> UNIVERSITE

Y DE GENEVE Archive ouverte UNIGE

https://archive-ouverte.unige.ch

Article scientifique 2003 Accepted version

This is an author manuscript post-peer-reviewing (accepted version) of the original publication. The layout of
the published version may differ .

Efstathiou, Evridiki; Gander, Martin Jakob

How to cite

EFSTATHIOU, Evridiki, GANDER, Martin Jakob. Why Restricted Additive Schwarz Converges Faster
than Additive Schwarz. In: BIT, 2003, vol. 43, n° 5, p. 945-959.

This publication URL:  https://archive-ouverte.unige.ch/unige:6282

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.


https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:6282

BIT 0006-3835/00/4004-0001 $15.00
2002, Vol. 43, No. 1, pp. 001-010 © Swets & Zeitlinger

Why Restricted Additive Schwarz Converges Faster
than Additive Schwarz *
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Abstract.

Recently a variant of the additive Schwarz (AS) preconditioner, the restricted ad-
ditive Schwarz (RAS) preconditioner has been introduced, and numerical experiments
showed that RAS converges faster and requires less communication than AS. We show
in this paper how RAS, which is defined at the matrix level, can be interpreted as an
iteration at the continuous level of the underlying problem. This interpretation reveals
why RAS converges faster than classical AS.

AMS subject classification: 65F10, 65N22.
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1 Introduction

The final extension we wish to consider concerns “parallel” versions of the Schwarz
alternating method ..., uﬁl_,’_l is solution of *A“£L+1 = f in O; and u; L =uh on

00; N Oj. (Lions, 1988)

The basic idea behind the additive form of the algorithm is to work with the simplest possible
polynomial in the projections. Therefore the equation (Py + P> + ...+ Py)uy = 991 is
solved by an iterative method. (Dryja and Widlund, 1989)

The classical alternating Schwarz method was formulated at the continuous level
by Schwarz in 1870 to prove existence and uniqueness of solutions of Laplace’s
equation on irregular domains [17]. This method was sequential and defined for
two subdomains (hence called ’alternating’ by Schwarz), and thus is like a block
Gauss Seidel iteration where the blocks are corresponding to the subdomains.
To distinguish this method at the continuous level from the ones defined at the
matrix level, we call it in this paper the Gauss Seidel Schwarz (GSS) method.
More than a century later the Schwarz method gained popularity with the advent
of parallel computers. Lions analyzed the alternating Schwarz method at the
continuous level using a projection formulation in [12] and maximum principle
arguments in [13] and generalized it to the case of more than two subdomains.
He also proposed at the continuous level to do the subdomain solves in parallel,
treating the subdomains in a Jacobi fashion, see the quote at the beginning
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of this section. To distinguish this continuous parallel variant of the Schwarz
method from the ones defined at the matrix level, we call this method the Jacobi
Schwarz (JS) method here.

Dryja and Widlund used the alternating Schwarz method at the continuous
level in [6] to introduce the multiplicative Schwarz (MS) preconditioner at the
matrix level, which goes sequentially through the subdomains, and is the dis-
crete analog of the continuous GSS method. The projection interpretation of the
alternating Schwarz method led the authors also to a more parallel variant, the
additive Schwarz (AS) preconditioner defined at the matrix level (see the quote
at the beginning of the section). While the AS preconditioner does the subdo-
main solves simultaneously, in the same spirit as the classical JS method at the
continuous level in [12], no link was made between the discrete AS preconditioner
and the continuous JS method. This way of introducing the Schwarz precon-
ditioners became classical: first the alternating Schwarz method is introduced
at the continuous level, then the discrete MS preconditioner is derived from it,
and noticing that it corresponds to a block Gauss Seidel iteration with overlap,
the corresponding block Jacobi iteration, the AS preconditioner, is introduced
at the discrete level, without a continuous interpretation, see for example the
review article by Chan and Mathew [4] or the book by Smith, Bjgrstad and
Gropp [18]. While in most later papers the condition numbers of the systems
preconditioned with MS or AS are studied, the underlying methods are defined
as iterative methods, and AS has a particularity, which is not always mentioned
in the domain decomposition literature. In [18] we find for example: “In general
the AS method will not converge, it is always accelerated with a Krylov subspace
method”, and in [11] the AS method is defined with a damping factor © with
the comment “the AS iteration converges for sufficiently small ©”, see also [8].
The JS method defined at the continuous level however was proved to converge
by Lions in [12] without a damping factor.

In a recent paper, Cai and Sarkis introduced a variant of the AS preconditioner
called restricted additive Schwarz (RAS), which was found accidentally; we cite
from [3]:

While working on an AS/GMRES algorithm in an Euler simulation,
we removed part of the communication routine and surprisingly the
“then AS” method converged faster in both terms of iteration counts
and CPU time.

RAS was further analyzed in [2], [16], [1] and at the algebraic level a convergence
theory for RAS is presented in [9]. RAS is now the default preconditioner in the
software package PETSc. In their original publication [3] the authors also pro-
posed a restricted multiplicative Schwarz (RMS) preconditioner. A convergence
theory for RMS at the algebraic level can be found in [14].

The goal of this paper is to show that RAS, which is formulated at the matrix
level, has a continuous interpretation at the level of the differential equation,
and it coincides with the JS method that was proposed and analyzed by Lions
in [12]. This interpretation allows us to show why RAS has better convergence
properties than AS, and hence it complements the convergence theory at the
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Figure 2.1: Domains and discretization of the Schwarz algorithms.

algebraic level given in [9]. To show this result, we first analyze the model
problem of the one dimensional Poisson equation and two subdomains. We
then show how the results generalize to higher dimensional problems with more
subdomains.

2 The Gauss-Seidel and Jacobi Schwarz Methods

To show the main idea, we consider first the Poisson equation in 2 = (0, 1),
Uge = f inQ, u(0)=u(l)=0.

We decompose the domain 2 into two overlapping subdomains ; = (0, 8) and

2y = (a,1) with @ < f, as shown in Figure 2.1. The classical alternating

Schwarz algorithm (Gauss Seidel Schwarz or GSS) given in [17] is

(2 1) Vpa = f, onQy, Wy, = f, on Qy,
' vt(B) = w'H(B), w'(a) = v'(a),

whereas the more parallel Jacobi Schwarz algorithm or JS defined in [12] is given
by

vy, = f, onQy, wy, = f, on
@Y @ e, wr@ = v ta)

In this classical form of the Schwarz algorithms there is no notion of a global
approximate solution. To be able to compare these algorithms later with the
Schwarz algorithms defined at the matrix level, we note that one could define
a global approximation to the solution by choosing the subdomain solution in
each subdomain and any weighted average within the overlap, u™ = x1v™ + x2w™
where x; = 1in Q1\(21 N Q), x2 =1 in 22\ (21 N Q) and x; + x2 = 1 in the
overlap ;1 N Q2. Such a weighting was also used in [20, 5, 19] at the continuous
level in the context of parabolic problems and is standard in the context of
multi-splittings, see [15].

In an implementation, the continuous Schwarz algorithms are discretized to
obtain matrix based Schwarz methods. Choosing for our model problem the
standard centered finite difference stencil with m — 1 equally spaced interior
nodes ¢; = ih, i =1,2,...,m —1, h = 1/m, we obtain for the discretized global
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Figure 2.2: Discretizations of the classical Schwarz algorithms, GSS on the left
and JS on the right; both are convergent.

problem the linear system

-2 1
1 . .
Au = f, A:ﬁ 1 =2 .|, fi=f(z),i=12,...,m—1.

Discretizing the algorithms, one finds (see, e.g., [18]), assuming for simplicity
that « and f fall onto the grid-points a and b respectively, as shown in Figure
2.1, for the discrete classical GSS method

(28 fi Wty fat1 — 7208
: : Wy o fat2
(23 A ¢ |= : C oA | = . ,
Up_o fo2
Vp_q fo1 — FHwp " Wy 1 fm-1

and for the more parallel JS method

oy’ fi Woyy far1 — gzop
: : Weyo fat2
(24) Al n = : y AQ . = . ’
Up_o fo2
Ugl—l fo—1 — #wgil Wy, fm-1

where A; and A, are the subdomain matrices of the same form as A with
appropriate size of the discrete subdomains D; and Ds. These algorithms are
the precise discrete analogs of the continuous algorithms. A numerical example
is shown for both algorithms in Figure 2.2 for f = —3 and Q; = (0,2/3),
Q2 = (1/3,1). Both algorithms are convergent, and in this simple two subdomain
case, the GSS method produces a subsequence of the iterates of the JS method.
This is however not true in general, as shown for example in [12].
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3 The Multiplicative Schwarz Preconditioner

The multiplicative Schwarz preconditioner (MS) at the matrix level is defined
by (see, e.g., [4]

[N

= w4+ RUATR (f - Aun)

u” )
u” = u" 2+ RIAT'Ry(f — Aum 2),

(3.1)

where u" is a global approximation to the solution. Here A; and A, are the
subdomain matrices as before, and R; and R» are rectangular restriction ma-
trices, the identity on the corresponding subdomains, extended by zeros. Their
action restricts a vector in the discrete domain D to a vector in D; and D,
respectively by choosing the entries corresponding to the interior nodes of the
subdomain. Their transpose is an extension matrix that prolongs a vector in
D; to one in D by adding zeros for the nodal values of D\D;. Using R;, one
can define the subdomain matrices on D; by A; = RiARiT. The MS algorithm
(3.1) is identical to its discretized counterpart GSS, a result shown also for more
general situations for example in [18] and [4]. Since this identity is non-trivial
and we need it later to relate RAS to JS, we show it now for our model problem

in detail. For the residual in the n — % step, we get

A T uy ™t 0 1
: Ay : + :
n—1 1, n-1
f — Aun! fb—l Up_1 7z Up
- 1, n—1 n—1
fo 7z U1 Uy
: O |+B|
—1
L fm—l . L U:Ln,1 .

where B is the remaining part of the matrix and of no importance, since the
following restriction step removes it,

fi up ™!
R1 (f - Au"fl) = : — A1
fo1 =gy up—y

Next the subdomain solve A; ! is applied,

fi up ! oy’ up™!
(3.2) AT'R (f — Au" 1) = A7 ; - =] s -]
fb—l_%ug_l U;}:ll Vp g “2711

where we introduced the vector v™, since it is precisely a subdomain solve with
boundary condition ugfl in GSS, see (2.3). Continuing with the algorithm, we



extend (3.2) to D and

- n_1 1
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add it to u™ ! to get

fi
ATt :
fo—1 — %U;:_l
0
L 0

GANDER

n—
um—l

Hence in u"_%, no matter what the content of the entries 1...b was, we find

part of the algorithm, we find similarly

G

L m—1 Jd

I R S

n—
um—l

the solution of a subdomain solve with boundary condition u; ™

! For the second

n
W41

where we denote by w™ the subdomain solution in Ds with boundary con-

dition v.

Comparing with (2.3) we see that this corresponds precisely to

the discretized GSS method with the global approximate solution defined by
u” = x10" + xow™ and x; = 1 in D1\(D1 N D»), zero elsewhere, and x» = 1
in D» and zero elsewhere. Hence the MS and the discretized GSS algorithms
produce identical iterates, and thus have the same convergence rate.

4 The Additive Schwarz Preconditioner
The additive Schwarz preconditioner (AS) is defined (see, e.g., [4]) by the

iteration
(4.1)

Tracing each step of this algorithm as before, we find

_un_ 11 -

ATt

(4.2) u"=

Tn—7 1

f1 ul 0
fa ug ! 0
n—1 - 1, n—1q [ n—17
fa+1 Ug+1 fa+1—pua Uqt1
. . + :
1, n—1 n—1 n—1
[fo—1—7zuy [Yp—1 ] AL fo—1 _ %1
0 2 f un—l
b b
n—1
0 | L o fm—l = _um—l__

u =u""' 4 (RTAT'R, + RTAS'Ry)(f — Au™™1).
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or with the subdomain solutions v"™ and w™

[ of ] 0 0 7
vy 0 0 )
n n—
Ua+1 wa+1 ua+1
(4.3) u" = + : —
n 1
Up—1 Wy_y Up_1q
0 wy 0
L 0 L Wy L 0

0 ”n -
P2 I 0 ]
, fi :
aq -1 At faj»l [ fat1T]
Mas = . Db , bas= +
: —1 po_1 _Ofbil_ A51 f,};l
0 ; z
Gm—a—2 L 0 1 L Lfm—1d |
L Gm—a—1 0]
(4.4)

and the two vectors p and q we introduced to define M 45 are given by

1

(4.5) p:—ﬁAl_l(:,b—l) and q=—-—A7'(;1).

h?
Hence this iterative method does not converge in general, since the spectral ra-
dius of the iteration matrix equals one, p(M) = 1. There are as many eigenvalues
—1 as nodes in the overlap, for our model problem their number is b — a — 1,
and the corresponding eigenvectors are the unit vectors eq41,...,ep—1. Hence
the AS method does not converge in the overlap, only in the interior of the
subdomains. This is the particularity of the AS preconditioner, it can only be
used either with Krylov acceleration or a damping factor, otherwise the method
does not converge. An example is shown in Figure 4.1 on the left, where one can
clearly see that the AS method does not converge in the overlap. Hence the AS
preconditioner defined in [6] does not correspond to the classical, convergent JS
algorithm introduced by Lions in [12].
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Figure 4.1: Comparison of AS on the left and RAS on the right for the model
problem with f=-3. One can clearly see that AS is not convergent in the overlap,
while RAS converges everywhere.

.51‘ ‘ ‘ ;22
2
Dy a " m—1
o000 0 0 0 0 0 & —|——
0 a J°) 1
0 92

Figure 5.1: The non-overlapping subdomains lNDi for the restriction operators }NBZ

5 The Restricted Additive Schwarz Preconditioner

We now show that the RAS preconditioner leads to an iterative method which
is identical to the discretization of the continuous JS method introduced in
[12] and hence converges without Krylov acceleration or damping factor, which
explains its superiority to the AS preconditioner. The RAS preconditioner is
defined in [3] by

u” =u""' + (RTAT 'Ry + RTAS Ry (f — Aum™),

where R, and R» are now restriction matrices on two non-overlapping subdo-
mains Dy = {1...c—1} and Dy = {c...m — 1} respectively with a < ¢ <, as
shown in Figure 5.1. To see why RAS corrects the problem of AS in the overlap,
we only need to replace the extension operators in what we found for AS in (4.2),

mon—17 r r 1 rn—T] r - 1, n—1 ron—171
u” fi Uy fa+1— 52U Uq 41
f ’LLTL71
a+2 a+2
n—1 n—1 . .
n u, STl 4—1 fe Ue ST 41 . .
u'=|" |+Ri|A; - +R; | A, = | n-1
. . . fC Ue
n—1 n—1 : .
um,12 fb—12 1 ub721 1
n n— n n—
[Ym —1] L fo—1—mzuy | |upi] L L fm 4 [Um ]
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Using again v™ and w™ to denote the subdomain solves with boundary condition
ug‘*l and u?~! respectively, we find now with these new extension operators

ron—11 - - ron—17 - - r 7 - -
ul vy’ uf 0 0 oy
n—1 n n—1 n

w' = | Yem1 | 4 | Vet LS 0 0 I

= -5 — — | =

Ug 0 0 wy Ug wy
n—1 n n—1 n

L %m—1 L 0 L 0 ] L Wiy —1 L Um—1 L Wy —1

Hence RAS corresponds to the discretization of the continuous JS method, with
the choice of defining the global approximate solution by u™ = y1v" + y2w"
and x1 = 1 in Dy, zero elsewhere, and ys = 1 in D- and zero elsewhere. Hence
RAS and the discretized JS algorithms are producing identical iterates and thus
have the same convergence rate. A numerical example is shown in Figure 4.1 on
the right.

Since AS is not convergent as an iterative method, we need to either use Krylov
acceleration or a damping factor to be able to further compare the performance

of the two methods. Writing RAS in the form u™ = Mgrasu™ ! + bras, as we
did for AS, we find

0 . -
P2

0 : [ f1 ] [fat1]

Pc—-1 ;
Mpas = s 0 ; bras =Bl AT | Jo eRTA | P
0 _fb;l_ _frn.—l_

Gm—a—2
L m-a—-1 0]

with the vectors p and q as defined in (4.5), but note that now only the entries

p(l :c—1) and glc —a : m —a — 1) are used in the definition of Mgas.
Using an idea from [10], this shows that RAS used as a preconditioner for a
Krylov method converges in at most 3 iterations for this model problem, since
Mpgags is a matrix of rank 2, which implies that the Krylov space corresponding
to I — Mgras can have at most dimension 3. On the other hand, M4s has
four distinct eigenvalues, one more than RAS, because of the additional —1
eigenvalue due to the problem of AS in the overlap, and thus a Krylov method
preconditioned with AS will converge in 4 iterations, one more than RAS, for this
one dimensional example. This is also observed in our numerical experiments:
when GMRES is preconditioned with AS for our model problem, it converges in
4 iterations to a tolerance of 10~%, whereas RAS only takes 3 iterations for the
same tolerance.
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To compare RAS and AS as iterative methods, we introduced the damping
factor « in the iteration for AS,

u” = y(MAsunfl +bas)+ (1 - 7)u”*1.

The optimal damping factor for AS for the one dimensional problem considered
here was found to be v = 0.8235. Using this value, AS converged in 31 steps
to the tolerance of 107, whereas RAS without damping factor converged in
24 steps to the same tolerance. The damping factor shifts the —1 eigenvalue
of the non-convergent eigenmodes of AS into the interval (—1,1), but at the
cost of shifting other eigenvalues closer to the boundary of this interval, making
the method slower than RAS. To make the comparison even fairer in general,
one should also allow a damping factor for the RAS iteration, but for our model
problem this was not necessary, since the optimal damping factor for RAS turned
out to be one.

6 The Restricted Multiplicative Schwarz Preconditioner

We have seen already in Section 3 that the MS preconditioner and the dis-
cretization of GSS are identical. We now analyze the RMS preconditioner, de-
fined in [3] by

un_% = qun! + E{Al_lRl (f — Au"‘l)

6.1 1= i
(6.1 u" = u" 2+ RVAS'Ry(f — Aun"2).

Starting from equation (3.2), up to which MS and RMS are identical, we now
have to apply RT,

M of ] w1 [T o7 ur ™!
n n—1 n n—1
ST 4—1 -1 =T Vo1 U, Vo1 u,
Rl Al Rl(f — Au" ) = Rl cn - %_11 = ¢ el
v, U, 0
—1
Lvg_ 1 _u;LlJ i 0 ]
L _1 - -
Hence we get the half-step approximation u"~2 = [v},...,v? ,,u?~t ... ul 4T
and similarly the full step approximation u” = [v}, ..., 0%, w?, ..., wl_;]T.

Hence RMS corresponds to the classical GSS method with the global approx-
imate solution defined as in RAS. Note that this way of defining the global
solution can lead to discontinuities of the approximate solution in the overlap; a
comparison of MS and RMS is shown in Figure 6.1.

7 Generalization

The results shown above for the Poisson equation in one dimension and two
subdomains hold also in a more general setting, only the notation becomes more
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Figure 6.1: MS on the left and RMS on the right for our model problem with
f=-3. Both methods are convergent at the same rate, but the iterates of RMS
can form discontinuities.

involved. To get the idea, we show the result for AS only for the two dimensional
Poisson equation

(7.1) Ugy + Uyy = f on Q, u=0 on 09,

and the three subdomains @y = [0,51] x [0,1], Q2 = [a1,82] x [0,1], Q5 =
[az,2] x [0,1], as shown in Figure 7.1. The AS iteration in that case is given by

(7.2) u'=u""'+ (RTA 'R, + RTA; 'Ry + R A R3) (F — Au™),

where A now represents the standard five point finite difference discretization
of the Laplacian in two dimensions and the R;, j = 1,2,3, are the restriction
matrices onto the nodes of the discretized subdomains D;, j = 1,2, 3, as shown
in Figure 7.1. Without loss of generality we assume equal grid spacing h in the
x and y direction to keep the notation simpler. We denote for any grid function
f approximating a continuous function f(z,y) by fi; ~ f(ih, jh).

As in the one dimensional case with two subdomains treated in Section 4, we
trace the main steps of the algorithm (7.2) in detail. The local solve applied to
the residual f — Au” ! on each subdomain gives for the first subdomain

_ _ - 1A
fi1 Uy g
n—1
—1 n—1y _ 4—1 Joi—2m—1 Up, —2.m—1
AR (f — Au"T) = A f _7Lun71 — 12m ,
bi—1,1 = 7z Up, 1 Up, 1,1
— Lyn-t n—1
L fb171,m71 hzub1,m—1 _ L ’Ulbl_Lm_l |
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\ Dy 1T Dy 1T Ds
)
f Dl ‘ | D2 [ ‘ D3 |
1 aq bl as b2 k—1
1 AAAAAAA o0 9o o o o o o P N N W W W W W W
e & o o o o o e o e o o o o e o e 6 & o o o o m — 1
e o o 0o o o o L e o o o o o o e & o o o o o 1
oo oo oo 9o ¢ o o o o o 90 o o 0 o o oo T
0 ar B az [ 2
Ql Qz QB

Figure 7.1: An example in two dimensions with three subdomains.

on the second subdomain

r 1, n-1 1 r n-1 7
far+10 = 7zuq, g Ugy+1,1
1, n—1 n—1
far+1,m—1 = 72Uq; 1 a1 1,m—1
ne
fart2,1 Ugy+2,1
-1 n—1y _ 4—1 . .
Ay Ro(f — Au"77) = A3 : - : )
n—1
fb272,m71 ub2—2,m—1
f _ Lunfl n—
bo—1,1 7z byl 'U/b27171
_ 1 ,n-1 nfl.
L sz—l,m—l 72 Wpym—1 | L Upy—1,m—1 J
and on the last subdomain
- 1, n-1 — - n-1 1
fas+11 = 72Uq, 1 Ugyt1,1
1 1| farttmo1 — prun,, ug !
AT Rs(f — Au") = AT az+1,m— RZ%as,m-1 | _ as+1m—1
fast2,1 Ugy+2,1
n—1
L fkamfl J L uk—l,m—l |

Denoting the local solves as before by v™, w™ and 2™ respectively, extending
the results to the entire domain using the extension matrices RJ-T, j=1,2,3 and
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adding the old iterate u™ ! according to the algorithm (7.2), we obtain the new
iterate

[ v11 1 [ 0 1 [ 0 1 [ 0 1
Ugl,m—l 0 0 0
n n n—1
Vay+1,1 Way +1,1 0 Ugy+1,1
n n 0 ’LLTL71
Upy —1,m—1 Why —1,m—1 b1—1,1
0 wy, 1 0
(7.3) u" = : + : + : -
0 wﬁz,m,l 0 0
n n n—1
0 Wey+1,1 Zan41,1 Ugyt1,1
n n n—1
0 Why —1,m—1 Zby—1,m—1 Up,_1,1
0 0 Zpy 1 0
n
L 0 J L 0 J L Zk—1,m—1 | L 0 J

which shows that as in the simpler one dimensional case with two subdomains
given in (4.3), the iteration matrix here also has a spectral radius equal to one
and AS does not converge in the overlap. Using however instead of R]T in the

extension process }NBJT associated with the non-overlapping decomposition ﬁj, as
it is done in RAS, the last vector on the right hand side in (7.3) depending on
u™ ! disappears and the subdomain solutions are put together without overlap.
Hence the method becomes the discretized classical JS algorithm defined by

Lions in [12] also in this higher dimensional case with 3 subdomains.

8 Conclusions

Using a continuous interpretation of the RAS preconditioner we have shown
why RAS has better convergence properties than AS. It is due to the fact that,
when used as iterative solvers, RAS is convergent everywhere, whereas AS is
not convergent in the overlap. Away from the overlap, the iterates are identical.
This observation holds not only for discretized partial differential equations, it is
true for arbitrary matrix problems, see [7]. Nevertheless, the AS preconditioner
can and has been successfully used, either together with Krylov acceleration,
or with a damping factor. But we have shown that the non-convergent modes
stemming from the problem in the overlap of AS make the method slower than
RAS in both those cases. For the important class of symmetric problems, RAS
has the disadvantage of being non-symmetric, and hence a Krylov method for
non-symmetric problems needs to be used, whereas AS for symmetric problems
is symmetric. It is to our knowledge an open problem if JS can be written in
symmetric form for symmetric problems.
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We close this paper with a remark on the communication: while the discretiza-

tions of the continuous GSS and JS methods need to communicate interface
values only, the MS, AS, RAS and RMS algorithm formulations require the ex-
change of information in the entire overlap, which is an order of magnitude more
than the information at the interfaces. It might therefore be beneficial for imple-
mentations to use the discretized GSS and JS formulations which have identical
convergence rates, but with less communication overhead.

10.
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