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a b s t r a c t

The OGC Web Processing Service (WPS) specification allows generating information by processing

distributed geospatial data made available through Spatial Data Infrastructures (SDIs). However,

current SDIs have limited analytical capacities and various problems emerge when trying to use them

in data and computing-intensive domains such as environmental sciences. These problems are usually

not or only partially solvable using single computing resources. Therefore, the Geographic Information

(GI) community is trying to benefit from the superior storage and computing capabilities offered by

distributed computing (e.g., Grids, Clouds) related methods and technologies. Currently, there is no

commonly agreed approach to grid-enable WPS. No implementation allows one to seamlessly execute a

geoprocessing calculation following user requirements on different computing backends, ranging from

a stand-alone GIS server up to computer clusters and large Grid infrastructures.

Considering this issue, this paper presents a proof of concept by mediating different geospatial and

Grid software packages, and by proposing an extension of WPS specification through two optional

parameters. The applicability of this approach will be demonstrated using a Normalized Difference

Vegetation Index (NDVI) mediated WPS process, highlighting benefits, and issues that need to be

further investigated to improve performances.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Spatial Data Infrastructure (SDI) is a widely accepted concept to
facilitate and coordinate the exchange and sharing of geospatial data
among different organizations through network technologies (Kiehle
et al., 2006). A SDI offers a spatially enabled Service Oriented
Architecture (SOA) in which standardized interfaces provide access
to functionalities as a set of independent and interoperable services
(Granell et al., 2009). The objective of this architectural approach is to
promote loosely coupled, standard-based distributed computing so
that developed components can be reused. Different standards
proposed by the Open Geospatial Consortium (OGC), the Interna-
tional Organization for Standardization (ISO), the World Wide Web
Consortium (W3C), and other standardization bodies are used in
order to enable interoperability between geospatial data and services.

Brauner et al. (2009) subdivide the services that handle geospatial
data into three categories: catalog, data, and processing services.

Currently SDIs are mainly concerned with catalog and data
services allowing data discoverability, retrieval, and visualization
(Baranski, 2008; Schaeffer, 2008). However, the real added value
in geospatial data handling is to turn data into usable information
to answer a complex query or support a decision. This requires:
finding and retrieving data, applying specific calculations, and
finally visualizing the result. Commonly, users still process data
on their desktop computers using Geographic Information Sys-
tems (GIS) software, like ArcGIS1 or GRASS2 (Kiehle et al., 2006).

The increasing computational power and network capabilities
enable processing of distributed geospatial data over the web
(Brauner et al., 2009) using SOA principles and web services
technologies. Web-based geoprocessing services can therefore be
seen as the next logical step to extend SDI capabilities (Friis-
Christensen et al., 2007; Kiehle et al., 2007) by providing access to
a collection of geospatial calculations (like in a standalone desk-
top GIS software) delivering some concrete functionality (Granell
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et al., 2009). Li et al. (2010) have successfully developed a
prototype to make available GRASS modules and algorithms using
Simple Object Access Protocol (SOAP)-based web services. These
authors highlighted that: (a) the interoperability of web services
improves the sharing of geospatial data by applications on different
platform and (b) the modularity of web services enables the sharing
of specific geospatial processes by a wide range of users.

In 2007, the OGC has introduced the Web Processing Service
(WPS) specification with the aim to propose a standardized interface
for publishing and performing geoprocessing tasks in a web services
environment (Open Geospatial Consortium, 2007). In the last years,
different implementations have been proposed that demonstrated
the applicability of the WPS approach (Kiehle et al., 2006; Stollberg
and Zipf, 2007; Brauner and Schaeffer, 2008; Diaz et al., 2008). In
particular, the reusability and the possibility to chain processing
services and solve specific and complex problems have been
emphasized. In addition, these authors showed that servers are in
general more powerful than desktop computers allowing users:
(a) to process more rapidly a given data set and (b) to process larger
data sets (in term of spatial resolution, spatial extent or file size).

However, users can experience a lack of computing power
when they process large data sets—such as the global ASTER
Digital Elevation Model (DEM) (Hayakawa et al., 2008) at 30 m
resolution—or run complex simulations (e.g., dynamic climate
models) requiring several CPU hours or days of calculations. In
such situation the use of distributed computing appears to be an
interesting solution (Lee and Percivall, 2009). Distributed com-
puting is a form of computation in which many calculations are
carried out simultaneously on several computing elements linked
over a network. The term ‘‘distributed’’ should be distinguished
from ‘‘parallel’’ computing that commonly refers to processing
tasks that are executed simultaneously on multiple processors on
a single computer. Various distributed computing platforms are
available such as Grids, Clouds, and Clusters.

Different approaches have been developed to extend SDIs
capabilities to use either Grids (Di et al., 2003; Gorgan et al.,
2009; Mazzetti et al., 2009; Folino et al., 2010) or Clouds (Baranski
et al., 2009). All these authors showed benefits in term of high
calculation performance and improved availability of services but
also highlighted differences (e.g., service description, service
interface, service state, security) between SDIs and distributed
computing infrastructures (Padberg and Kiehle, 2009).

Several attempts to implement the WPS specification in a
distributed computing environment have been successfully made.
Nevertheless, they are in general dependent on the middleware
used by the distributed computing infrastructure: some imple-
mentations are working on gLite3 (Muresan et al., 2008; Mazzetti
et al., 2009), Globus4 (Di et al., 2008), or Unicore5 (Baranski,
2008). In theory, a developed process might be reused across
different WPS frameworks.In practice, this is limited due to the
use of different programming languages and Application Pro-
gramming Interfaces (APIs). In other words, a service provider
who wants to share a geoprocessing task using the WPS specifica-
tion must develop a specific version of that process for each
specific backend supported by a dedicated WPS implementation.

This means that the scalability in term of execution and
reusability of a given WPS process on different computing back-
ends is currently restricted. This situation can potentially limit
the development, adoption, and diffusion of WPS.

The aim of this paper is to present a proof of concept to enhance
WPS usability allowing one to execute a given geoprocessing task,

with a dedicated WPS implementation, independently of the comput-
ing backends (e.g., local server, cluster or different Grids/Clouds), thus
avoiding the need to rewrite processes by making WPS processes as
scalable and flexible as possible.

2. Web Processing Service and distributed computing

The OGC Web Processing Service specification (Open
Geospatial Consortium, 2007) provides a standardized way to
access geo-processing algorithms in a web service environment,
which consequently extends SDIs analysis capabilities (Kiehle
et al., 2006; Schaeffer, 2008).

Brauner et al. (2009) reported that performance and proces-
sing power are crucial in the context of geoprocessing services,
especially in the case of large-scale data sets. To leverage the full
potential of WPS, a high performance-computing environment is
consequently a key requirement. Distributed computing promises to
support SDIs, especially Grids, and Clouds (Foerster and Schaffer,
2007; Baranski, 2008; Baranski et al., 2009; Lee and Percivall, 2009).

2.1. Web Processing Service

In respect of traditional geo-processing implementations, WPS-
enabled processes are flexible and remotely accessible algorithms
available through web services (Kiehle et al., 2006) that can be
reused in different scenarios.

The principal element of a WPS is the notion of process that is a
geospatial calculation with defined inputs and outputs (Granell et al.,
2009). This implies the following steps: (a) to find suitable geospatial
data needed to run the algorithm, (b) to initiate the process, (c) to
control the output, and (d) to make the results available to the client.

To work in a web service environment, a WPS instance must
offer various operations accessible through web communication.
In particular, descriptions of geoprocessing tasks with the help of
metadata that are accessible, usable and understandable both by
humans and other web services (Kiehle et al., 2006) are key
elements to build chains of services (Schaffer and Foerster, 2008).
The interface is based on three operations (Fig. 1) which can be
called using either HTTP-GET in combination with key-value pair
(KVP), or HTTP-POST and eXtended Markup Language (XML)-
encoding (Schaffer and Foerster, 2008).

The GetCapabilities operation provides an XML document
defining service metadata (e.g., server provider, contact informa-
tion), abstracts and a list of available processes offered by the
queried WPS instance. Once users have selected a required
process, they can perform a DescribeProcess operation to retrieve
process metadata within an XML document including parameters
descriptions (e.g., input and output parameters). Finally, with the
Execute operation it is possible to initiate the selected geoproces-
sing service with all necessary input data. The WPS instance will
run the calculation and send back the result to the client.

These three operations are invoked through Uniform Resource
Locator (URL) as shown in following examples:

(1) GetCapabilities request: http://localhost/cgi-bin/wps?
service=WPS&request=getcapabilities

(2) DescribeProcess request for the ‘‘buffer’’ process:
http://localhost/cgi-bin/wps?service=WPS&ver

sion=1.0.

0&identifier=buffer&request=describeprocess

(3) Execute request using ‘‘cities.gml’’ data set as input:
http://localhost/cgi-bin/wps?service=WPS

&version¼1.0.0&identifier¼buffer&request

¼execute&datainputs¼[data¼http://foo.bar/

cities.gml;width¼5]

3 http://glite.web.cern.ch/glite/.
4 http://www.globus.org/toolkit/.
5 http://www.unicore.eu/.
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The required input data can either be delivered across a network
or made available on a server. The WPS specification discerns three
input/output data types:

(1) LiteralData: can be any character string like string, float, integer
or Boolean.

(2) ComplexData: used for vector and raster data by sending directly
the data to the server or by referencing a remote data source.

(3) BoundingBox: to be used within a specific area.

The output of a geoprocessing service can be obtained either
by a direct response to the request (e.g., result sent directly to the
client) or as resource stored on the server and accessible through
the web using URLs (Schaeffer, 2008). In the latter case, the
Execute response will be an XML document providing the URLs to
access each stored output.

To ensure that processes are reusable, the specification defines
WPS Application Profiles enabling optimization of interoperable
client user interface behavior, as well as the semantic discovery (i.e.,
publish/find/bind pattern) and orchestration (Open Geospatial
Consortium, 2009; Lanig and Zipf, 2010). Such level of interoper-
ability can be realized only if each process is described in a
dedicated Application Profile. Consequently, a WPS Application
Profile is a document describing how a WPS shall be configured
to serve as a process that is recognized as an OGC WPS process
(Open Geospatial Consortium, 2009; Lanig and Zipf, 2010). An
application profile consists of: (1) an OGC Uniform Resource
Name (URN) to uniquely and unequivocally identify a process
(mandatory), (2) a reference response to a DescribeProcess
request for that specific process (mandatory), and optionally
(3) a human-readable document describing the process and its
implementation, as well as (4) a Web Service Definition Language
(WSDL) description. Such documentation allows one to formally
describe inputs/outputs/semantic of the various geoprocessing
operators maintained in dedicated repositories (e.g., web service
registries) that are structured following a semantically defined
hierarchy of processes, each defined by a URN. This allows the
definition of each unique process within the repository and each
WPS instance to refer to that URN (Open Geospatial Consortium,
2009; Lanig and Zipf, 2010).

2.2. Distributed computing

The lack of performance (i.e., calculation speed, latencies)
when integrating and processing large-scale data sets on a single
computer backend limits the types of analyses that can be carried
out. Therefore a high performance computing environment is
required to extend SDI capabilities. Methods and technologies
related to distributed computing have been reported to support
SDIs (Brauner et al., 2009). A distributed computing infrastructure
can be thought of various autonomous computers that commu-
nicate with each other through a network to achieve a common
task. When applicable, an incoming task is divided into several
smaller sub-tasks executed simultaneously that are merged into
an overall result at the end of the process.

There are several categories of distributed computing systems
and the most commonly used are: Grids, Clouds, and Clusters. A
Grid can be defined as a parallel processing architecture in which
computational resources are shared across a network offering
access to unused CPU and storage capacities to all participating
servers (Foster et al., 2008). Resources can be provided dynami-
cally to users that are looking for computing power. In a Grid
environment, users are grouped into specific communities, called
Virtual Organization (VO) where they have similar data-intensive
goals. Secure authentication is performed using a certificate that
allows identifying users unequivocally and grant access to resources
only to those how are authorized to use them. Cloud represents the
Internet or whatever large network infrastructures where data
computation and storage are moved away from local computers
being ‘‘outsourced’’ and operated by third-party distributed facilities
(Foster et al., 2008; Baranski et al., 2009). This allows users dynami-
cally (i.e., ‘‘on-demand’’) accessing resources (e.g., computational
power, storage) without the need to manage the underlying infra-
structure. Clouds have an economy-based model focusing on deliver-
ing computing resources as services. Finally, a computer cluster is
understood as a group of locally managed and linked computers
acting like a single powerful computer (Foster et al., 2008). Despite
the increasing popularity of Cloud computing, Grids have been
specifically targeting the scientific community and consequently
are more employed to support SDIs so far. To our knowledge, no
significant attempts have been made to use WPS on a cluster.
Therefore we concentrate our effort on Grid; it is the most complex
infrastructure (for instance in terms of security and non-uniformity of
resources), is widely used in the scientific community, and is
potentially available to any users who do not have access to local
facilities like clusters but who have a valid certificate.

To group distributed computing elements in a Grid infrastruc-
ture, a piece of software called ‘‘middleware’’ is required. This
middleware enables sharing resources and acts as a layer
between heterogeneous hardware and specific user applications.
Various Grid middleware are available (e.g., gLite, Globus, Uni-
core); they must all deal with: job submission, VO management,
data management, and security. Applications that use and benefit
from a Grid infrastructure are defined as ‘‘grid-enabled’’ (or
gridified). For Baranski (2008), the term ‘‘gridification’’ means
‘‘the adaptation of existing applications and services to the require-

ments and expectations of a grid environment’’. Although this term
refers clearly to the Grid environment, we extend this definition in
this paper to any application or services that might be adapted to
distributed computing environments (e.g., Grids, Clouds, Clusters).

Within the GI community, a clear challenge is to make use of
the secure sharing and processing mechanisms offered by Grids
while implementing the necessary OGC specifications in terms of
interfaces and services for the interoperability sake. Due to their
respective nature (e.g., targeted audience, technicalities, standards)
connecting Grids and SDIs is not a trivial task, and this procedure
requires extensions and customizations (Di et al., 2008). In

Fig. 1. Communication pattern between a WPS-client and a WPS-instance.
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consequence, a solution is needed in order to grid-enabled OWS
and especially WPS, while hiding the complexity of the Grid (and
other distributed computing infrastructures) to SDI users.

3. Gridification approaches

Currently, two types of gridification processes have been recog-
nized: encapsulation and integration (Open Geospatial Consortium,
2009; Shaon and Woolf, 2009). Encapsulation is recognized as a ‘‘low-
level gridification’’ meaning that applications or services remain
unchanged and can interact with distributed computing resources
in the backend. For the Integration process, applications and services
are resources fully embedded into the Grid middleware. Table 1
gives a comparison of the two approaches.

The encapsulation approach allows distributing calculation tasks
and accessing data in a Grid environment but applications or services
are not intended to become a Grid service as a whole (e.g., no security
mechanism). To improve the encapsulated services scalability, the
WPS interface must be extended as exemplified by Woolf and Shaon
(2009) who encapsulate Job Submission Description Language (JSDL)
within a WPS Execute operation. Although this approach is interesting
and promising, it requires users to additionally understand and deal
with JSDL language. Nevertheless, this kind of gridification is rela-
tively easy to perform and the implementation can be considered as
independent of the underlying Grid middleware (Baranski, 2008). In
comparison, the integrative approach is a more complex task requir-
ing implementing the WPS specification directly into Grid middle-
ware. A good example of such an implementation is the work done by
the gLite-OWS (G-OWS) Working Group (Nativi et al., 2009) that is
implementing OGC Web Services (OWS) as Grid services within the
gLite middleware used by the Enabling Grid for E-sciencE (EGEE)
project.6 The main advantage of this gridification approach is that
OWS are implemented as native Grid services and may offer all
qualities of any services offered by a Grid environment (e.g., security,
information and monitoring, job management, data management).
Moreover, this facilitates and allows easier compliance with standards
like the Open Grid Forum (OGF), Open Grid Services Architecture
(OGSA), the Organization for the Advancement of Structured Informa-
tion Standards (OASIS), and the Web Service Resource Framework
(WSRF) (Yanfeng et al., 2006; Nativi et al., 2009).

Despite the fact that integrative gridification is the most promis-
ing type for SDI support, this approach remains rather complex in its
implementation because it requires important developments to
transform OWS into Grid services (Yanfeng et al., 2006; Di et al.,
2008; Muresan et al., 2008; Mazzetti et al., 2009). Moreover, the
dependency of this approach on various middleware results in
specific OWS middleware implementations. This situation might be
potentially solved in the future with the adoption of interoperability
standards like OGSA and WRSF. The objective of OGSA is to enable

interoperability among various Grid middleware by introducing a
service-oriented approach into the Grid (Yanfeng et al., 2006). OGSA
defines a Grid service as ‘‘a web service that provides a set of well-
defined interfaces and that follows specific conventions’’ (Ghimire
et al., 2005). Moreover, a grid service is typically described by the
Grid Web Service Description Language (GWSDL), allows service
discovery through Universal Description Discovery and Integration
(UDDI) registries, and uses SOAP to exchange information. The Open
Grid Services Infrastructure (OGSI), which provides recommenda-
tions on the infrastructure layer to support OGSA, is evolving
towards web services standards through WSRF (Yanfeng et al.,
2006). One particularity of Grid services is that they interact
continually (e.g., Job Management Service consulting the Resource
Discovery Service to find a suitable computing element matching job
requirements). Hence, information about their state is required. In
other words Grid services are stateful while web services are usually
stateless. Consequently, WSRF specifies how to make a web service
stateful as required by OGSA. However, the encapsulation approach
does not provide Grid services functionalities, WSRF support is
lacking, and possibilities to use other computing backends (like
Clouds) is difficult, as these might for instance require the imple-
mentation of other job submission languages.

3.1. Mediation: a new approach to gridification

The integration of heterogeneous resources in distributed systems
is not a recent problem (Wiederhold, 1992) and it is gaining
importance with the emergence of large-scale distributed (web-
based) applications (Herault et al., 2007). As information systems
evolve and extend their scope, they increasingly depend on different
heterogeneous resources (e.g., databases, web technologies, comput-
ing infrastructures) (Wiederhold and Genesereth, 1997). All these
resources are in general developed and maintained separately. Deal-
ing with the diversity and heterogeneity of different resources may
therefore be an obstacle to develop high-level applications such as
decision-making tools. Hence, integrating disparate resources
requires a layer of mediation between clients and different pieces of
software or services.

According to Herault et al. (2007) the concept of mediation has
emerged as an answer to the lack of interoperability between
clients and services in Information Systems (IS). The mediation
approach requires identifying situations of particular heteroge-
neity, and implementing adaptation logic (Nativi and Bigagli,
2009). A specialized and lightweight component, called a med-
iator, does the execution. A mediation layer can be composed of
one or several mediators to possibly form chains managing
requests and answers between a client and a service (Fig. 2).

Mediators can accomplish tasks dealing with control (e.g., rout-
ing, filtering, aggregation), transformation (e.g., format translation,
ontology matching, semantic enrichment), quality of service (e.g.,
security, transaction), service level agreement (e.g., contract nego-
tiation/management) (Herault et al., 2007). In other words, media-
tors are used to bind clients and resources implementing some of
the binding tasks required to SOA clients (i.e., service consumers).

In the present study, using a mediation concept appears inter-
esting not only to integrate different pieces of software, but mainly
in terms of scalability (e.g., adding new computing backends and/or
functionalities) and (potential) independency to middleware.

4. Implementation and architecture

To enable the concepts of the mediation approach, a WPS
interface implementation was developed. The proposed WPS
implementation through the mediation approach was built on
an intermediate gridification level and offers possibilities to

Table 1
Encapsulation vs. integration approaches.

Encapsulation Integration

Implementation Easy Difficult

Gridification level Low High

Middleware Independent Dependent

Proxy Not needed Needed

Level of OWS adaptation Low, not a Grid

service

High, becomes a Grid

service

Level of OWS interface
extension

Intermediate Low

6 http://www.eu-egee.org/.
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overcome some of the previously highlighted shortcomings by
integrating and benefiting from the following functionalities
offered by various pieces of software:

(1) Simple implementation of WPS specification.
(2) Use of WPS Application Profiles to accommodate the Grid

environment.
(3) No dependency on Grid (or other) middleware.
(4) Service providers to write scalable WPS process and users to

select backends following their computing power requirements.
(5) The management of data tiling and merging when using a

geospatial data set.
(6) Potential access and use of other distributed computing

infrastructures such as Clouds (e.g., Amazon Elastic Compute
Cloud,7 Google App Engine8), Clusters (e.g., Oracle Grid
Engine9), and Desktop Grids (e.g., XtremWeb10 that exploits
an array of desktop computers spread over a network to
execute distributed tasks).

Traditionally, a WPS instance runs on a local web GIS server using
third-party geospatial libraries and/or software (e.g., GRASS, ArcGIS).
However, in order to ensure the portability and scalability of WPS on
various distributed computing infrastructures, it is necessary to:

(1) use a suitable implementation of WPS, ideally open source, to
adapt the code and run it on distributed and heterogeneous
Linux platforms;

(2) use a suitable software package allowing the development of
tiling and merging modules for raster and vector data sets;

(3) use a suitable software package that deals with security/
access (e.g., authentication, authorization), job submission,
and job management in a flexible way on different computing
infrastructures.

After reviewing different WPS implementations, tools and soft-
ware, the following packages were selected:

(1) PyWPS11 for the WPS implementation.
(2) GDAL/OGR12 for data handling (i.e., tiling and merging).
(3) Ganga

13
for computational task management.

Therefore, the presented WPS-mediated implementation depends
on the selected software packages and on Linux Operating System.
However, this specific implementation aims to show the possibilities
to overcome, through the general concept of mediation, some issues
related to encapsulation or integration approaches.

PyWPS (Cepicky, 2007) is an OGC WPS 1.0.0 implementation
written in Python. PyWPS does not process the data by itself but
uses GRASS to access geospatial functionalities. This is interesting
because it offers the possibility to access the full list of GIS
algorithms provided by GRASS, while avoiding the need to rewrite
the code of each basic core GIS capabilities (e.g., clip, intersect,
buffer) like in other WPS implementations (e.g., Deegree14).
PyWPS is a Free and Open Source Software (FOSS) distributed
under GNU General Public License (GPL). In addition, PyWPS was
recommended by the GEOSS, INSPIRE and GMES an Action In
Support (GIGAS) project15 because it is an up-to-date WPS
implementation, easy to install on most Linux platforms, and
because Python is recognized as a good choice to easily write
processes (GIGAS Consortium, 2010). Furthermore, PyWPS offers
features that other WPS implementations do not provide. It does
not involve complex installation procedures (e.g., compilation),
and can be adapted to work as a standalone package. The
Geospatial Data Abstraction Library (GDAL) and OGR Simple
Feature Library are open source libraries for handling raster and
vector geospatial data formats, respectively. Theses libraries are
widely used in the GI community, offering various capabilities to
manipulate data, and offer Python bindings. They are used to
implement data tiling and the corresponding data merging.
Finally, Ganga is a Python frontend for jobs specification, submis-
sion, management, and monitoring on various distributed
resources (Harrison et al., 2006; Moscicki et al., 2009). Ganga
provides a simple and consistent environment for processing data
on heterogeneous resources; a wide community of users already
exists. Ganga allows transparent switching between running test
jobs on a local server up to large-scale processing on the Grid
(Elmsheuser et al., 2008; Maier, 2008). The aim of Ganga is to hide
Grid (and other distributed computing infrastructures) technical-
ities by offering the possibility to switch computing backend by
changing a single parameter of a job (Moscicki et al., 2009). The
job is the central concept within Ganga as it contains the
complete description of a processing task (e.g., code to execute,
input data, specification of computing environment). Another
noteworthy capability offered by Ganga is that it can be easily
extended and customized through pluggable modules to access
different Grid middleware such as Globus, Condor, and Unicore, as

Fig. 2. Mediation layer (adapted from Herault et al., 2007).

7 http://aws.amazon.com/ec2/.
8 http://code.google.com/appengine/.
9 http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html.
10 http://www.xtremwebch.net/.
11 http://pywps.wald.intevation.org/.
12 http://www.gdal.org/.
13 http://ganga.web.cern.ch/ganga/.

14 http://www.deegree.org/.
15 http://www.thegigasforum.eu/.

G. Giuliani et al. / Computers & Geosciences 47 (2012) 20–3324

http://aws.amazon.com/ec2/
http://code.google.com/appengine/
http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html
http://www.xtremwebch.net/
http://pywps.wald.intevation.org/
http://www.gdal.org/
http://ganga.web.cern.ch/ganga/
http://www.deegree.org/
http://www.thegigasforum.eu/


well as different dedicated backends such as PanDA (Vanderster
et al., 2010) or ARC (Read et al., 2008). A first attempt to provide a
Cloud backend to Ganga (Diaz et al., 2011) is currently under
development as part of the CLOBI16 project. In consequence, this
tool allows the use of different computing backends with a
common interface acting as an interoperable layer (Moscicki
et al., 2009).

It is important to mention that the implemented solution is
restricted to a Linux environment because large Grid infrastructures
rely on middleware developed for this Operating System (OS).

The proposed WPS implementation based on the mediation
approach relying on PyWPS/GRASS, GDAL/OGR and Ganga is
presented in Fig. 3. This implementation supports optional HTTP
GET and mandatory HTTP POST methods.

Through the use of WPS Application Profiles, the current WPS
specification provides a mechanism to choose where to execute a
process and how to tile/merge data. Consequently this allows
users to choose a computing backend and select the number of
jobs (corresponding to the number of tiles) to be sent on working
nodes. The term tile refers either to vector or raster data that are
divided into smaller chunks. When executing distributed geopro-
cesses, each job corresponds to a ‘‘regular’’ WPS request sent
through Ganga by the mediation layer along with input data (tiled
by GDAL/OGR) and a modified version of PyWPS/GRASS binaries.
During processing phase, the WPS mediation layer waits until all
calculations from individual nodes are finished before merging
the results.

The proposed parameters are:

(1) backend: for choosing the computing backend (using the
codification used in Ganga). For instance, local server (Local),
Sun Grid Engine (SGE), and LHC Computing Grid (LCG) are
implemented.

(2) jobs: for selecting the desired number of tiles and correspond-
ing jobs to be submitted.

Fig. 4 gives a more detailed insight into the chain of processes
involved within the mediation layer. When submitting a WPS
query, GetCapabilities and DescribeProcess are processed regularly:
WPS queries the instance and PyWPS sends corresponding XML
documents to the client. In the case of an Execute request that
does not contain the optional backend and jobs parameters, the
query is handled by the mediation layer as a ‘‘regular’’ WPS and is
run locally on the web GIS server. However, if the request contains
the proposed parameters (in DataInput), then two alternatives are
offered to users:

(1) add backend argument:http://localhost/cgi-bin/
wps?service=WPS&version¼1.0.0&identifier¼buff-

er&request¼execute&datainputs¼[data¼http://

foo.bar/cities.gml,http.//foo.bar/

rivers.gml;width¼5.3;backend¼LCG].

(2) add backend and jobs arguments:http://localhost/cgi-
bin/wps?service=WPS&version¼1.0.0&identi-

fier¼buffer&request¼execute&datainputs¼[data-

¼http://foo.bar/cities.gml;width¼5;

backend¼LCG;jobs¼5].

In the former case, users can select a computing backend and
provide a list of data inputs (separated by a comma) that need to
be processed in parallel (i.e., task parallelism). In the latter case,
data are first tiled according to the number of required jobs and
possible dependencies at tile borders (i.e., data parallelism), and
then the mediator writes corresponding Python and Shell scripts
to submit jobs on different nodes. Once all sub-tasks are finished,
Ganga sends back tiled results to a GDAL/OGR Python script for
merging into the final result sent back to the client. Different
tiling/merging strategies can be applied and may strongly affect
performances (Werder and Krüger, 2009). The adopted solution
will be further explained under Section 4.1.4

4.1. Development

The three main components that need to communicate in order
to handle mediated and ‘‘traditional’’ WPS requests are either

Fig. 3. Technical architecture of the proposed WPS mediation. The WPS mediation layer receives and handles the Execute query, evaluates parameters, and according to

them is running the geoprocessing task on the local server or on a selected distributed computing infrastructure. The first option ‘‘backend¼LCG’’ will send a list of files to

be processed in parallel, while the second option ‘‘backend¼LCG;jobs¼50’’ allows tiling a large data set according to the number of desired calculation jobs and then

submit jobs to the selected backend.

16 http://code.google.com/p/clobi/.
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written in Python or support Python bindings. Hence, developing a
dedicated WPS mediator with this scripting language appeared as a
reasonable choice to bind the different software involved. Moreover,
Python is generally installed by default on Linux distributions and
ensures that processes can be executed on remote computing nodes.

The following mediation layer components were developed/
adapted, thus enabling a distributed environment.

4.1.1. PyWPS/GRASS package adaptation

The most important step in the implementation process was to
adapt the PyWPS/GRASS in order to make it executable on
different Linux platforms as a standalone package. Indeed, in
distributed computing environments users typically do not know
which distribution of Linux is available and do not have admin-
istrative rights to install software on remote resources. In con-
sequence, a software package needs to be executable without the
need to install any third-party components.

For that purpose, GRASS binaries were downloaded directly from
GRASS website. Unwanted or useless components (e.g., documenta-
tion files, widgets) were removed and some static libraries were
added. Finally, PyWPS source was adapted (e.g., configuration files,

functions). The resulting modified PyWPS/GRASS package (available
as a tarball) can be run anywhere and independently on the
following tested Linux systems (with Python version 2.5 or above):
Scientific Linux, Ubuntu, Debian, SUSE, and Fedora.

4.1.2. Process implementation

To implement the process logic, PyWPS uses stand-alone Python
scripts that have to be written in the PYWPS_PROCESSES directory.
A PyWPS process has one class (Process) and two methods:
__init__() and execute(). Within the __init__() method, users have
to provide some general information (e.g., title of the process,
identifier, data input and outputs) while in the execute() method
the process itself is implemented calling GRASS commands.

To execute a process on a remote computing node, it is
necessary (1) to access locally stored data and binaries and
(2) to be able to reference them with path and/or filename. Once
a job is submitted data and binaries will be sent together to
remote computing nodes of which users do not know the location.
Therefore in the process logic itself it is important to make path to
data and binaries independent of their location by creating
suitable variables.

Fig. 4. WPS mediation layer.
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4.1.3. Supported data formats and sources

GeoTiff, Geography Markup Language (GML) and shape files
are currently implemented. However, the framework can be
easily extended to all formats supported by GDAL17/OGR.18

4.1.4. Data tiling and merging

One of the main advantages of distributed computing is the
possibility to divide a given task into several subtasks, which can
be executed in parallel. In the case of processing a large vector or
raster data set, this means dividing it into smaller sub-sets. For
that purpose, the parameter jobs has been proposed. Indeed, the
input data set will be subdivided according to the number of
calculation jobs specified by a user in the mediated WPS request.
Werder and Krüger (2009) give detailed descriptions about
various issues that can arise when tiling/merging data. These
authors highlighted that to efficiently execute parallel geospatial
calculations on the Grid it is required to know which geospatial
algorithms can potentially benefits from parallelization, which
type of parallelism is suitable (i.e., data or task), how paralleliza-
tion can affect the results and how data are distributed. Hence all
these considerations will affect the tiling/merging strategies. In
the mediation layer, users choosing between the two types of
query (presented under Section 4.1) make the choice between
task and data parallelism. If users submit data that need to be
tiled (i.e., case 2), it is important to take into account possible
correlations at tile borders to obtain continuous results (Werder
and Krüger, 2009) (e.g., NDVI process is not influenced by border
effects while slope calculation is). The envisioned solution within
the mediation layer is to develop WPS Application Profiles
describing required parameters to take into account specificities
introduced by distributed computing infrastructures and to sup-
port efficient tiling/merging strategies. From our point of view,
the following parameters are a minimum set that must be
considered: (1) whether the algorithm can be parallelized or
not, (2) the type of correlations at tile border, (3) the extent of
the boundaries, and (4) the smoothing functions to be applied.
Depending on the data type (raster or vector, defined in process
metadata), the potential inter-dependencies between the created
tiles, and the values of the previously mentioned parameters, the
mediation layer first calls for the required module (Python script
using GDAL or OGR) to subdivide the data accordingly. Second,
the layer writes the needed Ganga scripts with the correct
references to data. When all processing subtasks are finished,
the mediation layer calls the corresponding module to merge data
and send it back to the requestor. It should be noted that input
and output must be geospatial data.

To achieve these tiling/merging tasks before entering a Grid
and submitting jobs, gaining access to the data is essential. Hence,
a specific module was developed supporting different data
sources: OWS (WFS and WCS) servers, remote data repositories
(web accessible folder), and locally stored data (uploaded by File
Transfer Protocol (FTP)).

4.1.5. Job submission

The mediation layer writes corresponding Ganga scripts to
submit jobs on distributed computing infrastructures with the
following command:

ganga oname_of_script4.py.

Each job consists of (1) a PyWPS/GRASS binaries package,
(2) data input, and (3) a shell script to execute the WPS request on
the remote computing node.

The following example shows a typical Ganga script (Example 1):

j¼Job()

j.inputsandbox¼

[’egMediator.tar.gz’,’TM3.tif’,’TM4.tif’]

j.application¼Executable()

j.application.exe¼File(’testWPS.sh’)

j.backend¼LCG(middleware¼’GLITE’)

j.backend.requirements¼LCGRequirements()

j.outputsandbox¼[’n’]

j.submit()

Example 1. Ganga script

The corresponding shell script (Example 2) is used to execute

the calculation through a WPS request directly on the remote

computing node:

#!/bin/bash

abspath¼$(cd ${0%/n} && echo $PWD/${0##n/})

path_only¼�dirname ’’$abspath’’�

tar -xzf egMediator.tar.gz

mv TM3.tif $path_only’’/’’egMediator/datainput/

TM3.tif

mv TM4.tif $path_only’’/’’egMediator/datainput/

TM4.tif

chcon -t texrel_shlib_t $path_only’’/’’egMedia-

tor/WPS/grass/lib/n.so

chcon -t texrel_shlib_t $path_only’’/’’egMedia-

tor/WPS/grass/lib/n.so.1

python $path_only’’/’’egMediator/egmediator.py

’service¼WPS&version¼1.0.0&request¼execute&i-

dentifier¼ndvi&datainputs¼[red¼TM3.tif;nir¼

TM4.tif]’

Example 2. Shell script

Once jobs are sent to the Grid, users can monitor their status

using Ganga (Fig. 5).

Once a job is finished, Ganga retrieves the result by moving it

outside the Grid and writing it on a dedicated output folder on the

GIS server.

4.1.6. Security

To access resources and submit jobs in a Grid environment, users
must have a valid long-lived certificate (for authentication and
authorization) issued by a certificate authority (CA) trusted by the
resource provider. When submitting a job, grid users must first
generate a short-lived proxy certificate (i.e., valid in general 12 h)
derived from their personal credentials that will be used to
authenticate them on the remote resource (Robinson et al., 2005).
From a user’s point of view, acquiring a certificate is time-consum-
ing, and management of certificates may be difficult especially when
accessing various types of computing resources (e.g., Grids, Clouds)
that require different authentication processes (Crampton et al.,
2007, 2011). Therefore, offering (web-based) single sign-on capabil-
ities may be very useful. This is currently a ‘‘hot topic’’ within the
computing infrastructures community, with new venues to manage
credentials through federation of CAs (Di Stefano et al., 2009; Jie
et al., 2011), Shibboleth (Wang et al., 2009) as well as completely
new authentication/authorization mechanisms (Cornwall et al.,
2004) being explored.

However, the current WPS specification does not provide any
security mechanisms (Shaon and Woolf, 2009). To solve this issue
and allow a mediated WPS request to submit jobs on a Grid
infrastructure, a common solution is to store the proxy certificate
on a central repository protected by a username/password. This

17 http://www.gdal.org/formats_list.html.
18 http://www.gdal.org/ogr/ogr_formats.html.
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consents any Grid client that has access to these credentials to
retrieve the proxy certificate (Robinson et al., 2005; Menglong et al.,
2009). A widely adopted solution to handle proxy certificates is the
online credential repository called MyProxy19 (Novotny et al., 2001).
Users can create a proxy certificate on the MyProxy repository using
their long-lived Grid certificate and delegate a username/password
combination to the created proxy certificate (Padberg and Greve,
2009). The WPS Application Profile enables users to embed MyProxy
parameters (e.g., host, port, username, password) within the WPS
request as a special DataInput parameter. Then, the mediation layer
manages username/password combination to retrieve short-lived
credentials generated by the MyProxy Server and allows the sub-
mission of jobs on a Grid. Adding such a security component will
introduce an overhead that should be negligible if the request takes
a long time to process (Di et al., 2008). However, this approach
brings major flexibility and offers the possibility to access Grid
resources through a simple authentication mechanism (e.g., user-
name, password) and consequently enables users to access to their
credentials (e.g., web browser, mobile devices) seamlessly to submit
jobs on a Grid through a WPS request.

4.1.7. Service metadata

The extension of the WPS interface with the possibility to
execute geoprocessing calculations on different backends requires
modifying accordingly the metadata of the service available
through the GetCapabilities operation. In fact, the objective is to
describe an extended capability of the WPS instance. This implies
that such extended capabilities must be valid for every process
that users will run using the mediated WPS. Hence, the XML
document sent to the client must provide a list of supported
backends as suggested:

owps:SupportedBackends4
owps:Default4

oows:Backend4localo/ows:Backend4
o/wps:Default4
owps:Supported4

oows:Backend4localo/ows:Backend4
oows:Backend4sgeo/ows:Backend4
oows:Backend4lcgo/ows:Backend4

o/wps:Supported4
o/wps:SupportedBackends4

Example 3. Proposed extension for the GetCapabilities XML
document providing a list of supported computing backends.

Users can declare different computational backends directly in

the PyWPS configuration file that is used by the GetCapabilities

operation to create the corresponding XML response. Obviously,

clients that may query capabilities offered by the mediated WPS

instance must support such an extension.

4.1.8. Process metadata

The possibility of executing geoprocessing algorithms on dis-
tributed computing infrastructures not only requires modifying
accordingly the GetCapabilities operation but also that these addi-
tional capabilities and dependencies be reflected in the description
(including inputs and outputs) of each WPS process obtained
through a DescribeProcess operation. WPS Application Profiles allow
enhancing the description of each process by defining inputs/out-
puts parameters and their values. This mechanism offers the
possibility of specifying the dedicated parameters required to
accommodate WPS request to distributed computing environments.
Such ‘‘grid-enabled WPS Profiles’’ allow, in the current state of the
presented implementation, the selection of a computing backend
and the execution of the number of jobs following the parameters
definition in the profile (see Section 4). Consequently, WPS Applica-
tion Profiles enable users to embed backend and jobs parameters
within a mediated WPS request as special values of the DataInput
parameter. Finally, the mediation layer will handle the request to
efficiently negotiate with the different pieces of software involved.

Furthermore, using grid-enabled WPS Application Profiles will
allow the user to define required parameters in order to manage a
secure access to Grid resources (see Section 4.1.6), as well as to
develop efficient strategies for data tiling/merging (see Section 4.1.4).

5. Use case: NDVI computation

The proposed WPS mediation layer has been developed and will
be tested in the context of the enviroGRIDS project, funded under
the European Commission (EC) Seventh Framework Program. This
project focuses on the ecologically unsustainable development and
the inadequate resource management that is often observed in the
Black Sea hydrological catchment area. A large catalog of environ-
mental data sets (e.g., land use, hydrology, and climate) has been
gathered and is used to perform distributed spatially explicit
simulations to build scenarios of key environmental changes. The
project is also developing a Spatial Data Infrastructure (SDI) to feed
its regional data into the Global Earth Observation System of

Fig. 5. Jobs monitoring with Ganga (in command line).

19 http://grid.ncsa.illinois.edu/myproxy/.
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Systems (GEOSS), while being linked to the Enabling Grid for
E-sciencE infrastructure (EGEE). During its 4 years timeframe, the
enviroGRIDS project aims at reaching the following objectives for
which a Grid infrastructure will be important:

(1) A high-resolution (sub-catchment spatial and daily temporal
resolution) water balance model will be applied to the entire
Black Sea (BS) catchment using the Soil Water Assessment
Tool (SWAT) (Arnold et al., 1998). This tool will be gridified
and used on the EGEE infrastructure.

(2) Adequate sensitivity and uncertainty analyses will be performed
on the BS SWAT model. A gridified version of the SWAT-CUP
(Abbaspour et al., 2007) tool will be used for that purpose.

(3) Access to real time data from sensors and satellites will
provide early warning and decision support tools to policy-
makers and citizens. These data may be streamlined into the
grid-enabled enviroGRIDS SDI to ensure fast computation and
dissemination of results.

The strong Grid component of the project will foster data
interoperability, and is triggering new directions of research or
alternative ways of analyzing high-resolution data sets.

One of these directions is the proposed WPS mediation that
will be tested to compute Normalized Difference Vegetation Index
(NDVI) at the catchment scale. Indeed, vegetation indices time
series might be useful data sets to refine SWAT models calibration
(Arnold et al., 1998). Vegetation monitoring using remotely
sensed data is carried out by means of vegetation indices, which
are mathematical transformations designed to assess the spectral
contribution of green plants to multispectral observations
(Maselli et al., 1998). The NDVI is calculated from Near InfraRed
(NIR) and Red (R) bands as follows (Rouse et al., 1974):

NDVI¼ ðNIR2RÞ=ðNIRþRÞ

The corresponding WPS geoprocessing task has been devel-
oped according to the different requirements mentioned and
discussed previously. To study the benefits of the NDVI WPS, we
show here its application on two large data sets (Table 2). The
first one is a medium resolution remote sensing image (250 m
resolution) of 1.2 GB provided by the MODerate resolution Ima-
ging Spectroradiometer20 (MODIS) and covers the entire Black Sea
catchment (2 millions square km). This first data set will be used
to test the NDVI process on a local GIS server and, if needed, will
be executed on the Grid. The second one is a set of nine high-
resolution orthophotos (10 cm resolution) of the city of Geneva
(Switzerland), covering an area of one square kilometer each, for a
total memory size of 3.6 GB. These images are provided by the
‘‘Syst�eme d’Information du Territoire Genevois (SITG)21’’. This
second data set will be used to make a comparison between
different executions of the NDVI process:

– on a merged version of the nine orthophotos on a local GIS
server,

– on a merged version of the nine orthophotos on the Grid with
50 jobs (i.e., use of backend and jobs parameters to tile and
merge data),–
on a local GIS server with already tiled orthophotos and
submitted as a file list in the datainputs parameter using only
the backend parameter,

– on the Grid with already tiled orthophotos and submitted as a
file list in the datainputs parameter using only the backend

parameter.

From the obtained indicatives results several observations can
be made:

� Despite the fact that the used MODIS data set might be
considered as voluminous (1.2 GB), the developed NDVI WPS
process executed on a single GIS server (with 3 GHz CPU/4 GB
RAM) can easily handle this data set avoiding the need to use
the Grid.
� However, a high-resolution merged image (30,000�30,000

pixels at 10 cm resolution) cannot be processed locally on a
single WPS instance due to lack of memory.
� Processing the same data set on the Grid is feasible but

important overheads are introduced. In particular, subdividing
and merging such a data set in 50 tiles is time consuming. This
probably comes from GDAL internal process implementation
(e.g., multiple load of the file in memory). Submission and
execution on the different nodes can also be quite expensive
and dependent of the workload of each computing elements.
� Despite the small overhead introduced by jobs submission,

executing calculations on the Grid on already tiled data sets is
the most efficient way. In this way, and in contrary to a local
execution that processes jobs sequentially, the nine submitted
jobs are executed simultaneously. In theory, such parallel
execution can improve the overall processing phase by a factor
corresponding to the number of submitted jobs (nine in
our example). Nevertheless it is not the case here due princi-
pally to varying workload conditions on different nodes. The
improvement is around 15% and should increase with growing
number of jobs (i.e., processing 10,000 tiles will probably show
a much larger improvement).

6. Discussion and perspectives

This tool was developed as a proof-of-concept of the mediation
approach to grid-enable OGC WPS specifications. The implemen-
tation was successful and first results show both benefits and
limitations. In particular, this approach enables the possibility of
further developing develop WPS implementation (with the help
of Application Profiles), offering some of the advantages of a Grid
service (e.g. secure access to resources, SOAP-based messaging,
statefullness, process scalability).

6.1. WPS mediation benefits

The major benefit of this approach is the ability to flexibly and
seamlessly execute WPS on different computing backends, ran-
ging from a local GIS server up to large scale computing infra-
structures like a Grid. This scalability is important because it
enables users to develop their geoprocesses locally and run them
later on various distributed computing infrastructures if more
processing power is required. It should be noted that the

Table 2
Indicative comparison of mediated WPS processes executed locally or on the Grid

(times are expressed in minutes/seconds).

Tiling Submission Execution Merging Total

MODIS, local – – 1105100 – 11:51
MODIS, grid (j¼10) 202000 501000 804000 300000 1901000

SITG—merged, local N/A N/A N/A N/A N/A
SITG—merged, grid

(j¼50)
7202000 4002500 5101000 6604000 23003500

SITG—9 tiles, local – – 4302000 1102000 5404000

SITG—9 tiles, grid – 50200 0 3005000 1102000 4703000

20 http://modis.gsfc.nasa.gov/.
21 http://www.sitg.ch/.
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developed WPS mediator was tested only with the EGEE infra-
structure and a local GIS server. Nevertheless, experiments in
High Energy Physics successfully used Ganga to submit jobs on
various backends (Elmsheuser et al., 2008; Moscicki et al., 2009),
and even added new computing backends (Read et al., 2008;
Vanderster et al., 2010; Diaz et al., 2011). The presented mediated
WPS instance should therefore run without problem on any other
infrastructure for which a backend plugin exists in Ganga. In
addition, the modular and pluggable framework of Ganga allows
one to easily develop new plugins for accessing infrastructures
that are not yet implemented such as Clouds or Desktop Grids.
Hence, Ganga appears as a suitable solution to hide the complex-
ity of various computing infrastructures by acting as an inter-
operability layers between different backends and users. Finally,
the mediation approach is sufficiently general to be applicable to
other WPS implementations and job submission software.

From the results on NDVI processing, it shows that accessing
Grid resources allows processing larger data sets than it is
possible on a single computer. However, submitting very large
data sets (i.e., several GB) is not very efficient as it introduces
several important overheads (in particular for tiling and merging
data). Nevertheless, this can be seen as additional/optional
functionality offered to users that do not have sufficient memory
on local resources. A more realistic usage and common practice
when serving large data sets (such as those from the SITG) is to
make them available already tiled in order to reduce download
time and to improve data access to specific areas (i.e., avoiding
the need to download a complete data set if not needed). There-
fore, submitting these tiles in file lists as data inputs that can be
processed in parallel on the Grid appears to be an efficient and
promising possibility.

Finally, WPS Application Profile is an interesting feature offered
by the current WPS specification. Our specific implementation has
shown that it is an efficient way to accommodate WPS request to
distributed computing environments. This allows benefiting from
the capabilities of the Grid with the simplicity of WPS.

6.2. WPS shortcomings

Actual WPS specification is not sufficient to fully benefit from
distributed computing infrastructures capabilities. We showed
that service metadata available through a GetCapabilities opera-
tion must introduce this extension by providing a list of sup-
ported backends and process metadata must be extended through
WPS profiles to take into account specificities of distributed
computing environments.

Additionally, some aspects of the current WPS specification are
currently not sufficient to handle different types of references to
ensure sufficient scalability within the process logic. Additionally,
this issue highlighted the fact that currently available data types
in WPS specification are too generic and need to be enhanced
(Nash, 2008). Nevertheless, the ComplexData type, used to handle
vector and raster data in the current WPS specification, does not
provide a possibility to reference locally stored data as inputs (i.e.,
it only addresses remote data sources). Although not foreseen for
this usage, the LiteralData type helps to overcome this issue. This
data type accepts any character strings and then allows introdu-
cing path and filename to local resources. If data inputs are
declared as such then it is possible to reference locally stored
data sets.

6.3. Technical limitations

The current implementation of WPS mediator suffers from
different technical limitations that may be overcome with further
developments.

At this stage, the mediator only accepts three widely available
formats as input: GeoTiff, GML and shape files. However, further
development can easily extend the input formats to other vector
and raster formats supported by the GDAL/OGR libraries.

When processing data, real scenarios (e.g., generating a flood risk
map, analyzing habitat distribution of birds) generally involve
various complex tasks/calculations. The process of turning data into
information requires the organization of these tasks into sequences
or chains of processes. In a web services environment, building
flexible and efficient workflows coordinated by an orchestration
engine can do this. Orchestration engines are generally based on
SOAP and WSDL to exchange structured information while OGC
standards rely on XML-RPC (Fleuren and Muller, 2008). These two
different ways of representing data may limit the chaining capabil-
ities of OWS. However, WPS has a very limited support of SOAP/
WSDL in its current specification. Hence, at this stage of develop-
ment, it was impossible to effectively test the integration of
mediated WPS processes within a chain of services. The release of
PyWPS 3.2 will introduce an extended support of SOAP and should
therefore facilitate service chaining in the mediation layer.

Finally, OGC standards are in general stateless (i.e., lacking
capabilities to give information about their state). However, mon-
itoring jobs status (e.g., submitted, running, complete) is straightfor-
ward with Ganga, and some Python bindings should make it
possible to develop suitable interfaces to retrieve information about
the state of submitted jobs. Additionally, the WPS interface has an
optional status parameter that partly enables reporting on the status
of execution (Open Geospatial Consortium, 2007).

6.4. Performances

Granell et al. (2009) stated that performance is one of the main
problems when implementing geoprocessing tasks in a distrib-
uted environment. These authors showed that network band-
width, data transportation and data validation are potential
bottlenecks when dealing with large geospatial data sets. Except
in a few cases (e.g., dedicated high performance network), the
Internet network bandwidth will always be a limiting factor, as
data will be transported over the Internet. Thus, minimizing data
transportation (i.e., having data stored physically close to the
processing elements) and data validation (i.e., parsing data used
within a process) is of high importance.

In order to decrease the overall overhead, the mediation approach
might be potentially useful as it allows moving some of the
components directly into the Grid. Indeed, a job using the Mediation
layer is constituted by (1) process logic, (2) data to be processed, and
(3) a PyWPS/GRASS binary package (engine) to execute the process
(currently weighting around 27 MB). If the latter package is directly
accessible on the nodes of a Grid infrastructure and data is available
in Storage Elements (SE), the mediator will be used only to forward
WPS requests and send process logic through Ganga. This may
considerably decrease the overhead caused by the size of PyWPS/
GRASS binaries and data. Such a ‘‘moving-code’’ approach (Müller
et al., 2010) can be advantageous as it allows moving the algorithm
code, rather than data, to a processing instance. Data is then
processed as close as possible to its source, which reduces bandwidth
and data transportation time.

Currently Ganga is only used within the mediation layer to
submit a geoprocessing task on different backends. Ganga does
not consider the workload on different computing nodes. In other
words, if a node is available, then a job is submitted. When
submitting multiple jobs at the same time, the overall processing
time may be negatively affected. In such a situation, Ganga will
wait until sufficient nodes are available to submit these jobs.
However, in view of integrating Grid capabilities into SDIs,
responsiveness appears to be an important condition. In order
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to overcome this issue, one possible solution it to upgrade the
mediation layer using a tool called DIANE (for DIstributed
ANalysis Environment)22 that can be used in conjunction with
Ganga. DIANE aims to improve the quality of services using
automatic control, workload management and jobs scheduling
on a set of distributed worker nodes (Moscicki, 2003). This may
(1) reduce the application execution time by using the resources
more efficiently, (2) provide fully automatic execution and failure
management, (3) efficiently integrate local and Grid resources,
and (4) provide mechanisms to efficiently send jobs on nodes that
are less loaded (Moscicki, 2004).

Furthermore, it can be interesting to avoid the necessity to let
users determine the computing backend and/or the number of
jobs that need to be submitted. In the currently implemented
solution, users need to know whether the computational require-
ments of the geoprocessing task require to be distributed. How-
ever for an optimum use of computing resources, it would be
good to delegate this choice to the mediator. A possible solution
to implement this functionality necessitates developing an algo-
rithm that optimizes the job submission and that can be used in
conjunction with DIANE. Such an algorithm must consider various
parameters such as file size, data complexity (e.g., resolution,
geometry) and number of available worker nodes per backend.
Based on these parameters (and potentially others), the mediator
can then evaluate the resources required to efficiently process the
data, select the suitable backend (e.g., local, cluster, Grid), and
calculate the number of jobs/tiles to be used. Several attempts
(Teo et al., 2003; Hu et al., 2005; Yang et al., 2011) have been
made to optimize jobs calculations and processing of remote
sensing images. All these studies highlight that achieving the
objective of high performance computing of geospatial data is not
an easy task, but that investigated solutions of optimization offer
good potential.

Other factors that may influence performances of the mediated
WPS service are the ones linked to download and tiling modules.
If data are not stored locally they need to be downloaded and this
may require some time depending on file size and bandwidth.
Once download is finished, a dataset is tiled according to the
number of jobs requested by the user. In such a case, these tiles
can still have a size of several megabytes and must be uploaded to
the different computing nodes introducing a data transportation
overhead. If tiled data are directly available in SE this allows
bypassing the need to download and tile data, thus bringing the
induced overhead close to zero. Nevertheless, the extension of the
mediation layer to take into account Grid specificities such as data
accessible through Logical File Name (LFN) remains to be inves-
tigated further. Other possibilities of achieving the objective of
fast access to large and widely distributed amounts of data are
(1) Peer-to-Peer (P2P) technologies (Yanfeng et al., 2006;
Sanchez-Artigas and Garcia-Lopez, 2010) or (2) development of
new protocols like GridJet that accelerate data transport (Wang
et al., 2009).

Finally, parallelization is an important factor to take into
account because it has the potential of strongly affecting the
quality of proposed services. For Padberg and Greve (2009) there
is no generic parallelization method that fits every geospatial
process. Parallelization can indeed be done at the task (i.e., task
parallelism) or at the data level (i.e., data parallelism) (Werder
and Krüger, 2009). In the former case, a task can be split into
various independent subtasks working on the same or different
data set, while in the latter case each subtask operates on a subset
of the whole data set. Data parallelism introduces the necessity to
efficiently tile and merge data (to lower induced overhead) and to

consider effects (e.g., interdependencies) at tile borders to obtain
adequate result (Werder, 2010). Moreover, not all geoprocessing
tasks can be subdivided into independent calculations (e.g., climate
models requiring communication among jobs). Consequently, sui-
table strategies are required. Werder and Krüger (2009) propose
possible alternatives to tile/merge data: by object, by geometry, by
operation, by spatial criteria, and by level of detail. In the mediation
approach, further investigations are required to find an effective and
efficient solution using grid-enabled WPS Application Profiles to
manage and offer such capabilities to users.

7. Conclusions

WPS is a promising specification to handle data and a key
element to enable SDIs as web-based geoinformation environ-
ment. Nevertheless, various issues emerge when trying to use
WPS in data and computing-intensive domains like environmen-
tal sciences. To overcome these problems a distributed computing
paradigm and especially Grid computing appear to be interesting
candidates to empower SDIs. However, SDIs and Grids are
technologically different, and matching these two types of infra-
structures is challenging. For that purpose, OGC WPS specifica-
tions need to be improved and extended in order to benefit from
superior storage and computing capacities offered by distributed
computing.

The presented conceptual approach of mediating different GIS
and Grid software components has been exemplified by a specific
implementation (i.e., using PyWPS/GRASS, GDAL/OGR and Ganga),
offering the possibility to:

(1) potentially execute WPS request on any computing backend
implemented within Ganga (e.g., local servers, Clusters, Grids,
Clouds) while hiding the technicalities of these infrastructures.

(2) add two optional parameters (through WPS Application Profile):
backend and jobs, allowing users to specify where to execute a
selected process and how many sub-tasks are required.

A NDVI WPS process highlighting benefits both in term of
performance and scalability has successfully exemplified this
implementation. Nevertheless, several issues and shortcomings
have been raised and require further investigations in order to
build responsive, efficient and reliable grid-enabled SDIs. Some of
these shortcomings (e.g., statefullness, asynchronousity, data
types, process management) will be tackled in the future WPS
2.0.0 specification that is expected later in 2011. The hope it that
the new version improves the grid-enablement process and
facilitates the use of distributed computing resources.

The proposed mediation concept appears a promising alter-
native to encapsulation and integration approaches, opening new
perspectives for the grid-enablement process. The mediation
concept also enriches the discussion concerning future improve-
ments of the WPS specification along with supporting the Grid
community in finding new and promising directions of research
and development (Schwiegelshohn et al., 2010).
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