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Abstract

We develop inferential tools for latent factor analysis in short panels. The pseudo maximum likelihood

setting under a large cross-sectional dimension n and a fixed time series dimension T relies on a diagonal

T×T covariance matrix of the errors without imposing sphericity or Gaussianity. We outline the asymptotic

distributions of the latent factor and error covariance estimates as well as of an asymptotically uniformly

most powerful invariant (AUMPI) test based on the likelihood ratio statistic for tests of the number of factors.

We derive the AUMPI characterization from inequalities ensuring the monotone likelihood ratio property for

positive definite quadratic forms in normal variables. An empirical application to a large panel of monthly

U.S. stock returns separates date after date systematic and idiosyncratic risks in short subperiods of bear vs.

bull market based on the selected number of factors. We observe an uptrend in idiosyncratic volatility while

the systematic risk explains a large part of the cross-sectional total variance in bear markets but is not driven

by a single factor. Rank tests reveal that observed factors struggle spanning latent factors with a discrepancy

between the dimensions of the two factor spaces decreasing over time.
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1 Introduction

Latent variable models have been used for a long time in econometrics (Aigner et al. (1984)).

Here, we study large cross-sectional latent factor models with small time dimension. Two com-

mon methods for estimation of latent factor spaces are principal component analysis (PCA) and

factor analysis (FA), see Anderson (2003) Chapters 11 and 14. They cover multiple applications in

finance and economics as well as in social sciences in general. They are often used in exploratory

analysis of data. In recent work, Fortin, Gagliardini and Scaillet (FGS, 2022) show how we can

use PCA to conduct inference on the number of factors in such models without making Gaussian

assumptions. Their methodology relies on sphericity of the idiosyncratic variances since this re-

striction is both necessary and sufficient for consistency of latent factor estimates with small T

(Theorem 4 of Bai (2003)). In PCA, sphericity allows to identify the number k of factors from

the k first eigenvalue spacings being larger than zero, and being zero the subsequent ones. On

the contrary, the FA strategy does not exploit eigenvalue spacings and does not require spheric-

ity. However, inference with small T up to now mostly relies on (often restrictive) assumptions

such as Gaussian variables (with a notable exception by Anderson and Amemiya (1988)) and error

homoschedasticity across sample units. Those are untenable assumptions in our application with

stock returns.

A central and practical issue in applied work with latent factors is to determine the number of

factors. For models with unobservable (latent) factors only, Connor and Korajczyk (1993) are the

first to develop a test for the number of factors for large balanced panels of individual stock returns

in time-invariant models under covariance stationarity and homoskedasticity. Unobservable factors

are estimated by the method of asymptotic principal components developed by Connor and Kora-

jczyk (1986) (see also Stock and Watson (2002)). For heteroskedastic settings, the recent literature

on large balanced panels with static factors has extended the toolkit available to researchers. A

first strand of that literature focuses on consistent estimation procedures for the number of factors.

Bai and Ng (2002) introduce a penalized least-squares strategy to estimate the number of factors,
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at least one. Ando and Bai (2015) extend that approach when explanatory variables are present in

the linear specification (see Bai (2009) for homogeneous regression coefficients). Onatski (2010)

looks at the behavior of differences in adjacent eigenvalues to determine the number of factors

when n and T are both large and comparable. Ahn and Horenstein (2013) opt for a similar strat-

egy based on eigenvalue ratios. Caner and Han (2014) propose an estimator with a group bridge

penalization to determine the number of unobservable factors. Based on the framework of Gagliar-

dini, Ossola and Scaillet (2016), Gagliardini, Ossola and Scaillet (2019) build a simple diagnostic

criterion for approximate factor structure in large panel datasets. Given observable factors, the

criterion checks whether the errors are weakly cross-sectionally correlated, or share one or more

unobservable common factors (interactive effects), and selects their number; see Gagliardini, Os-

sola and Scaillet (2020) for a survey of estimation of large dimensional conditional factor models

in finance. A second strand of that literature develops inference procedures for hypotheses on the

number of latent factors. Onatski (2009) deploys a characterization of the largest eigenvalues of a

Wishart-distributed covariance matrix with large dimensions in terms of the Tracy-Widom Law. To

get a Wishart distribution, Onatski (2009) assumes either Gaussian errors, or T much larger than n.

Kapetanios (2010) uses subsampling to estimate the limit distribution of the adjacent eigenvalues.

This paper puts forward methodological and empirical contributions that complement the above

literature. (i) On the methodological side, we extend the inferential tools of FA to non-Gaussian

and non-i.i.d. settings. First, we characterize the asymptotic distribution of FA estimators obtained

under a pseudo maximum likelihood approach where the time-series dimension is held fixed while

the cross-sectional dimension diverges. Hence, the asymptotic analysis targets short panels, and

allows for cross-sectionally heteroschedastic and weakly dependent errors. Cochrane (2005, p.

226) argues in favour of the development of appropriate large-n small-T tools for evaluating asset

pricing models, a problem only partially addressed in finance. In a short panel setting, Zaffa-

roni (2019) considers inference for latent factors in conditional linear asset pricing models under

sphericity based on PCA, including estimation of the number of factors. 1 The small T setting

1Raponi, Robotti and Zaffaroni (2020) develop tests of beta-pricing models and a two-pass methodology to estimate
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mitigates concerns for panel unbalancedness and corresponds to a locally time-invariant factor

structure accommodating globally time-dependent features of general forms. It is also appealing

to macroeconomic data observed quarterly. For the sake of space, we put part of the theory, namely

inference for FA estimates, in the Online Appendix (OA). We refer to Bai and Li (2016) for in-

ference when n and T are both large (see Bai and Li (2012) for the cross-sectional independent

case). Second, we use our new theoretical results for FA to develop testing procedures for the

number of latent factors in a short panel which rely neither on sphericity nor Gaussianity, thereby

extending tests based on eigenvalues, as in Onatski (2009), to small T , and as in FGS, to non-

spherical errors, thanks to an FA device. We derive the Asymptotically Uniformly Most Powerful

Invariant (AUMPI) property of the FA likelihood ratio (LR) test statistic in the non-Gaussian case

under inequality restrictions on the DGP parameters, and cover inference with weak factors. The

AUMPI property is rare and sought-after in testing procedures (see Engle (1984) for a discussion),

and often holds only under restrictive assumptions such as Gaussianity. (ii) On the empirical side,

we apply our FA methodology to panels of monthly U.S. stock returns with large cross-sectional

and small time-series dimensions, and investigate how the number of driving factors changes over

time and particular periods. Furthermore, date after date, we provide a novel separation of the risk

coming from the systematic part and the risk coming from the idiosyncratic part of returns in short

subperiods of bear vs. bull market based on the selected number of factors. We observe an uptrend

in idiosyncratic volatility (see also Campbell et al. (2023)) while the systematic risk explains a

large part of the cross-sectional total variance in bear markets but is not driven by a single factor.

We also investigate whether standard observed factors span the estimated latent factors using rank

tests in order to suit our fixed T setting. Observed factors struggle spanning latent factors with a

discrepancy between the dimensions of the two factor spaces decreasing over time.

the ex-post risk premia (Shanken (1992)) associated to observable factors (see Kleibergen and Zhan (2023) for robust-

identification inference based a continuous updating generalized method of moments). Kim and Skoulakis (2018)

deals with the error-in-variable problem of the two-pass methodology with small T by regression-calibration under

sphericity and a block-dependence structure.
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The outline of the paper is as follows. In Section 2, we consider a linear latent factor model

and introduce test statistics on the number of latent factors based on FA. Section 3 presents the

asymptotic distributional theory for inference in short panels under a block-dependence structure

to allow for weak dependence in the cross-section. Section 4 discusses three special cases, i.e.

Gaussian errors, settings where the asymptotic distribution under Gaussian errors still holds for the

test statistics, and spherical errors. Section 5 is dedicated to local asymptotic power and AUMPI

tests. We provide our empirical application in Section 6 and our concluding remarks in Section 7.

Appendices A and B gather the regularity assumptions and proofs of the main theoretical results.

We place all omitted proofs and additional analyses in Appendices C-E in Online Appendix (OA).

Besides, we gather all explicit formulas not listed in the core text but useful for coding in an online

“Supplementary Materials for Coding” (SMC) attached to the replication files. We also put there

other numerical checks and a Monte Carlo assessment of size and power for the LR test statistic.

2 Test statistics based on Factor Analysis

We consider the linear Factor Analysis (FA) model (e.g. Anderson (2003)):

yi = µ+ Fβi + εi, i = 1, ..., n, (1)

where yi = (yi,1, ..., yi,T )′ and εi = (εi,1, ..., εi,T )′ are T -dimensional vectors of observed data and

unobserved error terms for individual i. The k-dimensional vectors βi = (βi,1, ..., βi,k)
′ are latent

individual effects, while µ and F are a T × 1 vector and a T × k matrix of unknown parameters.

The number of latent factors k is an unknown integer smaller than T . In matrix notation, model

(1) reads Y = µ1′n + Fβ′ + ε, where Y and ε are T × n matrices, β is the n× k matrix with rows

β′i, and 1n is a n-dimensional vector of ones.

Assumption 1 The T × T matrix Vε = lim
n→∞

E[ 1
n
εε′] is diagonal.

Matrix Vε is the limit cross-sectional average of the - possibly heterogeneous - errors’ unconditional
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variance-covariance matrices. The diagonality condition in Assumption 1 is standard in FA (in the

more restrictive formulation involving i.i.d. data).

In our empirics with a large cross-sectional panel of returns for n assets over a short time span

with T periods, vectors yi and εi stack the monthly returns and the idiosyncratic errors of stock i.

Any row vector f ′t := (ft,1, ..., ft,k) of matrix F yields the latent factor values in a given month

t, and vector βi collects the factor loadings of stock i. In our finance application, we assume the

No-Arbitrage (NA) principle to hold, so that the entries µt in the intercept vector in Equation (1)

account for the (possibly time-varying) risk-free rate and (possibly non-zero) cross-sectional mean

of stock betas. 2 Thus, the linear FA model (1) yields yi,t = µt + f ′tβi + εi,t, that is the standard

formulation in asset pricing. We cover the Capital Asset Pricing Model (CAPM) when the single

latent factor is the excess return of the market portfolio. Assumption 1 allows for serial dependence

in idiosyncratic errors in the form of martingale difference sequences, like individual GARCH and

Stochastic Volatility (SV) processes, as well as weak cross-sectional dependence (see Assumption

2 below). It also accommodates common time-varying components in idiosyncratic volatilities

by allowing different entries along the diagonal of Vε; see Renault, Van Der Heijden and Werker

(2022) for arbitrage pricing in such settings. 3

This paper focuses mainly on testing hypotheses on the number of latent factors k when T is

2 Under NA, the intercept term in the asset return model yi = µi + F̃ β̃i + εi is µi = rf + 1T ν
′β̃i, where rf

is the T -dimensional vector whose entries collect the (possibly time-varying) risk-free rates, ν = (ν1, ..., νk)′ is a k-

dimensional vector of parameters, and 1T is a T -dimensional vector of ones (see e.g. Gagliardini, Ossola and Scaillet

(2016)). We can absorb term 1T ν
′β̃i into the systematic part to get yi = rf + Fβ̃i + εi with F = F̃ + 1T ν

′.

It holds irrespective of the latent factors being tradable or not. If the factors are tradable, we further have ν = 0

from the NA restriction. Akin to standard formulation of FA, we recenter the latent effects by subtracting their mean

µ̃β̃ = 1
n

∑n
i=1 β̃i, to get model (1) with βi = β̃i − µ̃β̃ and µ = rf + Fµ̃β̃ .

3When there is a common random component in idiosyncratic volatilities, we have Vε = plim
n→∞

1
nεε
′ by a suitable

version of the Law of Large Number (LLN) conditional on the sigma-field generated by this common component.

With fixed T , we treat the sample realizations of the common component in idiosyncratic volatilities as unknown time

fixed effects (the diagonal elements of matrix Vε), which yields time heterogeneous distributions for the errors. It is

how the unconditional expectation in Assumption 1 has to be understood.
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fixed and n → ∞. The fixed T perspective makes FA especially well-suited for applications with

short panels. Indeed, we work conditionally on the realizations of the latent factors F and treat

their values as parameters to estimate. In comparison with the standard small n and large T frame-

work in traditional asset pricing (see e.g. Shanken (1992) with observable factors), here factors

and loadings are interchanged in the sense that the βi and F play the roles of the “factors" and the

“factor loadings" in FA. We depart from classical FA since the βi are not considered as random

effects (e.g. with a Gaussian distribution) but rather as fixed effects, namely incidental parame-

ters. 4 Moreover, in Assumption 1, we neither assume Gaussianity nor we impose sphericity of the

covariance matrix of the error terms. Besides we accommodate weak cross-sectional dependence

and ARCH effects in idiosyncratic errors (see Section 3). Hence, the FA estimators defined below

correspond to maximizers of a Gaussian pseudo likelihood. By-products of our analysis are the

feasible asymptotic distributions of FA estimators of F and Vε in more general settings than in the

available literature (e.g. Anderson and Amemiya (1988)), which we present in Appendix D.

The test statistics we consider for conducting inference on the number of latent factors k are

functions of the elements of the symmetric matrix

Ŝ = V̂ −1/2
ε MF̂ ,V̂ε

(V̂y − V̂ε)M ′
F̂ ,V̂ε

V̂ −1/2
ε , (2)

where V̂y = 1
n
Ỹ Ỹ ′ is the sample (cross-sectional) variance matrix (the n columns of Ỹ are yi − ȳ

and ȳ = 1
n

∑n
i=1 yi is the vector of cross-sectional means), MF,V := IT − F (F ′V −1F )−1F ′V −1

is the Generalized Least Squares (GLS) projection matrix orthogonal to F for variance V , and F̂

and V̂ε are the FA estimators computed under the assumption that there are k latent factors. In the

following, we use the same notation for the matrix-to-vector diag operator and the vector-to-matrix

diag operator. Hence, diag(A) for a matrix A denotes the vector in which we stack the diagonal

elements of matrix A, and diag(a) for a vector a denotes a diagonal matrix with the elements of a

on the diagonal. From Anderson (2003) Chapter 14, the FA estimators F̂ , V̂ε maximize a Gaussian

4Chamberlain (1992) studies semiparametrically efficient estimation in panel models with fixed effects and short T

using moment restrictions from instrumental variables. Our approach does not rely on availability of valid instruments.
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pseudo likelihood (Appendix D.1) and meet the first order conditions: 5

(FA1) diag(V̂y) = diag(F̂ F̂ ′ + V̂ε), and

(FA2) F̂ is the T × k matrix of eigenvectors of V̂yV̂ −1
ε associated to the k largest eigenvalues

1 + γ̂j , j = 1, ..., k, normalized such that F̂ ′V̂ −1
ε F̂ = diag(γ̂1, ..., γ̂k).

The number of degrees of freedom is df = 1
2
((T − k)2 − T − k) and it is required that df ≥ 0. 6

Statistic Ŝ in Equation (2) checks if the difference between the sample variance-covariance V̂y

and diagonal matrix V̂ε is a symmetric matrix of reduced rank k, with range spanned by the range

of F̂ . The probability limit of Ŝ is nil under the null hypothesis of k latent factors. We get further

insights from the next result.

Proposition 1 Under Assumption 1, (a) the eigenvalues of matrix Ŝ are: γ̂j , for j = k + 1, ..., T ,

and 0, with multiplicity k, where 1 + γ̂j for j = k + 1, ..., T are the T − k smallest eigenvalues of

V̂yV̂
−1
ε , (b) the squared Frobenius norm is ‖Ŝ‖2 =

∑T
j=k+1 γ̂

2
j , (c) diag(Ŝ) = 0, and (d) we get

Ŝ = V̂ −1/2
ε

(
1

n
ε̂ε̂′
)
V̂ −1/2
ε − V̂ −1/2

ε MF̂ ,V̂ε
V̂ 1/2
ε , (3)

where ε̂ = MF̂ ,V̂ε
Ỹ is the T × n matrix of GLS residuals.

From Proposition 1 (a)-(c), the squared Frobenius norm of matrix Ŝ multiplied by n/2 coin-

cides at second order with the classical LR statistic in FA, i.e., LR(k) = −n
∑T

j=k+1 log(1 + γ̂j).
7 Moreover, from (d) we can interpret matrix Ŝ in terms of scaled cross-sectional averages of

5The normalization in (FA2) applies for γ̂j ≥ 0, which holds with probability approaching 1. Otherwise, the

first-order conditions of the FA estimators hold with γ̂j replaced by its positive part; see Anderson (2003) for similar

positivity constraints.
6Integer df is the number of different elements in data matrix V̂y , i.e., 1

2T (T +1), plus the number of normalization

constraints 1
2k(k − 1) in equations F ′V −1

ε F = diag, minus the number of unknown parameters (k + 1)T (Anderson

(2003)). In SMC Table 3, we list the largest admissible number k of latent factors as a function of T such that df ≥ 0.
7It comes from second-order expansion of the log function using

∑T
j=k+1 γ̂j = 0, which is a consequence of

Proposition 1 (a) and (c) (see also Anderson (2003)), and
√
nγ̂j = Op(1) for j = k + 1, ..., T , which follows from

Propositions 1 and 4.
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squared and cross-products of GLS residuals. In (3), we subtract V̂ −1/2
ε MF̂ ,V̂ε

V̂
1/2
ε and not the

identity because the residuals are orthogonal to F̂ by construction. From Proposition 1 (c), the

diagonal elements of matrix Ŝ vanish. Those elements are not informative for inference on the

number of factors, and can be ignored when constructing the test statistics. This finding is natural

because we expect that only the out-of-diagonal elements of 1
n
ε̂ε̂′, i.e., the cross-sectional averages

of cross-products of residuals for two different dates, are useful to check for omitted factors. 8

We summarize the statistics to test null hypotheses on the number of latent factors next.

Definition 1 The statistics to test the null hypothesis H0(k) of k latent factors are: (a) the squared

norm statistic T (k) := n
∑T

j=k+1 γ̂
2
j = n‖Ŝ‖2, and (b) the LR statisticLR(k) := −n

∑T
j=k+1 log(1+

γ̂j) = n
2
‖Ŝ‖2 +op(1), where γ̂k+j = δk+j(V̂yV̂

−1
ε )−1 = δj(Ŝ), for j = 1, ..., T −k, and we denote

by δj(·) the jth largest eigenvalue of a symmetric matrix.

The statistics in Definition 1 only use the information contained in the eigenvalues of matrix Ŝ.

Next we establish the asymptotic distributions of those test statistics with n→∞ and T fixed.

3 Asymptotic distributional theory

We start by defining the normalization for the latent factor matrix F = [F1 : · · · : Fk] in population.

Following classical FA, we set µβ = 0, Vβ = Ik, and F ′V −1
ε F = diag(γ1, ..., γk), where Vβ =

lim
n→∞

1
n
β′β and µβ = lim

n→∞
β̄ with β̄ = 1

n

∑n
i=1 βi. Then, under our assumptions, we have Vy :=

plim
n→∞

V̂y = FF ′ + Vε and VyV −1
ε Fj = (1 + γj)Fj , i.e., the Fj are eigenvectors of matrix VyV −1

ε

8The test in Connor and Korajczyk (1993) is built on cross-sectional averages of squared residuals, akin to diagonal

terms of Ŝ, but obtained by PCA instead of FA. However, their test statistic involves the difference of such cross-

sectional averages for two consecutive dates, and relies on error sphericity. Furthermore, from Proposition 1 (a), we

note that test statistics based on the spacings between the small eigenvalues of V̂yV̂ −1
ε use the non-zero eigenvalues

of Ŝ. Such tests rely on the possibility to identify the number of latent factors k from the fact that the k smallest

eigenvalues of VyV −1
ε are all equal to 1.
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associated with eigenvalues 1 + γj , j = 1, ..., k. 9 For any given n, we define Ṽε = 1
n
E[εε′] and

Ṽβ = 1
n
β′β, and use a factor normalization in sample that is analogue to the one in population, i.e.,

β̄ = 0, Ṽβ = Ik (see Assumption A.1) and F ′Ṽ −1
ε F is diagonal. Thus, the normalization of the

factor values F = F(n) is sample dependent; we skip index n for the purpose of easing notation.

We use a block-dependence structure to allow for weak cross-sectional dependence in errors.

Assumption 2 (a) The errors are such that ε = V
1/2
ε WΣ1/2, whereW = [w1 : · · · : wn] is a T×n

random matrix of standardized errors terms wi,t that are independent across i and uncorrelated

across t, and Σ = (σi,j) is a positive-definite symmetric n× n matrix, such that lim
n→∞

1
n

∑n
i=1 σii =

1. (b) Matrix Σ is block diagonal with Jn blocks of size bm,n = Bm,nn, for m = 1, ..., Jn, where

Jn → ∞ as n → ∞, and Im denotes the set of indices in block m. (c) There exist constants

δ ∈ [0, 1] and C > 0 such that max
i∈Im

∑
j∈Im |σi,j| ≤ Cbδm,n. (d) The block sizes bm,n and block

number Jn are such that n2δ
∑Jn

m=1B
2(1+δ)
m,n = o(1).

As already remarked, the diagonal elements of Vε are the sample realizations of the common com-

ponent driving the variance of the error terms at times t = 1, ..., T ; see e.g. Barigozzi and Hallin

(2016), Renault, Van Der Heijden and Werker (2022) for theory and empirical evidence pointing

to variance factors. A sphericity assumption cannot accommodate such a common time-varying

component. In empirical applications on individual stocks, blocks in Σ can match industrial sec-

tors (Gagliardini, Ossola, and Scaillet (2016)). Assumption 2 (a) is coherent with Assumption 1.

Indeed, 1
n
E[εε′] = V

1/2
ε

1
n

∑n
i,j=1 σi,jE[wiw

′
j]V

1/2
ε = 1

n

∑n
i=1 σiiVε is diagonal, and converges to

matrix Vε in the limit n → ∞ under the normalization lim
n→∞

1
n

∑n
i=1 σii = 1. That normalization

is without loss of generality by rescaling of the parameters. Assumption 2 (c) builds on Bickel

and Levina (2008), and δ < 1 holds under sparsity, vanishing correlations or mixing dependence

within blocks. With blocks of equal size, Assumption 2 (d) holds for Jn = nᾱ and ᾱ > 2δ
2δ+1

. Hav-

9The remaining eigenvalue is equal to 1 with multiplicity T − k. We have Fj =
√
γjV

1/2
ε Uj , where the Uj are the

orthonormal eigenvectors of V −1/2
ε VyV

−1/2
ε for the k largest eigenvalues 1 + γj .
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ing δ < 1 helps relaxing this condition on block granularity, however it is not strictly necessary

because we allow value δ = 1.

3.1 Asymptotic expansions of estimators V̂ε and F̂

Using Equation (1) and the factor normalization in sample, we have V̂y = Ṽy + 1√
n
Ψy + op(

1√
n
),

where Ṽy = FF ′ + Ṽε and Ψy = 1√
n
(εβF ′ + Fβ′ε′) +

√
n
(

1
n
εε′ − Ṽε

)
(see Appendix D.2).

The FA estimators V̂ε and F̂ are consistent M-estimators under nonlinear constraints, and admit

expansions at first order for fixed T and n → ∞, namely V̂ε = Ṽε + 1√
n
Ψε + op(

1√
n
) and F̂j =

Fj + 1√
n
ΨFj + op(

1√
n
) (see Appendix D.4.1). The next proposition characterizes the diagonal

random matrix Ψε and the random vectors ΨFj by using conditions (FA1) and (FA2) above.

Assumption 3 The non-zero eigenvalues of VyV −1
ε − IT are distinct, i.e., γ1 > ... > γk > 0.

Proposition 2 Under Assumptions 1-3 and A.1-A.4, we have (a) for j = 1, ..., k

ΨFj = Rj(Ψy −Ψε)V
−1
ε Fj + ΛjΨεV

−1
ε Fj, (4)

where Rj := 1
2γj
PFj ,Vε + 1

γj
MF,Vε +

∑k
`=1,` 6=j

1
γj−γ`

PF`,Vε and Λj := −
∑k

`=1,` 6=j
γl

γj−γ`
PF`,Vε and

PFj ,Vε = Fj(F
′
jV
−1
ε Fj)

−1F ′jV
−1
ε = 1

γj
FjF

′
jV
−1
ε is the GLS orthogonal projection onto Fj . Further,

(b) the diagonal matrix Ψε is such that:

diag
(
MF,Vε(Ψy −Ψε)M

′
F,Vε

)
= 0. (5)

Equation (4) yields the asymptotic expansion of the eigenvectors by accounting for estimation

errors of matrix V̂yV̂ −1
ε (first term) and of the normalization constraint (second term). To interpret

Equation (5), we can observe that the matrixMF,Vε(Ψy−Ψε)M
′
F,Vε

yields the first-order term in the

asymptotic expansion of the test statistic
√
nŜ (up to the left- and right-multiplication by diagonal

matrix V −1/2
ε ); see Equation (8). Thus, Equation (5) is implied by the property that the diagonal

terms of matrix Ŝ are equal to zero as stated in Proposition 1 (c).

11



Let us now give the explicit expression of Ψε. By using MF,VεΨyM
′
F,Vε

= MF,VεZnM
′
F,Vε

,

where Zn :=
√
n
(

1
n
εε′ − 1

n
E[εε′]

)
is the standardized, centered sample mean of cross-moments

of errors, we can rewrite Equation (5) as diag
(
MF,Vε(Zn −Ψε)M

′
F,Vε

)
= 0. Now, because Ψε is

diagonal, we have diag
(
MF,VεΨεM

′
F,Vε

)
= M�2

F,Vε
diag(Ψε), where M�2

F,Vε
= MF,Vε �MF,Vε and

� denotes the Hadamard product (i.e., element-wise matrix product). Thus, we get the equation:

M�2
F,Vε

diag(Ψε) = diag(MF,VεZnM
′
F,Vε). (6)

To have a unique solution for vector diag(Ψε), we need the non-singularity of the T × T matrix

on the LHS of this linear equation system. It is the local identification condition in the FA model

(see Lemma 7 in Appendix D.3 i), where we show equivalence with invertibility of the bordered

Hessian, i.e., the Hessian of the Lagrangian function in a constrained M-estimation).

Assumption 4 Matrix M�2
F,Vε

is non-singular.

Under Assumption 4, we get from Equation (6):

Ψε = TF,Vε(Zn), (7)

where TF,Vε(V ) := diag
(
[M�2

F,Vε
]−1diag(MF,VεVM

′
F,Vε

)
)
, for any T × T matrix V . Mapping

TF,Vε(·) is linear and such that TF,Vε(V ) = V , for a diagonal matrix V .

Anderson and Rubin (1956), Theorem 12.1, show that the FA estimator is asymptotically nor-

mal if
√
n(V̂y−Vy) is asymptotically normal. They use a linearization of the first-order conditions

similar as the one of Proposition 2. Their Equation (12.16) corresponds to our Equation (5). How-

ever, they only provide an implicit characterization of the ΨFj and not an explicit expression for

Ψε and ΨFj in terms of asymptotically Gaussian random matrices like Zn as we do. These key

developments pave the way to establishing the asymptotic distributions of estimators F̂ and V̂ε

in general settings, that we cover in OA Section D.4, and of the test statistics for the number of

factors, that we address next.

12



3.2 Asymptotic expansions of the test statistics

By expanding the terms in the definition of Ŝ in Equation (2), and using Equation (7) and the
√
n-consistency of FA estimators (see Appendix D.4.1), we have:

√
nŜ = V −1/2

ε MF,Vε(Ψy −Ψε)M
′
F,VεV

−1/2
ε + op(1)

= V −1/2
ε MF,Vε(Zn − TF,Vε(Zn))M ′

F,VεV
−1/2
ε + op(1). (8)

Let us now rework the RHS. First, we use that Zn =
√
n
(

1
n
εε′ − Ṽε

)
, where Ṽε = 1

n
E[εε′] is diag-

onal and such that TF,Vε(Ṽε) = Ṽε. Thus, we have Zn − TF,Vε(Zn) =
√
n
(

1
n
εε′ − TF,Vε( 1

n
εε′)
)

=:

Z̄n. We get that E[Z̄n] = 0 because diagonal matrices are invariant under mapping TF,Vε(·). Sec-

ond, we write the orthogonal projection as MF,Vε = GG′V −1
ε , where G be a T × (T − k) matrix

such that F ′V −1
ε G = 0 and G′V −1

ε G = IT−k. Matrix G is unique up to post-multiplication by an

orthogonal matrix. Then, from Equation (8), we get the asymptotic expansion of matrix Ŝ as

√
nŜ = V −1/2

ε GZ̄∗nG
′V −1/2
ε + op(1), (9)

where Z̄∗n := G′V −1
ε Z̄nV

−1
ε G. The asymptotic distribution of

√
nŜ is driven by the symmetric

(T −k)× (T −k) zero-mean matrix Z̄∗n. We have diag(V
−1/2
ε GZ̄∗nG

′V
−1/2
ε ) = 0 as a consequence

of Equation (5) and results above (see also Proposition 1 (c)). We can rewrite the number of degrees

of freedom as df = 1
2
(T − k)(T − k + 1)− T , i.e., the number of different elements in Z̄∗n minus

the number of linear constraints in diag(V
−1/2
ε GZ̄∗nG

′V
−1/2
ε ) = 0. Matrices V −1/2

ε GZ̄∗nG
′V
−1/2
ε

and Z̄∗n have the same Frobenius norm because the columns of V −1/2
ε G are orthonormal. From

Equation (9), the asymptotic expansions for the test statistics in Definition 1 are:

T (k) = ‖Z̄∗n‖2 + op(1), LR(k) =
1

2
‖Z̄∗n‖2 + op(1), (10)

under the null hypothesis of k latent factors. 10

10We can extend results like (10) to test statistics that are generic functions of the eigenvalues of matrix Ŝ by using

the Weyl’s inequalities (see e.g. Bernstein (2009)), and develop test statistics along the lines of FGS.
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We can get further insights in the above results by using the next proposition. Let the T -

dimensional vectors gj for j = 1, ..., T − k be the columns of matrix G, and let us define the p×T

matrix X =
[
g1 � g1 : · · · : gT−k � gT−k : {

√
2(gi � gj)}i<j

]′
, where the pairs of indices

(i, j) with i < j are ranked as (1, 2), (1, 3), ..., (1, T − k), (2, 3), ..., (T − k − 1, T − k), and

p = 1
2
(T − k)(T − k + 1). Moreover, for a (T − k) × (T − k) symmetric matrix Z = (zi,j),

let us define the p-dimensional vector vech(Z) =
(

1√
2
z11, ...,

1√
2
zT−k,T−k, {zi,j}i<j

)′
, where the

out-of-diagonal elements with indices i < j are ranked as above. 11

Proposition 3 Under Assumptions 1-4, we have (a) M�2
F,Vε

= X ′XV −2
ε , (b) diag(Ψε) =

√
2V 2

ε (X ′X)−1X ′vech(Z∗n), where Z∗n = G′V −1
ε ZnV

−1
ε G, and (c) vech(Z̄∗n) =

(Ip −X(X ′X)−1X ′) vech(Z∗n).

From Proposition 3 (a), we can state the local identification condition in Assumption 4 as a full-

rank condition for matrixX analogously as in linear regression. In part (b), we write the diagonal

of Ψε via the coefficients of a OLS regression of the half-vectorization ofZ∗n ontoX . Part (c) shows

that, after half-vectorization, we can represent the elements of matrix variate Z̄∗n as the residual of

the orthogonal projection of vech(Z∗n) onto the columns ofX . Matrix Ip−X(X ′X)−1X ′ is idem-

potent of rank p−T = df . Using 1
2
‖Z̄∗n‖2 = vech(Z̄∗n)′vech(Z̄∗n) and Proposition 3 (c), the leading

term in the asymptotic expansions (10) is 1
2
‖Z̄∗n‖2 = vech(Z∗n)′ (Ip −X(X ′X)−1X ′) vech(Z∗n).

3.3 Feasible Central Limit Theorem

We now establish the distributional convergence Z̄∗n ⇒ Z̄∗ as n→∞ and T is fixed, where Z̄∗ is

a Gaussian symmetric matrix variate. We have that Z̄∗ = G′V −1
ε (Z − TF,Vε(Z))V −1

ε G, where Z

is the distributional limit of Zn. Establishing a feasible Central Limit Theorem (CLT) via a non-

parametric estimator of the asymptotic variance is easier for Z̄∗n than for Zn, and is sufficient for
11This definition of the half-vectorization operator for symmetric matrices differs from the usual one by the ordering

of the elements, and the rescaling of the diagonal elements. It is more convenient for our purposes (see proof of Lemma

11). For instance, it holds 1
2‖A‖

2 = vech(A)′vech(A), for a symmetric matrix A.
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testing purposes. 12 By the block structure in Assumption 2 (b), we can write Z̄∗n as a sum of inde-

pendent zero-mean terms: Z̄∗n = 1√
n
G′V −1

ε (εε′ − TF,Vε(εε′))V −1
ε G = 1√

n

∑Jn
m=1 zm,n, where the

variables in the triangular array zm,n =
∑

i,j∈Im σi,jG
′V
−1/2
ε

[
wiw

′
j − TF,Vε(wiw′j)

]
V
−1/2
ε G =∑

i∈Im G
′V −1
ε [εiε

′
i − TF,Vε(εiε′i)]V −1

ε G are independent across m and such that E[zm,n] = 0.

In Appendix B, we invoque the CLT for independent heterogeneous variables to vech(Z̄∗n) =

1√
n

∑Jn
m=1 vech(zm,n) and use Assumptions 2 (c) and (d) to check the Liapunov condition. Then,

we get Z̄∗n ⇒ Z̄∗, where vech(Z̄∗) ∼ N(0,ΩZ̄∗) and ΩZ̄∗ = lim
n→∞

1
n

∑Jn
m=1 V [vech(zm,n)]. Our as-

sumptions imply that ΩZ̄∗ is finite. From Proposition 3 (c), we have ΩZ̄∗ = (Ip−X(X ′X)−1X ′)

ΩZ∗(Ip −X(X ′X)−1X ′), where vech(Z∗) ∼ N(0,ΩZ∗), for Z∗ = G′V −1
ε ZV −1

ε G. We charac-

terize the variance ΩZ = V [vech(Z)] of the distributional limit of Zn in Lemma 1 in Appendix B.

In particular, matrix ΩZ̄∗ is singular with rank df . Then, the asymptotic expansions in (10) yield

the asymptotic distributions for the test statistics.

Proposition 4 Let Assumptions 1-4 and A.1-A.5 hold. As n → ∞ and T is fixed, under the null

hypothesis H0(k) of k latent factors, (a) T (k) ⇒ ‖Z̄∗‖2, LR(k) ⇒ 1
2
‖Z̄∗‖2, where vech(Z̄∗)

∼ N(0,ΩZ̄∗), and (b) R̂Ω̂Z̄∗R̂
−1 p→ ΩZ̄∗ , where Ω̂Z̄∗ = 1

n

∑Jn
m=1 vech(ẑm,n)vech(ẑm,n)′ and

ẑm,n =
∑

i∈Im Ĝ
′V̂ −1
ε

(
ε̂iε̂
′
i − TF̂ ,V̂ε(ε̂iε̂

′
i)
)
V̂ −1
ε Ĝ, with ε̂i = MF̂ ,V̂ε

(yi − ȳ), for an orthogonal

matrix R̂. Under the alternative hypothesis H1(k) of more than k latent factors, (c) T (k) ≥ Cn

and LR(k) ≥ Cn, w.p.a. 1 for a constant C > 0, and Ω̂Z̄∗ = Op(n
∑Jn

m=1B
2
m,n) = op(n).

From Proposition 4 (a), using 1
2
‖Z̄∗‖2 = vech(Z̄∗)′vech(Z̄∗) ∼

∑df
j=1 µjχ

2
j(1), the asymptotic

distribution of the LR statistic is a weighted average of df mutually independent chi-square variates

with weights µj that are the non-zero eigenvalues of matrix ΩZ̄∗ . 13 In Proposition 4 (b), we use

Ĝ = V̂
1/2
ε Q̂, where Q̂ is a T × (T − k) matrix with orthonormal columns that span the range

12In Appendix D.4.3, we present a parametric estimator for the asymptotic variance of vech(Zn) under additional

conditions on the error terms.
13In Proposition 10 in Appendix D.5, we study how X and ΩZ̄∗ are transformed under different choices for the

rotation of G. The eigenvalues µj are invariant to such rotation as expected.
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of IT − V̂
−1/2
ε F̂ (F̂ ′V̂ −1

ε F̂ )−1F̂ ′V̂
−1/2
ε . 14 The orthogonal matrix R̂ accounts for an arbitrary

choice of that orthonormal basis. With fixed T , the GLS residuals ε̂i are asymptotically close to

MF,Vεεi and not to the true errors εi. This fact does not impede the consistency of Ω̂Z̄∗ , because

G′V −1
ε MF,Vε = G′V −1

ε and TF,Vε(MF,VεVM
′
F,Vε

) = TF,Vε(V ), for any V . We can consistently

estimate the critical values of the asymptotic statistics ‖Z̄∗‖2 by simulating a large number of

draws from a Gaussian symmetric matrix variate with vectorized variance Ω̂Z̄∗ , whose norms are

unaffected by the orthogonal matrix R̂. Finally, Proposition 4 (c) gives test consistency against

global alternative hypotheses.

4 Discussion of three special cases

In this section, we particularize the general distributional results of Proposition 4 to three important

cases, namely Gaussian errors, settings where the asymptotic distribution under Gaussian errors

still holds for the test statistics (up to scaling), and spherical errors.

4.1 Gaussian errors

Let us consider the case where the errors εi
ind∼ N(0, σiiVε) are independent Gaussian vectors.

From classical FA theory, we expect that the statistic LR(k) admits asymptotically a chi-square

distribution with df degrees of freedom in the cross-sectionally homoschedastic case, i.e., σii = 1

for all assets i. We cannot expect that this distributional result applies to the Gaussian framework

in full generality, since - even in such a case - our setting corresponds to a pseudo model (because

the σii may be heterogeneous across i, and the βi are treated as fixed effects, namely incidental pa-

rameters, instead of Gaussian random effects). In order to establish the distribution of 1
2
‖Z̄∗‖2 =

vech(Z̄∗)′vech(Z̄∗), we use Proposition 3 (c) written for the distributional limits to get 1
2
‖Z̄∗‖2 =

14For instance, we can set Q̂ = Q̃(Q̃′Q̃)−1/2, where matrix Q̃ consists of the first T − k columns of

IT − V̂ −1/2
ε F̂ (F̂ ′V̂ −1

ε F̂ )−1F̂ ′V̂
−1/2
ε , if those columns are linearly independent.
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vech(Z∗)′ (Ip −X(X ′X)−1X ′) vech(Z∗), where Ip −X(X ′X)−1X ′ is idempotent of rank df .

Under the normality assumption for the error terms, we have ε∗i := G′V −1
ε εi

ind∼ N(0, σiiIT−k).

Thus, by the Liapunov CLT, the distributional limit of 1√
q
Z∗n =

√
n/q

(
1
n
ε∗(ε∗)′ − E

[
1
n
ε∗(ε∗)′

])
is in the Gaussian Orthogonal Ensemble (GOE) for dimension T − k (see e.g. Tao (2012)), i.e.,
1√
q
vech(Z∗) ∼ N(0, Ip), where q := lim

n→∞
1
n

∑n
i=1 σ

2
ii. Then, we get LR(k)⇒ 1

2
‖Z̄∗‖2 ∼ qχ2(df),

i.e., a scaled chi-square distribution with df degrees of freedom. In the cross-sectionally ho-

moschedastic case, we have q = 1 yielding the classical χ2(df) result. On the contrary, cross-

sectional heterogeneity in the unconditional idiosyncratic variances yields q > 1 and a deviation

from classical FA theory even in the Gaussian case. Hence, unobserved heterogeneity across as-

set idiosyncratic variances would lead to an oversized LR test if we use critical values from the

chi-square table without proper scaling.

4.2 Validity of the scaled asymptotic chi-square test

In this subsection, we investigate sufficient conditions for the validity of the scaled asymptotic

χ2(df) distribution of the LR statistic in special cases beyond Gaussianity of errors. For this

purpose, let us first notice that Z̄ = Z − TF,Vε(Z) only involves the out-of-diagonal elements

of Z. Under independent Gaussian errors (Section 4.1), by the Liapunov CLT, we have Zt,s ∼

N(0, qVε,ttVε,ss), for t > s, mutually independent, where the Vε,tt are the diagonal elements of

matrix Vε. We deduce that any setting featuring the same joint asymptotic distribution for the

out-of-diagonal elements of random matrix Zn leads to the same asymptotic distribution of the LR

statistic as in the Gaussian case, namely the scaled χ2(df) distribution.

Proposition 5 Let Assumptions 1-4, A.1-A.4 hold with (a) lim
n→∞

1
n

∑n
i=1 E[εi,tεi,sεi,rεi,p] = qVε,ttVε,ss,

when t = r > s = p, for a constant q > 0, and = 0 in all other cases with t > s and r > p, and

(b) let κ = lim
n→∞

1
n

∑Jn
m=1

∑
i 6=j∈Im σ

2
ij as in Assumption A.4 (b). Then, LR(k) ⇒ q̄χ2(df) under

H0(k) for q̄ := q + κ.
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Conditions (a) and (b) in Proposition 5 generalize the correctness of the scaled chi-square

test beyond Gaussianity and error independence across time and assets. Under Assumption 2,

Condition (a) is satisfied if the standardized error terms wi,t are conditionally homoschedastic

martingale difference sequences. However, Condition (a) excludes empirically relevant cases such

as ARCH processes for wi,t, because, in that case, 1
Vε,ttVε,ss

E[ε2
i,tε

2
i,s] depends on lag t− s. Hence,

serial correlation in squared idiosyncratic errors is responsible for the deviation of the LR test

from the scaled chi-square asymptotic distribution. This setting is covered by the general results in

Proposition 4.

Anderson and Amemiya (1988) establish the asymptotic distribution of FA estimates assuming

that the error terms are i.i.d. across sample units and deploy an assumption that is analogue to

Condition (a) above in their Corollary 2. The i.i.d. assumption in our case implies σii = 1 for all

i, which results in a cross-sectionally homoschedastic setting. 15 That setting is irrealistic in our

application, as it would imply that the idiosyncratic variance is the same for all assets. Our re-

sults show that establishing the asymptotic distribution of the test statistics, especially the AUMPI

property of LR test (see Section 5), in a general setting with non-Gaussian errors, heterogeneous

idiosyncratic variances and ARCH effects, is challenging, but still possible.

4.3 Spherical errors

When errors are spherical, i.e., matrix Vε = σ̄2IT is a multiple of the identity with unknown param-

eter σ̄2 > 0, and this restriction on Vε is imposed in the estimation procedure, the FA estimator F̂

boils down to the Principal Component Analysis (PCA) estimator; see Anderson and Rubin (1956)

Section 7.3. Then, F̂ is the matrix of eigenvectors of matrix V̂y standardized such that F̂ ′F̂ =

diag(δ̂1 − σ̂2, ..., δ̂k − σ̂2), and σ̂2 = 1
T−k

∑T
j=k+1 δ̂j , where δ̂j = δj(V̂y). The statistic Ŝ becomes

15If the σii were treated as i.i.d. random effects independent of errors, and we exclude cross-sectional correlation of

errors to simplify, we would recover the i.i.d. condition of the data. However, the random σii would yield a stochastic

common factor across time that breaks the condition in Corollary 2 of Anderson and Amemiya (1988).
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Ŝ = 1
σ̂2MF̂ (V̂y − σ̂2IT )MF̂ = 1

σ̂2

(
1
n
ε̂ε̂′
)
−MF̂ , where MF̂ = IT − F̂ (F̂ ′F̂ )−1F̂ ′ and ε̂ = MF̂ Ỹ

is the matrix of OLS residuals. Then, the statistic LR(k) boils down to the LR statistic invoqued

by Onatski (2022) in his discussion of FGS. By repeating the arguments of Sections 2 and 3 in the

constrained setting of spherical errors, we get Tr (MF (Ψy −Ψε)MF ) = 0 instead of Equation (5).

It yields the asymptotic expansion V̂ε = σ̃2IT + 1√
n
Ψε + Op(1/n), where σ̃2 = σ̄2 1

n

∑n
i=1 σii and

Ψε = 1
T−kTr(MFZn)IT . We get the asymptotic distribution

√
nŜ ⇒ 1

σ̄2GZ̄
∗G′ as n→∞ and T

is fixed, where we have Z̄∗ = 1
σ̄4G

′ (Z − 1
T−kTr(MFZ)IT

)
G = Z∗ − 1

T−kTr(Z
∗)IT−k, and G is

a T × (T − k) matrix such that F ′G = 0 and G′G = σ̄2IT−k. It yields the asymptotic distribution

of test statistic LR(k)⇒ 1
2

(
Tr[(Z∗)2]− 1

T−k [Tr(Z∗)]2
)

obtained by Onatski (2022). 16

5 Local asymptotic power

In this section, we study the asymptotic power of the test statistics against local alternative hypothe-

ses in which we have k (strong) factors plus a weak factor. Specifically, under H1,loc(k), we have
√
nγk+1 → ck+1 as n→∞, with ck+1 > 0. The (drifting) DGP is Y = µ1′n +Fβ′+Fk+1β

′
loc + ε,

where βloc is the loading vector for the (k + 1)th factor, and the factor vector is normalized such

that Fk+1 =
√
γk+1ρk+1 with ρ′k+1V

−1
ε ρk+1 = 1 and F ′V −1

ε ρk+1 = 0. Thus, we can write

ρk+1 = Gξk+1 for a T − k dimensional vector ξk+1 with unit norm. Scalar ck+1 and vector ξk+1

yield the (normalized) strength and the direction of the local alternative.

5.1 Asymptotic distributions under local alternative hypotheses

The derivation of the asymptotic distribution of Ŝ under H1,loc(k) uses the asymptotic expansion

V̂y = Ṽy+ 1√
n
Ψy,loc+op(

1√
n
), where Ψy,loc = ck+1ρk+1ρ

′
k+1+ 1√

n
(εβF ′+Fβ′ε′)+

√
n
(

1
n
εε′ − Ṽε

)
16We have γ̂j = δ̂j/σ̂

2 − 1, and LR(k) = n
2σ̂4

∑T
j=k+1(δ̂2

j − σ̂2)2 + op(1), i.e., the LR statistic is asymptotically

equivalent to the sum of squared deviations of the T − k smallest eigenvalues from their mean. Besides, by similar

results, we have that the eigenvalue spacing statistic
√
nS (k) := γ̂k+1− γ̂T corresponds to the statistic considered in

FGS divided by σ̂2, and its asymptotic distribution coincides with that obtained by FGS.
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and Ṽy = FF ′ + Ṽε (see the proof of Proposition 6 in Appendix B for the derivation). Thus, the

arguments deployed in Section 3 now apply with Ψy,loc instead of Ψy and lead to the next result.

Proposition 6 Let Assumptions 1-4, A.1-A.4 hold. Under the local alternative hypothesisH1,loc(k),

we have as n→∞ and T is fixed (a)
√
nŜ ⇒ V

−1/2
ε GZ̄∗locG

′V
−1/2
ε , and (b) T (k)⇒ ‖Z̄∗loc‖2 and

LR(k) ⇒ 1
2
‖Z̄∗loc‖2, with Gaussian matrix Z̄∗loc := Z̄∗ + ∆ and vector vech(∆) :=

ck+1 (Ip −X(X ′X)−1X ′) vech(ξk+1ξ
′
k+1).

Matrix variate Z̄∗loc is a non-central symmetric Gaussian matrix. The non-zero mean depends

in general on both ck+1 and ξk+1, while the variances and covariances of the elements of Z̄∗loc are

the same as those of Z̄∗. The non-centrality term vech(∆) is in charge of the asymptotic local

power of the statistics. When this vector is null, the asymptotic local power is zero. Indeed, for

some local “alternatives" the (k+1)th weak factor can be absorbed in the diagonal variance matrix

Vε of the error terms. More precisely, in Appendix D.3 ii), we show that Vy + ck+1√
n
ρk+1ρ

′
k+1 =

F ∗(F ∗)′ + V ∗ε + 1√
n
G∆G′ + o(1/

√
n) for some T × k matrix F ∗ and diagonal matrix V ∗ε , which

yields asymptotically a k-factor model when ∆ = 0.

Using the expression 1
2
‖Z̄∗loc‖2 = [vech(Z∗) + ck+1vech(ξk+1ξ

′
k+1)]′ (Ip −X(X ′X)−1X ′)

[vech(Z∗) + ck+1vech(ξk+1ξ
′
k+1)] and vech(Z∗) ∼ N(0,ΩZ∗), from Proposition 6 we deduce that

the asymptotic distribution of the LR(k) statistic under the local alternative is a weighted average

of df mutually independent non-central chi-square distributions:

LR(k)⇒
df∑
j=1

µjχ
2(1, λ2

j), (11)

for λ2
j = c2

k+1µ
−1
j

[
v′j (Ip −X(X ′X)−1X ′) vech(ξk+1ξ

′
k+1)

]2, where the µj and vj are the non-

zero eigenvalues and the associated standardized eigenvectors of matrix ΩZ̄∗ . We have λ2 :=∑df
j=1 µjλ

2
j = c2

k+1vech(ξk+1ξ
′
k+1)′ (Ip −X(X ′X)−1X ′) vech(ξk+1ξ

′
k+1) = 1

2
‖∆‖2, i.e., the half

squared Frobenius norm of the matrix measuring local distance from the k-factor specification. It

follows that the asymptotic local power of the LR statistic is non null as long as λ2 > 0, i.e., it has
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non-trivial asymptotic power against any proper local alternative hypothesis. In our Monte Carlo

experiments reported in the SMC, we find that the LR statistic has size close to the nominal value,

and power against global as well as local alternatives with time dimension as small as T = 6.

Under the normality of errors, or more generally the conditions of Proposition 5, using that

matrix 1√
q̄
Z∗ is in the GOE for dimension T − k, i.e. vech(Z∗) ∼ N(0, q̄Ip), we have LR(k) ⇒

q̄χ2(df, λ2/q̄) from (11). The local power is a function solely of the squared Euclidean norm of

the vector vech(∆) measuring local distance from the k-factor specification, divided by q̄.

5.2 AUMPI tests

In this subsection, we investigate asymptotic local optimality of the LR statistic for testing hy-

potheses on the number of latent factors. In our framework with composite null and alterna-

tive hypotheses and multi-dimensional parameter, we cannot expect in general to establish Uni-

formly Most Powerful (UMP) tests. Instead, we can establish an optimality property by restricting

the class of tests to invariant tests (e.g. Lehmann and Romano (2005)). We focus on statistics

with test functions φ written on the elements of matrix Ŝ. To eliminate the asymptotic redun-

dancy in the elements of Ŝ, we actually consider the test class C =
{
φ : φ = φ(Ŵ )

}
with

Ŵ :=
√
nD′vech(Ŝ∗), where Ŝ∗ = Ĝ′V̂

−1/2
ε ŜV̂

−1/2
ε Ĝ and D is a p × df full-rank matrix, such

that Ip−X(X ′X)−1X ′ = DD′ andD′D = Idf . Symmetric matrix Ŝ∗ contains the information

in Ŝ = V̂
−1/2
ε ĜŜ∗Ĝ′V̂

−1/2
ε beyond orthogonality to V̂

−1/2
ε F̂ . Vector Ŵ contains the informa-

tion in
√
nvech(Ŝ∗) beyond asymptotic orthogonality to X . From Proposition 6 we have Ŵ ⇒

N(0,D′ΩZ∗D) under the null hypothesis H0(k) and Ŵ ⇒ N(ck+1D
′vech(ξk+1ξ

′
k+1),D′ΩZ∗D)

under the local alternative H1,loc(k), i.e., an asymptotic Gaussian testing problem.

Matrices G and D are both defined up to post-multiplication by an orthogonal matrix. This

point yields a group of orthogonal transformations under which we require the test statistics to be

invariant. 17 In Appendix D.5, we show that the maximal invariant under this group is provided

17Here, we do not deal with invariance to data transformations but rather with invariance to parameterization of G
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by Ŵ ′Ŵ = n · vech(Ŝ∗)′(Ip −X(X ′X)−1X ′)vech(Ŝ∗). Because
√
n · vech(Ŝ∗) belongs to the

range of matrix Ip −X(X ′X)−1X ′ up to op(1) terms under both H0(k) and H1,loc(k), we have

Ŵ ′Ŵ = n
2
‖Ŝ∗‖2 + op(1) = n

2
‖Ŝ‖2 + op(1) = 1

2
T (k) + op(1). Therefore, the invariant tests are

functions of the squared norm statistic T (k), which is asymptotically equivalent to the LR statistic

(up to the factor 1/2).

In the Gaussian case, or more generally under the conditions of Proposition 5, the LR statistic

follows asymptotically a scaled non-central chi-square distribution with df degrees of freedom

and non-centrality parameter λ2 =
∑df

j=1 λ
2
j as shown in the previous subsection. Thus, we can

simplify the null and alternative hypotheses of our testing problem asymptotically and locally to a

one-sided test with null hypothesis H0(k) : λ2 = 0 vs. alternative hypothesis H1,loc(k) : λ2 > 0.

The scaling constant q > 0 plays no role in the power analysis. It means that the LR test is an

AUMPI test (Lehmann and Romano (2005) Chapters 3 and 13). Indeed, the density g(z; df, λ2) of

the χ2(df, λ2) distribution is Totally Positive of order 2 (TP2) in z and λ2 (Eaton (1987) Example

A.1 p. 468); see Miravete (2011) for a review of applications of TP2 in economics. A density,

which is TP2 in z and λ2, has the Monotone Likelihood Ratio (MLR) property (Eaton (1987) p.

467). Since g(z; df, λ2)/g(z; df, 0) is an increasing function in z, it gives the AUMPI property.

In the general case with df > 1, when neither Gaussianity nor the conditions of Proposition 5

apply, we cannot use the same reasoning, since the density f(z;λ1, ..., λdf ) of
∑df

j=1 µjχ
2(1, λ2

j),

with µj > 0, j = 1, ..., df , is not a function of λ2 =
∑df

j=1 µjλ
2
j only, and thus cannot be TP2

in z and λ2. Instead, we use a power series representation of the density of
∑df

j=1 µjχ
2(1, λ2

j) in

terms of central chi-square densities from Kotz, Johnson, and Boyd (1967). Under the sufficient

condition (12) in Proposition 7, the density ratio f(z;λ1,...,λdf )

f(z;0,...,0)
is monotone increasing in z.

Proposition 7 Let Assumptions 1-4, A.1-A.4 hold. (a) Let us assume that, for any DGP in the

andD. However, if we consider tests based on the elements of vector Ŵ , this difference is immaterial.
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subset H̄1,loc(k) ⊂ H1,loc(k) of the local alternative hypothesis, we have for any integer m ≥ 3:

∑
j>l≥0,j+l=m

(j − l)Γ(df
2

)2

Γ(df
2

+ j)Γ(df
2

+ l)
[cj(λ1, ..., λdf )cl(0, ..., 0)− cl(λ1, ..., λdf )cj(0, ..., 0)] ≥ 0, (12)

where Γ(·) is the Gamma function, cj(λ1, ..., λdf ) := E[Q(λ1, ..., λdf )
j]/j! for Q(λ1, ..., λdf ) =

1
2

∑df
j=1(
√
νjXj +

√
1− νjλj)2, νj = 1− 1

µj
µ1 with the µj ranked in increasing order, and Xj ∼

N(0, 1) are mutually independent. Then, the statistics T (k) and LR(k) yield AUMPI tests against

H̄1,loc(k). (b) Suppose that either λ2
1 + (1− ν2)λ2

2 ≥ ν2 and (1− ν2)λ2
2 ≥ 1

2
ν2 when df = 2, or

1{i = 0}λ2
1 +

df−1∑
j=2

ρij(1− νj)λ2
j + (1− νdf )λ2

df ≥
νdf
i+ 1

(
df − 2−

df−1∑
j=2

ρi+1
j

)
, (13)

for all i ≥ 0, where ρj :=
νj
νdf

, when df ≥ 3. Then, Inequalities (12) hold for any m ≥ 3.

Conditions (12) involve polynomial inequalities in the parameters λj of the alternative hypoth-

esis, and parameters νj of the weights of the non-central chi-square distributions, j = 1, ..., df . It

is challenging to establish an explicit characterization of the λj and νj equivalent to Inequalities

(12), unless df = 1. 18 By deploying a novel characterization of the cj(λ1, ..., λdf ) in terms of

a recurrence relation (Lemma 3), we establish explicit sufficient conditions in part b) of Propo-

sition 7. Inequalities (13) are linear in the λ2
j , and define a non-empty convex domain in the

(λ2
1, .., λ

2
df ) space, that does not contain the origin λ1 = ... = λdf = 0 (unless the DGP is such that

ν2 = ... = νdf , in which case the RHS of (13) is nil for all i and thus any λ2
j meet the inequalities).

Proposition 7 b) implies that, for a given set of values of df , the MLR property holds if λj ≥ λ for

all j, uniformly for νj ≤ ν̄, where λ > 0 is a constant that depends on ν̄ < 1. Vanishing values

of the νj correspond to homogenous weights µj , i.e., the scaled non-central chi-square distribution

with df degrees of freedom. Hence, the AUMPI property in Proposition 7 holds in neighborhoods

of DGPs that match the conditions of Proposition 5 (e.g. Gaussian errors) for alternative hypothe-

ses that are sufficiently separated from the null hypothesis. Besides, Proposition 7 shows that the
18Inequalities (12) with df = 1 are easily proved to hold. In such a case, we can use the asymptotic distribution of

a scaled chi-square variable and its MLR property.
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Gaussian case is not the only design delivering an AUMPI test. Further, in the SMC, we establish

an analytical representation of the coefficients ck(λ1, ..., λdf ) in terms of matrix product iterations.

That analytical representation allows us to check numerically the validity of Inequalities (12) for

given df , λj , νj , and m = 1, ....,M , for a large bound M (see Appendix E). In Appendix E, when

Inequalities (13) are met, we always conclude to the MLR property in the numerical checks as pre-

dicted by the theory of Proposition 7. There, we also provide numerical evidence that the domain

of validity of the MLR property is relevant for our empirical application. The sufficient conditions

(12) and (13) in Proposition 7 yielding the monotone property of density ratios have potentially

broad application outside the current setting to show AUMPI properties of other tests based on an

asymptotic distribution characterized by a positive definite quadratic form in normal vectors.

6 Empirical application

In this section, we test hypotheses about the number of latent factors driving stock returns in short

subperiods of the Center for Research in Securities Prices (CRSP) panel. Then, we decompose

the cross-sectional variance into systematic and idiosyncratic components. We also check whether

there is spanning between the estimated latent factors and standard observed factors.

6.1 Testing for the number of latent factors

We consider monthly returns of U.S. common stocks trading on the NYSE, AMEX or NASDAQ

between January 1963 and December 2021, and having a non-missing Standard Industrial Clas-

sification (SIC) code. We partition subperiods into bull and bear market phases according to the

classification methodology of Lunde and Timmermann (2004). 19 We implement the tests using a

rolling window of T = 20 months, moving forward 12 months each time (adjacent windows over-

19We fix their parameter values λ1 = λ2 = 0.2 for the classification based on the nominal S&P500 index. Bear

periods are close to NBER recessions.
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lap by 8 months), thereby ensuring that we can test up to 14 latent factors in each subperiod. The

size of the cross-section n ranges from 1768 to 6142, and the median is 3680. We only consider

stocks with available returns over the whole subperiod, so that our panels are balanced. In each

subperiod, we sequentially test H0(k) v.s. H1(k), for k = 0, . . . , kmax, where kmax = 14 is the

largest nonnegative integer such that df > 0 (see Table 3 in the SMC). We compute the variance-

covariance estimator Ω̂Z̄∗ using a block structure implied by the partitioning of stocks by the first

two digits of their SIC code. The number of blocks ranges from 61 to 87 over the sample, and

the number of stocks per block ranges from 1 to 641. The median number of blocks is 76 and the

median number of stocks per block is 21. We display the p-values of the statistic LR(k) for each

subperiod in the upper panel of Figure 1, stopping at the smallest k such that H0(k) is not rejected

at level αn = 10/nmax, where nmax is the largest cross-sectional sample size over all subperiods,

so that αn = 0.16% in our data. If no such k is found then p-values are displayed up to kmax. The

n-dependent size adjustment controls for the over-rejection problem induced by sequential testing

(see Section 6.2 below). Overall, the results point to a higher number of latent factors during bear

market phases compared to bull market phases and a decrease of the number of factors over time.
20 It remains true for the three-month recession periods 1987/09-1987/11 and 2020/01-2020/03,

which represent only a fraction of their respective subperiods, although there are "bull" market

periods finding a similar number of latent factors. In particular, our results based on a fixed T and

large n approach contradict the common wisdom of a single factor model during market downturns

due to estimated correlations between equities approaching 1. It is consistent with the presence of

risk factors, such as tail risk or liquidity risk, only showing in stress periods. A rise in the estimated

k often happens towards the end of the recession periods. It is consistent with the methodology of

Lunde and Timmermann (2004) being early in detecting bear periods (early warning system). The

20We also investigate stability of the factor structure by dividing each window of 20 months into two overlapping

subperiods of 16 months (overlap of 12 months) and by estimating canonical correlations between the betas in each

subperiod (see SMC). We find that the fraction of common factors is 1 in 70% of the windows. The fraction is between

0.8 and 1 in 25%. It is between 0.5 and 0.8 in the remaining periods.
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results with statistic T (k) are similar and not reported. The average estimated number of factors

is around 7, close to the 4 to 6 factors found by PCA in Bai and Ng (2006) on large time spans of

individual stocks. 21

6.2 Decomposing the cross-sectional variance

Building on the results in Pötscher (1983), we can obtain a consistent estimator of the number of

latent factors in each subperiod by allowing the asymptotic size α go to zero as n → ∞ in the

sequential testing procedure. We let k̂ be defined as the smallest nonnegative integer k satisfying

pval(k) > αn, where pval(k) is the p-value from testing H0(k), and αn is a sequence in [0, 1]

with αn → 0. In practice, we take αn = 10/nmax. 22 If no such k is found after sequentially

testing H0(k), for k = 0, . . . , kmax at level αn, then we take k̂ = kmax + 1. We use the estimate

k̂ at each subperiod to decompose the path of the cross-sectional variance of stock returns into

its systematic and idiosyncratic parts: V̂y,tt = F̂ ′t F̂t + V̂ε,tt, where F̂ and V̂ε are the FA estimates

obtained by extracting k̂ latent factors. The condition (FA1) ensures that the decomposition holds

for any t. Such a decomposition is invariant to the choice of normalization for the latent factors.

If we look at time averages on a subperiod, we get the decomposition V̂ y = F̂ ′F̂ + V̂ ε, where the

overline indicates averaging V̂y,tt = F̂ ′t F̂t + V̂ε,tt on t. In the lower panels of Figure 1, the blue dots

correspond to the square root of those quantities for the volatilities, while the ratios R̂2 = F̂ ′F̂ /V̂ y

and R̂2 under a single-factor model in the two last panels give measures of goodness-of-fit. 23 We

21With fixed T , the selection procedure of Zaffaroni (2019), being by construction more conservative than a (mul-

tiple) testing procedure (see the discussion on p. 508 of Gagliardini, Scaillet, and Ossola (2019)), yields a smaller

number of factors. Imposing cross-sectional independence (resp., Gaussianity and cross-sectional independence) for

the LR test gives most of the time an increase by 1 or 2 (1 or 3). We have an average increase of 3 under sphericity.
22This choice satisfies the theoretical rule logαn/n→ 0 given in Pötscher (1983).
23We do not plot the whole paths date t by date t, but only averages, for readability. If we sum over time instead of

averaging the estimated variances, we get a quantity similar to an integrated volatility (see e.g. Barndorff-Nielsen and

Shephard (2002), Andersen, Bollerslev, Diebold, and Labys (2003), and references in Aït-Sahalia and Jacod (2014)),

and R̂2 is the ratio of such quantities.
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can observe an uptrend in total and idiosyncratic volatilities, while the systematic volatility appears

to remain stable over time even if the number of factors has overall decreased over time. 24 As a

result, R̂2 is lower on average after the year 2000, indicating a more noisy environment. During

the 2007-2008 financial crisis, we can observe a rise in systematic volatility, causing R̂2 to reach

59% during that period. In bear markets, R̂2 is often higher. It means that over a bear subperiod,

the systematic risk explains a large part of the cross-sectional total variance even if it is not driven

by a single factor as reported in Section 6.1. The lowest panel in Figure 1 also signals that R̂2

under the constraint of a single-factor model can be way below the one given by the multifactor

model. It also means that the idiosyncratic volatility is overestimated if we use a single latent

factor only. The plots of the equal-weighted market and firm volatilities used as measures of total

and idiosyncratic volatility from a CAPM decomposition in Campbell et al. (2023) show similar

patterns as our panels in Figure 1. 25 Section 4 of Campbell et al. (2023) discusses economic forces

(firm fundamentals and investor sentiments) driving the observed time-series variation in average

idiosyncratic volatility.

6.3 Spanning with observed factors

As discussed in Bai and Ng (2006), we get economic interpretation of latent factors with observed

factors when we have spanning between the latent factors and the observed factors to be used as

proxies in asset pricing (Shanken (1992)). When n and T are large, Bai and Ng (2006) exploit

the asymptotic normality of the empirical canonical correlations between the two sets of factors

to investigate spanning under a symmetric role of the two sets. When T is fixed, we suggest the

following strategy based on testing for the rank of a matrix. Let us consider kO ≥ k empirical

24Cross-sectional independence (resp. cross-sectional independence and Gaussianity / sphericity) increases esti-

mated systematic risk in average by 0.6% (resp. 0.6%/ 1%) and decreases estimated idiosyncratic volatility in average

by 0.5% (resp. 0.5% / 1.3%), so that estimated R2 is inflated in average by 4% (resp. 4% / 12.8%).
25As in Campbell et al. (2023), we have also made the estimation on value-weighted returns and we confirm that

the results are qualitatively similar.
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factors that are excess returns of portfolios 26, and let F̂O denote the T × kO matrix of their values

with row t given by the transpose of f̂Ot = 1
n

∑n
i=1(yi,t− rf,t)zi,t, where 1

n
zi,t is a kO × 1 vector of

time-varying portfolio weights (long or short positions) based on stocks characteristics. Let matrix

FO with rows fOt = lim
n→∞

1
n

∑n
i=1 E[(yi,t − rf,t)zi,t] be the corresponding large-n population limit.

The notation F̂O makes clear that the sample average of weighted excess returns is an estimate of

the population values FO. We need to take this into account in the asymptotic analysis of the rank

test statistics when n→∞. From the factor model under NA, yi,t = rf,t + f ′t β̃i + εi,t (see footnote

2), and assuming cross-sectional non-correlation of idiosyncratic errors and portfolio weights, we

get FO = FΦ′, where Φ = lim
n→∞

1
n

∑n
i=1E[zi,t]β̃

′
i is assumed independent of t, t = 1, ..., T . Hence,

the range of FO is a subset of the range of F , namely the latent factors span the observed factors

(in the population limit sense) by construction. Moreover, Rank(FO) ≤ k. We can test the null

hypothesis that F and FO span the same linear spaces, namely matrices F and F 0 have the same

range. Such a null hypothesis is equivalent to the rank condition: Rank(FO) = k.

We build on the rank testing literature; see e.g. Cragg and Donald (1996), Robin and Smith

(RS, 2000), Kleibergen and Paap (KP, 2006), Al-Sadoon (2017). 27 We use in particular the RS

and KP statistics. For those tests, the null hypothesis is that a given matrix has a reduced rank r

against the alternative that the rank is greater than r. Hence, to test for spanning by the empirical

factors, we consider the null hypothesis H0,sp(r) : Rank(FO) = r against the alternative H1,sp(r) :

Rank(FO) > r, for any integer r < k. 28 We use the asymptotic expansion F̂O = F̃O + 1√
n
ΨFO,n,

where F̃O = FΦ′n with Φn = 1
n

∑n
i=1E[zi,t]β̃

′
i, and the rows of matrix ΨF 0,n are given by ΨF,n,t =

1√
n

∑n
i=1(ηi,tft + εi,tzi,t) with ηi,t := (zi,t − E[zi,t])β̃

′
i. Under H0,sp(r), we assume that Φn has

26If kO < k, empirical factors cannot span the latent space by construction. The condition kO ≥ k eases discussion

but is not needed for the rank tests.
27Ahn, Horenstein and Wang (2018) use that technology in a fixed-n large-T setting, and find that ranks of beta

matrices estimated from either portfolios, or individual stocks, excess returns are often substantially smaller than

the (potentially large) number kO of observed factors. The explanation in large economies is that the portfolio beta

matrices coincide with Φ, and thus they cannot have a rank above the (potentially small) number k of latent factors.
28Spanning holds if we can reject H0,sp(r) for any r < k.

28



the same null space as Φ, in particular Φn has rank r, for n large enough. 29 We assume the CLT

vec(ΨF 0,n) ⇒ N(0,ΩΨ). Further, we use the Singular Value Decomposition (SVD) of matrix

F̂O = Û ŜV̂ ′. Then, the RS and KP statistics are the quadratic forms SRS = nvec(Ŝ22)′vec(Ŝ22)

and SKP = nvec(Ŝ22)′Ω̂−1
S vec(Ŝ22), where Ŝ22 is the lower-right (T−r)×(kO−r) block of matrix

Ŝ. Here, Ω̂S = (V̂kO−r⊗ ÛT−r)′Ω̂Ψ(V̂kO−r⊗ ÛT−r), where ÛT−r and V̂kO−r are the T ×(T −r) and

kO × (kO − r) matrices in the block forms Û = [Ûr : ÛT−r] and V̂ = [V̂r : V̂kO−r]. In the SMC,

we design a consistent estimator Ω̂Ψ of ΩΨ building on a block structure for the characteristics

akin to Assumption 2 and a stationarity condition. The definitions of the test statistics SRS and

SKP are equivalent to those in the original RS and KP papers. The asymptotic distributions under

H0,sp(r) are SRS ⇒
∑(T−r)(kO−r)

j=1 δj(ΩS)χ2
j(1) and SKP ⇒ χ2[(T − r)(kO − r)], where ΩS =

(VkO−r ⊗ UT−r)′ΩΨ(VkO−r ⊗ UT−r) is assumed non-singular.

We build the empirical matrix F̂O with the time-varying portfolio weights of the Fama-French

five-factor model (Fama and French (2015)) plus the momentum factor (Carhart (1997)), i.e., kO =

6. In the two panels of Figure 2, we can observe that the rank tests point most of the time at a low

reduced rank r either 1 or 2, with only occasionally 3 or 4, for the matrix F̂O. Observed factors

struggle spanning latent factors since their associated linear space is of a dimension smaller than

the one of the latent factor space. The discrepancy between the dimensions of the two factor

spaces has decreased over time. According to the KP statistic, the rank deficiency of F̂O is often

less pronounced in bear markets indicating less redundancy between the observed factors.

7 Concluding remarks

In this paper, we develop a new theory of Factor Analysis in short panels beyond the Gaussian

and i.i.d. cases. We establish the AUMPI property of the LR statistic for testing hypotheses on

the number of latent factors. Our results for short subperiods of the CRSP panel of US stock re-

turns contradict the common wisdom of a single factor during market downturns. In bear markets,

29Under Rank(F ) = k, we have Rank(FO) = Rank(Φ). Hence, under H0,sp(r), matrix Φ has reduced rank r.
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systematic risk explains a large part of the cross-sectional variance, and is not spanned by tradi-

tional empirical factors. Our new methodology can be used to address relevant empirical questions

in applications beyond asset pricing. For example, in analysis of education when a panel con-

sists of students repeatedly tested along different cognitive domains in mathematics and science

(Freyberger (2018)) or interviewed in successive waves (Sarzosa and Urzúa (2021)), in analysis of

particular time spans in long panel data of wages (Gobillon, Magnac, and Roux (2022)) or in anal-

ysis of unemployment for a panel of counties followed on a couple of years (Hagedorn, Manovskii,

and Mitman (2015)).
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Appendix

A Regularity assumptions

In this appendix, we list and comment the additional assumptions used to derive the large sample

properties of the estimators and test statistics. We often denote by C > 0 a generic constant.

Set Θ is a compact subset of {θ = (vec(F )′, diag(Vε)
′)′ ∈ Rr : Vε is diagonal and positive

definite, F ′V −1
ε F is diagonal, with diagonal elements ranked in decreasing order} with r = (T +
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1)k, and function L0(θ) = −1
2

log |Σ(θ)| − 1
2
Tr (VyΣ(θ)−1) is the population FA criterium, where

Σ(θ) = FF ′ + Vε and Vy = plim
n→∞

V̂y. Further, θ0 = (vec(F0)′, diag(V 0
ε )′)′ denotes the vector of

true parameter values under H0(k) and is an interior point of set Θ.

Assumption A.1 The loadings are normalized such that β̄ = 1
n

∑n
i=1 βi = 0 and Ṽβ := 1

n

∑n
i=1 βiβ

′
i

= Ik, for any n. Moreover, |βi| ≤ C, for all i.

Assumption A.2 We have E[w8
i,t] ≤ C and |σi,j| ≤ C, for all i, j, t.

Assumption A.3 Under the null hypothesis H0(k), we have: Σ(θ) = Σ(θ0), θ ∈ Θ⇒ θ = θ0, up

to sign changes in the columns of F .

Assumption A.4 (a) The T (T+1)
2
× T (T+1)

2
symmetric matrix D = lim

n→∞
Dn exists, where Dn =

1
n

∑n
i=1 σ

2
iiV [vech(wiw

′
i)]. (b) We have δT (T+1)/2 (V [vech(wiw

′
i)]) ≥ c, for all i ∈ S̄, where

S̄ ⊂ {1, ..., n} with 1
n

∑n
i=1 1i∈S̄ ≥ 1− 1

2C̄
, for constants C̄, c̄ > 0, such that σii ≤ C̄. (c) We have

lim
n→∞

κn = κ for a constant κ ≥ 0, where κn := 1
n

∑Jn
m=1

(∑
i 6=j∈Im σ

2
ij

)
.

Assumption A.5 Under the alternative hypothesis H1(k), (a) function L0(θ) has a unique maxi-

mizer θ∗ = (vec(F ∗)′, diag(V ∗ε )′)′ over Θ, and (b) we have Vy 6= FF ′ + Vε, for any T × k matrix

F and any diagonal positive definite matrix Vε.

Assumption A.6 Matrix Qβ := lim
n→∞

1
n
β′Σβ is positive definite.

Assumptions A.1 and A.2 require uniform bounds on factor loadings as well as on covariances

and higher-order moments of the idiosyncratic errors. Assumption A.3 implies global identification

in the FA model (see Lemma 5). Assumptions A.1-A.3 yield consistency of FA estimators (see

proof of Lemma 6). We use Assumption A.4 together with Assumption A.2 to invoke a CLT

based on a multivariate Lyapunov condition (see proof of Lemma 1) to establish the asymptotic

distribution of the test statistics. To ease the verification of the Lyapunov condition, we bound a

fourth-order moment of squared errors, which explains why we require finite eight-order moments

in Assumption A.2. We could relax this condition at the expense of a more sophisticated proof of

Lemma 1. The mild Assumption A.4 (b) requires that the smallest eigenvalue of V [vech(wiw
′
i)]

is bounded away from 0 for all assets i up to a small fraction. In Assumption A.4 (c), in order
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to have κn bounded, we need either mixing dependence in idiosyncratic errors within blocks, i.e.,

|σi,j| ≤ Cρ|i−j| for i, j ∈ Im and 0 ≤ ρ < 1, or vanishing correlations, i.e., |σi,j| ≤ Cb−s̄m,n for

all i 6= j ∈ Im and a constant s̄ ≥ 1/2, with blocks of equal size. In Assumption A.5, part

(a) defines the pseudo-true parameter value (White (1982)) under the alternative hypothesis, and

part (b) is used to establish the consistency of the LR test under global alternatives (see proof of

Proposition 4). Finally, Assumption A.6 is used to apply a Lyapunov CLT (see proof of Lemma 8)

when deriving the asymptotic normality of the FA estimators.

B Proofs of Propositions 1-7

Proof of Proposition 1: Let Û be the T × k matrix whose orthonormal columns are the eigen-

vectors for the k largest eigenvalues of matrix V̂
−1/2
ε V̂yV̂

−1/2
ε . Those eigenvalues are 1 + γ̂j ,

j = 1, ..., k, while it holds F̂ = V̂
1/2
ε Û Γ̂1/2, where Γ̂ = diag(γ̂1, ..., γ̂k). We have IT−Û Û ′ = IT−

V̂
−1/2
ε F̂ Γ̂−1F̂ ′V̂

−1/2
ε = IT−V̂ −1/2

ε F̂ (F̂ ′V̂ −1
ε F̂ )−1F̂ ′V̂

−1/2
ε = V̂

−1/2
ε MF̂ ,V̂ε

V̂
1/2
ε = V̂

1/2
ε M ′

F̂ ,V̂ε
V̂
−1/2
ε .

Thus, Ŝ = (IT − Û Û ′)
(
V̂
−1/2
ε V̂yV̂

−1/2
ε − IT

)
(IT − Û Û ′). By the spectral decomposition of

V̂
−1/2
ε V̂yV̂

−1/2
ε , we get (IT − Û Û ′)

(
V̂
−1/2
ε V̂yV̂

−1/2
ε − IT

)
(IT − Û Û ′) =

∑T
j=k+1 γ̂jP̂j , where

the P̂j are the orthogonal projection matrices onto the eigenspaces for the T − k smallest eigen-

values. Then, Part (a) follows. Part (b) is a consequence of the squared Frobenius norm of a

symmetric matrix being equal to the sum of its squared eigenvalues. For Part (c), let PF̂ ,V̂ε =

IT − MF̂ ,V̂ε
and note that F̂ F̂ ′ = PF̂ ,V̂ε(V̂y − V̂ε) + (V̂y − V̂ε)P

′
F̂ ,V̂ε
− PF̂ ,V̂ε(V̂y − V̂ε)P

′
F̂ ,V̂ε

= V̂y − V̂ε − MF̂ ,V̂ε
(V̂y − V̂ε)M

′
F̂ ,V̂ε

, where the first equality is because the three terms on the

RHS are all equal to F̂ F̂ ′ by (FA2). The conclusion follows from (FA1) and V̂ε being diago-

nal. Finally, Part (d) follows because 1
n
ε̂ε̂′ = MF̂ ,V̂ε

V̂yM
′
F̂ ,V̂ε

, V̂εM ′
F̂ ,V̂ε

= MF̂ ,V̂ε
V̂ε, and MF̂ ,V̂ε

is

idempotent, which implies V̂ −1/2
ε MF̂ ,V̂ε

V̂εM
′
F̂ ,V̂ε

V̂
−1/2
ε = V̂

−1/2
ε MF̂ ,V̂ε

V̂
1/2
ε .

Proof of Proposition 2: Let us substitute V̂y = FF ′ + Ṽε + 1√
n
Ψy + op(

1√
n
) into (FA2)

and rearrange to obtain F̂ Γ̂ − FF ′V̂ −1
ε F̂ = 1√

n
ΨyV̂

−1
ε F̂ + (ṼεV̂

−1
ε − IT )F̂ + op(

1√
n
). From

V̂ε = Ṽε + 1√
n
Ψε + op(

1√
n
), we have ṼεV̂ −1

ε − IT = − 1√
n
ΨεV̂

−1
ε + op(

1√
n
). Substituting into
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the above equation and right multiplying both sides by (F ′V̂ −1
ε F̂ )−1 gives F̂ D̂ − F = 1√

n
(Ψy −

Ψε)V̂
−1
ε F̂ (F ′V̂ −1

ε F̂ )−1 + op(
1√
n
), where D̂ := Γ̂(F ′V̂ −1

ε F̂ )−1. By the root-n convergence of the

FA estimates (see Section D.4.1), we get

F̂ D̂ − F =
1√
n

(Ψy −Ψε)V
−1
ε FΓ−1 + op(

1√
n

), (B.1)

and D̂ = Ik + Op(
1√
n
), where Γ = diag(γ1, ..., γk). We can push the expansion by plugging

into (B.1) the expansion of D̂. We have F ′V̂ −1
ε F̂ = [Ik − (F̂ − F )′V̂ −1

ε F̂ Γ̂−1]Γ̂, so that D̂ =

[Ik− (F̂ −F )′V̂ −1
ε F̂ Γ̂−1]−1 = Ik + (F̂ −F )′V −1

ε FΓ−1 + op(
1√
n
). By plugging into (B.1), we get:

F̂ − F + F [(F̂ − F )′V −1
ε FΓ−1] =

1√
n

(Ψy −Ψε)V
−1
ε FΓ−1 + op(

1√
n

). (B.2)

By multiplying both sides with MF,Vε , we get MF,Vε(F̂ − F ) = 1√
n
MF,Vε(Ψy − Ψε)V

−1
ε FΓ−1 +

op(
1√
n
). Then, F̂ − F = 1√

n
MF,Vε(Ψy − Ψε)V

−1
ε FΓ−1 + 1√

n
FA + op(

1√
n
), where A is a random

k × k matrix to be determined next. By plugging into (B.2), we get F (A + A′) = PF,Vε(Ψy −

Ψε)V
−1
ε FΓ−1 +op(1). By multiplying both sides by 1

2
Γ−1F ′V −1

ε and using F ′V −1
ε PF,Vε = F ′V −1

ε ,

we get the symmetric part of matrix A, i.e., 1
2
(A + A′) = 1

2
Γ−1F ′V −1

ε (Ψy − Ψε)V
−1
ε FΓ−1 (we

include higher-order terms in the remainder op( 1√
n
)). Thus, F̂ − F = 1√

n
ΨF + op(

1√
n
), where

ΨF = MF,Vε(Ψy −Ψε)V
−1
ε FΓ−1 +

1

2
PF,Vε(Ψy −Ψε)V

−1
ε FΓ−1 + FÃ, (B.3)

and Ã = 1
2
(A − A′) is an antisymmetric k × k random matrix. To find the antisymmetric matrix

Ã = (ã`,j), we use that F̂ ′V̂ −1
ε F̂ is diagonal. Plugging the expansions of the FA estimates, for the

term at order 1/
√
n we get that the out-of-diagonal elements of matrix Ψ′FV

−1
ε F + F ′V −1

ε ΨF −

F ′V −1
ε ΨεV

−1
ε F = 1

2
Γ−1F ′V −1

ε (Ψy − Ψε)V
−1
ε F + 1

2
F ′V −1

ε (Ψy − Ψε)V
−1
ε FΓ−1 + ΓÃ − ÃΓ −

F ′V −1
ε ΨεV

−1
ε F are nil. Setting the (`, j) element of this matrix equal to 0, we get ã`,j = −ãj,` =

1
γj−γ`

[
1
2
( 1
γj

+ 1
γ`

)F ′`V
−1
ε (Ψy −Ψε)V

−1
ε Fj − F ′`V −1

ε ΨεV
−1
ε Fj

]
, for j 6= `. Then, from Equation

(B.3), the jth column of ΨF is ΨFj = 1
γj
MF,Vε(Ψy − Ψε)V

−1
ε Fj + 1

2γj
PFj ,Vε(Ψy − Ψε)V

−1
ε Fj +∑k

`=1: 6̀=j
1

γj−γ`
PF`,Vε(Ψy − Ψε)V

−1
ε Fj −

∑k
`=1:`6=j

γ`
γj−γ`

PF`,VεΨεV
−1
ε Fj , where we use PF,Vε =∑k

`=1 PF`,Vε . Part (a) follows.
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Let us now prove part (b). The asymptotic expansion of condition (FA1) yields:

diag(Ψy) = diag

(
k∑
j=1

(FjΨ
′
Fj

+ ΨFjF
′
j) + Ψε

)
. (B.4)

From part (a) and the definition of PFj ,Vε we have
∑k

j=1 ΨFjF
′
j = 1

2

∑k
j=1 PFj ,Vε(Ψy−Ψε)P

′
Fj ,Vε

+

MF,Vε(Ψy − Ψε)P
′
F,Vε

+
∑
6̀=j

γj
γj−γ`

PF`,Vε(Ψy − Ψε)P
′
Fj ,Vε
−
∑k

`6=j
γ`γj
γj−γ`

PF`,VεΨεP
′
Fj ,Vε

=: N1 +

N2 + N3 + N4, where PF,Vε =
∑k

j=1 PFj ,Vε = IT − MF,Vε and
∑

` 6=j denotes the double sum

over j, ` = 1, ..., k such that ` 6= j. Matrix N1 is symmetric and it contributes 2N1 to the RHS

of (B.4). Instead, matrix N4 is antisymmetric (it can be seen by interchanging indices j and `

in the summation) and it does not contribute to the RHS of (B.4). For matrix N3 we have N3 +

N ′3 =
∑
6̀=j

γj
γj−γ`

PF`,Vε(Ψy−Ψε)P
′
Fj ,Vε

+
∑

`6=j
γ`

γ`−γj
PF`,Vε(Ψy−Ψε)P

′
Fj ,Vε

=
∑

`6=j PF`,Vε(Ψy−

Ψε)P
′
Fj ,Vε

=
∑

`,j PF`,Vε(Ψy−Ψε)P
′
Fj ,Vε
−
∑

j PFj ,Vε(Ψy−Ψε)P
′
Fj ,Vε

= PF,Vε(Ψy−Ψε)P
′
F,Vε
−2N1,

where we have interchanged ` and j in the first equality when writing N ′3. Thus, we get:

k∑
j=1

(FjΨ
′
Fj

+ ΨFjF
′
j) = MF,Vε(Ψy −Ψε)P

′
F,Vε + PF,Vε(Ψy −Ψε)M

′
F,Vε + PF,Vε(Ψy −Ψε)P

′
F,Vε

= (Ψy −Ψε)−MF,Vε(Ψy −Ψε)M
′
F,Vε . (B.5)

Then, Equation (B.4) with (B.5) yields Equation (5).

Proof of Proposition 3: We use the following properties of the Hadamard product: (ab′) �

(cd′) = (a� c)(b� d)′, diag(ab′) = a� b, a′∆b = (a� b)′diag(∆), and (∆a)� b = a� (∆b) =

∆(a � b) for conformable vectors a, b, c, d and diagonal matrix ∆. Moreover, we deploy the

following facts about the vech operator: diag(GAG′) =
√

2X ′vech(A) and vech(G′∆G) =

1√
2
Xdiag(∆) for (T − k)× (T − k) symmetric matrix A and diagonal T × T matrix ∆.

(a) With G = [g1 : · · · : gT−k], we have MF,Vε = GG′V −1
ε =

∑T−k
j=1 gj(V

−1
ε gj)

′. Then, we

get the Hadamard productM�2
F,Vε

=
∑T−k

i,j=1[gi(V
−1
ε gi)

′]�[gj(V
−1
ε gj)

′] =
[∑T−k

i,j=1(gi � gj)(gi � gj)′
]

V −2
ε =

[∑T−k
i=1 (gi � gi)(gi � gi)′ + 2

∑
i<j(gi � gj)(gi � gj)′

]
V −2
ε = (X ′X)V −2

ε .

(b) From part (a) and Equation (7), Ψε = diag
(
V 2
ε (X ′X)

−1
diag(MF,VεZnM

′
F,Vε

)
)

, with

diag(MF,VεZnM
′
F,Vε

) = diag (GG′V −1
ε ZnV

−1
ε GG′) =

√
2X ′vech (G′V −1

ε ZnV
−1
ε G) .
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(c) We use Z̄n
∗

= Z∗n − G′V −1
ε TF,Vε(Zn)V −1

ε G in vectorized form. From part (b), we have

diag(TF,Vε(Zn)) =
√

2V 2
ε (X ′X)

−1
X ′vech (Z∗n). Moreover, vech (G′V −1

ε TF,Vε(Zn)V −1
ε G) =

1√
2
Xdiag(V −1

ε TF,Vε(Zn)V −1
ε ) = X (X ′X)

−1
X ′vech (Z∗n). The conclusion follows.

Proof of Proposition 4: (a) We first establish asymptotic normality of Zn := V
−1/2
ε ZnV

−1/2
ε .

Lemma 1 (a) Under Assumptions 1-2, A.2, A.4 (a)-(b), we have Ω
−1/2
n vech(Zn)⇒ N(0, IT (T+1)

2

)

as n → ∞ and T is fixed, where Ωn = Dn + κnIT (T+1)
2

, and κn = 1
n

∑Jn
m=1

(∑
i 6=j∈Im σ

2
ij

)
. If

additionally Assumption A.4 (c) holds, then vech(Zn)⇒ N(0,Ω), with Ω := D + κIT (T+1)
2

.

The proof of the next Lemma on vech(Z∗n) being a linear transformation of vech(Zn) uses

vec(S) = Amvech(S) for any symmetric m × m matrix S, where Am is the m2 × 1
2
m(m + 1)

duplication matrix (Magnus, Neudecker (2007)) suited to our definition of the half-vectorization

operator vech and given by Am =
[√

2(e1 ⊗ e1) : · · · :
√

2(em ⊗ em) : {ei ⊗ ej + ej ⊗ ei}i<j
]
,

with ei being the ith unit vector in dimension m.

Lemma 2 Under Assumption 1, we have vech(Z∗n) = vech(Q′ZnQ) = R′vech(Zn), whereR :=

1
2
A′T (Q⊗Q)AT−k is a 1

2
T (T + 1)× p matrix with orthonormal columns, and Q := V

−1/2
ε G.

From Proposition 3 (c) and Lemma 2, we get vech(Z̄∗n) = (Ip −X(X ′X)−1X ′)R′vech(Zn).

Then, Lemma 1 yields part (a) with ΩZ̄∗ = (Ip −X(X ′X)−1X ′)R′ΩR (Ip −X(X ′X)−1X ′).

(b) We have ẑm,n =
∑

i∈Im Ĝ
′V̂ −1
ε

[
ỹiỹ
′
i − TF̂ ,V̂ε(ỹiỹ

′
i)
]
V̂ −1
ε Ĝ with ỹi = yi − ȳ, because ε̂i =

MF̂ ,V̂ε
ỹi and Ĝ′V̂ −1

ε MF̂ ,V̂ε
= Ĝ′V̂ −1

ε . Using ỹiỹ′i = ε̃iε̃
′
i+Fβiβ

′
iF
′+Fβiε̃

′
i+ ε̃iβ

′
iF
′, we get ẑm,n =∑

i∈Im Ĝ
′V̂ −1
ε

[
ε̃iε̃
′
i − TF̂ ,V̂ε(ε̃iε̃

′
i)
]
V̂ −1
ε Ĝ +

∑
i∈Im Ĝ

′V̂ −1
ε

[
Fβiβ

′
iF
′ − TF̂ ,V̂ε(Fβiβ

′
iF
′)
]
V̂ −1
ε Ĝ +∑

i∈Im Ĝ
′V̂ −1
ε

[
Fβiε̃

′
i + ε̃iβ

′
iF
′ − TF̂ ,V̂ε(Fβiε̃

′
i + ε̃iβ

′
iF
′)
]
V̂ −1
ε Ĝ =: z̃m,n + zm,n,1 + zm,n,2, where

ε̃i = εi− ε̄. Then, we can decompose Ω̂Z̄∗ into a sum of a leading term and other terms, which are

asymptotically negligible, so that Ω̂Z̄∗ = Ω̃Z̄∗+op(1), with Ω̃Z̄∗ = 1
n

∑Jn
m=1 vech(z̄m,n)vech(z̄m,n)′,

with z̄m,n defined as z̃m,n after replacing ε̃i with εi. Let us now show that Ω̃Z̄∗ = ΩZ̄∗ + op(1) up to

pre- and post-multiplication by a rotation matrix and its inverse. First, we note that
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vech
(
Ĝ′V̂ −1

ε

[
εiε
′
i − TF̂ ,V̂ε(εiε

′
i)
]
V̂ −1
ε Ĝ

)
= vech

(
Ĝ′V̂ −1

ε

[
εiε
′
i − σiiVε − TF̂ ,V̂ε(εiε

′
i − σiiVε)

]
V̂ −1
ε Ĝ

)
because TF̂ ,V̂ε(·) is the identity transformation for diagonal matrices. Moreover, we have:

vech
(
Ĝ′V̂ −1

ε

[
εiε
′
i − σiiVε − TF̂ ,V̂ε(εiε

′
i − σiiVε)

]
V̂ −1
ε Ĝ

)
= MX̂vech

(
Ĝ′V̂ −1

ε (εiε
′
i − σiiVε)V̂ −1

ε Ĝ
)

= MX̂vech
(
Q̃′(eie

′
i − σiiIT )Q̃

)
= MX̂R̂

′
vech(eie

′
i − σiiIT ), (B.6)

where MX̂ := Ip − X̂(X̂
′
X̂)−1X̂

′
with X̂ defined as X by replacing G with Ĝ, we define

ei = V
−1/2
ε εi, and R̂ := 1

2
A′T (Q̃ ⊗ Q̃)AT−k with Q̃ = V

1/2
ε V̂ −1

ε Ĝ. The first equality in (B.6)

uses an argument similar to Proposition 3 (c), and the third equality is similar to Lemma 2. We

get vech(z̄m,n) = MX̂R̂
′
vech(ζm,n), where ζm,n :=

∑
i∈Im(eie

′
i − σiiIT ). Besides, vech(Zn) =

1√
n

∑Jn
m=1 vech(ζm,n). Then, Ω̃Z̄∗ = MX̂R̂

′
Ω̃nR̂MX̂ for Ω̃n := 1

n

∑Jn
m=1 vech(ζm,n)vech(ζm,n)′.

Further, we have E[Ω̃n] = V [vech(Zn)] = Ωn. Moreover, Ω̃n − E[Ω̃n] = op(1), by using

vec(Ω̃n) = 1
n

∑Jn
m=1 vech(ζm,n)⊗vech(ζm,n) and ‖V [vec(Ω̃n)]‖ ≤ C 1

n2

∑Jn
m=1E [‖vech(ζm,n)‖4] =

o(1), where the latter bound is shown in the proof of Lemma 1 using Assumption 2 (d). Ad-

ditionally, by Assumption A.4, we have Ωn = Ω + o(1). Thus, Ω̃n = Ω + op(1). Now, we use

consistency of the FA estimates and ĜÔ = G+op(1) for a (possibly data-dependent) T−k dimen-

sional orthogonal matrix Ô. Then, by Proposition 10 (e) in Appendix D.5, we have R̂MX̂R̂−1 =

R̂
(
Ip − X̂(X̂

′
X̂)−1X̂

′)
R(Ô)−1 = R (Ip −X(X ′X)−1X ′) + op(1), for a p dimensional or-

thogonal matrix R̂ ≡ R(Ô). We conclude that R̂Ω̃Z̄∗R̂
−1 is a consistent estimator of ΩZ̄∗ as

n→∞ and T is fixed, which yields part (b).

(c) Under H1(k) and Assumption A.5 (a), we have F̂
p→ F ∗ and V̂ε

p→ V ∗ε . Then, Ŝ
p→ S∗ with

S∗ = (V ∗ε )−1/2MF ∗,V ∗ε (Vy − V ∗ε )M ′
F ∗,V ∗ε

(V ∗ε )−1/2 6= 0. Indeed, if S∗ were the null matrix, then we

would have MF ∗,V ∗ε (Vy − V ∗ε )M ′
F ∗,V ∗ε

= 0, which implies Vy − V ∗ε = F ∗A(F ∗)′ for a symmetric

matrix A, in contradiction with Assumption A.5 (b). Thus, n‖Ŝ‖2 ≥ Cn, w.p.a. 1, for a constant

C > 0. Moreover, using vech(ẑm,n) =
(
Ip − X̂(X̂

′
X̂)−1X̂

′)
vech(Ĝ′V̂ −1

ε (
∑

i∈Im ỹiỹ
′
i)V̂

−1
ε Ĝ)

and the conditions on Θ, we get ‖vech(ẑm,n)‖ ≤ C
∑

i∈Im ‖ỹi‖
2. Then, from Assumptions A.1 and

A.2, E[‖Ω̂Z̄∗‖] ≤ C 1
n

∑Jn
m=1 b

2
m,n = O(n

∑Jn
m=1B

2
m,n). Moreover,

∑Jn
m=1 B

2
m,n = o(1). Indeed,

Assumption 2 (d) implies Bm,n ≤ cn−
δ
δ+1 uniformly in m, for any c > 0 and n large enough, and
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hence
∑Jn

m=1B
2
m,n = cn−

δ
δ+1
∑Jn

m=1Bm,n ≤ c, for any c > 0 and n large. Part (c) follows.

Proof of Proposition 5: We have LR(k) = n
2
‖Ŝ‖2 + op(1) = nvech(Ŝ)′vech(Ŝ) + op(1).

Moreover, from the asymptotic expansion (9), we can write
√
nvech(Ŝ) = A(F, Vε)z

AD
n + op(1),

where vector zADn stacks the T (T − 1)/2 above-diagonal elements of matrix Zn and A(F, Vε)

is a deterministic matrix whose elements only depend on F, Vε. From Conditions (a) and (b) of

Proposition 5, and Lemma 1, we have zADn ⇒ N(0,Ωz), where the diagonal matrix Ωz is the same

as if the errors were independent normally distributed - up to replacing q with q + κ.

Proof of Proposition 6: Let us first get the asymptotic expansion of V̂y = 1
n
Ỹ Ỹ ′. With the

drifting DGP Y = µ1′n+Fβ′+Fk+1β
′
loc+ε, and using β̄ = 0, β̄loc = 0, 1

n
[β : βloc]

′[β : βloc] = Ik+1

and Lemma 6 (a) in Appendix D, we get V̂y = Ṽy + 1√
n
Ψy,loc +Ry, where Ṽy = FF ′ + Ṽε,

Ψy,loc = ck+1ρk+1ρ
′
k+1 +

1√
n

(εβF ′ + Fβ′ε′) +
√
n

(
1

n
εε′ − Ṽε

)
, (B.7)

and Ry = 1
n
(εβlocF

′
k+1 +Fk+1β

′
locε
′) + [Fk+1F

′
k+1−n−1/2ck+1ρk+1ρ

′
k+1] + op(

1√
n
). Using Fk+1 =

√
γk+1ρk+1 and

√
nγk+1 = ck+1 + o(1), we get Ry = op(1/

√
n). We use Equation (5) with Ψy,loc

given in (B.7) instead of Ψy, and get Ψε = TF,Vε(Zn,loc), where Zn,loc :=
√
n
(

1
n
εε′ − Ṽε

)
+

ck+1ρk+1ρ
′
k+1 and diag(Ψε) =

√
2V 2

ε (X ′X)−1X ′vech(Z∗n,loc). Then, as in Equation (8),
√
nŜ =

V
−1/2
ε MF,Vε (Zn,loc − TF,Vε(Zn,loc))M ′

F,Vε
V
−1/2
ε + op(1) = V

−1/2
ε G(Z̄∗n + ∆)G′V

−1/2
ε + op(1),

where ∆ = ck+1G
′V −1
ε

(
ρk+1ρ

′
k+1 − TF,Vε(ρk+1ρ

′
k+1)

)
V −1
ε G. As in Proposition 3 (c), we have

vech(∆) = ck+1 (Ip −X(X ′X)−1X ′) vech(G′V −1
ε ρk+1ρ

′
k+1V

−1
ε G) = ck+1 (Ip −X(X ′X)−1X ′)

vech(ξk+1ξ
′
k+1) since ρk+1 = Gξk+1. From the proof of Proposition 4 (a), Z̄∗n ⇒ Z̄∗ as n → ∞,

and Part (a) follows. Part (b) is a consequence of Part (a) and the Continuous Mapping Theorem.

Proof of Proposition 7: The proof of part (a) is in three steps. (i) The testing problem asymp-

totically simplifies to the null hypothesis H0 : λ1 = ... = λdf = 0 vs. the alternative hypothesis

H1 : ∃λj > 0, j = 1, ..., df . Let us define λ0 = (0, ..., 0)′ for the null hypothesis and pick a

given vector λ1 = (λ1, ..., λdf )
′ in the alternative hypothesis, and consider the test of λ0 versus

λ1 (simple hypothesis). By Neyman-Pearson Lemma, the most powerful test for λ0 versus λ1

rejects the null hypothesis when f(z;λ1, ..., λdf )/f(z; 0, ..., 0) is large, i.e., the test function is
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φ(z) = 1
{
f(z;λ1,...,λdf )

f(z;0,...,0)
≥ C

}
for a constant C > 0 set to ensure the correct asymptotic size.

(ii) Let us now show that the density ratio f(z;λ1,...,λdf )

f(z;0,...,0)
is an increasing function of z. To show

this, we can rely on an expansion of the density of
∑df

j=1 µjχ
2(1, λ2

j) in terms of central chi-square

densities (Kotz, Johnson, and Boyd (1967) Equations (144) and (151)):

f(z;λ1, ..., λdf ) =
∞∑
k=0

c̄k(λ1, ..., λdf )g(z; df + 2k, 0), (B.8)

where the coefficients c̄k(λ1, ..., λdf ) = Ae−
∑df
j=1 λ

2
j/2E[Q(λ1, ..., λdf )

k]/k! involve moments of

the quadratic form Q(λ1, ..., λdf ) = (1/2)

df∑
j=1

(
ν

1/2
j Xj + λj(1− νj)1/2

)2

of the mutually inde-

pendent variables Xj ∼ N(0, 1), A =
∏df

j=1 µ
−1/2
j , and νj = 1 − 1

µj
min` µ`. Without loss

of generality for checking the monotonicity, we have rescaled the density so that minj µj =

1. Then, from (B.8), we get the ratio: f(z;λ1,...,λdf )

f(z;0,...,0)
=

∑∞
k=0 c̄k(λ1,...,λdf )g(z;df+2k,0)∑∞
k=0 c̄k(0,...,0)g(z;df+2k,0)

. By dividing

both the numerator and the denominator by the central chi-square density g(z; df, 0), we get
f(z;λ1,...,λdf )

f(z;0,...,0)
= e−

∑df
j=1 λ

2
j/2

∑∞
k=0 ck(λ1,...,λdf )ψk(z)∑∞
k=0 ck(0,...,0)ψk(z)

=: e−
∑df
j=1 λ

2
j/2Ψ(z;λ1, ..., λdf ), where ψk(z) :=

g(z; df + 2k, 0)/g(z; df, 0) =
Γ( df

2
)

2kΓ( df
2

+k)
zk is the ratio of central chi-square distributions with

df + 2k and df degrees of freedom, and ck(λ1, ..., λdf ) = E[Q(λ1, ..., λdf )
k]/k!. We use the

short notation ck(λ) := ck(λ1, ..., λdf ) and ck(0) := ck(0, ..., 0). The factor e−
∑df
j=1 λ

2
j/2 does

not impact on the monotonicity of the density ratio. We take the derivative of Ψ(z;λ1, ..., λdf )

with respect to argument z and get ∂zΨ(z;λ1, ..., λdf ) =
(
∑∞
k=1 ck(λ)ψ′k(z))(1+

∑∞
k=1 ck(0)ψk(z))

(
∑∞
k=0 ck(0)ψk(z))

2 −

(1+
∑∞
k=1 ck(λ)ψk(z))(

∑∞
k=1 ck(0)ψ′k(z))

(
∑∞
k=0 ck(0)ψk(z))

2 . The sign is given by the difference of the numerators, which

is
∑∞

k=1[ck(λ)− ck(0)]ψ′k(z) +
∑∞

k,l=1,k 6=l ck(λ)cl(0)[ψ′k(z)ψl(z)− ψk(z)ψ′l(z)] =
∑∞

k=1[ck(λ)−

ck(0)]ψ′k(z) +
∑∞

k,l=1,k>l[ck(λ)cl(0) − cl(λ)ck(0)][ψ′k(z)ψl(z) − ψk(z)ψ′l(z)]. We use ψ′k(z) =
Γ( d

2
)k

2kΓ( d
2

+k)
zk−1 and ψ′k(z)ψl(z) − ψk(z)ψ′l(z) = (k − l) Γ( d

2
)2

2k+lΓ( d
2

+k)Γ( d
2

+l)
zk+l−1 for k > l and z ≥ 0.

The difference of the numerators in the derivative of the density ratio becomes:
1
2

Γ( d
2

)

Γ( d
2

+1)
[c1(λ) − c1(0)] + 1

22
2Γ( d

2
)

Γ( d
2

+2)
[c2(λ) − c2(0)]z +

∑∞
m=3

1
2m

(
m

Γ( d
2

)

Γ( d
2

+m)
[cm(λ)− cm(0)]

+
∑

k>l≥1,k+l=m

(k−l)Γ( d
2

)2

Γ( d
2

+k)Γ( d
2

+l)
[ck(λ)cl(0)− cl(λ)ck(0)]

)
zm−1 =

∑∞
m=1

1
2m
κmz

m−1, with κm :=
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∑
k>l≥0,k+l=m(k−l) Γ( d

2
)2

Γ( d
2

+k)Γ( d
2

+l)
[ck(λ)cl(0)−cl(λ)ck(0)]. A direct calculation shows that κ1, κ2 ≥

0. Hence, a sufficient condition for monotonicity of the density ratio is κm ≥ 0, for all m ≥ 3, i.e.,

Inequalities (12). Thus, the test rejects for large values of the argument, i.e., φ(z) = 1{z ≥ C̄},

where the constant C̄ is determined by fixing the asymptotic size under the null hypothesis.

(iii) Since the test function φ does not depend on λ1, it is AUMPI in the class of hypothesis

tests based on the LR statistic (or the squared norm statistic). It yields part (a).

Let us now turn to the proof of part (b). From the definition of the κm coefficients written as

κm =
∑

j>l≥0,j+l=m

(j−l)Γ( df
2

)2

Γ( df
2

+j)Γ( df
2

+l)
cj(0)cl(0)[

cj(λ)

cj(0)
− cl(λ)

cl(0)
], it is sufficient to get κm ≥ 0, for all m,

that sequence cj(λ)

cj(0)
, for j = 0, 1, ..., is increasing. To prove that, we link the coefficients cj(λ) to

the complete exponential Bell’s polynomials (Bell (1934)) and establish the following recurrence.

Lemma 3 We have cl+1(λ) = 1
l+1

∑l
i=0

(
1
2

∑df
j=1 ν

i
j

[
νj + (i+ 1)(1− νj)λ2

j

])
cl−i(λ), for l ≥ 0.

We use cl(λ)
cl(0)

= c̃l(λ)
γl

, where we obtain the sequences γl := cl(0)ν−ldf and c̃l(λ) := cl(λ)ν−ldf by

standardization with ν−ldf . From Lemma 3, we have γl+1 = 1
l+1

∑l
i=0

1
2

(
1 +

∑df−1
j=2 ρi+1

j

)
γl−i with

γ0 = 1, and c̃l+1(λ) = 1
l+1

∑l
i=0

(
1
2

∑df
j=1 ρ

i
j

[
ρj + i+1

νdf
(1− νj)λ2

j

])
c̃l−i(λ) with c̃0(λ) = 1 (note

that ρ1 = 0 and ρdf = 1). To prove that sequence c̃l(λ)
γl

is increasing, the next lemma provides a

sufficient condition from "separation" of the coefficients that define the recursive relations.

Lemma 4 (Separation Lemma) Let (ai) be a real sequence, and let bi = 1
2

(
1 +

∑df−1
j=2 ρij

)
,

for i ≥ 1, where 0 ≤ ρj ≤ 1. Let sequences (gl) and (cl) be defined recursively by gl+1 =

1
l
(b1gl + b2gl−1 + ... + bl) and cl+1 = 1

l
(a1cl + a2cl−1 + ... + al), with g1 = c1 = 1. Suppose that

ai ≥ max{df−1
2
, 1}, for all i (separation condition). Then, sequence ( cl

gl
) is increasing.

We apply Lemma 4 to sequences c̃l(λ) and γl. We detail the case df ≥ 3 (for df = 2 the

analysis is simpler). The separation condition 1
2

∑df
j=1 ρ

i
j

[
ρj + i+1

νdf
(1− νj)λ2

j

]
≥ df−1

2
, for i = 0,

yields λ2
1 +

∑df
j=2(1 − νj)λ2

j ≥ νdf

(
df − 2−

∑df−1
j=2 ρj

)
, and, for i ≥ 1, it yields

∑df−1
j=2 ρij(1 −

νj)λ
2
j + (1− νdf )λ2

df ≥
νdf
i+1

(
df − 2−

∑df−1
j=2 ρi+1

j

)
. Inequalities (13) follow.

43



Figure 1: The upper panel displays the p-values for the statistic LR(k) for the subperiods from January

1963 to December 2021, stopping at the smallest k such that H0(k) is not rejected at level αn = 10/nmax.

If no such k is found then p-values are displayed up to kmax. We use rolling windows of T = 20 months

moving forward by 12 months each time. The first bar of p-values covers the whole 20 months. Other bars

cover the last 12 months of the 20 months subperiod. We flag bear market phases with grey shaded vertical

bars. The five lower panels display
(
V̂ y

)1/2
for total cross-sectional volatility,

(
F̂ ′F̂

)1/2
for systematic

volatility,
(
V̂ ε

)1/2
for idiosyncratic volatility, as well as R̂2 and R̂2 under a single-factor model.



Figure 2: The upper and lower panels display the p-values for the RS and KP statistics for the subperiods

from January 1963 to December 2021, for the rank test of the null hypothesis H0,sp(r) that FO has rank r

against the alternative hypothesis of rank larger than r, for any integer r ≤ k − 1. The empirical matrix F̂O

is computed with the time-varying portfolio weights of the Fama-French five-factor model plus momentum.

We stop at the smallest r such that H0,sp(r) is not rejected at level αn = 10/n. If no such r is found then

p-values are displayed up to k − 1. The red horizontal segments give k̂ − 1, i.e., the estimated number of

latent factors obtained from Figure 1 minus 1. We flag bear market phases with grey shaded vertical bars,

and use the same rolling windows as in Figure 1.
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ONLINE APPENDIX

Latent Factor Analysis in Short Panels

Alain-Philippe Fortin, Patrick Gagliardini, and Olivier Scaillet

We prove Lemmas 1-4 of the paper in Section C. We provide additional theory in Appendix

D, namely the characterization of the pseudo likelihood and the PML estimator (Subsection D.1),

the conditions for global identification and consistency (D.2), the local analysis of the first-order

conditions of FA estimators (D.3), the asymptotic normality of FA estimators (D.4), the definition

of invariant tests (D.5), and proofs of additional lemmas (D.6). Finally, we give numerical checks

of Inequalities (12) of Proposition 7 in Appendix E.

C Proofs of Lemmas 1-4

Proof of Lemma 1: We have Zn = 1√
n
(WΣW ′−Tr(Σ)IT ). Hence, (Zn)tt = 1√

n

∑
i,j(wi,twj,t−

1{i=j})σij = 1√
n

∑Jn
m=1 ζ

tt
m,n, with ζttm,n =

∑
i∈Im [w2

i,t − 1]σii + 2
∑

i,j∈Im
i<j

wi,twj,tσij, together

with (Zn)ts = 1√
n

∑
i,j wi,twj,sσij = 1√

n

∑Jn
m=1 ζ

ts
m,n, t 6= s, with ζtsm,n =

∑
i∈Im wi,twi,sσii +∑

i,j∈Im
i<j

wi,twj,sσij +
∑

i,j∈Im
i>j

wi,twj,sσij, t 6= s, so that vech(Zn) = 1√
n

∑Jn
m=1 vech(ζm,n), where

ζm,n is the T × T matrix having element ζtsm,n in position (t, s). Hence, vech(Zn) is the row sum

of a triangular array {vech(ζm,n)}1≤m≤n of independent centered random vectors. Let Ωm,n :=

V [vech(ζm,n)]. Using Assumption 2 (a), we compute (i) E[(ζttm,n)2] =
∑

i∈Im(E[w4
i,t] − 1)σ2

ii +

2
∑

i,j∈Im
i 6=j

σ2
ij; (ii) E[(ζtsm,n)2] =

∑
i∈Im E[w2

i,tw
2
i,s]σ

2
ii +

∑
i,j∈Im
i6=j

σ2
ij, t 6= s; (iii) E[ζttm,nζ

ss
m,n] =∑

i∈Im E[w2
i,tw

2
i,s−1]σ2

ii, t 6= s; (iv)E[ζttm,nζ
rp
m,n] =

∑
i∈Im E[w2

i,twi,rwip]σ
2
ii, r 6= p; (v)E[ζtsm,nζ

rp
m,n]

=
∑

i∈Im E[wi,twi,swi,rwi,p]σ
2
ii, t 6= s, r 6= p. It follows that V [vech(Zn)] = 1

n

∑Jn
m=1 Ωm,n =

Dn+κnIT (T+1)
2

= Ωn. The eigenvalues ofDn are bounded away from 0 under Assumption A.4 (b),

because for any unit vector ξ ∈ RT (T+1)/2 we have ξ′Dnξ ≥ 1
n

∑n
i=1 1i∈S̄σ

2
iiξ
′V [vech(wiw

′
i)]ξ ≥

c 1
n

∑n
i=1 1i∈S̄σ

2
ii ≥ c

(
1− 1

n

∑n
i=1(1− 1i∈S̄)σii

)2 ≥ c
(
1− C̄ 1

n

∑n
i=1(1− 1i∈S̄)

)2 ≥ c
4
, for all n.
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We use the multivariate Lyapunov condition ‖Ω−1/2
n ‖4 1

n2

∑Jn
m=1E[‖vech(ζm,n)‖4] → 0 to invoke

a CLT. Since ‖A−1/2‖4 ≤ k2

δ2k(A)
and ‖x‖4 ≤ k

∑k
j=1 x

4
j , for any k× k positive semi-definite matrix

A and k × 1 vector x, it suffices to check that 1
n2

∑Jn
m=1 E[(ζtsm,n)4] → 0, for all t, s. Besides, we

can show that there exists a constant M > 0, such that E[(ζtsm,n)4] ≤ Mb
2(1+δ)
m,n , for all m,n, t, s.

We get 1
n2

∑Jn
m=1E[(ζtsm,n)4] ≤ M 1

n2

∑Jn
m=1 b

2(1+δ)
m,n = Mn2δ

∑Jn
m=1B

2(1+δ)
m,n = o(1), under As-

sumption 2 (d). Then, Ω
−1/2
n vech(Zn)⇒ N(0, IT (T+1)

2

) by the multivariate Lyapunov CLT. Under

Assumptions A.4 (a)-(c), Ωn → Ω follows from the Slutsky theorem, and Ω is positive definite.

Proof of Lemma 2: We use that matrix Am is such that A′mAm = 2I 1
2
m(m+1), AmA

′
m = Im2 +

Km,m, and Km,mAm = Am, where Km,m is the commutation matrix (see also Magnus, Neudecker

(2007) Theorem 12 in Chapter 2.8). Then, we have: vech(Q′ZnQ) = 1
2
A′T−kvec(Q

′ZnQ) =

1
2
A′T−k(Q

′ ⊗ Q′)vec(Zn) = R′vech(Zn). The columns of matrix R are orthonormal: R′R =

1
4
A′T−k(Q

′ ⊗ Q′)ATA
′
T (Q ⊗ Q)AT−k = 1

4
A′T−k(Q

′ ⊗ Q′)(IT 2 + KT,T )(Q ⊗ Q)AT−k

= 1
4
A′T−k(I(T−k)2 +KT−k,T−k)AT−k = 1

2
A′T−kAT−k = Ip, since Q′Q = IT−k.

Proof of Lemma 3: We have cj(λ) = 1
j!
E[Qj] = 1

j!
djΨ(0)
duj

where Ψ(u) := E[exp(uQ)] =

exp[ψ(u)] is the Moment Generating Function (MGF) ofQ = 1
2

∑df
j=1(
√
νjXj+

√
1− νjλj)2 with

Xj ∼ i.i.d.N(0, 1). By the independence of variablesXj , we get Ψ(u) =
∏df

j=1E[exp(u
2
(
√
νjXj+√

1− νjλj)2] where E[exp(u
2
(
√
νjXj +

√
1− νjλj)2] = (1− νju)−1/2e

1
2

(1−νj)u
1−νju

λ2j , for u < 1/νj .

Thus we get the log MGF ψ(u) = 1
2

∑df
j=1

[
− log(1− νju) +

(1−νj)u
1−νju λ

2
j

]
, for u < 1/νdf . Its lth

order derivative evaluated at u = 0 is

ψ(l)(0) =
(l − 1)!

2

df∑
j=1

νl−1
j

[
νj + l(1− νj)λ2

j

]
, l ≥ 0. (C.1)

By using the Faa di Bruno formula for the derivatives of a composite function, we have
dl

dul
eψ(u) = eψ(u)Bl(ψ

′(u), ψ
′′
(u), ..., ψ(l)(u)), whereBl is the lth complete exponential Bell’s poly-

nomial (Bell (1934)). Hence, Ψ(l)(0) = Bl(ψ
′(0), ψ

′′
(0), ..., ψ(l)(0)). The complete Bell’s polyno-

mials satisfy the recurrence relation Bl+1(x1, x2, ..., xl+1) =
∑l

i=0

(
l
i

)
Bl−i(x1, ..., xl−i)xi+1. Thus,

Ψ(l+1)(0) =
∑l

i=0

(
l
i

)
Ψ(l−i)(0)ψ(i+1)(0). After standardization with the factorial term, and using

equation (C.1), the conclusion follows.
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Proof of Lemma 4: The proof is in four steps. (i) We first show that (ci) is increasing, i.e.,

Gc
i := ci+1 − ci ≥ 0 for all i. For this purpose, from the recursive relation defining ci+1 we have:

ci+1 =
1

i

(
a1(ci−1 +Gc

i−1) + a2(ci−2 +Gc
i−2) + · · ·+ ai−1(c1 +Gc

1) + ai
)

=
1

i

(
(a1 − 1)Gc

i−1 + (a2 − 1)Gc
i−2 + · · ·+ (ai−1 − 1)Gc

1 + (ai − 1)
)

+
1

i

(
Gc
i−1 +Gc

i−2 + · · ·+Gc
1 + 1

)
+

1

i
(a1ci−1 + a2ci−2 + · · ·+ ai−1) .

The second term in the RHS is equal to 1
i
ci. Using a1ci−1 + a2ci−2 + · · · + ai−1 = (i − 1)ci,

the third term in the RHS is equal to i−1
i
ci. Thus, by bringing these two terms in the LHS, we

get Gc
i = 1

i

(
(a1 − 1)Gc

i−1 + (a2 − 1)Gc
i−2 + · · ·+ (ai−1 − 1)Gc

1 + (ai − 1)
)
, for all i ≥ 2, with

Gc
1 = a1 − 1. Because ai ≥ 1 for all i, by an induction argument we get Gc

i ≥ 0 for all i ≥ 1.

(ii) We now strengthen the result in step (i) and show that Hc
i := ci+1 − ci ζ+i−1

i
≥ 0 for all i,

with ζ = max{df−1
2
, 1}. Similarly as in step (i), we have

ci+1 =
1

i

(
(a1 − ζ)Gc

i−1 + (a2 − ζ)Gc
i−2 + · · ·+ (ai−1 − ζ)Gc

1 + (ai − ζ)
)

+
ζ

i

(
Gc
i−1 +Gc

i−2 + · · ·+Gc
1 + 1

)
+

1

i
(a1ci−1 + a2ci−2 + · · ·+ ai−1) ,

where the second term in the RHS equals ζ
i
ci, and the third term equals i−1

i
ci. Thus, we get

Hc
i = 1

i

(
(a1 − ζ)Gc

i−1 + (a2 − ζ)Gc
i−2 + · · ·+ (ai−1 − ζ)Gc

1 + (ai − ζ)
)
, for all i. By step (i),

we have Gc
i ≥ 0 for i ≥ 1. Using the separation condition ai ≥ ζ for all i, we get Hc

i ≥ 0 for all i.

(iii) We show that Hg
i := gi+1 − gi ζ+i−1

i
≤ 0 for all i ≥ 1. For df = 2 this statement follows

with ζ = 1 because gi+1 = 1
2i

(gi + gi−1 + ... + 1) = 2i−1
2i
gi and hence (gi) is decreasing. Let us

now consider the case df ≥ 3 with ζ = df−1
2

. As above we have Hg
i = 1

i

∑i
l=1(bl − ζ)Gg

i−l, where

Gg
i := gi+1 − gi. We plug in bl − ζ = 1

2

∑df−1
j=2 (ρlj − 1) = 1

2

∑df−1
j=2 (ρj − 1)(1 + ρj + ...+ ρl−1

j ) =

1
2

∑df−1
j=2 (ρj − 1)

∑l
k=1 ρ

k−1
j . Thus, we get:

Hg
i =

1

2i

df−1∑
j=2

(ρj − 1)
i∑
l=1

l∑
k=1

ρk−1
j Gg

i−l =
1

2i

df−1∑
j=2

(ρj − 1)
i∑

k=1

ρk−1
j

i∑
l=k

Gg
i−l

=
1

2i

df−1∑
j=2

(ρj − 1)
i∑

k=1

ρk−1
j gi−k+1 =

1

2i

df−1∑
j=2

(ρj − 1)
(
gi + ρjgi−1 + ...+ ρi−1

j

)
≤ 0.
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(iv) The inequalities established in steps (ii) and (iii) imply ci+1

ci
≥ ζ+i−1

i
and gi+1

gi
≤ ζ+i−1

i
for

all i. Then, we get ci+1

ci
≥ gi+1

gi
, that is equivalent to ci+1

gi+1
≥ ci

gi
, for all i, because the sequences ci

and gi are strictly positive. The conclusion follows.

D Additional theory

D.1 Pseudo likelihood and PML estimator

The FA estimator is the PML estimator based on the Gaussian likelihood function obtained from

the pseudo model yi = µ+ Fβi + εi with βi ∼ N(0, Ik) and εi ∼ N(0, Vε) mutually independent

and i.i.d. across i = 1, ..., n. Then, yi ∼ N(µ,Σ(θ)) under this pseudo model, where Σ(θ) :=

FF ′ + Vε and θ := (vec(F )′, diag(Vε)
′)′ ∈ Rr with r = (k + 1)T . It yields the pseudo log-

likelihood function L̂(θ, µ) = −1
2

log |Σ(θ)|− 1
2n

∑n
i=1(yi−µ)′Σ(θ)−1(yi−µ) = −1

2
log |Σ(θ)|−

1
2
Tr
(
V̂yΣ(θ)−1

)
− 1

2
(ȳ − µ)′Σ(θ)−1(ȳ − µ), up to constants, where ȳ = 1

n

∑n
i=1 yi and V̂y =

1
n

∑n
i=1(yi − ȳ)(yi − ȳ)′. We concentrate out parameter µ to get its estimator µ̂ = ȳ. Then,

estimator θ̂ = (vec(F̂ )′, diag(V̂ε)
′)′ is defined by the maximization of

L̂(θ) := −1

2
log |Σ(θ)| − 1

2
Tr
(
V̂yΣ(θ)−1

)
, (D.1)

subject to the normalization restriction that F ′V −1
ε F is a diagonal matrix, with diagonal elements

ranked in decreasing order. 30

D.2 Global identification and consistency

The population criterium L0(θ) is defined in Appendix A, with Vy = V 0
y = Σ(θ0) = F0F

′
0 + V 0

ε .

30If the risk-free rate vector is considered observable, we can rewrite the model as ỹi = F β̃i + εi = µ+ Fβi + εi,

where ỹi = yi−rf is the vector of excess returns and µ = Fµβ̃ . It corresponds to a constrained model with parameters

θ and µβ̃ . The maximization of the corresponding Gaussian pseudo likelihood function leads to a constrained FA

estimator, that we do not consider in this paper since it does not match a standard FA formulation.
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Lemma 5 The following conditions are equivalent: a) the true value θ0 is the unique maximizer

of L0(θ) for θ ∈ Θ; b) Σ(θ) = Σ(θ0), θ ∈ Θ⇒ θ = θ0, up to sign changes in the columns of F .

They yield the global identification in the FA model.

In Lemma 5, condition a) is the standard identification condition for a M-estimator with pop-

ulation criterion L0(θ). Condition (b) is the global identification condition based on the variance

matrix as in Anderson and Rubin (1956). Condition (b) corresponds to our Assumption A.3.

Let us now establish the consistency of the FA estimators in our setting. Write V̂y = 1
n

∑n
i=1(εi−

ε̄)(εi−ε̄)′+F [ 1
n

∑n
i=1(βi−β̄)(βi−β̄)′]F ′+F [ 1

n

∑n
i=1(βi−β̄)(εi−ε̄)′]+[ 1

n

∑n
i=1(εi−ε̄)(βi−β̄)′]F ′,

where ε̄ = 1
n

∑n
i=1 εi and β̄ = 1

n

∑n
i=1 βi. Under the normalization in Assumption A.1 we have:

V̂y =
1

n
εε′ − ε̄ε̄′ + FF ′ + F

(
1

n
εβ

)′
+

(
1

n
εβ

)
F ′. (D.2)

Lemma 6 Under Assumptions 1, 2, and A.1, A.2, as n → ∞, we have: (a) ε̄ = op(
1

n1/4 ), (b)
1
n
εε′

p→ V 0
ε , and (c) 1

n
εβ

p→ 0.

From Equation (D.2) and Lemma 6, we have V̂y
p→ V 0

y . Thus, L̂(θ) converges in probability to

L0(θ) as n → ∞, uniformly over Θ compact. From standard results on M-estimators, we get

consistency of θ̂. Moreover, from ȳ = µ+ ε̄, we get the consistency of µ̂.

Proposition 8 Under Assumptions 1, 2, and A.1-A.3, the FA estimators F̂ , V̂ε and µ̂ are consistent

as n→∞ and T is fixed.

Anderson and Rubin (1956) establish consistency in Theorem 12.1 (see beginning of the proof,

page 145) within a Gaussian ML framework. Anderson and Amemiya (1988) provide a version of

this result in their Theorem 1 for generic distribution of the data, dispensing for compacity of the

parameter set but using a more restrictive identification condition.
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D.3 Local analysis of the first-order conditions of FA estimators

Consider the criterion L(θ) = −1
2

log |Σ(θ)| − 1
2
Tr (VyΣ(θ)), where Vy is a p.d. matrix in a neigh-

bourhood of V 0
y . In our Assumptions, θ0 is an interior point of Θ. Let θ∗ = (vec(F ∗)′, diag(V ∗ε )′)′

denote the maximizer of L(θ) subject to θ ∈ Θ. According to Anderson (2003), the first-order

conditions (FOC) for the maximization of L(θ) are: (a) diag(Vy) = diag(F ∗(F ∗)′ + V ∗ε ) and (b)

F ∗ is the matrix of eigenvectors of Vy(V ∗ε )−1 associated to the k largest eigenvalues 1 + γ∗j for

j = 1, ..., k, normalized such that (F ∗)′(V ∗ε )−1F ∗ = diag(γ∗1 , ..., γ
∗
k).

i) Local identification

Let Vy = V 0
y . The true values F0 and V 0

ε solve the FOC. Let F = F0 + εΨε
F and Vε = V 0

ε + εΨε
Vε

,

where ε is a small scalar and Ψε
F ,Ψ

ε
Vε

are deterministic conformable matrices, be in a neighbour-

hood of F0 and V 0
ε and solve the FOC up to terms O(ε2). The model is locally identified if, and

only if, it implies Ψε
Vε

= 0 and Ψε
F = 0.

Lemma 7 Under Assumption 1, the following four conditions are equivalent: (a) Matrix M�2
F0,V 0

ε

is non-singular, (b) Matrix X is full-rank, (c) Matrix Φ�2 is non-singular, where Φ := V 0
ε −

F0(F ′0(V 0
ε )−1F0)−1F ′0, (d) Matrix B′0J0B0 is non-singular, where J0 := −∂2L0(θ0)

∂θ∂θ′
and B0 is any

full-rank r × (r − 1
2
k(k − 1)) matrix such that ∂g(θ0)

∂θ′
B0 = 0, for g(θ) = {[F ′V −1

ε F ]i,j}i<j the
1
2
k(k − 1) dimensional vector of the constraints. They yield the local identification of our model.

In Lemma 7, condition (a) corresponds to Assumption 4. Condition (c) is used in Theorem

5.9 of Anderson and Rubin (1956) to show local identification. Condition (d) involves the second-

order partial derivatives of the population criterion function. While the Hessian matrix J0 itself is

singular because of the rotational invariance of the model to latent factors, the second-order partial

derivatives matrix along parameter directions, which are in the tangent plan to the contraint set, is

non-singular. Condition (d) is equivalent to invertibility of the bordered Hessian.
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ii) Local misspecification

Now let Vy = V 0
y + εΨε

y be in a neighbourhood of V 0
y . Let F ∗ = F0 + εΨε

F + O(ε2) and V ∗ε =

V 0
ε + εΨε

Vε
+O(ε2) be the solutions of the FOC. Consider Vy−Σ∗, where Σ∗ = F ∗(F ∗)′+V ∗ε , i.e.,

the difference between variance Vy and its k-factor approximation with population FA. We want to

find the first-order development of Vy − Σ∗ for small ε. From the FOC, we have that the diagonal

of such symmetric matrix is null, but not necessarily the out-of-diagonal elements.

From the arguments in the proof of Proposition 2, Equations (B.4) and (B.5), we get:

Ψε
FF
′
0 + F0(Ψε

F )′ = Ψε
y −Ψε

Vε −MF0,V 0
ε

(Ψε
y −Ψε

Vε)M
′
F0,V 0

ε
, (D.3)

diag(MF0,V 0
ε

(Ψε
y −Ψε

Vε)M
′
F0,V 0

ε
) = 0. (D.4)

Similarly as above, Equation (D.4) yields diag(Ψε
Vε

) = (V 0
ε )2 (X ′X)

−1
diag(MF0,V 0

ε
Ψε
yM

′
F0,V 0

ε
).

Moreover, diag(MF0,V 0
ε

Ψε
yM

′
F0,V 0

ε
) =
√

2X ′vech
(
G′0(V 0

ε )−1Ψε
y(V

0
ε )−1G0

)
. Thus, we have:

diag(Ψε
Vε) =

√
2(V 0

ε )2 (X ′X)
−1
X ′vech

(
G′0(V 0

ε )−1Ψε
y(V

0
ε )−1G0

)
. (D.5)

Now, using Equation (D.3), we get Vy − Σ∗ = ε
(
Ψε
y − F0(Ψε

F )′ −Ψε
FF
′
0 −Ψε

Vε

)
+ O(ε2)

= εMF0,V 0
ε

(Ψε
y−Ψε

Vε
)M ′

F0,V 0
ε

+O(ε2) = εG0∆∗G′0+O(ε2),where ∆∗ := G′0(V 0
ε )−1Ψε

y(V
0
ε )−1G0−

G′0(V 0
ε )−1Ψε

Vε
(V 0

ε )−1G0. Using that vech(G′0diag(a)G0) = 1√
2
Xa, and Equation (D.5), the vec-

torized form of matrix ∆∗ is: vech(∆∗) = vech
(
G′0(V 0

ε )−1Ψε
y(V

0
ε )−1G0

)
− 1√

2
X(V 0

ε )−2diag(Ψε
Vε

) =(
Ip −X (X ′X)

−1
X ′
)
vech

(
G′0(V 0

ε )−1Ψε
y(V

0
ε )−1G0

)
. Thus, we have shown that, at first order

in ε, the difference between Vy = V 0
y + εΨε

y and the FA k-factor approximation Σ∗ is εG0∆∗G′0,

with vech(∆∗) =
(
Ip −X (X ′X)

−1
X ′
)
vech

(
G′0(V 0

ε )−1Ψε
y(V

0
ε )−1G0

)
. It shows that the small

perturbation εΨε
y around V 0

y keeps the DGP within the k-factor specification (at first order) if, and

only if, vector vech
(
G′0(V 0

ε )−1Ψε
y(V

0
ε )−1G0

)
is spanned by the columns ofX .

Consider Ψε
y = Hξξ′H ′, where H := [F0 : G0] and vector ξ = (ξ′F , ξ

′
G)′ are partitioned in k

and T − k dimensional components, which corresponds to a local alternative with (k+ 1)th factor

Hξ and small loading ε in the perturbation εΨε
y. Then, we have G′0(V 0

ε )−1Ψε
y(V

0
ε )−1G0 = ξGξ

′
G
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since F ′0(V 0
ε )−1G0 = 0 and G′0(V 0

ε )−1G0 = IT−k. Thus, vech(∆∗) =
(
Ip −X (X ′X)

−1
X ′
)

vech (ξGξ
′
G). Hence, it is only the component of vech (ξGξ

′
G) that is orthogonal to the range of

X , which generates a local deviation from a k-factor specification through the multiplication by

the projection matrix Ip −X (X ′X)
−1
X ′. It clarifies the role of the projector in the local power.

On the contrary, the component spanned by the columns of X can be “absorbed" in the k-factor

specification by a redefinition of the factor F and the variance Vε through F ∗ and V ∗ε .

D.4 Feasible asymptotic normality of the FA estimators

D.4.1 Asymptotic expansions

We first establish the asymptotic expansion of θ̂ along the lines of pseudo maximum likelihood

estimators (White (1982)). The sample criterion is L̂(θ) given in Equation (D.1), where θ =

(vec(F )′, diag(Vε)
′)′ is subject to the nonlinear vector constraint g(θ) := {[F ′V −1

ε F ]i,j}i<j = 0,

i.e., matrix F ′V −1
ε F is diagonal. By standard methods for constrained M-estimators, we consider

the FOC of the Lagrangian function: ∂L̂(θ̂)
∂θ
− ∂g(θ̂)′

∂θ
λ̂L = 0 and g(θ̂) = 0, where λ̂L is the 1

2
k(k−1)

dimensional vector of estimated Lagrange multipliers. Define vector θ̃ :=
(
vec(F0)′, diag(Ṽε)

′
)′

,

which also satisfies the constraint g(θ̃) = 0 by the in-sample factor normalization. We apply the

mean value theorem to the FOC around θ̃ and get:

Ĵ(θ̄)
√
n(θ̂ − θ̃) + A(θ̂)

√
nλ̂L =

√
n
∂L̂(θ̃)

∂θ
, (D.6)

A(θ̄)′
√
n(θ̂ − θ̃) = 0, (D.7)

where Ĵ(θ) := −∂2L̂(θ)
∂θ∂θ′

is the r × r Hessian matrix, A(θ) := ∂g(θ)′

∂θ
is the r × 1

2
k(k − 1) dimen-

sional gradient matrix of the constraint function, and θ̄ is a mean value vector between θ̂ and θ̃

componentwise. Matrix A(θ) is full rank for θ in a neighbourhood of θ0. For any θ define the

r × (r − 1
2
k(k − 1)) matrix B(θ) with orthonormal columns that span the orthogonal comple-

ment of the range of A(θ). Matrix function B(θ) is continuous in θ in a neighbourhood of θ0.
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31 Then, by multiplying Equation (D.6) times B(θ̂)′ to get rid of the Lagrange multiplier vector,

using the identity Ir = A(θ)(A(θ)′A(θ))−1A(θ)′ + B(θ)B(θ)′ for θ = θ̄ and Equation (D.7), we

get [B(θ̂)′Ĵ(θ̄)B(θ̄)]B(θ̄)′
√
n(θ̂ − θ̃) = B(θ̂)′

√
n∂L̂(θ̃)

∂θ
. By the uniform convergence of Ĵ(θ) to

J(θ) := −∂2L0(θ)
∂θ∂θ′

, and the consistency of the FA estimator θ̂ (Section D.2), matrix B(θ̂)′Ĵ(θ̄)B(θ̄)

converges to B′0J0B0, where J0 := J(θ0) and B0 := B(θ0). Matrix B′0J0B0 is invertible un-

der the local identification Assumption 4 (see Lemma 7 condition d)). Then, B(θ̄)′
√
n(θ̂ −

θ̃) = [B(θ̂)′Ĵ(θ̄)B(θ̄)]−1B(θ̂)′
√
n∂L̂(θ̃)

∂θ
w.p.a. 1. By using again Ir = A(θ̄)(A(θ̄)′A(θ̄))−1A(θ̄)′ +

B(θ̄)B(θ̄)′ and Equation (D.7), we get
√
n(θ̂ − θ̃) = B(θ̄)[B(θ̂)′Ĵ(θ̄)B(θ̄)]−1B(θ̂)′

√
n∂L̂(θ̃)

∂θ
. The

distributional results established below imply
√
n∂L̂(θ̃)

∂θ
= Op(1). Thus, we get

√
n-consistency:

√
n(θ̂ − θ̃) = B0(B′0J0B0)−1B′0

√
n
∂L̂(θ̃)

∂θ
+ op(1). (D.8)

Let us now find the score ∂L̂(θ)
∂θ

. We have ∂L̂(θ)
∂θ

=
(
∂vec(Σ(θ))

∂θ′

)′
vec
(
∂L̂(θ)
∂Σ

)
,where vec

(
∂L̂(θ)
∂Σ

)
=

1
2

(Σ(θ)−1 ⊗ Σ(θ)−1) vec
(
V̂y − Σ(θ)

)
. Moreover, by using vec(Σ(θ)) =

∑k
j=1 Fj ⊗ Fj + [e1 ⊗

e1 : · · · : eT ⊗ eT ]diag(Vε), where et is the t-th column of IT , we get: ∂vec(Σ(θ))
∂θ′

=

[(IT ⊗ F1) + (F1 ⊗ IT ) : · · · : (IT ⊗ Fk) + (Fk ⊗ IT ) : e1 ⊗ e1 : · · · : eT ⊗ eT ] . Thus, we

get:
√
n∂L̂(θ̃)

∂θ
= 1

2

(
∂vec(Σ(θ̃))

∂θ′

)′ (
Ṽ −1
y ⊗ Ṽ −1

y

)√
nvec

(
V̂y − Ṽy

)
. From Equation (D.2) and Lemma

6 we have V̂y = Ṽy + 1√
n
(Zn + WnF

′ + FW ′
n) + op(

1√
n
), where Wn := 1√

n
εβ. Thus,

√
n∂L̂(θ̃)

∂θ
=

1
2

(
∂vec(Σ(θ0))

∂θ′

)′ (
V −1
y ⊗ V −1

y

)
vec (WnF

′ + FW ′
n + Zn)+op(1) and, from Equation (D.8), we get:

√
n(θ̂−θ̃) =

1

2
B0 (B′0J0B0)

−1
B′0

(
∂vec(Σ(θ0))

∂θ′

)′ (
V −1
y ⊗ V −1

y

)
vec (WnF

′ + FW ′
n + Zn)+op(1).

(D.9)

D.4.2 Asymptotic normality

In this subsection, we establish the asymptotic normality of estimators F̂ and V̂ε. From Lemma

1, as n → ∞ and T is fixed, we have the Gaussian distributional limit Zn ⇒ Z with vech(Z) ∼
31MatrixB(θ) is uniquely defined up to rotation and sign changes in their columns. We can pick a unique representer

such that matrixB(θ) is locally continuous, e.g., by takingB(θ) = B̃(θ)[B̃(θ)′B̃(θ)]−1/2, where matrix B̃(θ) consists

of the first r − 1
2k(k − 1) columns of Ir −A(θ)[A(θ)′A(θ)]−1A(θ)′, if those columns are linearly independent.
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N(0,ΩZ), where the asymptotic variance ΩZ is related to the asymptotic variance Ω of Z such

that Cov(Zts, Zrp) =
√
Vε,ttVε,ssVε,rrVε,ppCov(Zts,Zrp). Moreover, Z∗n ⇒ Z∗ = G′V −1

ε ZV −1
ε G

and Z̄n ⇒ Z̄, where Z̄ = Z − TF,Vε(Z) = Z − V 2
ε diag ((X ′X)−1diag(GZ∗G′)) = Z −

√
2V 2

ε diag ((X ′X)−1X ′vech(Z∗)). The distributional limit of Wn is given next.

Lemma 8 Under Assumptions 1, 2 and A.1, A.2, A.6, as n → ∞, (a) we have Wn ⇒ W̄ , where

vec(W̄ ) ∼ N(0,ΩW ) with ΩW = Qβ⊗Vε, and (b) if additionally E[wi,twi,rwi,s] = 0, for all t, r, s

and i, then Z and W̄ are independent.

We get the following proposition from Lemmas 1 and 8 (see proof at the end of the section).

Proposition 9 Under Assumptions 1-4 and A.1-A.4, A.6, as n→∞ and T is fixed, for j = 1, .., k:

√
ndiag(V̂ε − Ṽε)⇒

√
2V 2

ε (X ′X)−1X ′vech(Z∗), (D.10)
√
n(F̂j − Fj)⇒ Rj(W̄F ′ + FW̄ ′ + Z̄)V −1

ε Fj +
√

2Λj{[Vε(X ′X)−1X ′vech(Z∗)]� Fj}, (D.11)
√
n(F̂jD̂ − Fj)⇒

1

γj
(W̄F ′ + FW̄ ′ + Z̄)V −1

ε Fj, (D.12)

where deterministic matrices Rj and Λj are defined in Proposition 2, and D̂ := Γ̂(F ′V̂ −1
ε F̂ )−1

and Γ̂ := diag(γ̂1, ..., γ̂k).

The joint asymptotic Gaussian distribution of the FA estimators involves the Gaussian matrices

Z∗, Z̄ and W̄ , the former two being symmetric. The asymptotic distribution of V̂ε involves re-

centering around Ṽε = 1
n

∑n
i=1 E[εiε

′
i], i.e., the finite-sample average cross-moments of errors,

and not Vε. For the asymptotic distribution of any functional that depends on F up to one-to-one

transformations of its columns, we can use the Gaussian law of (D.12) involving W̄ and Z̄ only.

The asymptotic expansions (D.10)-(D.11) characterize explicitly the matrices C1(θ) and C2(θ)

that appear in Theorem 2 in Anderson and Amemiya (1988). Their derivation is based on an

asymptotic normality argument treating θ̂ as a M-estimator, see Section C.2. However, neither the

asymptotic variance nor a feasible CLT are given in Anderson and Amemiya (1988).
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To further compare our Proposition 9 with Theorem 2 in Anderson and Amemiya (1988), let

Z̄ = Z − TF,Vε(Z) = Ž − TF,Vε(Ž), where Ž := Z − diag(Z) is the symmetric matrix of the

off-diagonal elements of Z with zeros on the diagonal. 32 Hence, the zero-mean Gaussian matrix

Z̄ only involves the off-diagonal elements of Z. Moreover, since
√

2V 2
ε (X ′X)−1X ′vech(∆∗n) =

V 2
ε diag(V −1

ε ∆nV
−1
ε ) = diag(∆n) for a diagonal matrix ∆n and ∆∗n := G′V −1

ε ∆nV
−1
ε G, we

can write the asymptotic expansion of V̂ε as
√
ndiag(V̂ε − Ṽε) =

√
2V 2

ε (X ′X)−1X ′vech(Ž∗n) +

diag(Zn) + op(1), where Ž∗n = G′V −1
ε ŽnV

−1
ε G and Žn := Zn − diag(Zn). Thus, we get:

√
ndiag(V̂ε−Ṽε)⇒

√
2V 2

ε (X ′X)−1X ′vech(Ž∗)+diag(Z),where Ž∗ = G′V −1
ε ŽV −1

ε G. Hence,

the asymptotic distribution of the FA estimators depends on the diagonal elements of Z via term

diag(Z) in the asymptotic distribution of V̂ε. In Theorem 2 in Anderson and Amemiya (1988), this

term does not appear because in their results the asymptotic distribution of V̂ε is centered around

diag( 1
n
εε′) instead of Ṽε. Our recentering around Ṽε avoids a random bias term.

Finally, by applying the CLT to (D.9), the asymptotic distribution of vector θ̂ is:

√
n(θ̂ − θ̃)⇒ 1

2
B0 (B′0J0B0)

−1
B′0

(
∂vec(Σ(θ0))

∂θ′

)′ (
V −1
y ⊗ V −1

y

)
vec
(
W̄F ′ + FW̄ ′ + Z

)
.(D.13)

The Gaussian asymptotic distribution in (D.13) matches those in (D.10) and (D.11) written for the

components, and its asymptotic variance yields the ‘sandwich formula”. The result in (D.13) is

analogue to Theorem 2 in Anderson and Amemiya (1988), for different factor normalization and

recentering of the variance estimator.

Proof of Proposition 9: From Proposition 3 (b) and Section D.4.1, we have the asymptotic expan-

sion:
√
ndiag(V̂ε − Ṽε) = diag(Ψε) + op(1) =

√
2V 2

ε (X ′X)−1X ′vech(Z∗n) + op(1). Moreover,

from Proposition 2 (a) and using Ψy−Ψε = WnF
′+FW ′

n+Z̄n, we have:
√
n(F̂j−Fj) = Rj(Ψy−

Ψε)V
−1
ε Fj + ΛjΨεV

−1
ε Fj + op(1) = Rj(WnF

′+FW ′
n + Z̄n)V −1

ε Fj + Λj[diag(Ψε)� (V −1
ε Fj)] +

op(1) = Rj(WnF
′+FW ′

n+Z̄n)V −1
ε Fj+

√
2Λj{[Vε(X ′X)−1X ′vech(Z∗n)]�Fj}+op(1). Lemmas

1 and 8 yield (D.10)-(D.11), together with (D.12) from (B.1) since Ψy −Ψε ⇒ W̄F ′ +FW̄ ′ + Z̄.

32Here, diag(Z) is the diagonal matrix with the same diagonal elements as Z.
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D.4.3 Feasible CLT for the FA estimators

i) Feasible CLT for Zn via a parametric estimator of the asymptotic variance

We first show that, under strengthening of Assumption 2, we get a parametric structure for the

variance V [vech(Z)] = ΩZ(Vε, ϑ) with a vector of unknown parameters ϑ of dimension T + 1.

Assumption 5 The standardized errors processes wi,t in Assumption 2 are (a) stationary martin-

gale difference sequences (mds), and (b) E[w2
i,twi,rwi,s] = 0, for t > r > s.

Assumption 5 holds e.g. for conditionally homoschedastic mds, and for ARCH processes (see

below). Let Z := V
−1/2
ε ZV

−1/2
ε . Then, using Lemma 1, under Assumptions 2 and 5, we have

V [Zt,t] = ψ(0)+2κ, V [Zt,s] = ψ(t−s)+q+κ and Cov(Zt,t,Zs,s) = ψ(t−s), where ψ(t−s) :=

lim
n→∞

1
n

∑
iCov(w2

i,t, w
2
i,s)σ

2
ii. Quantity ψ(t−s) depends on the difference t−s only, by stationarity.

The other covariance terms between elements of Z vanish. Then, we have Ω = [ψ(0)−2q]D(0)+∑T−1
h=1 ψ(h)D(h) + (q + κ)IT (T+1)/2, where D(0) =

∑T
t=1 vech(Et,t)vech(Et,t)

′ and D(h) =

D̃(h) + D̄(h) with D̃(h) =
∑T−h

t=1 [vech(Et,t)vech(Et+h,t+h)
′ + vech(Et+h,t+h)vech(Et,t)

′] and

D̄(h) =
∑T−h

t=1 vech(Et,t+h+Et+h,t)vech(Et,t+h+Et+h,t)
′ for h = 1, ..., T−1, and whereEt,s de-

note the T×T matrix with entry 1 in position (t, s) and 0 elsewhere. Hence, withZ = V
1/2
ε Z V

1/2
ε ,

we get a parametrization ΩZ(Vε, ϑ) for V [vech(Z)] with ϑ = (q+κ, ψ(0)−2q, ψ(1), ..., ψ(T−1))′.

Now, from Proposition 3 (c) and Lemma 2, we obtain a parametric structure for V [vech(Z̄∗)].

Lemma 9 Under Assumptions 1-5 and A.1-A.4, we have:

ΩZ̄∗ =
T−1∑
h=1

[ψ(h) + q + κ](Ip −X(X ′X)−1X ′)R′D̄(h)R(Ip −X(X ′X)−1X ′). (D.14)

Hence, the parametric structure ΩZ̄∗(Vε, G, ϑ̃) depends linearly on vector ϑ̃ that stacks the T − 1

parameters ψ(h) + q + κ, for h = 1, ..., T − 1. It does not involve parameter ψ(0), i.e., the

quartic moment of errors, because the asymptotic expansion of the LR statistic does not involve the

diagonal terms of Z. Moreover, the unknown parameters appear through the linear combinations

ψ(h) + q + κ that are the scaled variances of the out-of-diagonal elements of Z. We can estimate
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the unknown parameters in ϑ̃ by least squares applied on (D.14), using the nonparametric estimator

Ω̂Z̄∗ defined in Proposition 4, after half-vectorization and replacing Vε andG by their FA estimates.

It yields a consistent estimator of ΩZ̄∗ incorporating the restrictions implied by Assumption 5.

To get a feasible CLT for the FA estimates, we need to estimate the additional parameters

ψ(0) − 2q and q + κ. We consider matrix Ξ̂ = 1
n

∑Jn
m=1 vech(ĥm,n)vech(ĥm,n)′, where ĥm,n =∑

i∈Im Ĝ
′V̂ −1
ε ε̂iε̂

′
iV̂
−1
ε Ĝ, that involves fourth-order moments of residuals. Note that Ω̂Z̄∗ = MX̂Ξ̂MX̂ ,

where MX̂ = Ip − X̂(X̂
′
X̂)−1X̂

′
.

Lemma 10 Under Assumptions 1-5 and A.1-A.4, and
√
n
∑Jn

m=1B
2
m,n = o(1), up to pre- and post-

multiplication by an orthogonal matrix and its transpose, we have Ξ̂ = R′Ξ̃nR + op(1), where

Ξ̃n = [ψn(0)− 2qn]D(0) +
∑T−1

h=1 ψn(h)D(h) + (qn +κn)IT (T+1)/2 + (qn + ξn)vech(IT )vech(IT )′

and ξn :=
1

n

Jn∑
m=1

∑
i 6=j∈Im

σiiσjj .

With blocks of equal size, the condition
√
n
∑Jn

m=1 B
2
m,n = o(1) holds if Jn = nᾱ and ᾱ > 1/2.

Now, we have the relation 3D(0) +
∑T−1

h=1 D(h)− vech(IT )vech(IT )′ = IT (T+1)/2, which implies

3R′D(0)R+
∑T−1

h=1 R
′D(h)R− vech(IT−k)vech(IT−k)

′ = Ip. Hence, matrix

R′Ξ̃nR = [ψn(0) + qn + 3κn]R′D(0)R+
T−1∑
h=1

[ψn(h) + qn + κn]R′D(h)R

+(ξn − κn)vech(IT−k)vech(IT−k)
′ (D.15)

depends on T + 1 linear combinations of the elements of ϑn = (qn + κn, ψn(0) − 2qn, ψn(1), ...,

ψn(T −1))′ and ξn−κn. Thus, the linear system (D.15) is rank-deficient to identify ϑn. Moreover,

in Assumption A.4 (b), κn is defined as a double sum over squared covariances scaled by n, and is

assumed to converge to a constant κ. Such a convergence is difficult to assume for ξn since ξn is a

double sum over products of two variances scaled by n.

We apply half-vectorization on (D.15), replace the LHS by its consistent estimate Ξ̂, and plug-

in the FA estimates in the RHS. From Lemma 10, least squares estimation on such a linear re-

gression yields consistent estimates of linear combinations ψ(0) + q + 3κ and ψ(h) + q + κ for
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h = 1, . . . , T −1. Consistency of those parameters applies independently of ξn−κn converging as

n → ∞, or not. 33 In order to identify the components of ϑ, we need an additional condition. We

use the assumption ψ(T − 1) = 0. That condition is implied by serial uncorrelation in the squared

standardized errors after lag T − 1, that is empirically relevant in our application with monthly

returns data. Then, parameter q + κ is estimated by ̂ψn(T − 1) + qn + κn, and by difference we

get the estimators of ψ(0)− 2q and ψ(h), for h = 1, ..., T − 2.

Let us now discuss the case of ARCH errors. Suppose the wi,t follow independent ARCH(1)

processes with Gaussian innovations that are independent across assets, i.e., wi,t = h
1/2
i,t zi,t, zi,t ∼

IIN(0, 1), hi,t = ci + αiw
2
i,t−1 with ci = 1 − αi. Then E[wi,t] = 0, E[w2

i,t] = 1, ηi := V [w2
i,t] =

2
1−3α2

i
, Cov(w2

i,t, w
2
i,t−h) = ηiα

h
i . Moreover, E[wi,twi,rwi,swi,p] = 0 if one index among t, r, s, p is

different from all the others. Indeed, without loss of generality, suppose t is different from s, p, r.

By the law of iterated expectation: E[εi,tεi,sεi,pεi,r] = E[E[εi,t|{z2
i,τ}∞τ=−∞, {zi,τ}τ 6=t]εi,sεi,pεi,r] =

E[h
1/2
i,t E[zi,t|z2

i,t]εi,sεi,pεi,r] = 0. Then, Assumption 5 holds. The explicit formula of Ω involves

ψ(h) = lim
n→∞

1
n

∑n
i=1

2αhi
1−3α2

i
σ2
ii, for h = 0, 1, ..., T − 1. Hence, setting ψ(T − 1) = 0 is a mild

assumption for identification purpose since αT−1
i is small. If αi = 0 for all i, i.e., no ARCH

effects, we have ψ(0) = 2q and ψ(h) = 0 for h > 0, so that Ω = (q + κ)IT (T+1)
2

.

ii) Feasible CLT for Wn

Let us now establish a feasible CLT for Wn. In order to estimate matrix Qβ in the asymptotic

variance ΩW in Lemma 8, we use the estimated betas and residuals, and combine them with a

temporal sample splitting approach to cope with the EIV problem caused by the fixed T setting.

Specifically, let us split the time spell into two consecutive sub-intervals with T1 and T2 obser-

vations, with T1 + T2 = T and such that T1 > k and T2 ≥ k. The factor model in the two

sub-intervals reads y1,i = µ1 + F1βi + ε1,i and y2,i = µ2 + F2βi + ε2,i, and let V1,ε and V2,ε denote

33To see this, write the half-vectorization of the RHS of (D.15) as χηn, where χ is the p(p+1)
2 × (T + 1) matrix

of regressors and ηn the (T + 1) × 1 vector of unknown parameters. Then, vech(Ξ̂) = χ̂ηn + op(1), by Lemma

10, the consistency of the FA estimates, and the last column of χ not depending on unknown parameters. Thus,

η̂n := (χ̂′χ̂)−1χ̂′vech(Ξ̂) = ηn + op(1). In particular, we also have ̂ξn − κn = ξn − κn + op(1).

59



the corresponding diagonal matrices of error average unconditional variances. 34 The conditions

T1 > k and T2 ≥ k are needed because we estimate residuals and betas in the first and the sec-

ond sub-intervals, namely ε̂1,i = MF̂1,V̂1,ε
(y1,i − ȳ1) and β̂i = (F̂ ′2V̂

−1
2,ε F̂2)−1F̂ ′2V̂

−1
2,ε (y2,i − ȳ2).

Here, F̂j and V̂j,ε for j = 1, 2 are deduced from the FA estimates in the full period of T ob-

servations. Define Ψ̂β = 1
n

∑
m

∑
i,j∈Im(β̂iβ̂

′
j) ⊗ (ε̂1,iε̂

′
1,j). By using ε̂1,i = (MF̂1,V̂1,ε

F1)βi +

MF̂1,V̂1,ε
(ε1,i − ε̄1), MF̂1,V̂1,ε

F1 = Op(
1√
n
) and 1

n2

∑
m b

2
m,n =

∑
mB

2
m,n = o(1), we get Ψ̂β =

(Ik ⊗ MF̂1,V̂1,ε
)
(

1
n

∑
m

∑
i,j∈Im(β̂iβ̂

′
j)⊗ [(ε1,i − ε̄1)(ε1,j − ε̄1)′]

)
(Ik ⊗ M ′

F̂1,V̂1,ε
) + op(1). Now,

we use β̂i =
[
(F̂ ′2V̂

−1
2,ε F̂2)−1F̂ ′2V̂

−1
2,ε F2

]
βi + (F̂ ′2V̂

−1
2,ε F̂2)−1F̂ ′2V̂

−1
2,ε (ε2,i − ε̄2), and ε̄1 = op(n

−1/4),

ε̄2 = op(n
−1/4) from Lemma 6 (a), as well as the the mds condition in Assumption 5. We get

Ψ̂β = Ψ̂β,1 +Ψ̂β,2 +op(1), where Ψ̂β,1 = (Ik⊗MF1,V1,ε)
(

1
n

∑
m

∑
i,j∈Im(βiβ

′
j)⊗ (ε1,iε

′
1,j)
)

(Ik⊗

M ′
F1,V1,ε

) and Ψ̂β,2 =
(
[(F ′2V

−1
2,ε F2)−1F ′2V

−1
2,ε ]⊗MF1,V1,ε

) (
1
n

∑
m

∑
i,j∈Im(ε2,iε

′
2,j)⊗ (ε1,iε

′
1,j)
)

(
[(F ′2V

−1
2,ε F2)−1F ′2V

−1
2,ε ] ⊗MF1,V1,ε

)′. We use 1
n

∑
m

∑
i,j∈Im(βiβ

′
j)⊗(ε1,iε

′
1,j) = Qβ⊗V1,ε+op(1),

and 1
n

∑
m

∑
i,j∈Im(ε2,iε

′
2,j)⊗(ε1,iε

′
1,j) = Ω21+op(1), where Ω21 is the sub-block of matrix ΩZ that

is the asymptotic variance of 1√
n

∑n
i=1 ε2,i⊗ ε1,i ⇒ N(0,Ω21). Then, Ψ̂β = Qβ ⊗ (MF1,V1,εV1,ε) +(

[(F ′2V
−1

2,ε F2)−1F ′2V
−1

2,ε ]⊗MF1,V1,ε

)
Ω21

(
[(F ′2V

−1
2,ε F2)−1F ′2V

−1
2,ε ]⊗MF1,V1,ε

)′
+op(1). Thus, we get

a consistent estimator of Qβ ⊗ (V
−1/2

1,ε MF1,V1,εV
1/2

1,ε ) by subtracting to Ψ̂β a consistent estimator of

the second term on the RHS, and then by pre- and post-multiplying times (Ik ⊗ V̂ −1/2
1,ε ). To get a

consistent estimator of Qβ we apply a linear transformation that amounts to computing the trace

of the second term of a Kronecker product, and divide by Tr(V −1/2
1,ε MF1,V1,εV

1/2
1,ε ) = T1−k. Thus:

Q̂β = 1
n(T1−k)

∑
m

∑
i,j∈Im(β̂iβ̂

′
j)(ε̂

′
1,jV̂

−1
1,ε ε̂1,i) − 1

T1−k
∑T1

j=1(Ik ⊗ e′j)
{(

[(F̂ ′2V̂
−1

2,ε F̂2)−1F̂ ′2V̂
−1

2,ε ]⊗

[V̂
−1/2

1,ε MF̂1,V̂1,ε
]
)

Ω̂21

(
[V̂ −1

2,ε F̂2(F̂ ′2V̂
−1

2,ε F̂2)−1]⊗ [M ′
F̂1,V̂1,ε

V̂
−1/2

1,ε ]
)}

(Ik ⊗ ej), where the ej are T1-

dimensional unit vectors, and Ω̂21 is obtained from Subsection D.4.3 i). If estimate Q̂β is not

positive definite, we regularize it by deleting the negative eigenvalues.

iii) Joint feasible CLT
34We can take the two sub-intervals as the halves of the time span. If this choice does not meet conditions T1 > k

and T2 ≥ k in a subperiod, we take the second sub-interval such that T2 = k, and add to the first sub-interval a

sufficient number of dates from the preceeding subperiod in order to get T1 = k + 1.
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To get a feasible CLT for the FA estimators from (D.10)-(D.11), we need the joint distribution

of the Gaussian matrix variates Z and W . Under the condition of Lemma 8 (b), the estimates of

the asymptotic variances of vech(Z) and vec(W ) are enough, since these vectors are independent.

Otherwise, to estimate the covariance Cov(vech(Z), vec(W )), we need to extend the approaches

of the previous subsections.

D.4.4 Special cases

In this subsection, we particularize the asymptotic distributions of the FA estimators for three

special cases along the lines of Section 4, plus a fourth special case that allows us to further discuss

the link with Anderson and Amemiya (1988).

i) Gaussian errors

When the errors admit a Gaussian distribution εi
ind∼ N(0, σiiVε) with diagonal Vε, matrix

1√
q
V
−1/2
ε ZV

−1/2
ε is in the GOE for dimension T , i.e., 1√

q
vech(V

−1/2
ε ZV

−1/2
ε ) ∼ N(0, IT (T+1)/2),

where q = lim
n→∞

1
n

∑
i σ

2
ii. Moreover, vec(W ) ∼ N(0, Qβ ⊗ Vε), where Qβ = lim

n→∞
1
n

∑
i σiiβiβ

′
i,

mutually independent of Z because of the symmetry of the Gaussian distribution.

ii) Quasi GOE errors

As an extension of the previous case, here let us suppose that the errors meet Assumption 2, the

Conditions (a) and (b) in Proposition 5 plus additionally (c) lim
n→∞

1
n

∑n
i=1 V (ε2

i,t) = ηV 2
ε,tt, for a con-

stant η > 0, and (d) lim
n→∞

1
n

∑n
i=1E[ε2

i,tεi,rεi,p] = 0 for r 6= p. This setting allows e.g. for condition-

ally homoschedastic mds processes in the errors, but excludes ARCH effects. Then, the arguments

in Lemma 1 imply vech(V
−1/2
ε ZV

−1/2
ε ) ∼ N(0,Ω) with Ω =

 (η/2 + κ)IT 0

0 (q + κ)I 1
2
T (T−1)

.

The distribution of V −1/2
ε ZV

−1/2
ε is similar to (scaled) GOE holding in the Gaussian case up to

the variances of diagonal and of out-of-diagonal elements being different when η 6= 2q. Hence,

contrasting with test statistics, the asymptotic distributions of FA estimates differ in cases i) and ii)

beyond scaling factors. It is because the asymptotic distributions of FA estimates involve diagonal

elements of Z as well.
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iii) Spherical errors

Let us consider the case εi
ind∼ (0, σiiVε) where Vε = σ̄2IT , with independent components

across time and the normalization lim
n→∞

1
n

∑
i σii = 1. From Sections 4.3 and D.4.1, we have

the asymptotic expansions of the FA estimators
√
n(σ̂2 − σ̃2) = 1

T−kTr(MFZn) + op(1) =

σ̄2

T−kTr(Z
∗
n)+op(1), and

√
n(F̂j−Fj) = 1

σ̄2Rj(Ψy−Ψε)Fj− 1
σ̄2 ΛjΨεFj +op(1) = 1

σ̄2Rj(WnF
′+

FW ′
n + Z̄n)Fj + op(1), where we use Ψy − Ψε = WnF

′ + FW ′
n + Z̄n, Ψε = 1

T−kTr(MFZn)IT

and ΛjFj = 0, and Z̄n = Zn − 1
T−kTr(MFZn)IT . Moreover, by sphericity, we have Rj =

1
2γj
PFj+

1
γj
MF+

∑k
`=1,`6=j

1
γj−γ`

PF` . Thus, we get
√
n(σ̂2−σ̃2)⇒ σ̄2

T−kTr(Z
∗) and

√
n(F̂j−Fj)⇒

1
σ̄2Rj(WF ′+FW ′+Z̄)Fj . 35 The Gaussian matrixZ is such thatZtt ∼ N(0, η) andZt,s ∼ N(0, q)

for t 6= s, mutually independent, where η = lim
n→∞

1
n

∑
i V [ε2

i,t], and vec(W ) ∼ N(0, Qβ⊗IT ). Vari-

ables Z and W are independent if E[ε3
i,t] = 0. FGS (2022), Section 4.3.1, explain how we can

estimate q and η by solving a system of two linear equations based on estimated moments of ε̂i,t.

iv) Cross-sectionally homoschedastic errors and link with Anderson and Amemiya (1988)

Let us now make the link with the distributional results in Anderson and Amemiya (1988). In

our setting, the analogous conditions as those in their Corollary 2 would be: (a) random effects

for the loadings that are i.i.d. with E[βi] = 0, V [βi] = Ik, (b) error terms are i.i.d. εi ∼ (0, Vε)

with Vε = diag(Vε,11, ..., Vε,TT ) such that E[εi,tεi,rεi,sεi,p] = Vε,ttVε,ss, for t = r > s = p, and

= 0, otherwise, and (c) βi and εi are mutually independent. Thus, σii = 1 for all i, i.e., errors

are cross-sectionally homoschedastic. Under the aforementioned Conditions (a)-(c), the Gaussian

distributional limits Z and W are such that V [Ztt] = ηtV
2
ε,tt, for ηt := V [ε2

i,t]/V
2
ε,tt, V [Zts] =

Vε,ttVε,ss, for t 6= s, all covariances among different elements of Z vanish, and V [vec(W )] = Ik ⊗

Vε. Equations (D.10)-(D.11) yield the asymptotic distributions of the FA estimates. In particular,

they do not depend on the distribution of the βi. Moreover, the distribution of the out-of-diagonal

elements of Z does not depend on the distribution of the errors, while, for the diagonal term, we

35The asymptotic distribution of estimator σ̂2 coincides with that derived in FGS (2022) with perturbation theory

methods. The asymptotic distribution of the factor estimates slightly differs from that given in FGS (2022), Section

5.1, because of the different factor normalization adopted by FA compared to PCA even under sphericity.
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have ηt = 2 for Gaussian errors. As remarked in Section D.4.2, if the asymptotic distribution of

estimator V̂ε is centered around the realized matrix 1
n

∑
i εiε

′
i instead of its expected value, that

distribution involves the out-of-diagonal elements of Z, and the elements of W . Hence, in that

case, the asymptotic distribution of the FA estimates is the same independent of the errors being

Gaussian or not, and depends on F and Vε only, as found in Anderson and Amemiya (1988).

D.5 Orthogonal transformations and maximal invariant statistic

In this subsection, we consider the transformation O that maps matrix Ĝ into ĜO, where O is an

orthogonal matrix in R(T−k)×(T−k), and the transformation OD that maps matrix D into DOD,

where OD is an orthogonal matrix in Rdf×df . These transformations are induced from the freedom

in chosing the orthonormal bases spanning the orthogonal complements of F̂ and X . We show

that they imply a group of orthogonal transformations on the vector Ŵ =
√
nD′vech(Ŝ∗), with

Ŝ∗ = Ĝ′V̂ −1
ε (V̂y − V̂ε)V̂ −1

ε Ĝ, and establish the maximal invariant.

Under the transformation O, matrix Ŝ∗ is mapped into O−1Ŝ∗O. This transformation is mir-

rored by a linear mapping at the level of the half-vectorized form vech(Ŝ∗). In fact, this mapping

is norm-preserving, because ‖vech(S)‖2 = 1
2
‖S‖2 and ‖O−1SO‖ = ‖S‖ for any conformable

symmetric matrix S and orthogonal matrix O. This mapping is characterized in the next lemma.

Lemma 11 For any symmetric matrix S and orthogonal matrixO in Rm×m, we have vech(O−1SO) =

R(O)vech(S), where R(O) = 1
2
A′m(O′⊗O′)Am is an orthogonal matrix, and Am is the duplica-

tion matrix defined in Appendix B. Transformations R(O) with orthogonal O have the structure of

a group: (a) R(Im) = I 1
2
m(m+1), (b) R(O1)R(O2) = R(O2O1), and (c) [R(O)]−1 = R(O−1).

With this lemma, we can give the transformation rules underO for a set of relevant statistics in

the next proposition. We denote generically with ·̃ a quantity computed with ĜO instead of Ĝ.

Proposition 10 Under Assumptions 1 and 4, (a) vech(
˜̂
S∗) = R(O)vech(Ŝ∗), (b) X̃ = R(O)X ,

(c) Ip − X̃(X̃
′
X̃)−1X̃

′
= R(O)[Ip − X(X ′X)−1X ′]R(O)−1, (d) R̃ = RR(O)−1,
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(e) R̃(Ip − X̃(X̃
′
X̃)−1X̃

′
) = R(Ip −X(X ′X)−1X ′)R(O)−1.

From Proposition 10 (c), under transformationO, matrixD is mapped into R(O)D. Combin-

ing with transformation OD, we have D̃ = R(O)DOD. Thus, using Proposition 10 (a), under O

and OD, vector Ŵ is mapped into ˜̂W =
√
nD̃

′
vech(

˜̂
S∗) = O′DŴD. Thus, statistic Ŵ is invariant

under O, while OD operates as the group of orthogonal transformations. The maximal invariant

under this group of transformations is the squared norm ‖Ŵ‖2 = Ŵ ′Ŵ .

Proof of Proposition 10: With ˜̂S∗ = O−1Ŝ∗O, part (a) follows from Lemma 11. Let G̃ =

GO. Then, for any diagonal matrix ∆, on the one hand, we have vech(G̃′∆G̃) = 1√
2
X̃diag(∆),

and on the other hand, we have vech(G̃′∆G̃) = vech(O−1G′∆GO) = R(O)vech(G′∆G) =

1√
2
R(O)Xdiag(∆). By equating the two expressions for any diagonal matrix ∆, part (b) follows.

Statement (c) is a consequence thereof and R(O) being orthogonal. Moreover, with Q̃ = QO and

using vech(Q̃′ZQ̃) = vech(O−1Q′ZQO) = R(O)R′vech(Z), we deduce part (d). Statement (e)

is a consequence of (c) and (d).

D.6 Proofs of Lemmas 5-11

Proof of Lemma 5: The equivalence of conditions (a) and (b) is a consequence of the fact that

function L (A) = −1
2

log |A| − 1
2
Tr(V 0

y A
−1), where A is a p.d. matrix, is uniquely maximized for

A = V 0
y (see Magnus and Neudecker (2007), p. 410), and L0(θ) = L (Σ(θ)).

Proof of Lemma 6: (a) From Assumption 2 we haveE[ε̄] = 0 and V [ε̄] = V
[

1
n

∑n
i,k=1 si,kV

1/2
ε wk

]
= V

1/2
ε

1
n2

∑n
i,j,k,l=1 si,ksj,lE[wkw

′
l]V

1/2
ε = ( 1

n2

∑n
i,j σi,j)Vε where the si,k are the elements of Σ1/2.

Now, 1
n2

∑n
i,j=1 σi,j ≤ C 1

n2

∑Jn
m=1 b

1+δ
m,n = O(nδ−1

∑Jn
m=1 B

1+δ
m,n) = O(nδ−1J

1/2
n (
∑Jn

m=1 B
2(1+δ)
m,n )1/2) =

o(n−1J
1/2
n ) = o(n−1/2) from the Cauchy-Schwarz inequality and Assumptions 2 (c) and (d). Part

(a) follows. To prove part (b), we use E[ 1
n
εε′] → V 0

ε and V [vech((V 0
ε )−1/2( 1

n
εε′)(V 0

ε )−1/2)] =

1
n
Ωn from the proof of Lemma 1, and 1

n
Ωn = o(1) by Assumption A.2. Finally, to show part (c),

write 1
n

∑n
i=1 εiβ

′
i = (V 0

ε )1/2 1
n

∑n
i,j=1 si,jwjβ

′
i. Then, E[ 1

n

∑n
i=1 εiβ

′
i] = 0 while the variance of

vec( 1
n

∑n
i=1 εiβ

′
i) vanishes asymptotically because V [vec( 1

n

∑n
i,j=1 si,jwjβ

′
i)] = 1

n2

∑n
i,j,m,l=1 si,jsm,l
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(βiβ
′
l)⊗ E[wjw

′
m] = 1

n2

∑n
i,l=1 σi,l(βiβ

′
l)⊗ IT = o(1) under Assumptions 2 and A.1.

Proof of Lemma 7: From the arguments in the proof of Proposition 2 with Ψy = 0, the solution of

the FOC is such that Ψε
F,j = (Λ0

j−R0
j )Ψ

ε
Vε

(V 0
ε )−1Fj for j = 1, ..., k, and diag(MF0,V 0

ε
Ψε
Vε
M ′

F0,V 0
ε

) =

0. Because Ψε
Vε

is diagonal, the latter equation yields M�2
F0,V 0

ε
diag(Ψε

Vε
) = 0. Under condition (a)

of Lemma 7, we get Ψε
Vε

= 0, which in turn implies Ψε
F = 0. Thus, condition (a) is sufficient

for local identification. It is also necessary to get uniqueness of the solution Ψε
Vε

= 0. Moreover,

conditions (a) and (b) of Lemma 7 are equivalent by Proposition 3 a). Further, conditions (a) and

(c) are equivalent because Φ�2 = M�2
F0,V 0

ε
(V 0

ε )2. Finally, let us show that condition (d) of Lemma

7 is both sufficient and necessary for local identification. The FOC for the Lagrangian problem are
∂L0(θ)
∂θ
− ∂g(θ)′

∂θ
λL = 0 and g(θ) = 0, where λL is the Lagrange multiplier vector. By expanding at

first-order around θ0 and λ0 = 0, we get H0

 θ − θ0

λ

 = 0, where H0 :=

 J0 A0

A′0 0

, with

A0 = ∂g(θ0)′

∂θ
, is the bordered Hessian. The parameters are locally identified if, and only if, H0 is

invertible. The latter condition is equivalent to B′0J0B0 being invertible. 36

Proof of Lemma 8: By Assumption 2, vec(Wn) = (Ik ⊗ V 1/2
ε ) 1√

n

∑Jn
m=1 xm,n where the xm,n :=∑

i,j∈Im si,j(βi ⊗ wj) are independent across m. Now, we apply the Liapunov CLT to show
1√
n

∑Jn
m=1 xm,n ⇒ N(0, Qβ⊗IT ). We haveE[xm,n] = 0 andE[xm,nx

′
m,n] =

(∑
i,j∈Im σi,jβiβ

′
j

)
⊗

IT and, by Assumption A.6, ΩW,n := 1
n

∑Jn
m=1 E[xm,nx

′
m,n] converges to the positive definite ma-

trixQβ⊗IT . Let us now check the multivariate Liapunov condition ‖Ω−1/2
W,n ‖4 1

n2

∑Jn
m=1E[‖xm,n‖4] =

o(1). Because ‖Ω−1/2
W,n ‖ = Op(1), it suffices to prove 1

n2

∑Jn
m=1E[(xp,tm,n)4] = o(1), for any

p = 1, ..., k and t = 1, ..., T , where xp,tm,n :=
∑

i,j∈Im si,jβi,pwj,t. For this purpose, Assump-

tions A.1 and A.2 yield E[(xp,tm,n)4] ≤ C(
∑

i,j∈Im σi,j)
2. Then, we get 1

n2

∑Jn
m=1E[(xp,tm,n)4] ≤

C 1
n2

∑Jn
m=1 b

2(1+δ)
m,n ≤ Cn2δ

∑Jn
m=1 B

2(1+δ)
m,n = o(1) by Assumptions 2 (c) and (d). Part (a) of Lemma

8 follows. Moreover, E[vech(ζm,n)x′m,n] = 0 and the proof of Lemma 1 imply part (b).

Proof of Lemma 9: We have ΩZ̄∗ = MXR
′ΩRMX , where MX = Ip − X(X ′X)−1X ′,

36Indeed, we can show |H0| = (−1)
1
2k(k−1)|A′0A0||B′0J0B0| by using J0A0 = 0, where the latter equality follows

because the criterion is invariant to rotations of the latent factors.
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R = 1
2
A′T (Q ⊗ Q)AT−k, and Ω = D + κIT (T+1)/2 = [ψ(0) − 2q]D(0) +

∑T−1
h=1 ψ(h)[D̃(h) +

D̄(h)] + (q + κ)IT (T+1)/2. Then, because the columns of R are orthonormal, we get ΩZ̄∗ =

[ψ(0)−2q]MXR
′D(0)RMX +

∑T−1
h=1 ψ(h)MXR

′D̃(h)RMX +
∑T−1

h=1 ψ(h)MXR
′D̄(h)RMX +

(q + κ)MX . Now, we show that the the first two terms in this sum are nil. Indeed, recall

that matrix MX is idempotent of rank p − T = df , and its kernel coincides with the range of

the p × T matrix X . By the definition of the latter matrix in Section 3.2, we can write it as

X = 1√
2
[vech(G′E1,1G) : · · · : vech(G′ET,TG)]. Now, we have G′Et,tG = Q′V

1/2
ε Et,tV

1/2
ε Q =

Vε,ttQ
′Et,tQ and thus vech(G′Et,tG) = Vε,ttvech(Q′Et,tQ) = Vε,ttR

′vech(Et,t) by Lemma 2.

Hence, the kernel of matrix MX is spanned by vectors R′vech(Et,t), for t = 1, ..., T . We

deduce that MXR
′D(0) = 0 and MXR

′D̃(h)RMX = 0. Furthermore, from IT (T+1)/2 =

2
∑T

t=1 vech(Et,t)vech(Et,t)
′+
∑

t<s vech(Et,s +Es,t)vech(Et,s +Es,t)
′ = 2D(0) +

∑T−1
h=1 D̄(h),

we get MX = MXR
′IT (T+1)/2RMX =

∑T−1
h=1 MXR

′D̄(h)RMX . The conclusion follows.

Proof of Lemma 10: By the root-n consistency of the FA estimators, ĥm,n = hm,n + Op(
bm,n√
n

),

uniformly in m, where hm,n =
∑

i∈Im G
′V −1
ε εiε

′
iV
−1
ε G =

∑
i∈Im Q

′eie
′
iQ. Under the condition

1
n3/2

∑Jn
m=1 b

2
m,n =

√
n
∑Jn

m=1B
2
m,n = o(1), we have Ξ̂ = 1

n

∑Jn
m=1E[vech(hm,n)vech(hm,n)′] +

op(1), up to pre- and post-multiplication by an orthogonal matrix. Moreover, vech(hm,n) =

R′[
∑

i∈Im vech(eie
′
i)] = 1

2
R′A′T [

∑
i∈Im(ei⊗ei)], and

∑
i∈Im(ei⊗ei) =

∑
a,b σa,b(wa⊗wb). Thus,

we getE [vech(hm,n)vech(hm,n)′] = 1
4
R′A′T

{∑
a,b,c,d∈Im σa,bσc,dE[(wa ⊗ wb)(wc ⊗ wd)′]

}
ATR.

The non-zero contributions to the term in the curly brackets come from the combinations with a =

b = c = d, a = b 6= c = d, a = c 6= b = d and a = d 6= b = c, yielding:
∑

a,b,c,d σa,bσc,dE[(wa ⊗

wb)(wc⊗wd)′] =
∑

a σ
2
a,aE[(waw

′
a)⊗(waw

′
a)]+(

∑
a6=c σa,aσc,c)vec(IT )vec(IT )′+(

∑
a6=b σ

2
a,b)(IT 2+

KT,T ) =
∑

a[σ
2
a,aV (wa⊗wa)]+(

∑
a σa,a)

2vec(IT )vec(IT )′+(
∑

a6=b σ
2
a,b)(IT 2 +KT,T ). Then, us-

ing wa ⊗ wa = ATvech(waw
′
a), we get 1

4
A′T

{∑
a,b,c,d∈Im σa,bσc,dE[(wa ⊗ wb)(wc ⊗ wd)′]

}
AT =∑

a[σ
2
a,aV (vech(waw

′
a))] + (

∑
a σa,a)

2vech(IT )vech(IT )′ + (
∑

a6=b σ
2
a,b)IT (T+1)

2

. Then, because
1
n

∑n
i=1 σ

2
i,iV [vech(wiw

′
i)] = Dn, where matrix Dn is defined in Assumption A.4, we get Ξ̂ =

R′Ξ̃nR+ op(1) where Ξ̃n = Dn + (qn + ξn)vech(IT )vech(IT )′+κnIT (T+1)
2

. Moreover, under As-

sumption 5, and singling out parameter qn along the diagonal, we have Dn = [ψn(0)−2qn]D(0)+
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∑T−1
h=1 ψn(h)[D̃(h) + D̄(h)] + qnIT (T+1)/2. The conclusion follows.

Proof of Lemma 11: We use vec(S) = Amvech(S), where them2× 1
2
m(m+1) matrixAm is such

that: (i) A′mAm = 2I 1
2
m(m+1), (ii) Km,mAm = Am, where Km,m is the commutation matrix for or-

derm, and (iii)AmA′m = Im2 +Km,m (see also Theorem 12 in Magnus, Neudecker (2007) Chapter

2.8). Then, vech(S) = 1
2
A′mvec(S) by property (i), and vech(O−1SO) = 1

2
A′mvec(O

−1SO) =

1
2
A′m(O′ ⊗ O′)vec(S) = 1

2
A′m(O′ ⊗ O′)Amvech(S), for all symmetric matrix S. It follows

R(O) = 1
2
A′m(O′ ⊗ O′)Am. Moreover, by properties (i)-(iii), we have (a) R(Im) = I 1

2
m(m+1),

(b) R(O1)R(O2) = 1
4
A′m(O′1 ⊗ O′1)AmA

′
m(O′2 ⊗ O′2)Am = 1

4
A′m(O′1 ⊗ O′1)(Im2 + Km,m)(O′2 ⊗

O′2)Am = 1
4
A′m(O′1O

′
2 ⊗ O′1O′2)(Im2 + Km,m)Am = 1

2
A′m[(O2O1)′ ⊗ (O2O1)′]Am = R(O2O1),

and thus (c) [R(O)]−1 = R(O−1).

E Numerical checks of conditions (12) of Proposition 7

In this section, we check numerically the validity of Inequalities (12) for given df , λj , νj , and

m = 3, ....,M , for a large bound M . The idea is to compute the frequency of the LHS of (12)

becoming strictly negative over a large number of potential values of λj and νj , j = 1, ..., df , for

any given df > 1. 37 Table 1 provides those frequencies for m = 3, ..., 16 (cumulatively), with

λj uniformly drawn in [λ, λ̄] for j = 1, ..., df , and ν1 = 0 38 and νj uniformly drawn in [0, ν̄], for

j = 2, ..., df , and different combinations of bounds λ, λ̄, ν̄, and degrees of freedom df = 2, ..., 12.

Each frequency is computed from 108 draws of λj and νj , j = 1, ..., df . In the SMC, we also

report a table of frequencies for large grids of equally-spaced points in [λ, λ̄]df × [0, ν̄]df−1, which

corroborate the findings of this section.

37From Footnote 18, we know that Inequalities (12) are automatically met with df = 1. A given value of df may

result from several different combinations of T and k, while a given T implies different values of df depending on k.

For instance, df = 2 applies with (T, k) = (4, 1), (8, 4), and (13, 8), among other combinations. For T = 20, the

tests for k = 1, 2, ..., 14 yield df = 170, 151, 133, 116, 100, 85, 71, 58, 46, 35, 25, 16, 8, 1, respectively.
38This normalization results from ranking the eigenvalues µj , so that µ1 is the smallest one.
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E.1 Calibration of ν̄, λ and λ̄

To calibrate the bounds ν̄, λ and λ̄with realistic values, we run the following numerical experiment.

For T = 20 and k = 7, we simulate 10, 000 draws from random T×k matrix F̃ such that vec(F̃ ) ∼

N(0, ITk) and set F = V
1/2
ε UΓ1/2, U = F̃ (F̃ ′F̃ )−1/2, G = V

1/2
ε Q, Q = Q̃(Q̃′Q̃)−1/2, Q̃ are the

first T − k columns of IT − UU ′, for Vε = diag(Vε,11, ..., Vε,TT ), with Vε,tt = 1.5 for t = 1, ..., 10,

and Vε,tt = 0.5 for t = 11, ..., 20, and Γ = Tdiag(4, 3.5, 3, 2.5, 2, 1.5, 1), ck+1 = 10T , and ξk+1 =

e1. With these choices, the “signal-to-noise" 1
T
F ′jV

−1
ε Fj for the seven factors j = 1, ..., 7 are

4, 3.5, 3, 2.5, 2, 2.5, 1, and the “signal-to-noise" for the weak factor is 1
T
F ′k+1V

−1
ε Fk+1 = 10n−1/2.

Moreover, the errors follow the ARCH model of Section D.4.3 (i) with ARCH parameters either (a)

αi = 0.2 for all i, or (b) αi = 0.5 for all i, and q = 4, and κ = 0 (cross-sectional independence).

The choices αi = 0.2, 0.5 both meet the condition 3α2
i < 1 ensuring the existence of fourth-

order moments. Moreover, with q − 1 = 3, we have a cross-sectional variance of the σii that

is three times larger than the mean (normalized to 1). For each draw, we compute the df = 71

non-zero eigenvalues and associated eigenvectors of ΩZ̄∗ , and the values of parameters νj and

λj . In our simulations (a) with αi = 0.2, the draws of maxj=1,...,df νj range between 0.21 and

0.30, with 95% quantile equal to 0.28, while the 5% and 95% quantiles of the λj are 0.13 and

7.65. Instead, (b) with αi = 0.5, the maxj=1,...,df νj range between 0.70 and 0.79, with 95%

quantile equal to 0.77, and the 5% and 95% quantiles of the λj are 0.12 and 6.64. To get further

insights in the choice of parameters ν̄, λ, λ̄, we also consider the values implied by the FA estimates

in our empirical analysis. Here, when testing for the last retained k in a given subperiod, the

median across subperiods of maxj=1,...,df νj is 0.76, and smaller than about 0.90 in most subperiods.

Similarly, assuming ck+1 = 10T and ξk+1 = e1 as above, the median values of the smallest and the

largest estimated λj are 0.0024 and 5.84. Inspired by these findings, we set λ̄ = 7, and consider

ν̄ = 0.2, 0.7, 0.9, 0.99, and λ = 0, 0.1, 0.5, 1, to get realistic settings with different degrees

of dissimilarity from the case with serially uncorrelated squared errors (increasing with ν̄), and

separation of the alternative hypothesis from the null hypothesis (increasing with λ).
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E.2 Results with Monte Carlo draws

In Table 1, the entries are nil for ν̄ sufficiently small and λ sufficiently large, suggesting that the

AUMPI property holds for those cases that are closer to the setting with uncorrelated squared

errors and sufficiently separated from the null hypothesis. Violations of Inequalities (12) concern

df = 2, 3, 4, 5. 39 Let us focus on the setting with ν̄ = 0.7 and λ = 0.1. We find 3752 violations

of Inequalities (12) out of 108 simulations, all occurring for df = 2, except 65 for df = 3. For

those draws violating Inequalities (12) for df = 2, a closer inspection shows that (a) they feature

values ν2 close to upper bound ν̄ = 0.7, and values of λ2 close to lower bound λ = 0.1, and

(b) several of them yield non-monotone density ratios f(z;λ1,λ2)
f(z;0,0)

, with the non-monotonicity region

corresponding to large values of z. As an illustration, let us take the density ratio for df = 2 with

ν2 = 0.666, λ1 = 1.372, and λ2 = 0.130. Here, the eigenvalues of the variance-covariance matrix

are µ1 = 1 (by normalization) and µ2 = (1− ν2)−1 = 2.994, and the non-centrality parameter λ2

is small. The quantiles of the asymptotic distribution under the null hypothesis for asymptotic size

α = 20%, 10%, 5%, 1%, 0.1% are 9.3, 12.8, 16.2, 24.5, 36.5. Non-monotonicity applies for z ≥ 16.

The optimal rejection regions {f(z;λ1,λ2)
f(z;0,0)

≥ C} correspond to those of the LR test {z ≥ C̃}, e.g.,

for asymptotic levels such as α = 20%, but not for α = 5% or smaller. Indeed, in the latter cases,

because of non-monotonicity of the density ratio, the optimal rejection regions are finite intervals

in argument z. With ν̄ = 0.7, we do not find violations with λ = 0.5 or larger.

39A given number of simulated draws become increasingly sparse when considering larger values of df , which

makes the exploration of the parameter space more challenging in those cases. However, unreported theoretical con-

siderations show via an asymptotic approximation that the monotone likelihood property holds for df →∞ since the

limiting distribution is then Gaussian. This finding resonates with the absence of violations in Table 1 for the larger

values of df .
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df 2 3 4 5 6 7 8 9 10 11 12

ν̄ = 0.2 λ = 0 0.002 0 0 0 0 0 0 0 0 0 0

λ = 0.1 0.000 0 0 0 0 0 0 0 0 0 0

λ = 0.5 0 0 0 0 0 0 0 0 0 0 0

λ = 1 0 0 0 0 0 0 0 0 0 0 0

ν̄ = 0.7 λ = 0 0.051 0.000 0.000 0 0 0 0 0 0 0 0

λ = 0.1 0.037 0.000 0 0 0 0 0 0 0 0 0

λ = 0.5 0 0 0 0 0 0 0 0 0 0 0

λ = 1 0 0 0 0 0 0 0 0 0 0 0

ν̄ = 0.9 λ = 0 0.151 0.004 0.000 0.000 0 0 0 0 0 0 0

λ = 0.1 0.134 0.004 0.000 0 0 0 0 0 0 0 0

λ = 0.5 0.007 0.000 0 0 0 0 0 0 0 0 0

λ = 1 0 0 0 0 0 0 0 0 0 0 0

ν̄ = 0.99 λ = 0 0.426 0.015 0.000 0.000 0 0 0 0 0 0 0

λ = 0.1 0.411 0.014 0.000 0.000 0 0 0 0 0 0 0

λ = 0.5 0.218 0.007 0.000 0 0 0 0 0 0 0 0

λ = 1 0.078 0.001 0 0 0 0 0 0 0 0 0

Table 1: Numerical check of Inequalities (12) by Monte Carlo. We display the cumulative fre-

quency of violations in h of Inequalities (12), for m = 3, ..., 16, over 108 random draws of the

parameters λj ∼ Unif [λ, λ̄] and νj ∼ Unif [0, ν̄], for λ̄ = 7, and different combinations of

bounds λ, ν̄, and degrees of freedom df . An entry 0.000 corresponds to less than 100 cases out of

108 draws.
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