

# **Archive ouverte UNIGE**

https://archive-ouverte.unige.ch

| Article scientifique | Article | 1995 |
|----------------------|---------|------|
|----------------------|---------|------|

**Published version** 

**Open Access** 

| This is | the | published | version of | the p | oublication, | made | available ii | n accord | dance | with i | the | publish | ner's | s pol | icy. |
|---------|-----|-----------|------------|-------|--------------|------|--------------|----------|-------|--------|-----|---------|-------|-------|------|
|---------|-----|-----------|------------|-------|--------------|------|--------------|----------|-------|--------|-----|---------|-------|-------|------|

Diastereo- and enantioselective syntheses of heterocyclic natural products

Von Oppolzer, Wolfgang

## How to cite

VON OPPOLZER, Wolfgang. Diastereo- and enantioselective syntheses of heterocyclic natural products. In: Gazzetta chimica italiana, 1995, vol. 125, p. 207–213.

This publication URL: <a href="https://archive-ouverte.unige.ch/unige:164040">https://archive-ouverte.unige.ch/unige:164040</a>

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

RESEARCH REPORT

UNIVERSITÉ DE GENÈVE Bibliothèque - Saction de Chimie : 30, quel Ernet Managimet CH - 1211 GIENEVE 4

# DIASTEREO- AND ENANTIOSELECTIVE SYNTHESES OF HETEROCYCLIC NATURAL PRODUCTS (\*) (\*\*)

WOLFGANG OPPOLZER

Département de Chimie Organique, Université de Genève, CH-1211 Genève 4, Switzerland

Summary – Enantiomerically pure syn- or anti-β-acyloxy ketones, readily available by asymmetric syn- or anti-aldolizations of chiral N-acylsultams, undergo efficient, titanium-mediated cyclocondensations giving cis- or trans-2,3-dihydro-4H-pyran-4-ones such as the cigarette beetle pheromone (-)-serricorole, 6.

Enantiomerically pure cyclic nitrones  $\mathbf{F}$ , easily accessible via electrophilic  $\alpha$ -hydroxyaminations of N-acylsultams, serve as pivotal key intermediates in the highly stereoselective synthesis of various chiral piperidine and pyrrolidine alkaloids such as (-)-allosedamine, 27, and (-)-xenovenine, 44.

Thermal cyclizations of 4-alkenylhydroxylamines give N-hydroxypyrrolidines in a suprafacial manner, consistent with a retro-Cope elimination mechanism. For example, the stereospecific cyclization of alkenylhydroxylamine 64 serves as a key step in a short and efficient synthesis of the enantiomerically pure Amaryllidaceae alkaloid (+)-trianthine, 66, thus obtained in 24% overall yield from the chlorobenzene-derived enone 60.

It is a special privilege for me to receive this distinction in the memory of Professor Adolfo Quilico. As early as 30 years ago, working on the synthesis of cephalosporin-C under the guidance of Professor R. B. Woodward, I learned to admire Professor Quilico's groundbreaking article, where in 1950 he reported the stereospecificity of nitrile oxide additions to maleate and fumarate, pointing out the analogy of this reaction with diazoal-kane/alkene additions and thus laying the foundations of 1,3-dipolar cycloaddition chemistry <sup>1a</sup>. Another research activity of Professor Quilico, his trendsetting contributions to the chemistry of natural products, such as insect constituents <sup>1b</sup>, has spawned an impressive growth of this

research area. In memory of Professor Quilico, I would like to focus the first part of this account on the enantioselective synthesis of insect pheromones and defense compounds.

To construct these chiral molecules with the correct absolute configuration we employed the enantiomerically pure sultam auxiliaries 1 and 2

(scheme 1).

The antipodal auxiliaries (-)-1 and (+)-1, readily available from (+)- and (-)-camphorsulphonic acid and manufactured on a 100 kg-scale, rank today among the most efficient, versatile and reliable sources of chirality<sup>2</sup>. More recently, we prepared the related toluenesultams 2 by an unusual asymmetrically catalyzed imine hydrogenation<sup>3</sup>. Both types of sultam moieties provide high  $\pi$ -facial discrimination in various reactions of their *N*-enoyl or enolate derivatives **I** or **II** (scheme 2).

SCHEME 1

SCHEME 2

Thus, *O*-metallated *N*,*O*-ketene acetals **II** react with a broad range of electrophiles with efficient generation of one or two stereogenic centres. This is highlighted by the asymmetric synthesis of either *syn*-aldols **4**<sup>4</sup> or *anti*-aldols **5**<sup>5</sup> through aldolizations of the **same** boryl enolate **3** with aromatic, conjugated and aliphatic aldehydes (scheme 3).

Thus, TiCl<sub>4</sub> specifically inverts the enolate topicity of 3 in the aldol condensation, which is

(\*) Invited Memorial Lecture Adolfo Quilico delivered at the XXII Convegno della Divisione di Chimica Organica, Società Chimica Italiana, Viareggio, Italy, September 18-22, 1994.

(\*\*) Work supported by the Swiss National Science Foundation, Sandoz Pharma Ltd., Basel, and Givaudan-Roure AG, Dübendorf. 208

consistent with the «open» transition state  $\mathbf{B}^{\neq}$  as compared to the «closed» transition state  $\mathbf{A}^{\neq}$  in the absence of TiCl<sub>4</sub>. This unique stereodivergent protocol lends itself perfectly to the synthesis of (–)-serricorole, **6** (scheme 4), a sex pheromone of the cigarette beetle (*Lasioderma serricorne* F.).

SCHEME 4

Our strategy centres on the intramolecular condensation  $7 \to 6$  which has been reported by Mori et al.<sup>6</sup> to proceed in low yield. Nevertheless,  $\beta$ -acyloxy ketone 7 appeared to us as being a very attractive key intermediate, since it should be readily accessible from stereochemicaly pure 'anti'-and 'syn'-aldols **D** and **E**. These segments, in turn, are easily prepared by aldol condensation of propionaldehyde with chiral N-propionylsultams **C**, which can be directed either in an 'anti'-  $(\mathbf{C} \to \mathbf{D})$  or 'syn'-sense  $(\mathbf{C} \to \mathbf{E})$ .

To prepare the 'anti'-aldol segment C(4')-C(6), N-propionylsultam 8 was treated with in situ prepared diethylboryl triflate/ethyldiisopropylamine (scheme 5).

TiCl<sub>4</sub>-mediated condensation of the resulting crude *O*-boryl-*N*, *O*-ketene acetal with propional-dehyde at –78 °C gave pure 'anti'-aldol 10 in 77% yield after crystallization. *O*-Silylation of 10 (93%) and saponification with LiOH provided recovered auxiliary (–)-1 (93%) and pure *S*, *S*-carboxylic acid 11 (76%).

We then proceeded to assemble the C(2)-C(4) segment. The corresponding crystalline 'syn'-aldol E was easily obtained from the same propionyl-bornanesultam 8 via conventional borylenolate/propionaldehyde condensation (in the absence

SCHEME 5

of a Lewis acid)<sup>4</sup>. However, in view of our intention to displace the auxiliary group ultimately by a C-nucleophile [to introduce the C(5)/C(7)-segment, vide infra] we employed the more readily removable toluenesultam auxiliary (scheme 6).

SCHEME 6

Thus, successive treatment of propionyltoluenesultam **12** with (*in situ* prepared) diethylboryl triflate/ethyldiisopropylamine at 0 °C and propionaldehyde at –78 °C yielded pure 'syn'-aldol **14** (85% after crystallization).

To couple the C(2)-C(4) and C(4')-C(6) segments, aldol **14** was *O*-acylated with the mixed anhydride derived from carboxylic acid **11** and 2,6-dichlorobenzoyl chloride/NEt<sub>3</sub> which furnished ester **15** in 85% yield after crystallization (scheme 7).

SCHEME 7

To introduce the remaining C(5)-C(7) segment, the sultam moiety of 15 was displaced with dilithiated ethyl phenyl sulphone. Thus, deprotona-

tion of ethyl phenyl sulphone with BuLi/TMEDA (2 mol-equiv.) at 0 °C in THF, addition of acyltoluenesultam 15 at -78 °C and stirring the mixture at -78 °C for 3 h gave sultam auxiliary (+)-2 (89%) and keto sulphone 16 (72%) as a 93:7 mixture of C(5)-epimers. It is remarkable that the MeCLi<sub>2</sub>SO<sub>2</sub>Ph reagent selectively attacks the C(4)-imide-carbonyl group in preference to the C(6)-ester-carbonyl group and without epimerization at C(3) or C(1').

Reductive cleavage of the β-keto sulphone 16 was initially expected to yield the dihydropyranone ring of 6 directly *via* a spontaneous cyclization of the regioselectively generated enolate 17. Desulphonation of 16 with lithium naphthalenide and aqueous workup gave ethyl ketone 7 in 84% yield, but to our disappointment, not even a trace of dihydropyranone. All further attempts to cyclize the transient enolate 17, including transmetallation of 17, Met = Li, with TiCl<sub>4</sub>, Ti(O*i*Pr)<sub>3</sub>Cl, CeCl<sub>3</sub>, Me<sub>2</sub>AlCl and ZnCl<sub>2</sub> failed. Reduction of 16 with SmI<sub>2</sub> also yielded the acyclic ketone 7 (84-86%) but no dihydropyranone.

With ketone 7 in hand, we then tried to reproduce the reported cyclization conditions  $7\rightarrow6^{\circ}$ . Deprotonation of 7 with LiHMDS (2 mol-equiv.) in THF/TMEDA at -78 °C to 0 °C under Ar, pouring of the mixture into a 10% solution of chloroacetic acid in THF/H<sub>2</sub>O (1:1), stirring for 20 h at r.t., workup and desilylation gave at best a 4% yield of serricorole, 6, together with its C(3)-epimer (4%). Systematic exploration of various reaction conditions led to the following cyclization protocol. A 0.02 M solution of ketone 7 in CH2Cl2 was treated with TiCl<sub>4</sub>/EtN(iPr)<sub>2</sub> (8 mol-equiv.) at -78 °C (1 h) and then at 0 °C (20 h). Workup and desilylation of the crude cyclization product (HF/MeCN, 0 °C) provided pure (-)-serricorole, 6, in 67% yield (from 7). In summary, pure (-)-serricorole, 6, has been prepared from propionylsultam 8 by an 8-step sequence in 23% overall yield (scheme 8)7.

Hence, all four stereocentres of **6** were perfectly controlled *via* sultam-directed *'syn'*- or *'anti'*-aldolizations. The cleavage of an *N*-acylsultam using

a lithiated alkyl sulphone as a C-nucleophile  $(15\rightarrow 16)$  represents a general approach to chiral alkyl ketones<sup>8</sup>. A convenient and efficient route to optically pure, polysubstituted  $\gamma$ -dihydropyranones by Ti-mediated cyclization of  $\beta$ -acyloxy ketones is exemplified by the key step  $7\rightarrow 6^9$ . The decisive role of TiCl<sub>4</sub> in this cyclocondensation of acyloxy ketones III may be rationalized as follows (scheme 9)<sup>9</sup>.

SCHEME 9

$$\begin{array}{c} R^{2} & \bigcap_{R^{2}} R^{2} \\ \bigcap_{R^{2}} \bigcap_{R^{2}} R^{2}$$

Coordination of Ti(IV) with the ester carbonyl group should accelerate the cyclization of enolates IV, Met = Ti(IV) to give tetrahedral intermediates VII which undergo irreversible elimination to the dihydropyranone products VIII by facile departure of OTiCl3. The poor yields of serricorole 6 obtained by successive treatment previously of acyloxy ketone 7 with lithium hexamethyldisilazide and aqueous acid6 may be ascribed to a tetrahedral intermediate V which eliminates with departure of the endocyclic oxygen atom rather than with departure of the poor lithium alkoxide leaving group. Resulting 1,3-diketone enolate VI could undergo various side reactions prior to its acid promoted conversion to VIII.

In the following part of this account let us direct our attention towards a new and versatile approach to enantiomerically pure piperidines and pyrrolidines. Piperidine and pyrrolidine nuclei are common structural elements of numerous naturally

SCHEME 8

occurring alkaloids. We describe here the use of chiral cyclic nitrones **F** (and **ent-F**) as a platform to construct these ring systems in enantiomerically pure form (scheme 10).

#### SCHEME 10

Our approach to nitrones **F** relies on the previously developed ~100% diastereoface selective C-N bond formation when enolates of N-acylsultams 18 were reacted with the unconventional electrophile 1-chloro-1-nitrosocyclohexane (scheme 11) $^{10}$ .

### SCHEME 11

Hydrolysis of the resulting nitrones 20 and N,O-cleavage of hydroxylamines 21 provided various optically pure  $\alpha$ -amino acids in excellent yields.

En route to nitrones **F**, chiral N-acylsultams **G** carrying a protected carbonyl group in the ε-position were similarly treated with sodium hexamethyldisilazide/1-chloro-1-nitrosocyclohexane (scheme 12).

**SCHEME 12** 

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

Acidic hydrolysis of the resulting, non-isolated nitrone-acetals prompted deprotection and spontaneous condensation of the carbonyl and *N*-hydroxylamine units in **H**.

This concept may be exemplified by an asymmetric synthesis of (-)-allosedamine, **27** (scheme 13)<sup>II</sup>.

Successive treatment of N-acylsultam 22 with NaN(TMS)<sub>2</sub>, 1-chloro-1-nitrosocyclohexane and aq. HCl furnished crude tetrahydropyridine-1-oxide 23. Non-purified nitrone 23 underwent an about 100% exo-selective 1,3-dipolar addition to styrene with 96.5% preference at the face opposite to the C(6)-substituent (cfr. transition state  $24^{\#}$ ) giving cycloadduct 25 in 70% overall yield from 22. Key cycloadduct 25 was then transformed into alkaloid 27 via N-methylation and the interesting zinc promoted N/O-cleavage-decyanation step  $26 \rightarrow 27$ .

Nitrones **F** (and **ent-F**) display high facial discrimination not only in cycloadditions but also in other reactions. For instance, in the reduction of tetrahydropyridine-1-oxides and 1-pyrroline-1-oxides, **29** (with H<sub>2</sub>/Pd and NaBH<sub>3</sub>CN, respectively) a hydrogen atom was exclusively delivered at the C(2)-face opposite to the acyl substituent (scheme 14).

Thus, a series of *cis*-disubstituted *N*-hydroxy-piperidines, **30a-c**, and *N*-hydroxypyrrolidine **30d** were readily prepared.

#### SCHEME 14

#### SCHEME 13

Modification of the acyl substituent in compounds **30** offers a convenient route to 2,6-disubstituted piperidines (and to 2,5-disubstituted pyrrolidines) as exemplified by the conversion of **30a** into (-)-pinidine, **32** (scheme 15)<sup>12</sup>.

SCHEME 15

We then pursued the more challenging idea of removing the C(6)-substituent with simultaneous N/O-cleavage. Although unprecedented, it seemed plausible that an internal 'transesterification'  $30 \rightarrow 33$  (with recovery of the auxiliary) followed by a spontaneous decarboxylation of oxazetidin-4-one 33 would lead to cyclic imines 34 (scheme 16).

SCHEME 16

Indeed, heating *N*-hydroxypiperidine **30b** with NaH in toluene under reflux, followed by addition of i-Bu<sub>2</sub>AlH provided the C(2)-monosubstituted, optically pure alkaloid (–)-coniine, **37**, in 56% overall yield (scheme 17)<sup>13</sup>.

SCHEME 17

For the introduction of a carbon substituent at C(6) of imines **34** organocerium reagents, prepared by ultrasonication of CeCl<sub>3</sub>/RLi 1:1-mixtures in THF, appeared to be most suitable.

Hence, applying this novel deoxygenative decarboxylation protocol to *N*-hydroxypiperidine **30c** and trapping of the transient imine **34c** with (*in situ* 

prepared) «MeCeCl<sub>2</sub>» furnished the C(2,6)-transdisubstituted piperidine (–)-solenopsin-A (38, 54% overall) with none of its *cis*-isomer (scheme 17)<sup>13</sup>.

Extension of the «oxazetidin-4-one route» to the flexible preparation of enantiomerically pure pyrrolidines is straightforward as demonstrated in scheme 18.

SCHEME 18

Thus, *N*-hydroxypyrrolidine **30d** was smoothly transformed into (-)-2-heptylpyrrolidine, **40**, as well as into *trans*-disubstituted (-)-solenopsis fugax venom **41**<sup>13</sup>.

Similar addition of the organocerium nucleophile obtained from 3-butenylmagnesium bromide and CeCl<sub>3</sub> to imine 39 yielded *trans*-disubstituted pyrrolidine 42. N-Benzyloxycarbonylation of 42, Wacker oxidation and stirring of the resulting methyl ketone 43 with Pd/C in MeOH under H<sub>2</sub> gave the pyrrolizidine alkaloid (-)-xenovenine, 44 (scheme 19).

SCHEME 19

The second part of this account deals with the thermal cyclizations of N-4-alkenylhydroxylamines, such as the transformation  $45\rightarrow48$ , first reported by House *et al.*<sup>14a</sup> and independently discovered by us<sup>14b</sup> (scheme 20).

SCHEME 20

Radical-chain<sup>14a</sup> and retro-Cope elimination pathways<sup>15</sup> have been postulated for this reaction but without providing compelling proof of either mechanism. We felt that confirming the suprafaciality of this process would strongly support the occurrence of a retro-Cope elimination. It was indeed gratifying to find that the (E)- and (Z)-5,5-disubstituted 4-alkenylhydroxylamines 50 and 52 cyclized smoothly in oxygen-free benzene at reflux to give N-hydroxypyrrolidines 51 and 53, respectively, in 81% yield and without cross-contamination (scheme 21).

#### SCHEME 21

The configurations of the cyclization products **51** and **53**, unambiguously assigned by X-ray diffraction analysis of **51**, correspond to the expected suprafacial formation of the C(4)-N and C(5)-H bonds in the ring closure<sup>16</sup>.

suprafacial formation of the C(4)-N and C(5)-H bonds in the ring closure<sup>16</sup>.

Having settled the mechanistic question in favour of a retro-Cope elimination we set out to exploit the newly found stereospecificity of alkenylhydroxylamine cyclizations in alkaloid synthesis. As depicted in scheme 22, (±)-α-lycorane, 59, was synthesized in 36% overall yield from aryl bromide 54.

#### SCHEME 22

In the key step, heating of hydroxylamine 57 in mesitylene under Ar at 140 °C for 17 h provided the expected retro-Cope elimination product 58 as a single isomer in 83% yield<sup>16</sup>.

A more ambitious example (scheme 23), the first enantioselective synthesis of (+)-trianthine [66 = (+)-zephyranthine], starts with optically pure 4-

#### SCHEME 23

hydroxycyclohexenone, **60** (readily accessible *via* microbial oxidation of chlorobenzene<sup>17</sup>).

A novel deoxygenation  $60\rightarrow61$ , followed by aryllithium-1,2-addition/O-acylation ( $61\rightarrow62$ ) and antiselective  $S_N2$ '-substitution ( $62\rightarrow63$ ), secured the desired configuration at C(3a). Centre C(3a) then induced centres C(12b) and C(12c) with  $\sim100\%$  selectivity in the crucial retro-Cope elimination  $64\rightarrow65$  ( $80^{\circ}C/70h$ , 93% yield)<sup>16</sup>.

It is a privilege to acknowledge the crucial contribution of my coworkers whose names appear in the references.

Received January 16th 1995

## REFERENCES

- (¹) a) A. QUILICO, G. STAGNO D'ALCONTRES, P. GRÜNANGER, Gazz. Chim. Ital., 80, 479 (1950); b) G. SPERONI, Chim. Ind. (Milano), 65, 774 (1983).
- (2) W. OPPOLZER, Tetrahedron, 43, 1969 (1987); W. OPPOLZER, Pure Appl. Chem., 62, 1241 (1990); B.H. KIM, D.P. CUR-RAN, Tetrahedron, 49, 293 (1993); both antipodal forms of the bornane-10,2-sultam are available on a multi-kg scale from OXFORD ASYMMETRY Ltd., Abingdon/UK.
- (3) W. Oppolzer, M. Wills, C. Starkemann, G. Bernardinelli, Tetrahedron Lett., 31, 4117 (1990); W. Oppolzer, M. Wills, M.J. Kelly, M. Signer, J. Blagg, ibid., 31, 5015 (1990); W. Oppolzer, I. Rodriguez, C. Starkemann, E. Walther, ibid., 31, 5019 (1990).
- (4) W. OPPOLZER, J. BLAGG, I. RODRIGUEZ, E. WALTHER, J. Am. Chem. Soc., 112, 2767 (1990).
- (5) W. OPPOLZER, P. LIENARD, Tetrahedron Lett., 34, 4321 (1993).
- (6) T. EBATA, K. MORI, Agric. Biol. Chem., 51, 2925 (1987).
- (7) W. OPPOLZER, I. RODRIGUEZ, Helv. Chim. Acta, 76, 1275 (1993).
- (8) W. Oppolzer, J.-E. Ancel, G. Poli, publication in preparation.
- (9) W. Oppolzer, I. Rodriguez, Helv. Chim. Acta, 76, 1282 (1993).
- (10) W. OPPOLZER, O. TAMURA, Tetrahedron Lett., 31, 991 (1990); W. OPPOLZER, O. TAMURA, J. DEERBERG, Helv. Chim. Acta, 75, 1965 (1992).
- (11) W. OPPOLZER, J. DEERBERG, O. TAMURA, Helv. Chim. Acta, 77, 554 (1994).
- (12) W. Oppolzer, E. Merifield, *Helv. Chim. Acta*, 76, 957 (1993).
- (13) W. OPPOLZER, C.G. BOCHET, E. MERIFIELD, Tetrahedron Lett., 35, 7015 (1994).

- (14) a) H.O. House, D.T. Manning, D.G. Melillo, L.F. Lee, O.R. Haynes, B.E. Wilkes, J. Org. Chem., 41, 855 (1976); H.O. House, L.F. Lee, J. Org. Chem., 41, 863 (1976); b) W. Oppolzer, S. Siles, R.L. Snowden, B.H. Bakker, M. Petrzilka, Tetrahedron Lett., 20, 4391 (1979).

- E. CIGANEK, J. Org. Chem., 55, 3007 (1990).
   W. OPPOLZER, A.C. SPIVEY, C.G. BOCHET, J. Am. Chem. Soc., 116, 3139 (1994).
   T. HUDLICKY, H. LUNA, H.F. OLIVO, C. ANDERSEN, T. NUGENT, J.D. PRICE, J. Chem. Soc., Perkin Trans. 1, 2907 (1991).

