V' is not recommended as it takes
more floating-point operations (FLOPs) to run in practice. In this parametrization,
each edge is treated equally, meaning no calculations from the other edges are used to
speed up computing time. The change of coordinates described in Section takes
advantage of the degree of freedom used here to prevent shearing to combine two of
the parametrizations and makes the third considerably cheaper to implement.

Under the reference-free parametrization, for each edge one must solve: a system of
the form AX = B where A is a matrix of size 2 x 2 and X and B are of size 2 x 3; three
checks of the sign bits of the p—coordinate of the vertices of X; up to two intersections
between the line p = 0 and the edges of X; up to two transformations using the formula
v; + qow; and; two tests of the vertices of V. These last four steps will be explained in
Section . Additionally, there is a check of the value of W;rWil, which constitutes 2
multiplications and 1 addition.

By comparison, using the change of coordinates only the last four of these steps
need to be taken for each edge. This saves two system solves of the form AX = B
and the check of W]TWiL. However, the edge x + y = 1 needs special attention. As will
be explained in Section this edge has a pre-computed affine transformation of 4
additions and 1 multiplication for each vertex of X. Moreover, the transformations of
the intersections along this edge use the form vy + (1 — gg)vi + gove. This represents a
further 3 additions and 2 multiplications for each such intersection, of which there are
at most two. The difference in computations therefore totals 2 fewer system solves, 17
more additions and 5 extra multiplications.

If the number of FLOPs to solve the system AX = B is more than 11, which is
true of most methods to solve such systems, then the change of coordinates is a more
efficient subroutine. This depends strongly on implementation.

Regardless of efficiency, the reference-free parametrization may prove more accurate.
This parametrization presents two clear advantages to this point. Firstly, it is inde-
pendent of the choice of vertex of V' which is necessary for the change of coordinates.
Secondly, the matrices used in the three affine transformations are shear-free.

4.4 Computation of the polygon of intersection

As explained in the introduction, the polygon of intersection for the triangles X and
Y has three types of vertices: intersections between the edges of X and Y; vertices of
X lying inside Y and; vertices of Y lying inside X.

The edge intersections of X and Y are the affine transformations of those of U
and V' and so may be reverse transformed to provide the latter. The locations of the
vertices of U are known without reverse transformation, and so once the indices of
which vertices of X lying inside Y are found they index also those of U that lie inside
V. The same is true of the vertices of V' lying inside U, using the indices of the vertices
of Y lying inside X.

4.4. COMPUTATION OF THE POLYGON OF INTERSECTION 39

Parameters‘yzO‘x:O‘ r+y=1
p(z,y) y x l-z—y
q(z,y) x y | (I-z+y)/2

Table 4.2: Parameters p(x,y) and g(z,y) for each of the three reference lines of Y.

4.4.1 Edge Intersections

The reference triangle Y (the transformation of V') has two edges of length 1 aligned
with the lines x = 0 and y = 0. The third edge runs along the line x + y = 1. These
three lines will be called reference lines.

To standardize the calculations of the intersections and simplify the discussion, we
construct parameters p(z,y) and ¢(z,y) for each reference line so that the reference
line lies on p = 0, ¢ increases orthogonally to p, and the edge of Y lies between ¢ = 0
and ¢ = 1. For the lines x = 0 and y = 0 this parametrization is trivial. Table lists
these parameters for each of the reference lines.

This transform from (z,y) to (gq,p) represents another affine transformation. As
opposed to the transformation in the previous section these transformations are known
a priori. The most computationally intensive of these, for the line z +y = 1, is a
rotation and translation. The condition number of a rotation is always 1 and so these
affine transformations are stable.

We consider one edge of Y, its reference line, and the corresponding parameters
p(z,y) and q(z,y). Let p; = p(z;,y:) and ¢; = q(x;,y;) be the values of the parameters
for the i—th vertex of X. An intersection occurs between the reference line and the edge
connecting the i—th vertex of X and its j-th vertex if p; is positive and p; is negative,
or vice versa. We can then enforce the following condition: We will only calculate an
intersection for the pair of vertices (i, j) if p; and p; have different signs.

The degenerate case where a vertex of X lies on the reference line needs to be
considered. Without loss of generality, we suppose the first vertex of X lies on the
reference line. By most conventions the sign of such a value of p; would be zero.
If po > 0 and p3 < 0 then both pairs (1,2) and (1,3) have intersections with the
reference line. As both of these are in fact the same point there is redundancy in these
calculations. To avoid this, any vertex lying on the reference line will be considered
to be on the positive side of the line. That is, we use the following binary-valued sign
function:

I p=>0,

4.1
0 p<0, (41)

sign(p) = {
as opposed to the ternary-valued sign function that allows a third value at 0. The
condition sign(p;) # sign(p;) is both necessary and sufficient for an intersection to
exist, excepting the case where p; = p; = 0.

For the degenerate case where p; = p; = 0 there is an infinite number of intersections.
However, to construct the polygon of intersection we need only the corners of the
polygon. Therefore, there is no distinction between this degenerate case and the same
configuration with p; and p; shifted an imperceptible distance away from the line in
the positive p direction, as the polygon of intersection retains the same shape and size.
Thus, the previous equivalence statement may ignore the case of an infinite number of
intersections.

Suppose sign(p;) # sign(p;). Then an intersection exists for the pair (i,j). To

40 CHAPTER 4. INTERSECTION OF TRIANGLES

find the intersection it suffices to find the g—intercept of the line running through the
two sets of parameters. There are a number of formulas to produce this result. For
example, one may use the following:

do = biqi — pin.

4.2
DP; — Pi ()

This particular formula has the advantage of being symmetric in ¢ and j. To test if the
intersection is on the edge of the reference triangle, and not merely on the reference
line, one tests if ¢ € [0, 1].

Proposition 4.1. At most siz intersections will be calculated under any triangle in-
tersection algorithm that checks if sign(p;) # sign(p;). The number of intersections
calculated is even.

Proof Consider the condition sign(p;) # sign(p;). The function sign(p) has only two
possible values: 0 and 1. There are only two ways to partition three objects (p1, pa, p3)
into two sets (either 0 or 1): 3-0 and 2-1. No intersections are calculated for the first of
these. For the other, there are two intersections. Thus, for a given reference line there
is either O or 2 intersections calculated.

This proof may be applied to each of the three reference lines. If each condition
produces the maximum two intersections, six intersections will be calculated. [|

Given the simple nature of the edges of the reference triangle Y the equations for
the intersections are straightforward to write down:

y:O: (QO70)7
r = 0: (0,q);
r+y=1: (1 —qo,q)-

This provides the transformation from (gq,p) coordinates to (z,y) coordinates. To
retrieve the coordinates of the intersections in the original coordinates, i.e. the coordi-

nates of U and V', one multiplies the coordinate vector [x y] ’ by the matrix [Vl Vg} .
For example, to retrieve the original coordinates of an intersection with the line y = 0,
one performs the calculation
do
[Vl VQ} |:O:| .

Note that the possible error of the position of the intersections with regard to the
reference triangle are limited. The calculated intersection with the line y = 0 must lie
on the line y = 0 and so there is no error in the vertical direction. The same is true
of error in the horizontal direction for the intersection with the line z = 0 and of error
along the line z + y = 1 for the intersection along this line.

4.4.2 Vertices of Y in X

To maintain consistency, we use the information from the floating-point calculations of
the intersections to decide if the vertices of Y lie within X. First note that triangles
are convex. Therefore it is both necessary and sufficient that a vertex of Y lies on a
line between the boundaries of X for this vertex to lie inside of X.

4.4. COMPUTATION OF THE POLYGON OF INTERSECTION 41

Figure 4.5: Intersections between the edges of X and the lines y = 0 and z = 0 surrounding the vertex
of Y at the origin. For the line y = 0 the parameters ¢ and p are = and y, respectively, and ¢} = z;
and g2 = 2. For the linez =0¢ =1y, p=12, ¢} = v1 and ¢3 = yo.

By Proposition [f.1] there are at most two intersections for each line. Suppose a given
line has two such intersections. One may differentiate between the two by using ¢j and
g2. Which pairs of ¢ and j correspond to ¢} and ¢ is inconsequential.

Without loss of generality, suppose ¢} < ¢2. The interval [¢}, ¢3] along the line p = 0
lies within the triangle X. Moreover, no points outside this interval and along this line
lie within X. Two vertices of the triangle Y lie along this line, at ¢ = 0 and ¢ = 1.
Therefore, a vertex of Y lies inside X if and only if 0 € [¢3,q2] or 1 € [¢}, ¢3]. Figure
shows this process graphically.

If a given line has zero intersections, then it is impossible for a vertex of Y that lies
along this line to be within X, as no part of this line lies within X. In this case the
triangle X lies entirely on one side of the line or the other.

The tests of ¢},q2 € [0,1] and 0,1 € [g, ¢2] simplify to checking whether ¢y < 0
and 1 — gy < 0 for both ¢} and ¢2. For intersections along the same edge of X there is
correspondence between these tests.

Proposition 4.2. The number of intersections lying on Y 1is even.

Proof If all calculated intersections for a given reference line lie entirely inside or
entirely outside [0, 1] then Proposition provides the result. However, if ¢j € [0,1]
and g2 ¢ [0, 1] then we must prove that the same occurs for another reference line.

Without loss of generality, suppose g2 < 0. Then 0 € [¢3, ¢¢] and there must be two
intersections on the second reference line running through the vertex at 0 such that
they bound the same vertex, see Figure Let these intersections be denoted ¢} and
G2, and let the vertex they bound be 1 such that 1 — ¢} < 0and 1 — g2 > 0. If g2 > 0
it forms a pair with ¢?.

If instead g2 < 0 both vertices are bound by the intersections along this reference
line. Thus, along the third reference line the second vertex is found between the two
intersections, i.e. 1 — g5 < 0and 1 — g3 > 0. Since 1 ¢ [g3, ¢j] the third vertex is not
found between the intersections of the third reference line and g3 > 0. This intersection
forms the necessary pair with qg. |

Consider the numerators of gy and 1 — ¢p under the change of coordinates. These are
presented in Table . Each is divided by their respective p; — p;. The values of the
numerators are shared over calculations for the same edges of X. Thus, by ensuring the

42 CHAPTER 4. INTERSECTION OF TRIANGLES

Reference line ‘ Numerator of ¢g ‘ Numerator of 1 — ¢q
y=0 TiY; — TjYi (L= zi)y; — (L—z;)yi
=0 YiTj = YjTi (1 =gz — (1 —yj)a

r+y=1 (I—zj)yi — L —a)y; | (1 —yj)z — (1 —vi)z;

Table 4.3: Numerators of ¢y and 1 — gg for the three reference lines of Y. These have been simplified
and use the change of coordinates.

calculations agree on the signs of these numerators the algorithm can make a consistent
determination on which side of a vertex of Y the edge of X falls.

While the value of ¢qq is used to calculate the intersections, we need only the sign
of 1 — qo and compare it with the sign of p;. Each of these numerators, of which there
are nine in total, can be computed as a determinant. The numerators for the entire
triangle X can be computed as cross products.

Under the reference-free parametrization the correspondence is less obvious but is
still present. Let w;, v;, uy and j be as defined in Section , and let ¢! and p} be
the transformation of u; for the i—th vertex of V. Then

BT 4 Cwol1 [~ 0] [ai

[WZ Wi}{pﬁg }—Wz—i—[wZ Wi]_O 1_ {pﬁj
=w;+ [w; wi] _01 (1) [wi wit] (up —vy)
:Wz+[wz WZJ‘] _01 [i) [WZ wﬂ_l(uk—vj—i—wi)

) [Y b i s i [4].

Note that the choice of w/w; > 0 made in Section forces the determinant of
the product of [Wi wﬂ ~and [Wj Wﬂ to be positive, see Lemma [4.11in Appendix
4.13. Therefore, for a given edge of X the numerator of 1 — gy for the i—th vertex of V'
has the opposite sign of the numerator of ¢y for the j—th vertex of V. Both numerators
measure the distance from the j—th vertex of V.

As a protective measure, we test whether the edge of X intersects neighbouring
reference lines. Let p; and p; be the p-coordinates of the i—th and j—th vertices of X,
respectively, for the neighbouring reference line. If the edge between these vertices does
not intersect the neighbouring reference line then sign(p;) = sign(p/;). Moreover, they
are both equal to sign(go) or sign(1 — ¢o), depending on the line, see Figure 1.6, By
performing this check we prevent intersection errors involving edges of X that intersect

only one reference line of Y, see Sections [£.5.1] and [4.6.2]

4.4.3 Vertices of X in Y

Vertices of X in'Y cannot be found using the same approach as the two problems are not
symmetric: We do not have the same information from the intersection calculations.
However, there is sufficient information to make consistent determinations using a
different approach.

The parameters p(z,y) have been set up such that the reference triangle Y lies on
the positive side of the line p = 0. That is, if (z,y) € Y then p(z,y) > 0 for each of

4.5. ROBUST ALGORITHM FOR 2D TRIANGLE INTERSECTIONS 43

Figure 4.6: Test of sign of 1 — ¢y without computation. In this example, both vertices of the edge of X
lie on the positive side of the reference line x +y = 1. The intersection must also, implying 1 —qg > 0.

the three reference lines. Conversely, if p(x,y) > 0 for all of the reference lines then
(x,y) € Y. Therefore, the i—th vertex of X lies inside Y if and only if sign(p;) =1
for all three reference lines. One can keep track of this at each edge by creating a
dummy variable, s, originally set to 1 and multiplied by sign(p;) during each edge
parametrization. Since sign(p;) = 0 if p; < 0 the final result of s will be 0 if any p; < 0
and will be 1 if and only if p; > 0 for every parameter p(zx,y).

Because the values of p; are also used in the floating-point calculations of the in-
tersections, this step is consistent with these calculations and, by extension, the de-
termination of the vertices of Y in X. The three types of points in the polygon of
intersection make use of the same information, and a numerical error in part of this
information affects each type in a consistent way.

4.5 Robust algorithm for 2D triangle intersections

We will now write the intersection algorithm of PANG2 in full.

Algorithm 4.1 (PANG2). Step 1: Change of coordinates. An affine transforma-
tion is used to change the coordinates of the vertices of X into a reference frame
whereby Y is the reference triangle described in Section [{.5

Step 2: Select reference line. Choose a reference line of the reference triangle. Ap-
ply the correct functions for the parameters and make note of which vertices of Y
lie on this line.

2(i): Intersections. Test if sign(p;) # sign(p;). If so, calculate the intersection
with the reference line and test qo < 0 and 1 — qo < 0. If both are false, the
intersection lies on the edge of Y. Repeat this step for all three pairs of vertices
of X. By Proposition[{.1] this results in at most two unique intersections. One
may remove duplicates at this stage but it is not necessary.

2(ii): Vertices of Y in X. Use the tests of qo < 0 to determine if 0 € [q3, q3)-
If it does, the corresponding vertex of Y lies within X. Repeat for the vertex
at g = 1.

Repeat step 2 for each of the three reference lines.

44 CHAPTER 4. INTERSECTION OF TRIANGLES

"

>q0>0— -

Figure 4.7: Decision tree for the test of gy < 0. The test of 1 — gp < 0 is identical.

Step 3: Vertices of X in Y. Multiply the three values of sign(p;) together for each
of the three vertices of X. The result will either be 0 or 1. If it is 1, the vertex
lies inside Y .

Step 4: Reverse change of coordinates. The vertices of X and Y wn the standard
coordinates are already known and so one can take those vertices determined to
be in'Y and X, respectively, without additional calculations. For the intersections
one must apply the inverse affine transformation of the first step of the algorithm.

4.5.1 Test of ¢ <0

We outline the implementation of step 2(i) of the algorithm, where we test if gy < 0
and 1 — gy < 0. Without loss of generality we consider only the test of ¢y < 0. As
explained in Section if the signs of p; and p’, the p-coordinates of the vertices of
X for the neighbouring reference line, are equal then sign(q) = sign(p;) = sign(p}).
The first test is then to check whether sign(p;) = sign(p}). Depending on this result
we either use the value of sign(p}) to determine if gy < 0 or we test directly sign(qo).

Figure [4.7| shows the decision tree of the test of gy < 0. As outlined above, there are
three determinations to be made: whether sign(p}) # sign(p}); sign(qo) and; sign(p;).
To make the code compact these three decisions can be combined into a single logical
test:

[sign(p;) # sign(p}) A sign(qo) = 0] V [sign(p;) = 0 Asign(p}) = 0] = qo < 0.

If this test returns that ¢y < 0 then this information must be used to determine if
the vertex of Y at ¢ = 0 lies in X. We store this information and await the result
of the test of the other intersection on this reference line. If this second test returns
go > 0 then the vertex of Y lies in X.

4.6 Consistency errors

The triangle intersection algorithm presented in Section calculates the polygon of
intersection for a right angled reference triangle Y and an arbitrary triangle X using a
single consistent geometry. Combined with the change of coordinates of Section it
may be used to find the polygon of intersection for any two triangles U and V', again

4.6. CONSISTENCY ERRORS 45

with a consistent geometry for all calculations. It remains to show that any numerical
errors incurred throughout the calculations maintain the consistency of the algorithm,
namely that the algorithm produces an intersection of similar size and shape to the
one that exists between U and V.

There are three errors related to consistency that can occur in this algorithm. Firstly,
a vertex of X may be found to lie inside (resp. outside) of Y when it is meant to lie
outside (inside) (X-in-Y error). Secondly, an intersection of an edge of X with a
reference line of Y may be found to lie on (off) the edge of Y when it is meant to lie
off (on) (intersection error). Thirdly, a vertex of Y may be found to lie inside (outside)
of X when it is meant to lie outside (inside) (Y-in-X error). We examine each of the
three errors independently, while noting where applicable when one error can cause
another.

4.6.1 X-in-Y errors

It is important that when an X-in-Y error occurs an appropriate number of inter-
sections is calculated. Whether the intersections are deleted or created, there should
be the correct number associated with the intersection of two triangles, albeit slightly
altered. The positions of the intersections may be in error, but this will be considered
later as a separate error. The following lemma provides that if the algorithm suffers an
X-in-Y error then there will be a corresponding change in the number of intersections
calculated.

Lemma 4.3. Suppose the i—th vertex of X lies outside the reference triangle Y but is
determined to be within 'Y by the algorithm described in Section[{.5 There is at least
one reference line between the correct and calculated positions of the i—th verter. An
intersection is calculated by the algorithm between this reference line and the edge of
X between the 1—th and j—th vertices if and only if this reference line and edge do not
intersect.

Proof There are either one or two reference lines between the correct and calculated
positions of the i—th vertex of X. One of these reference lines has parameters p(z,y)
and ¢(z,y), see Table 1.2, The correct value of sign(p;) is 0 but the algorithm has
returned sign(p;) = 1. The value of sign(p;) must equal one of these. If sign(p;) =1
then the edge of X intersects the reference line but no intersection is calculated. If
sign(p;) = 0 then the edge does not intersect the reference line but an intersection is
calculated. [|

Lemma [4.3| remains true if the correct and calculated positions of the i—th vertex
are reversed. This lemma does not give an indication as to whether these intersections
lie on the edges of Y. Geometrically, such an intersection must lie on an edge of Y.
However, the algorithm allows the possibility of error. Such intersection errors are
considered separately in Section [4.6.2]

For a vertex of X that suffers an X-in-Y error there are two other vertices of X. The
effects of Lemma therefore occur twice for each error of this type. Figure 4.8 shows
the possible combinations of two applications of Lemma [4.3| when the intersections
occur over the same edge of Y. In each of these figures, the triangle vertex of X
moves to the right to cross the reference line of Y. As it does so, two intersections are
created and move further apart (Figure ; the intersection slides along the edges

46 CHAPTER 4. INTERSECTION OF TRIANGLES

[> *—’ W 4 -
(a) No edges intersect to both (b) One edge intersects to the (c) Both edges intersect to no

edges intersect. other edge intersects. edges intersect.

Figure 4.8: Results of X-in-Y errors.

;mmm

Figure 4.9: The cascade of errors used to describe when an X-in-Y error alters intersections on two
separate reference lines. An intermediate position between the correct and calculated positions of the
i—th vertex is presented in the centre of the figure.

of the triangles, crossing over the vertex (Figure or; the two intersections move
towards each other until they meet at the moment the vertex crosses the reference line,
disappearing (Figure |4.8¢)).

If the intersections occur over separate edges of Y then we must consider the result
to be a cascade of errors. We consider an intermediate position of the i—th vertex
of X such that the movement between the correct and intermediate positions creates
intersections along a single edge of Y and the movement between the intermediate and
calculated positions causes two intersection errors that result in a Y-in-X error, see
Figure

4.6.2 Intersection errors and Y-in-X errors

A small change in the position of an intersection can only cause an error in consistency
if it passes over a vertex of Y. In such a case, the intersection either enters or leaves
the polygon of intersection. We call this an intersection error. Since this algorithm
uses the intersections to determine which vertices of Y lie in X, this can cause Y-in-X
errors.

We begin examining intersection errors by dividing them into two categories, paired
and unpaired. A paired intersection error occurs when two intersections along the
same edge of X both suffer intersection errors over the same vertex of Y. An unpaired
intersection error is a single intersection error that occurs on its own. We prove that
paired intersection errors preserve consistency and that unpaired intersection errors are
impossible.

There are 6 configurations of paired intersection errors, see Figure An inter-
section error represents a reversal in sign in either gy or 1 — ¢ for a given edge of X.
Without loss of generality, we suppose it is in ¢o. Recall from Table that the nu-
merator of ¢y is shared with that of another intersection of the same edge of X. Thus,
if the sign of ¢q is in error then the sign of this second intersection along this edge of
X is also reversed. This pairs the intersection errors.

4.6. CONSISTENCY ERRORS 47

Figure 4.10: Paired intersection errors. These errors have the same results as X-in-Y errors. The
corresponding results of Figure @ are referenced for each configuration.

An unpaired intersection error over a vertex of Y can only occur if the edge of X
does not intersect the other reference line that extends from the vertex. Then, in the
parametrization for this other reference line, the p—coordinates of the two vertices of
X attached to this edge are either all positive or all negative. The algorithm tests for
this to prevent the error, see Section [£.5.1 In this way, unpaired intersection errors
cannot occur.

Figure indicates that even under intersection errors a vertex of Y lies within
X if and only if it is surrounded on all sides by four intersections. Tests of Y vertices
along neighbouring reference lines return consistent results. Proposition [4.2]is therefore
unaffected by errors.

Lemma 4.4. Let qy be the position of the intersection between the i-th and j-th vertices
of X along a given reference line of Y. Without loss of generality, let p; > 0 and
pi < 0. Suppose the numerator of qo has floating-point error & from its calculation
due to equation . Then the error in the area of the polygon of intersection in the
transformed coordinates due to equation is O (0).

Proof Since the error in the numerator of g is 0, the error in go is 0/(p; — pi). Given
that sign(p;) # sign(p;) there is no cancellation error in p; — p; and the error in the
denominator is negligible.

The coordinates (go, 0), (go+0/(p; —pi),0) and (g;, p;) form a triangle, denoted X.
This triangle has a base of §/(p; — p;) and a height of at most p,; and so has an area of
at most 6p;/2(p; — pi) < 6/2. It suffices then to show that this triangle represents the
largest possible change in the polygon.

Consider the polygon of intersection before the effects of the error. In particular,
consider the two neighbours of the intersection (gg,0). One of these neighbours lies
along the same reference line and is either another intersection or a vertex of Y. The

48 CHAPTER 4. INTERSECTION OF TRIANGLES

&
X (90,0) (qo +9/(pj — 1pi),0)

Figure 4.11: Error of an intersection amplified in equation (4.2)) is mitigated by the position of a
neighbouring node.

other lies along the edge of the triangle X between its i-th and j-th vertices. Therefore,
it is either the j-th vertex of X or an intersection between this edge of X and another
reference line. Such an intersection would have a height less than p;.

After the effects of error, the intersection has shifted. One of the edges of the poly-
gon that extend from this intersection has shrunk while the other has grown. We seek
a triangulation of the polygon such that its change is represented by a single triangle.
Since one of the neighbouring corners of the polygon lies along the reference line con-
taining both (go, 0) and (go+9/(p; —pi), 0) this single triangle is defined by these nodes
and the other neighbour. As previously stated this other neighbour lies on the same
edge of X as (qo,0) and the j-th vertex of X. The triangle representing the change in
the polygon then lies within the triangle X5 and so has an area of at most O (§). W

While p; — p; is not subject to cancellation error, the numerator of gy is. The
magnitude of ¢ is then O (L?%¢,,), where L is the longest edge of X and ¢, is machine
epsilon. The value of L is a measure of the relative sizes of the original triangles U and
V. If the two triangles are of roughly equal diameter then this magnitude is 1.

4.7 Graphs of triangle-triangle intersections in 2D

Section indicates that each error of the algorithm can cause a change in the shape
of the polygon of intersection. It must be shown that these changes in shape can cause
no significant changes to the area of the intersection. That is, a change in the shape
of the polygon must be in some way continuous.

Our strategy to prove this is to construct the set of graphs that represent the possible
intersections of two triangles and show that the errors transform these graphs between
each other and not outside the set. In this way we will show that at worst the calculated
intersection corresponds to two triangles that are of slightly different size, shape and
position.

We first note that PANG?2 is valid: Given a pair of triangles and assuming no numer-
ical error in any of the calculations the algorithm will correctly identify the intersection
between them. Therefore, we need only consider the set of possible intersections and
how the errors affect this set. Thus, the first step is to determine this set.

While the intersection of two triangles is a purely geometric concept, the calculation
of such an intersection is subject to numerical error. This error can cause vertices and
intersections to move. The resulting polygon of intersection may not lie precisely within
the edges of the triangles. We therefore construct graphs of the triangle intersections.
In this way the intersections need not be geometric, allowing for the possibility of error.

As these graphs represent geometric objects in the 2D plane the graph edges are
straight. We distinguish between two types of graphs: those of geometric intersections
and those of intersections calculated by the algorithm. Hoffmann [20] refers to the first
as models and the second as representations. The algorithm is robust if the models are

4.7. GRAPHS OF TRIANGLE-TRIANGLE INTERSECTIONS IN 2D 49

close to the representations. Ideally, the set of models should be coincident with the
set of representations.
Both types of graphs satisfy a number of conditions.

Vertex condition: triangle vertices (of which there are exactly 6 and are coloured
red) are nodes with two neighbours.

Intersection condition: edge intersections (which may number 0, 2, 4 or 6, see
Proposition , and are coloured blue) are nodes with four neighbours.

Triangle condition: the triangle vertices are divided into two disjoint 3-cycles, each
of which corresponds to one of the triangles. The points of overlap of these cycles
are the edge intersections.

The triangle condition is so named because it ensures that the graph represents the
intersection of triangles rather than some other pair of shapes.

In addition, when degenerate cases are removed (as may be done with this algorithm,
to be discussed in Section the models possess the following property.

Sheltered polygon property: no graph edge between two intersection nodes touches
the exterior of the graph. That is, in the dual graph there is no graph edge between
the node representing the polygon of intersection and the node representing the
exterior of the graph.

The only way for the sheltered polygon property to be violated is for two edges of
the triangles to be coincident, a degenerate case considered in the previous sections.
Representations also satisfy the sheltered polygon property.

Lemma 4.5. Any representation of this algorithm has the sheltered polygon property.

Proof By construction, the nodes of the polygon of intersection as calculated by the
algorithm lie interior to or on the boundary of Y. As such, a graph edge between two
intersection nodes is either interior to Y or lies on a reference line of Y. In the former
case, the interior of Y shelters the graph edge from the exterior.

In the latter case, these intersection nodes were calculated because two edges of X
intersect this reference line, such that sign(p;) = sign(p;) # sign(px). Without loss of
generality, suppose sign(p;) = 0 and the k-th vertex of X lies outside the triangle Y.
Then there is a graph edge between this vertex and each of the intersection nodes. This
shelters the graph edge between the intersection nodes from the exterior of the graph. B

This ignores a number of degenerate cases where edge intersections and triangle
vertices overlap. It will be shown in Section that all degenerate cases may be
represented by non-degenerate cases, all of which satisfy these three conditions and
the sheltered polygon property. Figure gives graphical examples of the triangle
condition and the sheltered polygon property. It also illustrates the proof of Lemma
[4.5] The graph has one graph edge between intersection nodes. If the blue triangle
is Y then this graph edge is interior to Y and therefore sheltered from the exterior.
If the blue triangle is X then the portion of X that does not intersect Y shelters the
graph edge from the exterior. Numerically this portion of X must be there or the
intersections would not be calculated.

Figure [4.13] shows all graphs representing two intersecting triangles. Not shown is
the graph of two non-intersecting triangles, which is two disjoint graphs of 3-cycles of
red vertices.

50 CHAPTER 4. INTERSECTION OF TRIANGLES

Figure 4.12: Graphic representation of the triangle condition and sheltered polygon property for a
given graph. The two cycles of the triangle condition are shown with red and blue edges, and the dual
graph is shown with black edges.

B*

X

o c N

D i\\ H
N

Figure 4.13: The models arising from all possible triangle-triangle intersections, degenerate cases
removed.

>

o
WY

4.7. GRAPHS OF TRIANGLE-TRIANGLE INTERSECTIONS IN 2D 51

1

L
q1 q0q2

[

I |

| I |

1 ! | |

0 ! I

! | ! l l

: ! I ! ! |
1

Q3q |

0

Figure 4.14: If two vertices of X lie inside Y then at most one vertex of Y can lie inside X.

Lemma 4.6. Figure is an exhaustive list of all possible models.

Proof We begin by proving a restriction on the number of triangle vertices in the
polygon of intersection: There can be at most three triangle vertices in the polygon,
split into at most two groups, e.g. A and G.

Any collection of X vertices in the triangle Y necessarily connect to one another
without any intersections between them, as there are no reference lines of Y inside
of Y. As such, in the graph of the polygon of intersection, they are adjacent to one
another. The same is true of Y vertices in the triangle X. Therefore, triangle vertices
are divided into at most two groups.

Suppose two vertices of X lie inside Y. Without loss of generality, Y is the reference
triangle. Choose a reference line of Y, with parameters p and ¢. The g—coordinates of
the vertices of X that lie inside Y are necessarily between 0 and 1. Let ¢j and ¢f be
the g—coordinates of the edges of X with this reference line. If ¢} is less than 0 then ¢?
is less than 1, see Figure [1.14] Therefore, only one vertex of ¥ can lie inside X. This
is symmetric: If there are two vertices of Y inside X then at most one vertex of X can
lie inside Y.

Next, we prove that the number of intersections in the polygon is less than or equal
to the number of triangle vertices outside of the polygon. Consider an intersection
in the polygon and suppose one traverses the two cycles we know to exist by the
triangle condition in a clockwise direction. At this starting intersection one cycle exits
the polygon. At the next intersection the cycle enters the polygon. For the cycle
to do so it must meet a corner between these intersections. Thus, there must be at
least one vertex between the intersection of exit and the intersection of entry. Since
each intersection is an intersection of exit for one of the two cycles, each intersection
represents at least one triangle vertex outside of the polygon.

The vertex and intersection conditions and the two previous results may be combined
in the following list of restrictions on the number of intersections n and the number of
triangle vertices m in the polygon.

i. n € {0,2,4,6} (intersection condition);
ii. m < 3 (previous result);
iii. 3 < n+m (polygons have at least three vertices);

iv. n+m < 6 (triangle condition and previous result).

52 CHAPTER 4. INTERSECTION OF TRIANGLES

H, Hf, H{*
C, C*

Table 4.4: Graphs corresponding to each n-m pairing. The graphs indicated by the { symbol do not
satisfy the necessary conditions and are found in Figure [4.23| in Appendix The remainder are

found in Figure

We can then ascertain that only the following n-m are permitted: 0-3, 2-1, 2-2, 2-3,
4-0, 4-1, 4-2, and 6-0.

To determine which, if any, graphs correspond to these combinations, we present the
following algorithm to construct a triangle—triangle intersection graph from a polygon
of intersection.

Algorithm 4.2. 1. Draw the polygon of intersection using one of the eight combi-
nations provided. Only three combinations provide multiple possible polygons: 2-2,
2-3 and 4-2. One of the options for the combination 2-3 may be immediately dis-
carded as it contains three triangle vertices in a row, which is an entire triangle

and thus does not have any intersections, see Figure in Appendiz[{.11].

2. Connect each adjacent pair of intersections by a graph edge exterior to the polygon.
A pair of intersections is adjacent if they lie next to each other or if they are
separated only by triangle vertices.

3. Following the cycles defined by the triangle condition, add either one or two tri-
angle vertices to each of the graph edges created by the previous step such that
each cycle contains the necessary three triangle vertices. This will exclude two of
the 4-2 combinations, as some cycles will have at least four triangle vertices, see

Figures and in Appendiz [{.11. Only one combination, 4-1, has two
possible ways of satisfying all conditions of these graphs.

In this way the eight permitted combinations result in the ten graphs of Figure |4.13
Table [4.4] identifies each n-m pairing with either one of the graphs of Figure [4.13| or
one of the invalid configurations of Figure found in Appendix 4.11 [|

Lemma does not immediately apply to intersections calculated by the algorithm
because it relies on geometric arguments. In particular, the argument used to fix
restriction (ii) m < 3 only applies when points of intersection lie strictly on the edges
of the triangles. Numerical error can warp the positions of intersections to include or
exclude triangle vertices in the polygon of intersection.

Lemma 4.7. Restriction (ii) applies to representations.

Proof An intersection node in the polygon of intersection lies between two vertices of
the triangle Y. The pair of intersections along the reference line that passes through
these two vertices then does not enclose at least one of these vertices. If there are two
intersections on the reference line neither vertex is enclosed. Each pair of intersections
then excludes at least one vertex of Y from the polygon of intersection.

4.7. GRAPHS OF TRIANGLE-TRIANGLE INTERSECTIONS IN 2D 53

(a) I, the only possible 2-4

graph. (b) The graph G. (c) The graph B.

Figure 4.15: The 2-4 pairing is shown to be invalid for representations.

.iﬂ_, —

(a) First type of graph rewrite. (b) Second type of graph rewrite.

Figure 4.16: The two types of graph rewrites codified by the algorithm.

Therefore, if there are two vertices of Y in the polygon then there are at most two
intersection nodes. Since the only way to violate restriction (ii) is to have m = 4 with
two vertices of Y and two of X, the only new n-m to consider is 2-4.

By the same argument that eliminated graph Gt there is only one possible graph
with a 2-4 pairing, I}, see Figure This graph does not violate any of the required
conditions. Two of the triangle vertices in the polygon of intersection are necessarily
those of X, while the other two are those of Y. There are only two graphs of Figure
4.13| with exactly two vertices of X inside Y: graphs B and G.

In graph G any intersection error is paired. Refer to the middle row of Figure
for the results of one or two of these errors. Under one paired intersection error the
graph G becomes the graph B, see Figure [£.15¢ Under a second error the graph B
reverts to the graph G, see Figure [£.15b]

In graph B either the two intersections are both the only intersections along their
respective edges of X or the edges of X both intersect another reference line. In the
first case, any intersection errors are unpaired and thus impossible. In the second case,
a paired intersection error results in graph G, see Figures [£.15b] and £.15¢ A second
error results in a different graph B, with the intersections on the other reference line.

|

Corollary 4.8. Figure is an exhaustive list of all possible representations.

Proof It suffices to prove the four restrictions of the proof of Lemma [4.6| apply to
representations. Restriction (i) applies by the intersection condition. By Lemma
restriction (ii) applies. Restriction (iii) applies naturally. The sheltered polygon prop-
erty ensures the reasoning behind restriction (iv) applies. [|

Figure shows the two graph rewrites codified by errors in the algorithm. Each
rewrite possesses an inverse, as indicated by the double headed arrows in the figure.

Figure corresponds to Figures and while Figure corresponds to
Figure [£.8b] Recall these figures detail the results of X-in-Y" errors and intersection

54 CHAPTER 4. INTERSECTION OF TRIANGLES

Score:

Figure 4.17: Graph of intersection connectivity: A blue edge between two graphs indicates one may
be achieved through a first type rewrite of the other, while a red edge indicates a second type rewrite
is required.

v.~ p¥ ¥

(a) Vertex of X on an edge of Y.) Vertices of X and Y coinci-

(b) Vertex of Y on an edge of X. dent

Figure 4.18: Degenerate cases. The shaded area represents the intersection between X and Y.

errors. The correspondence between the intersection errors and their respective rewrites
is indicated in Figure 4.10]

Figure [4.17 shows how the graphs of Figure [4.13| are connected through the rewrites
of Figure 4.16, The graphs are organized in two ways. Each row has the polygon of
intersection increasing in number of edges: graphs E and A have triangular polygons,
graphs F, B and B* have quadrilateral polygons, and so on.

The columns are more complicated. One may assign point values to the vertices
of the polygon of intersection: one point for each triangle vertex and half a point for
each edge intersection. The columns of the graph of Figure then have increasing
point value sums or ’scores’, with graph E having two points and graph H having four
points.

The organization of this graph indicates important features of the two graph rewrites:
Both rewrites add or subtract a graph edge to or from the polygon of intersection; and
the second type rewrite changes the score of the polygon, adding or subtracting one.
A score increase is coincident with a graph edge addition, so that when the score in-
creases so does the number of graph edges of the polygon. The polygon of intersection
therefore determines the position of the graphs of Figure in the graph of Figure
417

4.7.1 Degenerate cases

There are three major degenerate cases to consider: a vertex of X lying on an edge of
Y; a vertex of Y lying on an edge of X and; a vertex of X coincident with a vertex of
Y.

Should a vertex of X lie on an edge of Y it is considered to be inside of Y by the
algorithm. An intersection is only calculated if another vertex lies on the negative side

4.8. MAIN RESULTS 95

of this edge. For such an intersection the algorithm will calculate it as the vertex. When
the copies of the vertex are removed, we will be left with a single point, a vertex of X
in Y. Thus, this degeneracy reduces to the vertex of X being just inside the triangle
Y. If the calculated intersection does not align with the vertex then the degeneracy
is completely removed as the algorithm has created a numerical distance between the
vertex and the edge by introducing an intersection between them.

If a vertex of Y lies on an edge of X, the algorithm considers an edge intersection
to be coincident with the vertex of Y. This is ultimately equivalent to the same
configuration with the edge intersection moved slightly along one of the two reference
lines extending from the vertex of Y, such that the vertex is not considered to be inside
of X. This keeps the same number of edges of the polygon of intersection and the same
overall shape of the two triangles.

If a vertex of X is coincident with a vertex of Y we can consider both degenerate
cases described above to have occurred. The degeneracy can be considered as a stan-
dard configuration with the vertex of X lying just outside of Y and the edge intersection
moved in the same manner as when a vertex of Y lies on an edge of X.

4.8 Main results

We assume that we encounter neither overflow nor underflow.

Theorem 4.9. Let f(U,V) be the area of the intersection between triangles U and
V' calculated by the algorithm described in Section [{.5, where V' is transformed into a
reference triangle. Let L be the ratio of the diameters of U and V', a the smallest angle
inV, a <7/3, and C the ratio of the lengths of the sides of V' that form this angle,
C < 1. Let AU and AV be perturbations in the positions of the vertices of U and V,
respectively. If the relative change in'V is smaller than C'sin(a/2) then

1+ L
Csin(a/2) — O (AV/V)
Recall that the matrix A is the inverse of [Vl Vg] . The vectors v; and vy run along
the edges of V', see Section 4.3l The condition number of the matrix A is less than

1/(C'sin(«/2)) where « is the angle between vy and vy and C' is the ratio between their
lengths, C' <1 [26]. Theorem - 4.9/ may then be restated in terms of the matrix A. To

simplify notation, let U, V and X denote the matrices containing the positions of the
vertices of the trlangles U,V and X, respectively.

If(U+ AU,V + AV) — f(U, V)] = O (AU + LAV)+O (AV).

Theorem 4.10. If ||A] HAVH <1 then
A(A) (1 + L)
1 - k(A)O (AV)V)

Proof As stated in Section the positions of the vertices of X are determined by
solving the linear system

If(U+ AU,V + AV) — f(U, V)| = O(LAV + AU) + O (AV) .

A_lX == U - Vo]_T,
where vy is a vertex of V. Without loss of generality assume vq = 0. Under the
perturbation this system becomes

(A7 + a4 (X +AX) =0+ AU

56 CHAPTER 4. INTERSECTION OF TRIANGLES

It is well known that if ||A[| |[AA™"|| < 1 then the change in X satisfies [45]

HAX

Lemma [4.4] provides that the change in area due to shifts in intersections is of the

41 (1841 |] + [a0])
=TT R(A) JAAT /AT

same magnitude as the change in the numerator of ¢y. This is proportional to L HAX H

The change in area due to shifts in vertices of X is equal to the magnitude of the shifts
times the diameter of Y which is O (1). Thus, the change in area of the intersection is

o(a+rax|).
Corollary gives the list of possible representations. The shape of the polygon
of intersection is continuous with respect to change in any given vertex or intersection

since the graph rewrites of Figure [4.16| map these representations to themselves. Any
shift in position is accounted for in Figure [4.17, Therefore, the change in area of the

intersection remains O <(1 + L) ’AX)

The portions of X and AX that lie inside Y must be transformed back into the
coordinate system of U and V. The area of the polygon due to X is at most O (1). The
perturbation of A~! introduces a multiplication of this area by [|[AA™!||. This leads to
the added term O (AV) in the statement of the theorem.

The area due to AX is multiplied by a constant proportional to || A~
in area is then on the order of

!|. The change

LA AN (1 + L)
L= r(A) JAA /A

4+ %] < (laa=y x|+ [ac])-

Given that [|A~1] || A]| = x(A), qu <L, |A = O (V) and [|[AA~Y| = O (AV) one
arrives at the equation in the statement of the theorem. [|

If L, k(A) and O (AV/V) are sufficiently small then PANG2 is backward stable.
This is true if U is not significantly larger than V', the lengths of the edges of V' differ
by no more than a few orders of magnitude and the relative error in V' is reasonable.

4.9 Comparison of algorithms

We present another example problem to show that replacing the triangle intersection
algorithm in PANG with the proposal presented here makes it robust. This example
was motivated by discussions with Frédéric Hecht at the CIRM Workshop on Parallel
Solution Methods for Systems Arising from PDEs, September 16-20, 2019. It systemat-
ically generates failures of the triangle intersection subroutines in PANG to successfully
compute all intersections to within an error on the order of machine precision.

The example considers a triangulation T with n identical triangles arranged radially
around the origin. To define T we must define the grid points ¢; for ¢ = 0, ..., n and the
triangles T; for i = 0,...,n — 1:

ti - (COS (ﬂ) ’Sin (u)> ’ ,I'Z = <07 tiati+1> = T = {ﬂ}?:_ol '
n

n

4.9. COMPARISON OF ALGORITHMS 57

1 08 06 -04 02 0 02 04 06 08

Figure 4.19: Intersection of T and T, for ¢ = le — 16 and n = 20. The magenta triangles represent
calculated intersections.

This grid is overlaid with a perturbation of itself, T.. The point at the origin is shifted
by € in a random direction and the radial points are collectively rotated by O (e)
radians:

) o 9 i o Cn
t; = (COS (Z—W +7“1) , Sin (Z—W +7“1)> , T; = (erg, ti tip1) = Te= { 1} :
n n i=0

where |r1| < €2m/n and ry is a unit vector in a random direction.

For large enough € errors in consistency are avoided: All subroutines of PANG agree
on the underlying geometry of the problem. As e becomes smaller, the triangulations
become nearly identical. A small discrepancy between two steps of the triangle inter-
section algorithm in PANG has already been shown to cause large errors. The overlap
of these triangulations presents several such discrepancies.

Figure 4.19| shows the resulting intersections between T and T, for ¢ = le — 16
and n = 20. The original triangle intersection algorithm in PANG fails to find the
intersection between T; and T; for 4 = 16, 17 and 18. The proposed algorithm finds
all intersections between T; and T;. Any remaining intersections (which cannot be
independently verified) have area O (¢).

4.9.1 Comparison of accuracy and computation time

While comparisons of robustness with other polygon clipping algorithms proves chal-
lenging and their inclusion in projection algorithms complicated, we can easily compare
accuracy and computation time on a single pair of triangles. Let V' be the clipping
triangle with two sides equal to 1 and the angle between these sides equal to a. Let
U, the subject triangle, be an equilateral triangle whose vertices are all 0.5 from the
vertex of V' with angle «, one of which is halfway between the edges of V' with equal
length. The coordinates of the vertices as functions of o are presented in Table

The exact area of the triangle intersection is straightforward to calculate. First, the
portion of U that lies within V' is symmetric about the line with angle a;/2. Thus, we
need only consider half of this portion. Given that U is equilateral, this half has one
side equal to 0.5, with the adjacent angles equal to /2 and 7 /6. This establishes the
third angle as 7/2 — /6 — «/2.

58 CHAPTER 4. INTERSECTION OF TRIANGLES

|4 H 2xU
0 0 cos(a) || cos(a/2) cos(a/2+27/3) cos(a/2+4m/3)
0 1 sin(a) || sin(e/2) sin(a/2+ 27/3) sin(a/2 + 47/3)

Table 4.5: Coordinates of the clipping and subject triangles. The coordinates of U must be multiplied
by 0.5.

/2 — 7f/6 —a/2

_ sin(r/6) 1
sin(r/2 —7/6 — o/2)

bsin(a/2)

P> « il %

1/2

Figure 4.20: The half portion of the intersection used to find its area.

Using the law of sines, the other side connected to the angle a/2 is equal to
1 sin(m/6)
~ 2sin(n/2 —7/6 — a/2)

If the base of the triangle is that side equal to 1/2 then the height is bsin(«/2). The
area of the half portion is then bsin(«/2)/4, or bsin(«/2)/2 for the whole intersection.

For large enough «, part of U comes out the other side of V. Along the ray with
angle a/2; where the vertex of U is aligned, V intersects at a distance cos(«/2) from
the origin. The portion of U on the other side of V' is again symmetric. One half of it
is a right angle triangle with height 0.5 — cos(«/2) whose adjacent angle is 7/6. Thus,
the area of the portion of U to be removed from the intersection is

(% - Cos(a/2)>2tan(7r/6). (4.3)

The total area of the intersection is then
1 sin(7/6) sin(a/2)
{Zsin(ﬂ'/2ﬂ’/6a/2) 1/2 < COS(&/Z)

sin(mw sin(« 2
LRl — (3 - cos(a/2)) tan(r/6) 1/2 2 cos(a/2).

(4.4)

We compare four triangle-triangle intersection algorithms: the original PANG [20];
PANG2, with both change of coordinates and reference-free parametrization and;

4.10. CONCLUSIONS 59

Figure 4.21: V (red) and U (blue) for o = 7/3 (left) and o = 27/3 (right).

Sutherland-Hodgman, an established polygon clipping algorithm [I0]. The implemen-
tations of PANG2 may be found in [31].

Figure [4.22] shows the results for a between 0 and 7. Note that the error is striated,
with each level associated with a particular fraction of machine epsilon. A black line
is drawn along an absolute error of €,,/16. In terms of accuracy, PANG appears to
have trouble with small angles, while the reference-free parametrization is nominally
worse for midrange angles. In terms of computation time, this implementation of the
reference-free parametrization is marginally faster than the change of coordinates. Both
versions of PANG2 are faster than their competitors, in particular by nearly an order
of magnitude over the more established Sutherland-Hodgman algorithm.

4.10 Conclusions

This chapter has presented an algorithm for the computation of the intersection be-
tween two triangles. It includes a proof of its robustness. Specifically, the algorithm is
proven to be continuous with respect to input. Under a small error in some calculation,
the error in area remains small.

The robustness is ultimately provided by the principle of parsimony. The smallest
number of calculations are done so as to ensure that no two produce inconsistent results.
For each calculation, the maximum amount of information is extracted and never again
sought by separate calculations.

In the following two chapters this algorithm is extended, first to 3D and the inter-
section of tetrahedra and then to arbitrary dimension and the intersection of simplices.

4.11 Invalid graph configurations

The proof of Lemma requires drawing thirteen graphs to determine which satisfy
all conditions of an intersection graph. Ten of these graphs are found in Figure

60 CHAPTER 4. INTERSECTION OF TRIANGLES

—_
S
w

: of :
- Trilntersect 10 - Trilntersect
° TrilntersectRF o TrilntersectRF
- PANG = PANG
- Sutherland-Hodgman GEJ - Sutherland-Hodgman
- 107"] = &
o S :
> Z10°F)
10 o
(@)

107165

alr

Figure 4.22: Example comparing accuracy and computation time of four triangle-triangle intersection
algorithms. Relative error (left) and computation time (right) as a function of «/7.

o &

Figure 4.23: The three graphs that do not meet the conditions required of a graph of intersection, see

Lemma

The three that are found to be invalid are presented in Figure

The first of these, G, from the pairing 2-3, contains an entire triangle in the polygon
of intersection. As such, there are no intersections between this triangle and any other.
The graph is therefore invalid.

The second two both come from the pairing 4-2. In both, one of the cycles identified
by the triangle condition has four triangle vertices. Thus, the cycle does not correspond
to a triangle at all, invalidating both graphs.

4.12 Advancing front algorithm

As mentioned in the introduction to this chapter, the intersection algorithm of PANG
was paired with an advancing front algorithm. For every pair of intersecting triangles
this algorithm tested which neighbours of the two triangles were likely or guaranteed
to intersect. Each triangle of one set then received a list of candidate triangles from
the second set. Once one triangle of the first set completed its list, a new triangle of
the first set was selected and intersected with a triangle from its list of candidates,
starting the procedure anew.

4.13. ADDITIONAL PROOFS 61

One reason PANG failed so frequently in our tests was that this advancing front
algorithm would only take as a new candidate pair the last candidate pair it had found.
That is, if one triangle finished its list the algorithm would start on a new triangle whose
list consisted of only the last triangle determined to intersect it. Thus, if floating-point
error caused this calculation to fail then the algorithm would halt abruptly.

As part of this research I introduced a minor fix to this algorithm. Rather than only
consider the last candidate triangle found the algorithm now compiles an extensive list
for each triangle of the first set. This required using a candidate matrix rather than a
candidate vector.

4.13 Additional proofs

€1

Lemma 4.11. The determinant of [w; w;

| [y W

j] 18 positive.

1

Proof First note that the determinant of [wi W;

;]_1 has the same sign as that of

[w; wi] " Thus, we are concerned with the determinant of
T Twl
1 11 | W; W w; Wj
W, W; W, Wi| =
A R R

The value of (w}) "w; is positive by the choice of w;- made in Section |4.3.1] The value

of wwi is

Tl _ Tl — _wTwl
W, Wi = — (W + W) Wi = —W, W

which is negative by the same choice. Since w; and vvjL are the vectors w; and w;
under the same rotation their scalar products are the same. The determinant is then

T Tl
T W, W; W, W;
e ([1 oy 1) =| @ T
= (WZTW]) + W,IW]-LW]TWil
which is strictly positive. []

We use a bound on x(A) given by Hoffmann [26]. This bound requires modification
for matrices where C' < 1. For completeness we prove the form of the bound and a
slightly tighter version.

Lemma 4.12. Let vy, vy € R? such that «, the angle between them, is less than /2,

then
1 1

C'sin(«) <l va) < C'sin(a/2)

where C' < 1 is the ratio of | vi|| to ||va]|.

(4.5)

Proof The matrix [Vl V2:| may be expressed as

] e) el 0]

62 CHAPTER 4. INTERSECTION OF TRIANGLES

where R is a rotation matrix and c is a scalar. The condition number is invariant under
rotation and scalar multiplication, and so

(v = (fs el 3 2])

Since the condition number is based on norms, the upper bound is immediate:

w(lvi ve]) < ({(1) Zﬁf@ﬂ) & ({(1) gD - COt(g/z) < csinl(a/z)'

To prove the lower bound we must find the limit of the condition number as C ap-
proaches 0, then show the condition number cannot fall below this limit.
First we must find the singular values of the matrix:

{ 1 0 H1 Ccos(a)} _[1 C cos(a)

Ccos(a) Csin(a)| [0 Csin(a) C cos(a) c? |
giving the characteristic equation
(1—0)(C? —0) — C*cos*(a) =0 — (1 + C*o — C*(cos*(a) — 1)

which implies

14+ 0?4 /(1 +C2)2 — 4C?sin’(a)
1402 — /(1 + C?)2 — 4C?sin?(a)
2
<1 + C? + /(1 4 C?)2 — 402 sin2(a)>
T (1+C2)2 = (14 C2)2 +4C?sin?(a)

(% +C+ \/(% +0)* - 48ir12(04))2

w (v v])*

4sin?(a)

1 1 2 .2
L O (5+0) —4sin’(a)

o ([Vl Vz]) - 2sin(a) '

Take the limit as C' approaches 0:
1 1
_ ctye 1
ggloﬁ (I va]) = 2sin(«) - C'sin(a)

It remains to prove this is a lower bound of s ([Vl Vg}) Note that this is equivalent
to proving
1

sin(«)

N
sin(a/2)

< OK([Vl Vg}) <

The maximum of Ck ([Vl V2]> occurs at C' = 1, and our proposed minimum occurs
at C' = 0. Then it suffices to prove Ck ([Vl Vg]) increases monotonically with C'.

4.14. APOCRYPHA 63

Take the derivative of C'k ([Vl Vg]) with respect to C"

d 1+ C* /(1 + 022 — 4C?%sin’(«)
-~ dC 2sin(«)
2(14+C?)C—4C sin? ()
2C + \/(1+C'2)274C2 sin?(a)

2sin(a)

_C) 1+ C? - 2sin’(a)
sin(«) V(A +C?)?2 —4C%sin’(a) |

2w v)

While C' and sin(«) are positive by assumption, it remains to confirm the second term
is as well. To do this, we must compare the magnitudes of the terms in the quotient:

(1+C?)? — 4sin®(a)(1 + C?) + 4sin*(a) — (1 + C?)? + 4C*sin*(a)
=4sin*(a) — 4sin®(a) — 4C? sin*(a) + 4C? sin?(a)
=4 sin®*(a) (sin*(a) — 1)

= — 4sin®*(a) cos?(a) < 0

— 1+ C? - 2sin(a) <\/(1 + 0?)2 — 4C2sin?(a)

and so the number in parantheses is between 0 and 2. Therefore, C'x ([Vl Vz]) in-
creases monotonically with C'. [|

4.14 Apocrypha

Our first version of this algorithm was markedly different to the current one. Most
notably, it lacked the pairing of intersections indicated by their numerators from Table
4.3 allowing errors to occur unpaired. Before discovering this pairing, we had imple-
mented a way to patch the problem of unpaired errors. The following sections consider
these unpaired intersection errors and their effects.

4.14.1 Unpaired intersection errors

Figure [4.24] gives examples of the possible unpaired intersection errors. While the

configurations of the triangles can change slightly the effect of each error is the same.

For each, an intersection is translated a distance € along the reference line of Y, finding

itself on the other side of one of the other two reference lines that intersects the first.
The effects of the errors will now be explained in full.

(a) The intersection error has caused a Y-in-X error. The calculated intersection now
includes the vertex of Y. If the intersection has moved e along the reference line
then the new area of the polygon of intersection has increased by O (¢). The error
behaves the same as in Figure |4.8¢

(b) The intersection error has caused a Y-in-X error. The polygon has grown, again by
O (e). However, the shape of the polygon has not changed: It remains a triangle.
In essence, the intersection has been replaced by the vertex of Y.

64 CHAPTER 4. INTERSECTION OF TRIANGLES

Figure 4.24: Results of a single intersection error over a vertex of Y. The upper right quadrant is a
corner of Y. Blue dots are the calculated locations of the intersections. Red dots are the effective
locations of the triangle vertices based on the intersections, and the blue region is the effective location
of X. Open red circles are the true locations of the vertices of X. The true location of X is outlined
with a dashed line.

(c) The intersection error has caused a Y-in-X error. With regards to the shape of the
polygon, the behaviour is that of Figure The intersection has again grown
by O (e).

(d) The intersection error has technically caused a Y-in-X error. However, there are
only two points in the polygon and so no intersection is calculated.

(e) No Y-in-X error occurs. The shape and size of the polygon does not change.

(f) No Y-in-X error occurs. An intersection has been removed from the polygon. This
is now a degenerate case where the vertex of Y acts as an intersection and will be

discussed alongside the other degenerate cases later. The area of the polygon has
been reduced by O (e).

Errors (b) and (d) can also occur as described without intersections on the other
reference line intersecting the vertex of Y.

Figure shows the result of two intersection errors that occur over the same
vertex but on different reference lines. Two intersection errors over the same vertex of
Y occur only if some of the vertices of X sit close to this vertex of Y. Notably they
require intersections to be calculated for two reference lines. The triangle X must then
be found in at least three of the four quadrants defined by these reference lines.

These compound errors can be much more problematic, as explained here.

(a)(a), (c)(b) There is no practical difference between these errors and those of their
single counterparts (a) and (c).

4.14. APOCRYPHA 65

|
<
: N N :
| |
| |
Figure 4.25: Results of two intersection errors over a vertex of Y, occurring over different reference
lines. The upper right quadrant is a corner of Y. Blue dots are the calculated locations of the
intersections. Red dots are the effective locations of the triangle vertices based on the intersections,
and the blue region is the effective location of X. Open red circles are the true locations of the vertices

of X. The true location of X is outlined with a dashed line.

66 CHAPTER 4. INTERSECTION OF TRIANGLES

Y
;
(bb)
Y Y
(dd)

Figure 4.26: Results of two intersection error over a vertex of Y, occurring over the same reference line.
The upper right quadrant is a corner of Y. Blue dots are the calculated locations of the intersections.
Red dots are the effective locations of the triangle vertices based on the intersections, and the blue
region is the effective location of X. Open red circles are the true locations of the vertices of X. The
true location of X is outlined with a dashed line.

(b)(c) The polygon of intersection has again grown by O (€), where € is the size of the
intersection error. The error has the same result as Figure [4.8D] on the shape and
makeup of the polygon. This error is identical to (c)(b), since the order in which
the errors occur is inconsequential.

(d)(d) The Y-in-X error caused by one instance of (d) now causes a change in the
polygon with a second instance of (d). The entirely erroneous polygon is a triangle
with two sides of O (¢), meaning it has an area of O (€?).

(e)(e) A second instance of (e) causes a Y-in-X error, with the vertex of Y being
removed from the polygon. Because this vertex is replaced in the polygon by two
intersections, as in Figure the polygon is only reduced by a triangle with
area O (€?).

(f)(f) A second instance of (f) causes a Y-in-X error. The loss of three corners of the
polygon of intersection is catastrophic. If, as shown in the figure, there is only
one vertex of X within or on the other side of Y then the error in area is O (e)
and the result can be thought of as a combination of Figures and £.8d If, on
the other hand, there are two vertices of X in this quadrant then the error can be
O (1). It is essential to guard against an error of this kind.

(e)(f), (f)(e) These compound errors cause Y-in-X errors. The result is indistinct
from a solitary (f) error, save for an additional O (¢) loss of area.

If the compound errors occur over the same reference line then the errors resemble
those of Figure[4.26] As in the other case, such errors occur only if some of the vertices
of X reside near this vertex of Y. However, they do not need intersections to be
calculated on the other reference line intersecting this vertex of Y.

These last four compound errors are explained here.

(aa) The Y-in-X error caused by the first instance of (a) is resolved by the second
instance, though not in our favour. There is now a deletion in the polygon of

4.14. APOCRYPHA 67

Intersection error | Abs. error | Shape change || Compound error | Abs. error | Shape change
(@), (a)(a) 0] Lsd [(@) 0@ o
(b) O (e) (e)(e) —-0 (é%) 4.84)
(c), (c)(b), (b)(c) O (e) 4.8b| || (f)(f) -0 (1) | [A.8b]+[4.8¢

(d), (dd) 0 (aa) ~0(1) | B3d+[Esb
(e) 0 (bb) —o(1)
(£), (e)(f), ()(e) -0 (e) 4.8b) || (cc) O () -+

Table 4.6: All possible intersection errors, the absolute error in the area of the polygon of intersection,
and equivalent change in shape found in Figure A minus sign in an error indicates a decrease in
area, whereas the lack of one indicates an increase in area.

intersection. If there is a vertex of X in the quadrant containing Y, as shown,
the error in area can be as large as O (1). With regards to shape, this compound
error is equivalent to a combination of Figures [£.8¢ and [£.8b]

(bb) As in the case of the compound error (f)(f), how problematic this error is depends
on the position of the vertices of X. If there is only one vertex of X within
the quadrant containing Y then the polygon of intersection is deleted, though it
possessed an area of O (¢). If there are two vertices of X in this quadrant then
the loss of area may be of size O (1).

(cc) This is in some sense the reverse of (aa). This is distinct from (c) only in that there
is a triangle of area O (¢€) missing from the polygon. The shape has undergone the

effects of Figures [4.8D] and [4.8a]

This error does not cause as dramatic a change in area as (aa) since it falls
within a triangle whose base lies between the starting positions of the displaced
intersections and their final positions, which is at most € in length. The area
deleted in (aa) is defined instead by the length between the vertex of Y and the
closest intersection along the vertical reference line, which is not restricted to e.

(dd) This error is indistinct from that of a single instance of (d).

Errors (bb) and (dd) can occur without intersections on the other reference line inter-
secting this vertex of Y.

The list of intersection errors are tabulated, along with the absolute error and effect
of shape on the polygon of intersection, in Table 1.6 Proofs of the magnitude of the
absolute error can be found in Appendix [4.14.3] One may ask also for the results of
three or four intersection errors over the same vertex of Y. However, note that the
final results of all compound errors are valid configurations of the intersections. One
can then combine the results listed here twice over to determine the overall effect.

For example, suppose one wants to subject a polygon of intersection to two counts
of (c¢) error along one reference line and two counts of (a) error on the other. Since
the compound error (cc) returns the starting configuration for the error (aa), one need
only draw a line connecting the starting configuration of (cc) to the final position of
(aa). In this way, all intersection errors are exhausted.

It is clear from this analysis that there are three intersection errors to be concerned
about: (f)(f), (aa) and (bb). Note that all of these errors have aspects of their con-
figurations in common. Along the horizontal reference line the two intersections fall
outside of the triangle Y. The configuration of the two intersections along the other
reference line then varies. Figure shows the four possible configurations of two

68 CHAPTER 4. INTERSECTION OF TRIANGLES

Figure 4.27: The four configurations when two intersections fall outside of Y along the horizontal
reference line. Each is numbered for reference.

Configuration ‘ Starting position before error | Final position after error
0 (d) (bb)
1 (d) (bb), (£)(f)
2 (b), (f)
3 (b), (c) (e)(f), (f)(e), (aa), (dd)

Table 4.7: Correspondence between the configurations of Figure and starting and final positions
of the errors of Figures 4.24|7 4.25 and 4.26}

intersections around a vertex of Y. Table matches each of these configurations with
a starting position from Figure and final positions after errors.

Errors (bb) and (f)(f) are only problematic when two vertices of X are found in
the same quadrant as Y. Adding the vertex of Y to the polygon of intersection in
these configurations bounds the error in area as O (¢). Moreover, adding this vertex
to the polygon for the starting position of (d) does not affect the area or shape of the
polygon. In fact, it is equivalent to an error of type (d). Thus, if configurations 0 or 1
are encountered during the algorithm then the vertex of Y should be considered to be
within X.

Configuration 2 is the result of errors (b) or (f). Neither error is found to be
problematic and so configuration 2 requires no additional changes to the algorithm.

For configuration 3 adding the vertex of Y to the polygon to the starting positions of
(b) or (c¢) will cause a type (b) error. However, doing so would restrict errors (e)(f) and
(f)(e) to single (f) errors. It is therefore necessary to identify if configuration 3 belongs
to these starting positions or to the final positions of (e)(f), (f)(e) or (aa) errors. The
errors (e)(f) and (f)(e) are not problematic so we focus on identifying (aa) errors.

The defining difference between the final position of (aa) and the starting position
of (c) is the presence of a vertex of X in the lower right quadrant. Such a vertex clearly
shows the configuration is erroneous as the vertex of Y somehow lies within the triangle
formed by the points of intersection and this vertex of X yet is not within X. Adding
the vertex of Y back into the polygon restricts the error in area of (aa) and some cases
of (e)(f) and (f)(e) and has no effect on (dd).

To guard against the three problematic errors the algorithm must now identify
which, if any, of the four configurations has occurred and, in the case of configuration
3, the relative quadrants of the vertices of X.

4.14.2 Graphs created through unpaired intersection errors

Corollary states that Figure an exhaustive list of representations. However, if
intersection errors are allowed to be unpaired, then this is no longer true as there is an

4.14. APOCRYPHA 69

(a) Hf, resulting from graph G under an (e)(e) (b) J, resulting from graph H under an (e)(e)
error. error.

Figure 4.28: The two graphs that can result from (e)(e) errors not already considered.

Score: 2 3 4

Figure 4.29: Graph of intersection connectivity when unpaired intersection errors are considered. This
is Figure with the addition of graphs Ht and Ji.

implicit restriction that the graph be convex. The intersection error (e)(e), see Figure
4.25| can create a hole in these graphs.

Figure shows the algorithmic graphs caused by (e)(e) errors. Graph G under
an (e)(e) error gives the graph Hf, presented as impossible in Figure [£.23b] The
configuration in Figure combines two vertices to make it possible. Graph H
under the same error gives Jf, not considered as it violates restriction (iv) by having
7 corners in the polygon of intersection. The error in area is small, as explained in

Sections 4.14.1l and 14.14.3]

4.14.3 Error in area due to intersection errors

In the following lemmas the intersection errors occur due to one or two displacements
of points of intersection by € along a given reference line of Y.

Lemma 4.13. Errors (a), (b), (¢), (a)(a), (b)(c), (c)(b) and (c)(c) add an area of
O (€) to the polygon of intersection.

Proof Figure shows an example of an error of type (b) adding a triangle to the
polygon of intersection. Since the largest distance the corner of the polygon can move

70 CHAPTER 4. INTERSECTION OF TRIANGLES

(a) Addition of a triangle with (b) Removal of a triangle with (¢) Addition of a triangle with
base less than € to the polygon base less than e from the polygon base and height less than € to the
of intersection. of intersection. polygon of intersection.

Figure 4.30: Displacements of intersections of size O (¢) cause changes in area of O (¢) or smaller.

is € by assumption the triangle has a base of at most e. Regardless of the triangle’s
height it therefore has area O ().

This principle applies to each of the errors listed in the statement of the lemma.
The only changes are the shape and composition of the polygon of intersection and the
direction of the shift by e. [|

Note that Lemma applies also to errors of type (aa) when there are no vertices
of X in the quadrant that contains Y.

Lemma 4.14. Errors (f), (e)(f) and (f)(e) remove an area of O (€) from the polygon
of intersection. Additionally, if there is only one vertex of X in the quadrant that
contains Y then errors (f)(f) and (bb) remove an area of O (e).

Proof Figure shows an example of an error of type (f) removing a triangle from
the polygon of intersection. As in Lemma the corner of the polygon can move at
most € and so the triangle being removed has area O ().

This movement occurs twice for errors (e)(f) and (f)(e), resulting again in an error
of O (e), albeit twice the size in magnitude.

If there is only one vertex of X in the quadrant that contains Y, either inside Y
or across the third reference line, then each instance of (f) in a (f)(f) error deletes a
triangle of area O (¢). Since the polygon of intersection in this case is composed of
two such triangles this error represents a deletion of the polygon in its entirety. The
absolute error in area remains O (e).

Under the same assumptions for a (bb) error the polygon is a single triangle with
base at most e. It has an area O (¢) and so while it is deleted by a (bb) error the
absolute error in area is O (e). u

Lemma 4.15. Error (d)(d) adds an area of O (€?) to the polygon of intersection. Error
(e)(e) removes an area of O (¢2) from the polygon.

Proof Figure shows an example of a (d)(d) error where two intersections have
been displaced by € over the vertex of Y. In this case the base and height of the triangle
being added to the polygon of intersection, which is the entire polygon, has area O (€?).

These displacements happen in reverse for (e)(e) errors. This triangle is therefore
removed from the polygon for such errors. [|

Chapter 5

Intersection of tetrahedra

In which one extends the previous algorithm to the 3D case.

5.1 Introduction

The previous chapter explored a robust algorithm for the calculation of the intersection
between two triangles, named PANG2. It is natural to ask for its extension to 3D. That
is, what is the equivalent robust algorithm for the calculation of intersections between
two tetrahedra? We shall refer to such an algorithm as PANG2-3D.

Many aspects of PANG2 are straightforward to generalize to a higher dimension,
such as the change of coordinates. But there are now new types of intersections, those
between edges of X and faces of Y and those between faces of X and edges of Y. As
well, how does one deal with the vertices of one tetrahedra that lie within the other?

Throughout this chapter I will show how to make the extensions from triangles to
tetrahedra. In doing so, extensions to higher dimensions will become obvious, which
will lead to Chapter [6]

5.2 Change of coordinates

We consider two tetrahedra U and V with intersection W, all of which lie within R3.
To simplify calculations, transform the tetrahedron V' into the reference tetrahedron Y
with vertices at the positions (0,0,0), (1,0,0), (0,1,0) and (0,0,1). The tetrahedron
U is likewise transformed under the same affine transformation into the tetrahedron
X. To do so, one must determine the nature of the affine transformation.

Represent the positions of the vertices of V' by the matrix
T
vol + [0 Vi Vo V3} >

where vq is the position of the vertex to be mapped to the origin, vq, vy and vj3 are
the vectors leading between vy and the remaining vertices, 0 is a column vector with
three zeros and 17 = [1 11 1}. Ideally, vi, vo and v3 are orthogonal. The best
choice of vq is one in which this is true, or nearly so.

The process of transforming from the vertices of V' to the vertices of Y can be

71

72 CHAPTER 5. INTERSECTION OF TETRAHEDRA

written as an affine transformation:

0100
A (Vo]_T -+ [0 Vi Vo Vg}) —|—b]_T =10 0 1 0
0001

The vector b is then —Avy and the matrix A is the inverse of the matrix [vl Vo Vg} .

This affine transformation must be applied to the 'subject’ tetrahedron U to acquire
its transformation X. As with V', the position of the vertices of U may be represented
by the matrix ugl "+ [0 u; U u3] . Let the i—th vertex of X have position (x;, y;, 2;).
These values may then be found by solving the system

Ty T2 T3 T4
[v =ul'+]0 —vol'
1 V2 V3| (Y1 Y2 Y3 Ya| =ugl + u uz us Vol .
Z1 R92 R3 24

5.3 Corners of the intersection

The intersection between the tetrahedra X and Y is a polyhedron Z. There are four
types of corners to this polyhedron: vertices of X that lie inside Y'; intersections
between the edges of X and the faces of Y'; intersections between the faces of X and
the edges of Y and; vertices of Y that lie inside X. These corners form a hierarchy;,
with each type informing the calculations of later types. The levels of this hierarchy
will be considered one at a time.

5.3.1 Vertices of X that lie inside Y

The reference tetrahedron Y is bounded by four infinite planes: P, = {z =0}, P, =
{y =0}, P, ={# =0} and P,,. = {x + y + z = 1}. Each plane P, defines a parameter
p~(x) that is positive or zero when the point x = (z,y, 2) € Y and negative otherwise.
For three of these planes this parameter is one of the coordinates, p, = v for v €
{z,y,z}. For the fourth plane, p,,.(x) = 1 — 2 —y — z. The i-th vertex of X,
x; = (24, Y, %), lies in Y if and only if sign(p,(x;)) = 1 for all 7. The function sign(p)
is found in equation (4.1]).

The signs of p,(x;) indicate the number of intersections between the edges of X and
the plane P, to calculate. For example, the edge between the i—th and j-th vertices
of X intersects P, only if sign(p,(x;)) # sign(p,(x;)), assuming neither value of p,
is equal to zero. The case where p,(x;) = 0 is considered in [31] and will be briefly
summarized here. Moving x; an imperceptible distance into Y does not change the
shape of the polyhedron of intersection. Thus, the degenerate case where p,(x;) = 0
can be treated as the non-degenerate case where p,(x;) = €/2. It is therefore practical
to use the binary-valued sign function previously defined.

Proposition 5.1. Only 0, 3 or j intersections may occur between the edges of X and
the plane P, .

Proof For an intersection to exist, sign(p.(x;)) and sign(p,(x;)) must disagree. There
are four p,(x;) (¢ = 1,...,4), and sign(p,(x;)) may take one of two values. There are
only three ways to partition four objects (p,(x;)) into two groups (either 0 or 1), which
may be proven by the partition function. These partitionings are listed in Table

5.3. CORNERS OF THE INTERSECTION 73

m(a) | m(b) | pairs
4 0 0
3 1 3
2 2 4

Table 5.1: Ways to partition four elements into two parts.

Parameters | 2 =0 | y=0]2=0 | a+y+z=1
Dy T Y z l—-z—y—=z
4y y z T T
T 2 x y y

Table 5.2: Parameterizations of the point (z,y, z) for the given plane.

where m(a) and m(b) are the multiplicities of elements labelled a and b, respectively.
A pair is formed by taking one element of each group. The number of pairs is then the
product of the two multiplicities. [|

This proposition tells us that the part of X that intersects the plane of Y is a
triangle, a quadrilateral, or does not exist. This allows us to consider the intersection
of these shapes with the face of Y that lies in the plane.

5.3.2 Intersections between edges of X and faces of Y

Suppose sign(p,(x;)) # sign(p,(x;)) for some . Then there is an intersection between
the edge of X lying between the ¢—th and j-th vertices and the plane P,. This inter-
section lies in the plane P, and so its value of p, is zero. There remain two coordinates
needed to ascertain its position in R3.

We parametrize the plane P, with the coordinates ¢, and r,. These are chosen such
that the face of Y lies between the lines ¢, = 0, v, = 0 and ¢, + r, = 1. They are
listed in Table (.2

This table is the natural extension of Table from 2D to 3D. We require an
additional row and an additional column to accommodate the third dimension. Recall
in 2D the two parameters p and ¢ were chosen to increase orthogonally, including for
the line z +y = 1. In 3D this is eschewed so that the parameters stay aligned with the
edges of the tetrahedron Y.

The intersection between P, and the edge between the i—th and j-th vertices of X,

Plane P H Numerator of q%j ‘ Numerator of r%j ‘ Numerator of 1 — qf/j — r%j

_ T Yi Ti % o l—yi—z
z=0

Tj Yj Tj % zj l—yj—2

_ Yi % Yi X yi l—x—z
y=20

Yi % Yi yi 1—wj—2

- Z T Zi Yi zi l—x;—wy;
z=0

Zj T Z Yi Zj 1-zj—y;

cy+z=1 ‘1%21' T ‘1xizi Yi l—zi—yi 2

]-_yj_Zj CL’j 1—.’Ej—Zj yj]-_‘rj_yj Zj

Table 5.3: Numerators of the relevant values for each plane of Y.

74 CHAPTER 5. INTERSECTION OF TETRAHEDRA

Face ‘ Vi ‘ Vo ‘ V3
©=0 ¢ o
y=0 A 4
z2=0 qy Y

rryt+z=1| ¢, | rd. | 1 — @ — 78

Table 5.4: Amount of vectors vi, vo and v3 to add to vg to arrive at the position of intersection
between the plane P, and the (ij)-th edge of X.

denoted the (ij)-th edge, has values of ¢, and r, equal to

ij _ qu(Xj)py(Xi) — qW(Xi)p'Y(Xj) rJ =

7 (%) (Xi) = 7(Xi) D~ (%)
Py (%) = py(x;) CT .

Py (%) — py(x5)

(5.1)

The numerators of these values are listed in Table[5.3lin the form of determinants. The
last row, for the plane P,,., has been simplified.

Equation is the extension of equation (4.2). In 2D, only one coordinate is
needed to determine the position of such an intersection. In 3D, the intersection lies
within a 2D plane and so two coordinates are required. Likewise, table |5.3] is the
extension of table 4.3

This intersection lies on Y if and only if q@j > 0, rij > 0and 1— qij — rij > 0.
Otherwise, the intersection does not fall on a face of Y and is not a corner of the
polyhedron Z. Therefore, the sign of each of these must be found. This is trivial for
the first two, while the last involves an additional calculation. Its numerator has been
included in Table 5.3 Its denominator is the same as the others, p,(x;) — p(x;).

Each value in Table [5.3| appears twice. Thus, of twelve entries only six need to be
calculated. This keeps calculations consistent and can improve efficiency.

If there is no intersection with one of the other planes then the signs of one of
¢, v or 1 — ¢ — r¥ has the same sign as p,(x;) for this plane. For example, if
sign(py(x;)) = sign(py(x;)) = 1 then the (ij)-th edge does not intersect the plane P,
and any intersection between this edge and another plane of Y must also be on the
positive side of P,. In this case, ¢/ > 0, 77 > 0 and 7%, > 0.

If an intersection is found to lie on Y then we require its coordinates in the original
system. This position is equal to v + avy + bvsy + cvs, where the values of a, b and ¢
depend on the face of Y the intersection lies. These values are listed in Table [5.4]

By Proposition there are either 0, 3 or 4 intersections between X and the plane
P,. Thus, these intersections, if they exist, form either a triangle or a quadrilateral,
denoted G, that may or may not intersect the face of Y. By comparing the signs of qff ,
74 and 1—q% —7% for different combinations of 7 and j, which have already been found,
we can determine which, if any, edges of Y intersect the faces of X. Moreover, we can
determine which faces of X these edges of Y intersect by taking the triple formed by
the two combinations of ¢ and j, noting that edges of G’ have one of these indices in
common. For example, if sign(¢) # sign(¢2®) then the line ¢, = 0 intersects the plane
formed by the i—th, j—th and k—th vertices of X.

5.3.3 Intersections between faces of X and edges of YV

Continuing the example from above, suppose there is an intersection between the (ijk)—
th plane of X with the line ¢, = 0 for some «. Suppose there is an edge of G between

5.3. CORNERS OF THE INTERSECTION 75

vl @ |y | 2 || ym| = y z

Y, 2z t%Z Z, XYz 1- tz,:byz tz,:ryz

z,z tz,z Y, TY= ty,myz 1- ty,zyz
z,Yy tamy Z, TYz 1- tw,:pyz tw,xyz

Table 5.5: Coordinates of points along edges of Y parametrized by t. ;.

its (¢j)-th and (ik)-th vertices. Then the intersection along ¢, = 0 is

ik ij g ik
P = 'Y T
Y ij ik .
¢y —qy

As mentioned in Section this is calculated only if sign(g%/) # sign(q¥).

Given that the edges of G are straightforward to determine, this procedure would
find at most two intersections for each edge of a face of Y. However, each edge is
shared by two faces of Y. For each intersection there are then two sets of calculations
to produce it, with no guarantee that numerical error will keep them the same. Thus,
we seek a single formula for each intersection that is independent of any particular face
of Y.

Each edge of Y can be parametrized by a single value. We denote this parameter
by t,, where v and 7 indicate the planes of ¥ that intersect at the particular edge.
This parameter is chosen such that the edge of Y lies between ¢,, = 0 and t,, = 1.
The (z,y, z)—coordinates of points along these edges are listed in Table

This table also provides the transformation of these points into the original coor-
dinate system in the same manner as Table [5.4] Starting from position vq, add v;
times the x—coordinate, vy times the y—coordinate and vz times the z—coordinate. For
example, the position of a point along the edge indexed by vy, z is vy + ¢, .v1.

Lemma 5.2. The value of the parameter t., at the intersection between the (ijk)-th
plane of X and the line extending from the edge of Y indexed by v,n is

Ti Yi Zi =2 yi 2
T Yi % 1=z v %
sidh _ Ty Yk 2k fiik L=z yr 2
Y,z 1 Ui 2) 2,TYZ 1 7 + yi 2)
Loy oz Lozjt+y 2
L ye 2 Iz +ye 2k
Ti Yi Zi oy 11—z
Ti Yi % Ty 1=z
ik _ T Yk 2k ik _ TR Yk I — 2z
o o 1z’ PR iz oy 1
z; 1z ri+z oy 1
T 1 Z T + 2k Yk 1

76 CHAPTER 5. INTERSECTION OF TETRAHEDRA

Ti Yi Zi o l—y 2
Tj Yj Z i 1=y z
T L T L =y 2k
Y oy 1|7 h T 1 oyt z
rioy; 1 i 1 oyj+z
r yp 1 N

The value of 1 — 1277 is

1l—z yvi 2z i 1=y 2z

L= y; 2 i 1=y 2

| ik L=z yr 2z R L—yr 2z
Y,z 1))) 2,TYZ 1 7 + 5)

yZ ZZ 7 yl (3

Iy 2 I 2 +ye 2

v 1=y z L=y 2

ZE]‘]_ — yj Zj 1 — l’j yj Zj
| gk _ 1%k 1=y Zk:) | ik :_1—$k: Yk Zk,

o 1 oz hEvE itz oy 1

.17]' 1 Zj .lej + Zj yj 1

T 1 Zke T + 2t Yk 1

o oy 1—z xooy 1=z

zj yi L—z rj yi L—z
1_tijk:$k Yk 1_Zk7 | gk I L 1_Zk'

oy vy 1 L o 1 yi+z

rj Yy 1 Ty 1oyt 2

T Yy 1 T 1 oyp+ 2

Proof Consider the (ijk)-th face of X. This face defines a plane, ax + by + cz = d.
The intersection between this plane and the line y, z, where y = z = 0, is (d/a,0,0).
Likewise, for the lines x, z and x,y the intersections are (0,d/b,0) and (0,0,d/c), re-
spectively.

Consider the intersection between this plane and the line z, zyz. This intersection
is the solution to the linear system

1 00 0
1 1 1|lx=1|1
a b c d

which is (0, —(c—d)/(b—c¢),(b—d)/(b—c¢)). The intersections between the plane and
the lines y, xyz and z, zyz can be found in the same manner.

The values of a, b and ¢ can be found by solving the linear system

5.3. CORNERS OF THE INTERSECTION 7

Cramer’s rule gives the solution as

Loy oz r 1 oz r oy 1
Iy z r; 1z x; oy 1
a |1y = b Tk 1 oz c Tk Yk 1
d Ti Yi Zi Cod Ti Yi Zi Cod Ti Yi Zi .
Ti Yi % i Yi % i Yj %
Tk Yk 2k Tk Yk 2k Tk Yk 2k

The values of ti7%, 9% and ¢%% are then the inverses of these fractions. The values of

1—ti7% 1—t9% and 1—t" can be simplified using known properties of the determinant.

ijk
The value of 77, is

rp 1 z Ti Yi Zi
. r; 1 oz —lx; y; %
ik Cb—d -1 e 1oz Tp Yk 2k
T,xYz) c
b—c 595 z, 1 z T oy 1
r; 1 zj|—lz; y; 1
T 1 2k T Yk 1
v l—y % r l—y %
fL‘j 1 — yj Zj l’j 1 — yj Zj
_ Ty 1—yp 2z LR
z, 1 z o 1 oy v 1 yi+z|
l‘j]_ Zj —+ CL’j 1 yj ZL’j 1 yj +Zj
xp 1 oz T 1 oy T 1 oyp+ 2

The value of 1 — 7% has already been shown to be —(c — d)/(b — ¢) and a similar
expression as above can be found by following the same steps. The remaining values

of t’j’f, and 1 — t’j’; are also found in this manner.]

If t’j’; is between 0 and 1 then the corresponding intersection lies on the correspond-
ing edge of Y. Note that the values of 1 — tif’; do not need to be calculated explicitly
as only their signs are important.

In the case where sign(r¥) = sign(r¥) the sign of t%% can be determined without
additional calculations. Since the line connecting the (ij)-th intersection to the (ik)-th
intersection lies entirely on one side of the line 7, = 0 the sign of tzjﬁ must be equal
to both sign(r¥) and sign(r;’“). For some edges 7, is replaced by ¢, or 1 — ¢, — r, and
tyn by 1 —t,,. In this way, the sign of tzjf; needs to be independently calculated only
when the (ijk)-th plane of X intersects three lines extending from the edges of Y.

Each numerator appears in Lemma three times. Each denominator appears
twice. The numerators are connected by the vertices of Y: All edges extending from a
given vertex of Y share the numerator of either t¥% or 1 — t¥* The denominators are

vsn vn*
specific to each edge. These denominators have common signs with the numerators of

Table B.3l

Lemma 5.3. Suppose the (ijk)-th face of X intersects the line v,n of Y. Suppose

78 CHAPTER 5. INTERSECTION OF TETRAHEDRA

sign(p,(x;)) # sign(p,(x;)) = sign(p,(xx)). If the line v,n coincides with ¢, = 0 then
Py(%i) gy(xi)) _

pv(xi) %(XZ) ‘
- st (py(x5) ay(x5)

1
sign | (1 py(x5) gy(x5)
L py(xk) ¢,(xx)

If the line coincides with ¢, + 1, =1 then

py(xi) 1= qy(xi) — 7o (xs)

¢y (Xi) +ry(xi) py(xs) _
- e (po(x;) 1= ay(x;) — 7 (x;)

1
sign | (1 ¢,(x) +74(x5) py(x5)
Logy (k) + 7y (k) py(xk)

Proof The intersection along ¢, = 0 has already been given and involves division by
qzj q““ The value of this denominator is

Py(xi) gy (%)
Py (X5) a4y (x5)

i ik _ _
B T) px) — b (i)
0 py(xi) ay(xi) 0 py(xi) gy (i)
py(xi) (1 py(%)) (%) = [Py (X5) py(x5) gy(%5)
_ Lopy(xi) gy(xk)| |py(xk) Dy(x%) gy(xk
(py (%) — (%)) (P4 (i) — P (X1))
0 py(xi) gy(xi) —py(Xi) py(xi) gy (i)
py(xi) |1 py(x5) ¢y(x5)| — 0 Py(X5) q,(x5)
B 1 py(xk) gy(xk) 0 py(xi) gy(x)

(P (%) = () (P (%) — ()

Since this intersection exists only if sign(¢%/) # sign(¢%") this denominator has the same
sign as qij, which has the sign of

py(Xi) a4y (xs)
(X)) qy(x;)

Py (x3)-

By comparing these signs it is clear that

py(xi) gy(x:)

sign | |1 p,y(Xj) +(x5) pV(Xj) C]w(xj)

L opy(xi) gy(xi)
= sign (
L p, (Xx) d~ (Xk)

)

The intersection along g, 41, = 1 involves division by (1—¢% —r¥) — (1 — ¢ —riF).
Again, this only exists if these two terms differ in sign and this denominator has the
same sign as 1 — q” — r” which is

sign (Py(xi) 1= gy(x5) = 74 (x3)
Py(x5) 1= qy(x5) — 7y (%)

54. ALGORITHM 79

Type of corner ‘ Shorthand
Vertex of X inside YV X-in-Y
Intersection, edge of X and face of Y | X—with-Y
Intersection, edge of Y and face of X | Y—-with—X
Vertex of Y inside X Y-in-X

Table 5.6: Hierarchy of corners of the polyhedron of intersection.

The value of the denominator can be found by replacing ¢, by 1 — ¢, — r, in the
formulas above. To arrive at the form in the statement of the lemma one must simplify
the determinant

L opy(xi) 1—=gy(xi) —ry(xi)| |1 py(x) 1] |1 py(xa) gy(xi) + 7y (x5)
L opy(x5) 1=gy(x5) =7my(x5) | = (1 py(x5) 1| = |1 py(x)) ay(x5) + 7y (x5)
L opy(xi) 1—qy(xk) —=ry(xp)] |1 py(xk) 1] |1 py(xk) gy (xk) + 7y (xk)
1 Q’y<xi)+rv(xz> p’y(xi)
=1 g (x5) +7(x5) py(x5)]-
1 gy(xi) + 7 (xk) Dy (k)

Comparison with the known sign of this denominator results in the statement of the
lemma. []

This connects the denominators of Lemma [5.2] with the numerators of Table (.3
Depending on the indices and the particular ¢, and p, some row and column swapping
may be necessary. Each swap incurs a sign change. Note also that ¢, will be replaced
by 7., in some instances. Since each edge of Y is shared by two of its faces there is no
need to use v = zyz to connect these signs.

5.3.4 Vertices of Y that lie inside X

Each edge of Y has two vertices attached to it. These are located at t,, = 0 and
t,, = 1. Either two or zero faces of X intersect the line extending from this edge,
resulting in %5 and ¢} . If the signs of these values are different then the vertex at
ty, = 0 must lie 1n81de X. The same is true of 1 — % 1 —) and the vertex at
tyy =1

Each vertex of Y has three edges extending from it. This test can therefore occur up
to three times. If PANG2-3D is consistent it needs to only occur once. The remaining
edges would then agree on the results. Using the edges of the plane P, for these tests
removes the need to test the signs of 1— t”k as each of these edges has a separate vertex
of Y at ¢, 4. = 0. The final vertex of Y at the origin, can use any of the remaining
edges, as they all have this vertex at t,, = 0.

5.4 Algorithm

There are four types of points to find to construct the polyhedron of intersection. They
are presented in Table

Algorithm 5.1 (PANG2-3D). Step 1: Change of coordinates. As described in Sec-
tion[5.3, V is transformed into Y and U into X.

80 CHAPTER 5. INTERSECTION OF TETRAHEDRA

Edge Vi Vo V3
y=0,2=0 t
z=0,2=0 t
z=0,y=0 t
z=0z+y+2z=1]1-1 t
y=0z+y+z=1 t 1—t
r=0z+y+z=1 1—-1¢ t

Table 5.7: Position of the intersection between an edge of Y and a face of X in original coordinates
as functions of its t—coordinate.

Step 2: Select plane P, of Y. Calculate p,(x;), ¢,(x;) and r,(x;) for all vertices of
X,i=1,.. 4.

Step 2(i): Intersections between P, and edges of X. Test ifsign(p,(x;)) #
sign(p,(x;)). If so, calculate the intersection between p, = 0 and the edge con-
necting the i~th and j-th vertices of X, found using the coordinates q¥) and
. If g, v and 1 — ¢ — v are all non-negative then the intersection is a
corner of the polyhedron of intersection. Repeat for all pairs of i and j.

Step 2(ii): Intersection between G and edges of Y. Select an edge of Y that
lies in P,. Without loss of generality, suppose this aligns with q, = p, = 0.
Test if sign(q?) # sign(g;k) If so, calculate the intersection t3% between G
and this edge of Y. If tljg € [0,1] then this intersection is a corner of the
polyhedron of intersection. Repeat for all pairs of ij and ik.

Step 2(ii.a): Intersections between edges of Y and faces of X. Test if
sign(tfy{’;) + sign(tf%). If so, the vertex of Y att,, =0 lies in X. Like-
wise, if sign(1 — tfj’;) # sign(1 — t) then the vertex of Y at t,, =1 lies
mn X.

Repeat step 2(i1) for each edge of Y that lies in P, .

Repeat step 2 for each face of Y. It is not necessary to repeat step 2(ii) for edges
considered in previous instances of step 2, nor step 2(ii.a) for previously considered
vertices.

Step 3: Vertices of X in Y. Compare all values of p,(x;) for the i—th vertexr of X.
If sign(p,(x;)) = 1 for all v then the i—th vertex lies inside Y .

Step 4: Undo change of coordinates. Transform the intersections between edges
of X and faces of Y (step 2(i)) and those between edges of Y and faces of X (step
2(ii)) into the original coordinates. The transformation from (p,q,r)-coordinates
has been shown in Table[5.4 The transformation from t—coordinate is presented in
Table[5.7] Take the numbers listed in the tables, multiply by the respective vectors
v;, sum the results and add vq for the positions in original coordinates.

Note that step 2(i) may be completed after step 2(i) has been completed for all planes
P,. Likewise, step 2(ii.a) may be completed after all instances of step 2(ii). This means
the algorithm can be parallelized by having these steps run by separate threads. One
could also have each plane P, run by separate threads, though information about which
edges and vertices have already been considered would need to be passed between these
threads.

5.5. CONSISTENCY ERRORS 81

5.5 Consistency errors

If PANG2-3D is to be robust, an error on the order of machine epsilon can only cause a
change in the volume of the polyhedron of intersection on the same order of magnitude.
The polyhedron is defined by its corners. The types of corners are listed in Table [5.6]
There are two types of corners arising from intersections, which may have error in their
position, and two types of corners arising from vertices of the tetrahedra, which may
have error in their inclusion in the polyhedron.

5.5.1 X-in—Y errors

The vertices of the tetrahedron Y are fixed. The vertices of the tetrahedron X are
determined by an affine transformation. This transformation may introduce some error
in their position but as only the original positions of the vertices are used to construct
the polyhedron this only affects the determination of its inclusion as an X—in—Y corner
and the position of any intersections calculated based on these vertices.

Should a vertex of X cross a plane of Y it is crucial that the number of X—with—
Y points in the plane changes accordingly. If this were not the case, the resulting
polyhedron of intersection may not represent a realistic intersection. For example, if
the exact intersection has four corners, three X—with-Y points and an X—in-Y vertex,
the movement of the vertex over the plane will result in a 2D intersection of 3D objects.

Lemma 5.4. Let x; be the position of the i—th verter and X; be its position as calculated
by PANG2-3D. Suppose the i—th vertex of X lies outside Y but the algorithm determines
it to lie inside Y. The line segment between x; and X; necessarily intersects at least one
plane P,. The line segment between X; and x; intersects P, if and only if the (ij)-th
edge of X does not.

Proof By assumption, sign(p,(x;)) = 0 and sign (Xx;) = 1. Then either

sign(p,(x;)) # sign(p,(x:))

or
sign(py(x;)) 7 sign (py (X)) -

The former indicates the (ij)-th edge of X intersects P, and the line segment between

x; and x; does not. The latter indicates the reverse. |

The number of intersections with the plane after the error depends on the number
of vertices of X on each side of the plane. We consider the five possible arrangements
of the vertices with respect to the plane and indicate the change in the number of
intersections found when an error causes transition from one to another, see Figure
.1} These transitions correspond to moving between the rows of Table

Errors in X—in—Y points then cause errors in the number of X-with-Y points.
However, these errors provide consistency between these types of points, so that the
ultimate configuration remains an intersection between tetrahedra.

5.5.2 X-—with—Y errors

The corners denoted as X—with—Y are intersections between edges of X and faces of
Y. An X—with-Y corner on the polyhedron Z is an intersection between an edge of X

82 CHAPTER 5. INTERSECTION OF TETRAHEDRA

40 [

Figure 5.1: The five possible configurations of X with respect to a plane of Y. An X—in—Y error in a
single vertex of X may cause a shift from one of these to either neighbour.

and a plane P, that lies between the lines ¢, = 0, r, = 0 and ¢, +7, = 1. A consistency
error involving one of these corners then places one of these intersections on the wrong
side of one of these lines. To maintain consistency this must cause commensurate errors
on other planes.

An X-with-Y corner is determined by testing if the values of ¢¥/, 7%/ and 1 —¢¥ —7%
are positive. The numerators of these values are found in Table Change in the
sign of one of these values is a change in the sign of the respective numerator. As this
numerator is shared with another plane for the same edge of X this causes a second
error. Should an error occur with an X—with—Y corner it is important that the number
of Y-with—X corners remains consistent.

Lemma 5.5. Suppose there is an error in the sign of qéj independently of any errors
in sign(py(x;)) and sign(p,(x;)). Then a value of t9% is calculated if and only if the
(1jk)—th plane of X does not intersect the v,n edge of Y.

Proof If the sign of ¢/ is in error then so is that of 777. If no value of r}/ is calculated
then p,(x;) and p,(x;) have the same sign. The (ij)-th edge of X then does not
intersect the plane P, and the sign of quj cannot be in error.

By Lemma there are two or three other intersections with the plane P,. The
same is true for the plane P,. One of these intersections has indices k and either 7 or
j. Both ¢/ and ¢* cannot be calculated as sign(p,(x;)) must equal either sign(p,(x;))
or sign(p,(x;)).

Without loss of generality we suppose there is a value of qg’“ and a value of r%k.
Before the error, both pairs of (q@j , q;k) and (7"}7]' , rf?k) either agreed or disagreed on their
signs. After the error, the signs of both ¢%/ and 7 have flipped. Both pairs now have
the opposite relationship between their signs. That is, if the pairs agreed on their signs
before the error they now disagree after the error, and vice versa. Since agreement
indicates no intersection between the v,n edge of Y and the (ijk)-th plane of X and
disagreement the reverse this concludes the proof. [|

If v = 2yz then 7/ must be replaced by 1—¢¥ —r¥ in the statement of Lemma
The lemma is also true when replacing ¢¥ with r or 1—¢% —r%, making commenserate
changes to rf]j where applicable. The end result ensures that an appropriate number
of Y—with—X points are calculated based on the distribution of X-with—Y points,
themselves ensured by the X vertices and their values of sign(p,(x;)).

Given that each edge of X has two faces attached to it the effects of Lemma [5.5
occur twice. If neither face intersects the line 7,7 then after the error both do. If one
face intersects the line and the other does not the intersection moves from one face to
the other. If both faces intersect the line then after the error neither do. Figure |5.2
shows these three possible results of an X-with-Y error.

5.5. CONSISTENCY ERRORS 83

Figure 5.2: Possible X-with-Y" errors. Blue planes are two planes of Y, P, and F,. The blue lines
trace out the intersections between X and the given plane. Blue dots represent X—-with—Y points
affected by error, black dots Y—with—X points altered by this error and black circles Y-with—X
points unaffected.

This indicates that an X—with—Y error can only create two, destroy two or move
one Y-with-X point(s). In a tetrahedral intersection Y-with-X points must come
in pairs, as each line must enter then exit a convex object. Thus, X-with-Y errors
maintain this parity.

In the absence of an intersection between this edge of X and the second plane of
Y the sign of ¢¥/, ¥ or 1 — ¢¥ — r is determined by the signs of p, (x;) and p, (x;),
where P, is the second plane sharing the numerator of the relevant value.

5.5.3 Y-—with—X errors and Y—-in—X errors

A Y-with—X corner is an intersection between an edge of Y and a face of X. In our
algorithm it is represented by 0 < tif’; < 1. A consistency error for this type of corner
is then an error in the sign of % or 1 — 4%,

To maintain consistency an error in sign(t?;];) must affect the number of vertices of
Y that are found inside X. That is, a Y—with—X error must cause a Y—-in—X error.

Lemma 5.6. Suppose there is an error in the sign of tij’fi Then the vertex of Y at
tyn = 0 is determined to lie within X if and only if it does not.

Proof If the sign of t%% is in error then so is that of ¢¥/% and tJ/}. If one or more of
these values does not exist then there can be no error in the sign of t’jg For example,

if tfyjl,j is not calculated then sign(r¥) = sign(ri¥) = sign(¢%%). Some parameters and
indices may need to be changed for this example to apply.

One of the other faces of X intersects the line v,n of Y. This is true also for the
lines 7, v and v,n. Denote the intersections between these lines and the other faces of

Xast:,, t>, and £} .

YTV

84 CHAPTER 5. INTERSECTION OF TETRAHEDRA

Figure 5.3: The four configurations of a face of X and a vertex of Y. A Y—with—X error transforms
these configurations. The double-headed arrows indicate the directions of the transformations.

Before the error in the sign of t%% the three pairs of (t/*,¢*) shared a relation be-
tween sign(t*) and sign(t*). That is, either sign(¢*) = sign(¢*) for all three lines or
sign(t¥*) # sign(t*). After the error this relation switched, changing from agreement
in sign to disagreement or the reverse. In the case of the former, the vertex of Y at
the intersection of these three lines does not lie in X but is determined to do so by the
algorithm. In the latter, the vertex lies in X but the algorithm does not place it there. R

There are four possible configurations of the three Y—with—X points surrounding a
vertex of Y. This error transforms these configurations between each other, see Figure

L3l

5.5.4 Conclusions on consistency

Each of the errors described in this section can be represented by a change in the
position of one or more of the vertices of X. This change is geometric. Therefore, the
result remains an intersection between two tetrahedra.

The X—-in-Y errors are already represented as the movement of vertices of X.
Lemma ensures the correct number of intersections with each of the planes P,
are calculated.

For an X—with-Y error, the two intersections that change position lie along the
same edge. This error can then be represented by the movement of the two vertices
of X connected by this edge. Lemma [5.5] gives the three possible changes that result
from this shift of an edge of X.

Finally, the three intersections altered by Y—with—X errors fall on the same face of
X. The error is therefore equivalent to the shift of the three vertices of X connected
by this face. Lemma provides the four changes in configuration arising from the
movement of a face of X.

Thus, the errors are equivalent to shifts in vertices, edges and faces of X. After these
errors, X is still a tetrahedron and the result of PANG2-3D an intersection between
two tetrahedra.

5.6. EXAMPLES 85

Figure 5.4: PANG (left) and PANG2-3D (right) applied to two intersecting icosahedral meshes.

5.6 Examples

We apply PANG2-3D to two examples to show its effectiveness. We compare it against
its predecessor, PANG.

5.6.1 Intersecting icosahedra

In Chapter [4 we considered the intersection between two triangular meshes, both with
20 triangles arranged in a wheel, one of which was slightly rotated with its centre
perturbed. We extend this example to 3D by considering two icosahedra, with each
face representing a tetrahedron. All tetrahedra on the same icosahedron share the
centre of the icosahedron as its fourth vertex. As before, one is rotated in two senses
relative to the other, with its centre translated by a small e. We have referred to
this example as the Hecht example, as it was originally motiviated by discussions with
Frédéric Hecht, see Section for the 2D version.

Figure shows the results of applying the two algorithms to the Hecht exam-
ple. PANG has clearly missed several intersections. PANG2-3D finds the intersection
exactly.

5.6.2 Accuracy and computation time

The second example in Chapter [l was that of two intersecting triangles with a known
intersection that changed with a given angle. To extend this to 3D we add one vertex to
each of the two triangles. The vertices of the triangles V' and U are found in Table
For both vertices let the x—coordinates be the first row of this table, the z—coordiantes
the second, and the y—coordinates all set to zero. To V' add the vertex (0, 1,0), and to U
add (0,0.5,0). The resulting coordinates are presented in Table These tetrahedra
may be seen for o = 7/3 and 27/3 in Figure

The intersection between U and V is effectively a pyramid with base equal to the
intersection of the example in 2D. The area of the base may then be found in equation

86 CHAPTER 5. INTERSECTION OF TETRAHEDRA

|4 H 2xU
0 0 0 «cos(a) || cos(e/2) cos(a/242m/3) cos(a/2+4m/3) O
0 1 0 O 0 0 0 1
0 0 1 sin(a) || sin(e/2) sin(a/2+27/3) sin(a/2+47/3) 0

Table 5.8: Coordinates of the clipping and subject tetrahedra. The coordinates of U must be multiplied
by 0.5.

Figure 5.5: Intersecting tetrahedra for oo = 7/3 (left) and o = 27/3 (right).

, and will be represented here as Ay. The pyramid has a height of 0.5, and so
using the formula for the volume of a pyramid the intersection has volume Ag/6.

For large enough «, part of this pyramid again sticks out the other side of V. This
portion is again a pyramid with base equal to that portion that stuck out in 2D. Let
the area of the base be Ay, see equation (4.3)). The height is the intersection of the
lines 1/2 —y and cos(a/2)(1 —y), the heights of the x = 0 slices U and V/, respectively.
The height is then

cos(a/2) —1/2
cos(a/2) —1

The total volume is then

_ Ao {0 1/2 < cos(a/2)

v (5.2)

6 | el 172> cos(a/2).

Figure [5.6| shows the results of this example. Both algorithms give accurate results.
However, there are some exceptional values of a for which the accuracy of PANG
completely drops. They appear only when cos(a/2) < 1/2, and the relative error is
roughly constant for these outliers.

The computation time of PANG is clearly superior. The new algorithm includes
a number of complicated elements necessary to ensure robustness. Improvements can
certainly be made to streamline the calculations and comparisons. Interestingly, the
computation time of the new algorithm noticeably changes after cos(a/2) < 1/2. This
indicates a new regime where it must find additional intersections.

5.6. EXAMPLES

Rel. error

« PANG2-3D

° PANG

10—2 L

Computation time

- PANG2-3D
- PANG

87

Figure 5.6: Relative error (left) and computation time (right) for this example for both PANG and
PANG2-3D.

Rel. error

10°

- PANG2-3D
- PANG

Computation time

><10_3
2.5¢ - PANG2-3D|]
- PANG
2 L
15f
1

Figure 5.7: Same as Figure but with the roles of V' and U reversed.

88 CHAPTER 5. INTERSECTION OF TETRAHEDRA

Reversing the roles of V' and U exacerbates the problem PANG has with the second
regime. Now all but one of the intersections in this regime is found within a reasonable
margin of the exact value. All others have error on the order of 107!, It is worth noting
that there is no visible difference in the intersections calculated by these algorithms.
It is only on comparison with the exact value that it becomes clear PANG is deficient.

In terms of computation time, PANG is still superior. However, the reversal of V'
and U may have improved the new algorithm’s time, albeit minimally.

5.7 Conclusions

The intersection algorithm in the previous chapter has now been extended to 3D. It uses
the same principle of parsimony, and the problem has become slightly more difficult
in this higher dimension. Because the algorithm remains parsimonious, it remains
robust. Errors that affect the shape of the intersection are considered to further prove
this point.

The general form of this algorithm is presented in the subsequent chapter. A more
rigorous proof of its robustness is provided there. It may be used as a proof for this
3D version of the algorithm.

Chapter 6

Intersection of simplices

In which one extends the previous algorithm to arbitrary dimension; investigates
methodology for various aspects of the algorithm, including how to solve the intersec-
tions, how to march through neighbouring vertices and hyperplanes, how to connect
the signs of the intersections to maintain consistency, and how to store the components
in an efficient manner.

6.1 Notation and change of coordinates

Let n be the dimension of the space. For the purposes of this chapter we assume the
vertices lie in R”. Each simplex then has n 4 1 vertices. Each pair of vertices defines
an edge, each triple a plane, and so on.

The coordinates can no longer be easily identified as z, y and z. Instead, each
coordinate is identified by the unit vector e, for v = 1,...,n, where e,, = ¢,,. In this
way a given vector x € R” may be written as

X-€e

X - e,

Since simplices in R"™ are bounded by n + 1 hyperplanes, see equation (6.3, it will be
useful to denote an additional coordinate, x - e, defined as

x-eg=1-) x-e, (6.1)
v=1

Let the two simplices to be intersected be called U and V, and let the coordinates
of their vertices be denoted by V and U. Let

V:V()]_T—l—[o Vi ... Vn]

where 1 is a column vector of n 4+ 1 1’s and 0 is a column vector with n 0’s.

We seek to transform the coordinates into a system such that vq lies at the origin
and the edges of V' are aligned with the unit vectors e, for v = 1,...,n. Let the
transformations of U and V under this change of coordinates be represented by X and
Y, respectively. The vertices of Y are then known, while the vertices of X may be
found by solving the system

A~

[Vl Vn} [Xo xn}:U—VolT. (6.2)

89

90 CHAPTER 6. INTERSECTION OF SIMPLICES

The intersection of two simplices is a polytope of the same dimension. Let W be
the intersection of U and V', and let Z be the intersection of X and Y and therefore
the transformation of W under the same change of coordinates described above. The
algorithm herein described will construct Z and then reverse the change of coordinates
to arrive at W. This algorithm will be referred to as PANG2-nD.

6.2 Vertices of X inside Y

Let P, be an (n — 1)-dimensional hyperplane that bounds Y, defined as
P,={xeR"|x-e,=0} (6.3)

for v = 0,...,n. The simplex Y is then the intersection of all the half-spaces that lie
on the positive sides of P, for all 7. In other words, a given point x € R" lies inside of
Y if x-e, >0 for all 7.

We continue to use the binary-valued sign function, see equation . The indicator
function for Y may then be expressed as

Xy (x) = H sign(x - e,). (6.4)

Naturally, xz(x) = xv(x)xx(x). Note that yx(x;) = 1 for all i = 0,...,n and so
x; € Z if and only if sign(x-e,) = 1 for all 7. In such a case, the i-th vertex of X lies
inside both Y and Z.

6.3 Intersections between edges of X and hyperplanes of YV

The polytope Z is bounded by the intersections between X and the hyperplanes P, .
To find the vertices of Z one must find these intersections.

The edge of X between its i-th and j-th vertices intersects P, if and only if sign(x; -
e,) # sign(x; - e,). Due to the binary nature of the sign function the number of
intersections that can be calculated is strictly limited.

Proposition 6.1. Let X be an n—simplex intersecting an (n — 1)-hyperplane P. At
least n edges of X intersect P. At most [(n+1)/2]|(n+1)/2] edges of X intersect
P.

Proof Let the hyperplane P be defined by p = 0 for some linear function p. An
n-simplex has n + 1 vertices. Each vertex has a value of sign(p;) equal to either 0
or 1. There are [(n+ 1)/2] ways to partition n + 1 objects into two groups. Those
partitionings with the largest and smallest number of pairs are listed in Table [6.1] As
it is assumed that X intersects P it must be that the number of edges that intersect
P is between n and [(n+1)/2]|(n+1)/2]. u

Thus, the portion of X that intersects P, either: does not exist; is itself a simplex in
R™~! or; is a polytope in R®~!. The intersection will then always have dimension n— 1,
unless it does not exist, which only occurs when no edges intersect P,. The intersection
is then always consistent with the distribution of vertices of X. For example, there will
never be only one intersection with P,, which would not be consistent with a simplex

6.4. HIGHER DIMENSIONAL INTERSECTIONS BETWEEN X ANDY 91

m(a) | m(b) | pairs
n+1 0 0
1 n

[+1)/2] | Ln+1)/2] | [(n+1)/2]L(n + 1)/2]

Table 6.1: Ways to partition n + 1 elements into two parts.

intersecting a hyperplane as this would be a O-dimensional object in an (n — 1)-
dimensional space.

If the intersection X N P, lies entirely within Y, which may be checked using the in-
dicator function yy, then its vertices are shared with Z. Otherwise, one must intersect
this intersection with those P, for which part of X N P, lies in the negative half-space.

6.4 Higher dimensional intersections between X and Y

As explained above, the set of intersections between edges of X and a given hyperplane
P, form a polytope of dimension n — 1. That part of this polytope that lies on the
positive side of the remaining hyperplanes forms part of Z. Suppose we intersect
X NP, with P,. An edge of X N P, intersects P, if and only if the signs of the two
attached vertices in the e, direction differ. Proposition applies again, ensuring a
consistent number of intersections are calculated. This procedure is then repeated for
this intersection, X N P, N P, until all hyperplanes are considered or the result lies
entirely within Y.

Consider a given stage of this process where we seek X N,cr P, where I' contains m
indices within {0,...,n}. The intersections at this stage are between this intersection
of n—hyperplanes, which is itself an (n —m)-hyperplane, and the convex hulls of m + 1
vertices of X, called m—faces. Each intersection is then uniquely determined by I', the
collection of hyperplanes, and J, the set of vertices of X that form the m—face.

6.5 Calculation of intersections

Lemma 6.2. Suppose the m—face of X between the set of m + 1 vertices {x; | i € J}
intersects the (n — m)-hyperplane defined as the intersection of the m hyperplanes
{P, | v € T'}. Denote this intersection as qi.. Then

Xlo en Xlo . e’yl X’LO e,ym
J . _ Xim e77 XZm e’Yl Xim ' e'YnL 6 5)
Xip " €y Xio * €y
1 x5, ey, Xip * €y,

Proof Without loss of generality, suppose J = {0, ..., m}. The m—face can be defined

92 CHAPTER 6. INTERSECTION OF SIMPLICES

by {g({a;}) | 0 < a; <1}, where

g({ar,...,am}) :Zai (x; — Xg) + Xo

a;X; + (1 — zm: CLi> Xp-
=1

o

=1

The intersection qf. = g(A) depends on I'. We seek the set A = {ay, ..

that
g(A)-e,=0V~yel.

We propose as a solution

X0 - e’Yl Xo - e’Ym
i
a _(_1) Xi—1 "€y Xi—1'©€4,
1 Y

d |Xit1 €y Xit1 * €y,
Xm) e’Yl Xm ’ e’Ym

m 1 X1 e'Vl X1 e'Y'm

1-— E a; —=—
=1 . .
¢ X * €y, X * €y

for some constant d. In this way the coordinates of the intersection are

Xp- €, Xp-€y X0 €4,

g(A) e, =

Xm "€, X €y Xm * €,

., @y} such

It is clear that if n € T" then the coordinate is zero and g(A) lies on the intersection of

the planes {P, | v € '}
The constant d is found by rearranging the formula for 1 — 3" a;:

1 Xl e'Yl Xl ’ e'YnL m
1== : : + E a;
d ’ ’ ,
X * €y, X * €y, i=1
X0+ €y X0 * €y,
m i
= E (=1 |xi-1 ey, Xi-1" €y,
P d |Xit1- €y Xit1 * €y,
Xy * €y, X €4,
1 X0 €y X0+ €y,
— d=| :
1 x-ey Xm * €y,

6.6. REVERSE CHANGE OF COORDINATES 93
As a small validation of this formula, if x; - e, = ¢ then g(A) - e, = c. u

Corollary 6.3. The numerator of qf. - e, is shared with the numerators of qgj -e; for
m values of j, up to a change in sign, where I' and I'; have cardinality m.

Proof For each j € I' define I'; as

Ly ={np U\ {5}

Since I" has m elements there are m such I';. For each of these the numerator of q%]_ ‘e;
is the same up to an exchange of columns in the determinant. []

By this corollary, if there is a change in sign of qf. - e, then the entire m—face of X
defined by the indices J ends up on the other side of the (n — m)-face of Y defined
by I'U {n}. This ensures consistency between intersections of a given generation. The
m—face remains whole and intact. If the signs were not connected across an m—face
then an error in one sign could cause distortions in the m—face, causing it to split apart.

If the J-th m—face of X does not have m + 1 intersections then this no longer holds
true. While the intersections that do exist would be consistent amongst themselves
they may not agree with other calculations in the algorithm. However, if an m—face
has less than m + 1 intersections then there exist subsets of J, J\ {j} and J\ {i}, and
a subset of I', "\ {7}, such that

J\{}) =

J\{7
sign(qp -y - € N),

sign(dp) - €,
sign(al))) Zsign(al)f) -e,).
Then the sign of gf. - e, may be determined without further calculations:

sign(qf. - e,) = sign(qp\ 7} - e,).
This essentially replaces the determination of the sign of the numerator of the in-
tersection. Such a relation exists for each intersection of the m—face. The relations
between the signs within an m-face remains defined by the denominators. Thus, this
sign determination still need only occur once.

6.6 Reverse change of coordinates

As noted earlier, if xy(q) = 1 then the intersection is a vertex of Z. Therefore, its
image under the reverse of the change of coordinates is a vertex of W. Since the
transformation from the original coordinates is achieved by solving the system

Vi ... vu]x=u— vy,

the reverse is simple multiplication by this matrix and additon by vy. The vertex of
W is then

Wi = Vo + Z QF ew AT (6.6)
v¢TU{0}
Note that the 0-th coordinate of q is excluded from the sum as it is purely computa-
tional. Also excluded are those coordinates known to be zero, namely the set I'.

94 CHAPTER 6. INTERSECTION OF SIMPLICES

6.7 Vertices of Y inside X

After the intersections between (n—1)—faces of X and edges of Y have been calculated,
consider one of these edges. For this edge, there is an infinite line that extends from it
such that either: there are no intersections between this line and an (n — 1)—face of X,
in which case neither vertex of Y attached to the corresponding edge lies within X, or;
there are two intersections along this line. In the latter case, if the two intersections
surround a vertex on the corresponding edge then that vertex lies within X.

Each of these infinite lines is the intersection of n — 1 hyperplanes {PV}%F. Thus,
for each line there remain two hyperplanes that have not intersected with this line.
The intersection between this line and either of the two remaining hyperplanes is a
vertex of Y.

Without loss of generality, we consider the intersection between this collection of
hyperplanes I" and the remaining hyperplane P,. As before, there is an intersection
with X if and only if the two intersections qi and qFf have different signs in the e,
direction. Unlike in previous cases, however, any resulting intersection would lie in a 0—
dimensional space, removing the need to calculate it. Thus, sign(q{-e,) # sign(qf* -e,)
immediately implies the vertex at P, Nyer P,. Incidentally, this is the vertex at e,,
such that v ¢ " and v # 7.

For every vertex there are n edges that extend from it, one for each other vertex
of Y. This means this test can be performed up to n times, each with a different
pair of intersections. Because previous steps have ensured the configuration of these
intersections around the vertex are consistent, each test will return the same result.
As such, the test need only be performed once.

6.8 Algorithm

There are n + 1 generations of intersections between m-faces of X and (n — m)-
hyperplanes of Y, corresponding to taking between 0 and n intersections of the hy-
perplanes P,. Each combination of hyperplanes must be checked, as outlined in the
above sections of this chapter. Since a given combination of m hyperplanes is used to
determine the sign of an intersection in the same generation but for an unrelated combi-
nation of hyperplanes, it is necessary to complete a given generation before continuing
with the next.

Algorithm 6.1 (PANG2-nD). Step 1: Change of coordinates. Find an affine trans-
formation such that the n + 1 vertices of V' are mapped to the origin and e; for
j=1,....,n. Use this transformation to map U to the simpler X, see equation

(6-4).

Step 2: Vertices of X in Y. Test if sign(x;-e,) =1 for all , see equation (6.4). If
so, x; lies in'Y and the i—th vertex of U in V. Repeat for all vertices of X.

Step 3: Intersections of X with Y. Initiate m = 0. Let I denote a collection of m
hyperplanes P,, see equation .

Step 3 (i): Calculate the intersections. ChooseI' and one hyperplane P, not
in this collection. For each J compare sign(qi-e,) with that of sign(qf -e,) for
all K such that the edge between J and K lies on the boundary of X, assuming

6.8. ALGORITHM 95

both qi. and q exist. If the signs are different, calculate qJUf} unless already
computed. If the signs are the same, flag the combination J U K and T", the
direction 1 and the sign of the two.

Repeat for all possible I' and n combinations.

Step 3 (ii): Determine the signs. For each combination of JUK and I'U{n}

for which an intersection was calculated in the previous step, check if the
combination JUK and T' were flagged in that same step for any T € T'U {n}.
If so, retrieve the noted direction v and sign s. Then the sign in the v direction
of this intersection is equal to s.
Otherwise, check if another intersection on the same m—face as this one has
had its sign calculated. If so, determine the sign of this intersection using
the knowledge that they share a numerator. Otherwise, calculate its sign as
normal.

Step 3 (iii): Reverse transform For each intersection q found in Step 3 (i)
check xy(q). If it equals 1 then transform q into original coordinates, see
equation . The result is a vertexr of W.

Increment m. Repeat untilm =n — 1.

Step 4: Vertices of Y in X. For each vertex e, of Y, choose I' a collection of n —
1 hyperplanes that does not contain P,. Let the other hyperplane not in this
collection be P,. There are two intersections for this collection, J and K. If these
intersections have different signs in the n direction then the vertez is in X.

Theorem 6.4. Algorithm 18 consistent with respect to shape.

Proof For the algorithm to be consistent with respect to shape we need to consider
only two types of values of each step: the number of intersections to be calculated, and;
the signs of the coordinates of these intersections. This uniquely identifies the shape
of the intersection Z. The remainder of the algorithm will affect its accuracy, but not
its consistency.

Consider a collection of hyperplanes I' and a new direction v ¢ I'. The number
of intersections to be calculated for the collection I' U {7} is determined directly from
the number of pairs of intersections of the previous generation with collection I" who
differ in sign in the direction . Thus, the number of intersections is consistent with
the results of the previous step of the algorithm. In Section we will discuss how
to restrict this test to intersections found on the boundary of the intersection Z.

Suppose |I'| = m, then by Corollary [6.3| the sign of the numerator of an intersection
is shared amongst up to m + 1 intersections. These m + 1 intersections represent the
intersection between a given m—face of X and the collection of hyperplanes indexed
by I'U{v}. Since all these intersections share this numerator, they share its sign, and
their determination is self-consistent.

If this m—face of X has less than the maximum number of intersections then the
signs of the numerators may be determined directly from the signs of the intersections
of the (m — 1)—faces of X that compose the m—face. Otherwise, the sign of the nu-
merator is necessarily independent of previous calculations: If it could be determined
by previous results the entire intersection Z would be found after one step of the algo-
rithm. Therefore, the calculation of the signs of the numerators need only be consistent
with the previous step in the algorithm in certain cases.

96 CHAPTER 6. INTERSECTION OF SIMPLICES

The signs of the denominators can be determined from previous steps, as will be
shown in Section These signs require up to two previous steps of the algo-
rithm. Their determination is then consistent with these two previous steps. These
denominators are also shared amongst all coordinates of the same intersection. Their
determination is then also self-consistent within the given step.

Each step of the algorithm has been proven to be self-consistent and consistent with
the previous steps. By induction, the algorithm as a whole is consistent for any dimen-
sion. [|

Note the algorithm permits paradoxical results due to the use of ey as a direction
for the determination of signs. The coordinates of intersections and vertices along this
direction can be found using the other directions. However, doing so decouples the
signs of the numerators and denominators, meaning the algorithm’s steps would not
be self-consistent. Since e is not used to determine the location of an intersection or
vertex, we allow the paradox where an intersection can be found on the negative side
of the hyperplane F, while its sign in the ey direction is found to be positive, or vice
versa. This only affects the shape of the intersection Z, and any loss in accuracy is
still dictated by the formulae used.

If we apply PANG2-nD to dimension 3 and the intersection of two tetrahedra then
we expect to retrieve identical results to PANG2-3D. In this particular case x; =
[xi Yi Zi}T-

The first two steps of the algorithms already correspond to one another. In the third

step of the general algorithm qg}k ; - e, is calculated. Suppose j = 1 and 1 = 2, then

Yi I
{i,k} Y Tk
Qu 2= T

‘1 T

This is identical to ¢* from the tetrahedral algorithm, see equation (5.1)). It is straight-
forward to work out that the other combinations of j and n will give the equations for
¢F, r¥ and 1 — ¢/* — i see Table 5.3 Likewise, one can show the calculations in
step m, repeated once in this case, are identical to those of step 2bi of the tetrahedral
algorithm. Since these calculations are the same, the comparison of the signs of the
intersections will return the same results. Thus, both algorithms will agree as to which

vertices of Y lie inside X.

6.9 Implementation of PANG2-nD

There are a number of practical concerns when it comes to implementing PANG2-
nD. While steps 1 and 2 are straightforward, steps 3 and 4 present computational
difficulties. Flowcharts of these steps are provided in Figures [6.1and

To continue this discussion of practicalities we suppose we are on a particular iter-
ation of the algorithm, such that we have all intersections between all m—faces of X
and collections of m — 1 hyperplanes of Y. That is, let I' be a set of m — 1 vertices
taken from {0,...,n}, and J and K similar sets of m vertices from the same choice of
indices. Let v and 71 be other indices from this set.

6.9. IMPLEMENTATION OF PANG2-ND

Step 2

empty
NI,y » Step 3(ii)

T'u{~} viable?

empty
J, KK
N
Y
o)
i o) = it
sign (qff - e4)? calculated?

|ﬂag of (JUK,T,~) set to ll—

sign (q% -eﬁ,) =17

)Iﬂag of (JUK,T,~) set to OI—

Figure 6.1: Flowchart of step 3(i) of PANG2-nD.

97

98 CHAPTER 6. INTERSECTION OF SIMPLICES

We begin by examining Figure and step 3(i) of PANG2-nD. The first hurdle to
overcome is whether I' U {7} is a viable option for a collection of hyperplanes. Most
importantly, v cannot lie within I'. Other limitations can be used to narrow down the
list of viable 7, as will be discussed in Section [6.9.1}

Second, one should determine whether the edge between qf and gf lies on the
boundary of the intersection Z. If J and K are not chosen correctly, this edge may be
interior and the intersection would therefore be of no interest to the algorithm. The
concept of adjacency and one solution to its issues is presented in Section [6.9.2]

When the signs of the intersections in a given direction are different an intersection
between them and the given hyperplane must be calculated. To save computational
cost, one should then note which intersections have already been calculated, so as not
to repeat unnecessary computations.

When the signs are the same, no intersection is needed. Instead this indicates the
sign of any calculated intersections with the same vertex set and adjacent collections
as the intersection that would have been calculated has the same sign as the two inter-
sections at this step. Thus, those combinations are flagged in step 3(i) for simplified
processing in step 3(ii).

We then proceed with step 3(ii). To maintain consistency with step 3(i) we consider
the collections I' U {7}, the vertex sets J U K and the directions 7.

First, we consider only those collections I' and directions 7 that have been flagged
from step 3(i) for the vertex set J U K. An additional hyperplane v must be added to
the collection. It is only necessary to check for those v such that an intersection for the

combination J U K and I' U {7} has been calculated. One then sets sign (qﬁﬁﬁ} : en>

to the flagged value and computes the numerator and denominator of equation ,
if they haven’t been already.

Once all flagged collections for JU K have been checked, one can calculate the signs
of the remaining collections I'U {}. We choose a direction 7 and see if the numerator
has been found from either the flagged collections or an earlier choice of JU K. If not,
we take the sign of the intersection in this direction as the true sign and determine

the numerator from this. The intricacies of the sign determinations are discussed in
Section [6.9.3]

6.9.1 Combinations of hyperplanes

As we proceed through the algorithm we must continuously add hyperplanes to the
intersections. We must somehow navigate the many combinations of these hyperplanes
in an efficient manner.

Note that if there are no intersections between X and P, then there are no inter-
sections between X and any collection of P, that contains P,. The same is true for
collections of P,, that once there are no intersections for one collection it need not ap-
pear as a subset of any higher order collection. Any algorithm should therefore march
through the set of hyperplane combinations in order of ascending dimensionality.

Each combination of hyperplanes may be arrived at through a number of pathways.
For example, consider two intersecting tetrahedra in 3D. A given edge of Y lies at the
intersection of two planes, P, and P,. An intersection between this edge and a face of
X may be found by considering either those intersections within P, or those within P,,.
Both will indicate that an intersection is to be calculated if and only if the intersections

6.9. IMPLEMENTATION OF PANG2-ND

v such that qpgp,
has been calculated

~

sign (qgﬁﬁ} . en)
set to flag

|

t.]UK
ru{~}
calculated?

tJUK
ru{~}

h 4
GJUK
ru{n,v}

sign (afif) o) HfS)

JUK
tFU

calculated?

STU{n.~}
calculated?

JUK

sign (un{y} . en)
determined directly

N

99

sign (qggg} . en)
_ (JUK 4JUK
TU{nv} Tu{y}

JUK
ru{n,v}

sign qgﬁﬁ} -

tJUK
Tu{~}

Figure 6.2: Flowchart of step 3(ii) of PANG2-nD.

100 CHAPTER 6. INTERSECTION OF SIMPLICES

lie on opposite sides of this edge of Y, within their respective planes. As such, it is
unnecessary for the purposes of identifying intersections to consider both P, and P,.

However, recall that the sign of the intersection along this edge is either: connected
with those of two other intersections on the same face of X or; can be determined using
the signs of intersections on one of the planes attached to this edge. The latter case
only occurs when this face of X does not form intersections with exactly three edges
of Y. In this latter case it is necessary to check the signs of the intersections in both
P, and P,.

Extrapolating to higher dimensions, it is necessary to check the signs of all in-
tersections for all collections of hyperplanes. Let I' be a given collection of hyper-

planes. When sign (q%1 : ev) # sign (q%2 . e,y) then one flags qﬁf{f} as an intersection

A

to calculate. This flag need not be checked for any other collection I' along coor-

dinate 7 such that I' U {n} = T U {4}, as it will return an identical result. When

sign (qg1 . en) = sign (qg2 . en) then one notes that sign (qglu%fé - en> = sign (qg1 . en),

should such an intersection exist.

Ultimately, this means the viable set of v for a given collection I' in step 3(i) of
PANG2-nD is all v € {0,...,n} \ I. Referring back to Figure [6.1] iterations for
collections I' U {7y} that have already been checked will skip the calculation of the
intersection qfﬁf{{}. The remainder of the flowchart is followed. This calculation of the
intersection represents the largest computational cost of this step, but the number of
hyperplane collections to check may cause the various checks to outweigh these costs.

Note that once the sign of the intersection in a given direction is established through
these means even these sign checks become irrelevant. Due to the parsimony of the
algorithm, if there are multiple such sign checks on the same intersection then they
must agree. Perhaps more pertinent, there is no way to resolve a conflict between two
such checks. Thus, the viable set of v for a given I' can be reduced for each such sign
check.

When a sign check returns equality between two intersections, qf and qf, in the
direction 1 then this determines the sign of qgaﬁ y in the direction 7 for all 7 ¢ I'. Thus,
if the combination I' and n has been flagged in one iteration, n need not be checked as
a direction for any collections adjacent to I' for the purposes of determining the signs
of intersections. If I' is adjacent to I' (see Section for discussion on adjacency)
then there exists 4 ¢ I" such that ' U {7} = T'U {7} for some v ¢ T.

However, I'U {n} # I' U {5}, and so this direction still needs to be checked for the
purposes of calculating intersections, unless another collection adjacent to I' containing
n has already considered the direction I"'\ I'. This suggests the use of two lists of viable
7 for each collection I': one for intersection calculations, which checks if the collection
I' U {n} has already produced an intersection, and; one for sign checks, which verifies
if an adjacent collection I' has already found the sign of q#bjg} in the direction 7.
The second of these depends on the set J U K, meaning this second list interjects the
flowchart between the test of adjacency and the sign check. If using such a strategy,
the viability test should then be moved to this position.

6.9.2 Enumeration of combinations

Over the course of PANG2-nD one takes the combination of vertices of X and hyper-
planes of Y to produce intersections. It is useful to enumerate these combinations for

6.9. IMPLEMENTATION OF PANG2-ND 101

the purposes of storage and to keep track of certain properties that some combinations
have. This enumeration is achieved with the combinatorial number system, hereafter
referred to as combinadics.

Definition 6.1 (Combinadics). The ranking N(J) of a subset J = {ci,...,cm} of
natural numbers {0,...,n} is equal to

This gives to each combination of indices a position in the list of combinations. One
can now associate to each set of indices J a specific row or column in a matrix indexed
by N(J).

This is particularly useful when considering which intersections to calculate at a
given stage in the algorithm. Assuming that a set of intersections for a given collection
I' of hyperplanes forms a convex object, one need only calculate the intersections for
' U {n} for those pairs of intersections whose edges lie on the boundary of the object.
These pairs have a specific relation between them, which we will use to define a notion
of adjacency.

Definition 6.2 (Adjacency). Two vertex sets J and K with the same cardinality are
said to be adjacent if they differ by one element. That s,

KNJ|=|K|—1=]J] -1

Comparing all possible pairs of intersections will result in an excessive number of
intersections, many of which will need to be discarded immediately as they lie on the
inside of Z. Determining which intersections are adjacent is then necessary for an
efficient implementation. If one knows only J and K then it takes n + 1 comparisons
to determine whether the two intersections are adjacent. While certainly more efficient
than computing several unnecessary intersections, this may still be expensive for higher
dimensions. We therefore seek a subroutine that will tell us which intersections are
adjacent given which intersections were adjacent previously.

We can consider each set of indices .J to be a node in a graph, with one edge to each
adjacent set of indices. The graph of all calculated intersections for a given collection of
hyperplanes is a subgraph of the graph of all possible intersections. This larger graph
has an adjacency matrix A" with each element indexed by N(J) and N(K), where
J and K are sets of m indices chosen from {0,...,n}. This element of the adjacency
matrix is 1 if J and K are adjacent, and 0 if they are not. We seek then the structure
of A" To simplify the notation that follows we prove results for the matrix A"
which may be applied directly to the matrix A%

We first note that A7 is symmetric since the graph it represents is undirected. That
is, J is adjacent to K if and only if K is adjacent to J. Second, it is straightforward
to prove a result on the anti-transpose of A} .

Definition 6.3 (Anti-transpose). The anti-transpose of a matriz A, denoted A", is
its reflection over its northeast-to-southwest diagonal. That is, if A € R™™ then

(A7), . = (A) where i, ={0,...,m — 1}.

%] m—j—1m—i—1’

Lemma 6.5.
(An)" = An_,.- (6.7)

102 CHAPTER 6. INTERSECTION OF SIMPLICES

Figure 6.3: The hockey-stick identity found in Pascal’s triangle. For this example, » = 1 and k = 4.

Equivalently, by the definition of anti-transpose and given that A}, € R(;)X(;),
(An)ig = (AZ—m>(gl)— —1,(p)—i-1"

Proof The coordinates 7 and j index two sets, J; and J;, each with m elements out
of a possible n. That is, i = N(J;) and j = N(J;). Likewise, (") —i —1 = N(K;) and
() —j — 1 = N(K;) where K; and K; have n — m elements. Then the sets K; and
K can be represented by those m elements not in K; and Kj, KE and K JE These sets
have m elements and so their adjacency graph is a linear transformation of A7 . Thus,
there exists a linear transform between A7, and A7 .

To prove this linear transformation is indeed the anti-transpose it suffices to prove
K? = J; and K° = J;, which may be done by showing that N(J°) = () — N(J) — 1,
or N(JO) + N(J) = (1) —1 for all J.

This is proven by induction over m. Starting with the base case m = 1 we have
that J = {¢;} and JC ={0,...,n — 1} \ {1}, leading to

N(J) + N(J) =<Cf> + lZl (k _Ii 1) - kél (I/D

k=0
=c1+0+n—(c1+1)
=n—1

()

The statement is then true for m = 1.

Suppose the statement is true for m. We then verify the statement for m + 1. Let
J={c)}t and Jb = {&}7-"", then

N(J%) + N(J) :g‘j (ij) + nzmjl (CJ)

k=1 j=1 J
Cm+1 - Ck 0} m+1 é]
() () X ()00 = ()
= Ci<Cm+1 Cj>Cm+1
¢ c Cm+1
=y (02 (1))
()2 (00
Ci>Cm+1 CJ>Cm+1

6.9. IMPLEMENTATION OF PANG2-ND 103

Note that jo is the index of the first element of JC that is larger than cm+1- In fact, since
every element of {0,...,n — 1} is found either in J or Jt, Cjo = Cm41 + 1. Moreover,
Cj = Cmy1+J—Jo+1forall j > jo. In particular, ¢,—y,—1 = Cpp1 +n—m—jJo =n—1,
as long as ¢, 41 # n — 1. Therefore, ¢,,,41 = m+ jo — 1 and ¢; = m + j for all 5 > 7.
This gives

N(J%) + N(J) :(Z) -1 +<m;ﬁ1_1) +”‘Z’”‘1 (m;])

To simplify the sums we make use of the hockey-stick identity, see Figure [6.3}
S(7)-(4)
= J r+1

In the four sums we use r =morr=m—1, and k =n or k = jo +r. We are then
left with

v evn=(u) e (") l) - ()
_ (;’;) N (m+£—1)
R e B (R B

/\g‘\
+ S 4+ 3
[

where we use Pascal’s rule to eliminate the terms with jq.

104 CHAPTER 6. INTERSECTION OF SIMPLICES

[(0,3) (1,3) (23)

01 1 1 0
02) | 1 0 1
(12) | o0 1 1

Table 6.2: Upper right block of the matrix Aj3.

For the special case where ¢,,11 = n — 1, the summations reduce to

vt =(2) (232 - (221 -

making use of Pascal’s rule twice. []

As a corollary, A?™ is bisymmetric. Moreover, only half of the adjacency matrices
need to be found for a given dimension n. The other half may be found by taking the
anti-transpose of those already found.

For m = 1, there is only one index in each set. Therefore, all nodes are adjacent and
the graph is a simplex. The adjacency matrix A} is of size n X n with ones everywhere
except along the main diagonal, which has zeros. This is true of all n.

Next, consider m = 2. For A3 one can use Lemma to prove A3 = A3, whose
form is known. For A3, we note it is bisymmetric by the same lemma. Thus, the only
part missing is the upper right block, which must be persymmetric. We construct the
matrix element by element. The result may be found in Table[6.2] For the remaining
adjacency matrices, we must find a recurrence relation.

Lemma 6.6. Forn>m > 1

n— An n—1 n— e
A= Hm . A’-”l] | e (6.8)
" (A%) " Ans " 1(77;21) AL
with starting conditions
1
Lo e i 1 i 110
o T 1 01 1
|

Proof We divide the proof into two parts: first, we prove the diagonal blocks of A7 ;
second, we prove the structure of A”. Since A} is symmetric, the lower left block is
the transpose of the upper right block.

Let N(J;) be the index of a column for the left blocks of A”,, and N(.J;) the same
for the right blocks. Let N(K;) be the index of a row for the upper blocks of A” . and
N(K;) the same for the lower blocks. Then J; and K; do not contain the index n — 1,

6.9. IMPLEMENTATION OF PANG2-ND 105

while J; and K; do. Then N(J;) and N(K;) are also indices for the matrix A” . The
relationship between J; and K; has not changed, and so

n—1 _ n
(Am)N(Ji)»N(Ki) o (Am)N(Ji)vN(Ki) ’
Note that

(") v -1,
i) =(" 1) NG\ - 1),

Thus, the sets J; and K; have the same relation as J; \ {n — 1} and K; \ {n — 1}, with
their indices shifted by (n;) The lower right block of A”, is then the matrix A%

For the second part of the proof, where we consider flfn, we redefine the sets J;, J;,
K, and K to represent the blocks of A}. Let N(J;) be the index of a column for the

left blocks of A7, N(J;) the same for the right blocks, N(;) for the upper blocks and
N(K;) for the lower blocks. Then

n—1eJ;, n—2¢J,
n—1n—-2¢&Jj,

n—1,n-—2¢K,,

n—2€eK;, n—1¢K;.

Since K; contains neither n — 2 nor n — 1 and J; contains both, there are no adjacent
sets in this block. This block is then a zero matrix of size ("7;2) X (:;__22) The number
of rows corresponds to the number of possible K;, and the number of columns to the
number of possible J;.

The sets J; and K differ by at least one element, since the former has n — 1 and
not n — 2 and the latter n — 2 and not n — 1. Thus, the two sets are adjacent if and
only if J; \ {n — 1} = K; \ {n — 2}, and therefore N(J; \ {n —1}) = N(K; \ {n —2}).
The lower left block of fl’n‘l is then the identity matrix with (:;21) rows and columns,
the number of possible values of N(J; \ {n — 1}).

For the upper left block, consider a new set Jx = J; \ {n — 1} U{n — 2}. Then J; is
adjacent to K; if and only if J, is adjacent to Kj;, since K; contains neither n — 2 nor
n — 1. Thus,

n _ n—1

The pair N(J;), N(K;) index an element in the block A1 and so the upper left block
of A" is a copy of A™~1.

Since both J; and K; contain n — 2, these two sets are adjacent if and only if
J;i\ {n—1} and K; \ {n — 2} are adjacent. These sets index an element in A’
specifically in the block A%, Note that N(J;) = (" ') + N(J; \ {n—1}) and
N(K;) = ("%) + N(&; \ {n —2}), and so the lower right block of A" is the block
Art u

106 CHAPTER 6. INTERSECTION OF SIMPLICES

N() [(01) (02) (12) (03) (L3) (23)
0 012 (012) (0.13) (0,1,3)

1 0 (0,1,2) (0,2,3) (0,2,3)
2 0 0 (12,3) (1,2,3)
3 1 2 (0,1,3) (0,2,3)
4 1 3 1 (1,2,3)
5 2 3 2 3

Table 6.3: Intergenerational table for the union of two sets. The table is naturally symmetric, with the
lower triangle displaying the ranking and the upper triangle displaying the corresponding combination.
The table may also be read as the union of one set and one index, where the added index is that part
of the second set not found within the first.

Note that for the special case of A?™, which is bisymmetric by Lemma the
matrix has the form

A2m—1 AQm - Amel 0
2m __ m m 2m: m N
[S T e

Recall we require A" for the intersection of simplices in n dimensions. We may
construct this matrix with the following subroutine.

Algorithm 6.2. 1. Construct AT, which contains all A¥ for k < n+1 as the upper
left most block of size k X k.

2. Construct AL using the known matrices A3 and A%. Construct A3 and use it to
build A5. Use the recurrence relations of Lemma to construct Aytt. Seed the
construction of Ayt with A3 = (A3)™ and A3 = (A3)7. Set k = 3.

3. Construct A?* and A3*. Proceed with the recurrence to build Ay, Seed the
construction of At with AP = (AT and A = (AP Increment k
and repeat this step until k > (n+1)/2.

Ideally, combinadics would remove the need to store the vertex sets J and the
collections I'. However, to do this we would require knowledge of certain relations of
the rankings between generations. Specifically, we would require

N(JUK) =f(N(J), N(K)),
NI U{v}) =g(N(T),7)

for J adjacent to K and v ¢ I'.

These relations could be produced during runtime of PANG2-nD by constructing
an intergenerational table between the rankings. A sample table is given in Table [6.3
for the n = 3 case with |J| = 2. Since the calculated entries of this table lie exactly
at the positions of the entries of the corresponding adjacency matrix, the construction
of the intergenerational table would replace the need for the adjacency matrix. This
is most likely costly and ill-advised, as the entries of this table are only required when
an intersection is found. Calculating the entire table is therefore unnecessary.

6.9.3 Connectivity of signs

As has been explained in detail in Section those intersections of a given m-face
of X and a given collection of hyperplanes of Y are connected in the signs of their

6.9. IMPLEMENTATION OF PANG2-ND 107

components. This connectivity is what lends the algorithm its consistency of shape.
This connectivity was presented above through what is effectively Cramer’s rule used
to solve the intersections. The numerators and denominators then have specific con-
nections with one another. However, this represents a particularly inaccurate, unstable
and inefficient manner in calculating the intersections, as will be discussed in more de-
tail in Section [6.9.4] It is then desirable to maintain the connectivity of the Cramer’s
rule representation while using better subroutines to calculate the intersections.

Denote the sign of the numerator of gj.-e, as SI‘{U e and the sign of the denominator
as ti. Note that while in general we use the binary-valued sign function defined in
equation , the values of SFU{n} and t{ are +1 so that they may be multiplied
together. Alfernatively, one can keep the binary-valued sign convention, but for these
numbers 02 =1.

It is clear that ¢ is unique to qi while S%U) is shared, up to a single change in sign,
with m other choices of T" U {n}, see Corollary . If t{ experiences a swap then all
signs of gj. are likewise swapped. If s () €Xperiences a swap then all signs of qg ‘e,

are swapped for all T U {y} = T'U {n}.

There exist connections between the denominators of one generation of intersections
and the numerators of the previous generations. These connections will be important
to know for the total connectivity of the signs. For the sake of notation let

XJ:[Xio Xim]) Ip:[e% evm}
for J = {@]} _oand I' = {%} . Then

| Xje, X]Ir|
1 X]Ip|

J _
qr - e, =

Lemma 6.7. Suppose sign (qg\{i} : en> £ sign (q;\{j} : en> and an intersection qF&:i}

was calculated for some v € T', then

sign (|1 X Iruggy|) =sien (| X n @ rom | [Xnpn el |1 Xoge])

J J\{i,§},J
oy =(— 1)1 N0

Proof Without loss of generality, suppose x; is the first column of X p(; and like-
wise x; is the first column of X ;3. Furthermore, to adhere to the notation already
established the first column of Iryg,;; must be e,.

By assumption qJ\{ g e, — q%\{j E. e, has the same sign as q;\{ g -e,. We begin by

simplifying this expression:

QM e — g\ e, — X rom| Xy from|
1 Xpwle| [T Xl
1 X}—\{J}IFHXJ\{Z IFU{n}|—\1 Xnaadr| X froe |
1 XJ |1 X))

J\{l J\{7}

108 CHAPTER 6. INTERSECTION OF SIMPLICES

We expand the numerator of this expression:

m—1
(‘X;\{i,j}lr‘ + Z(_1>kXiTe’7k ’1 X}r\{i,j}lr\{’%”) ‘XI\{i}IFu{nﬂ
k=0

m—1
- <|X;\{i,j}]F| +) (—1)fxje, |1 Xj\{i,j}IF\{vk}O | X gy Iromy |

k=0
1 XZ'T]FU{n} X,L»T]FW X;]Fu{n}
= ‘X}—\{i’j}lp‘ 1 X;]FU{,]} + X;FIFW X;]FU{,]}
0 X;r\{i,j}[FU{U} 0 X;r\{i,j}[FU{U}
1 %/ Trogy 0 x; Irupn)
= ‘X}—\{i,j}jr‘ 1 XjT]Fu{n} + 0 X]'TIFU{U}
X}—\{i,j}lFU{U} _XI\{i,j}IFW X}—\{i,j}IFU{W}

i

= [Xnppdr| |1 XJ Irog

where wy, = (—1)* ‘1 X ;\ G j}lp\{%” . To prove the last equality note that each element
of X;\{i’j}fpw is equal to the same value:

m—1
(XhpnIrw), =D (1)) ey, |1 X] 6T
k=0
_ x/ I
L X
-1 o'
_' 1 X
- }X;\{m}fﬂ :
The simplified expression is then
G (7 S \X;\{i%j}]ﬂ 1 Xfﬁru{nﬂ |
1 Xpp e |1 Xl

Therefore, the sign of ’1 X}[pu{n}‘ is
: T . T T T
sign (|1 X Irogmy|) = sign ([X Irom | [Xnup el [T XogpIr]) -
|
Unfortunately, there is no guarantee that q;&fg} was calculated for a given step.
It is tempting to suggest that the sign checks in step 3(i) provide us with information
on the ‘non-intersection’ q?&:i}, which in turn may give us information on the sign of
the denominator. However, this sign check assumes that this intersection lies between
two intersections of the previous generation. If this is not the case, such as with this
‘non-intersection’, then the sign check does not provide the necessary information.

Lemma 6.8. Suppose sign (qg\{i} -e7> = sign (qg\{j} . e7> for all v ¢ T'. Then, for

alln ¢,
I}, NG TN}, T
Sy = EHNG NG i

6.9. IMPLEMENTATION OF PANG2-ND 109

where

I\{i I\ I\{i I\
N (qr\{} -en) <qr\{a} -ew) > (qr\{ }-ew) (qr\{a} -en),
b —1 otherwise.

Proof Consider the plane (e, X e,)-x = 0 and the two intersections qp. M} and q‘]\{] }
The intersection between the line connecting these two intersections and the projection
of the hyperplane P, onto this plane satisfies

J\{} J\{}

- e - e

n

v
J J
q\{y} e o e e,

J\{i
) qg\{'}]
| qF\{a},e7

J\{i} S\t

a7 e, ap \1 X Ir| |1 Xy 1]
=1 i) NGy

qr' " -€; qr ‘XJ\{i,j}]F‘ 11 X Irogm|
by Lemma . Since J \ {i} and J \ {j} are adjacent, this is equal to qﬁum ey

Therefore,

q-¢e; =
- e

J\{7 J\{7
X7 o] = qJ?i e qﬁi 1 Xpade| [t Xaphl
Yy - j
ap ey ap ev [X r|
which leads immediately to the statement of the lemma. []

The values of s{,, {7} Can now be built up for all J, regardless of whether or not an
appropriate intersection has been calculated. This allows Lemma[6.7] to be used for all
J, even those for which J \ {7, j} did not have an intersection.

Using these two lemmas in the algorithm adds further parsimony. The denominator’s
sign can now be found without additional calculations.

6.9.4 Alternative calculation of the intersections

The actual process of calculating g7 should not be done using the formulas presented
here, as these are effectively Cramer’s rule and therefore prone to error. The form pre-
sented here is merely to illustrate the connection between the signs of the intersections
at various stages.

As this is the most numerically intensive part of PANG2-nD it is crucial to use a
fast and, ideally, accurate method to perform this calculation. The accuracy of this
step will not affect the robustness of the overall algorithm since this relies only on the
consistency between signs. This consistency may (and should) be determined externally
to the magnitude of the intersection.

One should consider adapting GMRES to find this solution. As an aside, one can
represent q% as

qff =X Ju

where X ; are the positions of the J vertices of X and

)l

110 CHAPTER 6. INTERSECTION OF SIMPLICES

Figure 6.4: Simplicial sections of a tetrahedron.

where Ir has columns e, for v € T'.
We could also calculate numerators and denominators separately and combine them
as needed.

6.10 Visualization

Throughout the process of developing PANG2-nD it has been useful to have specific
examples of various intersections. These have proven challenging to visualize due to
the high dimensionality at play. I present one technique I used in this aspect, which I
have taken to calling cross-hatching.

As explained in detail throughout this chapter, an intersection is found if and only
if its parents fall on opposite sides of a hyperplane. At the first step of PANG2-nD
these parents are the vertices of the simplex X. They may then be divided into two
groups, those that lie on the positive side of the hyperplane and those on the negative.

For each positive vertex, make a vertical line. For each negative vertex, make a
horizontal line that intersects all vertical lines. These lines should be evenly spaced.

Each intersection between these lines, called a cross-hatch, represents an intersection
calculated at this first step of the algorithm. Each of these intersections is adjacent
to all others along the same vertical and horizontal lines. Thus, each of these lines
represents a simplex of a given dimension.

Figures [6.4] and show the results of using a hyperplane to cut through a
simplex. The result of such a cut is called a simplicial section.

Note that for all dimensions two of the simplicial sections are made evident by the
cross-hatching diagrams. If the hyperplane separates a single vertex from the others,
the section is necessarily a simplex of the next highest dimension since all intersections
fit on a single horizontal line of the cross-hatching.

If the hyperplane separates two vertices, the section is a simplicial prism, with each
layer of the prism being a simplex of the second next highest dimension. This is
because there are two horizontal lines, each representing a simplex, with vertical lines
representing the edges that form the prism.

For example, in 4D there are only two possible sections: a tetrahedron, the simplex
in 3D, and; a triangular prism, with each cut through the prism giving the simplex in
2D.

6.10. VISUALIZATION 111

Figure 6.5: Simplicial sections of a 5-cell.

P
P
& P
&

Figure 6.6: Simplicial sections of a 5-simplex. In order, they are: the 4-simplex, also called the 5-cell;
the tetrahedral prism and; the 3-3 duoprism, also called the triangular duoprism.

112 CHAPTER 6. INTERSECTION OF SIMPLICES

The cross-hatching diagrams are orthogonal projections of the sections into a 2D
space. Each cross-hatch is a vertex of the section. Each line represents all edges
connecting all vertices that lie upon it. Since there are multiple edges for each line, it
is not immediately evident what shape results from each diagram.

However, a cross-hatching diagram does indicate the exact polytope of the section.
If there are n vertical lines and m horizontal lines then the section is the Cartesian
product between an n—simplex and an m—simplex. It has already been explained that
each vertical line represents an n—simplex. Thus, as one moves left or right along
the horizontal lines one remains in an n-simplex. Thus, the cross-hatching diagrams
represent duoprisms, implying that all cross-sections of simplices are duoprisms.

The cross-hatching diagrams can then help us visualize the second step of the inter-
section calculations. Take a second hyperplane and use it to divide the intersections of
the first generation. Draw a circle on each cross-hatch that represents an intersection
on the positive side of the hyperplane. Since X and Y are convex, these circles can be
organized such that they form a simply connected group. For each circle, there is a new
intersection of the second generation for each cross-hatch along the same horizontal and
vertical lines. Two intersections are adjacent in this generation if they share a parent,
or if their parents form a rectangle, see Lemma [6.10] Without loss of generality, let
the circles be the fathers of the intersections.

Figure gives all possible sections of the triangular prism, itself a section of the
simplex in 4D. The other possible section of the simplex in 4D is the simplex in 3D,
which has already been considered in Figure [6.4 Since this is the second step of
intersecting simplices in 4D, the section is naturally a polygon.

When moving to higher dimensions, it becomes more challenging to draw the result-
ing section from the cross-hatching. To help, I present a few tips. Note that each circle
(father) represents a simplex in the section. For example, if there are three intersec-
tions found for a given circle then the section will have a triangular face. Likewise, each
empty cross-hatch that results in an intersection is a mother, and therefore represents
another simplex. Start with the fathers’ simplices, then add the mothers’, and finally
make the remaining connections between cousins.

Figure gives an example of one second order section of the 5-simplex, specifically
a section of the 3-3 duoprism. Due to the high dimensionality of the 3-3 duoprism,
it is difficult to visualize a hyperplane intersecting it. Employing the cross-hatching
diagrams one can retrieve the necessary information to construct the given section.

Lemma 6.9. The vertices of a (n — k)—th order section of an n—simplex have exactly
k edges extending from them.

Proof FEach edge of an n—polytope is shared between n — 1 2—faces. A dividing
hyperplane that cuts an edge necessarily cuts all of the faces attached to it. Since
each face is a convex polygon, this cut results in exactly two vertices of the subsequent
section which are neighbours. Thus, a vertex in a section has one edge for each face that
contained the edge the vertex came from. Each vertex in the section of an n—polytope
then has n — 1 edges that extend from it.

An (n — k — 1)-th order section of an n-simplex is a (k + 1)-polytope. Taking a
section of it results in an (n — k)—th order section, a k—polytope, such that each vertex
has k edges extending from it. [|

6.10. VISUALIZATION 113

QAL

Figure 6.7: Sections of the triangular prism, found using cross-hatching. (Left) Cross-hatching di-
agrams. Red arrows indicate an intersection calculated, while green rectangles show which of these
intersections are cousins. (Centre) Resulting section. Black lines indicate the two intersections share

a father, blue a mother, and green that they are cousins. (Right) Corresponding plane through the
prism.

114 CHAPTER 6. INTERSECTION OF SIMPLICES

3
1
e
N !
’/8 5 2

Figure 6.8: Example of a second order simplicial section in 5D. The section itself is a 3D polytope
arising from the intersection of a 5-simplex with two 4D hyperplanes. It is called the 3-4 scutoid [23].

6.11 Conclusions

This chapter presents the final version of the intersection algorithm first presented
in chapter The algorithm now works in arbitrary dimensions and calculates the
intersection of two simplices. Each step is proven to be self-consistent between all
of its relevant calculations, as well as consistent with all relevant calculations of all
previous steps. It is therefore robust.

Several practical considerations have been considered. These may be useful for other
algorithms with similar concerns. Employing all of these provides greater efficiency to
the algorithm.

Some techniques for visualizing these simplicial intersections are also presented.
These give heuristic depictions of the first two layers of intersections, that is between
a simplex and up to two hyperplanes.

6.12 Apocrypha

6.12.1 Adjacency cycles

In Section[6.9.2]1 considered the problem of determining whether two sets J and K were
adjacent. I resolved this by constructing the adjacency matrix under the combinadics
representations of the sets. However, this was by no means the first attempt to solve
this problem. In this section I present an earlier attempt that considers the graph of
only those intersections that have been calculated.

Let H(T') be the set of intersections q;. that all share the collection of hyperplanes
I'. Let A(I') be the adjacency matrix of these intersections, using the definition of
adjacency defined above. We then ask the question: Can we form A(I' U {n}) from
H(T) and A(T")?

First note that the intersections in H(I") fall into two groups: those with positive
values in the e, direction, H(I') and; those with negative values in this direction,
H_(I'). The edges in A(I") then fall into two groups as well: those between H, (I') and
H_(T), Ap(T"), and; those within either group, A.(I"). The graph (H(I"), A,(")) is then
bipartite.

For each edge in this bipartite graph we calculate an intersection of H(I' U {n}).
This intersection has the indices of the vertices of X of both its parents. Therefore,

6.12. APOCRYPHA 115

Figure 6.9: Configuration of four intersections of a given generation.

any other child of either parent, called a sibling, will be adjacent to this intersection.
It remains to determine if any other intersections of this generation are adjacent.

Lemma 6.10. Let a father be a given parent of a child node, and let the mother of this
child be the other parent. If the path length between any two nodes is equal
to the number of indices by which they differ then two children of a given
generation of intersections are adjacent under one of three circumstances:

siblings the children share exactly one parent;

cousins the two fathers are adjacent as are the two mothers, i.e. the four parents form
a 4-cycle;

second cousins the two fathers are adjacent while the two mothers are both adjacent
to a fifth intersection, i.e. the four parents are part of a 5-cycle.

Additionally, it is assumed that these cycles represent the shortest paths
between each node of the cycle.

Proof Consider four nodes of H(I'), indexed by Jy, Ji, Jo and J3. Suppose Jy and J;
are adjacent, as are Jy and J;. These intersections may be configured as seen in Figure
[6.9] where there are at least n edges between nodes J; and J, that do not pass through
J3 and at least m edges between Jy and J3 that do not pass through J;. Without loss
of generality n < m.

Suppose that the edge between Jy and J; belongs to A,(I"), as does the edge between
Jo and J3. Then nodes of H(I'U{n}) will be calculated for JyU J; and Jo U J3. These
two nodes will be adjacent if |(Jo U J1) N (Jo U J3)| = |Jo U Ji| — 1.

Note that if 0 < n = |J;| then J; has no indices in common with J;. Likewise, Jy
has no indices in common with J3. The two nodes of the next generation therefore
cannot be adjacent.

Since J; and Jy are separated by n edges |J; N Jy| = |J;| — n. The nodes Jy and J,
are separated by n + 1 edges, and so |Jo N J| = |Ji| — (n + 1). Therefore, J, contains
J1 \ Jo but does not contain any of Jy \ J; and (Jo U Jy) N Jy = J1 N Js.

Likewise, |J; N J;5| = |[Ji] — (n + 1) and J; contains none of J3 \ Jo. The nodes J,
and J3 are separated by the smaller of n + 2 and m edges. Since m > n, this means
that |J1| — (n+2) < |JoN J3| < |Ji| —n. We consider each of the three possibilities in
turn.

If | JoNnJs| = |Ji| — (n+2) then J3 contains no indices of Jy \ J; and (JoU J;) N J3 =
Jl N J3. MOI"GOVGI‘, Jl N (JQ U Jg) = Jl N Jg and |(<]0 U Jl) N (JQ U J3)| = |J1| —n =
|Jo U Ji| —n — 1. The two children must then be siblings if they are to be adjacent.

If | JoNJs| = | Ji|—n then, by symmetry, J; contains Jy\ J; but not J; \ Jy. Therefore,
J3\ Jo = Jo \ Ji. Put another way, the transition from Jy to J; is the inverse of the

116 CHAPTER 6. INTERSECTION OF SIMPLICES

JO Jl J() J} JO Jl
5 : / Y K “n
n: n T)
: : ‘. i \ 2
: . TL /]2 \\\.n /
J3 J2 jg J3

Figure 6.10: The three choices of m in Figure m =n (left); m = n+ 1 (centre) and; m > n + 2
(right).

ij ik ijk jkl

kim

Im ilm

Figure 6.11: The two possible cases of second cousins. Left: only siblings are adjacent. Right: all
children are adjacent.

transition from Jy to J;. This means that

(JoUJ1)N(JoUJ3) =((Jo\ 1) UJ1)N(JU(Jo\ J1))
=((Jo\Ji)NJ)U(J1NJ)U(J1N(Jo\J1))U(Jo\ J1)
=(JiNJ) U (Jo\ Jp)

which has cardinality |J;| —n+1 = |JyUJ;| —n. The two children will then be adjacent
for n = 1, which will be referred to as cousins.

If |Jo N J3| = |Ji] — (n + 1) then J3 contains as many indices of Jy as it does J;.
This means that either J3 contains neither Jy \ J; nor Ji \ Jo, or it contains both. The
former case has cardinality identical to when |Jy N J;5| = |J1| — (n+2), while the latter
case to when it equals |J;| — n. This latter case therefore allows two children to be
adjacent for n = 1, which will be referred to as second cousins.

The configuration with n = 1 and m = 2 necessarily places the four nodes into a
5-cycle. The arrangements of vertex sets that adhere to this condition are limited. If
the five vertex sets share all but four or more vertices then all five are adjacent. The
same is true if they share all but one. The two cases are then when the five sets share
all but two or three vertices.

Figure shows these two scenarios. To construct them, one may begin at any
node with two vertices. Travel along one edge to the second node by changing one of the
vertices. Travel along the other edge off of the first node by changing a different vertex
so that this third node is not adjacent to the second. For example, in the case where
the vertex sets share all but two vertices one can start with the set {7, j}. The adjacent
sets are then {7, k} and {m,i}. The final two nodes are adjacent to one another as well
as the second and third nodes, but not the first. This uniquely determines the sets.

As shown in Figure the children of the case where all but two vertices are shared
are adjacent only if they are siblings. Take Jy = {i,j} and J3 = {l,m}. The set J;
clearly does not contain i or k, the vertices of Jy \ J; and J; \ Jy, respectively. The
children {k,l,m} and {1, j, k} differ by two vertices and therefore are not adjacent.

6.12. APOCRYPHA 117

ijkl jkim igkl jkim
ijln@jkmn ijln % jkmn
ilmn tkmn ilmn tkmn

Figure 6.12: Counterexamples to necessary conditions for Lemma (Left) The path length between
any two nodes in this graph can be as high as 3, while any two nodes differ by at most 2 indices.
(Right) An additional path passes through the cycle, making some of the nodes closer.

Meanwhile, all children are adjacent when the vertex sets share all but three ver-
tices. Using Jy = {i,j,k} and Js = {i,l,m} both i and [are within J;. The children
{i,k,l,m} and {1, j, k,1} differ by only one vertex and are adjacent. By symmetry the
same is true of the other children around this cycle. [|

There are three barriers to using this lemma to construct A(I' U {n}) from A(T).
Firstly, the case of second cousins requires knowledge of which vertices are shared
between parents. Therefore, some comparison of vertex sets is required.

Secondly, it is not true in general that the path length between two nodes will equal
the number of indices not shared. For example, consider the graph of vertex sets in the
left of Figure [6.12] The path length between nodes {i, j, k,l} and {i, k,m,n} is three,
but they differ by only two indices. Thus, path length does not indicate the number of
common indices.

Thirdly, it is possible that there is a shorter path between any two nodes in a cycle
that does not lie entirely on the cycle. The right of Figure shows such a setup.
The nodes {i, 7, k,l} and {i,1,m, m} have a path length of two between them, as do
{j,k,l,m} and {i,k,m,n}. In the proof of Lemma it is then assumed that the
path length between {i,j, k, [} and {i,k,m,n} is three, but this second path reduces
that number to two.

Ultimately, this means the number of graph configurations giving rise to adjacent
children is too numerous to thoroughly test. Continuing in this manner will almost
certainly become more computationally expensive than comparing all vertex sets of a
given generation.

While this may be a dead end, for the sake of completeness I provide an algorithm

for constructing the adjacency matrix A(I'U{n}) considering only those circumstances
of Lemma [6.10]

Algorithm 6.3. First, construct B(I' U {n}), the intergenerational adjacency matriz.
Every time a child node is found, place two 1’s in its respective column of B(I' U {n})
corresponding to the two rows of its parent.

Consider a particular child node and its row of A(T'U{n}). To find its siblings, take
the ‘zor’ combination of the two rows of B(I'U{n}) associated with the child’s parents.

To find its cousins, consider its father node J; and mother node J,,. For every node
Ky adjacent to the father, except Jp,, check if it is a father node with a child. Take the
mother K, of the child of Ky. If K, and J,, are adjacent then so are the two children.

To find second cousins, repeat the procedure for cousins, finding J¢, Jp,, Ky and
K,,. If K,, and J,, are found to not be adjacent, take the ‘and’ combination of the

118 CHAPTER 6. INTERSECTION OF SIMPLICES

rows of A(T") associated with these sets. If this combination has at least one non-zero
element then the two children may be adjacent, depending on the number of indices the
vertex sets of the parents have in common. This step must also be done reversing the
role of father and mother.

Final remarks and future works

The chaotic and cyclic ASPN sequences shows how problematic some nonlinearities
can be when employing acceleration techniques, or equivalently when preconditioning
certain methods with domain decomposition methods. Similar examples likely exist for
other methods of this type, such as ASPIN, RASPEN and MSPIN. One can investigate
if such counterexamples differ much between these types, and if so what this says about
each type and their stability.

Ideally, I would like to determine what conditions can be placed on the nonlinearities
to ensure convergence. From this research it is clear the shape of the fixed point
iteration must have particular slope at all points. For example, a domain decomposition
method that converges faster would have a fixed point iteration with a slope closer to
zero, and thus farther from that of the dangerous contour lines. Brief changes in
the slope could still create cycles after acceleration, but these may have significantly
smaller basins of attraction. However, accelerating methods that already converge
quickly would not be as useful.

There exist many extrapolation and Krylov subspace methods not mentioned in
chapter [3] Connecting these into the framework may give new methods of the other
type. While such an extrapolation method may not be popular, its corresponding
Krylov method may prove useful.

Now that the connection between extrapolation methods and Krylov subspace meth-
ods has been made explicit, the goal is to apply extrapolation methods to methods
such as ASPN. That is, the extrapolation methods will be used to resolve the Newton-
Raphson acceleration steps of the algorithm. Whether this adds stability remains to
be seen, though as before it is unlikely to guarantee convergence.

The robust simplicial intersection algorithm in chapters [[§ and [6] can be improved
upon in a number of practical ways, from finding the ideal method for calculating
intersections to improving storage of the information. Also of interest is applying this
algorithm to intersections of mixed dimension. While it is not possible to robustly
intersect two simplices of different dimensions, one can intersect a single simplex of
lower dimension with a mesh of simplices of a larger dimension.

In the discussion of the combinatorial number system and adjacent index sets, it
is noted that it would be ideal to have a formula for N(J U K') based on N(J) and
N(K), bypassing the need for recalculating the former at each step of the algorithm.
Based on preliminary work it appears this formula follows similar patterns to the
adjacency matrix. Having this formula would make the adjacency matrix and the
combinatorial number system exceedingly useful for algorithms that must consider
several combinations of objects simultaneously.

In the course of visualizing the simplicial intersections I was led to wonder if it
might be possible to categorize and enumerate the different faces of these intersec-

119

120 FINAL REMARKS AND FUTURE WORKS

tions. Certainly, we showed that the first order intersections, between a simplex and
a hyperplane, are necessarily duoprisms. It remains open whether all orders of these
intersections can be likewise easily identified, and if their flags can then uniquely iden-
tify the simplicial intersection as a whole. This last question has proven difficult even
for the intersection of tetrahedra, but the first may still yield interesting results.

Bibliography

[1] Donald G. Anderson. Iterative procedures for nonlinear integral equations. Journal
of the Association for Computing Machinery, 12:547-560, 10 1965.

[2] J. G. P. Barnes. An algorithm for solving non-linear equations based on the secant
method. The Computer Journal, 8:66-72, 4 1965.

[3] Franklin H. Branin. Widely convergent method for finding multiple solutions of
simultaneous nonlinear equations. IBM Journal of Research and Development,
16(5):504-522, 1972.

[4] R.P. Brent. On the davidenko-branin method for solving simultaneous nonlinear
equations. IBM Journal of Research and Development, 16(4):434-436, 1972.

[5] C. Brezinski. Numerical stability of a quadratic method for solving systems of non
linear equations. Computing, 14:205-211, 1975.

[6] Claude Brezinski. Accélération de la convergence en analyse numérique, 1977.

[7] C. G. Broyden. A class of methods for solving nonlinear simultaneous equations.
Mathematics of Computation, 19:577-593, 1965.

[8] S. Cabay and L. W. Jackson. A polynomial extrapolation method for finding
limits and antilimits of vector sequences. SIAM Journal on Numerical Analysis,
13:734-752, 10 1976.

[9] Xiao-Chuan Cai and David E. Keyes. Nonlinearly preconditioned inexact Newton
algorithms. SIAM Journal on Scientific Computing, 24(1):183-200, 2002.

[10] Rosetta Code. Sutherland-hodgman polygon clipping, 2021.

[11] Mike Cyrus and Jay Beck. Generalized two-and three-dimensional clipping. Com-
puters & Graphics, 3(1):23-28, 1978.

[12] D.F. Davidenko. On a new method of numerical solution of systems of nonlinear
equations. In Dokl. Akad. Nauk SSSR, volume 88, pages 601-602, 1953.

[13] V. Dolean, M. J. Gander, W. Kheriji, F. Kwok, and R. Masson. Nonlinear pre-
conditioning: How to use a nonlinear Schwarz method to precondition Newton’s
method. SIAM Journal on Scientific Computing, 38:3357-3380, 2016.

[14] R.P. Eddy. Extrapolating to the limit of a vector sequence. Information Linkage
Between Applied Mathematics and Industry, pages 387-396, 1 1979.

[15] V. Eyert. A comparative study on methods for convergence acceleration of iterative
vector sequences. Journal of Computational Physics, 124:271-285, 1996.

121

122 BIBLIOGRAPHY

[16] Haw Ren Fang and Yousef Saad. Two classes of multisecant methods for nonlinear
acceleration. Numerical Linear Algebra with Applications, 16:197-221, 3 2009.

[17] Steven Fortune. Stable maintenance of point set triangulations in two dimensions.
In Annual Symposium on Foundations of Computer Science (Proceedings), pages
494-499, Los Alamitos, CA, USA, 10 1989. IEEE Computer Society.

[18] Martin J. Gander. On the origins of linear and non-linear preconditioning. In
Domain Decomposition Methods in Science and Engineering XXIII, pages 153~
161. Springer, 2017.

[19] Martin J. Gander and Caroline Japhet. An algorithm for non-matching grid pro-
jections with linear complexity. In Domain decomposition methods in science and
engineering X VIII, pages 185-192. Springer, Berlin, Heidelberg, 2009.

[20] Martin J. Gander and Caroline Japhet. Algorithm 932: PANG: software for non-
matching grid projections in 2D and 3D with linear complexity. ACM Transactions
on Mathematical Software, 40(1):6, 2013.

[21] Walter Gander, Martin J. Gander, and Felix Kwok. Scientific computing-An in-
troduction using Maple and MATLAB, volume 11. Springer Science & Business,
2014.

[22] E. Gekeler. On the solution of systems of equations by the epsilon algorithm of
Wynn. Mathematics of Computation, 26, 1972.

(23] Pedro Gémez-Gélvez, Pablo Vicente-Munuera, Antonio Tagua, Cristina Forja,
Ana M Castro, Marta Letrdn, Andrea Valencia-Expdsito, Clara Grima, Marina
Bermudez-Gallardo, Oscar Serrano-Pérez-Higueras, et al. Scutoids are a geomet-
rical solution to three-dimensional packing of epithelia. Nature communications,
9(1):1-14, 2018.

[24] W. B. Gragg and G. W. Stewart. A stable variant of the secant method for solving
nonlinear equations. SIAM Journal on Numerical Analysis, 13:889-903, 12 1976.

[25] Gilinther Greiner and Kai Hormann. Efficient clipping of arbitrary polygons. ACM
Transactions on Graphics, 17(2):71-83, 1998.

[26] Christoph M. Hoffmann. The problems of accuracy and robustness in geometric
computation. Computer, 22(3):31-39, 1989.

[27] K. Jbilou and H. Sadok. Vector extrapolation methods. Applications and numerical
comparison. Journal of Computational and Applied Mathematics, 122:149-165, 10
2000.

28] You-Dong Liang and Brian A. Barsky. A new concept and method for line clipping.
ACM Transactions on Graphics, 3(1):1-22, January 1984.

[29] Lulu Liu and David E. Keyes. Field-split preconditioned inexact Newton algo-
rithms. SIAM Journal on Scientific Computing, 37:A1388-A1409, 2015.

[30] S. Lui. On Schwarz alternating methods for nonlinear elliptic pdes. STAM Journal
on Scientific Computing, 21(4):1506-1523, 1999.

BIBLIOGRAPHY 123

[31] Conor McCoid and Martin J. Gander. A provably robust algorithm for triangle-
triangle intersections in floating-point arithmetic. ACM Transactions on Mathe-
matical Software, 48(2):1-30, jun 2022.

[32] M. Mesina. Convergence acceleration for the iterative solution of the equations x
= ax + f. Computer Methods in Applied Mechanics and Engineering, 10:165-173,
1977.

[33] William M. Newman and Robert F. Sproull. Principles of Interactive Computer
Graphics. McGraw-Hill, Inc., New York, 1979.

[34] Ari Rappoport. An efficient algorithm for line and polygon clipping. The Visual
Computer, 7(1):19-28, 1991.

[35] Youcef Saad and Martin H. Schultz. GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific
and Statistical Computing, 7, 7 1986.

[36] Jonathan Richard Shewchuk. Adaptive precision floating-point arithmetic and fast
robust geometric predicates. Discrete & Computational Geometry, 18(3):305-363,
1997.

[37] Avram Sidi. Extrapolation vs. projection methods for linear systems of equations.
Journal of Computational and Applied Mathematics, 22:71-88, 1988.

[38] Avram Sidi. Efficient implementation of minimal polynomial and reduced rank ex-
trapolation methods. Journal of Computational and Applied Mathematics, 36:305,
1991.

[39] Avram Sidi, William F. Ford, and David A. Smith. Acceleration of convergence
of vector sequences. SIAM Journal on Numerical Analysis, 23:178-196, 1986.

[40] Véclav Skala. An efficient algorithm for line clipping by convex polygon. Comput-
ers & Graphics, 17(4):417-421, 1993.

[41] David A. Smith, William F. Ford, and Avram Sidi. Extrapolation methods for
vector sequences. SIAM Review, 29:199-233, 1987.

[42] Ivan E. Sutherland and Gary W. Hodgman. Reentrant polygon clipping. Com-
munications of the ACM, 17(1):32-42, 1974.

[43] David Vanderbilt and Steven G. Louie. Total energies of diamond (111) surface
reconstructions by a linear combination of atomic orbitals method. Physical Review
B, 30:6118-6130, 11 1984.

[44] Homer F. Walker and Peng Ni. Anderson acceleration for fixed-point iterations.
SIAM Journal on Numerical Analysis, 49:1715-1735, 2011.

[45] David S. Watkins. Fundamentals of matriz computations, volume 64. John Wiley
& Sons, New York, 8 2004.

[46] Kevin Weiler and Peter Atherton. Hidden surface removal using polygon area
sorting. In Computer Graphics, volume 11, pages 214-222, New York, 1977. ACM.

124 BIBLIOGRAPHY

[47] Philip Wolfe. The secant method for simultaneous nonlinear equations. Commu-
nications of the ACM, 2:12-13, 1959.

[48] www.nba-live.com. NBA 2K13 screenshot, April 2013. [Date accessed: 10 May
2022).

[49] P. Wynn. On a device for computing the em(Sn) transformation. Mathematical
Tables and Other Aids to Computation, 10:91-96, 1956.

	Summaries
	Acknowledgements
	Introduction
	Cycling in domain decomposition methods accelerated by Newton-Raphson
	Robust triangle intersection algorithm
	Equivalence between extrapolation methods and Krylov methods

	ASPN
	Introduction
	Convergence of generic fixed point iterations and Newton-Raphson
	Convergence of Newton-Raphson in higher dimensions

	The fixed point iteration of alternating Schwarz
	Alternating Schwarz and its fixed point iteration in higher dimensions

	Accelerated alternating Schwarz with guaranteed convergence
	Finding the space of counterexamples
	Conclusions

	Multisecant equations
	Introduction
	Multisecant equations
	Connection to root-finding methods
	Connection to extrapolation methods
	Connection to Krylov methods
	Conclusions

	Intersection of triangles
	Introduction
	Review of other algorithms
	Change of coordinates
	Alternative to change of coordinates: Reference-free parametrizations

	Computation of the polygon of intersection
	Edge Intersections
	Vertices of Y in X
	Vertices of X in Y

	Robust algorithm for 2D triangle intersections
	Test of q0 less than 0

	Consistency errors
	X-in-Y errors
	Intersection errors and Y-in-X errors

	Graphs of triangle-triangle intersections in 2D
	Degenerate cases

	Main results
	Comparison of algorithms
	Comparison of accuracy and computation time

	Conclusions
	Invalid graph configurations
	Advancing front algorithm
	Additional proofs
	Apocrypha
	Unpaired intersection errors
	Graphs created through unpaired intersection errors
	Error in area due to intersection errors

	Intersection of tetrahedra
	Introduction
	Change of coordinates
	Corners of the intersection
	Vertices of X that lie inside Y
	Intersections between edges of X and faces of Y
	Intersections between faces of X and edges of Y
	Vertices of Y that lie inside X

	Algorithm
	Consistency errors
	X–in–Y errors
	X–with–Y errors
	Y–with–X errors and Y–in–X errors
	Conclusions on consistency

	Examples
	Intersecting icosahedra
	Accuracy and computation time

	Conclusions

	Intersection of simplices
	Notation and change of coordinates
	Vertices of X inside Y
	Intersections between edges of X and hyperplanes of Y
	Higher dimensional intersections between X and Y
	Calculation of intersections
	Reverse change of coordinates
	Vertices of Y inside X
	Algorithm
	Implementation of PANG2-nD
	Combinations of hyperplanes
	Enumeration of combinations
	Connectivity of signs
	Alternative calculation of the intersections

	Visualization
	Conclusions
	Apocrypha
	Adjacency cycles

	Final remarks and future works

