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Abstract Antigen-specific dendritic cells (DC)-T cell
encounters occur in lymph nodes (LNs) and are essential
for the induction of both priming and tolerance. In both
cases, T cells are rapidly activated and proliferate. Howev-
er, the subsequent outcome of T cell activation depends on
the modulation of different DC- and T cell-intrinsic signals.
Recent advances in two-photon (2P) microscopy have
furthered our understanding regarding the complex chore-
ography of DCs and T cells in intact LNs, and established
differences in the dynamics of DC-T cell contacts during
priming and tolerance induction. The mechanisms that
favour DC-T cell encounters, as well as the contribution of
the frequency and the duration of such encounters in
dictating the T cell response, are discussed in this review.

Keywords Dendritic cells - T cells - Dynamic interactions -
Priming - Tolerance - Lymph node

Introduction

To be activated, naive T cells need to interact physically
with DCs, the most potent antigen (Ag)-presenting cells
(APCs). These events occur in specialised secondary
lymphoid organs, including the lymph nodes (LNs), spleen
and Peyer’s patches. The establishment of a cellular contact
between a T cell and a DC is required for Ag recognition
and occurs through T cell receptor (TCR) interactions with
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peptide—major histocompatibility (MHC) complexes pres-
ent on the DC surface (called signal 1). Furthermore, T
cell-DC contacts involve the engagement of different
receptor—ligand including those of costimulatory and
adhesion molecules (called signal 2), and the secretion of
mediators (called signal 3). The integration of the three
signals modulates the outcome of T cell activation.
Productive activation of naive T cells by DCs results in
their clonal expansion and differentiation into effector and
memory T cells. Because they present self-Ags to naive T
cells in LNs, DCs are involved in the maintenance of
peripheral T cell tolerance. The activation state of the DCs
that present the self-Ags determines the outcome of T cell
activation: resting DCs induce T cell clonal deletion or
unresponsiveness, whereas activated DCs induce T cell
priming [1-6]. Alternatively, Ag presentation by resting
DCs might also result in the development of regulatory T
cells (Tregs) that suppress CD4" T cell responses [7].
Whether directly via Treg interaction [8] or through the
uptake of apoptotic cell debris [9] keeps DCs under a
tolerogenic state, or if, indeed, DCs are tolerogenic by
default until they become activated, remains to be
determined.

The impact of DC-T cell contact duration on the outcome
of T cell activation has been debated for several years. In vitro,
multiple sequential DC-T cell contacts in three-dimensional
matrices are adequate for efficient T cell priming induction
[10]. However, co-cultures of DCs and T cells demonstrated
that prolonged contacts (lasting for several hours) sufficed to
induce efficient T cell priming [11, 12] and correlated with
DC maturation [13]. Since 2002, 2P microscopy of LNs
cultured ex vivo and intravital microscopy of LNs have
provided insight into the nature of DC-T cell interactions.
Presented in this review are the major findings obtained by
visualising DC and T cell dynamics during the induction of
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either T cell tolerance or T cell priming, that have furthered
our current understanding of the contribution of in vivo T
cell-DC contact dynamics to the outcome of T cell
responses.

Imaging immune cell dynamics in situ

Recent advances in the field of 2P microscopy facilitate the
analysis and understanding of DC migration behaviour as
well as the nature of their interactions with other immune
cells, in particular, during the initiation of T cell immune
responses. This technique, which enables the visualisation of
fluorescently labelled cells within intact tissues, has been
used in several laboratories to study DC and T cell migratory
patterns within LNs of mice, particularly after priming with
Ag-loaded DCs [14—17]. The 2P microscopy consists in the
optical sectioning of intact tissues and organs either as ex
vivo explants or directly in vivo within surgically exposed
preparations. The precise technology of 2P microscopy has
been the subject of excellent recent reviews by Cahalan et
al. and Germain et al. [18, 19]. Briefly, it involves the near-
simultaneous absorption of energy from two photons each
contributing to half the required energy. Consequently, near-
infrared wavelengths of light can be used, allowing a deeper
penetration into organs. Importantly, the excitation is
confined to the focal spot, considerably reducing photo-
damage and photobleaching in other planes, and thus
allowing long-lasting imaging of tissues. The third advan-
tage of the 2P microscopy technology is the possibility to
obtain a four-dimensional dynamic visualisation of cell
migratory paths in situ by using an optical sectioning to
scan a three-dimensional volume of tissue (x, y and z) over
time. The fluorescence signal is recorded at successive focal
planes, and this process is repeated every 10-30 s for
several hours. Based on these acquisitions, computer
analyses provide various parameters that define cell
migratory characteristics: the duration of contacts (minutes
or hours), the mean velocity (um min '), the arrest
coefficient (measures the time a cell remains arrested), the
confinement ratio (the maximal distance over the total
distance, reflecting whether a cell migrates in a retrained
area) and the frequency of cell encounters (Fig. 1). These
parameters provide information on the contribution of
soluble and membrane molecules in promoting either T cell
go or T cell stop, or in confining T cell migration to a
restricted area, furthering our understanding on the stability
of interactions between cells [20].

Herein are described several studies performed using ex
vivo LN explants and in vivo surgically exposed LNs. Several
in vivo studies [15, 16, 21-24] have confirmed the migratory
characteristics of lymphocytes in LN explant preparations
[16]. Thus, although lymph and blood flows are disrupted,
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motility of lymphocytes in explanted LNs accurately reflects
their true in vivo behaviour.

Dendritic cells in lymph nodes

DCs are members of the innate immune system that are
highly specialised for the uptake, processing and presenta-
tion of Ags and thus are termed professional APCs. DCs
capture Ags in the periphery, migrate to secondary
lymphoid organs such as draining (d)LNs, in order to
initiate Ag-specific immune responses by activation of
naive T cells. The two main DC subpopulations are the
conventional DCs (¢cDCs), which can be further subdivided
into different subtypes, and the plasmacytoid DCs (pDCs).
While the latter DCs have been implicated as key factors in
immune responses against viruses by producing large
amounts of type I interferon [25], their real-time behaviour
in situ has not been studied to date. Therefore, the focus
here will be on the migratory characteristics and dynamics
of ¢DCs, and, unless specifically compared to pDCs, will
be refered to as “DCs”.

In peripheral tissues including skin, gastrointestinal and
respiratory tracks, immature DCs are ideally positioned to
encounter both self- and foreign Ags [26]. Steady-state
(naive) DCs migrate continuously from tissues to LN
whereas the migration of maturing DCs that up-regulate
MHC, costimulatory and adhesion molecules, is triggered
by foreign Ags coupled to danger signals. In both
situations, DCs migrate from the periphery via afferent
lymphatic vessels to dLNs, entering via the subcapsular
sinus, and localise to the T cell area, or paracortex. Steady-
state and Langerhans-derived DCs populate the entire
diffuse cortex of the LN whereas newly immigrated dermal
DCs localise to the cortical ridge, adjacent to reticular
conduits for efficient Ag capture and also near high
endothelial venules (HEVs) to favour encounters with
incoming T cells. LN-resident DCs are in close contact
with fibroblastic reticular cells (FRCs) that surround
reticular conduits [21].

DC migratory characteristics in lymph nodes

The network of steady-state DCs in LNs has been visualised
intravitally in excellent studies where transgenic (Tg) mice
express the yellow fluorescent protein (YFP) under the control
of the CD11c promoter [22]. CD11¢c-YFP Tg mice revealed
that while sessile, resident DCs actively project their
dendrites to scan for highly motile T cells. This elegant
model is useful to analyse DC behaviour in un-manipulated
settings. However, the tight network of LN-resident DCs
makes the analysis of individual DC-T cell interactions
difficult.
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Fig. 1 Different parameters define T cell migratory characteristics.
LN images are acquired using 2P microscopy, and data are obtained
after automated or manual cell tracking. T cells in conditions 1 and 2
are compared. a Contact duration with DCs. b Arrest coefficient:
proportion of time each cell’s instantaneous velocity is less than a

Migratory DCs stemming from the periphery via the lymph
(migrating DCs) have been visualised in both explanted LNs
[16,27,28] and LNs in vivo [15, 21, 29]. The approach relies
on the use of either splenic or bone marrow-derived DCs that
are labelled with a vital dye or that express a fluorescent
protein. DCs are loaded in vitro with one or more antigenic
peptides, and subcutaneously injected in the presence of DC
adjuvants (e.g. LPS, CD40 antibodies). Migrating DCs
appear in the LN paracortex in the vicinity of HEVs by 12—
20 h post-injection [15, 23], and express elevated levels of
MHC and costimulatory molecules [14]. At that time, these
DCs are motile, with mean velocities of approximately 6 pm
min ', and continually scan T cells with actively probing
dendrites [14, 15]. Forty-eight hours post-injection, migrating
DCs lose their motility, integrate the network of LN-resident
DCs and die rapidly [22]. Another experimental setup labels
endogenous cutaneous migrating DCs by the subcutaneous
injection of the CFSE (carboxy-fluoroscein succinimidyl
ester), together with DC adjuvants [23]. Skin DCs subse-
quently travel to reach LNs, where they exhibit a slow
motility (mean velocity=3 um min ).
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fixed value. ¢ T cell (red) migrating among the DC network (green).
Confinement ratio (the maximal distance over the total distance) is
closed to 0 when a cell migrates in a retrained area, and closed to 1
when a cell migrates straight forward. d The Vmean (um min ") is
represented as a function of the confinement ratio

One limitation of in situ DCs imaging is that the
different DC subsets and their activation states [30] in
LNs are not distinguishable, rendering difficult analysis of
specific DC subset functions. A perfect illustration of this
limitation is the fact that migratory DCs transfer Ags to a
LN-resident DC population for efficient CTL priming [31,
32], making the identification of Ag-presenting DCs and
thus the analysis of their dynamic interactions with naive T
cells impossible.

Antigen-presenting DCs

To allow DCs to present Ags to naive T cells and to follow the
dynamics of both cells during induction of Ag-specific T cell
responses, exogenous splenic DC can be incubated with one
or several peptides prior to subcutaneous injection. Another
possibility is to load endogenous migrating DCs with the Ag
by co-injecting Ag subcutaneously with DC adjuvant and a
vital dye [33]. Finally, the coupling of an Ag to an antibody
directed against the DC-specific endocytic receptor DEC205
can be used to selectively target Ags to DEC205" DCs [2,
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24, 34]. The advantage of the latter system is that DCs can
be loaded with an Ag without inducing their maturation, thus
allowing the study of dynamic interactions with T cells under
resting conditions, a situation described to induce T cell
tolerance [2, 3]. The drawback of this approach is the
delivery of the Ag to a large fraction of LN-resident DCs
following injection of Ag-DEC205 conjugates which does
not fit to a physiological process.

Another possibility is to directly visualise Ags and their
subsequent capture by DCs. Following intravenous infusion of
DQ Ovalbumin (DQ-OVA), a fluorochrome-labelled auto-
quenched substitute of OVA that becomes fluorescent upon
proteolytic digestion, it is possible to visualise the processing of
OVA by splenic DCs, as well as its presentation to T cells [35].
Furthermore, the backcross of non-obese diabetic (NOD)
mice with transgenic mice expressing the green fluorescent
protein (GFP) under the mouse insulin 1 promoter allows the
imaging of the capture and the presentation of GPF" islet Ags
by DCs in pancreatic draining LNs [36]. An alternative
solution is the use of fluorescent pathogens such as
recombinant GFP-expressing viruses [37] or DsRed-
expressing Leishmania major parasites [38] to analyse
interactions between T cells and pathogen-infected cells.
Finally, since DCs preferentially endocytosed quantum dots
(QDs), these fluorescent nanoparticles can be conjugated to
Ags and used as an efficient nanoparticle-based Ag delivery
system [39].

Plasmacytoid DCs

The in vivo behaviour of the second main subset of DCs, the
pDCs, has not been studied to date. The pDCs can be found in
the blood and lymphoid organs. After activation through their
toll-like receptors (TLRs) 7 and 9, pDCs secrete type I
interferons, indicating an important function for this DC subset
in antiviral immunity [40]. However, pDCs express MHC-I
and MHC-II molecules and undergo a maturation process
similar to that of ¢cDCs [41]. Furthermore, like cDCs, pDCs
internalise, process and present Ags to CD4" T cells, and
cross-present Ags to CD8" T cells [42-45]. Thus, this
particular DC subset may participate in T cell activation and
induce either T cell immunity or T cell tolerance. However, it
remains unclear if pDCs function as APCs or instead regulate
T cell activation induced by other APCs.

In contrast to cDCs that had been shown to use the afferent
lymphatic pathway to enter LNs, pDCs were shown to migrate
into LNs from the circulation by direct transmigration across
HEVs [46]. In a mouse model of tolerance to cardiac
allografts, pDCs are recruited around HEVs in LNs [47]. A
similar phenomenon is seen during the development of
experimental autoimmune encephalomyelitis (EAE), the
mouse model for multiple sclerosis (MS) (unpublished data
from our laboratory).
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Thus, pDCs, through their potential to directly present
Ags to naive T cells, are likely to influence T cell behaviour
in LNs. To date, one publication describes that immature
pDCs establish transient Ag-specific interactions with naive
T cells whereas mature pDCs (stimulated with CpG)
interact for longer periods with T cells [48]. This study
provided for the first time insights on the ability of pDCs to
establish stable contacts with T cells, with respect to their
maturation state. However, most experiments were per-
formed in vitro, and the only in vivo experiments showing
pDC-T cell contact dynamics were not correlated with T
cell outcome (priming or tolerance). Future work will
further address this issue. To this end, the use of transgenic
mice expressing the diphteria toxin receptor under the
CDllc promoter (CD11¢c-DTR mice) may prove useful,
since treatment of CDI11c-DTR mice with the toxin
selectively eliminates cDCs whereas pDCs are left intact
[44]. An alternative would be to target specifically pDCs
with an Ag by using conjugates between the Ag and
antibodies directed against the pDC-specific receptor
PDCA-1 [44].

T cells in lymph nodes

T cells enter LN via HEVs and, in absence of Ag, move in a
stop-and-go manner, with arrests in their migration. Their
mean velocity is approximately 15 wm min ™', reaching peak
velocities up to 30 pm min~' [23, 49]. Tracking single cells
revealed that T cells apparently move in random directions
through the three dimensions in the diffuse cortex [23]. High
T cell motility is, however, mainly constrained to the
paracortical area of the LN that is located 150-200 um
under the LN capsule. Chemokines such as the CCR7
ligands CCL21 and CCL19 are present in high concentration
and significantly enhance T cell motility and numbers to this
area [50, 51]. Along with chemokines, T cell migration in
LNs is also highly influenced by the complex architecture of
this organ. LNs are composed of distinct compartments and
structures that are organised around a non-hematopoietic cell
backbone [52, 53]. Fibroblastic reticular cells (FRCs) are the
major constituents of the backbone structure of the T cell
zone [54]. The contribution of FRCs to T cell migratory
behaviour was elegantly addressed by generating bone
marrow chimeric GFP mice harbouring unlabeled immune
cells, thus allowing the visualisation of GFP" FRCs. This
study reveals that the FRC network regulates not only naive
T cell access to the paracortex but also supports and defines
the limits of T cell movements within this domain [21]. The
authors further confirmed previously described observations
[23] that T cells crawl in an amoeboid manner and
simultaneously interact with as well as crawl over the
reticular fibre network [21]. In vitro studies further suggest
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that T cells exhibit two distinct crawling modes that differ in
their speed and surface scanning potential and that the
transition between the two modes is regulated by the activity
of the myosin IIA, together with adhesion molecules [55].
Other data suggest that septins tune actomyosin forces act
during motility and regulate T cell trafficking in confined
tissues [56]. Thus, T cells adapt their migratory properties to
scan large numbers of DCs and, at the same time, to
decelerate and arrest rapidly in case of productive encounter.
Whether these T cell motile and adhesive properties that are
suited toward alternative requirements for immune surveil-
lance exist in vivo remains to be determined.

Taken together, these studies suggest that T cells entering
LNs diffuse rapidly to the deep paracortex and migrate
actively in this confined area in search for DCs presenting
cognate antigenic peptide-MHC complexes.

DC-T cell encounters in situ and T cell outcome
In absence of antigen

Interactions between T cells and Ag-presenting DCs occur in
secondary lymphoid tissues including the LNs, spleen and
Peyer’s patches, after which activated T cells egress to migrate
into peripheral tissues. Many 2P studies investigated how T
cells scan for their cognate peptide-MHC in order to become
activated [19, 20, 57]. Such experiments have demonstrated
that naive T cells migrate rapidly along stromal networks
enmeshed with DCs in LN T cell zone [21], leading to 500—
5’000 T cells contacting one DC per hour in the absence of
Ag [14, 23]. This prediction fits well with the requirement
for the initiation of an immune response where the encounter
between rare Ag-presenting DCs and a low frequency of Ag-
specific T cells occurs. When naive T cells encounter DCs in
absence of Ag, a few-minute contact is established. These
non Ag-specific interactions failed to induce Ca®" signalling
in T cells [58, 59] but are likely to be functionally important.
Indeed, naive CD4" T cell migrating in an environment
deprived of MHC-II molecules demonstrate a progressive
and profound defect in motility [60]. In the absence of Ag
presentation by DCs to naive T cells, some non-random
chemokine-driven DC-T cell interactions occur. In vitro
experiments suggested that T cell-zone chemokines such as
CCL21 are bound to the surface of LN-resident DCs and
help T cells to optimise Ag-specific contacts with DCs [61].
Whether this mechanism is important in DC-T cell inter-
actions in vivo is not known. In vivo, naive CD8" T cells
interact approximately threefold more frequently with DCs
already engaged in Ag-specific interaction with either CD4"
[62, 63] or CD8" [27] T cells. These preferential Ag-
independent interactions rely on the expression of the CC-
chemokine receptor 5 (CCR5) [27, 63] by naive CDS" T

cells that migrate towards CCRS ligands (CC-chemokine
ligand 3 (CCL3) and CCLA4) that are likely to be produced
locally by mature DCs engaged in Ag-specific contacts with
T cells. Thus, CCRS5 ligands guide naive CD8" T cells to the
sites of Ag-specific T cell-DC interactions, probably favour-
ing T cell encounters with the most competent DCs, since
this recruitment results in increased CD8" T cell responses.

Dynamics of DC-T cell interactions during T cell priming

After introduction of an Ag in inflammatory conditions, the DCs
that enter LNs migrate with a mean velocity of 2—-6 pm/min [14,
15, 17, 23] and rapidly extend and retract dynamically
their dendrites, enabling DCs to scan a distance >60 pm min ™'
[23, 64]. Recent studies have shown that DC-T cell
interactions in LNs during the priming of both CD8" and
CD4" naive T cells follow a complex choreography [14—16,
24, 28, 34]. Several studies agree on a three-phase model of
DC-T cell interactions during the course of an immune
response. Within the first few hours following their entry into
LNs, naive T cells establish brief contacts (<5 min) with
cognate peptide-MHC complexes presenting DCs. Thus, Ag
presentation by DCs only slightly increases DC-T cell
contact duration. The second phase occurs approximately
10 h following T cell entry into the LN and is characterised
by a dramatic change in T cell behaviour: T cell velocities
decrease and T cells undergo arrest on Ag-presenting DCs,
resulting in stable DC-T cell interactions lasting between 2
and 24 h depending on the studies. At this time, T cells also
up-regulate at their cell surface activation markers [15, 16].
Finally, after 30 h, most clusters dissociate, and the T cells
exhibit a swarming behaviour, in which they regain some
degree of motility and appear to migrate within a localised
area. T cell velocities again increase to levels similar to that
of early time points, and interactions with DCs regain their
transient nature. This final phase correlates with T cell
proliferation (Fig. 2).

These descriptive findings raise fundamental questions: Is
there a role for the three phases of DC-T cell contact dynamics
in the outcome of T cell activation? What are the molecular
mechanisms that lead to variations in contact duration? Which
events are essential to induce the transition from the differing
phases?

During the first phase of transient interactions, T cells are
likely to receive an activation signal and up-regulate the early
activation marker CD69 [15, 34, 65]. One possibility is that T
cells integrate additional signals delivered during this first
phase of transient interactions to reach a threshold and
become qualitatively competent to establish long-lasting
contacts with T cells and enter the second phase. Alterna-
tively, DCs may require a sum of accumulated brief contacts
to become sufficiently activated and competent to stabilise
interactions with T cells. While observed by many laborato-
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< 10 h or non-existent 10-30 h
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Activated DC

Steady-state Resting DC

\

Fig. 2 Different steps in DC-T cell contact dynamics during priming
and tolerance induction [14-16, 26, 32]. In LNs, incoming naive T
cells establish first transient (<5 min) Ag-specific contacts with DCs.
Transition towards stable interactions, lasting for hours, occurs during
priming, but not tolerance induction. Following this step of T cell
arrests, T cells proliferate, regain motility and interact transiently with

ries, others have failed to see this initial phase of brief DC-T
cell contacts and described T cell arrests on DCs as early as
1 h after T cell entry in LNs [24, 59] and possibly with the
first DC encountered [66]. As DC-T cell cluster formation
was shown to be dependent on the dose of Ag [33],
abundance of the latter may explain the variability observed
during the initial interaction phase.

Whether the second phase, the “T cell stop” that occurs
between 1 and 20 h after initiation of the T cell response, is
required for efficient priming is still debated. The formation
of stable DC-T cell contact is highly dependent on the
numbers [14, 67] and the quality [65] of peptide-MHC
complexes. The immunological synapse (IS) is an organ-
ised structure at the site of APC-T cell interaction believed
to promote signalling delivered by TCR and costimulatory
molecules. In vitro studies suggest that the arrest of T cells
on DCs is a prerequisite for the formation of the IS [68, 69],
which is considered important for signal integration and the
asymmetric cell division of activated T cells [11, 70, 71].
Furthermore, in vitro stimulated naive T cells can integrate
TCR signalling that is sustained for hours [72—-76]. In intact
LNs, T cells involved in long-lasting contacts with DCs
continue to receive signals for 6 h, demonstrating that such
sustained TCR stimulation occurs in vivo [29].

What are the requirements for T cell arrests? Studies on
T cell hydridomas and thymocytes have suggested that Ca*"
signalling is an important component of the ‘T cell stop’
signal in vitro and in vivo [77, 78]. Two intravital studies
have shown that sustained increases in intracellular Ca®"
spikes occur after Ag-specific contacts with DCs and
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DCs. Note that one study described a T cell arrest on DCs in both
priming and tolerance induction [23]. A second study from the same
laboratory described two pathways of induction of T cell tolerance,
depending on the avidity of the TCR, that involve or do not involve
stable DC-T cell contacts [59]

control T cell deceleration in the DC network [59, 65].
Other studies showed that during T cell stimulation by
APCs in vitro, T cell chemokine receptors are recruited to
and sequestrated at the IS. Consequently, T cells become
insensitive to chemokine gradients and thus establish stable
contacts with APCs, resulting in enhanced T cell activation
[79]. Intracellular T cell signalling molecules were also
shown to be involved in the control of DC-T cell contact
dynamics. The protein kinase C-theta (PKCO) promotes the
establishment of brief interactions with DC by favouring a
periodic destabilisation of the IS [80]. In contrast, IS
reformation is driven by Wiscott Aldrich Syndrome protein
(WASp) as indicated by the observation that WASp-
deficient T cells are unable to reform immunological
synapse after migration, unless PKCO is inhibited [80].
Whether this balanced regulation between PKCO and
WASp occurs in T cells in vivo after DC encounters and
regulates DC-T cell contact duration dynamics in LNs
remains to be determined. Thus, not only signalling
molecules but also factors involved in the regulation of
cytoskeletal reorganisation contribute to DC—T cell contact
duration. In an in vitro system, ezrin—radixin—moesin
proteins involved in actin cytoskeleton organisation are
rapidly inactivated after Ag recognition, resulting in
decreased cellular rigidity promoting the formation of
stable DC-T cell conjugates [81]. The expression of the
negative regulator of T cell function cytotoxic lymphocyte
antigen-4 (CTLA-4, CD152) [82] increases basal T cell
motility and overrides Ag-specific T cell arrest on DCs in
vivo [83]. CTLA-4 is a well-known inhibitory coreceptor
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on T cells induced upon activation which counteracts
costimulation by APC proteins CD80 and CD86 delivered
to CD28 on the T cell. These authors purified CTLA-4" and
CTLA-4" preactivated T cells to demonstrate that the
CTLA-4" population does not establish long-lasting con-
tacts with Ag-presenting DC, resulting in impaired cytokine
production and T cell proliferation when compared to
CTLA-4 T cells. In vitro however, CTLA-4 deficient T
cells are resistant to a stop signal induced by anti-CD3 [84].
It is difficult to explain the discrepancies between those
studies but it was recently shown that in a model of
tolerance toward pancreatic islet self-Ags, CTLA-4 block-
ade in vivo neither alters tolerised T cell mobility nor
favours the establishment of a stable contact with Ag-
presenting DC [85]. On the other hand, in this study, the
blockade of PD-L1 (programmed death ligand 1), a ligand
for PD-1, leads to impaired T cell motility, enhancement of
stable DC-T cell interactions and development of autoim-
mune diabetes.

Despite these molecular changes in T cells following
Ag recognition, some studies suggest that DC maturation
governs DC-T cell contact stability. De-synchronisation
of DC and T cell activation states during ongoing T cell
responses demonstrated that the kinetics of DC activation
control contact duration with T cells [34]. DC cytoskeleton is
an important player in the stabilisation of interactions.
Upon maturation and upon under the control of the Rho
GTPases Racl and Rac2, DCs adapt their cytoskeletal
activity to optimise the encounters and to stabilise
interactions with naive T cells in vitro but also in vivo
[64]. Furthermore, imaging of DC-T cell interactions in
LNs showed that cytoskeletal alterations in WASp-
deficient DCs cause a reduction in the ability to form
and stabilise conjugates with naive CD8" T lymphocytes
[86]. Adhesion molecules are also involved. Intercellular
Adhesion Molecule-1 (ICAM-1), when associated with
TCR ligands on planar lipid membranes, is sufficient to
induce T cell arrest and polarisation [87]. In vivo, the
kinetics of the establishment of long-lasting DC-T cell
contacts correlate with the up-regulation of ICAM-1 on
the DC surface [28]. Most importantly, T cell arrest on DC
was abolished after T cell transfer and priming induction
in ICAM-1 deficient mice, and ICAM-1 deficient DCs
establish only brief interactions with T cells during
priming induction. Priming in the absence of ICAM-1
further results in impaired ability of activated T cells to
produce IFN-y and to differentiate into memory T cells
[28]. One possibility is that during the brief (min) DC-T
cell interactions observed in the absence of ICAM-1,
receptor polarisation and effective cytokine secretion
through the intercellular space fail to occur. Consistent
with this scenario, a recent study showed that ICAM-1-
dependent stable DC-T cell contacts and the resulting

initial asymmetrical division affected IFNy secretion by
effector CTLs [88]. Whether or not the priming of CD8" T
cells in ICAM-1-deficient mice resulted in the induction of
tolerance was less clear.

Following the phase of stable DC-T cell contacts lasting
for hours, T cells detach from DCs become more dynamic and
establish sequential brief contacts with DCs. What are the
signals for the termination of long-lasting DC—T cell contacts?
A possibility is that T cells have the ability to down-modulate
peptide-MHC complexes on APC [89]. It was reported that
injection of an antibody directed against MHC-II molecules
promotes the dissociation of established DC-T cell contacts
[29], suggesting that T cells detach from the DCs when the
amount of peptide-MHC complexes is too low. By contrast,
the resumption of T cell mobility as well as the termination
of stable contacts occur in a model where reinjection of the
Ag does not prolong the phase of T cell arrests [34], telling
that decreased Ag presentation by DC does not account for
the phase three. The in vivo encounter of DCs from phase
three with T cells from phase two does not restore stable
DC-T cell interactions, suggesting that activation state of
DCs controls contact duration [34]. Accordingly, ICAM-1 is
down-regulated at DC surface during this late phase [28],
suggesting that the abrogation of long-lasting contacts could
be the result of variation in the expression of adhesion
molecules by DCs. A last hypothesis is that the chemokine
environment, which is dramatically modified during ongoing
responses, provides “go” signals to T cells when productive
DC-T cell interactions are over. In any case, the impact on T
cell responses of these late brief DC-T cell encounters that
could occur after T cells have been activated and have
undergone cell division [66, 90] is controversial. Depending
on the studies, DC-T cell re-encounters favour either
enhanced [66] or impaired [91] T cell effector functions.

Dynamics of DC-T cell interactions during T cell tolerance

Peripheral tolerance complements central tolerance as an
indispensable mechanism to control autoreactive T cells that
have escaped negative selection in the thymus [92]. Recent
studies have shown that DCs play a central role in
maintaining peripheral T cell tolerance. Ag targeting imma-
ture LN-resident DCs, by either DC-specific antibodies [93]
or DC-specific promoters [6, 94], results in the induction of
tolerance to the corresponding Ag. Upon DC activation, Ag
targeting to DCs under the same conditions results in the
induction of effective T cell responses (priming). Therefore,
the activation state of the DCs when encountering Ag-
specific naive T cells determines the functional outcome
(priming versus tolerance) of the immune response to that
Ag.

A series of recent studies has established a correlation
between stable long-lasting DC-T cell contacts and effec-
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tive T cell priming on one hand, and brief interactions and
the induction of tolerogenic T cell responses on the other
hand [95] (Fig. 2). Studies selectively targeting Ag to DCs
via the endocytic receptor DEC205 showed that in the
absence of adjuvant, LN-resident DCs only establish brief
Ag-specific interactions (min) with naive CD8" T cell [34].
Consequently, after being transiently activated, Ag-specific
CD8" T cells are clonally deleted, resulting in T cell
tolerance towards the Ag [2, 34]. After DC activation by
lipopolysaccharides (LPS) or CD40 antibodies, Ag-specific
DC-CDS8" T cell interactions are significantly prolonged
(>5 h), and effective priming was observed [34]. Another
study using the same mode of Ag delivery to DC
demonstrates that CD4" T cells perform similar arrest in
response to priming and tolerising conditions but become
motile sooner during tolerisation (at 18 h) compared with
priming (at 24 h) [24]. Under other conditions, by
comparing for the first time CD4" T cell behaviour in
mucosal and systemic lymphoid organs during the induc-
tion of oral priming or oral tolerance, larger and more stable
DC-T cell clusters were observed in the priming situation
[96]. Similarly, transient DC-T cell contacts prevail when
lung-derived DC presents airway-delivered Ag under
steady-state conditions in bronchial LNs, and subsequently
induce Ag-specific T cell tolerance [97]. In contrast, large
DC-T cell interaction clusters as well as long-lasting stable
DC-T cell contacts correlate with the development of
respiratory immunity [97]. In addition, the presence of
high numbers of regulatory T cells (Treg) has been
correlated with a decreased stability of DC-CD4" T cell
interactions. This study demonstrated a marked arrest of
activated Ag-specific CD4" T cells interacting with Ag-

loaded DCs in the absence of Ag-specific Treg. T cell arrest
was however significantly diminished in the presence of
Treg [98]. Similar suppressive effect of Treg on the
formation of stable clusters of diabetogenic T cells with
DCs in isolated pancreatic LNs was reported in a second
study [36]. Recently, it was demonstrated that stable DC-T
cell contacts may occur during T cell tolerance induction
and that this event was dependent on the avidity of the TCR
for peptide-MHC complexes expressed by DCs [65]. T cell
tolerance was induced by steady-state DCs presenting
high-, medium- or low-potency peptide-MHC complexes
varying by only one single amino acid substitution in the
antigenic peptide. All three peptides induce early and
transient T cell activation, followed by induction of
anergic T cells. In contrast, only “high-potency” peptide-
MHC complexes lead to T cell arrest and long-lasting
DC-T cell interactions. Finally, as describes above, the
disruption of PD-1-PDL-1 interactions enhances the
stability of contacts between tolerised T cells and Ag-
presenting DCs, resulting in a breakdown of tolerance
and development of autoimmunity [85]. In this model in
contrast, disruption of CTLA-4-B7 interactions has no
effect on the migratory characteristics of tolerised T cells,
and consequently does not reverse tolerance.

Thus, in vivo studies demonstrated that the dynamic
interactions of both CD4" and CD8" naive T cells with
mature DCs and resting DC are different during priming
and tolerance induction, respectively. Contacts in the course
of T cell priming are more stable than under tolerogenic
conditions (Table 1). This difference is, however, more
pronounced for CD8" T cells than for CD4" T cells.
Whether this difference is model dependent or due to

Table 1 Molecules and pathways involved in the duration of DC-T cell interactions by 2P microscopy experiments

Nature of DC-T cell encounters and T cell outcome

Stable contacts (hours) T cell outcome Transient contacts (minutes) T cell outcome
Intracellular Ca?* spikes [53,59] Priming [53] PKCO [74] Not determined
Priming and high TCR affinity
2 induced tolerance [59]
©
o CTLA-4 [77] Tolerance
(no effect on tolerised
T cell motility [79])
Rho GTPases (Rac1/2) [58] Priming PD-1[79] Tolerance
& | Wasp [80] Priming
A
ICAM-1 [26] Priming

A correlation between contact duration and T cell outcome is observed
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intrinsic differences in the behaviour of T cell subsets
remains to be determined. Nevertheless, these in vivo
studies suggest that although priming seems to result from
individual long-lasting DC-T cell interactions, the induc-
tion of tolerance might result from multiple brief signals
delivered by different DCs. A prediction for this model is
that few fully mature DCs presenting Ag is sufficient for
priming induction, whereas tolerance induction would
require presentation of Ag by elevated numbers of steady-
state DCs. This hypothesis is consistent with the fact that a
continuous pool of self-Ags is likely to be presented by
high numbers of steady-state DCs whereas early events, for
example the pathogen invasion of a specific tissue, very
low numbers of DCs will capture, process and present
pathogen-derived Ags to naive T cells in LNs draining the
site of infection. Because of their efficient ability to scan
DCs [14, 33], it is likely that T cells will find the rare
mature DCs presenting the pathogenic Ags. As these
encounters are infrequent, they need to be productive in
order to induce an efficient T cell priming response.

Concluding remarks

The 2P imaging allows the visualisation of immune cell
dynamics in real-time and deep within intact tissues. In vivo
imaging of cells in LNs has revealed the specific ability of
these organs to promote Ag specific DC-T cell encounters.
LNs first confine both DC and naive T cells in a restricted
area, and strategically position these cells to favour optimal
scanning of DC by T cells. Second, both DCs and T cells, by
respectively probing T cells with their dendrites and by
rapidly scanning a high number of DCs, adapt their migratory
properties to optimise DC-T cell encounters. Finally, there is
clear evidence that the T cell activation outcome will be
influenced by both DC-T cell contact duration and the
frequency of DC-T cell encounters. Studies presented here
reveal the importance of stable DC-T cell interactions during
which effective Ca®" signalling can take place, allowing
efficient T cell proliferation and differentiation into cytokine
producing cells in vivo. Most studies have failed to observe
establishment of long-lasting DC-T cell interactions during
tolerance induction. Because T cell arrest is a prerequisite for
the formation of IS, the absence of stable DC-T cell contacts
suggests that synapse formation is dispensable for the
induction of tolerance in vivo. Using genetically deficient
mice, several molecules involved in the stabilisation or
interruption of DC-T cell interactions have been identified,
and a causal relationship between contact stability and T cell
outcome has been established. Future investigations using the
2P technology will aim at detecting the in vivo signalling
molecules, as well as gene signatures, that are differentially
regulated in T cells during priming and tolerance induction.

Furthermore, the comparison of primed and tolerised T
cell behaviour upon Ag re-challenge will dictate future
investigations as these events govern the breakdown of
self-tolerance during autoimmunity or the efficient re-
sponse of vaccinated individuals to invading pathogens. A
new study has just demonstrated that following Ag re-
challenge, primed and tolerised T cells exhibit different
patterns of contact dynamics with DCs [99]. Thus, primed
and tolerised T cells show distinct behaviour before and
after secondary Ag-encounter. However, further work is
needed to identify the molecular mechanisms involved in
this process and how it can be manipulated for therapeutic
interventions.
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