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T R A N S P L A N T A T I O N

Operational tolerance after hematopoietic stem cell 
transplantation is characterized by distinct 
transcriptional, phenotypic, and metabolic signatures
Laetitia Dubouchet1†, Helena Todorov2,3†, Ruth Seurinck2,3, Nicolas Vallet1, Sofie Van Gassen2,3, 
Aurélien Corneau4, Catherine Blanc4, Habib Zouali5, Anne Boland6, Jean-François Deleuze5,6, 
Brian Ingram7, Regis Peffault de Latour8, Yvan Saeys2,3, Gérard Socié1,8*‡, David Michonneau1,8*‡

The mechanisms underlying operational tolerance after hematopoietic stem cell transplantation in humans are 
poorly understood. We studied two independent cohorts of patients who underwent allogeneic hematopoietic 
stem cell transplantation from human leukocyte antigen–identical siblings. Primary tolerance was associated 
with long-lasting reshaping of the recipients’ immune system compared to their healthy donors with an increased 
proportion of regulatory T cell subsets and decreased T cell activation, proliferation, and migration. Transcriptom-
ics profiles also identified a role for nicotinamide adenine dinucleotide biosynthesis in the regulation of immune 
cell functions. We then compared individuals with operational tolerance and nontolerant recipients at the pheno-
typic, transcriptomic, and metabolomic level. We observed alterations centered on CD38+-activated T and B cells 
in nontolerant patients. In tolerant patients, cell subsets with regulatory functions were prominent. RNA sequencing 
analyses highlighted modifications in the tolerant patients’ transcriptomic profiles, particularly with overexpression 
of the ectoenzyme NT5E (encoding CD73), which could counterbalance CD38 enzymatic functions by producing 
adenosine. Further, metabolomic analyses suggested a central role of androgens in establishing operational 
tolerance. These data were confirmed using an integrative approach to evaluating the immune landscape associated 
with operational tolerance. Thus, balance between a CD38-activated immune state and CD73-related production 
of adenosine may be a key regulator of operational tolerance.

INTRODUCTION
The concept of tolerance was first introduced in 1953 by Billingham et al. 
(1) who demonstrated that exposure to a foreign antigen during fetal 
life could induce immune tolerance. Immune tolerance is classically 
divided into central and peripheral tolerance. Central tolerance 
includes negative selection of autoreactive lymphocytes and expan-
sion of natural regulatory T cells in the thymus (2). The breakdown, 
or the defect, of central tolerance can lead to autoimmunity (3). Pe-
ripheral tolerance is due to self-reactive T cells unresponsiveness or 
deletion after encountering peripheral self-antigens. Peripheral tol-
erance plays a major role in pregnancy, in autoimmunity (4), and in 
graft rejection after solid organ transplantation (5).

In the setting of solid organ transplantation, rare patients have a 
functional graft and no sign of rejection, although all immunosup-
pressive (IS) drugs have been withdrawn. This lack of alloreactivity 
has been named operational tolerance (6–9). Immune mechanisms 
underlying the induction and the maintenance of operational tolerance 
have been studied after solid organ transplantation, with a particular 

focus on the role of regulatory CD4+ T cells, natural killer (NK) cells 
(10), regulatory B cells (11–16), and mixed hematopoietic chimerism 
(17). Transient mixed chimerism–based tolerance induction could 
be peripheral, relying on both expansion of regulatory T cells and 
deletion of donor-specific effector T cells (18), and central with thymic 
colonization by donor-derived dendritic cells and negative selection 
of donor-reactive T cells (19, 20). Last, it has been proposed that 
immune tolerance might not only be due to the absence of immune 
response against foreign antigen but could also be due to intrinsic 
tissue tolerance (21, 22).

Despite some similarities with solid organ transplantation, allo-
geneic hematopoietic stem cell transplantation (allo-HSCT) differs 
from an immunological point of view. During allo-HSCT, the whole 
donor’s immune system must face antigen incompatibilities in the 
recipient. Furthermore, in patients with hematologic malignancy, 
the donor’s immune system prevents relapse through a graft-versus- 
tumor (GvT) effect (23–25). However, allo-HSCT is also hampered 
by frequent occurrence of acute or chronic graft-versus-host disease 
(GvHD) (26, 27). Although operational tolerance is the exception 
after solid organ transplantation, it occurs far more frequently after 
allo-HSCT, with long-lasting absence of GvHD despite IS drugs 
withdrawal. Complete donor hematopoietic chimerism with opera-
tional tolerance can thus be considered as the result of combined 
effective GvT, without GvHD, a recent emerging composite end 
point named GvHD-free/relapse-free survival (28). Understanding 
the biological mechanisms of operational tolerance in this setting is 
thus of major biological and clinical interest.

Here, we conducted a study to characterize tolerance mechanisms in 
patients grafted from a human leukocyte antigen (HLA)–identical 
sibling donor. In this HLA-matched setting, tolerant recipients 
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have a fully functional immune system, able to prevent hematologic 
relapse, to control infections and do not present symptoms of 
immune deficiency. We hypothesized that operational tolerance 
emerges from a global immune system adaptation after allo-HSCT. The 
aim of this study was to decipher the immune landscape associated 
with operational tolerance using deep cell immunophenotyping, 
transcriptomics, and metabolomic profiles. Using a combination of 
statistical analyses and systems immunology methods, we identified 
biological parameters characterizing tolerance.

RESULTS
Immune profiling after allo-HSCT using multiomics
To determine how the donor’s immune system is reshaped by allo- 
HSCT and what biological changes are associated with operational 
tolerance, we collected blood samples from recipients who under-
went an HLA-matched allo-HSCT from a sibling donor (thus 
avoiding an HLA mismatch situation). Peripheral blood mono-
nuclear cells (PBMCs) and plasma obtained 1 to 2 years after trans-
plantation in recipients, or before HSC collection in donors, were 
cryopreserved. Healthy sibling donors were considered as paired 
controls because they represent the same immune system at base-
line. We used mass cytometry, RNA sequencing, and metabolomics 
profiling with ultrahigh-performance liquid chromatography in 
tandem with mass spectrometry (UPLC-MS/MS) (Fig.  1A). Two 
cohorts of patients were explored (Fig. 1B): a monocentric cohort of 
41 patients and a second multicentric cohort of 69 patients. All 
patients had a full donor chimerism at the time of sampling. For 
each patient-donor pair, biological data (immunophenotypic, tran-
scriptomics, and metabolomics profile) and clinical data were col-
lected and analyzed. The patients were classified into three stages of 
tolerance: (i) Patients who did not develop acute or chronic GvHD 
and whose IS drugs had been withdrawn since several months at the 
time of sample (median delay between IS stop and sampling, 8.4 months; 
range, 2 to 21 months) were classified as primary operational toler-
ant and did not develop GvHD after sampling (median follow-up, 
45 months; range, 1 to 74 months). (ii) Patients who experienced 
acute or chronic GvHD but to whom IS were lastly stopped (median 
delay between IS stop and sampling, 7 months; range, 1 to 27 months 
before sampling) without GvHD flare until last follow-up (median 
follow-up, after 31 months; range, 1 to 70 months) were referred to 
as secondary tolerant. (iii) Last, patients who developed acute or 
chronic GvHD and to whom physicians were unable to stop IS drugs 
were considered as nontolerant (median follow-up, 30 months after 
sampling; range, 2 to 80 months) (table S1).

Data mining integrates multiomics and clinical data 
to unravel immune variation associated with tolerance
The phenotypic, transcriptomic, and metabolomic data were pre-
processed as described in Materials and Methods. For mass cytom-
etry phenotypic data, clustering was performed using the FlowSOM 
algorithm in an unsupervised approach (29). Forty metaclusters 
were defined, and their immune phenotypes were manually verified 
to identify their corresponding immune cell subsets (fig. S1). A super-
vised feature selection approach was then performed to identify 
biological variables that were associated with tolerance. The association 
between each variable and tolerance was derived through logistic 
regression models. The resulting area under the curve (AUC) was 
compared to a permutation distribution that resulted from 1000 logistic 

regression models applied on permuted tolerance values for each 
variable. Biological variables for which the observed AUC exceeded 
90% of all permuted AUCs [quantile AUC (qAUC) > 0.9] were se-
lected. We applied a two-step comparison of tolerant versus non-
tolerant patients and of primary versus secondary tolerant patients. 
All analyses were performed separately in both cohorts. For each 
modality, we compared the biological variables identified in the 
monocentric and the multicentric cohorts, and we retained those 
that were identified in both cohorts with a qAUC of >0.9  in the 
permutation distributions. These selected biological variables were 
then used to build a final integrative analysis to identify correla-
tions among phenotypic, transcriptomic, and metabolomic variables 
(Fig. 1C). The association of clinical characteristics with the patient’s 
tolerance status was analyzed in both cohorts (Fig. 1D and table S1). 
Furthermore, we performed a multinomial logistic regression anal-
ysis to identify relevant clinical factors that influence the probability 
of tolerance (fig. S2). We observed that the odds ratio of nontolerance 
relative to primary tolerance increased with recipients’ age, peripheral 
blood stem cell graft source, the absence of antithymocyte globulin 
(ATG) and a donor’s seropositive cytomegalovirus (CMV) status. 
Previous studies had already identified age (30), graft source (31, 32), 
use of ATG (33), and CMV status (34) as risk factors for acute or 
chronic GvHD. No association was found between tolerance and 
gender matching or blood group compatibility. Last, we performed 
integrative analyses including the biological variables that were sig-
nificantly (P < 0.05) associated with tolerance in both cohorts and 
had the same behavior in patients from both cohorts. At the final 
stage, for each selected biological variable included in the integrative 
analysis, the relative contribution of age and gender was assessed by 
additional post hoc logistic regression models. We also evaluated 
the association of the resulting integrated components with recipi-
ents’ age, graft source, ATG, and CMV status in donors as potential 
major clinical confounders.

Donor immune profiles only partially explain 
posttransplantation tolerance status
We first analyzed differences between donors from tolerant or non-
tolerant recipients to determine whether preexisting variations in 
the donor’s immune system could influence the outcome (fig. S3A) 
(35). We compared the abundance of immune subsets using feature 
selection methods and identified two immune subsets that discrimi-
nated donors from tolerant recipients and donors from nontolerant 
recipients. We also identified three immune subsets that differenti-
ated donors from primary tolerant recipients and donors from sec-
ondary tolerant recipients (fig. S3, B and C). However, only one cell 
subset, namely, CD38+FoxP3+ cells, was consistently retrieved in 
both cohorts for the comparison of donors from tolerant and non-
tolerant recipients (fig. S3D). A similar approach was used to identify 
genes that were differentially expressed in donors according to the 
recipients’ outcome (fig. S3, E and F), but no gene expression was 
significantly associated with outcome in both cohorts after t test with 
correction for multiple comparisons (P > 0.05). Last, the compari-
son of the donors’ metabolome identified few metabolites associated 
with the recipient’s outcome, with androstenediol (3,17) disulfate 
being significantly increased in both cohorts in donors of tolerant 
recipients (cohort 1, P = 0.008; cohort 2, P = 0.03) (fig. S3, G and H). 
Together, these results suggest that the tolerance status after trans-
plantation is only marginally explained by immunological, transcrip-
tomics, or metabolomics characteristics of the donors.
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Fig. 1. Study overview of biological and clinical data analysis. (A) Recipients who underwent allo-HSCT were sampled 1 to 2 years after transplantation, and their re-
lated sibling donors, used as healthy controls, were sampled before stem cell collection. RNA-seq, RNA sequencing. (B) Forty-one patients from a monocentric cohort 
(cohort 1, Saint Louis hospital) and 73 patients from a multicentric national cohort (cohort 2, CRYOSTEM Consortium) were analyzed separately. Clinical data, metabolo-
mics (purple), mass cytometry (light green), and transcriptomics profile (orange) were analyzed for donors and recipients. Each patient was classified as primary tolerant 
(green), secondary tolerant (blue), or as not tolerant (red). (C) Data analysis consisted of multiple steps including data cleaning, feature selection and quantification for all 
three biological approaches. Biological variables associated with the clinical outcome were selected using logistic regression models. For each parameter a permutation 
distribution was generated for the area under the curve (AUC) of the corresponding receiver operating characteristic (ROC) curve. Only if the observed AUC exceeded 90% 
of all permuted AUCs (qAUC > 0.9) in both cohorts was the feature was considered informative for the outcome. To control for additional clinical characteristics, logistic 
regression models were performed with selected biological variables and relevant clinical variables to estimate the influence of clinical parameters on the association 
between biological data and tolerance and used for a final integrative analysis. (D) Clinical variables associated with tolerance were identified using a Kruskal-Wallis test 
for continuous variables or a chi-squared test for categorical variables, and P values were adjusted using a Benjamini-Hochberg correction for multiple testing. Results are 
presented for some relevant clinical variables associated with outcome (age) or that may have a significant impact on biological variable [CMV serological status, gender, 
and blood (ABO) compatibility]. See also table S1 for whole clinical variables analysis. CI, confidence interval.
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Primary tolerant recipients have increased abundance 
of regulatory subsets and decreased T cell activation 
compared to their donors
Because the mechanisms that reshape the immune system during 
tolerance after allo-HSCT are currently unknown, we compared each 
group of recipients with their related donors. First, paired primary 
tolerant recipient and donor samples were compared in both cohorts 
(cohort 1, n  =  9; cohort 2, n  =  32). Nine FlowSOM metaclusters 
were identified (Fig. 2A and fig. S4). Primary tolerant recipients 
exhibited a higher frequency of naïve B cells (metacluster 25), 
CD4+CD25+FoxP3− T cells (metacluster 26), and an increased fre-
quency of CD4+FoxP3+OX40+ regulatory T cells (metacluster 30). 
Primary tolerance was also associated with an increased frequency 
of CD25+ double-positive T cells (metacluster 8), previously described 
as an interferon- (IFN-)–dependent suppressive population (36–38). 
Simultaneously, CD8+ inducible T cell costimulator–positive (ICOS+) 
central memory T cells (metacluster 10), CD8+FoxP3+ T cells, and 
CD25+ B cells were decreased (Fig. 2A and fig. S4). No cell subset 
differed between secondary tolerant recipients and their donors. Four 
hundred sixty-four genes were differentially expressed between donors 
and primary tolerant recipients (data file S1). A pathway analysis 
revealed an enrichment of process associated with immune cell func-
tion, especially cell-to-cell signaling and interaction, cellular growth, 
proliferation, and immune cell migration (Fig. 2B). Analysis of 
metabolic and signaling pathways highlighted enrichment of many 
pathways involved in cell cycle regulation and decreased expression 
of genes involved in metabolism or in cell signaling [neuronal nitric 
oxide synthase (nNOS), adenosine 3′,5′-monophosphate (cAMP), 
and protein kinase A signaling] (Fig. 2C). Again, no differentially 
expressed gene was identified by comparison of secondary tolerant 
recipients with their donors. Together, these results reveal that pri-
mary tolerance is associated with long-lasting reshaping of the 
immune system of primary tolerant recipients compared to their 
healthy donors and suggest that primary tolerance is associated with 
an increased proportion of regulatory T cell subsets and a decrease 
in T cell activation, proliferation, and migration.

Nontolerant recipients exhibit a persistent immune 
activation state relative to their donors
We then compared nontolerant recipients with their paired donors. 
We first identified 30 immune subsets that were significantly 
(P < 0.05) different in both cohorts (Fig. 2D and fig. S5). Nontoler-
ant recipients were characterized by decreased abundance of naïve 
CD4+, CD8+ and double-negative (DN) T cells, naïve and memory 
B cells, and cytotoxic T lymphocyte–associated protein 4 (CTLA4)–
expressing effector memory CD4+ T cells. At the same time, many 
immune subsets were increased in nontolerant recipients relative to 
their donors, most of them expressing activation marker such as 
CD25, granzyme B, and CD38. We then compared gene expression 
between nontolerant recipients and their donors and identified 
1159 genes that were differentially expressed in both cohorts (data 
file S2). Pathways associated with these genes corresponding to 
main biological process (Fig. 2E) or signaling pathways (Fig. 2F and 
data file S3) reveal that absence of tolerance was associated with 
genes involved in expansion, activation, and migration of T and 
B cells. This was associated with metabolic and signaling path-
ways including complement activation, planar cell polarity (PCP) 
and Wnt signaling, fibrosis, and pyrimidine biosynthesis. The 
CD38 gene was overexpressed in nontolerant recipients (cohort 1, 

P = 0.002; cohort 2, P = 0.001), consistent with the mass cytometry 
results. Together, these results support the hypothesis of a long-lasting 
immune activation involving both T and B cells.

Thus, comparing the immune system at baseline in healthy donors 
to their respective recipients revealed an active regulatory network 
associated with primary tolerance, whereas the lack of tolerance was 
characterized by a state of hyperimmune reaction. With the aim of 
dissecting these results in depth, we then compared the three im-
mune states at the phenotypic, transcriptomic, and metabolomic 
level between recipients before proceeding to integrative analyses.

Immunophenotyping identifies DN regulatory, CD8+ naïve, 
and central memory T cells in tolerant recipients, whereas 
nontolerant patients exhibit increased CD38 expression 
on immune cells
Immune profiles of recipients from both cohorts were then com-
pared according to their outcome (Fig. 3A). Two sets of comparisons 
were performed: first, tolerant recipients versus nontolerant recipients 
and then primary versus secondary tolerant recipients (Fig. 3B). In 
tolerant recipients, three metaclusters were overrepresented, CD8+ 
naïve T cells (metacluster 4), CCR5+CD8+ central memory T cells 
(metacluster 7), and DN T cells (metacluster 23). DN T cells have 
been described as a rare regulatory subset (39–41). They have been 
characterized by their in vitro suppressive properties under alloge-
neic conditions (42) and could inhibit the allogeneic response (43).

By contrast, nontolerant recipients were characterized by an 
increased proportion of 21 metaclusters, which were grouped in 
correlation maps within three clusters of cells characterized by the 
expression of CD38, CTLA4, or CD24 (Fig. 3C and fig. S6). Analy-
ses performed on pooled data from both cohorts are also shown in 
Fig. 3D. CD38 overexpression was observed on central and effector 
memory T cells, DN T cells, NK cells, and naïve B cells, similarly to 
what we observed in comparing donors and nontolerant recipients 
(Fig.  2B), further suggesting a central role for CD38  in sustained 
immune responses in nontolerant patients. Last, the comparison of 
primary and secondary tolerant patients revealed a significant increase 
in CD38+ CD4+ regulatory T cells (metacluster 29) in secondary tol-
erant patients in both cohorts (cohort 1, P = 0.02; cohort 2, P = 0.03) 
(Fig. 3E). In summary, mass cytometry data suggested that many 
phenotypic alterations mainly centered on CD38+-activated T and 
B cells in nontolerant patients, whereas in tolerant patients, cell 
subsets with regulatory functions emerged.

Transcriptional changes associated with tolerance highlight 
a role for NT5E nucleotidase activity, T cell stemness, and cell 
cycle regulation
Gene expression profiles of patients in each of the three groups were 
compared together using Triwise plots (44) to identify genes that 
were differentially expressed between primary tolerant, secondary 
tolerant, and nontolerant recipients. Two hundred twenty-seven 
genes (data file S4) and 118 genes (data file S5) were overexpressed 
in primary and secondary tolerant recipients, respectively, compared 
to nontolerant ones (Fig. 4A). Among genes involved in the regula-
tion of the immune response, we observed increased expression of 
not only genes associated with stemness properties of T cells, such 
as LEF1 and TCF7 (45–47), but also in genes involved in the regula-
tion of immune response, migration, and differentiation (Fig. 4B). 
In addition, genes involved in Wnt (WNT7A) and guanosine tri-
phosphatase (GTPase) signaling (RASGRF2 and DEPDC7) were 
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Fig. 2. Immune phenotyping and transcriptomics profile of patients compared to their donors. For each group of patients (primary tolerant, secondary tolerant, or 
nontolerant), recipients were compared to their related donors in both cohorts. (A) Compared to donors, five metaclusters were overrepresented in primary tolerant 
patients (orange) and four were decreased (blue). (B) Four hundred sixty-four genes were differentially expressed between donors and primary tolerant recipients (full list 
available in data file S1). The graph illustrates the overrepresentation analysis of biological processes associated with primary tolerance (Fisher’s exact test with P < 0.05). 
Dots are colored by generic biological function. (C) Graph showing the overrepresentation analysis of signaling and metabolic pathways associated with primary toler-
ance (Fisher’s exact test with P < 0.05) (D) Comparison of nontolerant recipients with their donors identified 30 metaclusters being increased (orange) or decreased (blue) 
in recipients. Correlation maps represent correlations between metaclusters (nodes identified by metaclusters’ number and functional markers) that were retrieved in 
both cohorts with P < 0.001 (gray edges). Line width is proportional to the R correlation coefficient (edge weight). (E) One thousand nine hundred fifty-nine genes were 
differentially expressed between nontolerant recipients and their donors in both cohorts (full list available in data file S2). The graph illustrates the overrepresentation 
analysis of the main biological processes. Dots are colored by generic biological function. (F) Graph showing the overrepresentation analysis of signaling and metabolic 
pathways associated with the absence of tolerance (Fisher’s exact test with P < 0.05) (full list of pathways available in data file S3). All P values were adjusted using 
Benjamini-Hochberg correction for multiple testing.
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Fig. 3. Comparison of recipients according to the outcome and immunophenotyping results. (A) Phenotypic, transcriptomic, and metabolomics data from recipients 
were compared according to their clinical outcome. (B) Comparison of tolerant recipients with nontolerant recipients with logistic regression models and feature permuta-
tions led to the identification of 24 metaclusters, 278 genes, and 42 metabolites in both cohorts (based on AUC > 0.9). A second comparison of primary tolerant and secondary 
tolerant recipients identified two metaclusters, 24 genes, and two metabolites that distinguished both groups. (C) A correlation map was built with the 24 metaclusters that 
differed between tolerant and nontolerant recipients to identify cell subsets (nodes) that were correlated in both cohorts. Edge thickness represents the mean correlation 
coefficient (Spearman correlation test, P < 0.001). Three metaclusters were increased in tolerant recipients (blue), and 21 were increased in nontolerant patients (red). Three 
clusters of highly correlated populations were identified in nontolerant patients, associated with expression of CD38, CD24, or CTLA4. DC, dendritic cell. TEMRA, effector 
memory T cells re-expresses CD45RA. (D) A volcano plot representing fold change (FC) analysis and P value is shown for recipients pooled from both cohorts (cohort 1, 
n = 34; cohort 2, n = 69). See also fig. S6 for individual representations of the 24 immune subsets frequencies. (E) Comparison of primary and secondary tolerant recipients 
identified CD38+ CD4+ regulatory T cells as the only significant subsets in both cohorts. All P values are adjusted after Benjamini-Hochberg correction for multiple testing.
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Fig. 4. Transcriptomics profiling distinguishes recipients in tolerant and nontolerant recipients. (A) Recipients’ transcriptomics profiles were first compared between 
the three groups (primary tolerant, secondary tolerant, and nontolerant recipients) to identify differentially expressed genes. Results are represented using a Triwise plot. 
Two hundred twenty-seven genes were differentially expressed between primary tolerant and nontolerant patients (data file S4), and 118 genes were differentially ex-
pressed between secondary tolerant and nontolerant patients (FC > 2 and adjusted P < 0.05 with Benjamini-Hochberg correction) (data file S5). (B) Enrichment analysis 
was completed using Gene Ontology:Biological Process (GO:BP) (Fisher’s exact test, P < 0.0001 and lowest redundancy). GO pathways were grouped in modules, and 
statistical significance is presented in the direction of the circular mean for differentially expressed genes. (C) A correlation map was built to identify correlations between 
the genes that differed significantly between tolerant and nontolerant recipients (n = 278) (data file S6). Genes with AUC > 0.9 in both cohorts were represented as blue 
nodes when increased in tolerant recipients and red nodes when increased in nontolerant recipients. Nodes are connected with edges when gene expression was correlated 
together in both cohorts (Spearman correlation test, P < 0.001). Enrichment of biological processes were analyzed with ingenuity pathway analysis (IPA) and grouped in main 
modules, with gene names in blue when increased in tolerant recipients and red when increased in nontolerant recipients (Fisher’s exact test, P < 0.01). Upstream regulators 
were predicted with IPA and represented inside the dashed line circle (P < 0.01). (D) Enrichment of metabolic and signaling pathways were calculated with IPA and ranked by 
−log(P value). (E) Logistic regression models and feature permutations were used to identify genes that distinguished primary and secondary tolerant patients (n = 24). Genes 
with AUC > 0.9 in both cohorts were represented as green nodes when increased in primary tolerant recipients and blue nodes when increased in secondary tolerant recip-
ients and connected with edges when correlated (Spearman correlation test, P < 0.001). Biological processes were analyzed with IPA and grouped in main modules, with 
gene names in green when increased in primary tolerant recipients (Fisher’s exact test, P < 0.01). Upstream regulators were predicted with IPA and represented inside the 
dotted line circle (P < 0.01). (F) For the same set of 24 genes, pathways analysis was performed with IPA and ranked by −log(P value). BTG, B-cell translocation gene.
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overrepresented in tolerant patients, as well as those involved in 
nucleobase-containing compounds catabolism (NT5E, which encodes 
CD73). The comparison of tolerant versus nontolerant patients 
identified 278 genes associated with outcome (data file S6). Correla-
tion maps suggested that tolerance or absence of tolerance were related 
to two distinct gene expression profiles (Fig. 4C). Multiple biological 
processes linked to immune response regulation were associated with 
these genes, including adhesion and binding, migration, differen-
tiation, survival, and homeostasis. Tolerance was associated with 
overexpression of genes associated with T cell differentiation (IL23R and 
ICOS) and with the ectoenzyme NT5E (ecto-5′-nucleotidase, CD73). 
CD73 catabolizes adenosine 5′-monophosphate (AMP) into adenosine, 
which exerts IS activity (48, 49). Adenosine signaling has also been 
implicated in operational tolerance after liver transplantation (50, 51). 
To confirm the role of CD73  in tolerant recipients, we assessed 
CD73 expression on immune subsets of donors and recipients using 
mass cytometry. This revealed that CD73 is down-regulated in non-
tolerant recipients in comparison to primary or secondary tolerant 
recipients, on total, transitional, naïve, and memory B cells (fig. S7). 
Canonical pathway enrichment analysis highlighted multiple changes 
in metabolic pathways but mainly showed that the absence of tolerance 
was associated with genes regulated by IFN- response, interleukin-10 
(IL-10) up-regulation (Fig. 4C) and complement pathway activation 
(Fig. 4D). Last, as already observed in the comparison between 
donors and their primary tolerant recipients, the comparison between 
primary tolerant and secondary tolerant patients identified genes 
involved in cell cycle regulation as the main characteristic associated 
with primary tolerance (Fig. 4, E and F). To summarize, RNA sequenc-
ing analyses distinguished tolerant patients’ transcriptomics profile. 
In particular, immune cells of tolerant patients exhibited a gene ex-
pression profile associated with multiple changes in immune function. 
Global overexpression of NT5E and its related expression of CD73 
on B cells as confirmed by mass cytometry could bias nucleotide 
metabolism toward production of adenosine, which may contribute 
to the regulation of the immune response (52).

Metabolomic changes associated with tolerance highlight 
a central role of androgenic steroid metabolism
Immune responses in the context of GvHD are influenced by exter-
nal factors such as circulating metabolites (53, 54), including both 
host- and microbiota-derived metabolites. The comparison of tolerant 
and nontolerant recipients uncovered 91 metabolites that were dif-
ferentially detected in plasma, six of them being microbiota- derived 
(Fig. 5A and data file S7). Metabolites of the androgenic and preg-
nenolone steroid pathways were the most increased compounds in 
tolerant recipients. Bile acids were overrepresented in nontolerant 
patients, as previously observed during acute GvHD (55) or in other 
inflammatory bowel diseases (56, 57). Overrepresentation analysis 
also highlighted modifications associated with metabolism of amino 
acids and complex lipids, especially of phosphatidylcholine and 
sphingolipid metabolism (Fig. 5B). Consistent with the role of AMP 
catabolism into adenosine by CD73, we observed a significant increase 
in urate, the final metabolite of adenosine degradation, in tolerant 
recipients [fold change (FC) = 1.4, adjusted P = 0.01]. Among tolerant 
recipients, comparison of primary and secondary tolerant patients 
identified 25 differentially abundant metabolites (Fig. 5C and data 
file S8). Secondary tolerant patients exhibited higher concentrations 
of metabolites involved in phospholipids and tricarboxylic acid cycle 
(TCA) cycle (Fig. 5D). Last, feature selection uncovered 42 metabolites 

that were associated with tolerance in both cohorts. In addition to 
androgenic steroids metabolites, correlation maps revealed that tol-
erant recipients had higher amounts of metabolites that belonged to 
the phosphatidylcholine, amino acid, and ascorbate metabolism 
pathways (Fig. 5E). Among androgenic steroids, decreased dehydroepi-
androsterone sulfate (DHEAS) (cohort 1, P < 0.0001; cohort 2, P = 0.01) 
and androstenediol (cohort 1 P = 0.0008; cohort 2, P = 0.039) were both 
associated with recipients’ age. In summary, metabolomic analyses 
suggest an association between androgens and operational tolerance.

Integration of multiomics data describes the immune-
metabolic network associated with operational tolerance
To get insights into the mechanisms involved in tolerance, we inte-
grated phenotypic, transcriptomic, and metabolomic parameters. We 
built a correlation network linking clinical data and tolerance status 
(Fig. 6A). We calculated correlation between each principal compo-
nent (PC) and clinical variables. For each of these PCs, the contri-
bution of each data type was assessed and represented (Fig.  6B). 
PC1 and PC4 had the highest data variability that most correlated 
with the tolerance status and best discriminated tolerant from non-
tolerant recipients in both cohorts (Fig. 6C, fig. S8, and data file S9). 
A logistic regression confirmed this with statistically significant odds 
ratios (ORs) for both components (PC1: OR = 0.82, P < 0.001 and 
PC4: OR = 0.67, P = 0.004). Furthermore, the contribution of both 
PC1 and PC4 remained statistically significant (PC1: OR  =  0.86, 
P = 0.012 and PC4: OR = 0.7, P = 0.028) after controlling for recip-
ients’ age, graft source, ATG treatment, and CMV status from the 
donor (table S2). Last, for each selected biological variable included 
in the integrative analysis, the relative contribution of age and gen-
der was assessed by additional post hoc logistic regression models. 
In three metaclusters and 19 genes, representing 6% of the selected 
biological variables, the association with tolerance was no longer 
statistically significant after controlling for recipients ‘age or gender 
(fig. S9). The biological variables that were used to build the princi-
pal components analysis (PCA) described in Fig. 6 (B and C) were 
then used to build a correlation map. Two main clusters of nodes 
were identified, associated with tolerance (blue dashed line) or 
absence of tolerance (orange dashed line), respectively (Fig. 6D).

In tolerant recipients, the androgenic steroid pathway was cor-
related with an increase in naïve CD8+ T cells (metacluster 4) and 
multiple gene expression pathways (Fig. 6E). Both androgenic ste-
roids and immune cells abundance in tolerant recipients correlated 
with genes involved in circadian control of gene expression, lipid 
metabolism, RORA [nuclear receptor retinoic acid receptor (RAR)- 
related orphan receptor A], and PPARA (peroxisome proliferator–
activated receptor alpha) pathways (NPAS2 and ABCB4). Multiple 
studies have stressed the role of the circadian clock as a core regulator 
for innate or adaptive immune response (58, 59), and its disruption 
has been associated with T cell exhaustion in cancers (60). In addition, 
both naïve CD8+ and DN T cells, as well as androgenic steroids, 
correlated with genes involved in pyrimidine and purine catabolism 
(NT5E). This suggests that lymphocyte homeostasis and regulatory 
subsets during tolerance might be linked to production of adenosine by 
the ecto-5′-nucleotidase CD73. Irrespective of recipient’s gender, andro-
genic steroids were associated with tolerance in both recipients and 
donors (fig. S2G). Androgen steroids may affect the immune re-
sponse by different mechanisms, including decreased antigen pre-
sentation by dendritic cells (61), impaired B cell lymphopoiesis (62), 
and improved negative thymic selection of T cells (63). In addition, 
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androgens could also bias T cell responses toward a T helper 2 (TH2)–
type response (64) and favor the development of regulatory T cells (65).

In nontolerant recipients, the CD38-expressing cluster was cor-
related with complement activation pathways (C1QA, C1QB, and 
C1QC), P2Y purinergic receptor signaling (P2RY1), and platelet ac-
tivation (SERPING1) (Fig. 6F). These results suggest that the absence 
of tolerance in recipients may be linked to nicotinamide adenine 
dinucleotide (NAD+) catabolism by CD38 expression on activated 
immune cells and signaling through the purinergic receptors P2Y (66).

Different cell cycle networks regulate primary versus 
secondary operational tolerance
To identify specific modifications in the immune landscape associ-
ated with primary tolerance, biological characteristics that distinguish 
primary versus secondary tolerant patients were lastly analyzed. 
Two PCs mainly correlated with primary or secondary tolerance 
(PC1 and PC2) (Fig. 7A) and best discriminated primary and sec-
ondary tolerance in both cohorts (Fig. 7B and data file S10). The 
correlation map mainly revealed a transcriptional network associated 
with primary tolerance (Fig. 7C) with up-regulation of multiple 
genes expression involved in cell cycle and DNA replication (MKI67, 
PCLAF, E2F8, TOP2A, and UBE2C) and of AGMAT, a gene coding 
for agmatinase, that converts the arginine-derived agmatine into the 
polyamine putrescine (Fig. 7D) (67). Polyamines regulate immune 
responses (68), negatively affect DNA replication and cell cycle progres-
sion (69–71), and reduce production of proinflammatory cytokines 
in monocytes and macrophages (72). Arginine metabolism is critical 
for T cell differentiation and survival (73, 74). In contrast with primary tol-
erance, secondary tolerance was not associated with a specific tran-
scriptomic signature but with the emergence of CD38+ regulatory and 
central memory CD4+ T cells subsets (Fig. 7D). These differences sug-
gest that a specific immune-metabolic shift during primary tolerance 
could involve arginine metabolism and cell cycle regulation, whereas 
secondary tolerance that occurs after a first wave of allogeneic immune 
responses may rely on CD38 enhancement of regulatory cell activity.

DISCUSSION
Allo-HSCT is widely used in patients with hematologic disorders 
(75). Reaching a tolerant state after allo-HSCT remains the essential 
to avoid the devastating effect of GvHD. Here, we used an operational 
definition as described in the context of solid organ transplantation 
(76). Using two cohorts of patients who underwent allo-HSCT from 
an HLA-identical sibling donor, we describe how the immune sys-
tem is reshaped 2 years after transplantation.

Vaccine responses have been previously used as a model to un-
derstand the evolving network between immune cells, genes expres-
sion profiles, and circulating metabolites (77). Elegant system analyses 
based on topological data analysis have previously demonstrated 
their ability to identify cellular perturbations associated with clinical 
outcomes after transplantation (78). Here, we extended this approach 
to the transcriptomic and metabolic levels to gain mechanistic insights 
into this network. These results revealed that tolerance is associated 
not only with the emergence of specific immune cell subsets but also 
with changes in the gene expression profile and in the metabolome, 
suggesting functional adaptation during tolerance. Our results reveal 
that immune system reshaping is complex, and biological pathways 
involved in immune tolerance deserve further analyses by functional 
assays or by validation in animal models.

The recognition by the donor’s immune system of non–self- 
determinants in the host can lead to a potent allogeneic response 
that is responsible for GvHD after HSCT (79). In this study, restricting 
the population to patients with HLA-identical siblings avoided 
analyzing response against HLA molecules and allowed to directly 
compare the same immune system at baseline (healthy donor) and 
in an allogeneic environment. Furthermore, main clinical parame-
ters that could influence the immune status were considered. Our 
study identified clinical parameters that were previously published 
as risk factor for acute or chronic GvHD, such as age, CMV status, 
graft source, and the use of ATG (30–33).

Integrated analysis revealed that the absence of operational 
tolerance after HSCT is largely associated with the expression of CD24, 
CTLA4, and CD38 on multiple immune cell subsets. CD38 expres-
sion on T cells has been previously proposed as a biomarker for acute 
(80, 81) or chronic GvHD (82). CD38 catabolizes NAD+ into ade-
nosine 5′-diphosphate ribose (83). As a regulator of extracellular NAD+ 
homeostasis, the CD38 activity regulates immune cell activation 
through not only cell metabolism reprogramming but also many other 
biological processes, such as circadian rhythm, DNA repair, or DNA 
methylation (84, 85). Consistent with its ectoenzyme function, the 
CD38 cluster was correlated, in this study, with the expression of 
purinergic receptors, such as P2RY1 and P2RY10. In murine models, 
the purinergic receptor P2X7R can sense danger signals such as 
adenosine 5′-triphosphate release and actuate proinflammatory events 
involved during GvHD (86). In addition, CD38 expression correlated 
with the expression of genes involved in both complement pathway 
and platelet activation. Chronic GvHD is associated with endothelial 
damages (87), and complement activation could be involved in GvHD- 
associated thrombotic microangiopathy (88, 89). Complement acti-
vation may also contribute to TH1 and TH17 polarization in murine 
and human T cells during cutaneous GvHD (90, 91). On the basis of 
integrated analyses, our results highlight a role for CD38 in persistent 
immune responses in nontolerant patients. This suggests that targeting 
CD38 or purinergic signaling may have therapeutic potential in GvHD, 
but further preclinical data are needed to confirm this hypothesis and 
to determine the optimal time point for targeting CD38 relative to 
GvHD onset. Furthermore, age-associated risk of GvHD may be ex-
plained by CD38-related decline of NAD+ observed with aging (83, 92).

Androgenic steroids correlated with immune cells and tran-
scriptomic variations during tolerance. Recently, a low DHEAS 
concentration was associated with chronic GvHD in women, inde-
pendently of conditioning, donor type, or recipients’ age at transplant (93). 
Decreased androgens production has been associated with the altered 
immune function during aging (94), and sex steroids have been shown 
to affect thymopoiesis through modulation of Notch signaling (95) 
and to enhance negative selection of T cell by controlling autoimmune 
regulator expression and transforming growth factor– production in 
the thymus (63, 96). Although some androgenic steroids were globally 
associated with age in our study, they remained associated with toler-
ance status after controlling for age and gender. This suggests that 
they may contribute to tolerance, even if clinical association of age 
with tolerance could be, in part, biologically explained by the decrease 
in androgenic steroids with aging. In addition, it was recently suggested 
that human thymic functions not only decrease with age but is also 
lower in male than in female (97). Improved thymic functions in re-
cipients may partially explain the correlation that we observed be-
tween androgenic steroids and increased naïve CD8+ and regulatory 
DN T cells. Furthermore, androgenic steroids could also regulate 
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peripheral immune cells, including T cell, B cell, and myeloid subsets 
(98). In tolerant patients, we found that the androgenic steroid path-
way was correlated with expression of genes involved in purine and 
pyrimidine catabolism through the expression of NT5E, which en-
codes CD73. Production of adenosine from AMP metabolism by CD73 
has a role in immune suppression by regulatory T cells (99) and inhibits 
both the innate and the adaptive response. Genes involved in the T cell 
factor 7 (TCF7)/Lymphoid enhancer binding factor 1 (LEF1) and Wnt 
signaling were associated with tolerance, suggesting that T cell stem-
ness could play a major role in the regulation of alloimmune response. 
These later data are consistent with a previous experimental murine 
showing that the R-spondin1/Wnt interaction regulated systemic 
GvHD (100, 101) and with recent data demonstrating that Dickkopf 
WNT Signaling Pathway Inhibitor 3 (DKK3), an inhibitor of Wnt 
pathway, was increased during chronic GvHD (102).

Few biological parameters, mainly transcriptomic variations, differed 
between primary and secondary tolerant recipients. Most of them 
involved genes that regulate cell cycle and were correlated with 
arginine and polyamine pathways. It has been previously demon-
strated that arginine metabolism is a regulator of immune responses 
(73). Arginine conversion to polyamine could regulate cell division 
and contribute to immune suppression. Arginine can be directly 
converted to agmatine and polyamine by agmatinase, an enzyme 
coded by the gene agmat that we identified as being associated with 
primary tolerance and previously shown to be associated with regu-
lation of immune response (74). Only two immune subsets dis-
tinguished primary and secondary tolerant patients, including 
CD38+CD4+ regulatory T cells. A previous study had suggested that 
CD38-related NAD+ metabolism could prevent cell death in regulatory 
T cells (103), suggesting that the CD38 function during immune 
response is complex and depends on the cell subset where it is expressed.

Our study has several limitations. First, it was not designed to 
identify and validate biomarkers but rather to highlight biological 
pathways that may be used to modulate alloreactivity. Thus, biolog-
ical variables that we identified cannot be used to predict tolerance 
or GvHD. Even if some of the variables that we had identified could 
be interesting biomarkers to predict or diagnose GvHD, it should 
be validated in prospective clinical trial with sequential sample from 
transplantation to GvHD occurrence. In addition, we cannot exclude 
that some other clinical parameters may have influenced biological 
parameters, especially exposure to IS drugs in the nontolerant group 
(but not in the tolerant one). Last, some of the biological mechanisms 
that we highlighted here would deserve to be confirmed using func-
tional approach, especially through the use of animal models.

In summary, integration of whole biological data shed light on 
how biological variations after allo-HSCT can shape the immune land-
scape toward tolerance and could be possibly influenced by age. The 
balance of the immune signal from an activated state, associated with 
expression of the ectoenzyme CD38, to a steady state, associated with 
CD73-related production of adenosine, may be important in the regula-
tion of this network. These results provide an overview of how immuno-
metabolic network can lead to immune tolerance after transplantation 
and highlight therapeutic targets that may improve allo-HSCT outcome.

MATERIALS AND METHODS
Study design
This study includes recipients (and their HLA-identical sibling 
donors) who underwent a first allo-HSCT. Two cohorts have been 

analyzed: one monocentric cohort (local cohort 1, 41 couples) and 
one multicentric cohort (national cohort 2, 69 couples). The mono-
centric cohort included patients who underwent allo-HSCT at Saint 
Louis Hospital (Paris, France). The multicentric cohort included 
patients transplanted in one of the 33 French national transplant 
centers involved in CRYOSTEM Consortium, funded under the French 
government’s National Investment Program (Investissement d’Avenir). 
Inclusion criteria were adult patients (more than 18 years old), with 
an HLA-identical sibling donor. Patients with HIV or Human 
T cell leukemia virus coinfection were excluded. Our objectives were 
to include at least 40 patients per cohort with an expected GvHD 
incidence of 40%. All patients gave their written consent for clinical 
research. This noninterventional research study with no additional 
clinical procedure was carried out in accordance with the Declaration 
of Helsinki. Data analyses were carried out using a database with all 
patient identifiers removed. This study was declared to the CNIL 
(Commission National Informatique et Liberté, number KoT1175225K) 
and was approved by the local ethic committee and Institutional 
Review Board (CPP Ile de France IV, IRB number 00003835, reference 
number 2014/37NICB). This project has been registered on clinicaltrial.
gov under the accession number NCT02319226. Further informa-
tion about patient characteristics, sampling, and outcomes can be 
found in the Supplementary Materials and in table S1.

Antibodies and antibody labeling
Clone, metal tags, and providers for each antibody used in this 
study are available in table S3. Metal labeling of the antibodies 
anti-human CD19, CCR5, CD27, CD45RA, CD95, immunoglobulin D, 
and LAG-3 was done using the Maxpar Antibody Conjugation Kit 
by Fluidigm per the manufacturer’s instructions. Anti-human IL-10 
metal labeling was performed using the SiteClick Qdot 800 Antibody 
Labeling Kit (Life Technologies) per the manufacturer’s instructions.

Antibody staining
Cryopreserved PBMCs were thawed and washed with prewarmed 
RPMI 1640 supplemented with fetal bovine serum (FBS) in a 50%/50% 
solution. Two hundred and fifty units of Pierce universal nuclease 
for cell lysis (Thermo Fisher Scientific) was added to each sample 
followed by 30 min of incubation at 37°C. Cells were washed twice 
with prewarmed RPMI 1640 and stained afterward for viability with 
Cisplatin Cell-ID (Fluidigm) at a 0.5 M concentration. Cells were 
washed and place in staining buffer (Fluidigm), followed by two 
staining steps: one at 37°C and the other at 4°C, each with 30-min 
incubation (see table S2 for details). Cells were fixed in 2% parafor-
maldehyde (PFA) and permeabilized with perm buffer (eBioscience) 
before intracellular staining for 30  min. Cells were then put in a 
solution of intercalator-iridium (Fluidigm) diluted 1:6000  in 2% 
PFA overnight.

Mass cytometry acquisition
A large-scale mass cytometry analysis was performed using 38 pheno-
typic and functional markers, allowing the identification of popula-
tions and subpopulations of CD4+ and CD8+ T cells, B cells, myeloid 
cells, and NK cells. Identification of nucleated and alive cells was 
done with intercalator-iridium (Fluidigm) and Cisplatin Cell-ID 
(Fluidigm) markers, respectively. Before mass cytometry acquisition, 
cells were washed twice in staining buffer and twice in Maxpar water 
(Fluidigm). Cells were then resuspended in Maxpar water (Fluidigm) 
at 1 million cells/ml, mixed with 10% of equalization beads (Fluidigm) 
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and passed through a cell strainer cap with 35-m pores (BD 
Biosciences) immediately before acquisition.

RNA extraction and sequencing
Cryopreserved PBMCs were thawed and washed with prewarmed 
RPMI 1640 and 50% FBS. Total RNA extraction was performed using 
Promega Maxwell technology (simply RNA tissue kit, AS1340) 
according to the manufacturer’s protocol. RNA samples concentra-
tion was then measured using a NanoDrop 2000 Spectrophotometer, 
and aliquots with a minimal concentration of 20 ng/l were diluted. 
The quality of RNA was evaluated by a NanoDrop Spectrophotometer 
and Bioanalyzer (Agilent Technologies).

Total stranded RNA sequencing was performed by the Centre 
National de Recherche en Génomique Humaine (Institut de Biologie 
François Jacob). A complete RNA quality control on each sample 
(quantification in duplicate on a NanoDrop 8000 Spectrophotometer 
and RNA 6000 Nano LabChip analysis on Bioanalyzer from Agilent) 
was done, and only samples with sufficient quality were selected for 
further analysis: median RNA integrity number of 8.2 for cohort 1 
(5.7 to 9.2 range) and 7.8 for cohort 2 (5.9 to 9.2 range). Libraries 
have been prepared using the TruSeq Stranded Total RNA Gold Kit 
from Illumina, which removes both cytoplasmic and mitochondrial 
ribosomal RNA as a first step of library preparation. An input of 
200 ng total RNA was used for all samples, and libraries were pre-
pared on an automated platform, according to the manufacturer’s 
instructions. Library quality has been checked by LabGx (PerkinElmer) 
analysis for profile analysis and quantification, and sample libraries 
have then been pooled before sequencing to reach the expected 
sequencing depth. Sequencing has been performed on an Illumina 
HiSeq4000 as paired-end 100–base pair reads using Illumina sequencing 
reagents. Libraries were generally pooled by four samples per lane, 
corresponding, on average, to 70 to 90 million sequenced fragments 
(or 140 to 180 million total reads).

Plasma metabolomics using MS
Plasma aliquots were sent to Metabolon. The metabolomics data 
acquisition using MS (UPLC-MS/MS Acquity), quality assurance and 
quality control, compound identification, and quantification were 
performed as previously described (55). Details on metabolomics 
can be found in Supplementary Methods.

Statistical analysis
Univariate analysis of clinical variables in both cohorts combined was 
performed using a Kruskal-Wallis test for continuous variables or a 
chi-squared test for categorical variables. All P values were adjusted 
using a Benjamini-Hochberg correction for multiple testing. To assess 
the relative associations of clinical variables with tolerance, a multi-
variate multinomial logistic regression model was built with primary 
tolerance as reference level using the nnet R package on Compre-
hensive R Archive Network (CRAN). For comparison of donors and 
recipients, gene expression values in donors and recipients were 
centered and scaled. Recipients’ values were then subtracted to donors’ 
values per couple to determine how much the expression of a gene 
changed between the time of graft and the 2-year time point in each 
donor-recipient couple. Nonparametric paired Wilcoxon ranked tests 
were performed to compare donors and recipients. A nonparametric 
Mann-Whitney U test was performed for comparison of unpaired 
samples, and a Benjamini-Hochberg correction for multiple testing 
was applied to calculate a P value associated with the false discovery 

rate. Biological variables were only retained if they were statistically 
significant in both cohorts.

For feature selection, two logistic regression models were built in 
which patients’ tolerance versus nontolerance and patient’s primary 
versus secondary tolerance were used as outcome, and the features 
(such as biological variables obtained from mass cytometry, RNA 
sequencing, or metabolomics) were used as predictors. These models 
were built using the stats R package on CRAN, and the average 
AUC for the two pairwise outcome comparisons was extracted 
using the pROC R package on CRAN. Next, the feature was per-
muted 1000 times, and the corresponding models were updated, 
resulting in a permutation distribution of AUCs. If the quantile as-
sociated with the AUC of the original feature exceeded 90% of the 
permuted AUCs (qAUC > 0.9), then the feature was selected. To 
verify that the association between tolerance and the selected bio-
logical features could not solely be explained by clinical variables, 
logistic regression models for biological parameters were expanded 
with age and gender matching as covariates of no interest. Forest 
plots were built to represent the OR with 95% confidence interval of 
tolerance over none associated with a one unit increase in the vari-
able. Only biological variables that were selected independently in 
both cohorts were retained and used for correlation analysis.

To identify correlated features, Spearman correlation tests were 
performed between the biological parameters that have been selected 
in both cohorts and exhibited the same variation between groups. 
Only correlations with an associated P < 0.001 in both cohorts were 
kept. These correlations were represented in graphs, where the width 
of an edge between two variables corresponds to the mean of the 
correlation between these two variables in both cohorts.

The biological parameters that were selected by feature selection 
in the three data modalities (metabolomics, immunophenotypic, 
and transcriptomics) were used to build two integrative analyses in 
tolerant versus nontolerant recipients and in primary versus secondary 
tolerant recipients. To do so, we could only use the data from 
patients for which these three types of data had been generated. This 
resulted in 23 donor-recipient couples in cohort 1 and 38 couples in 
cohort 2 for the comparison of tolerant and nontolerant couples. In 
the comparison of primary versus secondary patients, the integra-
tive analysis was done on 10 donor-recipient couples in cohort 1 
and 27 couples in cohort 2. Because the features from the different 
data modalities had all been log-transformed, centered, and scaled, 
these features could directly be integrated into one model. We thus 
performed PCA on all these biological variables taken together. The 
correlation between each PC and clinical variables was calculated. 
PCs that had the highest data variability that most correlated with 
the tolerance were selected. For these PCs, the correlation with other 
clinical variables was calculated, and logistic regression models were 
built with tolerance as outcome and the PCs as predictors. To verify 
the independent contribution of the PCs, the model was expanded 
with clinical variables associated with tolerance. Last, to assess the 
relative contribution of age and gender in each selected biological 
characteristic included in the integrative analysis, additional post 
hoc logistic regression models including age and gender were per-
formed. The variables that were used to build the PCA were then 
used to build a correlation map.

For metabolomics, metabolites that were identified by statistical 
analysis were then used to build an overrepresentation analysis. 
Enrichment (E) was calculated by considering the number of metabo-
lites identified in each pathway (k), the total number of metabolites 
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identified (n), the number of metabolites in each pathway (m), and 
the total number of metabolites used for analysis (M) as follow: 
E = (k/m)/((n − k)/(N − m)). For each pathway, P values were deter-
mined by calculation of the hypergeometric distribution. For tran-
scriptomics, two enrichment analyses were conducted with genes 
identified by statistical analysis. Canonical pathways (such as sig-
naling and metabolic pathways) and biological processes were ana-
lyzed with ingenuity pathway analysis (IPA) (QIAGEN, v51963813) 
and Gene Ontology atlas (104, 105). Statistical significance was 
calculated with Fisher’s exact test. For final integrative analysis, 
biological processes associated with selected genes were analyzed 
using reactome database (106).

SUPPLEMENTARY MATERIALS
www.science.org/doi/10.1126/scitranslmed.abg3083
Methods
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Operational tolerance after hematopoietic stem cell transplantation is
characterized by distinct transcriptional, phenotypic, and metabolic signatures
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Understanding operational tolerance
Operational tolerance describes a spontaneous lack of alloreactivity to donor cells or tissue in the absence of
immunosuppressive drugs. Although operational tolerance has been observed in solid organ transplantation and
hematopoietic stem cell transplantation (HSCT), the features underlying operational tolerance are not clear. Here,
Dubouchet et al. characterized the transcriptional, immunological, and metabolomic features of operational tolerance in
two cohorts of individuals who received HSCT from an HLA-matched sibling donor. The authors found that operational
tolerance was distinguished by expression of immunosuppressive markers, including CD73, as well as androgens.
Together, these findings shed light on potential drivers of operational tolerance.
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