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Abstract

We develop a tailor made semiparametric asymmetric kernel density estimator for the es-
timation of actuarial loss distributions. The estimator is obtained by transforming the data
with the generalized Champernowne distribution initially fitted to the data. Then the den-
sity of the transformed data is estimated by use of local asymmetric kernel methods to obtain
superior estimation properties in the tails. We find in a vast simulation study that the pro-
posed semiparametric estimation procedure performs well relative to alternative estimators. An
application to operational loss data illustrates the proposed method.

Key words and phrases: Actuarial loss models, Transformation, Champernowne distri-
bution, asymmetric kernels, local likelihood estimation.

JEL Classification: C13, C14.

¢ Royal&SunAlliance and University of Copenhagen, Copenhagen, Denmark.
b Swiss Finance Institute and Concordia Advisors, London, United Kingdom.
¢ CASS Business School, City University, London.

4 HEC Geneve and Swiss Finance Institute, Geneva, Switzerland.



1 Introduction

The specification of a loss distribution is without doubt a key ingredient of any modeling approach
in actuarial science and financial risk management. For insurers, a proper assessment of the size of
a single claim is of most importance. Loss distributions describe the probability distribution of a
payment to the insured. Traditional methods in the actuarial literature use parametric specifications
to model single claims. The most popular specifications are the lognormal, Weibull and Pareto
distributions. Hogg and Klugman (1984) and Klugman, Panjer and Willmot (1998) describe a set
of continuous parametric distributions which can be used for modeling a single claim size. Ideally
we would like to benefit from economic guidance in the choice of a parametric loss model. This is
sometimes available in other fields. For example Banks, Blundell and Lewbel (1997) consider demand
systems that support empirical specification of quadratic Engel curves. Economic justification of
empirical loss distribution is still an open question. Besides it is unlikely that something as complex
as the generating process of insurance claims can be described by just a few parameters. A wrong
parametric specification may lead to an inadequate measurement of the risk contained in the insurance
portfolio and consequently to a mispricing of insurance contracts. Such a mispricing can be in some
cases rather severe.

A method which does not require the specification of a parametric model is nonparametric kernel
smoothing. This method provides valid inference under a much broader class of structures than those
imposed by parametric models. Unfortunately, this robustness comes at a price. The convergence
rate of nonparametric estimators is slower than the parametric rate, and the bias induced by the
smoothing procedure can be substantial even for moderate sample sizes. Since losses are positive
variables, the standard kernel estimator proposed by Rosenblatt (1956) has a boundary bias. This
boundary bias is due to weight allocation by the fixed symmetric kernel outside the support of the
distribution when smoothing close to the boundary is carried out. As a result, the mode close to the
boundary typical for loss distributions is often missed. Additionally, standard kernel methods yield
wiggly estimation in the tail of the distribution since the mitigation of the boundary bias leads to
favor a small bandwidth which prevents pooling enough data. This prevents precise tail measurement
of loss distributions which is of primary importance to get appropriate risk measures when designing

an efficient risk management system.



We propose a semiparametric estimation framework for the estimation of densities which have
support on [0,00). We build on transformation based kernel density estimation, which involves
nonparametric estimation of a density on [0, 1]. Our estimation procedure can deal with all problems
of the standard kernel estimator mentioned previously, and this in a single way. Although the
parametric models traditionally used in loss modeling may be inaccurate, they can be used in a
semiparametric fashion to help to decrease the bias induced by nonparametric smoothing. If the
parametric model is accurate, the performance of our semiparametric estimator can be close to
pure parametric estimation. Following the idea of Hjort and Glad (1995) (H&G), we start with a
parametric estimator of the unknown density instead of a direct single step nonparametric estimation.
Then we work with transformed data as in, e.g., Wand et al. (1991). We map the original data within
[0,1] via the estimated parametric start distribution, and correct nonparametrically for possible
misspecification. Our approach combines the benefits of using a global parametric start and of using
transformation based kernel estimators. We will see that the standard transformation based kernel
estimator of Wand et al. (1991) is a special case of our estimator. Since a flexible parametric start
helps to mitigate the potential misspecification of the parametric model and gives full access to
the potential benefit of bias reduction, we opt for the Champernowne distribution (Champernowne
(1936, 1952)) and its modification developed by Buch-Larsen et al. (2005). This distribution has
already been successfully applied to the estimation of loss distributions in Buch-Larsen et al. (2005)
and Gustafsson et al. (2006). It is especially suitable to model loss data since it has a similar shape
close to the boundary as the lognormal model, which is considered to provide a good fit for losses of
smaller size. However, unlike the medium-tailed lognormal model, the Champernowne distribution
and its modification converge in the tail to the heavy tailed pareto distribution and can therefore
also capture the typical thick tailed feature exhibited by empirical loss data. The transformation
step can be seen as a type of variance stabilization (denoising) procedure as traditionally used in
signal extraction.

To decrease the bias even further, we give some local parametric guidance to this nonparametric
correction in the spirit of Hjort and Jones (1996) (H&J). This is achieved by employing either local
polynomial or log polynomial models, where the latter method results always in nonnegative density

estimates. In contrast with H&J the correction is applied on the transformed data instead of the



original ones. The idea is that in a well specified case the transformed data are uniformly distributed
on [0, 1] (see Diebold et al. (1998) for use of this property in evaluating density forecasts in financial
risk management), and that under slight misspecification they are close to. Then the deviations from
the uniform distribution should be easier to handle locally than the true distribution itself. We call
this approach local transformation bias correction, or LTBC to be short.

We emphasize that appropriate boundary bias correction arising from smoothing on the unit
interval is more important in a semiparametric than a pure nonparametric setting. This is because
the bias reduction achieved by semiparametric techniques allows us to increase the bandwidth and
thus to pool more data. This, however, increases the boundary region where the symmetric kernel
allocates weight outside the unit interval. This motivates us to develop LTBC in an asymmetric
kernel framework which eliminates the boundary issue completely. Asymmetric kernel estimators
for compactly supported data were recently proposed by Brown and Chen (1999) and Chen (1999)
as a convenient way to solve the boundary bias problem. The symmetric kernel is replaced by an
asymmetric beta kernel which matches the support of the unknown density of the transformed data.
Other remedies include the use of particular boundary kernels or bandwidths, see e.g. Rice (1984),
Schuster (1985), Jones (1993), Miiller (1991) and Jones and Foster (1996). Chen (2000) and Scaillet
(2004) discuss some of their disadvantages such as inferior performance on Monte carlo experiments,
potential negative density values, as well as complex and slow computational implementation. The
beta kernel has a flexible form, is located on the interval [0, 1], and produces nonnegative density
estimates. Also, it changes the amount of smoothing in a natural way as one moves away from
the boundaries. This is particularly attractive when estimating densities which have areas sparse
in data because more data points can be pooled. Empirical loss distributions typically have long
tails with sparse data, and therefore we think that such a kernel is well suited to solve the boundary
problem for the transformed data at the right end of the unit interval. The variance advantage of
the asymmetric kernel comes, however, at the cost of a slightly increased bias as we move away
from the boundaries compared to symmetric kernels. This highlights the importance of effective bias
reduction techniques within the boundaries achieved by local modeling in the spirit of H&J. Another
advantage of the beta kernel estimator is its consistency even if the true density of the transformed

data is unbounded at x = 0 and/or x = 1 (see Bouezmarni and Rolin (2004)). In a vast simulation



study, we find that the proposed asymmetric semiparametric density estimation framework exhibits
very attractive finite sample performance. Across a range of six different light to heavy tailed test
densities our proposed estimator outperforms popular boundary corrected kernel estimators such as
the local constant and local linear estimator.

We proceed as follows in this paper: Section 2 explains the semiparametric density estimation
framework in the familiar symmetric kernel setting. Section 3 briefly discusses the beta kernel density
estimator which is used to extend the proposed semiparametric estimation framework to an asym-
metric setting in Section 4. Section 5 briefly discusses the parametric part of our framework given by
the generalized Champernowne distribution. Section 6 summarizes the setting and results of a vast
simulation study. In Section 7 we provide an application to operational risk data which illustrates
the use of the proposed estimation framework. Such a quantitative assessment of operational risk
is in line with the new proposal of the Basel Committee on Banking Supervision. Section 8 finally

concludes.

2 Local transformation based kernel density estimation

Let Xi,...,X,, be a random sample from a probability distribution F' with an unknown density
function f (z) where x has support on [0,00). We propose the following local model as a basis to

estimate the true density function f (x):

m (2,01, 02 (T, (x))) = Ty (x) - ¢ (Ty, (x) .02 (T, (), (1)

where Ty, (x) is a parametric family of cumulative distribution functions indexed by the global param-
eter 6y = (b1, ...,01,) € ©1 € R? and T(,(ll) (x) denotes the first derivative of T', e.g. the probability
density function in this case. The first part of the local model m consists of the density Te(ll) (x),
which serves as a global parametric start and is assumed to provide a meaningful but potentially
inaccurate description of the true density f (z). In that sense we follow H&G. The second part of m
denoted by ¢ (Tp, (z), 02 (Ty, (x))) with Oy (Tp, (z)) = (021 (Tp, (z)) , ..., 02, (T, (x))) € O € R? serves
as the local parametric model for the unknown density function r(Ty, (x)) of the transformed data
Ty, (X1), ..., Tp, (X1) with support in [0,1]. In that sense we follow Wand et al. (1991) by working

with transformation based kernel estimators. If T" were equal to the true distribution function F,



then r would just be the uniform density. In a misspecified case, however, the role of this “correction
density” is, as the name says, to correct the potentially misspecified global start density Te(ll) ()
towards the true density f (z). We call this local transformation bias correction (LTBC), since the
approach is inspired by transformation based kernel density estimation but the correction density r
is modeled locally by ¢ as inspired by H&J. As already mentioned, the correction density r(Ty, (x))
is uniformly equal to one if the parametric start is well specified. Hence when the degree of misspec-
ification is not too severe it is intuitively more natural to model the correction density locally than
the unknown density itself.

The estimation procedure is as follows: first, estimate the parameter 6, which does not depend on
x, by maximum likelihood and denote the estimate by 6;. It is well known that when the parametric
model Te(ll) (x) is misspecified, 0, converges in probability to the pseudo true value 6 which minimizes
the Kullback-Leibler distance of T, 9(11) (x) from the true f (z), see e.g. White (1982) and Gourieroux,
Monfort and Trognon (1984). Second, we estimate the density of the transformed data U; = T, 5, (Xi)

at point @ = Tj (x) by using the local likelihood approach of H&J: Choose 0, (1), i.e., 0,, such that

% S K0 = a)ola Ui, ) - / Koot — @)o(it, 1, 02)6 (1, 03) dt = 0 @)

holds, where KCp, (2) = (1/h) K (2/h) is a symmetric kernel function, h is the bandwidth parameter
and v(a,t,0s) is a g x 1 vector of weighting functions. We denote the solution to the above equation
by 65 (@) and its true theoretical counterpart by 69 (u®), where u® = T (). If we choose the score
Olog ¢ (u, ) /005 as the weighting function, then Equation (2) is just the first order condition of the
local likelihood function given in H&J. In general, the form of the weighting function is driven by
the tractability of the implied resulting estimator and is discussed in more detail as we proceed in

the paper. The local transformation bias corrected density estimator is finally defined as

fr (@) = T (@) 6 (T, (@),02 (T, (@) (3)

From the theoretical results concerning bias and variance of the local likelihood estimator given in
H& J, it immediately follows that this estimator has the same variance as the standard transformation

kernel density estimator introduced by Wand et al. (1991) given by
2 B f () (1) 2 1
Var (fT (x)) == Tf’? () | K(u)"du+o )

6




The bias is different however. Using the bias expression of the local likelihood estimator as reported

in H&J, we can easily show that the bias of the LTBC estimator in case 6, is one-dimensional is

Bias (/1 () = $H203 T () [ (T () — 6@ (Top (). 68 (T () )] (4)

where 0% = [ 22K (2) dz and e.g. ') denotes going forward the j* derivative of the function r. The
magnitude of this bias term depends on how well the correction density can be approximated locally
by a suitable parametric model. This is so if the second derivative of the true correction density is
small [e.g. 7 (u) is smooth], or equivalently, if the global parametric start density 7, 65(1} ) (x) is close to
the true density. In general, this bias term depends on the weighting function as well in case only
a single local parameter is fitted. This term cancels out however if the weighting function is chosen
constant over the support of u. This is the case for all practically relevant cases considered in this
paper. For further details we refer to H&J. In the transformation density literature it is common to
express the bias in terms of the density function f (z) and the transformation function 7" (). We do

not follow this convention here to ease the interpretation of the bias term.

Direct local modeling of the density f (z) can be obtained by choosing the transformation function
Tp, (x) as an improper uniform distribution. Without loss of generality set Tyo (z) to z. Then the
only source of bias reduction is provided by the local model ¢ (z, ) which becomes a local model
for f. The bias is 202 [f@(z) — ¢ (2,69 (z))] as in H&J. If on top of that the local model for ¢
is chosen as a constant, the standard kernel density emerges with a leading bias term given by

SoRhf (). )

The standard transformation based kernel density estimator of Wand et al. (1991) emerges from
choosing the weighting function and the local model both as a constant. From Equations (2) and

(3) it follows that the estimator is

fr(@) = st Z’Ch 0 (X0 = Ty, ()T (). (6)

From (4), the bias is (1/2) 0,%h2T(§1) (z)r? (T (x)), which is the bias of the standard transformation

kernel density estimator. Assuming that K has support [—1,1], the term in the denominator of
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Equation (6) integrates to one if u lies in the interior, meaning that both, u/h and (1 — u) /b — k > 1.
However, close to the boundaries where 0 < k < 1, this integral term normalizes the density estimate
and therefore adjusts for the undesirable weight allocation of the symmetric kernel outside the support
of the density. This adjustment is not optimal and boundary bias is still of the undesirable order
O (h). Like in nonparametric regression, see e.g. Fan and Gijbels (1992), one of the possible boundary
bias correction methods which achieves an O (h?) order is the popular local linear estimator, see Jones
(1993) for the density case. To obtain a local linear transformation density estimator, we propose
to choose the local model at point u as ¢ (t, 02 (1)) = 021 + 02 (t — u) and the weight functions as 1
and (t — u). The resulting estimator is equivalent to the standard transformation density estimator
in the interior of the density. Close to the boundaries it provides however again a correction against
weight allocation of the symmetric kernel to areas outside the support of the transformed data. The

local linear transformation density estimator is

8 (T, @) = [on (T, (@).1) faa (T, () . 1)] 4 (@)
(a0 (75, (@), h) = a1 (T;, (@), 0)" Jaz (T;, (2) . h))

(7)

where ¢/ (z) is the sample average of K, (T, (X;) — Ty, (x)) (T, (Xi) — Ty, (x))] and
- pmin{1,(1-u)/h} ‘
aj(u,h) = h]/ K(v)v! dv.
max{—1,—u/h}

After presenting the LTBC framework for symmetric kernels, we now turn to an asymmetric
kernel version of this above approach. Since the support of these kernels matches the support of
the density under consideration, no boundary correction of the type presented above is necessary by
construction. We first briefly review the beta kernel density estimator for densities defined on the

unit interval introduced by Chen (1999). In Section 4 we will treat the LTBC case.

3 The beta kernel density estimator

The consistency of the standard symmetric kernel estimator (see e.g. Silverman (1986), Haerdle and
Linton (1994) or Pagan and Ullah (1999) for an introduction) is well documented when the support of
the underlying density is unbounded, i.e. when data live on (—o0, +00). As we have already argued,

this symmetric estimator is however no more appropriate in the case the density to be estimated
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has bounded support as it is the case for our transformed data located in [0, 1] with density r. The
symmetric kernel has a boundary bias since it assigns non zero probability outside the support of
the distribution when smoothing is carried out near a boundary.

Recently, Chen (1999) has proposed a beta kernel density estimator for densities defined on [0, 1].
This estimator is based on the asymmetric beta kernel which exhibits two special appealing properties:
a flexible form and a location on the unit interval. The kernel shape is allowed to vary according to
the data points, thus changing the degree of smoothing in a natural way, and its support matches
the support of the probability density function to be estimated. This leads to a larger effective
sample size used in the density estimation and usually produces density estimates that have smaller
finite-sample variances than other nonparametric estimators. The beta kernel density estimator is
simple to implement, free of boundary bias, always non negative, and achieves the optimal rate of
convergence (n~%/°) for the mean integrated squared error (MISE) within the class of nonnegative
kernel density estimators (see Chen (1999) for details). Furthermore, even if the true density is
infinite at a boundary, the beta kernel estimator remains consistent (Bouezmarni and Rolin (2004)).
This property of the beta kernel density estimator is especially important for the estimation of our
transformed loss data: As we have argued earlier on, the density of our transformed loss data is
unbounded at the right boundary in case the tail of the used parametric model is lighter than the
true one. Similar asymmetric kernel estimators for densities defined on [0, +00) have been studied in
Chen (2000), Scaillet (2004), and Bouezmarni and Scaillet (2005). These estimators share the same
valuable properties as those of the beta kernel estimator used in this paper.

The beta kernel estimator of the unknown density r at point u is formally defined as
) = L3 K Wub) ®)
r\u)=— is Uy )
Lt

where the asymmetric kernel K(.) is the beta probability density function:

1
(u/b+1,(1 —u)/b+1)
with B(.) denoting the beta function and b being a smoothing parameter, called the bandwidth, such

K (tu,b) = & t/h(1 =)A=y e )0, 1],

that b — 0 as n — oco. Chen (1999) shows that the bias and variance of the beta kernel estimator



are given by

Bias (7 (u)) = |(1—2u)r® (u) + %u (1—u)r® (u)|b+o(D), 9)
Var (7 (1) #ﬁ (r(u) + 0O (n71)) if u/b and (1 —u) /b — oo,
%n_llfl (r(u)+0 (1) ifu/bor (1—u)/b— k,

where I" denotes the gamma function. We note that compared to symmetric kernel density estimators,
the bias of the beta kernel density estimator contains the first derivative of r. This may be a
problem if r exhibits a substantial slope as in the case of unboundedness at the boundaries. Also
the variance is of higher order in the boundary than in the interior. Chen (1999) shows that this
has no asymptotic impact on the mean integrated squared error. It is, however, still a caveat of this
sort of smoothing. Chen (1999) also proposes an adjustment of beta kernel density estimator which
has the first derivative removed in the bias expression in the interior. However, the first derivative
term is still present in the boundaries. Based on the local likelihood framework, we will introduce a
version of the beta kernel density estimator whose bias expression is free of the first derivative over
the whole support. This seems important since our transformed data may have large mass close to

the right boundary as mentioned earlier on.

4 The asymmetric LTBC estimator

Apart from being an attractive semiparametric bias reduction framework, LTBC allows us to imple-
ment a popular boundary bias reduction by choosing a local linear model to estimate the density of
the transformed data. This boundary bias reduction, which is necessary for symmetric kernels, is
not required per se in the asymmetric beta kernel framework. This because the beta kernel allocates
no weight outside the support of the unknown density. The effect of LTBC in an asymmetric beta
kernel framework is just to reduce the potentially larger bias for asymmetric kernel techniques.

To obtain an asymmetric version of the LTBC estimator, we just replace in Equation (2) which
defines the local likelihood estimator the symmetric kernel K by the asymmetric beta kernel K:

Choose 0 (1), i.e., 05, such that
1< A -
-~y K (U i, b) w(it, Uy, 0y) — /K (t, 4, b) v(it, t, 02) (, 02) dt = 0. (10)
=1
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The asymmetric LTBC density estimator is then defined as

far (@) =10 @) 6 (T3, ()0 (T, (2))) (11)

Following similar derivation steps as in Hagmann and Scaillet (2007) (H&S) adapted to the asym-
metric beta kernel, it is straightforward to develop the bias of this estimator if #5 is one dimensional
(¢ = 1). We assume again here that the weighting function in this one dimensional local model case
is just a constant over the support of u. In general, the bias term again depends on the weighting
function, and a lengthy formula can be obtained along the lines of H&J. Using u® = Tho (x) to shorten

notation we have that

) — 9u0) () (1) — pV) (40, 69 (10
Bias(fAT(x)>:1T0(01)(m) (1 —2u) (r™ (u®) — ¢ (u°, 63 (u°))) +

b. (12)
20T - ) (0 () - 2 (0,63 ()

Note that an asymmetric version of the standard transformation based kernel density estimator is ob-
tained by choosing the local model for the correction density and the weighting function vgo (TQ? (m))

as a constant. From Equations (10) and (11) it follows that this estimator takes the very simple form
. 1 <&
far () = = 37K (T3, (X)), Ty, (2),0) T, ).
t=1

Unlike in the symmetric kernel case, no boundary correction terms are necessary. This is because
the support of the beta kernel matches the support of the transformed data. Interesting from our
perspective is now that the first derivative terms in (12) vanish over the full support as soon as the

number of locally fitted parameters is two or larger, we refer to H&S and H&J for more details.

Proposition 1. The bias of the asymmetric local transformation bias corrected kernel density esti-

mator for ¢ > 2 is given by
. 2 1
Bias (fAT (x)) = §T9(§) (z)u’ (1 —u”) [T(2) (u°) — 2 (u°,65 (u”))] b+o(b). (13)
This result holds true over the whole support. The variance is

Var (e () = ey T (@) F @)+ O | if u?/b and (1) fb— oo,
far () i1
Rl {1 (@) 1 (@) + O ()} if /b or (1=u) /b — k.

2142612 (k+1) 09
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There are several worthwhile remarks. First, we obtain the same result as in the symmetric
kernel case albeit the underlying proof techniques are quite different in the asymmetric kernel case.
The proof follows closely the steps in H&S, and rely on the expansions in Chen (1999) (instead
of Chen (2000)) for beta kernel estimators (instead of gamma kernel estimators) based on second
order continuous differentiability of the density function. Therefore the proof is omitted. Second,
comparing (13) to (9), the first derivative term vanished and the second derivative r® (u°) in the
bias expression has been replaced by r® (u°) — ¢® (u°, 09 (u°)). So using a local model with more
than one parameter performs better than using a simple local constant model if the latter expression
is smaller than the former in absolute values. This is the case if the unknown correction density
exhibits high local curvature which is the case if the initial transformation Ty, () has not been close
enough to the true distribution function. If the transformation were correct, the LTBC estimator
is unbiased up to the order considered. In that case its Mean Squared error (MSE) is subtantially
reduced w.r.t. a pure beta kernel estimator since their variances coincide.

Several local models for the correction density r are possible candidates. We propose here to
use the local log linear model as the main competitor to the local constant model. This local two-
parameter model ensures that the bias of the asymmetric LTBC estimator depends only on the
second derivative. Furthermore, the curvature of this local model allows us to diminish the size of
r2) even further as discussed above. A last advantage of this estimator is that unlike the local linear

estimator, it always yields positive density estimates.

Example 1. The popular local log linear density model at point u is ¢(t, 0 (u)) = Oa1 exp (02 (t — u)).
As weight functions we use the vector [1 (t — u)|, which coincides with the score of the local likelihood
function. In the Appendix we show that this amounts solving the following system of nonlinear

equations for 0o :

fb(U> = B exp (—922U) Y (022)
Gp(u) = 0Oy exp (—0Oxu) [w(l) (022) — w1 (922)} )

where 1 (+) is the moment generating function of the beta probability law. Unfortunately, this has no
simple closed form solution and some numerical approximations outlined in the Appendix have to be

used (MATLAB or R code which allows simple computation of this estimator can be requested from

12



the authors).

We finish this section by comparing the LTBC approach to the Local Multiplicative Bias Cor-
rection (LMBC) semiparametric density estimation framework as presented in H&S. Using the same

notation as above, these authors consider the local model
m (2,601,602 () = T, (2) - ¢ (.6 ()

where 6; is estimated in a first step as well globally by maximum likelihood. Then the local likelihood

framework is used to choose 6 (), i.e., f5, such that
1 n
=N K (X ,0) v(z, X, 05) — /K (t,,b) v(w, t,6) T30 (1) 7 (¢,05) dt = 0 (14)
n
i=1

holds, where K (Xj,z,b) denotes here an asymmetric kernel with support on [0, 00) as for example

Chen’s gamma kernel. This yields the LMBC estimator frypc (x) = Té(ll) () ¢ (z,6 (z)). Concen-

trating on the interior region where x/b — oo, H&S report bias and variance for the gamma kernel

based LMBC estimator for ¢ > 2 as

Bias ( Frvne (x)) _ %Te(gl) (2) [7«(@ (2) — 0@ (.03 (@)} wb+o(b), (15)

n—1p=1/2
v b

Comparing Equations (13) and (15) shows that the bias terms of both semiparametric estimation

Var (fLMBC (x)) = 2 (z)+0 (nh)}. (16)

frameworks are very similar: Apart from kernel specific terms, both expressions depend (i) on the
global parametric start, and (ii) on the curvature of the correction factor and its distance from the
curvature of the local parametric model. The main but small difference is that the correction factor
and local model terms are defined on the original z— axis for LMBC, but on the transformed axis for
LTBC. Although the variance terms are different, they share a common interpretation. For LTBC the
Te(g} ) term in Proposition 1 reflects the fact that the transformation induces the choice of an implicit
location dependent bandwidth b* (z) = b/ <T 6((1})(:1:)>2. We note that for the standard beta kernel
density estimator this term is not present in the variance expression. Also note that in the context
of estimating long tailed densities on [0, c0), Te(g)l ) will approach zero as = gets large enough, implying

that a larger effective bandwidth is chosen when smoothing in the tail region. This is similar to the
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LMBC case where the varying shape of the gamma kernel induces an effective bandwidth of b* = bx
which therefore also grows as = gets larger. In summary, from a theoretical perspective we expect
both approaches to perform very similarly.

From an implementation perspective we note that Equations (10) and (14) indicate that the
local likelihood criterion in the LMBC framework differs from the LTBC criterion in two respects:
(1) integration takes place over the original z-scale, and (ii) the LMBC criterion involves the global
parametric start as an integration term. This implies that for LMBC, the computational implemen-
tation of the local likelihood step varies with the chosen parametric start. This maybe considered
as a disadvantage compared to LTBC where the local likelihood step is independent of the chosen
parametric start. On the other hand, it has to be mentioned that whereas LTBC always has to rely
on (although the same) numerical approximation procedures, H&S show that the LMBC framework
allows us to develop simple closed form solutions for certain kernel and parametric start combina-
tions. A further advantage is that in the LTBC framework the correction factor is not defined as a
ratio as this is the case for LMBC (equal to f/ Te((l} )). Some clipping maybe therefore necessary in the
latter approach if the denominator gets too small in rare cases, we refer to Hjort and Glad (1995)

for more details.

5 The generalized Champernowne distribution

We choose the generalized Champernowne distribution as a flexible parametric start for our semipara-
metric density estimation framework. Flexibility is especially important here since we lack economic
guidance to favor one loss parametric model over another one. The generalized Champernowne dis-
tribution can take a large range of shapes relevant to fit the empirical features of loss data. As
evaluated in a study by Gustafsson and Thuring (2006), the generalized Champernowne distribution
is preferable to other common choices to model loss data such as the Pareto, Weibull, and lognormal
distribution and is therefore especially useful for our empirical study. We use the three parameter

generalized Champernowne distribution as defined in Buch-Larsen et al. (2005):
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Definition 1. The generalized Champernowne cdf is defined for y > 0 and has the form

(y+c)* =
Fore = ) R
M, (y) (y + C)a n (M + C)O‘ — 9 vy S

with parameter o > 0, M > 0 and ¢ > 0. Its density is

_aly ot (M 4o =)
Joarely) = ((y + ) + (M +c)> — 2c)? e Ry

For ¢ = 0 this parametric distribution function is a special case of the one suggested by Cham-
pernowne (1936, 1952). The standard Champernowne distribution has also been used by Clements
et al. (2003) in their approach to transformed density estimation. In this paper, we prefer using the
generalized version as a parametric start for our semiparametric density estimator. The extensive
simulation study carried out by Buch-Larsen et al. (2005) shows that the flexibility of the generalized
Champernowne distribution is worthwhile. It outweighs stability advantages in estimating the cdf
when the parameter ¢ is simply set to zero. This parameter increases greatly shape flexibility at
the zero boundary. We refer to Buch-Larsen et al. (2005) for a comprehensive description of the
flexibility of this distribution. Estimation of the parameter («, M, ¢) is obtained by maximizing the

log-likelihood function

l(a,M,c) = n(log(a)+log((M+c)a—co‘))—i-(oz—1)Zlog(Yé+c)—

i=1

Qilog((Y} + )" + (M +¢)* —2¢).

i=1
Following Buch-Larsen et al. (2005), we first replace M by the empirical median estimate M and
then choose the parameters («, ¢) by maximizing [(a, M, ¢). This procedure is not fully efficient, but
simplifies the estimation procedure considerably. It is motivated by the fact that F, p.(M) = 0.5.
Also Lehmann (1991) pointed out that the median is a robust estimator especially for heavy tailed
distributions.

The next chapter examines the properties of the LTBC estimator using the generalized Cham-

pernowne distribution as a parametric start in small and moderate samples.
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6 Monte Carlo study

In this section we evaluate the finite sample performance of the semiparametric transformation
based estimators considered in the previous sections. We present the different test densities on which
the Monte Carlo study is carried out and remind the reader of the semiparametric estimators we
compare in this paper. After presenting various statistical performance measures, we discuss the
obtained results. Our design of Monte Carlo study is identical to the design of Buch-Larsen et al.
(2005) that concluded that the transformation approach based on the generalized Champernowne
distribution outperforms the recent advances in transfomation based loss estimation, Bolance, Guillen
and Nielsen (2003) and Clements, Hurn and Lindsay (2003) as well as the classical transformation
approach of Wand, Ruppert and Marron (1991). Therefore, when we conclude below that our new
transformation estimators outperform the estimator of Buch-Larsen et al. (2005), this implies that
our new transformation estimators also outperform the estimators of Wand, Ruppert and Marron
(1991), Bolance, Guillen and Nielsen (2003) and Clement, Hurn and Lindsay (2003) for actuarial loss

distributions.

6.1 Considered estimators and test densities

All semiparametric density estimators considered in this Monte Carlo study use the generalized
Champernowne distribution function as their parametric start. The estimators are different however
in modeling the correction function. We consider the following estimators for the density of the

transformed data defined earlier as:

the symmetric kernel based standard local constant kernel estimator (LC) as provided in (6),

the symmetric kernel based local linear estimator (LL) as given in (7),

the local constant beta kernel density estimator (LCB) as provided in (8),

the local log linear beta kernel estimator (LLLB) as defined in (11).

The Epanechnikov kernel is used throughout for estimators involving symmetric kernels. Fur-

thermore, we also consider the generalized Champernowne distribution (CH) as a purely parametric
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competitor to the above semiparametric estimators. We compare the listed estimators on different

test densities as summarized below:

1. Weibull, f([[) = fyx(')’*l)e*flﬂ’ v = 1.5

2. Normal, flz) == ez (% )2, (u,0) = (5,1)

4. Truncated Logistic, flz)=2es (1+ e%)2 : s=1
og(xz)—p 2
5. Lognormal, flz) = wl%e_%(l ) , (p,0) = (0,0.5)

6. Lognormal and Pareto with mixing probability p,

(0.7,0,1,1,1,—1) or

(0.3,0,1,1,1, 1)
These six test distributions can be categorized as light (1-4)-, medium (5)- and heavy tailed (6).

log (@) —p \ 2

_1(log(z)=p —
f(w) = e s () LB (0,0, p,0) =

ToV 2T

They are the same as the ones used by Buch-Larsen et al. (2005). For the heavy tail distribution,
we utilize two different weights in the mixture to vary the amount of heavy tailness.

We treat the simple local constant estimator using the Epanechnikov kernel as our benchmark
in what follows. More complicated estimators should outperform this benchmark such that their

practical application is worthwhile.

6.2 Design of the Monte Carlo study

The performance measures we consider are the integrated absolute and squared error (IAD and ISE
respectively). These performance statistics measure the error between the true and the estimated
density with equal weight across the support of the density. To be able to focus on the fit in the
tails we also consider the weighted integrated squared error (WISE) of the various estimators. Before

presenting these measures, we apply the same substitution rule as in Clements, Hurn and Lindsay

l’_
2003 ly y =
(2003), nasnely y = *—

M
iR where M denotes the median. The error calculation is then restricted
to the interval [—1, 1] and therefore avoids integration to infinity. Denoting the true test density by

f () and its estimate by f (), we can write the statistical performance measures as
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IAD:/
0

) (Rl

) 1—y =g

BBE = f(f(w)—f(x)fdx 1/2:
QM/:(ly)2 (f(Ml(%t;y)) _f(Ml(%;y)))zdy 1/2

1/2

WISE = 7(f(x)—f(m))2x2dx _

i [0 (5 (M50) - (H22)) o

The experiments are based on 2,000 random samples of length n = 50, n = 100, n = 500 and

1/2

n = 1,000. Concerning the choice of bandwidth, we consider in this Monte Carlo study a very
simple bandwidth selection procedure which is often used in practice: the Silverman (1986) rule of
thumb, also termed as a normal scaled bandwidth. This simple rule assumes that the transformed
data are normally distributed. This quick rule is known to give nice results in practice when data
are symmetric and unimodal (cf. Section 3 of Wand and Jones (1995)). In our case it is a good
candidate when the parametric model is not correct, but close too. If the parametric model is correct
the transformed data should be uniformly distributed. In principle we could exploit this feature
to select the bandwidth. However since the second derivative of the density of a uniform is nil,
the bandwidth minimizing the asymptotic MISE is not defined since it would be infinite. Using an
Epanechnikov kernel, it can be shown by straightforward algebra (see e.g. Gustafsson et al. (2006))

40 1/5
that the normal scaled bandwidth is given by h = <—ﬁ) 0, where ¢ is the empirical standard
n
deviation. For estimators involving the asymmetric beta kernel we follow Renault and Scaillet (2004)

and take b = 6n~2/5. We note that these bandwidths procedures are fairly simple and reported results
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concerning the performance of our estimators can therefore be considered as being conservative.

6.3 Monte Carlo results

Table I reports average obtained statistical performance measures and their standard deviations
across all test densities. Careful analysis of this table reveals a simple summary result: The asymet-
ric kernel based and locally guided LLLB estimator is the only estimator which consistently adds
value over the symmetric kernel based LC benchmark across all test densities, statistical perfor-
mance measures and considered sample sizes. The LLLB estimator never performs worse than the
benchmark, but adds in most cases substantial value. In the heavy tailed test density with mixing
parameter p = 0.3, the WISE is reduced by 15-31% for the WISE depending on sample size, whereas
the ISE is even reduced up to 48%.

Although Chen’s (1999) estimator does sometimes slightly outperform its locally guided version
LLLB, its performance is overall worse than the one of the LLLB estimator since it can substantially
underperform the provided benchmark. So overall, our proposed local log linear beta kernel density
estimator adds value over its simple LCB version. Finally, the local linear estimator shows a rather
unattractive performance. In cases where this estimator beats the LC benchmark, the advantage is
typically small. However, the underperformance can be rather severe as the simulation results for
the heavy tailed test densities show. In this case the considered statistical performance measures
are up to 20% worse than those of the simple benchmark. Finally we note that our favourite LLLB

estimator outperforms the CH estimator across all test densities and considered sample sizes.

*** Table 1 about here***

7 Application to operational loss data

In this section we demonstrate the practical relevance of the above presented estimation methods by
applying them on operational risk modelling using publicly reported external loss data. The SAS®
OpRisk Global dataset consists of loss events collected mainly from large financial institutes, scaled
such that it fits an insurance company’s exposure to operational risk. Using an external database is a

natural step when internal data suffers from (i) a limited collection period, (ii) incomplete coverage of
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all relevant event risk categories (ERC), or (iii) the company risk experts have reason to believe that
one or more internal business lines have not been exposed to large losses (their empirical distribution
gives an incomplete assessment of the risk involved). Furthermore, regulators suggest in the Advanced
Measurement Approach (AMA) that external data sources should complement company internal
data sources to calculate an adequate capital requirement, see International Convergence of Capital

Measurement and Capital Standard, Basel Committee on Banking Supervision for details.

7.1 The dataset

The scaled dataset delivers information on 1379 loss events in excess of US$ 1 million, splitted
into four main event risk categories; 1. Fraud, 2. Employment Practices and Workplace Safety, 3.
Business Disruption and System Failures, and 4. Execution, Delivery & Process Management. Table

2 reports summary statistics (reported in million US dollars) for each risk group.

Number of Maximum Sample Sample Standard Time
Losses Loss Mean Median Deviation Horizon
(n;) (US$M) (US$M) (US$M) (US$M) (m;)
ERC.1 538 1703 29.12 4 130.3 9
ERC.2 721 415 14.67 3.7 37.5 8
ERC.3 45 220 42.01 11 62.2 6
ERCA4 75 195.6 13.82 291 33.1 3
TABLE 2: Statistics for the external reported operational risk exposure

Event Risk categories 3 & 4 have very few reported losses which is partly due to the fact that
these categories have been collected over a shorter time period only (3 to 6 years). The loss distri-
butions in all categories exhibit clear right skewed features as the mean loss is much higher than
the corresponding median loss in each risk group. Event Risk Category 1 (Fraud) reports the most
significant single loss. Not surprisingly, this category also reports the highest standard deviation
of reported losses. To gain further information on the considered dataset, Figure 1 offers a visual

inspection of the loss arrival for each event risk category over time.
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4% Figure 1 about here ***

7.2 Severity distribution across risk categories

Estimation of the severity distributions across the four presented risk categories (or business lines from
an insurer perspective) proceeds as described in the previous Sections. In a first step we estimate for
each risk category the parameters of the generalized Champernowne distribution and in parentheses
its bootstrap approximated standard errors with 10.000 iterations, which are summarized in Table 3.
We remind the reader that in our robust estimation approach M is just estimated by the empirical

sample median.

ERC.1 ERC.2 ERC.3 ERC.4

&; | 1.08 (0.088) 1.33 (0.045) 0.80 (0.182) 1.09 (0.176)
M; | 4.00 (0.165) 3.70 (0.113) 11.00 (3.230) 2.91 (0.406)
& | 0(1.104) 0 (0) 0 (4.463) 0 (0.995)

TABLE 3: Estimated parameters and

standard errors for each ERC.

It is worth being noted that the scaling parameter c is estimated to be zero in all four risk groups.
This implies that for our data the original version of the generalized Champernowne distribution
provides the best empirical fit.

Having estimated the parameters for our parametric start model we proceed by transforming
the data into [0, 1] and estimate the correction factor within each risk group. We do this using all
the estimators analyzed in our simulation study to examine their differences on a concrete empirical
dataset. Figure 2 plots the different correction factors which are all located around one, indicating
that the used parametric model provides a reasonable first fit to the loss data under consideration.
When the correction factor is estimated to be below (above) one at point z, then this implies that
the generalized Champernowne density does not provide an adequate fit of the data at this point
and the final density estimate will take smaller (larger) values at this point. An apparent feature

of the estimated correction factors in Figure 2 is that the estimators (6) and (7) produce similar
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results. The asymmetric beta kernel based estimators (8) and (11) are similar in the interior, but

(11) exhibits higher curvature in the boundary domain.
R Figure 2 about here ***

Figure 3 shows the final semiparametric density estimates for the four risk categories in compar-
ison to their fitted Champernowne distribution. These estimates are obtained by multiplying the

parametric start by the estimated correction factors as described in Formula (3).

% Figure 3 about here ***

7.3 The total loss distribution

In this section we perform a Monte-Carlo simulation to obtain the total (or aggregated) operational
risk loss distribution based on the four risk event categories. We again provide a comparison across
the four different severity distribution estimators considered in the previous section to highlight their
empirical differences. To be able to compute the total loss distribution, we need a model for loss
arrivals. We assume that loss arrivals can be described by a discrete stochastic process in continuous
time, commonly used to model the arrival of operational risk events. We denote by N;(t) the random
number of observed losses in risk category ¢ over a fixed time period (0, t], with N;(0) = 0. We assume
that we have i independent homogenous Poisson processes denoted as N;(t) € Po(\;t), where \; > 0
is the intensity parameter in the i" risk category. The maximum likelihood estimator of the annual
intensity of losses is i = N, /n;, where 7); is the observed number of losses in risk group 4 (or business
line) as reported in Table 2. We proceed as follows to simulate the total loss distribution across all

categories:

e Conditional on N; = n; Vi, we simulate our poisson process of events that occur over a one year

horizon through all lines of operational risk. The simulated annual frequencies are denoted by

~

Air, with 2 =1,...,4 and r = 1, ..., R, where we choose R = 20.000.

e Then for each {i,r} we draw randomly ;\Z-T samples from a uniform distribution, i.e
Uirk € U(O,].), k= ]-a'~'7/\i7"
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e These random number are then used to compute R simulated total annual losses across all

categories, using the formula

Sp=>

i=1 k=1

T
A

7 () forr=1,.. R,

where F(-) is the inverse cumulative loss distribution function for risk group i as defined by

our presented semiparametric estimation framework through
P (z) = / T (@)6(T;, (2), Bai(Ty, () d.

We perform this process for all four considered semiparametric severity distribution estimators.
Figure 4 shows that there are significant differences in the exposure between estimators. Clearly,

both the models including correction function (11) and (8) present a heavier tail than the others.
K Figure 4 about here ***

Table 4 collects summary statistics for the simulated total loss distribution across all models
as listed in Section 6.1. Among the usual summary statistics we also report the extreme quantiles
at level 0.95 and 0.995, which we denote as Value-at-Risk (VaR) measures following the naming
practice pursued by regulators and the banking industry. For comparison purposes, we also computed
results for three parametric benchmark distributions, namely the lognormal-, Pareto- and generalized
Champernowne distribution (LN, PA, CH respectively). The two former models whose parametric
definitions are reported in Section 6 were chosen as they are widely used in the insurance industry
when calculating capital requirement and reserves, the latter because it presents our parametric
start model for the severity distributions. Parameter estimates were obtained in all three cases by

maximum likelihood.
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Maximum Sample Sample Standard VaR VaR
Model
Loss Mean Median Deviation 95% 99.5%
Assumption

(USSM) (US$M) (USSM) (USSM) (USSM) (US$M)

LC 8168 2813 2728 708 4093 5087

LL 7652 2864 2771 751 4212 9253
LCB 12840 4272 4108 1228 6502 8393
LLLB 12160 3562 3414 1078 5527 7065
CH 6973 2442 2367 604 3535 4372

LN 5041 2490 2453 450 3281 3836

PA 12010 8479 8458 816 9856 10747

TABLE 4: Statistics for the total loss distribution obtained by 7 different model assumptions.

All models have in common to produce a right skewed total loss distribution as the sample mean
is larger than the sample median. Comparing the median and the two VaR measures for the to-
tal loss distribution as derived from the purely parametric PA and LN models produces interesting
insights. The Pareto model predicts clearly much higher extreme losses than the lognormal model,
but at the same time produces a median of the distribution which appears very large in comparison
to inferences drawn from all other model solutions. On the other hand, the parametric LN model
predicts the lowest losses of all considered model alternatives. Although a firm conclusion can not be
drawn as the true model generating the data is unknown, this empirical evidence is in line with the
fact that actuaries consider the lognormal model to provide a good fit for small losses, but favour the
Pareto model to draw inferences in the tail of the loss distribution. The generalized Champernowne
model seems in our empirical application to combine the advantages of those two popular models
and predicts slightly higher extreme losses than the lognormal model, but a similar median total
loss. It is this nice feature of the generalized Champernowne model which makes it very attractive
as a parametric start for our semiparametric estimators. We note that all semiparametric models
indicate higher extreme losses than those predicted by the generalized Champernowne model. This
is especially true for the asymmetric kernel based estimators which performed well in our simula-

tion study. These results clearly highlight the advantages of our semiparametric risk measurement
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approach compared to a pure parametric one which might lead to misleading risk measurement.

8 Conclusion

In this paper we have considered semiparametric estimators based on symmetric and asymmetric
kernels for the estimation of densities on the nonnegative real line. This framework allows us to use a
flexible parametric start given by the generalized Champernowne distribution, which is then corrected
in a nonparametric fashion. To improve the efficiency of this estimator even further, a local guidance
in terms of a local log linear model was proposed, which in connection with the asymmetric beta
kernel yielded attractive performance in our vast simulation study. The attractiveness of the results
more than justify the slight numerical burden exhibited by this asymmetric local log linear estimator.
The approach should therefore be useful in applied work in economics, finance and actuarial science
involving non- and semiparametric techniques. This point has already been demonstrated with an

empirical application to operational loss data.
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10 Appendix

In this appendix we briefly discuss the derivation of the log linear version of the asymmetric LTBC

estimator and its computation. We use the local model ¢(t,6; (u)) = 6a1 exp (f22 (t —u)). From
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Equation (10) we have to solve

1 — 1 1 1
—> K (Ui,u,b) —921/ K (t,u,b) exp (0 (t — u)) dt
ne= U —u 0 t—u
which amounts to solve the equations
folw) = 61 exp (—0xpu) ¥ (622) , (17)
go(u) = oy exp (—Oau) [V (622) — 29 (622)] (18)

where 1 (63) is the moment generating function (m.g.f.) of the beta distribution. Note that we need

to solve
an(x) [N (022) — 1) (020)]
A o

for fy5. The beta m.g.f is

r=0

= a+r '\ 605
coa =13 (555 )

This expression and its first derivative can be rewritten as

D(a+6)e= D(k+a) 6k
T () Zr(k+a+ﬁ)ﬂ’

b Tt B) s T(hta) 6
o (B) = T () Zr(k+a+ﬁ)(k—1)!'

k=1

P (b)) = 1+

To compute the local log linear estimator, we numerically solve (19) for 6,5 by approximating the
above sum expressions by the first J terms. The estimate 01 can then be found from (17) to get the

log linear version of the asymmetric LTBC estimator.
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FIGURE 1: Operational risk losses for each event risk category over the collection period.
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density by four different nonparametric correction factor estimates.
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