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Résumé

La simulation de fluides est un probleme multi-échelle. Si nous pensons a un
écoulement turbulent par exemple, le nombre d’échelles qui y apparaissent s’étend
sur plusieurs ordres de grandeur. Ceci devient critique lorsque nous voulons simuler
les écoulements de fluides via une méthode numérique, car la quantité de points
nécessaires pour représenter et résoudre toutes les échelles peut dépasser largement
les capacités de calcul des plus puissantes machines actuelles.

Une solution qui a été proposée pour remédier a ce probleme est 1'utilisation
de grilles non—uniformes. L’idée est d’essayer de garder le temps d’exécution
raisonnable en augmentant la précision uniquement dans les endroits critiques
de la simulation. Le probleme des grilles non—uniformes a été étudié dans toutes
les méthodes numériques dites traditionnelles.

Dans cette these, nous nous intéressons a une méthode numérique en partic-
ulier, la méthode de Boltzmann sur réseau. Dans sa formulation originale, cette
méthode utilise des grilles uniformes et régulieres. Si nous y introduisons des
grilles non—uniformes, il y a des discontiniuités sur les quantités physiques qui ap-
paraissent. La communauté a proposé un nombre d’algorithmes afin d’éliminer ces
discontinuités sur les frontieres. Malgré toute la littérature existante, nous sommes
convaincus qu’il y a encore des zones d’ombre tant dans les bases théoriques, que
dans les implémentations.

Parmi tous les algorithmes présentés par la communauté, nous avons choisi
celui qui nous parait le plus général [18]. Apres avoir présenté les concepts les
plus basiques du raffinement de grille, cet algorithme est décortiqué. Il s’en suit
tous les détails théoriques nécessaires a la mise en place du couplage entre grilles
de résolution différente. Une des nouveautés de cette these est d’avoir trouvé que
ces opérations doivent posséder certaines charactéristiques minimales pour étre
consistantes.

La théorie a été appliquée a une implémentation générique du raffinement de
grille. Nous avons décidé d’utiliser la librairie multi-physique Palabos. Cette
librairie possede des implémentations vérifiées d’'un grand nombre de modeles
de Boltzmann sur réseau. En plus, Palabos propose une exécution en parallele
transparante pour l'utilisateur, qui a été testée sur des machines avec plusieurs
milliers de processeurs. Finalement, un autre avantage de Palabos est qu’il s’agit
d’une librarie open—source, donc il est possible de rendre notre code accessible aux
personnes intéressées.

Pour témoigner de la fiabilité de Palabos, nous ’avons comparé a un logi-



12 Contents

ciel commercial sur un écoulement de flux sanguin dans une géométrie artificielle
représentant un anévrisme. Nous avons mesuré un certain nombre de quantités
physiques sur les deux logiciels, trouvant qu’elles sont en accord.

Notre code a été testé sur des problemes a deux et trois dimensions. Nous
avons pris soin de choisir des simulations intéressantes présentant des difficultées,
comme des gradients de vitesse élevés qui traversent les frontieres de raffinement.
Les résultats obtenus prouvent que nos opérations de couplage entre les grilles sont
robustes et précises. Nous avons notamment prouvé numériquement que le schéma
garde le deuxieme ordre de précision en temps et en espace.

Pour finir cette these, nous proposons deux sujets en relation avec le raffinement
de grille. Premierement, un nouvel algorithme de couplage pour des grilles avec
des résolutions différentes. Ensuite, nous avons développé un critere algorithmique
permettant d’identifier les regions de ’espace qui ont besoin d’avoir un raffinement
local. Nous remarquons que ce type de criteres sont nécessaires pour bien profiter
des grilles non—uniformes et que la littérature dans le sujet est assez réduite.



Abstract

Fluid motion is an intrinsically multi-scale phenomenon. For instance, in the tur-
bulent case, the range of excited scales of motion spans over many orders of mag-
nitude. This becomes of great concern when trying to simulate fluids numerically.
One solution to this problem is the usage of non-uniform grids or grid refinement.
The main idea is to keep the computational time reasonable, while simulating all
or most of the scales present in the problem. In particular, in this thesis, we are
interested in grid refinement for the lattice Boltzmann method.

Although the topic has been already studied by the community, we are con-
vinced that there is room for improvements, both in the theoretical and practical
explanations provided so far.

We present thoroughly all the theory of the grid refinement for the lattice Boltz-
mann. As an interpolation operation is necessary in the selected approach, the
minimal order of interpolation is explained. Further, we introduce a new filtering
operation that is mandatory to study turbulent flows. Our generic implementa-
tion, which was developed on top of the Palabos open-source library, is explained
in detail. Our approaches are tested on several two and three-dimensional bench-
marks. We have specially chosen challenging cases, where, among others, large
gradients cross the grid-refinement frontiers. Finally, we end with two other sub-
jects related to grid refinement, namely a grid refinement algorithm that does not
use an overlapping zone between the grids and a criterion to choose zones where
local refinement is necessary.

Keywords : computational fluid dynamics, lattice Boltzmann method, multi-
scale simulations, grid refinement, Palabos.
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Notations

We introduce here the mathematical notations that are used throughout this thesis.

The scalar variables are noted with lower case characters. The vectors are rep-
resented in boldface lower case and the tensors in boldface upper case characters.
A dot “” between two vectors is their scalar product, whereas the full index con-
traction is denoted by a colon “:”. The tensor product of two vectors a and b is
denoted ab.

The nabla operator, V, is the vector containing the space derivatives in each
spatial direction if not specified otherwise. If there is an possible ambiguity the
quantity on which the derivative depends is underscored.

Finally, we use (-) to define a temporal mean of a quantity.

In the table below the reader will find a summary of the notations, with some
examples.

Object Example
Scalar P, U
Vector u, a
Tensor II, Q
Scalar product £E-u
Full tensor contraction II:s
Tensor product c§
Nabla Vs, Vo,
Temporal mean (p) , (u)
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Chapter 1

Introduction

THE governing equations for fluids dynamics are solved with numerical methods,
because they are notoriously intractable analytically. The continuum problem may
be approximated at a set of discrete times, over a discrete number of spatial regions
known as a mesh.

Depending on the particular problem to be solved, it might be desirable to
locally assign more points to a certain region, while keeping the rest of the mesh
untouched. Such an operation has been studied in all the traditional methods for
computational fluid dynamics, in the so—callled non—uniform meshes or grids.

In this thesis, we work with a particular numerical method: the lattice Boltz-
mann method. Even though this method is relatively recent with respect to tra-
ditional numerical methods, it has proven to be a useful tool in many fields of
application, such as complex multi—phase fluids [51] and bio—engineering [1].

In the original formulation, the lattice Boltzmann method is used over an evenly
spaced grid. The introduction of non—uniform grids or grid refinement implies the
creation of discontinuities of the physical quantities on the boundaries between
grids with different refinement level. As grid refinement is a very important feature
for a numerical method, the lattice Boltzmann community has tried to find a
solution to this problem almost since the invention of the method.

The main goal of this introductory chapter is to provide the motivations for
the current thesis. In the second part, we present the outline of the chapters that
compose this document.

1.1 Motivations for this thesis

As we have already mentioned, the grid refinement is not a new subject in the
lattice Boltzmann community. We find however, that there are some problems
with what has been done so far.

First, we must note that there are many methods available for the grid re-
finement in the lattice Boltzmann framework. They exploit different properties of
the method or use even different formulations. This can be seen as a good sign,
because of the interest of the community to solve the problem. In opposition, we

17



18 Chapter 1. Introduction

find that this variety of approaches and methods can also be seen as a weakness,
as there is clearly not one method that has gained the acceptance of the whole
community.

Another problem that we have found in the literature is that, in many cases,
not all the details needed to implement a particular grid refinement are provided.

Then, we must note that very often, the codes for each of the different grid
refinement methods are not available to the public. For instance, it would be very
interesting to benchmark them one against the other for a given problem, so that
clear results on performances and precision can be assessed.

This thesis tries to settle some of these issues. After studying the literature on
grid refinement, we have chosen a particular algorithm, which we considered to be
general and an appropriate candidate for our generic implementation.

In the framework of this algorithm, we study in detail all the operations needed
for the coupling of grids with several refinement levels. We have found that two
coupling operations in this framework, which are the interpolation and the decima-
tion, need to meet some minimal requirements to allow a consistent communication
of all the important physical quantities.

All these concepts are applied into an implementation that uses an open—source
library. We have tried to develop a generic code that hides the complexity of the
problem to the user.

The fact that we have chosen to use an open—source library is motivated by
the desire to share the code, so that people can test it and experienced users can
find all the algorithmic details. We have performed a number of tests ourselves,
to ensure that both the theoretical concepts and the implementation are actually
sound.

1.2 Outline of this thesis

The chapters of this manuscript are organized as follows:

e The second chapter gives a short introduction to hydrodynamics and an in-
troduction to the lattice Boltzmann method, which is the numerical method
used through this thesis.

e The third chapter is devoted to the Palabos open—source library, which is the
building block for the generic grid refinement that we have implemented. In
this chapter we also present a benchmark between Palabos and a commercial
software for a blood flow problem.

e In the fourth chapter we present the basics of grid refinement. We have tried
to summarize as much as possible all the necessary concepts. We emphasize
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in the couplings between the grids, which are explained in great detail. This
chapter ends with a numerical proof of the importance of the order of the
interpolation step.

e The details of the generic grid refinement and its implementation come in the
fifth chapter. We test our implementation on several 2D and 3D examples,
in order to prove the correctness of all the operations described in the fourth
chapter.

e The sixth chapter proposes two new solutions for specific aspects of the grid
refinement. First we explain an algorithm to couple two grids of different
level with no overlapping zone between them. Then, we present a criterion
that permits to detect zones where more precision is needed.

e In the last chapter, we give the conclusions of our work and we propose some
perspectives for the future.
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Chapter 2

The Lattice Boltzmann Method

THE first part of this chapter is dedicated to a brief overview of the hydrodynamics

field. The rest is devoted to the introduction and study of several aspects con-
cerning the lattice Boltzmann method (LBM) [68, 12, 77], which is the numerical
method that is used on the rest of this thesis.

2.1 Short introduction to hydrodynamics

In this section we first present the properties that describe a fluid and the equa-
tions that govern its motion. After that, we continue with the introduction of
computational fluid dynamics (CFD). Finally, we discuss the different natures of
the flows present in nature and define the Reynolds number as a classifier.

2.1.1 The basic equations

Let us start presenting the hydrodynamics, a field of physics that deals with the
motion of a fluid.
Fluids have several macroscopic quantities that describe their state:

Density (p) which relates the quantity of mass per volume of the fluid.
Velocity (u) that specifies the sense and rapidity of movement of the flow.
Pressure (p) is the force per unit of area applied to the fluid.

Viscosity (p) or dynamic viscosity, that quantifies the resistance of a fluid to
flow. It is also common to consider the kinematic viscosity v, which is
defined as v = pu/p.

When a fluid has a constant kinematic viscosity v, it is called a Newtonian
fluid. Otherwise, in the case of non-Newtonian flows, the viscosity can depend
both on space and on time. In the same manner, if the density of the fluid does
not change over space or time, then the fluid is called incompressible.

21



22 Chapter 2. The Lattice Boltzmann Method

In this thesis, we are interested in the study of incompressible Newtonian fluids.
In this particular case, the basic equations that represent the evolution of the
observable properties of the fluid are given by the continuity equation

V-u=0, (2.1)

and the conservation of the momentum equation
1 2
Ou+ (u-Viu = —;Vp + vV-iu, (2.2)

in absence of any external force.

These equations form a set of equations called the Navier-Stokes (NS) equa-
tions. The NS equations play a fundamental role in representing fluid motion, as
they allow us to study the evolution of the properties that describe the fluid.

For further information about NS, the reader is invited to read the following
references: Landau [37] and Ryhming [62] (only in French).

2.1.2 Computational fluid dynamics

Even though there exist analytical work on the NS equations in particular cases,
when dealing with complex setups or turbulent flows they are intractable analyti-
cally. To solve them in practice, one needs to solve them with a numerical method
in order to obtain an approximated solution to our problem. This field is known
as CFD.

There exist several traditional numerical methods that are used in CFD. We
are not using any of these methods, in consequence, they are not treated on this
thesis. The interested reader is referred to Griebel [26] for an introduction to the
finite differences, Versteeg [76] which deals with the finite volumes and Zienkiewicz
[81], for the finite element method applied to fluid dynamics.

A rather different level of description was used with the lattice gas automata
(LGA). We simulate fictitious particles that travel inside a uniform grid according
to a fixed set of velocities. The particles have very simple collision rules, but
these simple microscopical interactions produce a rich and complex macroscopic
behaviour.

Notable and well-known examples of the LGA are the HPP (Hardy, Pomeau
& de Pazzis) and the FHP (Frisch Hasslacher & Pomeau) LGA. Both of them and
their properties are studied in detail in [12]. We must note that FHP was able
to recover the NS equations correctly. However, there were many problems with
these approaches. For instance, finding a 3D version for the LGA was a difficult
issue which resulted in solutions that would use hypercubes and the projection of
a four-dimensional version of the NS equations (see [16]).
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The lattice Boltzmann method was proposed as a solution to the problems
plaguing the LGA. Even though in its original formulation, it was conceived as a
LGA, the method can also be obtained as the discrete version of another equation:
the Boltzmann equation.

2.1.3 Nature of flows

Let us think about honey flowing slowly through a pipe and the flow caused by a
spherical object moving very rapidly in the water. Both flows have a very different
nature.

The first case is an example of a laminar behaviour. When a flow is laminar,
the fluid moves like parallel layers. In real life however, most of the flows are
of turbulent nature. In the turbulent case, the aforementioned layers are broken
and the movement of the fluid becomes more chaotic. The flow, even following
deterministic equations, becomes somehow random, and its evolution becomes
difficult to predict.

Turbulent flows have the particularity to present phenomena in a vast number
of space and time scales, which are often represented by the Kolmogorov scales
(see [53]).

Consider Eq. 2.2. Let us define a characteristic velocity of the fluid U, and a
reference length L, which is for instance important, like the diameter of the pipe
or the diameter of the object in our examples. The non-linear term on the left
hand side (L.H.S.) (u - V)u can be approximated by U2/L. In the same way,
the viscous term on the right hand side (R.H.S.) vV?u can be approximated by
vUy/L?*. The ratio of this two quantities is the dimensionless number, called the
Reynolds number Re

Re = D (2.3)

v

The Reynolds number is one of the common ways that exist to define the nature
of the flow. For small Re, the flow is laminar because the viscous term vVZ?u
is significantly more important, implying that the viscous forces dominate the
movement. Then there is a critical Re. which delimits the creation of turbulence
at higher values. A flow with Re values high above the critical value is turbulent.
In this case, it is the non-linear term (u - V)u which defines the behaviour of the
flow. We note that this is the same exact term that is responsible for the difficulty
of the NS equations.
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2.2 The Boltzmann equation

The NS equations make a description of the fluid based on observable macroscopic
properties. The kinetic theory of gases proposes a different approach. As the fluid
is composed of particles, it is also possible to use classical mechanics to describe
their motion and interactions, which will in turn dictate the macroscopic properties
of the fluid. However, the number of particles contained in small quantities of fluids
are huge. For instance, consider simply 1 cm?® of water at ambient temperature. It
contains approximately 3.3 - 10?2 molecules. To represent the detailed microscopic
state and interactions of such system of particles is an intractable problem.

The statistical mechanics present yet another level of description. In this case,
we do not track single particles, but we are interested in large numbers of particles
and their collisions. In a region of the space € R? with a given velocity & € R?
at time ¢ we associate a particle mass distribution function f(x,&,t) to these
particles. For the sake of simplification we note f = f(«, &,t) when no confusion
is possible.

The number of particles found in a small volume d3z near x with velocity d*¢

around & is computed by:
fdPxd*¢ (2.4)

The Boltzmann equation describes the time evolution of f. The balance equa-
tion for a gas without any external force is given by

(0, +&-Va)f =Q(f) (2.5)

where Q = Q(f, f) is a term representing the internal collisions of pairs of particles
that conform the gas.
The two first moments of f give us the macroscopic density:

ol t) = / fde (2.6)

and momentum j = pu:
et = [ e (27)

where both integrations are taken over the whole microscopic velocity space.

The collision term €2 is very difficult to evaluate (see for instance [77] for the
complete expression). Therefore, there exist a number of models  ~ Q that try
to simplify it. A very well known approximation is given by the BGK model (for
Bhatnagar, Gross, Krook [6]), that states that the distribution functions are driven
towards an equilibrium state f°¢ with relaxation time 7

1

Q ;(f(.’ll,é,t) - feq(w7€at))' (28)
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In order for Q to have the same collision invariants as 2, the equilibrium
distribution can be of the Maxwell-Boltzmann distribution type:

eq _ p(CU, t) (u(wv t) — 6)2
e G T

where D is the number of dimensions of the system, 6 = k,7'/m, where kg is the
Boltzmann constant, m the particles mass and 7T is the temperature.

When ¢ is chosen to have this form, then its moments are the same as the
ones for the particle distribution function f

p(a:,t):/feqd§ (2.10)
i@, 1) = / ¢fde (2.11)

In Wolf-Gladrow [77], we find a nice proof that shows that under an asymptotic
Chapman—Enskog multi-scale analysis, the incompressible NS equations can be
obtained from Eq. 2.5 with the BGK approximation.

2.3 Discretization of the Boltzmann equation

Although we have mentioned that the lattice Boltzmann method (LBM) was de-
veloped in the line of thinking of the LGA, it can be obtained entirely from a
clever discretization of the Boltzmann equation. There are many properties of the
method that are a consequence of the discretization, so we have found interesting
to present some of the details.

The first part of the discretization restrains the Boltzmann equation to a finite
set of velocities. This is a rather tedious process with heavy calculations using
the projection of the particle density functions over the Hermite polynomials,
according to the ideas presented in Shan et al. [66]. As the whole calculations
exceed the scope of this thesis, we only reproduce the most important results here.
Nevertheless, the interested reader can find the complete calculation details in
Malaspinas [46].

The corollary of the velocity discretization is that it is possible to define a
discrete set of ¢ velocities &;, i = 0,...g — 1 for which the Eq. 2.5 is still valid, but
now reads

(00 & Vel f: = (i, 1) — [, &) (212)

for each of the finite velocities &;. The f; and fi? are the discrete version of the
particle distribution functions and equilibrium distribution function respectively.
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The moments become discrete as well, giving us

q—1 q—1
=S h= S g .13
1=0 1=0

q—1 q—1
pu = Z&fz‘ = Zéifieq7 (2.14)
=0 =0

The next step is a temporal and spatial discretization. Let us start by associat-
ing the partial differential operator in the L.H.S. of Eq. 2.12 with a total derivative

with respect to the time
d
O +& Vg = at

We can then integrate Eq. 2.12 with the BGK approximation along character-
istics over the interval [0, 0¢] obtaining

fz(m + 5t£27 €i7t+ 5t) - fi(waéia t) =

ot
_%/ [fi(m+€i57£i7t+s)+fieq(m+€isa£i7t+8)]ds
0
(2.16)

(2.15)

We recall that the trapezoidal method to approximate integrals is given by the
following formula

z+0x Sz
/ Fla)de = (e +6) + f(2)] + O(6a°) (2.17)

We apply the trapezoidal method to Eq. 2.16 in order to compute the two
unknown integrals on the right hand side. We obtain then:

fi(x + 0t&;, &, t + 0t) — fi(x, &, 1) =
- ;S—f_{fz(w + 0t&;, &t + 0t) + fi(x, & t)
— (@ + 0t&, &t + 0t) — [ (x, &, 1)} (2.18)

obtaining an implicit equation (we do not know how to compute f°(x+0t&;, &;, t+
dt)). One can get rid of this problem with the following variable change:

- ot eq

fi= fi+2_<fi_fi ) (2.19)

-
One finally obtains the explicit BGK discrete equation:

il + 0t 04 80) = [, €0) = —= (i, &0t) — (@ 6.0]  (220)

where T = 7 + % is the modified relaxation time of the model.
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2.4 Lattice Boltzmann Method

In this section we detail more about the LBM, introducing examples of the discrete

velocities and the most important results of the Chapman—FEnskog multi-scale

expansion. Then, we present an algorithm for the implementation of the LBM.
The interested reader can find further informations in Succi [68], Wolf-Gladrow

[77] and Chopard et al. [12].

2.4.1 Basic definitions

In the LBM, we are going to simulate the numerical scheme presented in Eq. 2.20.
Because of this, we can omit the = operator on the concerned quantities with no
further considerations. At this stage, one obtains the kinetic equation of the LBM
for the BGK model. For the sake of simplicity, we suppose that 6t = 1, then the
final equation reads

Fil@+ &t +1) = film, 1) — % (@) — (@, 1)) (2.21)

Here f;? is the discrete equilibrium distribution function, 7 the modified relaxation
time, and dt the discrete time step.
The relaxation frequency w is defined by

=— 2.22

w=— (222)

The discrete equilibrium distribution is defined by a truncated version of the
Maxwell-Boltzmann distribution

cu
{9 =wip (1 + £C2u +—=Q;: uu) ) (2.23)

S S

where p is the density, u is the macroscopic velocity field, Q; = &:&; — I, ¢, and
w; the lattice speed of sound and the lattice weights respectively. We note that p
and uw are computed by the distribution function through the relations presented
in Egs. 2.13 and 2.14 respectively.

When the discrete equilibrium has this form, then the following relations hold

q—1
pP= Zfieq7 (224)
1=0

q—1
pu=3 & (2.25)
1=0
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Fig. 2.1: The D2Q9 lattice with the vectors representing the microscopic velocity
set &. A rest velocity & = (0,0) is added to this set.

The pressure p is defined by the perfect gas law relation
p=cp (2.26)
and the kinematic viscosity v follows
v=_cil/T —1/2), (2.27)

We have a set of ¢ velocities in a D dimensional space which results into a
DDQg model. For instance, the D2Q9 lattice (see Fig. 2.1) which is given by:

2 =1/3, wy=4/9, w; =1/9, j ={2,4,6,8}, w, =1/36, k= {1,3,5,7}
{gi};gzo = {(O? O>> (_17 1)7 (_17 0)7 <_17 _1)7 (07 _1)7
(1,—1),(1,0),(1,1),(0,1)}. (2.28)

By performing a multi-scale Chapman—Enskog (CE) expansion (see [8, 12] for
more details) one can show that the LBM BGK discretization is asymptotically
equivalent to the incompressible Navier—Stokes equations (Eqs. 2.1 and 2.2).

The CE expansion is done under the assumption that f; is given by a small
perturbation of the equilibrium distribution

fi=fi"+efV + 0, (2:29)
where ¢ < 1 can be identified with the Knudsen number (see [33]).
During the CE expansion, one finds that fl-(l) is given by

@:ﬂ s 2.30
gfz 20;1 Ql . Y ( ‘ )
where the tensor ITM) = > &ikie fl-(l) is related to the strain rate tensor S through

the relation
Y = —22p78, (2.31)
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where S is defined by
1
S=; (Vu+ (Vu)h). (2.32)

The f; can be approximated by
fi= T+ (2.33)

where f"¢? is the non—equilibrium part of the particle distribution function. Ac-
cording to the assumptions of the CE expansion f{'*? is proportional to f)

fred ~ e f@ (2.34)
This allows us to express the f; depending only on macroscopic values p, u and
S ¢ |

We end this section by noting that the CE expansion comes from the physics
community. For a more numerical approach, the reader is invited to read the
papers dealing with the asymptotical analysis (AA) (see [35]).

2.4.2 The algorithm

In this part, we enumerate the operations to implement the LBM BGK algorithm.
We start with the decomposition of a time step into two parts that are applied
successively on the whole computational domain.

1. The collision, which modifies locally the value of the populations according
to

F (@, 0) = il t) = - (flw,t) — £, ). (2.36)

2. The streaming, which moves the populations to their neighbours according
to their microscopic velocity

filz + & t+1) = f2"(x, t). (2.37)

In Fig. 2.2 both steps are executed over a site . The f; become f** and then
become f; again but at the neighbouring site « + &;.

We note that the collide and stream steps can be executed in a single oper-
ation, which we call the “collide-and-stream” operation. This conversion is very
advantageous for the implementation as it allows better performances and a save
of memory (see [52]).

The complete algorithm is given by:
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Fig. 2.2: A depiction of a collide and a stream operations on a D2Q9 model.

1. Define and compute all the necessary variables for the simulation, for example
Re, so that our fluid has the desired behaviour.

2. Initialize the f; to some values. One usually defines a starting set of values
for p and w, which serve to compute f{?(p,u). Then we simply start by
eq

supposing that f; = f;

I
3. Compute the macroscopic variables p and w in every site .
4. With this macroscopic variables we compute f;*

5. We apply the collide and stream operations to modify the f;.

6. At this point one whole iteration of the simulation has been performed. We
can verify if some stopping criteria has been met, otherwise we return to
point 3.
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2.5 Estimation of error for the LBM

In this section, we show that the error of the LBM consists of three ingredients:
spatial error, temporal error and a compressibility error. We must note that this
third term appears only when we recover the incompressible NS equations.

The values for the spatial and temporal errors are a consequence of the usage of
the trapezoidal schema when performing the integration of the discrete Boltzmann
equation, which is shown above. We note that even though the trapeze is O(5t3),
this holds only for a time step. For all the time steps between 0, ..., ¢ the order is
reduced to O(dt?).

We note that in the paper by He et al. [30], there is an integration of the discrete
equation that incorrectly proves that the LBM is only first order accurate. The
problem with their approach is the integration method used.

The error for a LBM BGK schema with time step ¢ and space step dx obeys
the equation:

E(0z,6t) = O(62%) + O(6t*) + O(Ma?). (2.38)

The schema is second order in time and space. When simulating a system with
the LBM, in order to decrease the error, it is necessary to decrease both dx and dt.
There is however a supplementary constraint which relates these discretizations in
the form of the third term O(Ma?).

The term O(Ma?) originates by the compressibility error, as we assume that our
fluid is not compressible or slightly compressible during the Chapman—Enskog ex-
pansion. This term is proven to behave like O(§t?/6x?) in Latt [38]. The existence
of this relation obliges temporal and spatial discretizations to be tied together, so
that an overall order for the schema is preserved. There exist two popular types of
scaling that control the dependence between spatial and temporal discretizations.

The first one is the so-called convective rescaling of quantities, in which we
state that 0t ~ dx. This means that when dividing dx by a factor n to obtain a
better precision, the same operation must be applied to dt. When analysing the
error evolution, we see that error will be second order in space. However, there is
a drawback with the last term, which becomes a constant term O(1). This means
that whatever the discretization step we use, we end with a given constant error.
Nevertheless, this rescaling is faster, as both dx and §t vary linearly, in opposition
to the rescaling that follows.

The second popular rescaling is the diffusive rescaling. In this case, we impose
that 6t ~ d22. In this case, when replacing this values in Eq. 2.38, we obtain
again a method of second order in space. What we have achieved is to make the
incompressibility error disappear, as it becomes O(dz?). This rescaling is thus
used to get rid of the compressibility error. Nevertheless, it is clear that it is more
expensive in computational terms. When dividing the spatial discretization dx by
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a factor n, it is mandatory to divide dt by a factor n?.

We note that rescalings become relevant and worth mentioning for the following
chapters. The reason being that more than one spatial and temporal discretizations
exist at once in the presence of non—uniform grids.

2.6 Summary

In this chapter, we have made a small introduction to the hydrodynamics and the
numerical method used in this manuscript.

We have started by introducing the macroscopic properties that describe a
fluid, as well as the NS equations, which govern their variations. Then, we talk
about CFD, citing several traditional methods, but also presenting the LGA, as
an alternative for the discretization of the NS equations. We also explain that the
LBM was conceived as an improvement of the LGA. Next, we classify the flows
of different fluids according to their nature: laminar and turbulent. We introduce
the Reynolds number as a classifier of the nature of a flow.

A more analytical fashion to obtain the LBM is the discretization of the Boltz-
mann equation. We start by briefly presenting this equation. We mention that
it has been proved to be asymptotically equivalent to the NS equations. Then,
we move to the discretization of the Boltzmann equation. The discretization of
the velocity space for the Boltzmann equation is quite long, so we have chosen to
detail only the time and space discretization.

Once we have found the discrete BGK equation, we present the basic ingre-
dients of the LBM, namely the relation between the most important physical
quantities involved. We also enumerate the most important results obtained from
the CE expansion of the LBM kinetic equation. To end this section, we show the
basic algorithm of the LBM and define the collide and stream operations.

Finally, we analyse the error of the LBM. As a consequence of the integration
used for the discrete Boltzmann equation, the method is second order accurate
in time and space. There is however a supplementary constraint when recovering
the incompressible NS equations in the form of the so—called compressibility error,
which ties the time and space discretizations. We then present the two popular
rescalings that exist to relate space and time: the convective and the diffusive
rescalings.
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The Palabos open-source library

THIS chapter is devoted to the description of the library used to develop the
generic grid refinement, the Palabos open source library [39]. The first section
presents the basic parts and most basic data—structures of Palabos. Then, we dis-
cuss some of the more advanced models that have been included and implemented
in Palabos. In the next section, we detail a benchmark to compare Palabos and
the commercial software CFX for steady blood flow in a geometry representing an
aneurysm, a pathological malformation of a blood vessel.

3.1 Features of Palabos

Palabos is an open source library for fluid simulations conceived by Jonas Latt. In
order to provide both a good performance and maintainable code, the language of
choice is C++. Currently, there exist Java and Python bindings that allow to use
the features of the library from these languages as well.

The idea behind Palabos is to simplify the work required to perform a sim-
ulation, by providing a simplified syntax and by hiding the complexity of the
numerical model from the user. Another important feature is to provide facilities
to an advanced user that wishes to implement a particular model into the library.

A great amount of models and algorithms are already implemented in Palabos.
In the following we describe some of the featured ones in Palabos.

We begin with the boundary conditions. We have not presented them before,
but they are a necessary ingredient to any simulation to have a well-posed problem.
First, we cite the straight wall boundary conditions. We have for instance:

e the Skordos boundary condition [67]
e the Zou/He boundary condition [82]
e the Regularized boundary condition [40]

The reader is invited to read Latt et al. [42] for more on straight wall boundary
conditions.

33
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Often, we need to represent arbitrary geometries. For this purpose, it is possible
to use another boundary condition, called bounce—back. In this case, a lattice site
can be either fluid or solid. The only drawback of this approach is that complex
curvy objects are represented by a staircase approximation.

An improvement of this staircase approximation is possible with the off-lattice
boundary conditions. This state—of-the—art boundary conditions represent solid
walls with more accuracy, as we suppose that the solid wall does not necessarily
need to correspond exactly to a lattice site. The Guo boundary condition [27],
which exists in Palabos, is a good example of this kind of boundary condition.

We have presented the BGK collision model for the Boltzmann equation. Nev-
ertheless, there exist a number of different collision operators. The interest of this
models is to provide increased numerical stability or different physical behaviour.
Let us for example cite the following models implemented in Palabos:

e the multi-relaxation time model [15].
e the entropic lattice Boltzmann [7].

Besides the details that we have presented, Palabos also implements a number
of complex models to solve multi-physics problems. We can cite:

e Multi-phase models, like the Shan/Chen [65] and Lee [43] models, where
we simulate the interaction of two or more immiscible fluids with different
physical properties, like density or viscosity. The model computes the surface
tension between the interfaces of the liquid in the contact zone. We note that
this models are restricted to small density ratios.

e Free—surface flows, which is a model for immiscible multi-phase systems
formed a liquid and a gas, where the ratio of densities is very important.
Normally the gas is supposed to be inviscid and is not simulated. Instead,
we apply a surface tension to the liquid to simulate the effects of the gas.
The algorithm is based on [36].

e Lagrangian particles, which can be used to trace the stream-lines of the
flow for instance. But this is not the only use one can make of particles.
The addition of this model allows to define particles which have their own
characteristics and can interact between them and with the fluid. This can be
used to model red blood cells for example (see [48]). They can also be used to
model two miscible fluids, allowing to avoid the diffusive non—physical term
that appears with standard multi-phase models and give more importance
to the molecular level (see [49]).
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Thanks to a constantly growing user community, all the models in Palabos,
which extends over several thousand lines of code, have the opportunity to be con-
stantly tested. This has allowed to correct many bugs and enhance the capabilities
of the library over the time, making it more reliable.

As we have mentioned in the beginning of this section, Palabos offers many
advantages for advanced users to implement other models using the framework.
We present two of these features, which are very important when implementing
the generic grid refinement.

In Palabos, the simplest lattice where one can perform a simulation is called a
block. A much more useful data—structure called multi—block, which is a logical
group of several of the aforementioned blocks. It ensures the communication among
the internal blocks, while presenting the behaviour of a single unit to the user.

The multi-block approach provides many advantages such as:

e Sparse representation: only the needed parts of the domain are allocated,
thus saving space when we deal with domains that have holes or other non
allocated regions inside. For instance, see Fig. 3.1 where we use different
number of blocks to cover the same geometry. In certain geometries, we
have achieved an economy of almost 45% of the fluid nodes by using a sparse
representation.

Few blocks More blocks Even more blocks

Fig. 3.1: Sparse representation of the same geometry: depending on the quantity
of blocks, less fluid nodes are allocated.

e Parallelism: it is possible to divide a domain in several blocks. Latter this
blocks are attributed to different processors. The simulation can then run
effectively in parallel thanks to communications using the MPI library. This
feature has been tested in huge clusters containing several thousand cores
with a really good scaling.
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This possibility of having distributed multi-blocks raises and additional ques-
tion: how to apply operations over them in a transparent way to the user? The
solution that has been proposed to this problem are the processing functionals.
The user must define the operations to be executed over a single block. When
needed, every processor identifies the local blocks which he contains and applies
the operation to them. Finally, in order to provide more flexibility, the user has
the choice to either include them permanently on a multi-block, so that they are
executed automatically or apply them at a precise moment.

3.2 Benchmark of Palabos and CFX for blood
flow

We have performed a quantitative comparison between Palabos and the ANSYS
CFX numerical solver. The target problem was the blood flow in a synthetic
geometry representing a blood vessel attained of a deformation of the arterial
walls, called an aneurysm.

The Palabos simulations were performed by the Scientific and Parallel Com-
puting (SPC) group at the university of Geneva. In order to have someone with a
broad experience with the CFX software, we contacted the Laboratory of Hemo-
dynamics and Cardiovascular Technology (LHCT) from EPFL, directed by Prof.
N. Stergiopulos. This laboratory has a solid experience with this software, which
they have used for many years. The simulations were performed by Dr. Dimitrios
Kontaxakis.

3.2.1 Motivation

The motivation to benchmark both softwares is to give a complete quantitative
comparison of the LBM with the finite volumes method which is implemented
in ANSYS CFX, assessing both the advantages and problems with each of the
methods. We know that the LBM is an intrinsically time-dependant method, so
the question is how does it compare with the finite volumes for a steady problem.

Not only the simulation is in itself compelling, but also the study of the com-
plete pipeline of operations needed to achieve the results in both cases, in order
to better understand the forces and weaknesses of each approach.

This is an excellent opportunity to prove not only that the physical values for
both softwares are the same, but also to verify if it is possible to compute them
up to an arbitrary number of significant digits.

Finally, it is very interesting to compare this two softwares, Palabos being an
open—source software and CFX a commercial product.
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3.2.2 Geometry and simulation set-up

We have chosen to use a synthetic geometry for the simulation. To generate it, we
have used the open-source software shapes [5], which allows us to create smooth
3D geometries composed from XML files. Shapes produces an STL (STandard
Litography) file. This is a standard form of representing for surfaces in 3D.

The interest of using an artificial geometry resides in the fact that it is not
subject to copyright or legal issues, as it is very often the case with real data
taken from patients. The artificial geometry can be distributed to other people
with no further considerations, so that they are able to reproduce the benchmark.
For instance, the benchmark geometry in STL format can be found in the current
Palabos distribution.

The geometry is shown in Fig. 3.2. We have defined one inlet which is found
on the bottom and two outlets. For the inlet we apply a Poiseuille velocity profile.
We use a constant pressure for both outlets. As boundary condition, we have
chosen to use off-lattice boundary conditions, because of their increased accuracy
when compared to bounce—back.

Outlet

Outlet

Inlet

Fig. 3.2: Synthetic geometry used for the simulations.
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We compute the mean Reynolds number using Re = Uiyt L /v, with Upyer =
0.071176 the mean velocity in the inlet (m/s), L = 0.012 the diameter of the
inlet (m) and v = 3.7037¢ — 06 the kinematic viscosity of the blood (m/s?). One
obtains a value of Re = 230.61, which corresponds to the regime of the carotid
artery (see [58]). All these quantities are then converted to lattice units for the
simulation.

3.2.3 Methodology: Palabos

To accelerate the convergence for Palabos, we have decided to use a multi-grid
technique!. The idea is to solve the problem over a coarse grid Gy first. This grid
is not able to correctly represent all the small scales of the problem, only the big
ones, but the convergence is fast. One can use the steady state of GG as a starting
condition for a simulation over a finer grid GG;. This avoids the need to propagate
all the big scales over Gy entirely, which only has to solve the smaller scales. In this
fashion, even finer grids can be added to the pipeline, in order to further reduce
the total computation time, with respect to use only one fine grid.

We have decided to use three grids for our problem: Gg, with only almost 7
lattice sites for the inlet, Gy which is twice finer than Gy and Gs, that is four
times finer than Gy. In order to decide the convergence of a grid we use the mean
of the kinetic energy Uy = |u|/2 over all the fluid nodes of the domain. All the
simulations are executed in Intel Xeon E5620 cores.

The results are shown in Fig. 3.3. There we analyse the complete evolution of
the mean energy over each grid. We start with G, which has converged in two
minutes and 12 dimensionless time units, so taking almost 10 seconds per dimen-
sionless time. Then, we use the steady state found with Gq as initial condition for
the GG1, and in converges in 11 minutes. G needs 9 dimensionless time units to
converge, meaning that a dimensionless time unit of (G; takes more than a minute.
Finally, the finest grid G5 uses the steady state of G; as starting condition. It con-
verges in only three dimensionless time units, which nevertheless take 52 minutes
of computational time, or almost 17 minutes per dimensionless time.

In Tab. 3.1, we summarize the values of mean kinetic energy U, and mean
vorticity? w obtained for each of the three grids for the simulation.

The conclusion is that the total time of computation is almost 64 minutes for
the three grids. In opposition, we suppose that we use only G5 and that the system
needs 10 dimensionless units to converge. This would be equal to 170 minutes of
computation in total. This proves that the multi—grid methods are useful to reduce
the computational time.

IHere, multi-grid refers to a method to solve the problem over several grids with different
resolutions. See for instance [71].
2The vorticity is defined by w = d,u, — dyu,
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Mean energy convergence over the different grids
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Fig. 3.3: Convergence of the multi-grid system in dimensionless time units.

Table 3.1: Acceleration of the convergence using multiple grids.

Go Gy G (finest)
Inlet radius (lattice nodes) | 6.9 13.8 27.5
Site number 87360 698515 59586266
Computation time (min.) | 2 11 52
Mean energy 0.00118506 | 0.00117371 | 0.0011733
Mean vorticity 0.000524386 | 0.000542149 | 0.000548843

We note that the mean value for the energy is not completely wrong for the
coarsest grid when compared to the one from the finest value (error of 1% only).
The value of the mean vorticity has an error of 4%. In Fig. 3.4 we plot several
streamlines over the same plane across the aneurysm for the three grids at the
steady state. In this figure, we confirm that Gy provides an already acceptable

behaviour with respect to the two other finer grids.
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Grid 1 Grid 2

Fig. 3.4: Stream lines on a plane for the three grids.

3.2.4 Results

In order to compare the solutions provided by both solvers, we define several planes
and points of interest. The idea is to compare physical quantities point-wise and to
compare the iso-surfaces of velocity on the planes. Several integral mean quantities
are also computed over the whole domain. In Fig. 3.5, we depict these six points
and three planes.

In Tab. 3.2, we find the coordinates of the six points used for the comparison.
We note that these coordinates are given with respect to the STL file reference.
In the same way, we define the three planes that interest us, which are described
on Tab. 3.3.

Table 3.2: Coordinates of the points for the comparison.

Point | Coordinates

P (0.022046, 0.015072,0.044152)
b (0.027132,0.049947,0.095012)
Py (0.027132,0.049947,0.095012)
P, (0.031492,0.025971,0.084113)
B (0.025679,0.025971,0.091379)
B (0.018413,0.011439, 0.076848)

Table 3.3: Coordinates of the planes for the comparison.

Plane | Coordinates
Plane 1 | x = 0.016960
Plane 2 | y =0.017978
Plane 3 | z =0.084113




3.2. Benchmark of Palabos and CFX for blood flow 41

ne 2

Fig. 3.5: Planes and points of interest.

For each solver we have defined two grids. The first one is the benchmark
grid, which is the one we use for comparison with each other. The other one is
the reference grid, which is a grid with many more points, that we define as the
reference solution. For Palabos, the benchmark grid contains 700000 points, while
the reference solution contains up to 6 million points. In the case of CFX, the
benchmark grid has up to 1.2 million points and the reference one, 7 million.

Let us start analysing the results for mean quantities when the steady state
has been achieved. The results can be found in Tab. 3.4. We evidence that the
kinetic energies are very close for all the set-ups. The same happens with the
enstrophy, which this time is close to two significant digits. The pressure error is
only of almost 6% with respect to the value for CFX. For the reference grids, the
error is even smaller, their difference being only of 3%.

Table 3.4: Mean physical quantities.

Kinetic Energy | Enstrophy | Pressure
CFX (Benchmark) 5.531e-8 1.252e-2 10.28
CFX (Reference) 5.569e-8 1.290e-2 10.22
Palabos (Benchmark) | 5.668e-8 1.216e-2 9.673
Palabos (Reference) | 5.674e-8 1.252e-2 9.944

Then we compare the velocity norm at each of the chosen points. All the values
for the four different grids are found in Tab 3.5. We can assess that the results of
both softwares are in agreement in this case as well. The only point that needs
a special explanation is P5. We must note that it is located inside the aneurysm.
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From the contour-plots, we can observe that there are velocity gradients that travel
inside the aneurysm. Therefore, it is possible that the benchmark grid for Palabos
does not have enough resolution for P5. We observe that this value is improved on
the reference solution in Palabos, obtaining a value closer to the reference solution

in CFX (10% error).

Table 3.5: Velocity at the chosen points.

CFX (Bench.) | CFX (Ref.) | Palabos (Bench.) | Palabos (Ref.)
P 1.108e-1 1.120e-1 1.116e-1 1.116e-1
P, 5.836e-2 5.901e-2 5.860e-2 5.850e-2
Py 7.096e-2 6.890e-2 6.930e-2 6.901e-2
P, 1.829e-2 1.771e-2 1.740e-2 1.843e-2
Ps 1.908e-2 1.883e-2 1.434e-2 1.665e-2
Fs 2.796e-2 2.715e-2 3.006e-2 2.846e-2

We take several contour-plots of the velocity norm for each of the planes to see
if they are the same. The images corresponding to Palabos and CFX can be found
in Tab. 3.6. Each contour-plot is labelled with the velocity that corresponds to it.

Table 3.6: Comparative contour-plots over the different planes.
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Let us discuss more about the performances of the codes. As proposed, we
want to measure and compare the time needed for the whole pipeline. In the case
of Palabos, all the steps are performed by the same software, including the mesh
creation, which does take only some seconds of the total time. The mesh in the
case of the LBM is regular, there is no additional complexity when generating it.
In addition, Palabos can process the voxelisation algorithm in parallel, being able
to voxelize enormous STL files in few seconds.

In opposition, CFX uses an external software to generate the grid. The process
of generating a good meshing is more complex and it is also very important, as
the results depend strongly on the final mesh. We have preferred to except this
step from the considered pipeline for CFX.

Both codes have been executed on a parallel machine containing up to 64 Intel
Xeon E5620 cores. The performances for 1, 8, 16, 32 and 64 cores are presented in
Tab. 3.7. We see that CFX has a big advantage over a single core, but that over
64 cores, both softwares solve the problem in the same order of time.

Table 3.7: Computational times.

Cores | Palabos CFX

1 8h. 13 min. | 3h 32 min.
8 84 min. 48 min.

16 48 min. 31 min.

32 26 min. 19 min.

64 16 min. 12 min.

Finally, one result that is worth mentioning is the agreement of the wall-shear
stress® (WSS) computed by the formula

ou
To =I5 . (3.1)
where p is the dynamic viscosity, u is the velocity tangential to the wall and n is
the normal direction to the wall. On Fig. 3.6, we show the coloured version of
WSS for the reference simulations of Palabos and CFX. We see clearly that they
are in agreement in both cases. To our knowledge this kind of results for the WSS
have not been presented for blood flow.

30ne can think of the wall-shear stress as the force exerted by wall over the fluid in a direction
perpendicular to the wall.
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Fig. 3.6: Agreement of the wall-shear stress for both softwares.

3.3 Summary

This chapter introduces the open—source library Palabos, which is used latter for
our grid-refinement implementation.

The novelty of this chapter is a benchmark of Palabos with the commercial
software ANSYS CFX based on the finite volumes method. The methodology and
main results are summarized in the following.

e The benchmark is performed over a synthetic geometry generated by an
open—source software, in order to guarantee repeatability.

e The methodology in Palabos includes a multi-grid technique to acceler-
ate the convergence to the steady state.

e For both softwares we have performed two simulations: a reference sim-
ulation with a large number of grid points and a benchmark simulation
with a reasonable number of points, which is the one that are effectively
compared.

e The results show a good agreement in the mean quantities like pressure
and energy, as well as in the point—wise quantities like velocity.

e We have obtained an interesting accordance for the wall-shear stress in
the reference simulations.




Chapter 4

Grid Refinement

IN this chapter, we will present the key concepts of the grid refinement for the
LBM. First, we give the intuitive motivation for the use of non—uniform meshes.
Then, we explain all the concepts of grid refinement, from the most basic to the
most advanced.

4.1 Motivation

As shown in the previous chapter, the LBM error depends on the temporal and
spatial discretization steps (Eq. 2.38). In this section we intend to show the interest
of grid refinement to avoid the increase of computational time that is associated
with a uniform grid.

Let us illustrate this growth in a simple 2D example. In what follows we study
the cost of a hypothetical simulation over three uniform grids as depicted in Fig.
4.1. In order to simplify the computations, we consider a square geometry of side
L=1.

Go Gy Go

Fig. 4.1: Schema of finer grids to solve a problem.

Let us suppose that Gy has dzo = 1/N. It uses N? points to solve the problem.
The second grid G; is defined to be twice as finer as Gy (0x; = dx0/2), thus
containing a total of 4N? points. Finally, G5 is four times finer than Gy, which
results in 16 N2 points. From these numbers, one concludes that using a grid twice
as fine to solve a problem means four times more points in 2D (eight times in 3D).

45
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However, there is another cost that needs to be taken into account. Because
of reasons of stability (see [26]), when the spatial step is decreased, it is also
necessary to decrease the temporal step. In the following, we compute the cost
for one dimensionless time unit. Let us consider the convective rescaling (see Sec.
2.5), which is the cheaper one from the two possible rescalings presented. We
recall that it specifies that when we divide the spatial discretization by two, we
must do the same with the temporal discretization. For the incompressible NS
equations, this produces a O(1) error, but we expect this error to be small enough
to be neglected.

We go back to our example. Let us suppose that the temporal step of Gy is
simply 6t = 1/T, T and integer value. To achieve one dimensionless time unit,
we need to do T iterations. In the case of G, which has a temporal step 6t/2, to
achieve one dimensionless time unit, we need 27 iterations. Finally, following the
same logic, Go needs 47 iterations to achieve one dimensionless time unit.

In summary, the total cost for 7' dimensionless times for Gy is N?T. For G it
becomes 8N?T and for Gy 64N?T. If we suppose that we need a grid G5 to solve
our problem within an acceptable level of accuracy, our simulation is 64 times
more expensive than one that uses only Ggy. In 3D the cost of using G5 over Gy is
128 times.

Let us note at this point that for highly multi-scale turbulent flows, the num-
ber of points needed to represent the smallest scales might become intractable.
Another important observation is that in many physical problems, the most com-
plicated physics might happen only in small portions of the domain. For example,
close to boundaries.

This suggests the idea, as in most traditional numerical methods, to try to
avoid this global refinement by inserting local finer grids only in selected areas
where the important physics happen. A schematic view is shown in figure 4.2 if
we suppose that the important region of the simulation is found in the middle of
the domain.

e [T e

Fig. 4.2: Local refinements to increase accuracy

Let us suppose that we have one half of the original grid G by inserting a grid
of type GG and one third of the original domain with a grid of type G5. We can
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estimate the cost of a dimensionless time unit for this hybrid grid. In this case!

has ideally a cost proportional to 39N?T'/2, which is almost three times smaller
as the cost of having G5 over the whole domain.

This comparison shows the benefits of the non—uniform grids. Of course, it
holds, as long as the refined simulation has the same precision (up to a small
percentage of error) with the precision of the simulation that uses only Gb.

4.2 State of the art

In order to summarize as best as possible the literature for the grid refinement,
we have chosen to present the following five most used algorithms for non—uniform
grids in the LBM. In what follows, each of these algorithms is presented, followed
by the articles that use it.

Finite volume lattice Boltzmann equation (FVLBE).

This algorithm discretizes the Boltzmann equation (Eq. 2.5) over finite volumes.
The original idea is presented in Nannelli et al. [50]. Once this has been done, one
can implement non—uniform meshes exactly as in the finite volume method.

The literature in this case treats specially the control elements that have been
chosen to project the Boltzmann equation in order to preserve to be consistent with
the CE expansion. We can cite Xi et al. [78], where the authors use quadrilateral
control volumes for 2D simulations. Xi et al. [79] extend the model to trilinear
hexahedral elements in the case of a 3D simulation. In Ubertini et al. [73], further
studies about the method are presented like the usage of triangular control volumes
and boundary condition for this algorithm.

Interpolation—supplemented lattice Boltzmann equation (ISLBE).

This method from He et al. [31] proposes to define a non-uniform computational
grid that is unrelated to the uniform lattice where the LBM is solved. An algorith-
mic step after the collide and the stream operations is added, where the populations
on the computational grid that do not exist in the uniform grid are interpolated
from their neighbours in the uniform lattice. He [28] shows that the order of the
interpolation supplemented lattice Boltzmann method is highly dependent on the
interpolation scheme used.

Lu et al. [44] simulate a turbulent fluid inside a stirred tank. They propose to
modify the order of the operations, so that the interpolation is performed avant
the propagation step. Dixit et al. [17] simulate a thermal model using the ISLBE

'We are neglecting the cost of the communications intra grids to simplify the discussion.
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for high Rayleigh numbers?. Prenmath et al. [54] use this model for the simulation
turbulent jets coupled with a sub—grid model. We note that all these articles use
a second order interpolation.

Rescaling of f"¢? post—collision (FH).

This method was presented for the first time in Filippova et al. [20]. We apply
the collision step to the particle distribution functions f; obtaining f**. In order
to ensure the continuity of the velocity and the pressure between grids of different
levels, a convective rescaling is chosen (see Sec. 2.5). The continuity of these
quantities also implies that the f part is the same in the coarse and fine grids.
The authors find that a constant relates the post—collision non—equilibrium part
fm? of a coarse grid and a fine grid. The relation for this quantity, considering a
coarse grid with lattice size dx. and a fine one with lattice size dx, is given by

fneq,out o 5‘IC(TC B 1) neq,out (41)

N

where subindex ¢ and f are used for coarse and fine grid respectively.

The authors of the algorithm have used it to solve turbulent flows [22]. Another
application for small Mach numbers compared to the commercial solver FLUENT
[21] is also performed by the authors. The paper of Yu et al. [80] presents clearly
the ideas of the FH and implement a code to solve the cavity 2D and the flow past
a cylinder. It is interesting to note that they use a cubic symmetric spline function
to interpolate the unknown values.

Let us note that all the following articles use the paper [80] as underlying
algorithm for the grid refinement. Crouse et al. [14] propose the usage of quadtrees
type refinements in 2D to cover the domain in a recursive fashion. This paper
contains an adaptative flow simulation in two—dimensions. The quadtree data—
structure is converted in octrees for three dimensional simulations. An application
of these is presented in Geller et al. [24], where a lattice Boltzmann solver with grid
refinement is compared to the finite elements and the finite volumes methods. In
Toelke et al. [69] the authors achieve a multi-phase flow simulation with adaptative
grids. More recently, Geller et al. [25] have performed a turbulent jet simulation
using the cascaded lattice Boltzmann model, which is a new kind of multiple time
relaxation operator (see [23]), which allows a direct numerical simulation of the
problem. The solution is compared to a sub-grid model for the turbulence.

2The Rayleigh number is a dimensionless quantity that expresses the ratio of conduction and
convection for heat transfer
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Rescaling of f"“? pre—collision (DC).

The idea of Dupuis et al. [18] is to apply the rescaling of the non—equilibrium part
to the pre—collision populations. For more details, this method is explained in the
next section. Let us note that this is the method that we have chosen for our
generic implementation.

For this family of algorithms, we can cite the treatment of the reaction—diffusion
problem with the lattice Boltzmann (see [3]) with grid refinement in order to
improve the performances by Alemani et al. [4]. Alemani et al. [2] also study the
influence of the different possible rescalings of time and space between the grids
of different level affect the solution to 1D reaction—diffusion.

Volumetric grid refinement (VGR).

This method is based on the volumetric description of the lattice Boltzmann
method by Chen [9]. Using this formulation, Chen et al. [10] propose a method
that relies in the independence of the volumetric quantities from the resolution
of the grids. The grid refinement uses two special operations on coarse and fine
cites that do not have neighbours of the resolution. The Coalesce procedure sums
the particle populations on the fine nodes to obtain the particle populations for
the corresponding coarse nodes. In opposition, the Explode step redistributes the
populations on the coarse node to the surrounding fine nodes. The importance of
this method relies on the fact that it is implemented in the commercial software
PowerFlow [19].

The paper by Rohde et al. [61] proposes a modified version of the original
algorithm with uniform redistribution of particles in order to complete the missing
informations in the places where coarse and fine grids co—exist. We can also cite
Premnath et al. [55], which use the model to simulate the turbulent flow in a
channel with an underlying sub-grid model.

For the sake of clarity, all the aforementioned articles are classified in the fol-
lowing table according to the algorithm used. We specify each time the algorithm
used and the methods to increase and decrease the information between grids of
different resolution.
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Algorithm | Publication Increase infor- | Decrease in-
mation formation
Xi et al. [78] - -
Xi et al. [79] - -
FVLBME Ubertini et al. [73] - -
Ubertini et al. [74] - -
Lu et al. [44] Asymmetric sec- | -
ISLBE on(.i order interpo-
lation
Dixit et al. [17] Asymmetric sec- | -
ond order interpo-
lation
Prenmath et al. [54] | Asymmetric sec- | -
ond order interpo-
lation
Chen et al. [11] Linear interpola- | -
tion
Filippova et al. [22] Second order -
FH Filippova et al. [21] Second order -
Yu et al. [80] Cubic symmetric | -
spline
DC Alemani et al. [4] Not specified -
Alemani et al. [2] Not needed (1D | -
problem)
VGR Rohde et al. [61] Recombination Upifor.m dis-
tribution
Prenmath et al. [55] Explode Coalesce

Some comments on the table are necessary. Among the
an interpolation, we can see that the only reference where a cubic interpolation
is proposed is Yu et al. [80]. Let us note however, that they are using a cubic
spline which uses further information over the points, such as the derivatives of

the function.

methods that need

The only methods which propose a decrease in the information that is passed
from a fine grid to a coarse grid are the volumetric ones, because it is a step
included in the algorithm. We show latter in this thesis, that a special decrease
operation is necessary for high Reynolds numbers flows.

We end this review by noting that grid refinement has been lately implemented
in GPUs. See for instance the work by Schoenherr et al. [64].
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4.3 Basics of grid refinement

In this section we go through the basic concepts of grid refinement. To keep the
discussion simple the approach is explained over a two dimensional example, but
can be straightforwardly generalized in three dimensions. We start with geometri-
cal considerations. Then we explain the rescaling of units between the grids. The
rescaling of the populations f; comes afterwards. We end this section by briefly
describing the couplings between the grids that are needed. These couplings are
then treated in more detail in the next section.

4.3.1 Geometrical considerations

The following classification is closely related the one presented in reference [63].
There exists two grid refinement techniques, the multi-grid and multi-domain. In
the first case, the coarse grid is present all over the simulation domain, even in the
places where there exist refined patches (see Fig 4.3). On the other hand, when
defining a multi-domain refinement, the regions where refined patches are inserted
are taken off the coarse grid (see Fig. 4.4).

Fig. 4.3: A schematic view the multi-grid approach.

Each of these techniques has its advantages and disadvantages. For instance
the multi-domain approach has better CPU performances and higher memory
savings. However the actual implementation and the coupling between grids for
this approach may be more complex than for the multi—grid as will be explained
later.

The geometry management is of course easier in the multi-grid case, where we
have the coarse grids that are present over the whole domain. On the opposite,
there is need to realize geometrical operations to generate the domains in the case
of the multi-domain geometry. For instance, think of the necessity to exclude a
refined patch to be inserted and only keep the original domain excluding the patch.

The communication of information for the multi-domain must be done through
the common boundaries of the different domains, as there is not another possibility.
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Fig. 4.4: A sketch of the multi-domain approach.

In the multi—grid case, it is possible to choose a between a one-way coupling
or a two-way coupling. In the one-way case the information only travels from
coarser grids to finer grids but there is no feed—back from the fine to the coarse
grids. Although this is simpler from an algorithmic point of view, the coarse grid
might send insufficient information to the fine grid for the system to correctly
develop and solve the smaller scales represented by the finer grid. In the other
case, when having a complete feed—back between the grids, this problem might be
avoided. Let us note that the communication schema becomes the same as in the
multi-domain approach.

Finally, the division in parallel regions might easier for the multi—grid than for
the multi-domain, as the domains are more regular, thus facilitating a distribution.
In any case, the load balancing for non—uniform meshes is a very difficult problem.

4.3.2 Unit conversion

Each resolution level possesses its own “lattice units”. This change of scales induces
a need for a rescaling of the physical quantities between the grids. In the following,
we work in lattice units, the ¢ subscript stands for coarse grid units, while f for
fine grid units.

In this thesis we chose to refine the grids by a factor two only. If we define dz,
and dxs to be the spatial discretization of the coarse and fine grids respectively,
then they are related by

dxp = dx./2. (4.2)

Once the spatial refinement has been chosen, one still has the freedom to chose
the temporal refinement. However, as shown in the error equation, one must either
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choose between the convective and diffusive scaling. It is the first one that is used
in general in grid refinement algorithms.

The convective scaling has the consequence that the ratio of the spatial and
temporal discretizations is a constant

dtp/bxy = 0t./dx. = const. (4.3)

Therefore the temporal loop in the fine grid must do twice more iterations than
the coarse one.

An important consequence of the convective scaling, is that the velocity and
the pressure (and also the density, see Eq. (2.26)) in lattice units are continuous
fields on the grid transition while the viscosity must be rescaled as discussed now.
Let us recall the definition of the Reynolds number related to the coarse or fine
grid as

Re, = U, L, /vp, (4.4)

where n stands for ¢ or f, U,, L, and v, being respectively the characteristic
velocity, the characteristic length-scale and the viscosity of the n grid. Writing the
Ue, L., Uy and Ly in terms of the physical characteristic velocity and length-scale,
U and L, one has

U,=Uébt,/ox,, L,=L/éx,, (4.5)

and imposing that the Reynolds number is independent of the grid one gets

ULSt,  ULSty

Re. = Rey & = ) 4.6
¢ °t ox2v.  Oxtug (46)
Finally remembering Eq. (4.3) one finds for the rescaling of the viscosity
0w,
vy = 6—;% = 2v,. (4.7)

As a consequence, by using the relation between the relaxation time and the vis-
cosity of Eq. (2.27), one finds that 7; is related to 7. by

27.0x. + 0x§ + 0x,
Ty =
f 25[L‘f ’
47.+ 3

Ty = 9 . (49)

(4.8)
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4.3.3 Algorithm for the rescaling of populations

In this section we present in detail the algorithm proposed by Dupuis et al. [18],
as it is the one we use for our generic implementation in Chap. 5

It must be noted that this algorithm is the same as the algorithm of Filippova
et al. [20], with the exception that the rescaling is applied before the collision.
This fact avoids the restriction one clearly sees in Eq. 4.1 over the value of the
relaxation time on both coarse and fine grids, that the FH algorithm imposes.

The algorithm proposes a rescaling of the distribution function f; when passing
between grids of different refinement level. We consider that the convective scaling
is used.

The basic ideas of the algorithm are explained in the following. As noted in
Eq. (2.33) each f;, can be written as

fin = S (on, wn) + f,;fq(Vu),
fi,n = fieq(p? U’) + f;}sq(vu)v (410)

where n stands again for c or f. In the second line we used that p; = p. = p and
uy = U, = u are expressed in the same units independently if computed from f; ¢
or fi.. Since f{? only depends on p and u (see Eq. 2.23) it is continuous between
the grids and does not need any rescaling.

On the other hand, the non-equilibrium part f;"? = f; — f{* is proportional to
the gradient of the velocity, it is therefore necessary to rescale it when communi-
cating it between grids with different resolution. To determine this scaling, let us

neq

note by f;'.* the non-equilibrium part of the coarse grid and f;'s* the one from the

fine grid. The continuity of the f;"“? quantities read

f;?;q = O‘fﬁceq: (4.11)

where « is the factor to be determined to impose the continuity of the non-
equilibrium distribution functions. At the leading order one has f/"? = ¢ fi(l)
and using Eq. (2.30) and (2.31) in the previous equation one has

Qi : Sy = at.Q; : Se

QS =as QxS
f c
oz deTs (4.12)
(5tf Te

where S is the strain rate tensor in physical units, while S, and Sy are the same
tensor, but in coarse and fine lattice units respectively. Finally we find the following

relation

ne 5t TC ne 27—0 ne
I = Lfi,fq = ;fi,fq> (4-13)

be 5tc7'f
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where we used that 6t; = dt./2.
Finally, in order to reconstruct the fine and coarse populations from their
corresponding partners, we can use the following equations

e T ne
fi,f = fz‘q + #fi,cq (4-14>
and 5
= pen y ZTe pmeq 415
fZ,C fz + Tf fz)f . ( : )

This rescaling between the grids allows for a continuous transition of the physical
quantities at the grids interface.

4.3.4 Communication between grids

When using multi-resolution approaches, a communication between the grids is
needed. In the case of multi-domain methods the communication is done on the
boundaries connecting the grids. The coupling is made in two directions: from
coarse to fine and from fine to coarse grids. In this subsection we intend to pose
some definitions that are going to be used hereafter.

On the boundaries of each refinement level, after a “collide-and-stream” oper-
ation (see Sec. 2.4) there will be some missing information (some populations f;
are unknown on the coarse and on the fine grids) that one needs to reconstruct.
The details on this algorithmic part are given latter in the Sec. 4.4.

For the sake of clarity, let us call C' the ensemble of coarse sites and F' the
ensemble of all fine sites. Let us now define x;_,. the fine sites that are contained
in /' and C where the coupling from fine to coarse is performed and x.; all
the sites contained in F' and C' where the coupling goes from coarse to fine (see
Fig. 4.5). Let us also define:

e %, = {x|r € Ty .. and ¢ ¢ F'}, the set of coarse sites where we perform
the copy from fine to coarse.

o x{ = {x|r € x.,; and T € C}, the set that contains only the coarse sites
where we perform the copy from coarse to fine.

o ch_>f = {z|z € .,y and T ¢ x_,;}, the set of fine sites where we perform
the copy from coarse to fine, which do not have a corresponding coarse site.

The coupling proposed in this thesis requires the grids to overlap themselves by
a domain of at least one coarse cell width, as shown in the one-dimensional example
in Fig. 4.6. Let us now analyse what is happening on Fig. 4.6. After a coarse grid
collide-and-stream operation, all the sites have the necessary information, except
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Fig. 4.5: Complete sketch of the places where the copies are performed.

for the last site of the grid (labelled “unknown value on Fig. 4.6), where the are
missing populations. It is therefore impossible to perform the coupling on this
coarse site to the fine grid site. However, all the other sites have all the needed
information, thus becoming good candidates to provide the information to the fine
grid. If we apply the same reasoning to the fine grid, it becomes clear that it is
necessary to implement a redundant area between the grids, so that the copies are

performed over complete sites. The complete two dimensional example is found in
Fig. 4.5

Overlapping
zone

Coarse grid :

o0 oo O 4,®‘ @(__unknown value

unknown value "">>:(+*X¢*):<¢ X X X eeoee

Fine grid

Fig. 4.6: Overlapping zone between coarse and fine grids

We have chosen to make this overlapping area as small as possible, namely one
coarse site, or equivalently, two fine sites. However, when dealing with turbulent
flows, it might be desirable to have a more important area between the grids, in
order to allow a gentler transition of the information.

We note that in the final chapter, we propose a new refinement algorithm which
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does not need of a buffering or overlapping zone between the grids.

4.4 'The couplings in detail

The two-way coupling between a coarse and a fine grid involves two fundamental
operations that are the decimation and the interpolation steps. When going from
the fine to the coarse grid the amount of information represented in the fine grid
must be reduced, while it must be “increased” when going from the coarse to the
fine grid.

In this section we treat both of these operations thoroughly. We start by
studying the decimation operation, which is intended to reduce the information
from the fine to the coarse grid in a consistent way. Then, we explain more
about the interpolation operation used to increase the information passing from
the coarse to the fine grid.

4.4.1 Coupling from fine to coarse grid

As the fine grid has more sites than the coarse one (see Fig. 4.5), it is necessary to
decrease the information to be transferred. The necessary steps are: restrict the
values, rescale them and copy them to the coarse grid. The restriction operation
can be a simple copy from the corresponding site, or something more complicated,
as a low-pass filter. This latter can be justified by the fact that the fine grid
contains information about scales that cannot be resolved by the coarse grid and
thus must be eliminated.

The proposed coupling is over the sites marked as x;_,. is expressed by the
following equation

27—6 —neq

fi,C(wi’—mv t) = fieq (Pf(ill;_m, t)? ’u’f<m(]:”—>c7 t)) + fi,f (w;—wv t)' (416>

T
where py =Y. fiyand uy = > . & fi s, and TZ;q(zc;_)C, t) is the result of applying
the restriction to the incoming fine grid values. It must be noted that p and w are
calculated over the fine grid and by continuity of this fields due to the convective
rescaling, no other operation over them needs to be performed.

If we perform a simple decimation, then it is clear that the restriction operation
is given by

—neq

Fip @foet) = [if (@5 1) (4.17)

However, as we will show later, this is not enough. We propose a filtering
operation that is inspired by [56]. The aim of this operation is to remove the
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scales of the fine grid that cannot be resolved and treated by the coarse grid. We
use a filter width corresponding to the coarse grid resolution. A simple box filter
is used here but more complex filters can also be applied.

There exists many ways of applying a filter in the lattice Boltzmann framework.
One can filter the complete distribution function or only p and w (see [60]). In
our case, we chose to apply the filter only on the non-equilibrium part of the
populations f*“, because when the filtering was done on f;, or only on p and u
there was a too strong dissipation added by the filter and therefore we noticed a
decrease of the accuracy. In practice one simply does an averaging over all the g
lattice directions, thus obtaining the following restriction

H

—neq, . 1S eos o
f@fq(wf—mt):g [ (@G + &ist) (4.18)

I§
o

7

As a final remark, we have chosen not to filter p and w. The main reason for
this being that filtering these quantities results in an artificial increase of viscosity
around the refinement interface. This can, of course, have undesired results such
as loss of accuracy and modification of the expected behaviour of the system.

4.4.2 Coupling from coarse to fine grid

As shown in Fig. 4.5, the fine grid possesses sites that do not have a corresponding
site in the coarse one. Thus when performing the copy from the coarse to the fine
grid, it is necessary to estimate the missing information in such sites. We have
chosen to apply an interpolation in order to complete the missing informations.
The details of the interpolation are explained further in this document, as we have
found that it is a vital part of the algorithm.

The coupling over the sites x._, s is given by two different operations. If a point
has a corresponding coarse site in @.,¢ (i.e. if a computational node has both a

coarse and a fine site, or in a mathematical notation if x; € ¢ ;) then

(@i y) = [ (pe(@ p), we(®e ) + ff”eq( T y) (4.19)

where p. = 7, fie, e = Y, &ifie, and fi o’ are computed from the populations of
the coarse grid.

However, if the fine site does not correspond to a coarse site in @.s (i.e.
the computational node contains only a site of the fine domain), we will use the
following formula

fur@®Lp) = [{(pe ) + ff”eq (4.20)
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where p,, u. and W are interpolated from the values where the fine and coarse
sites are coincident.

The fine grid can resolve more scales than the coarse one, it might be neces-
sary to try recreate these smaller scales when transferring the information from
the coarse to the fine grid. In order to solve this issue, we implemented the ap-
proximate deconvolution approach proposed in [56]. However in the benchmarks
we performed we did not notice a significant gain when using this method and
therefore for the sake of clarity we will not present it.

4.4.3 The complete algorithm

Here we present the complete algorithm proposed for the grid refinement.

Let us suppose that the system is at time t. Both grids are complete, i.e.
all information needed on every site is given. A complete time iteration, for the
convective scheme explained above, consists of one iteration of the coarse grid and
two iterations of the fine grid. The details of these iterations are given now.

1. A “collide-and-stream” operation is performed on the coarse grid bringing it
to time ¢ + dt.. At this point the populations at x;_,. that were supposed to
be streamed from the fine grid are unknown.

2. A “collide-and-stream” cycle is performed on the fine grid bringing it at time
t + 0t./2. The grid lacks information on the grid refinement boundary sites
T.f. One then performs a double interpolation, one in time and one in
space. First the values of p., u. and Zceq of the coarse sites at x._,r and are

interpolated at time ¢ + dt./2, by a linear scheme (which is of second order

accuracy at dt./2). Then the values p.(t-+0t/2), u.(t46t/2) and fi' e (t-+0t/2)
are interpolated in space according to the discussion of Subsec. 4.4.1 by using

a local cubic scheme. All the populations at @._,; (and not only the missing

ones) are reconstructed following Eqgs. (4.19) and (4.20). At this point all

the fine sites are complete.

3. A second “collide-and-stream” operation is performed on the fine grid, bring-
ing it to time ¢t + dt.. At this point we have the information from the coarse
grid to complete the fine grid at ., s, and therefore no time interpolation is
necessary. However, a space interpolation must be performed for p.(t + dt.),
uc(t + ot.), and f;'7*(t 4 dt.) as in the previous step. Then the populations
of the fine grid are all (and not only the missing ones) replaced at position

x., s according to Egs. (4.19) and (4.20) again.

4. All the populations of the coarse grid at « y_,. are replaced following Eqs. (4.16)
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and (4.18)

fie(@poe,t) = i (0p(Tposer ), up(®sse, 1))

27—0 —ne
M PILES LR

At this point both grids are presently at time ¢+ dt., are complete and ready
for a new iteration.

4.4.4 Interpolation in detail

Here we discuss the proposed scheme of interpolation needed to reconstruct the
information from the coarse to the fine grid. The interested reader can find a
different approach in [70].

As pointed out in the preceding subsection, the values of p., u. and f;'.? on
nodes that do not contain both fine and coarse grids sites must be interpolated,
and are noted by p,., w. and Wi,c

4.4.4.1 2D schema

In 2D, this interpolation is performed over a line, thus over sites parallel to the
refinement interface. The problem becomes then a 1D interpolation of a function
g which is known at the coarse sites. In the following, we show our interpolation
schemes for g.

The two easiest symmetric ways of computing the interpolation are using two
or four neighbours as shown on Fig. 4.7. If we use two points, it is sufficient to

Linear interpolation

gz —h) g(z) glz+h)

X O X
Cubic interpolation
g(x — 3h) g(x —h) g(x)  glz+h) g(x + 3h)
X X O X X

Fig. 4.7: Possible interpolation schemes. Order one (top) and order three (bottom).

perform a mean of them:

(4.22)
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As the point where we interpolate is exactly in the middle of the two others, an
analysis of the order of interpolation shows us that this is in fact a second order
method in A.

On the other hand, by using four points, we find the following equation:

D (9@ +h)+ gz — ) — —=(gx + 3h) + g(z — 3h)) (4.23)

g(x) = 16 16

By using Taylor expansions for each term, this interpolation can be proved to be
of fourth order.

The only drawback for this interpolation is the cost in parallel execution. Every
point must ensure access to two neighbours, this means that when the code is
executed in parallel, more communications have to be done between the distributed
blocks.

In addition, as the first and last site do not have as many neighbours as needed,
we need to use a non-centred third order scheme as depicted is Fig. 4.8 and given
by the following formula

3 3 1
9(@) = 2g(z = h) + 79(z +h) = 2g(z + 3h). (4.24)
gz —h) glx) glx+h) g(x + 3h)
X (@) X X

Fig. 4.8: Asymmetric second order interpolation for sites that do not have enough
neighbours.

Finally, let us note that there are no other interpolation cases in our two
dimensional implementation, because the outermost fine grid points always have
corresponding coarse sites. In particular, cases like the one depicted in Fig. 4.9
are forbidden.

Coarse grid

o 0..9..9.

orbidden line of fine grid i X X X X X
O ® XX

X X X X X

O ® X xQ®

X X X X X

O R X ® X X

Fine grid

Fig. 4.9: Forbidden case to avoid complicated interpolations.
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4.4.4.2 3D schema

In the 3D case, the contact between two grids is made over a plane. The interpo-
lation problem becomes then a 2D interpolation or the interpolation of a function
9(z,y).

Based on what we have learned from the 2D approach, for the bulk interpo-
lation, we have decided to use an extended neighbourhood counting 16 points to
perform a higher-order interpolation. In order to explain our approach let us sup-
pose that we know a function g(x,y) at the points that are shown in Fig. 4.10.
According to these coordinates system, we are interested in finding the values at
the points ¢(0,0), g(h,0), g(0,h), g(—h,0) and g(0, —h).

@ Points where the g(z,y) are known

DPoints where we want to interpolate g(z,y)

Y
o ® 3h+ o ]
() e [ @ o
. arn B B
! [ [N [ T
—3h —h h 3h T
[ o e
[ ] ® _3iT o o
/

Fig. 4.10: Points where we want to interpolate the function g(z,y).

One standard manner to perform the interpolation is to take the polynomial
of order three in x and y:

3 3

P(z,y) = Z Z a; ;x'y (4.25)

i=0 j=0

replace the known values, obtaining a system of 16 equations, which allows us to
compute all the unknowns a; ;. When this is done, all we have to do is replace the
desired points in the polynomial to obtain the interpolated values. By construction,
the method is of order three in both variables.
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In order to speed things up, we have discovered that this interpolation (for all
the points excepting ¢(0,0) is equivalent to the 1D cubic interpolation presented
above, using the four neighbouring points in the parallel direction. This gives us
the following formulas:

9(1,0) = 1-(g(h, 1) + g(h, ~h) — 1 (9(h, 3h) + g(h, ~30) (1.26)
9(—h,0) = 1o, h) + g(—h, ~h)) — 1o (g(~h,3) + g(~h,~30))  (4.27)
90, ) = 1 (9(h, )+ g(—h, 1) = £ (9(3h,h) + (30, ) (4.25)
9(0,~h) = 15 (9(~h, ) + g(h, 1)) = 1 (g(3h, —) +g(~3h, —h))  (4.29)

We can also find another explicit formula for ¢(0,0) which this time depends
on the 16 points. It is given by:

0(0,0) = (g, ) + (A, ~1) + g(~h, 1) + g(~h, ~1)
— 22—6(9(—h, 3h) + g(—h,—3h) + g(=3h,h) + g(—3h, —h))
~ 5 (g(,30) + gl ~30) + g(3h, 1) + g(3h, 1)
+ 55 (0(~3h,31) + g(~3h, ~3h) + g(3h, ~3h) + g(3h,30)) (4.31)

Of course, the borders need a special treatment. In this case, we use the
asymmetric schema depicted in Fig. 4.11. In this case, the points perpendicular
to the wall use an asymmetric interpolation schema, using the 1D asymmetric
formulas proposed above. In opposition, the site which is parallel to the wall still
uses four neighbours for a third—order 1D interpolation. The only value computed
differently again is g(0, 0), for which we use the formula:

9(0,0) = o g(—h, ~h) + g(h, ~h)) + = (g(~h, ) + g(h, )
= = (g(=3h,—h) + g(3h, ~h) = T (g(=3h, ) + g(3h, )
+1;—8( (—3h,3h) + g(3h, 3h)) (4.32)

Notice that the schema is the same for all the borders of the plane, only a
rotation is needed to have all the four cases.
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@ Points where the g(z,y) are known
[JPoints where we want to interpolate g(z,y)

Y

Asymetric interpolation

B
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Fig. 4.11: Asymmetric interpolation for the borders.

Finally, the corners are restricted to interpolations using 9 neighbours. The
case is presented in Fig. 4.12. In this case, the formulas again are simply given by
asymmetric 1D interpolations for everyone. Once again, the only different schema
is for the origin ¢(0,0) that is computed via:

9(0,0) = 2 (g(~h, )+ g(h, ~h)) + Zeg(—h, ~h) + g(h h) + <g(3h, 30)
— (g3, —h)+ g(~h,30)) = (g(3h, ) + g(h3h)) (43

@ Points where the g(z,y) are known

[IPoints where we want to interpolate g(z,y)

Asymetric interpolation
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Fig. 4.12: Asymmetric interpolation for a corner.
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Once again for parallelism purposes, it is necessary for every site to have two
neighbours to be able to perform its interpolations, thus increasing the cost of the
parallel time execution.

4.5 Is second order enough?

Interpolation is a key part of grid refinement. In this section, we show that even
for a simple Poiseuille flow, the second order interpolation does not conserve the
mass.

We fix a flow at Re = Uy N/v = 100, with wy. = 0.01 the maximum value of
the velocity in lattice units, N the width of the channel in coarse lattice units and v
the kinematic viscosity. The length of the channel is 4NV (see Fig. 4.13). We set the
reference length to have N = 30 lattice sites. We prescribe the analytical solution
of the velocity on both the inlet and the outlet and the horizontal walls have a zero
velocity boundary condition. This set-up is depicted in Fig. 4.13. The channel is

Coarse Grid Fine Grid

4N

Fig. 4.13: Set-up for the channel flow

divided in two equal parts. The first one is covered by a coarse grid and the second
part is covered by a grid two times finer. A linear pressure drop is expected in the
direction of the flow. As can be seen in Fig. 4.14 a clear discontinuity of the pressure
appears on the refinement interface in the case of second order interpolation, while
it remains completely smooth in the cubic interpolation case.

Even though the pressure slope is correct, the mass loss is clearly visible in the
pressure jump right where the interface is located which leads, in more complicated
cases, to numerical instabilities and to the introduction of spurious error terms. In
Fig. 4.15 we plotted the value of this pressure jump with respect to the resolution.
One can see that the magnitude of the jump is of order one in space.

This error can be explained in the following way. On the one hand, the linear
interpolation is locally of order two in space (since the interpolated point lies
exactly in the middle of the two known points, see Fig. 4.7). This error gives rise to
an order one error globally as errors are summed over the entire line. On the other
hand, the LBM time-space integration is third order accurate locally, and second
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x10™ Pressure evolution in the refined Poiseuille flow

cubic interpolation
— — —linear interpolation

pressure

resolution

Fig. 4.14: Pressure plot along a horizontal line for the proposed refined Poiseuille
flow.

—©&— Pressure difference
slope -1

Pressure difference
5

resolution

Fig. 4.15: The pressure jump magnitude versus the resolution of the coarse grid.

order globally (it is obtained through a trapezoidal integration). Therefore the
linear interpolation gives rise to error terms incompatible with the error expected

from the LBM.

4.6 Summary

In this chapter we introduced the grid refinement for the LBM.
Besides the thorough presentation of all the details, we would like to remark
the following novelties in this chapter:
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Filtering operation. (see Subsec. 4.4.2) The fine grid solves smaller
scales than the coarse grid. When passing from the fine to the coarse
grid, we propose a filtering operation based on traditional numerical
methods, in order to remove high frequencies that the coarse grid is
not able to handle. In the next chapter, we show that this operation is
mandatory when dealing with turbulent flows.

Cubic interpolation. (see Subsec. 4.4.4) For the opposite operation,
namely the copy from the coarse to the fine grid, we need to increase the
information. This increase is based on an interpolation. We propose a
symmetrical cubic interpolation to complete the fine sites which do not
have a corresponding coarse site.

Importance of interpolation. (see Sec. 4.5) Numerical illustration
of the importance of the interpolation order used in the increase of
information. We simulate a simple Poiseuille flow and we show that
when using a second order interpolation, we have a loss of mass in the
interface. We then use a cubic interpolation. This operations avoids
the problem.
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Chapter 5

Implementation of grid
refinement

IN this chapter, we present the steps that have been followed in order to implement
our generic grid refinement in the Palabos library. Our implementation is then
tested over laminar and turbulent problems.

5.1 Main implementation ideas

In order to implement the grid refinement, we need two basic ingredients. First,
we need to create the geometry that represents the non—uniform grid system we
want simulate. Then, we must add the couplings in the interfaces between grids
of different levels, where the communication of the informations take place. This
section presents both aspects, as well as some other details important to the im-
plementation.

In the following, we fix the number of grid levels that can co-exist in our system
to M. We define the grid G to be the coarsest grid and to serve as the reference
level. Accordingly, the finest grid is the grid Gj;_;. When considering two grids
G; and Gy, if 7 > ¢ then Gj is finer than G;.

5.1.1 Geometrical considerations

We have decided to use the multi-domain approach presented in Subsec. 4.3.1.
To represent a grid of a certain level, we use a multi-—block that contains only the
parts corresponding to this level. The use of a multi-block allows the level to have
a global knowledge of the positions of the other blocks. In Fig. 5.1, we show an
example of a multi-domain consisting of three levels and how it is represented in
reality.

We have defined two functions with the purpose of constructing the refined
grids: the refine operation, which adds a finer grid over a coarse one and the
coarsen operation, that replaces a region of a fine grid with a coarser grid. In

69
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Level 0

Level 1

. Level 2

Fig. 5.1: A multi-domain of three levels is actually three multi—blocks.

what follows, both operations are explained for a 1D example, but the 2D and 3D
generalizations are straightforward.

Let us note that while performing the geometrical operations, the regions for
the couplings between grids appear naturally. In order to express them, we re-use
the notations of Subsec. 4.3.4. We recall that x;_,. are the sites where we perform
the copy of informations from the fine grid to the coarse one. Equally, ., ; defines
the set of coordinates where we perform the other direction: from the coarse to
the fine grid.

First, we describe the refine operation. All the necessary steps are shown in
Fig. 5.2. We note that the grid Gj;_1, by definition, cannot be refined.

1. Our starting point is a coarse grid G;, represented by an ordered set of sites
G; = {Xi]i € [0,...,N]}. Let us define a sub-set R C I, represented by
R = {Xi|i € [k,...,l]}. We wish to insert a refined grid on R. We define
R ={X;li € [k —2,...,1+ 2]}, which is the “decreased” version of the set
R, because we have taken two sites at left and at right of the original.

2. We perform the exception operation G;\ R’ = {X;|i € [Xo,..., X —1JU[X;+
1,...,Xn|} and define G; as being equal to this difference. In opposition,
the finer grid G,;; takes R and converts it with twice as many elements,
obtaining r = {x;|i € [2k,...,2l]}. We redefine G, 41 as G411 Ur.

3. Finally, we can extract both sets of coordinates where the couplings must be
done: s, = {wop, v} and @,y = {X; + 1, X; — 1}.
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1. Definition of R and R’
R/
R o
G, 0000 0[0"0]0 ®0 00
XO Xk Xl XN

2. Exclusion of R’ from G,
Addition of r to G;11

X +1 X;—1

(G; O 0O 00O O O0OO0OO0O0

XO Xk Xl XN
Gz’_|_1 ooooooooooo
T2k L2l

3. Definition of the zones for the couplings
X +1 X;—1

G; 0 0 00O
Gi—|—1 DD oooool|o|o

T2k
Copy from coarse to fine

[ ] Copy from fine to coarse

Fig. 5.2: 1D dimensional example of a refine operation of grid GG; over the domain
R.

The coarsen operation can be explained in a similar way. All the steps are
depicted in Fig. 5.3. We forbid the coarsen operation to Gjy.

1. Let us begin with a fine grid G; = {;]i € [0,...,N]}. We define a set of
sites r = {x;|i € [2k,...,2l]} where we want a coarser resolution. We must
ensure that the first and last sites in r have corresponding sites over the
coarse resolution, this is why we have chosen them as being even number.
We decrease the set r to obtain ' = {x;|i € 2k +1,...,20 — 1]}.

2. We exclude the set 7’ from G, obtaining G; \ ' = {z;|i € [0,...,2k] U
[2,...,N]}, which takes the place of G;. The set r is converted to coarse
coordinates of grid G;_;. This results into a set R = {X;|i € [k,...,]}. We
then increase this set obtaining R’ = {X;|i € [k —1,...,l+1]}. It is this set
R’ which is added to G;_;.
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3. To end the explanation, we can once again easily extract the sets of co-
ordinates where the couplings need to be added. One recovers the sets
Teosp = {Top, vy} and ¢y, = { X}, — 1, X; + 1}

1. Definition of r and r’

Zo T2k T2l TN

2. Exclusion of 7’ from G,
Addition of R’ to G;_;

X —1 R X +1
Xk l Xl R/
Gi—.1 [0 ofo » o
G'i ODoooao ODoooaoao
To T2k x2] TN

3. Definition of the zones for the couplings
X;+1

[ Copy from fine to coarse

Fig. 5.3: 1D dimensional example of a coarsen operation of grid GG; over a domain
T.

5.1.2 Couplings

The couplings presented in Sec. 4.4 must be implemented. As we are using a multi—
block per level, the natural mechanism in Palabos to implement such operations
are the processing functionals (see Chap. 3).
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We have defined two different processing functionals, one for the copy from
coarse to fine and one for the copy from fine to coarse. We remark that these pro-
cessing functionals must be applied only over the corresponding interfaces defined
by the sets .,y and x;_,.

The first processing functional copies the information from the coarse to the
fine grid. This operation has a double behaviour: copy the information to the fine
sites that correspond to a coarse neighbour and interpolate over fine sites which
do not have a corresponding coarse site. As we have shown in Subsec. 4.4.4 there
are different interpolations to be performed according to the available neighbours.
We must then create a specific processing functional for each case. For instance,
in Fig. 5.4, we show that two kinds of processing functionals exist, according to
the type of interpolation they carry. We recall that in the case of a 2D example,
the interpolation is performed over a line.

Coarse grid O Asymmetrical interpolation
Fine grid X
Symmetrical interpolation
A

Interface ® R 2y Y &

Fig. 5.4: In 2D the interpolations are carried over a line. Here we show which kind
of interpolation is used over each site.

The second processing functional performs the filtering operation (see Sub-
sec. 4.4.2) prior to the copy from the fine to the coarse grid. This data processor
needs to keep track of the current time, so that it is executed every two collide—
and—stream steps of the fine grid. For the sake of completeness, we have also
implemented the copy operation without any kind of filtering. This has allowed
us to test both approaches over the examples.

There is one more detail to note in the couplings. As a result of the relation
between the temporal step on the coarse and fine grids dt, = 20t; we must perform
a temporal interpolation.

We depict this situation in Fig. 5.5 for one collide-and—stream step. Let us
suppose that we are at a time ;. When a collide-and—stream operation is applied
over the coarse grid, it goes to time t; = tg + dt.. In the case of the fine grid, two
collide-and-stream operations are needed to arrive to the same ¢, =ty + 20t;. It
is therefore necessary to complete the fine grid at time ¢,/ = to + dty. The easy
solution is to use the values from the coarse grid at ¢y, and ¢; and perform a linear
interpolation. This interpolation has forced us to store the populations at time t,
and t; over every site contained on the set x._ .

The set-up of the couplings is a challenging operation because of the technical



74 Chapter 5. Implementation of grid refinement

to t1 = tg + dt.
to oo oo oo

time to tijg =to+ 0ty  t; =to+ 20t

------------- RRRIUEEERIIIITRS IR SRR

ty

temporal interpolation with values at times ¢y and t;

Fig. 5.5: Graphic representation of the temporal evolution of the coarse and the
fine grids to show the need of a temporal interpolation.

difficulties that appear. One must, at this point, ensure that all the processing
functionals are applied in a synchronous fashion, so that the couplings are executed
at the right moment. This becomes specially challenging when considering that
up to M grid levels can co-exist in our system.

5.1.3 Other considerations

Let us present other details that are not related with the geometrical management
or the couplings.

First of all, in order to implement the whole system, we have created a master
object to make abstraction for the M different grids that compose our non—uniform
grid. As we have chosen to use a multi-block per level, this object uses the
results of the geometrical calculations to create the multi—blocks for each level. At
the creation, it also sets up all the necessary operations and special dynamics to
ensure the coupling between the different levels. One call to the collide—and—stream
method of the multi—grid object implies that the coarsest grid of level 0 advances
exactly one time step. However, this hides the complexity behind the fact that
all the M present levels also advance the number of time steps corresponding to
this one time step. Thanks to the processing functionals, all the communications
intra—grid are performed when needed.

The second remark that we need to do deals with the computation of statistics
on the refined grids. To extract information for specific regions of the domain,
if the region is contained entirely in one level of resolution, then we can proceed
directly with no further problems. In opposition, it is possible to need statistics
over regions that span on several grid levels. In this case, we start by choosing a
level k, such that 0 < k < M. All the grids which are coarser interpolate their
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values up to the resolution of the level k. In opposition, the grids that are finer
apply a restriction to their values up to k.

Finally, we need to treat the problem of parallel execution of our code. This
becomes important, because to solve almost any interesting problem a single pro-
cessor is not sufficient. We have decided to implement a simple manual division.
Once the user has placed the refinements, he proceeds to select a number of divi-
sions in each coordinate: N, blocks in the z direction, IV, blocks in the y direction
and N, blocks in the z direction. He must then execute the code over N, - N, - N,
processors. For instance, in Fig. 5.6, we show and example of a 2D dimensional
domain in which N, = 3 and N, = 1. We note that when using such a simple
division algorithm, the quality of the correct distribution of the workload depends
on the regularity of the domains.

Processor 1

Processor 2 | Processor 3

Fig. 5.6: A three—level grid system which has been divided in three sections for
parallel execution.

5.2 Examples and validation

In this section, we validate the implementation of the grid refinement that is
presented above. We make the difference between the two-dimensional and the
three-dimensional versions. For each of them, we start with a problem which is
relatively laminar. The more complex problems come afterwards, where we use
higher Reynolds numbers to simulate turbulent flows.

The physical quantities of interest in each problem are computed and shown
to be in agreement in both the uniform and non—uniform grids. As it is one of
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the main interests for non-uniform grids, we also discuss the performances of our
implementation compared to the use of a uniform grid.

5.2.1 2D examples

First, we study the unsteady flow past a circular cylinder at Re = 100 which is
a well documented problem (see [72] for example). Then, we simulate the case of
the dipole—wall collision, which is a 2D turbulent problem that has been already
studied and benchmarked for a LBM code in [41].

5.2.1.1 Flow past a cylinder

This flow has been extensively studied. In particular we find a set of tests in [72]
where a set of values have been obtained using a wide range of methods. Here
we are interested in the steady flow past a circular cylinder. We fix the Reynolds
number Re = Upean N/v = 100, with tyean the mean velocity of the inlet flow, N
the diameter of the cylinder and v the kinematic viscosity. We are interested in
comparing our result for the maximum drag C, and lift C) coefficients

oF, 2F,
Ci=—5—=, C= l

0.1
pu?noanN ( )

2 Y
pumcanN

Fy and Fj are the drag and lift forces respectively, which are given by the equations

ov, ov,
F;= —n, — ds , F, = — d 2
P /S(py 5y png)dS | F /S(py o ng + pny)dsS, (5.2)

where S is the cylinder surface, n = (n,,ny) is the normal vector of the surface
S, and v, is the tangential velocity on S. In the LBM, this forces can be easily
computed by the momentum exchange method as presented in [47].

The details of the simulation geometry are shown in Fig. 5.7. We note that
all the quantities are expressed with respect to the diameter of the cylinder N.
At the inlet we impose a Poiseuille profile and a zero velocity gradient at the
outlet. Furthermore near the outlet we filtered the solution using the method
proposed in [60] to increase the numerical stability of the boundary condition.
The horizontal walls have zero velocity. We use a lattice velocity tmean = 0.00333
and the cylinder diameter is fixed to have N lattice sites. First, we used a uniform
single-level grid to find a resolution at which we find values for the maximum of
the drag and lift coefficients that are close enough to the values in the reference
[72]. We found that N = 80 was enough.

Based on this, we implemented a four level refined grid where the finest res-
olution has Ny = 80. In this case the coarsest grid will only have N, = 10. For
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Fig. 5.7: Geometry for the flow past a cylinder.

accuracy reasons in this benchmark, we have decided to use the incompressible
BGK model [29]. The only difference introduced by this model is the computa-
tion of the equilibrium distribution which is now given by

e ;U 1
9= w; (P+P0( 2 +2—C4Qz‘iuu>>, (5.3)

where here pg is a constant and was chosen to be equal to one here. Since the
discussion we performed in Chap. 4 is generic and does not really depend on the
exact form of the equilibrium distribution there is no change in the refinement
strategy.

The refinement used for our simulation is depicted in Fig. 5.8. In this picture,
N refers to the total diameter of the cylinder in coarse units. The results obtained

33

- | ——>

11N

Fig. 5.8: Proposed refinement for the 2D flow past a cylinder.

for the drag and lift for the refined case match the accuracy with three significant
digits (which is also the level of accuracy given in Ref. [72])

C,=324, C;=0.982. (5.4)

Furthermore, these values are in good agreement with those found in [72], where
Cqy = 322 — 324 and C; = 0.99 — 1.01. The results for the uniform grid are
obtained with about 5900/N? points, whereas there are only about 1000/N? points
in the refined case, representing roughly five time less points. We did not perform
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any advanced technique to find the optimal position of our refined grids, it is
therefore possible that one can get similar results with even less points.

In order to compare the CPU performances, we used a single CPU to simplify
the comparison procedure. When benchmarking the uniform grid against the
refined one for several values of N, we find that a mean speed-up of 5, thus proving
that the overhead introduced by the coupling between the different grid levels does
not have a significant impact in the overall performances.

5.2.1.2 Dipole—wall collision

This benchmark, based on Refs. [13] and [41], analyses the time evolution of a self-
propelled dipole confined within a 2D box. The geometry of the box is a square
domain [—1,1] x [—1,1] and is surrounded by no-slip walls. The initial condition
describes two counter-rotating monopoles, one with positive core vorticity at the
position (z1,y;) and the other one with negative core vorticity at (z2,y2). This
is obtained with an initial velocity field wy = (u,,u,) which reads as follows in
dimensionless variables :

1 —(r1/ro)? 1 —(ra/r0)?
= =5 llwell (5 = e/ o Sl (y = gl (5.5)

1 1
ty = +3 el (z = 0™/ = 2wl (z = )07 (5.6)

Here, r; = \/(z — x;)2 + (y — y:)?, defines the distance to the monopole centres.
The parameter ry labels the diameter of a monopole and w, its core vorticity.

The average kinetic energy of this system at a given time is defined by the
expression

(B) (1) = / 1 / Jul? (2.t (5.7)

and the average enstrophy by

Q) (1) = %/_11 /_1w2(m,t)d2a;, (5.8)

where w = 0,u, — 0yu, is the flow vorticity.

The dipole described by Egs. (5.5) and (5.6), under the actions of viscous forces,
develops a net momentum in the positive z-direction and is self-propelled towards
the right wall. When the dipole collides with the wall a maxima of enstrophy is
achieved.

In order to obtain really accurate results, the pressure field must be initialized
from the velocity field, using the Poisson equation

V= (Vu): (Vu)’ (5.9)
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where the column symbol stands for the full index contraction. This equation is
solved with a Gauss-Seidel iterative method.

In this test-case, we are aiming at obtaining the maximum values of the en-
strophy which have been computed in [13] with a spectral method. We intend to
use local refinement in the areas where we know the important physics happen,
namely close to the wall where the small structures are formed. It is expected
to obtain accurate values comparable to those obtained with a uniform grid. We
study two different Reynolds numbers , Re = 625 and Re = 5000.

For Re = 625, we use three levels of refinement as shown in the Fig. 5.9.
The pathway of the dipole is refined. However, we know where it will collide, so
this part is further refined. We find that this strategy agrees with the physical
phenomenon.

This example is particularly challenging from the numerical point of view since
strong velocity gradients are crossing the different refinement interfaces. We can

2N

— v —

Fig. 5.9: Refinement for the dipole-wall collision

compute the number of points in the refined domain and compare it against the
number of points in the non-refined grid. Let us call N the resolution of the coarsest
grid. The finer grid would therefore have a resolution of 4N or a total amount of
points of 16N2. When using a local refinement strategy as the one proposed in
this benchmark, one obtains %N 2 points. For any length N we observe that we
are using almost four times less points in the refined case.

When performing a one CPU benchmark between a uniform grid and our re-
fined version for several values of N, we find a mean speed-up of roughly three.
Once again it is interesting to see that the performance gain is close to the memory
saving that has been computed.

When analysing the error for our refined grids, we compare the values obtained
with the most accurate value of the enstrophy found by a spectral method, which
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is 933.6. When decreasing N and simulating again, we find that the solutions
tends to this value with second order slope. This can be seen in Fig. 5.10. This
is really an interesting fact, as we are preserving the second order accuracy of the
LBM with the grid refinement technique. It is important to note that the case

Error vs. Resolution increase for unfiltered dipole. Re=625

—o6— unfiltered
—*— filtered
—*— -2 slope

Error

Fig. 5.10: Evolution of error for the filtered and unfiltered simulations.

Re = 625 can be done without the filtering method presented in Subsec. 4.4.2.
However, when dealing with the case Re = 5000, it is imperative to use the
filtering operation, as the small structures from the fine grid pollute the coarser
grids, triggering numerical instability. This can be seen in Fig. 5.11, where, on the
left, the non-filtered case shows signs of numerical instability (and finally diverges)
while the filtered one remains stable.

For the case Re = 5000 the most accurate value obtained for the enstrophy in
[13] (with an spectral method code) is 5536. When using six levels of refinement
(Fig. 5.12) and setting N = 100 for the coarsest grid we have found 5500 for the
maximum of the enstrophy. When using a uniform grid, this same result would
require a resolution of approximately N = 3200, which makes the solution of the
problem really difficult to achieve, thus proving the importance of grid refinement.

5.2.2 3D examples
5.2.2.1 Flow past a sphere

We consider a channel flow of an incompressible viscous fluid. We put a sphere in
the channel and simulate the flow. In particular, as it had been done for the 2D



5.2. Examples and validation 81

Fig. 5.11: Problems at Re = 5000 for non-filtered simulation on the left. On the
right the filtered version, which shows no perturbation.
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Fig. 5.12: Six level grid refinement to achieve a good enstrophy value.

cylinder problem, we are interested in studying the force exerted over the sphere
in the case of laminar steady flows.

The set-up for the simulation is presented in Fig. 5.13. Let N be the diameter
of the sphere. The bounding box has coordinates [0,29N] x [0,9N] x [0,9N]. We
have chosen to place the sphere at the point ¢ = (4.5N,4.55N,4.55N). In the yz
plane, the sphere is not perfectly in the centre in order to break the symmetry of
the problem.

We have chosen the following Reynolds numbers: 50, 100 and 150. Exactly
as for the 2D case, the Reynolds number is defined as Re = upyeanN/v, where
Umean = 0.1 is the mean velocity in lattice units, /N is the diameter of the sphere
and v is the kinematic viscosity. We have chosen a relatively important velocity
Umean 10 accelerate the convergence of the system to its steady state.
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Fig. 5.13: Schema of the set-up for the simulation of the flow around a sphere.

All the walls have a velocity boundary condition. The inlet has velocity u fixed
t0 (Umean, 0,0). The rest of the walls have null velocity.

We must note that we represent the sphere with bounce—back nodes as it is sim-
pler than using a more sophisticated boundary condition, such as an interpolated
boundary condition.

The computation of the drag coefficient Cj is similar to the 2D case, excepting
that this time we need to consider the surface of the sphere as dividing factor

- 2pu,, TN?

mean

Ca (5.10)

where once again Fy is the drag force as before, which is given by the equation

. a’vt
F,= /S(pu ory — png)dS. (5.11)

This time S is the sphere surface, n = (n,,n,,n,) is the normal vector of the
surface S, and v; is the tangential velocity on S. This forces are once again
computed using the momentum exchange algorithm.

The drag coefficient Cy obtained are compared to the values found in Johnson
et al. [34]. By using a uniform grid with N = 32 we have found a good agreement
between our results and the results presented in the reference.

For the refined grid, we have used four grid levels. The refinements are placed
near the sphere. For reasons of consistency, the sphere is completely contained in
the finest level. We have chosen to impose that the sphere has the same diameter
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as in the best result for the uniform grid, so our finest level has Ny = 32. With
four levels of refinements, this implies that N, = 4 for the coarsest level. The
refinements are depicted in Fig. 5.14.

Coarsest grid

Fig. 5.14: The four levels of refinement proposed to solve the flow around a sphere.

Let us start by comparing the number of points in both the uniform and the
refined grids. We express all the quantities in function of the resolution of the
coarsest grid N.. For the uniform grid, this implies that N = 8N,.. In function
of this quantity, the uniform grid counts with 740096 N2 mesh points, which gives
approximately 47 million of points. For the refined grid, doing the calculation for
each level and summing the number of points, we conclude that it has 89717.5N3
points or almost 5.7 million of points. The economy is considerable, as we have
almost eight times less points in the refined grid.

We then proceed to compare the uniform grid and a refined grid for all the
different Reynolds numbers cited above. The values obtained are found in Tab.
5.1. We observe that the error between the uniform grid and the refined grid are
always smaller than 3%.
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Table 5.1: Comparison of the C,; values for the uniform and refined grids.

Re Uniform grid Refined grid

50 1.504 1.49647
100 0.979818 0.95673
150 0.84463 0.8297

Concerning the computational time, the uniform grid was executed in 120 Xeon
Intel processors. For one dimensionless time unit we require 3240.3 s. in mean. The
refined grid was tested on 60 of the same processors. This time, the dimensionless
time unit was achieved in 1021.4 s. thus being three times faster than the uniform
grid on twice times less processors. We can safely say that our simulation is six
times faster per processor.

Finally, we want to ensure that the second order of the scheme is preserved
when using the refined grid. We fix Re = 50 and we simulate the system for
resolutions N, = 1, 2, 4, and 8 in order to perform a convergence test. The values
obtained are compared with the drag coefficient for a uniform grid with N = 64,
which is approximately 1.54. The result is plotted against the —2 slope as seen in
Fig. 5.15.

—*—error
— — — -2 slope

Error

Resolution

Fig. 5.15: Convergence of the drag coefficient Cy on the refined grid for Re = 50.

As it was the case with the 2D cylinder example, in the case of the steady flow
around the sphere in 3D, adding or not the filtering operation did not change the
results.
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5.2.2.2 Circular turbulent jet

The next problem that we have treated is the circular turbulent jet. We consider
a liquid contained in a box. The same liquid is injected at high speed through a
circular opening of diameter d. For the interested reader, the complete theoretical
background of the problem and the experimental results can be found in [53].

Our set-up for the simulation domain to solve this problem is shown in Fig.
5.16. The diameter d serves to define the whole domain. the width and height of
the domain are defined to be equal to 7d. The aspect ratio of the jet is chosen
to be x/d = 30 thus giving us the depth of the box. In the reference book, the
authors study jets at much higher Re, asserting that there would be a need to have
a aspect ratio x/d of at least 50 units. We must however note that for the Re that
we have defined, our aspect ratio is sufficient.

Fig. 5.16: Set-up for the turbulent jet.

In the literature, we have found that the critical Re for a non—buoyant turbulent
jet is 1500 (see [75]). We have chosen a Reynolds number Re of 2000. It is defined
by Re = Umeand/V, Where Upean is the mean velocity at the inlet, d is the diameter
of the opening and v is the kinematic viscosity.

We have fixed the jet to have a fixed velocity 4 = (Umean, 0,0) (in lattice units)
in the inlet. The rest of the walls have null velocity.

In order to perform a direct numerical simulation of the proposed problem,
considering the Kolmogorov scales (see [53]), we would need at least Re®* 22 300
lattice points for the diameter of the jet to solve the smallest scales. The size of
the domain would then become enormous. In order to have a domain size more
tractable, we need to use a model for the turbulence.
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We have used a large eddy simulation model for the smallest scales not rep-
resented in reason of the restricted on the spatial discretization. In particular,
Sub—grid models try to model the scales smaller than the size of a filter A by
locally adapting the viscosity.

The Smagorinsky model is implemented in Palabos (see [32]). It is based on
the usage of a modified effective relaxation time 7.4 which is defined by

Teff =T + ngs, (512)

where 7 is the usual relaxation time and 7y is the sub—grid relaxation time. 7z
is defined by the following relation

C,A
Togs = S]], ISIl = V2§ - S (5.13)

c
with C, the Smagorinsky constant, A the filter size and S is the strain—rate tensor.
This tensor can be computed from finite-differences approach using Eq. 2.32 for
example. The LBM with the BGK approximation becomes then:

(@) - ). (54)
Teff

To find more about the complete theory of the sub—grid models for the LBM,
the interested reader is invited to read Malaspinas 2012 [45].

In our code, we use a Smagorinsky constant C' of 0.14 on the bulk of the
domain, which are common values in the literature (see [32]). Nevertheless, we
have defined a higher constant (C' = 0.5) for d sites before the outlet. The effect
of this zone is to damp the high frequencies that arrive to the outlet boundary
condition as much as possible, to avoid that the simulation becomes numerically
unstable.

The utilisation of the Smagorinsky sub—grid model permits the usage of only
40 lattice sites to represent the diameter of the jet and still obtain results that
agree with the ones found in the corresponding literature.

Next, we detail the quantities that are compared with the experimental results.
Let us define the velocity u(x) = (ug,uy, u,) for a point € = (z,y,z). Let the
centre of the jet be ¢ = (¢;, ¢y, ¢.), then, the centreline velocity can be defined as

Uo(z) = (us(z, ¢y, ¢2)), (5.15)

file +&,t+1) = fi(x,t) —

where the operator (-) stands for a temporal mean.
The jet half-width ry/5(x) is defined as the distance where the mean velocity
equals half of the centreline velocity. Formally the relation is

(o, 11 2(), 02)) = %Uo(a:). (5.16)
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It is important to remark that the value of Uy(x) must decrease when = in-
creases. Other important observation is that 71 /5(z) must increase with . There
exists a ¢ value for which 7 /5(z) behaves linearly with slope s, for instance like

rij2(z) = s(z — o), (5.17)

the slope for different Re numbers ranging from ten thousand to one hundred
thousand lies around s = 0.01. As this value is valid for such a huge range of
values, we compare our values of ry/;(x) with this slope as well.

Turbulent flows present some characteristic quantities that are self-similar.
Two quantities at different scales are self similar if they behave exactly. In partic-
ular, for the turbulent jet, the quantity (U)/Uy(x) plotted against r/ry/o(x) give
the same exact curve after some critical aspect ratio x/d.

Let us note that we have performed a mean of u, over 1000 dimensional units
after the development of the turbulence for the following computations.

First, we show that ry/;(x) has a linear behaviour, which corresponds to the
slope s = 0.01 in a certain region. The reader can find the plot in Fig. 5.17. We
note that near the exit, this law is not valid. This is due to the fact that we have
used a dampening zone as it was mentioned earlier.
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Fig. 5.17: plot of r1/(x) against .

The self-similarity of the flow is clearly presented in Fig. 5.18 for the aspects
ratio z/d = 10, z/d = 15 and z/d = 20.

In conclusion, our numerical results agree very well with the expected behaviour
from experimental data that is found on the aforementioned reference.

The next step is to simulate the same problem with a refined grid and verify
that the results for the physical quantities that interest are in agreement for both
set-ups.



88 Chapter 5. Implementation of grid refinement

x/d=10

1 * xd=15
o x/d=20
0.9
08

0.7 e

0.6 P%%
0s T,

0.4

0.3

0.2

L L L L L
0.2 0.4 0.6 0.8 1

Fig. 5.18: Self-similarity of the quantity (U)/Uy(z) plotted against r/ry/2(z).

We have chosen to use only three levels of refinement. We have not used more
levels, because in a turbulent problem, we are limited by the relaxation time in
the coarsest grid. Let us recall Eq. 2.27. In this equation, we have a relationship
between the relaxation time and the viscosity. In order to have a positive viscosity,
the relaxation parameter must be smaller than two. Numerical instabilities are
known to arrive when 7 is too close to two. As we have fixed the value of the
diameter d for the finest grid, this does not allow for more than two coarser grids
before arriving to a value of 7 = 1.9946.

The diameter d on the finest grid is defined to be 40, to match the diameter
used for the results on the uniform grid. As a result, the coarsest grid has d. = 10
and the intermediate grid d = 20. The refinements used and their positions are
depicted in Fig. 5.19. Let us count the grid points for the uniform and non—uniform
grids, by using the coarsest grid diameter d. as reference. We find 94080d, points
for the uniform grid and 23550d, for the refined grid. In conclusion, we have four
times less points in the refined case.

Because of the symmetry of the refined domain, we can have a good load
balancing very simply. We have this time obtained a speed—up of almost 3.5
between the refined and the uniform grids when executed over the same number of
processors. This shows that the overhead introduced because of the interpolation
and filtering operations is not important.

In order to perform the analysis of the results in the refined case, as in the
uniform case, the data used for the following results is a temporal mean of the u,
velocity over 1000 dimensionless time units, after the turbulence has fully devel-
oped.

In Fig. 5.20, we can find the velocity norm on the system after 1000 dimen-
sionless time units. We present this figure to show that the jet is indeed turbulent
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Fig. 5.19: The three level refinement that we have defined for the turbulent jet.

and that no visible artefacts between the different grid levels are present.

When simulating this proposed refined grid, one finds that r;,2(z) behaves in
the same way it did for the uniform grid. The evolution of 7y /5(x) is shown on Fig.
5.21.

Next, we analyse the self-similarity. The results are in agreement with the
behaviour obtained for the uniform grid. The curves corresponding to the same
aspect ratios that we presented for the uniform grid are shown in Fig. 5.22.

We present the mean velocity wu, velocity obtained with the refined grid. In
Fig. 5.23, we show a cut of the mean velocity over the xy plane in the middle of
the domain.

Finally, we have tested the same set-up, but this time we have not performed
the filtering operation when copying informations from the fine to the coarse grids.
This results on bogus structures that appear through the interfaces of the grids.
This structures false completely the simulation of the data and eventually provoke
the divergence of the whole system. We find a clear example of the problem in Fig.
5.24 where we compare the density gradient in the filtered (left) and unfiltered
(right) versions in a plane parallel to the yz plane, found in the middle of the
simulation domain at ¢ = 500 dimensionless time units. In the unfiltered version,
we clearly see bogus structures over the interfaces of the different grids.

Once again, this confirm the hypothesis that a filtering operation is mandatory
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Fig. 5.20: Instant velocity norm of the developed turbulent jet at time ¢ = 1000.
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Fig. 5.21: plot of r1/2(x) against « for the refined grid.

when passing information from fine grids to coarser ones.
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Fig. 5.22: Self-similarity of the quantity (U)/Us(z) plotted against r/ry/2(z).
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Fig. 5.23: Mean u, velocity for the refined grid.

5.3 Summary

In this chapter, we have presented our implementation of the generic grid refine-
ment on the Palabos library.

We start with the geometrical considerations, which are the base of grid re-
finement. We explain in detail two operations: refine and coarsen. The first one
allows us to replace a region of a coarse grid by a finer one. The coarsen operation
replaces a region of a fine grid by a coarser grid. Then, we briefly comment on
the implementation of the couplings between the grids of different levels. For this
operations, we have used processing functionals in Palabos. Finally, we discuss
other details about our implementation, namely the representation of the system
and the simple choices for parallel execution that we have made.
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o ¥

Fig. 5.24: Comparison of the density gradient in the middle of the domain for
filtered and unfiltered versions.

Afterwards, we pass to the validation of our implementation. We have divided
our tests in 2D and 3D cases.

In 2D we have solved two problems: the flow around a cylinder at relatively low
Reynolds number and the more complicated dipole collision against a solid wall. In
the first case, we have found the drag and lift coefficients. On the second test case
we are interested in the enstrophy values when the dipole collides with the wall.
For the dipole collision, we have simulated a high Reynolds number and found
the filtering to be necessary for the stability and consistency of the simulation. In
both cases we have compared the results for a uniform grid and a refined grid and
found that the results match.

In 3D, we have first dealt with the flow around a sphere represented with
bounce-back nodes. In this case, we study the evolution of the drag coefficient for
several Reynolds numbers. We have found that the results of the refined grid are
in conformity with the values obtained with the uniform grid.

The final test—case that we have simulated is the turbulent jet at a Reynolds
number of 2000. A sub—grid model had to be used, because a direct numerical simu-
lation was computationally too expensive. We were interested in two experimental
results found in the literature: the behaviour of r1/5(x) and the self-similarity of
the flow. Once again, we obtain results in agreement for the uniform and refined
grids. Finally, we have remarked the importance of the filtering operation in this
precise case, because not using it results in numerical instability.

For all the problems that we have simulated, we have shown that the LBM
remains second order for our refined grids.

To end this summary, we can safely assert that the proposed coupling opera-
tions and our implementation are sound.



Chapter 6

Further directions of research for
grid refinement

HERE we present two topics related to grid refinement, but since they are not
directly related to our generic implementation, we have chosen to make a separate
chapter.

We start by introducing a new algorithm for grid coupling without an overlap-
ping region between the grids, in opposition to the algorithm used in our generic
implementation. Then, we suggest an algorithmic criterion to find regions suscep-
tible to need a local grid refinement.

6.1 Grid refinement algorithm with no overlap-
ping region

As we have shown previously in Chap. 4, the approach that we use for the generic
grid refinement, requires a buffering redundant region between two grids of different
resolutions. In this way, we can ensure that the copy of information is performed
from sites having no missing information.

It is however possible to consider a different case, where no overlapping re-
gion exists between the coarse and fine grids. One needs to complete the missing
populations in the coarse and fine grids consistently, similarly to a boundary con-
dition algorithm. The goal of such idea is to eliminate the redundant sites that
the buffering region introduces.

In this section, we start by showing the bases of the proposed algorithm. The
algorithm is then implemented in the Palabos library. The approach is finally
validated on a two—-dimensional Poiseuille flow.

The sub—indexes ¢ and f are used for, respectively, coarse and fine grids, as it
has been done throughout this thesis.

To our knowledge, the only paper where an algorithm with no overlapping zone
is Rheinlénder [59]. This algorithm is fundamentally different to ours as it is based
on the asymptotic analysis and it uses a diffusive scaling.

93
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6.1.1 The algorithm

We consider a site & which belongs to the interface between a coarse and a fine
grid. Let us divide the set of indexes {0,...,q — 1} of the populations f; in three
sets I, Il and I11. We demand that the following properties are respected

TUITUIII ={0,...,q—1} (6.1)
INIT=IINIII=INIII=0 (6.2)

I represents the indexes of the unknown populations only on the fine grid.
Similarly, /1 contains all the populations unknown only on the coarse grid. Finally,
117 is formed by indexes which are known in both grids.

In Fig. 6.1, we present an example of division of indexes for the D2Q9 lattice
with the numbering of velocities proposed in Eq. 2.28.

Coarse grid | Fine grid
I AL 11

Fig. 6.1: Division of the indexes I, I1 and II1 for the D2Q9 when we have a coarse
grid on the left and a fine one on the right.

The coupling between the two grids resides in the reconstruction of the missing
distributions frr. and f7; at . To this end, we consider the following conditions
that must be satisfied by the f/"“:

Z fih=0 (6.3)
S e 64

or in other words, for each of the grids:

0= U+ > e (6.5)

el icll iell]

0=) &S+ &+ ) &I (6.6)

el iell ielll
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We replace each f;"“? by its definition [/ = f; — f7(p,w). In this case f{? is
the standard equilibrium distribution, but p and u are unknowns yet to be defined.
As we are using a convective scaling, then it follows that

fiy = fie = 1i%, (6.7)

because the density and velocity are continuous through the different grids.
We also recall the result of Sec. 4.3.3 that states that non—equilibrium distri-
butions in the fine and coarse grids are related by a factor b:

fs;q =bfi" (6.8)
which is given
Tf 5tf Tf
=J "7 - 6.9
Te Ote 27, (6.9)

We rewrite Egs. 6.5 and 6.6 for the fine grid. We replace f;'t* by bf;'c* for the
indexes in I obtaining

0= "b(fie— [+ (fir — £+ D (fur — £ (6.10)

el iell ielll
0=> b&ilfic— FiN+ D &lfir— Fi)+ D &lfir — 7). (6.11)
el iell ielll

We remark that the only unknowns in these equations are the [ = f(p, u).
Please note that we have chosen to use the fine values for the region labelled I71.

Let us remember that >, f/? = p and Y . & f7? = pu. This allows us to
transform Egs. 6.10 and 6.11 into

p=1=0) S o) 403 foct S fis (6.12)

el i€l el TUITT
pu=(1=b)> &fp,u)+bY &fic+ D>, &ifis (6.13)
el el el TUIlT

These equations can be further simplified in order to be solved. Let us recall
the form of f°? in Eq. 2.23. Let us write it as

[i'(p,u) = phi(u) (6.14)

with h;(u) = w; (1 4 Siu ﬁQi : uu).

2
Cs

If we replace this value in Eq. 6.12, we obtain

B K
P =0) ey i)

(6.15)
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with
K=0bY fiet > fir (6.16)
iel i€l TUITT
Then, if we replace this equation in Eq. 6.13, we find one equation where the
only unknown is w:

K K

u=(1-0 & hi(w)+ L (6.17
st UL g s W R 61D
where

L=b> &fict Y. &fir (6.18)

iel i€ITUITT

After some manipulations we finally arrive to
Ku=K(1-b)) &hi(u)+L—(1-0L> hi(u) (6.19)

il icl

which depends on the form of the function h;(w). When using the standard form
of the equilibrium function (see Eq. 2.23), h; is a second degree equation on wu.

We note that in the D2Q9 case, Eqgs. 6.15 and 6.17 are quite simple to solve, as
it is shown in the next section. In opposition, the same equations for the D3Q27
model form a system of non-linear equations with no analytical solution. It may
be solved effectively using an iterative method, as the Newton method.

Once we solve these equations, we are in measure to compute f;?(p, ) which
is noted simply f/? in the next equations.

Finally, we reconstruct the missing populations in both coarse and fine grids
using the following formulas

Jrr=f1"+b(fre—fiH =0 =b)f"+0bfr. (6.20)
€ 1 € 1 € 1
frie=fii + g(fn,f —fif)=01~- 5) 1+ ng,f (6.21)
e 1 e L e 1
fIH,c = f[?[ + g(flll,f - f]?[) - (1 - E)fl}ll + ngLf (6'22)

6.1.2 Implementation and validation

In this section, we rework the example of the 2D Poiseuille flow with Re = 100
presented in Sec. 4.5. We use the same set-up, namely a coarse grid on the
left connected to a fine grid in the right. This time we ensure that there is no
overlapping region between our grids. The set-up is shown in Fig. 6.2.

One interface node is represented as in Fig. 6.1. We obtain the following three
sets that divide the different indexes

I={1,2,3}
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Coarse Grid Fine Grid

4N

Fig. 6.2: Set-up for the 2D Poiseuille flow.

II={56,7}
117 ={0,4,8}. (6.23)

We rewrite the system presented in Eqs. 6.12 and 6.13 for the D2Q9 model.
Let us write u = (uy,u,) and L = (L,, L,), then we obtain

1 1 1
p=K+(1- b)(gp — QU+ Epui) (6.24)
1 1 1
Ugp = Ly + (1 = D) (—=p+ suzp — _pui) (6.25)
6 2 2
1 1
uyp = Ly + (1 = b)(Zuyp — 5puyus), (6.26)

6 2

where K has the exact same form as in Eq. 6.16 and L the one in Eq. 6.18.
It is possible to compute u, by combining Eqs 6.24 and 6.26. One obtains

0=L,(5+b)—K(b—1)+3(L,(b—1)—K(b+1))uy+3(b—1)(L, — K)uz. (6.27)
We conclude that wu, is one of the roots of the second order polynomial

b= Vb? — 4dac

Uy 52 (6.28)

with
a=30b-1)(L, — K) (6.29)
b=3(L,(b—1)—K(b+1)) (6.30)
c=L,(5+0b)—K(b-1). (6.31)

We note that given the form of h;(u), our system provides two roots. In our
particular example, we know that the Poiseuille velocity is positive, so we have
chosen the positive root of Eq. 6.28. However, in a more general set-up, we must
choose the root that ensures the continuity of the velocity. In order to remain
completely local, we can use the velocity at the preceding time step.
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Once we have u,, we replace it in Eq. 6.24 to compute p. Finally replacing
both values in Eq. 6.26, we obtain the value of w,,.

We have to note that a spatial interpolation is required in this algorithm.
However, the quantities to be interpolated are not the same as in the algorithm
presented in Chap. 4, which were p, u and all the non—equilibrium distributions
fiY. In this particular algorithm, in a fine grid node which does not have a
corresponding coarse node, there are no f; populations. Therefore, we need to
interpolate these populations from the neighbours, obtaining f;. Then, we use
these f; populations to solve Eqs. 6.15 and 6.17 for this particular site.

We depict an example of this situation for the population f5 in Fig. 6.3. Once
again, as it was discussed in Subsec. 4.4.1, we can choose between the two possible
spatial 1D interpolations.

Interface
Coarse grid O f 5 j
Fine grid )

f5
s\
]”5)g

fox

Fig. 6.3: f5 may be interpolated from the known f5 on the coarse grid.

As we are using a convective scaling for the physical quantities of the two
grids, it is necessary to perform a temporal interpolation as well. Let us name the
spatial resolution of the coarse grid 6¢. and the one on the fine grid dt; = 6t./2.
The populations f;.(x,t+ dty) are unknown, so in order to calculate it we use the
known populations at time ¢ and time t + dt. in a linear interpolation

Frela,t 4 6t5) = 3 [frol, 1) + frele,t 4 61)] (6.32)

The algorithm has been implemented in Palabos. The basic iteration of the
system consists of the following parts

1. at time ty both grids are complete
2. collide and stream on the coarse grid, save populations at t; = ty + dt.

3. spatial interpolation of populations fr . on the coarse grid at times ¢, and ¢;
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4. temporal interpolation of the populations f;. at time t;/, = to + dty

5. collide and stream on the fine grid

6. complete the I populations on the fine grid. For the populations coming

from the coarse grid use populations at time Z;;

7. collide and stream on the fine grid

8. complete the I populations on the fine grid using coarse populations at time

t

9. complete the IT and I11 populations on the coarse grid

Let us analyse the results of the simulation. If we plot the norm of the numerical
velocity and compare it to the analytical one, we see a perfect match. We remark
that the velocity norm has been measured over a column in the middle of the fine
grid (see Fig. 6.2). This result is depicted in Fig. 6.4.

Velocity norm

Fig. 6.4: Comparison of the analytical velocity norm and the one on the fine grid.

It is always very important to study the order of convergence of the method
for the problem when using the refinement. We observe that the method remains
second order accurate as it can be seen on Fig. 6.5 when using the cubic interpo-
lation. In opposition, the linear interpolation does not guarantee that the method
remains second order.

Our final result is that the mass remains perfectly constant in the grid transi-
tion, as it can be seen in Fig. 6.6, where we plot the density across the channel.

It is interesting to notice that even when using a simple linear interpolation

the density seems to behave correctly. We think that the reason of this odd
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107"

Error

—*— Cubic interpolation ~ -

f | —©— Linear interpolation ~ -
— — — -2slope
—— -1 slope

Resolution

Fig. 6.5: Convergence of the proposed refinement algorithm with linear and cubic
interpolation.
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Fig. 6.6: Density for the Poiseuille flow, for cubic and linear interpolation, as a
function of position along the tube.

behaviour, compared to the one in Fig. 4.14, may be related to the quantities
being interpolated: f; for the current algorithm, against f;"? in our generic grid
refinement. This topic needs to be clarified in the future. However, as shown
before, the spatial linear interpolation remains a bad choice, because it diminishes
the order of the method.
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6.1.3 Comments

It is necessary to clarify some aspects of our algorithm. First of all, it is interesting
to note that if we use our algorithm to couple two grids of the same resolution,
which is equivalent to fixing b = 1, we obtain the well-known relations for the
density and the velocity. For instance, when replacing b = 1 in Eq. 6.12, it

becomes -
P:Zfz“i‘ Z Ji :Zfi~ (6.33)
i=0

iel ielIUIl]

In the same way, Eq. 6.13 becomes

pu = Z&fi + Z &fi= Zéz’fi- (6.34)
=0

el 1€l IUIll

Given the simplicity of the problem proposed, we have not implemented the
filtering operation. It is however possible to include this operation to our algo-
rithm quite easily. The filtering operation should be applied before completing the
IT and 111 populations of the coarse grid (step 9. in the proposed algorithm).
For the filtering of this populations, we could for instance use a 1D symmetric
neighbourhood as shown in Fig. 6.7. The filtering is done over the region marked
as F'. The non—equilibrium filtered population ??eq can be then expressed by

e = % S @), (6.35)

xzelF

where |F| is the cardinality of the F' region.

Coarse grid O Interface
Fine grid X
@

Filtering
neighbourhood -~

T ¢Vf? o -

Fig. 6.7: Definition of the region F' for the filtering.

The filtering would only be applied over the non—equilibrium parts. We note
that we have avoided to filter p and w (see Subsec. 4.4.1) because it provokes an
artificial local increase of the viscosity. Thanks to this detail, the filtering oper-
ation does not change the computation of both these quantities with the system
presented in Eq. 6.12 and Eq. 6.13.
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Finally, we note that our problem does not have corners. Nevertheless, we
remark that the indexes I, I1 and I11 do not have a fixed form in the postulation
of the algorithm. Therefore, they may be arbitrary, as in the case of a corner.

6.2 A criterion to detect areas to be refined

The problem of locating areas that would require a local finer grid in an algorithmic
way can be difficult. We present an automatic process to select portions of the
simulation space that are likely to need more grid points.

We believe that an analytical approach is necessary. For instance in all our
examples of Chap. 5, we have used previous knowledge of the simulations, because
they are well-known examples. In general, this is not something that is known
a—priori.

In this section, we start by presenting the theory that supports our criterion.
Then we discuss some numerical examples, in order to prove the feasibility of the
approach.

6.2.1 Bases and algorithm

We use the fact that when considering the Boltzmann equation and doing a multi-
scale Chapman—Enskog analysis (see Chap. 2), we find that each particle density
function is composed of an equilibrium and an off-equilibrium part f = f¢+ fm°e.
We have supposed that f° > f"4. We have also shown that they are related by
the Knudsen number Kn so we can safely assert that the following relation holds:

fneq
Fer ~ Kn. (6.36)
We recall that the Knudsen number can be computed as
Ma
Kn=—. .
n o (6.37)

Let us consider a grid G, with spatial spacing dz.. We also define a finer grid
Gy with spatial step dxy, defined by the relationship dz. = dxy/n. We perform
the same simulation over both grids, thus keeping the Reynolds number Re fixed.
We recall that Re = w;, N/vy,, where both velocity wuy, and viscosity vy, are given
in lattice units.

Let us the recall the convective rescale (6t ~ dz). To simulate the same Re in
G, and Gy, uy, is constant and we rescale the viscosity vy,. As a consequence, the
Mach number Ma remains constant for any n. We can conclude that because of
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relation 6.37, Kn is also constant for any n. In the following, we are going to work
with this particular property.

We propose to use Eq. 6.36 as a mean to measure the quality of the results of
a simulation according to a given resolution. For the sake of the automation of
the whole process and measures, we postulate the following algorithm

1. Choose a spatial step dx

2. Divide the simulation domain R in m-by-n sub-domains R; ;.

3. Simulate R for some time.

4. Compute the Kn number from the relation 6.37.

5. for each sub-domain R, ; of R compute the mean value of the quantity

neq

> Z Ji o (6.38)

:.7’ TER;
where |R; ;| is the number of grid points inside the R;; region.

6. Compare C;; to Kn. If C;; > aKn, for some fixed «, then we deduce that
sub-domain R;; might need a finer grid.

We note that our algorithm depends on the number of regions (m and n) and
on the parameter a.

The value of the parameter « is discussed in the numerical results section, but
let us note in advance that the quantity C;; behaves as the velocity gradient, be-
cause it is proportional to ™. Because the LBM has a second order of accuracy,
the gradient decreases linearly with the increase of resolution. The direct conse-
quence of this fact is that if we want to insert a grid GG,, which is n times finer than
the current one on a region R;;, then C;; is at most n times smaller on R;; for
GG,,. This implies that a > %, because we cannot do better with G,, with respect
to the original grid.

6.2.2 Numerical results

In this subsection we show the results of the numerical tests that we have performed
in order to that for fine grids f"¢?/f¢¢ gets arbitrarily closer to Kn than in coarse
grids.

The first problem that we use is the cavity 2D simulation, a bounded domain,
where a velocity is applied over the top lid of the domain. In our particular case,
the Reynolds number Re is fixed to 100. The velocity of the top lid of the cavity
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is fixed to 0.01 in lattice units. All the other borders of the domain are set to have
null velocity. The whole set-up is depicted in Fig. 6.8. In this numerical example
we can compute Kn = 0.00017.

u = (U, 0)
u=(0,0) u = (0,0) N
u = (0,0)
N

Fig. 6.8: Set-up for the cavity 2D example.

We divide the domain in several regions R; ;. For instance for 5 lines and 5
columns, which is our test case, these regions are depicted in Fig. 6.9. We perform
the measure of the quantity C;; for N = 30,60,120 and 240. For each N, we
save the biggest C; ;, which corresponds to the region where we have theoretically
the worst resolution. We observe that the biggest C; ; converges to the computed
value of Kn. This fact is shown in Fig. 6.10.

Top lid

Roo| Roa| Roz2| Ros | Roa

Rio| Rip| Ri2 | Ra3 | Ria

Ry | Rop | Rep | Raz | Rou

R3o| R31 | R32 | R33 [R3a

Ryo| Ran| Rao| Ras | Raa

Fig. 6.9: Division of the simulation domain in several regions.

An interesting result is to take the biggest, the mean and the smallest values
of C;; and divide them by Kn. If we analyse the behaviour of these quantities,
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0.01 T T T T
max CII value
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h . | T
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Fig. 6.10: Convergence to Kn for the biggest Cj ;.

we find out that they behave linearly, as it can be seen in Fig. 6.11. So when
doubling the resolution, we expect at most that we are going to reduce each C; ;
at most by a half. This gives a clear message for the value of the parameter « in
our algorithm. We safely assert that 1/2 < « < 1 is the most useful range for this
parameter.

— biggest Ci_J
— % mean Ci

10' L —o— smallest CM?

~ slope -1

L
10' 10° 10°
Resolution

Fig. 6.11: Convergence of several C; ; values divided by Kn.

Without any loss of generality we have chosen to use a = 1 in our tests. After
the steady state of the cavity 2D is achieved, we save the quantities C;; for each
resolution and we compare them to Kn. The results for the different N can be
found in Fig. 6.12, where a white colour means that the region R; ; must be refined
(C;; > Kn) and gray means that the resolution is sufficient. In this case, we see
that N = 15 is not sufficient anywhere. Then, for bigger values of N we observe
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that the white regions decrease, until only the corners are left.

This behaviour is expected, as we know that there is a discontinuity at the
corners of the domain in the cavity 2D problem, because of a passage from a non—
null velocity to 0 abruptly in just one lattice site. The bigger values of C; ; are
found around these areas, as our tests confirm.

N =15 N =30

N =240

Fig. 6.12: Zones to refine per resolution N according to a 5-by—5 division. White
means refine (i.e. C;; > Kn), while gray stands for the fact that the resolution is
sufficient.

There is another utilisation for the fact that C;; decreases linearly. Let us
imagine that we simulate a resolution N, then we compute C;; over each region.
We compute C;;/Kn and this actually gives us a numerical value, which, when
rounded, can be safely associated to the number of times a grid must be refined
to correctly solve a region R; ;. If we fix N = 30 and we compute this value we
obtain the values present in Fig. 6.13. Once again, the biggest values are found in
the corners, then in the top lid.

We must end this section by noting that we have only dealt with a steady
laminar case to prove that the approach is feasible. The approach should be
tested against more difficult cases to have further confirmation of its utility.
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Roo Roa4
Top lid

21 10 7 8 25

3 2 2 2 6

2 1 1 2 3

0 1 1 1 0

0 0 0 0 0

Fig. 6.13: Fixing N = 30, how many times each region R;; must be refined,
according to our criterion, in order to provide a good solution.

6.3 Summary

In this chapter we have treated two subjects in direct relation with grid refinement,
but that are not used within our generic grid refinement implementation.

The first subject proposes an algorithm to couple two grids of different resolu-
tions with no overlapping zone. This coupling can be solved as if it was a boundary
condition. We divide all the populations in three groups, the unknown populations
only on the fine grid (I), the unknown populations only on the coarse grid (I7)
and populations which are known on both grids (//1). We stress the fact that this
sets do not have a particular form.

We note that we use the rescaling of the off-equilibrium part given by:

iy =g
Tf (Stf . Tf

b— —
T, 0t, 27

After computations, we find that the only unknowns we need to compute at
the interface are p and w via the non-linear system (Eqs. 6.12 and 6.13)

p=(L=0)> f'pw)+bD> fic+ D> fis

el el ielIUIl]

pu=(1-b)> &fNpu)+bY Efict Y. &ifis

i€l i€l €l IUITT
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Once we solve for p and u, we are able to compute f{?(p,u), which is the same
for both grids because of the convective scaling.
We finally proceed to complete the populations using Eqs. 6.20, 6.21 and 6.22

frp= 1" +b(flc_ N=00-0)f; +bflc
Jire = fif + (fo )= (—E)f;}l*Fng,f

e € 1 € ]'
frire = fiir + g(ful,f — fii) = (1= g)fl}ll + ngI,f

The second subject in this chapter deals with a criterion to detect regions where
we need more resolution. Our criterion is based on the property

£/ £ ~ Kn

where Kn is the Knudsen number.
We propose an algorithm to divide the domain in several rectangular blocks
R; ; where we compute the quantity

If C;; > Kn then we conclude that a refinement is necessary. This criterion is
validated on the cavity 2D problem.
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Conclusion and
future perspectives

In this thesis we have revisited the theoretical concepts of the grid refinement for
the LBM. We have studied and presented in detail all the necessary ingredients for
a successful implementation of a multi-domain based grid refinement. We have
taken special care in the study of the coupling operations between grids of different
levels, which are the core part of the grid refinement. In particular, we have found
that they must have some minimal requirements in order ensure numerical stability
and preserve the order of accuracy of the method.

First, we have studied the passage from a coarse to a fine grid, where the
information needs to be increased for the fine grid sites which do not correspond
to a coarse site. In this case, we have shown that a second order interpolation
to find the missing values is not sufficient as it results in a mass loss, even in
very simple cases, like laminar flows. We have shown that a four-point symmetric
cubic interpolation is mandatory, as it ensures that the method remains second
order accurate. We note that this type of cubic interpolation was not found in
literature. The only reference to cubical interpolation is presented in [80], but
using a cubic spline, which requires the first and second derivatives of the quantity
to interpolate.

The second novelty that we have proposed concerns the communication from
the fine grid to the coarse one. In this case, we must decrease the amount of
information communicated. The simplest solution is to perform a copy from the
corresponding fine site to the coarse grid. However, we have shown that this
direct copy is incompatible with high Reynolds number flow simulations, causing
numerical noise to appear on the boundaries between grids. The reason of this
behaviour is that the fine grid is able to resolve smaller scales, which the coarse grid
cannot handle. The solution that we have proposed is to use a filtering operation,
as it is done in traditional numerical methods. The filtering operation is a low pass
filter that removes the high frequencies. In practice, we have chosen to perform a
mean operation on the non—equilibrium part of the particle density functions in a
fixed neighbourhood on the fine grid, prior to the copy of these quantities to the
coarse grid. After testing, we have found that this filtering should not be applied

109



110 Chapter 7. Conclusion and future perspectives

to the density and velocity, as it results into an artificial viscosity increase, which
is far too important and provokes unwanted behaviours.

In order to apply the theoretical concepts and prove their accuracy, we have
made a generic implementation of our grid refinement. We have chosen the Palabos
open—source library as building block for our code.

Our implementation has been tested over a number of 2D and 3D problems.
For every test, we have compared the relevant results of a uniform grid with a
refined grid. We have evidenced a good agreement between the results on both
grids. We have also tried to compare the reduction of computational cost.

Among the four examples that we have simulated, we must specially emphasise
the dipole problem in 2D and the turbulent jet in 3D. Both of these problems are
challenging, as high velocity gradients go through the interfaces. Nevertheless, our
implementation has shown to be robust and accurate on both cases. These set-ups
have also aided us to underline the importance of the filtering operation, as the
simulations were numerically unstable when it was not used.

To end the thesis, we have presented two subjects related with grid refinement.
First, an algorithm to couple two grids without an overlapping zone. Then, we
have proposed a criterion to detect zones of a simulation which might need a local
finer grid. Both subjects have been tested over simple set-ups. We have studied
them aside of the generic implementation, but we are persuaded that they might
be very promising for the future.

The grid refinement is far from being a closed chapter in the LBM. In what
follows, we present some future directions for the research concerning the grid
refinement.

In our opinion, the next step for the generic grid refinement is to find a more
automatic way to detect zones for refinement, in order to create the simulation
domains. This step is currently performed manually on our code. We think that
in this direction, our criterion for the detection of non—resolved areas might be
useful. It should be extended and generalized for more complex problems.

When executing a code in parallel over a big quantity of computational cores,
we wish that all of them have an equivalent workload. In computer science, this
is known as the load balancing problem. The load balancing is known to be an
intractable problem, but there exist some heuristic methods to find solutions to
this problem. A non-uniform grid introduces additional constraints to the load
balancing problem, namely the difference of workload for different refinement levels
and the difference of temporal discretization between the levels. The heuristic
methods used before need to be adapted to take into account those new constraints.
This is another future direction for the research on grid refinement for the LBM,
as performance is one of the capital interests behind non—uniform grids. One of
the possible answers is to use solutions for methods such as the finite differences
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(see [57] for example).
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