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A B S T R A C T

Purpose
The Group for Research in Adult Acute Lymphoblastic Leukemia (GRAALL) recently reported a
significantly better outcome in T-cell acute lymphoblastic leukemia (T-ALL) harboring NOTCH1
and/or FBXW7 (N/F) mutations compared with unmutated T-ALL. Despite this, one third of
patients with N/F-mutated T-ALL experienced relapse.

Patients and Methods
In a series of 212 adult T-ALLs included in the multicenter randomized GRAALL-2003 and
-2005 trials, we searched for additional N/K-RAS mutations and PTEN defects (mutations and
gene deletion).

Results
N/F mutations were identified in 143 (67%) of 212 patients, and lack of N/F mutation was
confirmed to be associated with a poor prognosis. K-RAS, N-RAS, and PTEN mutations/deletions
were identified in three (1.6%) of 191, 17 (8.9%) of 191, and 21 (12%) of 175 patients,
respectively. The favorable prognostic significance of N/F mutations was restricted to patients
without RAS/PTEN abnormalities. These observations led us to propose a new T-ALL oncogenetic
classifier defining low-risk patients as those with N/F mutation but no RAS/PTEN mutation (97 of
189 patients; 51%) and all other patients (49%; including 13% with N/F and RAS/PTEN mutations)
as high-risk patients. In multivariable analysis, this oncogenetic classifier remained the only
significant prognostic covariate (event-free survival: hazard ratio [HR], 3.2; 95% CI, 1.9 to 5.15; P �
.001; and overall survival: HR, 3.2; 95% CI, 1.9 to 5.6; P � .001).

Conclusion
These data demonstrate that the presence of N/F mutations in the absence of RAS or PTEN
abnormalities predicts good outcome in almost 50% of adult T-ALL. Conversely, the absence of
N/F or presence of RAS/PTEN alterations identifies the remaining cohort of patients with
poor prognosis.

J Clin Oncol 31:4333-4342. © 2013 by American Society of Clinical Oncology

INTRODUCTION

T-cell acute lymphoblastic leukemia (T-ALL) corre-
sponds to a heterogeneous group that accounts for
30% of adult BCR-ABL–negative acute lymphoblas-
tic leukemias (ALLs).1 Recognized T-ALL onco-
genic pathways include proto-oncogene activation,
tumor suppressor gene deletion, and activation of
the Notch1 pathway by NOTCH1/FBXW7 (N/F)
mutations,2,3 leading to various combinations
of gene alterations and complex oncogenic

networks.4-8 N/F mutations involve either the
heterodimerization domain, probably facilitating
cleavage of the NOTCH receptor, and/or the nega-
tive regulatory PEST domain,9 increasing the half-
life of intracellular NOTCH. An alternative
mechanism of constitutive Notch1 pathway activa-
tion involves loss-of-function mutations of FBXW7,
leading to the inhibition of ubiquitin-mediated deg-
radation of activated NOTCH1.10

Even if the complete remission (CR) rate in
adults with BCR-ABL–negative ALLs reaches 90%,

JOURNAL OF CLINICAL ONCOLOGY O R I G I N A L R E P O R T

VOLUME 31 � NUMBER 34 � DECEMBER 1 2013

© 2013 by American Society of Clinical Oncology 4333

Zurich) on November 29, 2013 from 129.195.0.205
Information downloaded from jco.ascopubs.org and provided by at SWISS CONSORTIUM (Hauptbibliothek Universitat

Copyright © 2013 American Society of Clinical Oncology. All rights reserved.



long-term outcome remains unsatisfactory, with a 5-year overall sur-
vival (OS) rate of approximately 45%.1 Historical prognostic factors
used for therapeutic stratification are predominantly initial clinical
features, including age, WBC count, immunophenotype, and CNS
involvement.11 Minimal residual disease (MRD) quantification is a
strong prognostic factor12 but requires stringent standardization and
is obviously not available at baseline. The Group for Research in Adult
Acute Lymphoblastic Leukemia (GRAALL) reported a significant im-
provement in the outcome of adults with BCR-ABL–negative ALL
using a pediatric-inspired intensified treatment protocol,13 which in
T-ALL was particularly beneficial for patients harboring N/F muta-
tions, compared with unmutated patients.3 Despite this, approxi-
mately one third of patients with N/F-mutated T-ALL experience
relapse, suggesting that other factors may dampen the positive effect of
N/F and making the identification of a subgroup with a favorable
outcome a desirable goal.

The two pro-proliferative Ras/Raf/MEK/ERK and PI3K/PTEN/
Akt/mTOR pathways have also been reported to be deregulated in
limited series of pediatric T-ALL,14,15 but corresponding data for adult
T-ALL are scanty. More specifically, RAS, a regulator of the Ras/Raf/
MEK/ERK pathways, and PTEN, the main negative regulator of the
PI3K/PTEN/Akt/mTOR pathways, both play roles in cell proliferation
and resistance to chemotherapy.

Here, we identified PTEN loss-of-function deletions/mutations
or K-RAS/N-RAS activating mutations as two virtually mutually ex-
clusive genetic abnormalities found in 23% of adult T-ALLs treated on

GRAALL trials. Importantly, the absence of N/F or presence of RAS/
PTEN alterations identifies the 50% of patients who are most likely to
benefit from alternative therapies that target either the PI3K/PTEN/
Akt/mTOR or the Ras/Raf/MEK/ERK pathways.

PATIENTS AND METHODS

The GRAALL-2003 protocol was a multicenter phase II trial that enrolled
76 adults with T-ALL between November 2003 and November 2005,13 of
whom 57 had material available for the present study and have been
previously reported.3 The multicenter randomized GRAALL-2005 trial
was the following phase III trial and was similar to the GRAALL-2003 trial,
with the addition of the randomized evaluation of an intensified sequence
of hyperfractionated cyclophosphamide during induction and late inten-
sification. Between May 2006 and May 2010, 189 adults with T-ALL were
randomly assigned in the GRAALL-2005 study. The present study con-
cerns 155 of these patients, for whom diagnostic DNA and/or cDNA was
available. As for the GRAALL-2003 trial, these 155 patients were represen-
tative of the total GRAALL-2005 T-ALL population, with a 3-year OS of
67% (95% CI, 60% to 74%). The GRAALL-2003 and GRAALL-2005
protocols are briefly described in the Data Supplement. Informed consent
was obtained from all patients at trial entry. Both trials were conducted in
accordance with the Declaration of Helsinki and approved by local and
multicenter research ethical committees. In these trials, allogeneic (allo)
stem-cell transplantation (SCT) was offered in first CR in patients who had
a matched sibling or 10/10 fully matched unrelated donor and at least one
of the following criteria: CNS involvement at diagnosis; early resistance to
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Fig 1. Patient flow diagram. EFS, event-
free survival; GRAALL, Group for Re-
search in Adult Acute Lymphoblastic
Leukemia; N/F, NOTCH1/FBXW7; OS,
overall survival.
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corticosteroid after the first 1-week prephase; early resistance to chemo-
therapy after 1 additional week of treatment; and CR not achieved after
first induction.

Among the 212 consecutive adults with T-ALL included in the present
study (57 GRAALL-2003 and 155 GRAALL-2005 patients), 133 were eligible
for allo-SCT and 67 actually received transplantation in first CR (16 GRAALL-
2003 and 51 GRAALL-2005 patients). With a point date on December 31,
2011, the median follow-up time was 4.2 years (6.0 and 3.3 years for GRAALL-
2003 and GRAALL-2005 patients, respectively). Complete methods are avail-
able in the Data Supplement.

Patient characteristics and CR rates were compared using either the
Fisher’s exact test or the Mann-Whitney U test. Median comparisons were
performed using the Mann-Whitney U test. OS and event-free survival (EFS)

were calculated from the date of prephase initiation. Events accounting for EFS
were induction failure, first hematologic relapse, and death from any cause in
first CR. Cumulative incidence of relapse (CIR) and relapse-free survival (RFS)
were calculated from the date of CR achievement. For the analysis of survival
outcomes, SCT was not considered to be a censoring event in patients who
received allo-SCT in first CR. OS and EFS were estimated using the Kaplan-
Meier method and then compared using the log-rank test.16 Multivariable
regressions were performed with the Cox model.17 CIR was estimated taking
into account death in first CR for competing risk and then compared using
cause-specific hazard Cox models. Specific hazards of relapse (SHRs) and
hazard ratios (HRs) were given with 95% CIs. Interactions were assessed by
introducing an interaction term in the Cox model. Prognostic discriminatory
powers were evaluated by concordance probability estimates18 and then
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Fig 2. Event-free survival (EFS) and overall survival (OS) by NOTCH1/FBXW7 (N/F) status and trial. (A) EFS by N/F status. At 5 years, EFS was estimated at 32% (95%
CI, 19% to 45%) in patients with unmutated N/F, compared with 69% (95% CI, 60% to 76%) in those with N/F mutation. The hazard ratio (HR) for shorter EFS in the
former group was 2.6 (95% CI, 1.7 to 3.9; P � .001). (B) OS by N/F status. At 5 years, OS was estimated at 42% (95% CI, 29% to 55%) in patients with unmutated
N/F, compared with 75% (95% CI, 66% to 81%) in those with N/F mutation. The HR for shorter OS in the former group was 2.45 (95% CI, 1.5 to 3.9; P � .001). (C)
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shorter EFS in the former group was 2.3 (95% CI, 1.01 to 5.2; P � .04). For GRAALL-2005 patients, 5-year EFS was estimated at 32% (95% CI, 18% to 47%) in patients
with unmutated N/F, compared with 69% (95% CI, 59% to 77%) in those with N/F mutation. The HR for shorter EFS in the former group was 2.65 (95% CI, 1.6 to
4.3; P � .001). (D) OS by N/F status in the GRAALL-2003 and GRAALL-2005 trials. For GRAALL-2003 patients, 5-year OS was estimated at 45% (95% CI, 21% to 67%)
in patients with unmutated N/F, compared with 77.5% (95% CI, 61% to 88%) in those with N/F mutation. The HR for shorter OS in the former group was 2.45 (95%
CI, 1.01 to 5.9; P � .04). For GRAALL-2005 patients, 5-year OS was estimated at 41% (95% CI, 24% to 57%) in patients with unmutated N/F, compared with 74%
(95% CI, 63% to 81%) in those with N/F mutation. The HR for shorter OS in the former group was 2.4 (95% CI, 1.4 to 4.2; P � .0012). GL, germline.
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compared using the bootstrap method. STATA/SE 10.1 software (STATA,
College Station, TX) was used. All tests were two-sided, with a type I error
at 5%.

RESULTS

Lack of N/F Mutation Identifies a Poor Prognostic

Subset of Adult T-ALL

N/F mutations were identified in 143 (67%; 95% CI, 61% to
74%) of the 212 analyzed patients with T-ALL (Fig 1). The
mutation rate of N/F was similar in the GRAALL-2003 (70%; 95%
CI, 57% to 82%) and GRAALL-2005 (67%; 95% CI, 58%
to 74%) cohorts. In keeping with our previous report,3,19 EFS and
OS were significantly (P � .001 and P � .001, respectively) better in
T-ALLs harboring N/F mutations, compared with unmutated
T-ALL (Figs 2A and 2B, respectively). Furthermore, as shown in
Figures 2C and 2D, the favorable impact of N/F mutation was also
observed when GRAALL-2003 and GRAALL-2005 patients were
analyzed separately.

Despite this, one third of patients with N/F mutations experi-
enced an EFS event, mostly within the first 2 years of follow-up (Fig
2A). To identify a genetic surrogate for relapsing T-ALLs, we studied
Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathway activation
by N/K-RAS and PTEN alteration, respectively.

N/K-RAS Mutations Are Frequent Events in

Adult T-ALL

Among the 212 patients with T-ALL tested for N/F mutations,
191 were explored for activating RAS mutations. K-RAS and
N-RAS mutations were identified in three (2%; 95% CI, 0.3% to
5%) of 191 and 17 (9%; 95% CI, 5% to 14%) of 191 patients,
respectively. Overall, 20 (11%; 95% CI, 7% to 16%) of 191
GRAALL T-ALLs harbored activating RAS mutations. Clinical,
immunophenotypic and oncogenic features of the patients were
analyzed according to the absence or presence of RAS mutations
(Table 1), and full details of individual patients with RAS abnor-
malities are reported in the Data Supplement.

Patients with RAS mutations did not differ significantly
from patients without mutations with respect to age, sex, or WBC
counts greater than 100 � 109/L at diagnosis (Table 1). CNS
involvement was found in 25% of patients with RAS mutations
versus 6% of patients without mutations (P � .02). RAS mutations
were also more frequently observed in T-ALL with no classical
oncogenic markers compared with T-ALLs harboring TLX1/3,
SIL-TAL1, or CALM-AF10 abnormalities (78% v 50%, respec-
tively; P � .03). No significant correlation was found with Euro-
pean Group for the Immunological Classification of Leukemias
class or N/F status or early sensitivity to corticosteroids and chem-
otherapy, but RAS mutations were notably absent in T-cell recep-
tor (TCR)–positive T-ALLs.

PTEN Genomic Deletions and Mutations Lead to

PTEN Loss in 12% of Adult T-ALLs

PTEN mutations were identified in 17 (10%; 95% CI, 6% to
15%) of 175 patients with available material (all of whom had been
tested for RAS mutations). All mutations were nonsense or, more
frequently, frameshift insertions or insertions/deletions as reported in

the Data Supplement. We then analyzed the whole PTEN locus by
high-resolution comparative genomic hybridization (CGH) array for
100 patients already screened for PTEN exon7 mutations. Overall,
PTEN deletions were detected in five (5%; 95% CI, 2% to 11%) of 100
patients. The deletions were mainly large, ranging from 60 to 7,464 kb,
but were focal and intragenic in two patients (Fig 3A) and biallelic in
one patient. Because the breakpoints were relatively heterogeneous, a
common deleted region, including exon 2, was identified (Fig 3A,
right panel).

To validate the CGH array findings, PTEN (introns 2 and 8)
genomic allele quantification by quantitative polymerase chain reac-
tion was performed. As shown in Figure 3A, all patients with PTEN
deletions identified by CGH array demonstrated a low PTEN/
ALBUMIN gene dosage ratio (range, 0.05 to 0.59) compared with 39
patients without deletions (range, 0.72 to 1.4). This genomic quanti-
tative polymerase chain reaction system was then used to identify

Table 1. Characteristics of Patients With T-ALL According to Their
RAS Status

Characteristic

All
Patients

N/K-RAS Exon 1

P�

Mutation Wild Type

No. % No. % No. %

Total patients 191 20 10 171 90
TCR subsets

analyzed 172
Immature 44 26 7 41 37 24 .14
Pre-�� 92 53 10 59 82 53 .8
TCR positive 36 21 0 0 36 23 .025†

EGIL 180
I-II 70 39 9 50 61 38 .32
III 89 49 9 50 80 49 1.0
IV 21 12 0 0 21 13 .14

Genotype subsets
analyzed 183

CALM-AF10 9 5 0 0 9 5 .6
SIL-TAL1 16 9 0 0 16 10 .37
TLX1 37 20 2 11 35 21 .54
TLX3 25 14 2 11 23 14 1.0
None of above 96 52 14 78 82 50 .03†

N/F mutation 132 69 16 80 116 68 .32
Clinical subsets

analyzed
Male 143 75 14 70 129 76 .59
Age, years

Median 31 34 31 .23
� 35 77 41 9 45 68 40 .64

WBC count,
� 109/L
Median 36.4 47.1 36.4 .99
� 100 53 28 5 25 48 28 1.0

CNS involvement 16 8 5 25 11 6 .02†
CR 176 92 19 95 157 92 .56
Cs 105 55 11 55 94 55 1.0
CHs 108 57 12 60 96 56 .82

Abbreviations: CHs, chemosensitivity; CR, complete remission; Cs, cortico-
steroid sensitivity; EGIL, European Group for the Immunological Classification
of Leukemias; N/F, NOTCH1 and/or FBXW7; T-ALL, T-cell acute lymphoblastic
leukemia; TCR, T-cell receptor.

�Determined using t test or Fisher’s exact test when appropriate.
†Significant value.
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PTEN deletion in the remaining 75 patients tested for PTEN muta-
tions but not by CGH array. This allowed identification of one addi-
tional patient with PTEN deletion (PTEN/ALBUMIN ratio, 0.53).
Overall, PTEN genomic deletions occurred in six (3%; 95% CI, 0.9%
to 6%) of 175 patients. Two patients with heterozygous PTEN dele-
tions also harbored PTEN mutations (Data Supplement). Altogether,
PTEN genomic abnormalities by deletion and/or mutation were iden-
tified in 21 (12%; 95% CI, 78% to 18%) of 175 patients.

To determine whether the observed PTEN genomic abnormali-
ties led to inactivation of PTEN expression and function, we then
analyzed protein expression by immunophenotyping and Western
blot in 82 and 57 T-ALLs, respectively, with available material. All
tested patients harboring PTEN genomic alteration (four deletions
and seven mutations) demonstrated loss of or low-level PTEN protein
expression as measured by Western blot or flow analysis (Figs 3B
and 3C).

PTEN Genomic Abnormalities Occur Frequently in

Unmutated N/F- and SIL-TAL1–Positive Adult T-ALLs

but Are Mutually Exclusive With N/K-RAS Mutations

Clinical, immunophenotypic, and oncogenic features of patients
were analyzed as a function of PTEN status (Table 2). Full clinical, immu-
nophenotypic, oncogenic, and karyotypic data of individual patients with
PTEN abnormalities are reported in the Data Supplement. PTEN abnor-
malities were more frequent in unmutated N/F T-ALLs; only eight (38%;
95% CI, 18% to 62%) of 21 T-ALLs with PTEN mutations/dele-
tions harbored N/F mutations compared with 112 (73%; 95% CI,
65% to 80%) of 154 germline PTEN T-ALLs (P � .002). With
respect to recurrent oncogenic subtypes, SIL-TAL1–positive pa-
tients demonstrated the highest rate of PTEN abnormalities; seven
(33%; 95% CI, 15% to 57%) of 21 T-ALLs with PTEN mutations/
deletions harbored SIL-TAL1 fusion compared with only nine (6%;
95% CI, 2.8% to 11.2%) of 149 PTEN wild-type T-ALLs (P � .001).
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reaction (qPCR) ratios (right) in five T-cell acute lymphoblastic leukemias (T-ALLs). Patient UPNT238 harbors a monoallelic deletion of PTEN concordant with gene
dosage results (PTEN intron 2/ALB and PTEN intron 8/ALB qPCR ratios, 0.33 and 0.42, respectively). Patient UPNT274 harbors a biallelic deletion of the exon 2 and
intron 2 of PTEN concordant with gene dosage results (PTEN intron 2/ALB qPCR ratio of 0.05 and PTEN intron 8/ALB qPCR ratio of 1.04). (B) Flow cytometry analysis
of PTEN expression in T-ALL cell lines and primary T-ALL samples (left) and representation of PTEN ratio of fluorescence intensity (RFI) according to PTEN status (right).
Lighter gray histograms represent the isotypic control, and the darker gray histograms represent PTEN levels. JURKAT is a PTEN-null cell line. DND41 harbors PTEN
levels similar to germline PTEN primary T-ALLs. The two PTEN-altered primary T-ALLs show low PTEN protein. RFI was less than 5 in all PTEN-altered T-ALLs, whereas
RFI ranged from 2.9 and 44.2 (median, 12.6) in PTEN-nonaltered T-ALLs. (C) PTEN Western blot analysis in T-ALL cell lines, normal human thymus, and primary T-ALL
samples. Tested T-ALLs with germline PTEN status harbored higher level of PTEN protein compared with T-ALLs with genomic PTEN alterations. Actin was used as
a loading control. Western blot data are in concordance with flow cytometric results. (*) Deletion. (†) Mutation.
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PTEN-altered patients did not significantly differ from wild-type
patients with respect to sex, CNS involvement, or early sensitivity to
corticosteroids or chemotherapy (Table 2), but WBC counts greater
than 100 � 109/L at diagnosis were found in 62% of PTEN-altered
patients compared with 23% of unmutated patients (P � .001).
PTEN-altered status was also more frequently observed in patients
younger than 35 years of age (P � .02) and in mature T-ALLs express-
ing surface TCR (47% v 18% not expressing surface TCR; P � .006).
Overall, PTEN alteration was more frequent in younger, mature,
TCR-positive, SIL-TAL1–positive, N/F unmutated patients with high
leukemic bulk tumors. Interestingly, only one patients with RAS
mutation was also mutated for PTEN but only within a subpopulation
of leukemic cells (Data Supplement), suggesting that these two onco-
genic alterations affecting two different interlinked pro-proliferative
pathways may be virtually mutually exclusive in adult T-ALL.

N/K-RAS Mutations and PTEN Genomic

Abnormalities Predict Similar Poor Outcome

Figures 4A, 4B, and 4C show that both N/K-RAS mutations
and PTEN genomic abnormalities were associated with marked
trends to shorter CIR, RFS, and OS (see the Data Supplement for
PTEN abnormalities alone and within N/F subgroups). Because of
their biologic pro-proliferative function, mutual exclusion, and
similar poor prognostic significance, we regrouped all patients
with N/K-RAS mutations or PTEN genomic abnormalities in one
unique RAS/PTEN alteration subgroup. Figures 4D, 4E, and 4F
illustrate the significant prognostic impact of these oncogenetic
alterations on CIR, RFS, and OS, respectively.

RAS, PTEN, and N/F Mutational Status Identifies a

Strong Classifier in Adult T-ALL

We then analyzed how the presence of these virtually exclusive
N/K-RAS mutations and PTEN genomic abnormalities may modu-
late the good prognosis associated with N/F mutations and whether
prognostic interactions may exist between these two genomic path-
ways. For this purpose, we performed a multivariable Cox model for
CIR, RFS, and OS, entering the two N/F and RAS/PTEN covariates, as
well as their interaction term. As illustrated in Figures 5A, 5B, and 5C,
this analysis indicated that the prognostic significance of N/F muta-
tions was still observed but with significant interactions between N/F
and RAS/PTEN mutations, indicating that the favorable impact of N/F
mutation was only observed in patients without RAS/PTEN mutation
(Figs 5A to 5C). Importantly, sensitivity analyses of patients treated as
part of the GRAALL-2003 trial or during the GRAALL-2005 trial
demonstrated that statistical significance of the classifier was consis-
tent in both groups (Data Supplement).

These observations led us to propose a new T-ALL oncogenetic
classifier defining low-risk patients as those with N/F mutation but no
RAS/PTEN mutation (here, 97 of 189 studied patients; 51%) and all
other patients (49%) as high-risk patients. Figures 5D, 5E, and 5F
show CIR, RFS, and OS according to this new strong oncogenetic
classifier. As a whole, 23 patients who would have been classified as low
risk based on their N/F status joined the high-risk subgroup based on
their RAS/PTEN status. Importantly, these patients did not differ from
their N/F-mutated, RAS/PTEN-unaltered counterparts (Data Supple-
ment). Comparing the oncogenetic risk classification based only on
the N/F mutational status to this refined oncogenetic classifier, HRs
for high-risk patients increased from 2.6 (95% CI, 1.7 to 4.0) to 3.25
(95% CI, 2.0 to 5.3) for EFS and from 2.5 (95% CI, 1.5 to 4.0) to 3.3
(95% CI, 1.9 to 5.8) for OS. Concordance probability estimates of the
old N/F versus the new N/F-RAS-PTEN classifier were 0.603 (95% CI,
0.561 to 0.645) versus 0.633 (95% CI, 0.589 to 0.677) for EFS and 0.600
(95% CI, 0.552 to 0.647) versus 0.636 (95% CI, 0.587 to 0.684) for
OS, respectively.

When adjusting the effect of the N/F-RAS-PTEN classifier to age
(using the 35-year cutoff) and WBC count (using the 100 � 109/L
cutoff), the oncogenetic classifier remained the only significant prog-
nostic covariate (EFS: HR, 3.2; 95% CI, 1.9 to 5.15; P � .001; and OS:
HR, 3.2; 95% CI, 1.9 to 5.6; P � .001).

A limited subset of 89 patients (46 new low-risk and 43 new
high-risk patients, according to this N/F-RAS-PTEN classifier) were
evaluated for genomic immunoglobulin/TCR MRD level at time of
CR achievement after the first induction course. Using the 10�4 MRD
cutoff, there was only a nonstatistically significant trend toward a

Table 2. Characteristics of Patients With T-ALL According to Their
PTEN Status (PTEN CGH array, PTEN/ALB allelic ratios, and PTEN exon

7 mutation)

Characteristic

All
Patients

PTEN

P�

Altered Not Altered

No. % No. % No. %

Total patients 175 21 12 154 88
TCR subsets

analyzed 160
Immature 41 26 1 5 40 28 .046†
Pre-�� 85 53 9 47 76 54 .6
TCR positive 34 21 9 47 25 18 .006†

EGIL 167
I-II 65 5 25 60 41 .22
III 82 10 50 72 49 1.0
IV 20 5 25 15 10 .07

Genotype subsets
analyzed 170

CALM-AF10 8 5 1 5 7 5 1.0
SIL-TAL1 16 9 7 33 9 6 � .001†
TLX1 31 18 1 5 30 20 .13
TLX3 24 14 2 10 22 15 .74
None of above 91 54 10 48 81 54 .64

N/F mutated 120 69 8 38 112 73 .002†
Clinical subsets

analyzed
Male 131 75 18 86 113 73 .29
Age, years

Median 30.8 24.9 31.4 .001†
� 35 69 39 3 14 66 43 .02†

WBC, � 109/L
Median 36.8 110 29.9 .001†
� 100 49 28 13 62 36 23 � .001†

CNS involvement 16 9 4 19 12 8 .11
CR 160 96 20 95 140 96 1.0
Cs 94 54 8 38 86 56 .16
CHs 98 56 15 71 83 54 .16

Abbreviations: CGH, comparative genomic hybridization; CHs, chemosen-
sitivity; CR, complete remission; Cs, corticosteroid sensitivity; EGIL,
European Group for the Immunological Classification of Leukemias; N/F,
NOTCH1 and/or FBXW7; T-ALL, T-cell acute lymphoblastic leukemia; TCR,
T-cell receptor.

�Determined using t test or Fisher’s exact test when appropriate.
†Significant value.
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Fig 4. Cumulative incidence of relapse (CIR), relapse-free survival (RFS), and overall survival (OS) by N/K-RAS mutation or PTEN genomic abnormality. (A) CIR according
to the presence of N/K-RAS mutation alone, PTEN genomic abnormality alone, or both (one single patient). At 5 years, CIR was estimated at 24% (95% CI, 17% to
33%) in patients with no N/K-RAS mutation or PTEN genomic abnormality, compared with 57% (95% CI, 36% to 80%) in those with N/K-RAS mutation and 54% (95%
CI, 32% to 79%) in those with PTEN genomic abnormality. In the latter subgroups, the specific hazards of relapse (SHRs) were 2.6 (95% CI, 1.4 to 5.1; P � .003) and
2.1 (95% CI, 1.1 to 4.3; P � .028), respectively. (B) RFS according to the presence of N/K-RAS mutation alone, PTEN genomic abnormality alone, or both (one single
patient). At 5 years, RFS was estimated at 75% (95% CI, 66% to 82%) in patients with no N/K-RAS mutation or PTEN genomic abnormality, compared with 42% (95%
CI, 19% to 64%) in those with N/K-RAS mutation and 43% (95% CI, 18% to 66%) in those with PTEN genomic abnormality. In the latter groups, hazard ratios (HRs)
for shorter RFS were 2.6 (95% CI, 1.3 to 5.0; P � .004) and 2.2 (95% CI, 1.1 to 4.3; P � .027), respectively. (C) OS according to the presence of N/K-RAS mutation
alone, PTEN genomic abnormality alone, or both (one single patient). At 5 years, OS was estimated at 69% (95% CI, 60% to 77%) in patients with no N/K-RAS mutation
or PTEN genomic abnormality, compared with 45% (95% CI, 18% to 69%) in those with N/K-RAS mutation and 43% (95% CI, 20% to 64%) in those with PTEN
genomic abnormality. In the latter groups, HRs for shorter OS were 2.0 (95% CI, 1.04 to 3.8; P � .033) and 2.0 (95% CI, 1.06 to 3.8; P � .029), respectively. (D) CIR
according to the presence of N/K-RAS mutation and/or PTEN genomic abnormality. At 5 years, CIR was estimated at 24% (95% CI, 17% to 33%) in patients with no
N/K-RAS mutation or PTEN genomic abnormality, compared with 58% (95% CI, 41% to 75%) in those with N/K-RAS mutation and/or PTEN genomic abnormality. The
SHR was 2.8 (95% CI, 1.5 to 4.9) in the latter group (P � .001). (E) RFS according to the presence of N/K-RAS mutation and/or PTEN genomic abnormality. At 5 years,
RFS was estimated at 75% (95% CI, 66% to 82%) in patients with no N/K-RAS mutation or PTEN genomic abnormality, compared with 40% (95% CI, 22% to 57%)
in those with N/K-RAS mutation and/or PTEN genomic abnormality. The HR for shorter RFS in the latter group was 2.7 (95% CI, 1.5 to 4.8; P � .001). (F) OS according
to the presence of N/K-RAS mutation and/or PTEN genomic abnormality. At 5 years, OS was estimated at 69.5% (95% CI, 60% to 77%) in patients with no N/K-RAS
mutation or PTEN genomic abnormality, compared with 42% (95% CI, 26% to 58%) in those with N/K-RAS mutation and/or PTEN genomic abnormality. The HR for
shorter OS in the latter group was 2.1 (95% CI, 1.3 to 3.6; P � .003). GL, germline.
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Fig 5. Cumulative incidence of relapse (CIR), relapse-free survival (RFS), and overall survival (OS) by NOTCH1/FBXW7 (N/F) and RAS/PTEN mutational status. (A) CIR
according to the presence of N/F and/or RAS/PTEN mutations. In patients with no N/K-RAS mutation or PTEN genomic abnormality, 5-year CIR was estimated at 15% (95%
CI, 9% to 24%) in patients with N/F mutation, compared with 50% (95% CI, 34% to 64%) in those without N/F mutation. The specific hazard of relapse (SHR) was 3.3 (95%
CI, 2.0 to 10.0) in the latter group (P � .001). Conversely, in those with N/K-RAS mutation and/or PTEN genomic abnormality, 5-year CIR was similarly poor in patients with
N/F mutation and in those without N/F mutation (58%; 95% CI, 37% to 80% v 57%; 95% CI, 33% to 83%, respectively). The SHR was 1.25 (95% CI, 0.5 to 3.3) in the latter
group (P � .65). (B) RFS according to the presence of N/F and/or RAS/PTEN mutations. In patients with no N/K-RAS mutation or PTEN genomic abnormality, 5-year RFS was
estimated at 85% (95% CI, 76% to 91%) in patients with N/F mutation, compared with 45% (95% CI, 25% to 63%) in those without N/F mutation. The hazard ratio (HR) for
shorter RFS in the latter group was 4.0 (95% CI, 2.0 to 10.0; P � .001). Conversely, in those with N/K-RAS mutation and/or PTEN genomic abnormality, 5-year RFS was similarly
poor in patients with N/F mutation and in those without N/F mutation (36%; 95% CI, 13% to 59% v 43%; 95% CI, 17% to 67%, respectively). The HR for shorter RFS in the
latter group was 1.1 (95% CI, 0.45 to 2.5; P � .78). (C) OS according to the presence of N/F and/or RAS/PTEN mutations. In patients with no N/K-RAS mutation or PTEN
genomic abnormality, 5-year OS was estimated at 82% (95% CI, 72% to 88%) in patients with N/F mutation, compared with 37% (95% CI, 19% to 55%) in those without
N/F mutation. The HR for shorter OS in the latter group was 3.3 (95% CI, 2.0 to 7.1; P � .001). Conversely, in those with N/K-RAS mutation and/or PTEN genomic abnormality,
5-year OS was similarly poor in patients with N/F mutation and in those without N/F mutation (49%; 95% CI, 27% to 68% v 32%; 95% CI, 10% to 57%, respectively). The
HR for longer OS in the former group was 0.7 (95% CI, 0.3 to 1.7; P � .43). (D) CIR according to the new N/F, N/K-RAS, and PTEN oncogenetic classifier. At 5 years, CIR was
estimated at 15% (95% CI, 9% to 24%) in low-risk patients, compared with 54% (95% CI, 42% to 66%) in high-risk patients. The SHR was 4.1 (95% CI, 2.2 to 7.7) in the
latter group (P � .001). (E) RFS according to the new N/F, N/K-RAS, and PTEN oncogenetic classifier. At 5 years, RFS was estimated at 85% (95% CI, 76% to 91%) in low-risk
patients, compared with 42% (95% CI, 29% to 55%) in high-risk patients. The HR for shorter RFS in the latter group was 4.2 (95% CI, 2.3 to 8.0; P � .001). (F) OS according
to the new N/F, N/K-RAS, and PTEN oncogenetic classifier. At 5 years, OS was estimated at 82% (95% CI, 72% to 88%) in low-risk patients, compared with 44% (95% CI,
33% to 55%) in high-risk patients. The HR for shorter OS in the latter group was 3.3 (95% CI, 1.9 to 5.8; P � .001). GL, germline.
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higher MRD response rate in low-risk compared with high-risk pa-
tients (74% v 60%, respectively; P � .18). When adjusting the effect of
the N/F-RAS-PTEN classifier to age (using the 35-year cutoff), WBC
count (using the 100 � 109/L cutoff), and MRD response (using the
10�4 cutoff) in these 89 patients, the oncogenetic classifier remained
the only significant prognostic factor for OS (HR, 4.8; 95% CI, 1.6 to
14.8; P � .006).

Taken together, these data demonstrate that the detection of RAS
and PTEN mutations adds significant prognostic value to assessment
of the N/F status in isolation and allows identification of a significant
proportion (48%) of good prognosis adult T-ALLs with N/F muta-
tions but no RAS/PTEN abnormalities that cannot be identified by
classical parameters.

DISCUSSION

Much progress has been made recently toward the identification of
molecular-genetic abnormalities in T-ALL.7 A number of these ge-
netic events, sometimes defined as type A mutations,20 act mainly to
block T-cell differentiation at a specific developmental stage and de-
lineate T-ALL subgroups displaying specific gene expression pro-
files.5,6 In contrast, type B mutations act by gain-of-function
alterations affecting cell cycle, self-renewal, pre-TCR signaling, or con-
stitutive tyrosine kinase activation. RAS and PTEN defects belong to
this category and are involved in pre-TCR complex signaling (re-
viewed in Van Vlierberghe et al20), which leads to the downstream
activation of both the RAS/MAPK and PI3K/AKT pathways.21 There
is also increasing recognition of the role played by tumor suppressor
gene inactivation in T-ALL.7 PTEN is a lipid and protein phosphatase
that negatively regulates the PI3K/AKT/mTOR pathway through de-
phosphorylation of the PIP3 lipid second messenger.22 PTEN plays
critical roles in cell growth, survival, and migration.23 The PTEN
expression level can be regulated by multiple mechanisms.23 In leuke-
mia, PTEN loss promotes self-renewable leukemia stem-cell forma-
tion and leukemogenesis.24 Whether PTEN abnormalities are of
prognostic value remains debated in childhood T-ALLs.15,25,26 In gen-
eral, PTEN genomic deletions are of poor prognosis, but PTEN mu-
tations were reported to be without significant prognostic impact,15

albeit in a small series of pediatric T-ALL. We now show that PTEN
modification is disproportionately associated with TCR-positive, high
WBC, younger adult T-ALLs that demonstrate a relatively low inci-
dence of N/F mutation and poor prognosis.

Several studies have also highlighted the oncogenic role of RAS in
leukemogenesis.27,28 Oncogenic K-RAS and N-RAS mutations are
described in only 2% of pediatric T-ALLs without clinical impact.29

RAS-mutated adult T-ALLs represent 10% and tend to have more
frequently an immature immunophenotype. This association has
been recently suggested30 and, because immature phenotypes are
more frequent in adult compared with pediatric T-ALLs,31 might
explain the higher incidence of RAS mutation in our series. As such,

RAS- and PTEN-mutated patients have distinct features, in keeping
with their virtually mutually exclusive occurrence.

Taken together, we have identified a significant subgroup (40 of
175 patients; 23%) of adult patients with poor prognosis T-ALL with
genetic anomalies of either the PI3K/PTEN/Akt/mTOR or the Ras/
Raf/MEK/ERK pathway. The intricate links in cell signaling between
these pathways and the rationale for targeting both to prevent chem-
otherapeutic drug resistance and re-emergence of cancer-initiating
cells have led to the development of specific inhibitors of these two
pathways. Therefore, it was logical to regroup RAS/PTEN-modified
T-ALLs and to develop an oncogenetic classifier of T-ALL as an exten-
sion of our previous N/F-based classification. Adults with N/F-
mutated, RAS/PTEN germline T-ALL compose approximately 50% of
patients and have an excellent prognosis. It is important to note that
these new risk factors are independent from the two most important
classical prognostic factors (ie, WBC count � 100 � 109/L and Euro-
pean Group for the Immunological Classification of Leukemias
class).32,33 The added value of MRD assessment in these oncogeneti-
cally defined subgroups remains to be determined.

At a practical level, increasing availability of high-throughput
sequencing strategies will facilitate rapid genotyping (including allelic
mutation or deletion of PTEN) of diagnostic samples, thus allowing
therapeutic stratification at an earlier stage that is possible with MRD-
based stratification. These considerations are currently impacting the
design of the next GRAALL T-ALL study.
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