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Abstract

Density functional theory (DFT) has progressively emerged in the last 40 years as a leading methodology for the modelling and simulation of

chemical systems. In this paper, some historical landmarks in the development of this method are outlined, emphasizing on its main characteristic

being an electron density-based theory. This is in contrast with wavefunction-based methodologies which were exclusively employed previously.

Interestingly, DFT has been first applied to solids, with a rather late recognition by chemists and molecular scientists. After this historical survey,

several applications of DFT to the structure and properties of zeolites are reviewed as a tribute to Dr Annick Goursot.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

It is an indisputable fact that computational chemistry (CC)

has become nowadays a well-accepted partner of experimental

chemistry. CC is a very broad topic, which has been the subject

of recent textbooks [1–4]. We shall limit ourselves in this

article to the part devoted to the development of modelling and

simulation of molecules and materials using quantum methods.

More specifically, we wish here to retrace the main steps of the

development of a quantum mechanical method, which is

universally used today, namely density functional theory

(DFT) [3,5]. The history of this methodology has followed

an exciting path, being the subject of multiple debates and

controversies among theoreticians. However today, everybody

agrees that it is an indispensable tool for most applications in

chemistry and physics. First, the characteristics of DFT, as

compared with more traditional quantum chemical methods,

will be briefly reviewed. Then some of its most prominent

applications to zeolites will be outlined.

Before focusing on DFT, it is worthwhile to recall the basic

features of ab initio methods traditionally used in quantum

chemistry. The common goal of conventional ab initio methods

consists in solving the Schrödinger equation, within the Born–

Oppenheimer approximation:

ĤJZEJ (1)

Ĥ is the Hamiltonian of the system

Ĥ Z T̂e C V̂ee C V̂ne C V̂nn (2)

where T̂e, V̂ee, V̂ne, and V̂nn are the kinetic energy, electron–

electron repulsion, electron–nucleus attraction, and nucleus–

nucleus repulsion operators, respectively. E is the total

energy, and J is the N-particle wavefunction. The term ab

initio means that no empirical parameters are introduced to

solve Eq. (1). Practically, the fundamental principles of most

ab initio methods are based on the Hartree–Fock (HF)

approximation, which is central to chemistry. Within this

approximation, the wavefunction J is represented using a

Slater determinant of one-electron wavefunctions ji, leading

to the HF equations

K
1

2
V2 CvHF

eff;iðrÞ

� �
jiðrÞZ 3ijiðrÞ (3)

where V2 is the laplacian operator and vHF
eff;i is the effective

HF operator:

vHF
eff;iðrÞZ vextðrÞCvHðrÞCvHF

x;i ðrÞ (4)
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In Eq. (4), vext, vH, and vHF
x;i are the external, Hartree, and

non-local exchange potentials, respectively. 3i is the

eigenvalue of electron i in spin–orbital ji.

The problem is that HF does not account for electron

correlation due to the rigid form of the single determinant

wavefunction. Indeed, to solve the HF equations, the

assumption has to be made that each electron interacts with

the average potential generated by the other ones, neglecting

thus the instantaneous repulsion (i.e. the Coulomb correlation).

To take correlation into account, it is necessary to go beyond

the HF approximation and to make use of the so-called post-HF

methods, such as configuration interaction, coupled-cluster or

Møller–Plesset perturbation theory [1]. In post-HF methods,

the wavefunction is generally represented by a linear

combination of determinants accounting for correlation.

Moreover, whereas the post-HF methods offer a systematic

way to improve the accuracy of the results, they scale as fifth or

even higher power with the size of the system, implying then a

considerable computational effort.

For these reasons, density functional theory is nowadays a

valuable alternative for including correlations effects, without

using intricate wavefunctions methods. Indeed, the basic idea of

DFT is to replace the complicatedN-electron wavefunction by the

electron density r as a basic local variable. As demonstrated by

the theorems of Hohenberg and Kohn [6], this fundamental

change of variable can be done without loss of rigor. These

authors proved, indeed, that the electron density r can determine,

in a unique way, all the properties of the system. They also

demonstrated that the total energy of the system is stationary with

respect to the density r (i.e. the minimum of the total energy

functional E[r] is obtained when evaluated using the exact

density of the ground state). Unfortunately, the Hohenberg–Kohn

theorems do not provide the exact form of the total energy

functional E[r]. Among the different components of the total

energy, the exact density functional forms of both kinetic and

exchange-correlation terms remain unknown. To circumvent the

problem of the kinetic part (much larger than the exchange-

correlation one), Kohn and Sham (KS) [7] proposed to introduce a

set of fictitious one-electron wavefunctions ji to build a Slater

determinant. This leads to the KS equations

K
1

2
V2 CvKS

eff ðrÞ

� �
jiðrÞZ 3ijiðrÞ (5)

which are HF-like equations (Eq. (3)), vKS
eff being the effective KS

operator

vKS
eff ðrÞZ vextðrÞCvHðrÞCvKS

xc ðrÞ (6)

where vext, vH, and vKS
xc are the external, Hartree, and exchange-

correlation potentials, respectively. The electron density r is then

obtained as

rðrÞZ
XN
iZ1

jjiðrÞj
2 (7)

The only unknown part in the KS scheme of DFT is thus the

exchange-correlation part, for which many approximations have

been proposed [3,5].

The appearance of the KS version of DFT resulted in a

clash, which immediately divided the community of quantum

chemists into two opposite groups: the one using the traditional

ab initio methods and the other using the KS equations. During

the 1970s and 1980s there were strong oppositions between the

two communities. As it has been mentioned above, the

wavefunction-based methods allow in principle to gradually

and systematically improve the level of calculations by using

linear combination of Slater determinants. The problem is that

satisfactory improvements are generally intractable for systems

larger than, say, 10–15 atoms. On the other hand, DFT-based

methods are readily applicable to much larger systems with an

accuracy comparable to second-order Møller–Plesset pertur-

bation theory, though it is difficult to carry out a gradual and

systematic improvement of exchange-correlation potentials. It

is interesting to quote here long and vivid discussions between

the late Demuynck and one of us (J.W.) about “the cleaner way

to improve results in ab initio, but the unreasonable

computational effort so involved, as compared to the

approximate level of the KS Hamiltonian allowing to rather

easily carry out calculations for large compounds, without

knowing really how to improve them if needed” [8]. To make a

long story short, these arguments between the two commu-

nities, have now significantly decreased, becoming irrelevant,

and DFT has finally obtained recognition and acceptance as

illustrated by the 1998 Nobel Prize attributed to both Kohn and

Pople [9,10].

2. Some historical landmarks

It is generally accepted that electronic structure calculations

trace back to the early 1930s when Dirac [11] and Wigner and

Seitz [12,13] suggested approximations for the self-consistent

field in which each individual electron of a molecule or a solid

is moving. These authors addressed the problem of the

exchange energy of the Thomas–Fermi atom, leading to a

local expression in 4/3 power of the electron density. Then, in

the late 1930s, Slater proposed a scheme of spherically

symmetric atomic potentials embedded in a region of constant

potential expanded in plane waves [14]. This method, later

used to calculate energy bands of crystals, was called the

augmented plane wave method, using the muffin-tin or atomic

sphere approximation.

However, it is only later, in 1951, that Slater proposed the

so-called Hartree–Fock–Slater [15] approximation as a

simplification of the Hartree–Fock method. The idea was to

approach the complicated non-local Fock exchange operator

vHF
x;i of the one-electron HF Hamiltonian by an average local vS

x

potential. This derivation represents actually a generalization

and extension of Wigner and Seitz concepts. In 1952, the first

applications to solids using the vS
x potential appeared (see Refs.

[16,17] for examples and Ref. [18] for a review). In 1954,

Gáspár [19] questioned the magnitude of the Slater exchange

term in the Hamiltonian and obtained (2/3)vS
x by varying the

spin–orbitals to minimize the total energy. The situation

remained as such until, between 1965 and 1968, several

theoreticians performed calculations by multiplying the
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exchange potential by different values called a. Several factors

other than Slater’s (aZ1) and Gáspár’s (aZ2/3) have been

considered, in order to improve the results of model

calculations, leading to the Xa equations, and Ref. [20] reports

such results. In the meantime, the original muffin-tin

approximation of Slater [14] was generalized for molecular

clusters by Johnson [21]. The multiple scattering-Xa (MS-Xa)

method, resulting from this development, is thus based on the

local Hartree–Fock–Slater approximation, whose eigensolu-

tions are found by using the multiple-scattering approximation.

This important step represented historically the first adaptation

of a solid-state physical method to molecular systems. The a

exchange parameter was later optimized for free atoms, leading

to better results for atomic and molecular properties [22]. In

1992, Chermette published a detailed review of the method-

ology and major applications of the MS-Xa method [23].

On the other hand, density functional theory started from the

famous 1964 paper by Hohenberg and Kohn [6] and its chief

method of implementation as derived in the 1965 paper by

Kohn and Sham [7]. In this work, it is shown that a convenient

DFT approach amounts to solving Schrödinger-like one-

electron equations incorporating an exchange-correlation

potential in the Hamiltonian. In a similar way as Gáspár [19],

Kohn and Sham [7] obtained (2/3)vS
x for the exchange

potential. In addition, they formally considered the introduc-

tion of a correlation potential. It should be noted however that,

as early as 1961, self-consistent-field calculations including an

approximate correlation potential in addition to the exchange

one had already been performed [24].

With the derivation of Kohn and Sham, it was also realized

that the Xa equations are equivalent to the well-known local

density approximation (LDA) if correlation is ignored. Even

though both Hohenberg–Kohn and Kohn–Sham papers have

been subsequently shown to have an enormous importance for

chemistry, they were only lately recognized by the community

of theoretical chemists. Meanwhile, the MS-Xa method

received much more attention: for example, in 1970, Johnson

and Smith addressed for the first time polyatomic molecules

such as perchlorate and sulphate ions [25]. A landmark

application of MS-Xa was the investigation for the first time

by Johnson and Smith of the electronic structure of a

coordination compound, namely the permanganate ion [26].

Since then, the interest in the MS-Xa method for calculating

the electronic structure of transition metal complexes increased

rapidly and realistic results were soon obtained [27,28].

This was the starting point for a broad range of MS-Xa
applications, including valence band and ESCA photoemission

spectra [29,30], chemisorption and catalysis [31], geometrical

and electronic structures of metal clusters [32] or metal dimers

[33] as well as inclusion of relativistic corrections [34]. Further

ambitious investigations were devoted to the study of

biosystems such as the ferrodoxin active site [35] or porphine

systems [36]. Finally, in the late 1970s Case and Karplus

developed a general formalism and performed the first one-

electron properties calculations using the MS-Xa method [37].

Besides, their contributions constituted a basis for numerous

further publications of molecular properties such as hyperfine

tensors [38–40] or electrostatic potentials [41,42].

Despite its success in describing one-electron properties of

molecules and solids, the MS-Xa method was unreliable in the

description of geometries, mainly due to the muffin-tin

approximation. An improvement was suggested by Slater so

as to use overlapping atomic spheres [43]. However, a much

more significant progress consisted in the introduction of the

LCAO (linear combination of atomic orbitals) scheme, based

on the use of either Gaussian [44,45] or Slater [46] orbitals.

Important methodological developments have then been

possible, allowing the computation of properties for large

systems employing both Xa and, later, DFT-based methods.

On the other hand, the fitting of electron density introduced first

by Baerends et al. [46] in the discrete variational method [47],

allows to reduce the scaling of the computational effort from N4

(N being the number of electrons) into an N3 one, without a loss

of accuracy. Sambe and Felton [48] proposed to fit also the

exchange potential using an entire set of auxiliary functions, in

addition to the electron density fitting. The contribution made

by Dunlap et al. [49] in improving the fitting procedure allowed

for more accurate total energies (see also the contribution by

Ipatov et al. [50] in this issue).

It is interesting to note that, during many years, Xa was

presented as an independent self-contained method, and it is

only in 1977 that the review of Connolly [51] revealed that it

was actually an approximation to an ‘exact’ density functional

theory.

On the other hand, physicists paid an early attention to DFT.

The first Kohn–Sham LDA calculations on atoms were carried

out by Tong and Sham in 1966 [52]. In 1967, papers reporting

calculations on solids using the Gáspár–Kohn–Sham potential

for the exchange (with or without a correlation potential)

appeared, and the work of Kohn and Sham [7] started to be

frequently cited (see, e.g. Ref. [53]). However, it is only in the

1970s that theoreticians started to systematically develop local

correlation functionals for calculations on solids in the

framework of Kohn–Sham equations [54,55].

From a chemical point of view, the pioneers in the

application of the density functional concept, Xa practitioners

excepted, were Nikulin and collaborators [56,57] and Gordon

and Kim [58]. In a series of papers starting in 1970, these

authors considered rare gas and ion–ion interactions, taking

into account three-body effects. Introduction of gradient

corrections to the exchange-correlation functional has then

been considered [59], which led to several difficulties.

Therefore, by the middle of the 1970s, both the successes

and the limitations of the KS-LDA method started to be

realized.

Initiated by a calculation on H2 in 1976 [60], there has been

a series of impressive Kohn–Sham-type DFT calculations on

molecules performed by Gunnarsson et al. [61]. These results

show that the KS-LDA method is able to describe molecular

bonding reasonably well, which is in contrast with the well-

known non-bonding effects in the Thomas–Fermi theory. By

the early 1980s the first reviews on DFT appeared (see, e.g.

Ref. [62]), alerting the chemical community to “the promise
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and the charm of density functional theory of electronic

structure of atoms and molecules” [62]. It is interesting to also

note in this respect the comments made by Parr in 1983 [62]:

“There seems to be no reason such methods should not be

regarded as becoming competitive with traditional wavefunc-

tion methods for determining ground-state molecular

properties”.

The 1980s have witnessed continuous developments of

DFT, in particular of new exchange and correlation func-

tionals, trying to incorporate the non-local effects of the

correlation. Indeed, quite soon, it was recognized that the local

exchange energy term was introducing a substantial error in the

total energy. The so-called generalized gradient approximation

model of Perdew and Wang [63] initiated then a long series of

gradient corrected functionals, which led to much more

accurate energetic properties. Another class of functionals,

referred to as hybrid functionals [64], incorporates a mixing of

both DFT and HF exchange. This includes the B3LYP

functional [45], which remains one of the mostly used in

chemistry. This development is certainly at the origin of the

growing popularity of DFT calculations for organic and

inorganic molecules. Another important development was

performed in 1985 by Car and Parrinello in the form of an

elegant molecular dynamics scheme based on DFT [65]. More

recently, in the early 1990s, the first DFT codes became

broadly available. In particular, the first DFT option in the

widely used Gaussian program [45] and ADF code [46,66]

became available in 1992. Here again this step contributed

considerably to the wide use of DFT in modelling and

simulation applications. It is impossible to review here all

significant applications and performances of DFT in the 1990s

and 2000s as they are much too numerous. The interested

reader is referred to, e.g. the excellent textbook of Koch and

Holthausen [3] and review articles [67–70]

3. Applications to zeolites: a tribute to Dr Annick Goursot

In the 1990s, DFT methods have become de facto the

standard techniques for routine modelling structures and

properties of coordination compounds, organic, organometallic

and inorganic systems, clusters, catalysts, new materials,

surfaces, etc. An impressive number of papers have been

recently published showing, for example, that DFT methods

lead to quantitatively accurate results for the structures [67],

bond energies [71], vibrational frequencies [72], NMR

chemical shifts and ESR tensors [73], reaction mechanisms

implying homogenous catalysis [74,75], Ziegler–Natta

catalysis [76], surfaces [77], zeolites [78], or biochemical

systems [79], just to quote a few successful applications of

DFT.

We would like to concentrate here on zeolites and on the

prominent role Dr Annick Goursot has played in DFT

investigations on these systems. Zeolites are crystalline

microporous aluminosilicates [80] which are used in a wide

variety of industrial applications, and the prediction of their

structures and properties is essential in many respects. DFT has

proved to be an efficient methodology for theoretical studies on

these systems, as exemplified, e.g. by the recent publications of

Mora-Fonz et al. [81] on the formation of their cyclic

structures, of Datka et al. [82] reporting the activation of

CaC bonds by CuC ions in zeolites, and of Barbosa and van

Santen [83] emphasizing the influence of the zeolite framework

geometry on the activation of C–H and H–H chemical bonds by

the [ZnOZn]C oxycation. It is also important to quote here the

studies of Davidova et al. [84] on the nature of the CuC–NO

bond at different types of CuC sites in zeolite catalysts, the

investigations of Lesthaeghe et al. [85] describing the

bifunctional acid–base properties of amine-substituted zeolites

and the calculations of Baute et al. [86] on carboxylate binding

in copper–histidine complexes in zeolite Y. Let us note that the

publications reported here are only part of the numerous DFT

studies reported on the catalytic properties of zeolites.

The early publications of Dr Annick Goursot on zeolites

trace back to the 1980s with some attempts to correlate the acid

strengths in offretite with the main features of their molecular

electrostatic potentials calculated with extended Hückel

wavefunctions [87,88]. Then, she turned in the 1990s to

numerous DFT investigations of the structure, stability and

adsorption properties (see Fig. 1) of a number of zeolites (see,

e.g. Refs. [89–94]). In the mid-1990s, she investigated the

structural parameters and the energetic of offretite [89–91]

using the local density approximation within the framework of

Car–Parrinello method [65]. In the meantime, the substitution

of silicon by aluminum at different tetrahedral sites of zeolite-b
and the influence of the counter ion were performed for the first

time at a correlated level of theory [92]. These preliminary

DFT studies of zeolites were followed by analysis of the

adsorption properties of small probe molecules onto various

zeolite types [93,94]. Using an embedded cluster approach,

these studies revealed an appealing correlation between the

Fig. 1. Structure and isoelectronic density surface (in grey) of a cluster model of

ZSM-5 zeolite with CO2 adsorbed on a lithium cation.
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structure of the zeolite and its corresponding adsorption

properties.

In the last few years, Dr Annick Goursot started extensive

investigations of the magnetic properties of zeolites. Over the

last 10 years, theoretical prediction of magnetic properties has

become indeed an essential tool for the chemical community.

Although, no reasonable (or efficient) exchange-correlation

current density functional has yet been proposed, the

application of uncoupled DFT for the computation of NMR

chemical shifts has been rather successful [95]. The calculation

of NMR properties of zeolites may not only be used as a tool to

characterize these systems, but it is also essential for the

understanding of their catalytic behavior. In this context, solid-

state NMR techniques such as magic angle spinning (MAS) has

been of great importance. In particular, 29Si NMR spectra,

carries the richest information due to its sensitivity to local

geometries, which produce a wide range of 29Si chemical shifts

[96–98]. In the mid-1990s Sauer and his collaborators initiated

the calculation of 29Si, 1H and 17O NMR chemical shifts for

zeolites [99,100] and zeolites precursors [101] at the coupled

Hartree–Fock-GIAO level. They demonstrated the crucial

importance of both the size of the model cluster and the

accuracy of the structural parameters to obtain converged

NMR 29Si chemical shifts. Predictably, it was Goursot and

collaborators who performed the first DFT-based 29Si and 27Al

chemical shifts calculations on the distinct crystallographic

nuclei sites of a zeolites-b [102] and on the simpler zeolite

mazzite [103,104]. As a result, they opened a new route to the

determination of zeolite structures and brought new insight into

their catalytic reactions within the DFT framework.

To overcome the finite-size cluster limitation, Mauri and

collaborators [105,106] recently developed a novel promising

methodology to calculate NMR shielding within periodic

boundary conditions using pseudo-wavefunction. Based on

DFT, this gauge-including projector augmented wave

(GIPAW) method has already considerably improved the

theoretical 17O NMR spectra of the zeolites faujasite and

ferrierite as compared to chemical shielding calculated on

single cluster zeolite models [107].

Although the static theoretical investigation of chemical

shielding on nuclei site of zeolites provide various infor-

mations which nicely complement experimental spectra, the

modelling of the dynamical aspect of the interaction between

the guest molecule and the zeolite and/or the solvent represents

a logical route for improvement. Using a DFT-based Born–

Oppenheimer dynamics approach, Goursot and collaborators

[108] evaluated the evolution of the 29Si NMR chemical shifts

of the solvated smallest zeolite precursors, Si(OH)4. This

preliminary study concluded that the explicit inclusion of

water–Si(OH)4 and water–water interaction is needed to obtain
29Si NMR in close agreement with experiment. In addition, the

solvent was shown to significantly influence the structural

hSiOHi angles and electronic (polarization) parameters of the

monomer, through a competition between internal and external

hydrogen bonds. In the particular context of catalytic properties

of zeolites, there is no doubt that DFT-based ab initio

molecular dynamics will provide the most appealing results

in the near future.

4. Conclusions

In this paper we first aimed to address the early ideas and

theoretical developments that led to the present recognition of

DFT as an indispensable tool in computational quantum

chemistry. Several controversies and difficulties directly

related to the emergence of DFT methods have been outlined

and discussed. It is remarkable that important methodological

developments in DFT took place in the last 40 years, to such an

extent that it has become today, in addition to practically all

fields of chemistry, a very promising technique in drug design,

combinatorial chemistry, materials science, etc. Such a rapid

emergence of a new modelling and simulation procedure is to

our knowledge unprecedented in the whole history of quantum

chemistry. Finally, DFT applications to zeolites have been

presented so as to substantiate these optimistic statements.

Emphasis has been placed on the achievements of Dr Annick

Goursot as a tribute to her long-standing involvement in this

field. In our opinion, there is no doubt that due to progresses in

both methodology and computer technology, DFT modelling

and simulations will be intimately connected with the future

developments of molecular sciences, in particular of materials

such as zeolites.
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in: E.W.J. van Steen, L.H. Callanan, M. Clayes (Eds.), Studies in

Surface Science and Catalysis vol. 154, Elsevier, Amsterdam, 2004,

p. 2151.

[83] L.A.M.M. Barbosa, R.A. van Santen, J. Phys. Chem. B 107 (2003)

14342.

[84] M. Davidova, D. Nachtigallova, P. Nachtigall, J. Sauer, J. Phys. Chem. B

108 (2004) 13674.

[85] D. Lesthaeghe, V. Van Speybroeck, G.B. Marin, M. Waroquier, J. Phys.

Chem. B 109 (2005) 7952.

[86] D. Baute, D. Arieli, F. Neese, H. Zimmermann, B.M. Weckhuysen,

D. Goldfarb, J. Am. Chem. Soc. 126 (2004) 11733.

[87] A. Goursot, F. Fajula, C. Daul, J. Weber, J. Phys. Chem. 92 (1988) 4456.

[88] A. Goursot, F. Fajula, F. Figueras, C. Daul, J. Weber, Helv. Chim. Acta

73 (1990) 112.

[89] L. Campana, A. Selloni, J. Weber, A. Pasquarello, I. Papai, A. Goursot,

Chem. Phys. Lett. 226 (1994) 245.

[90] L. Campana, A. Selloni, J. Weber, A. Goursot, J. Phys. Chem. 99 (1995)

16351.

[91] L. Campana, A. Selloni, J. Weber, A. Goursot, J. Phys. Chem. 101

(1997) 9932.

[92] I. Papai, A. Goursot, F. Fajula, J. Weber, J. Phys. Chem. 98 (1994) 4654.

[93] A. Goursot, V. Vasilyev, A. Arbuznikov, J. Phys. Chem. B 101 (1997)

6420.

[94] A. Arbuznikov, V. Vasilyev, A. Goursot, Surf. Sci. 397 (1998) 395.
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