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Deep learning algorithms enable 
MRI-based scapular morphology 
analysis with values comparable to 
CT-based assessments
Hanspeter Hess 1, Alexandra Oswald 1, J. Tomás Rojas 2,3, Alexandre Lädermann 4,5,6,7, 
Matthias A. Zumstein 2,8,9 & Kate Gerber 1

Scapular morphological attributes show promise as prognostic indicators of retear following rotator 
cuff repair. Current evaluation techniques using single-slice magnetic-resonance imaging (MRI) are, 
however, prone to error, while more accurate computed tomography (CT)-based three-dimensional 
techniques, are limited by cost and radiation exposure. In this study we propose deep learning-based 
methods that enable automatic scapular morphological analysis from diagnostic MRI despite the 
anisotropic resolution and reduced field of view, compared to CT. A deep learning-based segmentation 
network was trained with paired CT derived scapula segmentations. An algorithm to fuse multi-
plane segmentations was developed to generated high-resolution 3D models of the scapula on 
which morphological landmark- and axes were predicted using a second deep learning network for 
morphological analysis. Using the proposed methods, the critical shoulder angle, glenoid inclination 
and version were measured from MRI with accuracies of -1.3 ± 1.7 degrees, 1.3 ± 2.1 degree, and 
− 1.4 ± 3.4 degrees respectively, compared to CT. Inter-class correlation between MRI and CT derived 
metrics were substantial for the glenoid version and almost perfect for the other metrics. This study 
demonstrates how deep learning can overcome reduced resolution, bone border contrast and field of 
view, to enable 3D scapular morphology analysis on MRI.

Keywords Shoulder surgery, Rotator cuff, MRI Reconstruction, Artificial intelligence (AI), Planification, 
Predictive model

Several morphological attributes of the scapula, such as the glenoid inclination1, the extension of the acromion2, 
and the critical shoulder angle (CSA)3,4 are associated with the risk of a retear of rotator cuff (RC) repair surgery. 
Scapular morphological metrics are typically evaluated manually in two-dimensions (2D) on radiographic 
images. As such, they are prone to inaccuracies due to projection direction and slice orientation5,6. Improved 
assessment methods on computed tomography (CT) data have been proposed, allowing the user to define the 
precise slice position and orientations for the measurements, resulting in higher accuracy measurements6–8. 
Three-dimensional (3D) morphology assessment approaches, in which anatomical landmarks are depicted on a 
3D surface model of the scapula, generated from segmentation of the scapula from CT, have also been proposed9. 
However, as magnetic resonance imaging (MRI) is the state-of-the art imaging modality for RC tear diagnosis10,11, 
the associated cost and irradiation of an additional CT acquisition, prevents use of such techniques in clinical 
routine. To date no method, allowing for 3D analysis of scapular morphology from MRI with comparable 
accuracies to CT have been described. For effective 3D-measurement on MRI, accurate segmentation of the 
scapula to create a 3D surface model, as well as the depiction of bony landmarks is required. MRI analysis is 
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limited, however, compared to CT, by; (1) decreased bone contrast, (2) considerably lower resolution, especially 
in the out-of-plane direction; and (3) a restricted field-of-view (FOV) often failing to include the entire scapular 
body and thus also landmarks required for morphological analysis.

To date, semantic segmentation of the shoulder from MRI for 3D surface modelling has mostly been performed 
manually12–14 or with semi-automatic methods15,16. Recently, deep learning algorithms have facilitated automatic 
segmentation of the scapula, humerus as well as the rotator cuff muscles on MRI with excellent accuracies 
compared to manual segmentation17–19. However, with slice thicknesses of diagnostic MRI typically three to four 
millimetres, the accuracy of generated surface models remains limited compared to CT. The increased surface 
model error, expressed as a step-artifact between slices in generated 3D surface models, results in increased 
error in landmark detection on the bone surface and thus increased error in scapular morphological analysis. 
3D surface models generated from isotropic 3D-MRI such as Dixon15,16 or zero echo time MRI which allows for 
excellent bone imaging20–22 have been reported, however, such sequences are not standard in clinical RC tear 
diagnosis. For analysis of the brain and prostate, methods to fuse the information of multiple non-isotropic MRI 
planes to generate high-resolution images or 3D models, have been described23–26. However, presented methods 
are yet to be applied to musculoskeletal analysis and require the same MRI weighting along all planes or a perfect 
overlapping FOV of all MRI planes.

To reduce the effect of user variability on morphological measure calculations, deep learning approaches, 
enabling automatic 3D landmark localisation have been described for the knee27 and hip28 on MRI and for the 
shoulder on CT29. In case of diagnostic shoulder MRI with restricted FOV, however, the medial and inferior 
scapular borders, which are necessary to define measurement planes, are often cropped, preventing accurate 
manual or automatic analysis. We propose, that alternatively, deep learning could be used to predict the scapular 
axes directly from incomplete scapular surface models, eliminating the reliance on landmarks outside of the 
image FOV.

The goal of this study was to develop deep learning-based methods for accurate, automatic scapular 
morphology analysis on non-isotropic MRI without the need for additional CT scans. We hypothesised that 
the proposed methods would enable automated scapular morphology analysis on MRI that is equivalent to CT 
based analysis for the diagnosis of RCT patients.

Methods
Data description
In this study, two datasets (Dataset 1, Dataset 2) from patients with posterosuperior RC tears without bone 
defects or arthritic changes were used. With approval of the local ethical commission (CCER 2020–02670), 
data collected during a prospective study was used in this research, which was conducted in accordance with 
the Declaration of Helsinki. Informed consent was obtained from all participants. Dataset 1 comprised paired 
CT-MRI data of the same shoulder from 30 patients with a mean age of 58.6 ± 15.1 years (range 28–87 years), 
comprising 16 females (53%) and 14 males (47%). CT data was anisotropic and had a mean in-plane resolutions 
0.88 ± 0.18  mm (range 0.47–0.98  mm) in the transversal plane and mean slice-thickness of 0.43 ± 0.16  mm 
(range 0.30–0.90 mm), while MR arthrograms had in-plane resolutions of 0.2–0.6 mm and slice-thicknesses of 
2.8–5.5 mm. The MRI weightings and planes are depicted in Table 1. Though the patients were all seen at the 
same clinic, the diagnostic MRI was performed at seven different institutions following their standard clinical 
protocols on different MRI machines from different vendors with field strengths ranging from 1 to 3 Tesla. 
Dataset 1 was randomly split into a training- (N = 20) and a test-dataset (N = 10). A second dataset (Dataset 2), 
consisting of CT data only, from an additional 57 RC tear patients with a mean age of 58.0 ± 9.4 year (range 33–77 
years), comprising 29 females (51%) and 28 males (49%) (non-isotropic resolution, mean in-plane resolutions 
0.87 ± 0.19 mm (range 0.43–0.98 mm) in the transversal plane and mean slice-thickness of 0.43 ± 0.16 mm (range 
0.30–0.90 mm)) was also collected.

Manual CT data labelling
The scapula was segmented from the CT data of Dataset 1and Dataset 2 using an intensity threshold approach 
with manual checking and correction by an expert. A 3D surface models of the scapula were generated from the 
resulting segmentation masks in Mimics 16.0 (Materialise, Leuven, Belgium).

Training dataset Test dataset

Number of patients 20 10

Modalities

 T1 52 30

 T2/proton density 55 30

Planes

 Coronal 43 25

 Sagittal 37 23

 Axial 27 12

Total images 107 60

Table 1. MRI dataset: train-test split, weighting and plane details of dataset 1.

 

Scientific Reports |         (2025) 15:1591 2| https://doi.org/10.1038/s41598-024-84107-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


For calculation of morphological parameters, seven anatomical landmarks were manually depicted by a 
clinical expert (J.T.R (fellowship trained)) on the 3D surface models of the scapulae generated from the CT data 
of Dataset 1 and Dataset 230. To define the glenoid centre, three anatomical landmarks on the lower glenoid 
rim (anterior, posterior, and inferior glenoid rim) were manually depicted (Fig. 1). The centre of a circle fitted 
to these three points was defined as the glenoid centre and the origin of the scapular coordinate system (Fig. 1). 
These three points also defined the glenoid plane as proposed in31. The two points describing the vertex of the 
inferior scapular angle and the centre of the trigonum spinae scapulae were also manually depicted (Fig. 1). The 
z-axis (transverse scapular axis) was defined by the line crossing the centre of the glenoid, and the centre of the 
trigonum spinae scapulae, pointing in the lateral direction. The coronal scapular plane (CSP) was defined by 
three points, the centre of the glenoid, the vertex of the inferior scapular angle and the centre of the trigonum 
spinae scapulae, as defined by Suter et al.6. The x-axis was defined as the vector normal to the CSP pointing in 
the anterior direction with the origin at glenoid centre and the y-axis was defined perpendicular to the x- and 
-z axis. Additionally, the superior glenoid tubercule, and at the anterior lateral corner of the acromion were 
manually depicted (Fig. 1).

Automatic scapular morphology analysis on MRI
For automatic, accurate 3D morphology analysis of the scapula from diagnostic MRI our proposed methods 
comprise the subsequent four steps (Fig. 2): (1) Accurate segmentation of the bony border of the scapula on 
MRI, performed in the coronal, sagittal and axial directions. (2) Generation of a high-resolution surface model 
of the scapula by the fusion of the low-resolution masks along the different planes. (3) Automatic, accurate 
landmark depiction and scapular axes prediction on the generated high-resolution scapular model and (4) 
scapular morphology analysis using the predicted landmarks and axes.

Automatic scapula segmentation on MRI
For accurate segmentation of the scapula in the MRI, the paired CT-MRI image training data from Dataset 1 
was used to train a deep learning network. The CT and MRI were rigidly aligned using a mutual information 
algorithm32 (Python 3.10, Elastix extension for the SimpleITK-library33) to derive the transformation needed 
to transfer the high-resolution segmentation masks from the CT to the MRI. After registration, the CT scapula 
mask was interpolated to the spacing of the aligned MRI without manual correction of the transferred mask.

Fig. 1. Anatomical landmarks of the scapula: (1) Anterior- (2) Posterior-. (3) Inferior- points on the lower 
glenoid rim. (4) Glenoid centre, origin of the scapular coordinates system (circle fit from points 1,2, and 3). (5) 
Inferior scapular angle. (6) Centre of the trigonum spinae scapulae. (7) Superior glenoid tubercule. (8) anterior 
lateral corner of the acromion. The glenoid plane is defined using points 1,2, and 3. The coronal scapular 
plane (CSP) is defined using points 4, 5, and 6. The transverse scapular axis runs through points 4) and 6), 
corresponding to the z-axis of the scapular coordinate system.
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The MRI and corresponding transferred CT-based scapula masks were then used to train a deep learning 
network with U-net architecture to segment the scapula from the MRI (all orientations and weightings). The 
network was trained with CT segmentations rather than direct segmentations of the MRI to allow the network to 
exploit the more accurate depiction of skeletal structures in CT as compared with MRI. The 3D- full-resolution 
network was trained for 100 epochs using the nnU-Net framework34. The ensemble of the results from the 
five different networks trained during 5-fold cross validation training procedure was applied to maximize the 
network performance.

Multi-planar high-resolution shape reconstruction
Because of the low out-of-plane resolution, 3D surface masks generated from segmented coronal, sagittal 
and axial MRIs exhibit distinct inaccuracies. To generate an isotropic high-resolution 3D model from MRI, a 
shape-based fusion of the coronal, sagittal and axial MRI masks was performed (Fig. 3). The proposed method 
automatically consolidates the regions of highest accuracy from the different low-resolution masks. These 
regions are characterized by a consistent mask periphery across the adjacent mask slices in the low-resolution 
direction (Fig. 3).

The algorithm generates a high-resolution mask, henceforth referred to as HR-MRI-mask, by integrating 
three binary segmentations (coronal, sagittal, and axial masks). If multiple MRI sequences along a particular 
orientation are available, the sequence with the maximum FOV is selected. Employing a slice-wise distance 
map for each image orientation, the mask periphery is delineated, with pixel values representing the distance 
to the scapula border, up until a threshold of ± 15 pixels (Fig. 4). Mask consistency is quantified as the absolute 
difference between consecutive slices’ distance maps, normalized to values between 0 (indicating a zone of low 
consistency) and 1 (indicating a zone of high consistency) (Fig.  4). The initial binary masks are re-labelled 
with values of 1 inside and − 1 outside the scapula segmentation. Subsequently, for each orientation, the new 
binary mask and the consistency map are interpolated to an isotropic high-resolution space (isotropic resolution 
0.5 mm) and consolidated by voxel-wise multiplication to generate a weighted mask. The weighted masks from 
all three orientations are summed, and the HR-MRI-mask is generated by classifying voxels with values greater 
than zero as scapula and those with values of zero or lower as background.

Automatic landmark and axes detection
For automatic landmark depiction, a deep learning-based segmentation approach was developed using the 
manually segmented masks from Dataset 2 (CT data) with landmarks depicted manually by clinical experts. 
Each manual landmark was encoded as a separate spherical mask with a radius of 7 mm, with the centre of 
the sphere defining the 3D landmark position. An exception was made for the centre of the trigonum spinae 
scapulae, and the vertex of the inferior scapular angle. These two points were not encoded as landmarks because 
they are expected to be outside of the FOV of the MRI medially and inferiorly. Instead, the axes which are 
defined by these two landmarks, the transverse scapular axis, passing through the glenoid centre in the direction 
of the centre of the trigonum spinae scapulae; and the axis passing through the glenoid centre in the direction 
of the vertex of the inferior scapular angle, were encoded. With these axes, the scapular coordinate system is 
established without requiring the entire scapula. The axes were encoded as separate rod-shaped masks with a 
radius of 7 mm. A best fit line to the voxels of the mask defined the axis. The 3D-full resolution deep learning 
network was trained for 200 epochs using the nnU-Net framework34. The network was trained to predict the 
sphere and rod segmentations depicting the scapula landmarks and axes from the binary masks of the scapula.

Fig. 2. Overview of the pipeline for automatic morphology analysis. (a) From diagnostic magnetic resonance 
image (MRI) data, automatic segmentation is performed on multiple image orientations for the same patient. 
This information is fused to create isotropic, high-resolution 3D masks of the scapula. (b) From these high-
resolution 3D masks, landmarks and axes are automatically detected. The landmark coordinates and axes 
directions are used for morphological analysis.
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Automatic glenoid detection
For automatic scapular morphology analysis, a method for extracting the glenoid from the scapula surface 
model, based on the defined landmarks on the glenoid and scapular body, was developed. A sub-volume 
containing the glenoid is defined by a rectangular cuboid bounding box with a 5 mm margin around the anterior, 
inferior, posterior, and superior glenoid landmarks. In the glenoid plane, surface points of the 3D scapula model, 
contained within the bounding box, are split into 90 angular sectors with a central angle of 4° about the glenoid 
centre point. In each section, the glenoid surface points are identified by increasing the radius until the points 
at the arc became more medial (in relation to the glenoid plane), than those with a smaller radius, effectively 
defining the rim. We defined the glenoid axis as a line passing through the inferior- and superior-most points of 
the glenoid for further morphology analysis.

Automatic scapular morphology analysis
Algorithms enabling the automatic analysis of scapular morphology from the calculated landmarks and axes 
were developed. The glenoid circle radius is calculated as the radius of the circle fitted to the three anatomical 
landmarks on the lower glenoid rim. The glenoid height is defined as the distance between the superior glenoidal 
tubercule landmark and the inferior landmark on the lower glenoid rim.

The glenoid version (GV) is evaluated as the complementary of the angle between the glenoid plane, and the 
transverse scapular axis as defined by Friedman et al.35. The glenoid inclination (GI) is similarly assessed as the 
angle between the glenoid axis and the transverse scapular axis, projected on the CSP as defined by Serrano et 
al.36.

The critical shoulder angle (CSA) is automatically measured, as defined by Moor et al.37, as the angle between 
the glenoid axis and the CSA-axis; defined as the line passing through the inferior-most extrema point of the 
lower glenoid rim and the inferolateral acromion extrema point projected in the true anterior-posterior direction. 
The CSA-projection plane is defined from the CSP rotated by the scapula’s respective GV, as described by Suter et 
al.6. The inferolateral acromion extrema point is evaluated using an optimization procedure, initialized using the 
anatomical landmark located on the anterior lateral corner of the acromion. The surface points within a 5 mm 
radius of this landmark are evaluated, and the point which yields the highest CSA angle is selected.

Evaluation
The evaluation of our pipeline including the accuracy of the automatic MRI segmentation, the HR-MRI-mask 
reconstruction, the landmark and axis prediction and the morphological analysis was performed on the test 
dataset of Dataset 1 (N = 10).

Fig. 3. Methods for multi-planar, high-resolution shape reconstruction. (a) Fusion of separately segmented 
masks from coronal sagittal and axial magnetic resonance imaging (MRI). (b) Example of a scapula 
segmentation in different sagittal slices, indicated with different colours showing different regions of 1) High 
consistency; where the mask border remains consistent over the adjacent image slices, 2) medium consistency; 
where the mask border differs between adjacent image slices, 3) low consistency, where the mask border is 
highly inconsistent over adjacent image slices.
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The performance of the proposed automatic scapula segmentation network was evaluated by comparing 
the masks predicted from MRI to the transferred manual masks from CT of the same shoulder using the Dice 
similarity coefficient38.

To evaluate the performance of the HR-MRI-mask reconstruction algorithm, the predicted HR-MRI-mask 
and CT masks of the same shoulder were compared. To account for the restricted FOV of the MRI and only 
compare the area inside the FOV of the MRIs, the masks were cropped 50 mm medially and 40 mm inferiorly 
from the centre of the glenoid. The cropped models were aligned using the iterative closest point (ICP) 
optimisation algorithm and the root mean square error (RMSE) of the models was calculated.

The accuracy of the proposed automatic landmark detection method was quantified using the Euclidian 
distance between the predicted landmark centre position on the HR-MRI-masks and the ground-truth manual 
landmark positions on the manual CT masks. The angular errors of the scapula axis (z-axis) and the CSP of the 
HR-MRI-masks and those defined by the manual landmarks were also measured.

Ground-truth scapula morphology parameters, including the glenoid radius, the glenoid height, the GV, 
the GI, and the CSA, were calculated by applying the algorithms described in Chaps. 2.3.4 and 2.3.5 to the CT 
manual segmentation and manually depicted landmarks. The mean absolute errors between the automatically 
evaluated scapula morphology parameters on the HR-MRI-mask and the ground-truth morphology analysis 
on CT, were calculated. The Wilcoxon signed-rank test was performed to compare the differences between the 
values calculated from MRI and CT39 with a level of significance of p < 0.05. The intraclass correlation coefficient 
(ICC)40, was used to measure the absolute agreement between the methods. ICC estimates and their 95% 
confident intervals (95%CI) were calculated using the Pingouin41 Python statistical package, version 0.5.4, based 
on a single rater, absolute-agreement, 2-way mixed-effects model. The ICC results were further categorized 
according to Koo & Li et al.40.

Results
Segmentation accuracy
The mean Dice similarity coefficient score between the transferred manual segmentation from CT, and the 
automated segmentation of the scapula from MRI was 0.87 ± 0.05.

Fig. 4. Visualization of intermediate steps in generating the high-resolution scapula model from multiple 
MRI planes. The blue crosshair indicates the same glenoid position across all views. (a) In-plane distance map 
of the scapula segmentation on coronal, transverse and sagittal MRI planes, with distances ranging from − 15 
and 15. Bright areas represent high segmentation border distances within the scapula mask, while dark areas 
indicate large distances outside the mask. (b) Mask border consistency along the out-of-plane direction in the 
coronal, transverse and sagittal MRI planes, ranging from 0 and 1. White areas denote regions with low border 
consistency (assigned lower weighting for plane-combination), while dark areas indicate regions with higher 
consistency and weighting.
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High-resolution-MR image mask precision
In the test dataset, the MRI with the FOV per plane was used to generate the high-resolution MRI mask for 
each of the 10 patients. Among these, 6 coronal, 8 sagittal and 6 transversal MRI were T1-weighted and the rest 
T2- (4) or pd- (6) weighted. Despite using MRIs with the largest FOV, no scapula was fully contained within the 
MRI dataset FOV.

The mean and standard deviation RMSE between the aligned cropped HR-MRI masks and the manually 
segmented CT masks was 1.34 mm ± 0.26 mm. Figure 5 depicts the 3D model from a HR-MRI mask, the CT 
mask and the color-coded absolute error surface distance map on the CT mask between the HR-MRI and CT 
masks of a patient with an RMSE of 1.54 mm.

Landmark and axis prediction accuracy
The mean and standard deviation Euclidian distance between the automatically detected scapular landmarks 
on HR-MRI and CT masks was 2.0 mm ± 1.0 mm, 2.4 mm ± 1.5 mm and 2.0 mm ± 0.8 mm, for the anterior-, 
inferior- and posterior glenoid rim point, respectively. The superior glenoid tubercule was detected with a 
Euclidian distance of 2.1  mm ± 0.7  mm to the manual landmarks on the CT mask and the acromion lateral 
corner with a Euclidian distance of 3.3 mm ± 1.6 mm. The predicted transverse scapular axis had a mean angular 
error of 3.6° ± 1.8° and the predicted CSP normal a mean error of 4.7° ± 4.3°.

The CSA projection plane was predicted with a mean and standard deviation error of 0.2° ± 3.1° around 
the y-axis (corresponding to ante- and retro- version error) and 1.0° ± 5.5° around the transverse scapular axis 
(corresponding to an error of extension).

The mean and standard deviation Euclidian distance between the extrema points on the HR-MRI and CT 
masks were 2.7 mm ± 1.2 mm and 3.3 mm ± 1.1 mm for the inferior-most and superior-most glenoid points, 
respectively, and 5.9 mm ± 3.1 mm for the CSA point on the acromion.

Morphology parameters
The results of the comparison between the morphological measures taken from manual landmarks and 
segmentations on CT images, and our automatic pipeline with automatic segmentation and automatic landmark 
detection on MRI are shown in Table 2. For the glenoid anatomic dimensions, the mean difference was less 
than one millimetre between the two methods (-0.7 ± 0.8 mm for the glenoid radius and − 0.3 ± 1.9 mm for the 

CT MRI

p-value

Diff (abs) ICC

Mean SD Mean SD mean SD 95% CI Interpretation

Glenoid radius [mm] 12.6 1.2 12.0 ±1.2 0.03 0.8 ±0.5 0.8 (0.40–0.95) Good (95%CI poor-excellent)

Glenoid height [mm] 36.4 3.7 36.1 ±4.3 0.85 1.7 ±0.8 0.9 (0.62–0.97) Good (95%CI moderate-excellent)

Glenoid version [°] 0.0 5.11 -1.5 ±4.2 0.38 2.6 ±2.5 0.7 (0.23–0.93) Moderate (95%CI poor-excellent)

Critical shoulder angle [°] 33.3 4.26 32.0 ±4.0 0.04 1.8 ±1.1 0.9 (0.69–0.98) Excellent (95%CI moderate-excellent)

Glenoid inclination [°] -6.4 5.69 -5.2 ±5.2 0.16 1.6 ±1.8 0.9 (0.74–0.98) Excellent (95%CI moderate-excellent)

Table 2. Comparison of the group mean ± standard deviation of morphological metrics between 
measurements performed using manual landmarks on CT images and measurements performed on MRI 
using our proposed methods. The differences of the values form CT and MRI are analysed using the p-value 
of the wilcoxon test between the two measurements as well as mean and standard deviation of the absolute 
differences for each parameter. The inter class correlation (ICC) between the measurements from CT and MRI 
are presented. Intraclass correlation (ICC), confident interval (CI).

 

Fig. 5. 3D models from a patient with RMSE of 1.54. (a) 3D model of the HR-MRI-mask, (b) 3D model from 
CT, (c) color-coded map of absolute error surface distance between HR-MRI and CT 3D-models (blue = 0 mm, 
to yellow ≥ 5 mm).
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glenoid height respectively). For the morphological metrics, the CSA had a mean error of -1.3 ± 1.7 degrees, the 
GI, a mean error of 1.3 ± 2.1 degrees, and the GV, a mean error of -1.4 ± 3.4 degrees. For the glenoid anatomic 
dimensions, the absolute agreement between the CT and MRI measurements was good, with ICC values of 
0.81 (95%CI 0.40–0.95; poor to excellent) for the glenoid radius, 0.89 (95%CI 0.62–0.97; moderate to excellent) 
for the glenoid height. The absolute agreement between the and the GI and CSA was excellent 0.93 (95%CI 
0.74–0.93; moderate to excellent) for the GI and 0.91 (95%CI 0.69–0.98; moderate to excellent) for the CSA 
respectively. For the GV, the absolute agreement was moderate, with an ICC of 0.73 (95%CI 0.23–0.93; poor to 
excellent). CT and MRI based measures were only statistically significantly different in case of the GR and the 
CSA.

Discussion
We described a deep learning-based method that enabled the automatic calculation of scapular morphological 
metrics on diagnostic MRI with anisotropic resolution and reduced FOV. For all morphological measurements 
the ICC was substantial or almost perfect, highlighting the feasibility of 3D MRI based analysis for clinical 
diagnosis.

The proposed pipeline ensures compatibility with common clinical practices, by requiring a single transverse, 
coronal, and sagittal MRI, in any of the commonly available diagnostic T1-, T2 or pd-weighted sequence. The 
pipeline starts with deep learning-based scapula segmentation from the MRI in these planes. Subsequently, 
high-resolution 3D models are generated from these segmentations. Finally, we present a deep learning-based 
landmark and axes detection on the high-resolution mask for morphology calculation.

With the proposed network, the scapula was segmented with a Dice similarity coefficient of 0.87 ± 0.05 
compared to CT. This Dice coefficient value is lower than our previously presented value for automatic deep 
learning-based segmentation of the scapula from T1-weighted MRI, which was 0.92 ± 0.0517. However, in this 
work the segmentation accuracy was evaluated relative to CT-derived segmentations, while previous evaluations 
were performed relative to manual segmentation from MRI only. When the network presented in17 was applied 
to the T1-weighted MRI images from our test dataset, an average Dice similarity coefficient of 0.79 ± 0.08 was 
achieved compared to the CT-derived ground-truth segmentation. This indicates a significant improvement in 
segmentation accuracy with our proposed approach. Manual segmentation borders of the scapula in MRI are 
placed considering the visualized structures in the image, potentially leading to misalignments compared to 
the true bone borders. Due to improved imaging quality of skeletal structures in CT, the accuracy of manual 
segmentation of the scapula in CT is significantly higher than that of MRI. Using CT segmentation for network 
training thus allows the network to predict the scapula borders more accurately than can be visualised in MRI 
alone. The lower Dice similarity coefficient of the network, when compared to CT-derived scapula segmentations, 
might be due to the border of the transferred mask from CT not aligning with any clearly visible structure 
in an MRI, making it harder for the network to predict accurately. Compared to alternative approaches for 
automatic segmentation of the scapula in anisotropic MRI using anatomical priors, our algorithm achieved 
superior precision42,43.

The RMSE of the test-patients’ 3D high resolution models of the scapula (N = 10) compared to CT was 
1.34 mm ± 0.26 mm. Figure 4 shows a typical distance map of an example patient with average RMSE. Visually, 
large surface differences between the HR-MRI models to the CT models were located in the periphery and 
mainly at the medial parts of the scapula. In regions where the morphology measurements are performed, such 
as the glenoid and the acromion, these errors were significantly lower. This might be due to the fact, that these 
regions are visualized in the MRI along all orientations whereas the structures in the periphery are often outside 
the FOV of one or multiple planes.

The GI was measured automatically on the MRI data with a mean error of -1.4° ± 3.4° and an ICC of 0.93 
(95%CI 0.74–0.98) which is superior to published interobserver variations of − 3.0° ± 3.6° for CT44 and the 
ICC of 0.88 (95%CI 0.78–0.94) between manual MRI and CT measurements45. The GV was measured with 
a mean absolute error of 2.6° ± 2.5° and an ICC of 0.73 (95%CI 0.23–0.93) on MRI data compared to the 
measurement on CT. These errors are comparable or lower to discrepancies observed between the GV and GI 
measurements of two commercially available shoulder arthroplasty planning systems, where GI measurement 
differences were less than 5° in only 54% of cases, and GV measurement differences were less than 5° in 70% 
of cases46. This ICC is in the range of a previously reported interobserver ICC of 0.68 (95%CI 0.45–0.83) on 
CT and 0.76 (95%CI 0.57–0.88) on MRI47. The Pearson correlation of GV measured on MRI compared to CT 
was r = 0.75, superior to that found by Parada et al., who documented a correlation of r = 0.63 between manual 
MRI and CT GV measurements47. Additionally, in47 measurements were performed on MRI-images with at 
least 75% of the scapular width. The differences of the CSA measurements from MRI and CT were statistically 
significant, however the mean absolute error was low with 1.8° ± 1.1° and the ICC was high with 0.91 (95%CI 
0.69–0.98). This mean absolute error is higher than previously reported absolute interobserver agreement of 
1.0° ± 1.0° if measured manually on CT6 but is lower than the accepted errors if measured on radiographic 
images6. Additionally, our ICC is higher than the ICC reported between raters of 0.75 (95%CI not reported) if 
manually measured on MRI48, where clinicians used T1- and T2-weighted MRIs to perform three-dimensional 
CSA measurements in the sagittal MRI plane, marking the lateral-most point of the acromion and scrolling 
the images to the glenoid midline for measurements. The glenoid radius measurement from MRI and CT 
were significant different. However, the mean absolute error of the glenoid height and radius between those 
automatically measured on MRI and those from CT were comparable to those reported between manual and 
semi-automatic measurements on the same CT data49.

The main scapula axes are significant for accurate morphology analysis as they impact GI5,50, the CSA12 
and GV51,52 measurements. Until now, the need for accurate imaging of the full scapula for definition of the 
scapular axes has limited morphology analysis on MRI. We have demonstrated the feasibility of alternatively 
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predicting the required axes directly from a partial scapular model, eliminating reliance on landmarks on the 
often cropped medial and proximal borders. This method allows for greater variation in imaging protocols and 
relaxes segmentation accuracy requirements for the thin medial scapular border. While the mean orientation 
error of our predicted measurement plane for the CSA was 0.24° ± 3.07° is in an acceptable projection error 
range12, the mean angular error of the predicted transverse scapular axis of 3.60° ± 1.82° could have negatively 
influenced the accuracy of the automatic GV measurements52.

Our CSA and GI measurement error on MRI compared to CT falls below the range of reported clinically 
relevant differences. Studies on patients with isolated supraspinatus tear reported CSA differences of 2° to 4.3° 
between patients with retear and without retear after surgical repair3,53,54. Another study on RC tear patients found 
GI differences of 5° between patients without retear and full retear after surgical repair3. However, considering 
that previous morphology studies of RC tear patients were performed in 2D on MRI or radiography, which are 
known to suffer from large measurement errors, we believe that our proposed method has the potential to enable 
the discovery of more clinically significant morphological differences of various RC tear patient groups.

One limitation of our study is the limited size of the test dataset, which restricts the ability to draw definitive 
conclusions regarding the significant difference of the accuracy of landmark measurement between MRI and 
CT imaging. The mean differences between MRI and CT morphology measurements also indicate a tendency 
of our methods to underestimate the CSA and GV and overestimate the GI. However, testing on larger datasets 
would be required to determine the significance of such trends and to identify if these underestimations are due 
to errors of the automatic segmentation, or due to the different resolution of the MRI and CTs as observed by 
Neubert et al.55, or if the proposed combination algorithm lead to a slightly smaller scapula model. Furthermore, 
in this study, the performance of the proposed algorithms was not tested on shoulders with bone defects or with 
arthritic changes. Accurate shoulder morphology analysis is expected to be especially challenging on arthritic 
glenoids with osteophytes due to their fine structures. Future studies will investigate the accuracy of these 
methods in such patients, and the influence of MRI resolution and weighting.

To further improve the accuracy of segmentation obtained from conventional diagnostic MRI, our method 
could be refined to use a regional weighting function when performing the multivariate interpolation of the 
three anatomical planes. This refinement could emphasize the information contained in a specific plane in 
certain regions of the scapula, enhancing segmentation precision. In the future, scapular shape completion using 
statistical shape model fitting or deep learning-based shape completion could alternatively be explored to address 
the challenge of medial and inferior landmarks not available within the current FOV. This enhancement may 
improve accuracy in detecting the CSP and transverse scapular axis, thereby improving morphological analysis 
precision. More broadly, the methods presented herein for 3D scapula modelling from MRI hold potential to 
eliminate the reliance on CT in applications such as shoulder arthroplasty planning.

Conclusions
In conclusion, our study demonstrates the feasibility and accuracy of a fully automatic 3D morphology analysis 
pipeline for diagnostic MR arthrogram data. Despite the challenges posed by the reduced resolution and 
restricted FOV of diagnostic MRI our method enabled robust segmentation and landmark detection, providing 
reliable scapular morphology measurements with clinically acceptable precision even in diverse imaging settings. 
Furthermore, our approach facilitates the application of 3D scapula morphology analysis to RC tear patients 
without the reliance on CT imaging, enabling the standardised investigation of large cohorts, and versatility for 
extension to include both established and novel morphological parameters.

Data availability
The data that support the findings of this study are available on request from M.Z. The data is not publicly avail-
able due to the contained information that could compromise the privacy of the research participants.
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