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In a quantum network, distant observers sharing physical resources emitted by independent
sources can establish strong correlations, which defy any classical explanation in terms of local
variables. We discuss the characterization of nonlocal correlations in such a situation, when com-
pared to those that can be generated in networks distributing independent local variables. We
present an iterative procedure for constructing Bell inequalities tailored for networks: starting from
a given network, and a corresponding Bell inequality, our technique provides new Bell inequalities
for a more complex network, involving one additional source and one additional observer. The rel-
evance of our method is illustrated on a variety of networks, for which we demonstrate significant
quantum violations.

Distant observers performing local measurements on a
shared entangled quantum state can observe strong cor-
relations, which have no equivalent in classical physics.
This phenomenon, termed quantum nonlocality [1, 2], is
at the core of quantum theory and represents a key re-
source for quantum information processing [3, 4].

This remarkable feature is now relatively well under-
stood in the case of observers sharing entangled states
originating from a single common source, for which a
solid theoretical framework has been established [2], and
many classes of Bell inequalities have been derived; see
e.g. [5]. The situation is however very different in the case
of quantum networks, which has been far less explored
so far. A quantum network features distant observers, as
well as several independent quantum sources distribut-
ing entangled states to different subsets of observers (see
Fig. 1). Crucially, by performing joint measurements, ob-
servers can correlate distant (and initially fully indepen-
dent) quantum systems, hence establishing strong cor-
relations across the entire network. Characterizing and
detecting the nonlocality of such correlations represents
a fundamental challenge, which is also highly relevant to
the implementation of quantum networks [6] and quan-
tum repeaters [7]. Only few exploratory works have dis-
cussed nonlocal correlations in the simplest networks,
such as the scenario of entanglement swapping [8, 9]
and star-shaped networks [10]. Others suggested ap-
proaching the problem using the framework of causal in-
ference [11–16]. The communication cost of simulating
quantum correlations in entanglement swapping was also
discussed [17]. However, it is fair to say that adequate
methods are still currently lacking for discussing nonlo-
cal correlations in networks beyond the simplest possible
cases.

In this work, we present a simple and efficient method
for detecting and characterizing nonlocal correlations in
a wide class of networks. Specifically, we give an itera-
tive procedure for constructing Bell inequalities tailored

Extension toNetwork

FIG. 1. We consider networks consisting of distant ob-
servers Aj sharing physical resources emitted from indepen-
dent sources Sk, and discuss nonlocality in such networks. In
our approach, starting from a network N (in black) with N
sources and M parties, we define a new network N ′ by adding
a new independent source SN+1 connected to a single party
AM of N and to a new party AM+1 (in blue). We show how
Bell inequalities for so-called N ′-local correlations can be de-
rived starting from Bell inequalities for N -local correlations.

for networks—that is, inequalities satisfied by any cor-
relations generated in a local model that matches the
structure of the network under study, with independent
random variables for each independent source. Starting
from a given network, and a Bell inequality for it, we
then construct inequalities for a more complex network,
involving one additional source and one additional ob-
server. We illustrate the relevance of our approach con-
sidering a variety of simple networks, and demonstrate
significant violations in quantum theory. We believe that
the simplicity and versatility of our method makes it ad-
equate for starting a systematic exploration of quantum
nonlocality in networks.

Scenario of N -locality.— Consider a network N con-
sisting of N independent sources S1, . . . ,SN sending
physical systems to M parties A1, . . . ,AM (see Fig. 1).
Each party thus holds a number of systems, and performs
a measurement on them (assumed here to be binary).
Specifically, we denote by xj the input received by party
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Aj , and by ajxj = ±1 its corresponding output.
Our goal is to capture the strength of correlations that

can be established in a network N for different types of
resources. In particular, we want to compare the correla-
tions established in the case of a quantum network (i.e.,
with quantum sources, and with the parties performing
quantum measurements), to those that can arise in local
(hidden) variable models. Importantly the latter should
feature the same network structure as N , with indepen-
dent sources of local variables, and are thus referred to as
N -local models. This represents the natural generaliza-
tion of the notions of Bell locality [1, 2] (tailored for the
case of a single source), and ‘bilocality’ [8, 9] (tailored
for the scenario of entanglement swapping with two in-
dependent sources), to arbitrary networks.

More formally, we associate to each source Si a random
local variable λi, which is sent to all parties connected
to Si in the network N . The crucial assumption of N -
locality is that all λi’s are independent from one another,
that is, ρ(λ1, . . . λN ) =

∏
i ρi(λi), for some (nonnegative

and normalised) distributions ρi(λi) over some sets Λi.

We denote by ~λAj the list of random variables λi’s ‘re-
ceived’ by party Aj . Then the (M -partite) joint prob-
ability distribution P (a1, . . . , aM |x1, . . . , xM ) (where we
have omitted redundant subscripts) isN -local if and only
if it can be decomposed as

P (a1, . . . , aM |x1, . . . , xM )

=

∫
Λ1

dλ1 ρ1(λ1) . . .

∫
ΛN

dλN ρN (λN )

P (a1|x1, ~λA1) . . . P (aM |xM, ~λAM ) , (1)

where each P (aj |xj, ~λAj ) is a valid probability distribu-
tion, which (without loss of generality) can be assumed to
be deterministic. As we focus on binary measurements,
it is convenient to consider correlators, i.e., the expecta-
tion values 〈a1

x1a2
x2 . . . aMxM 〉. In a N -local model, these

can be written as

〈a1
x1 . . . aMxM 〉 =

∫
Λ1

dλ1 ρ1(λ1) . . .

∫
ΛN

dλN ρN (λN )

a1
x1(~λA1) . . . aMxM (~λAM ), (2)

for some deterministic response functions ajxj (~λAj ) = ±1

of the party’s input xj and of the random variables ~λAj .
Characterizing the set of N -local correlations is a chal-

lenging problem. The main technical difficulty, for cases
beyond that of standard Bell locality, originates from
the independence of the sources, which makes the set
non-convex. Here we will present a simple and efficient
technique for generating Bell inequalities tailored for the
problem of capturingN -local correlations. Hence a viola-
tion of such inequalities, which is usually possible consid-
ering quantum networks, certifies that no N -local model
can reproduce the given correlations. Below we state
our main result, which is an iterative procedure for con-
structing Bell inequalities for N -local correlations. We

then illustrate the relevance of our method by applying
it to simple networks, and discuss quantum violations.

Main result.— Consider a network N , and a Bell in-
equality tailored for it. From N , we construct a new
network N ′ by adding one source, SN+1, linked to just
one party of N , say AM , and to one new party, AM+1

(see Fig. 1). The new party AM+1 gets an input xM+1,
which we choose to be binary (xM+1 = 0, 1), and gives
a binary output aM+1

xM+1 = ±1. Given a Bell inequality
capturing N -local correlations, we can now construct a
Bell inequality tailored forN ′-local correlations using the
following result:

Theorem 1. Suppose that the correlators 〈a1
x1 . . . aMxM 〉

in any N -local model satisfy a Bell inequality of the form∑
x1,...,xM

βx1,...,xM 〈a1
x1 . . . aMxM 〉 ≤ 1 (3)

for some real coefficients βx1,...,xM . Then N ′-local corre-
lations (for the network N ′ obtained from N as described
above) satisfy the following constraint: either there exists
q ∈ ]0, 1[ such that for any partition of the set of party
AM ’s inputs into two disjoint subsets XM+ and XM− , we
have

1

q
ΣX+

+
1

1− q
ΣX− ≤ 1 (4)

for

ΣX± =
∑

x1,...,xM−1,

xM∈XM
±

βx1,...,xM 〈a1
x1 . . . aMxM

aM+1
0 ±aM+1

1

2 〉 ; (5)

or ΣX− = 0 and ΣX+
≤ 1 for all k and all XM± ; or

ΣX+
= 0 and ΣX− ≤ 1 for all k and all XM± .

In the present manuscript, we abuse the notation and
write q ∈ [0, 1] to cover all cases; indeed, the particular
cases where ΣX± = 0 can easily be recovered in the limits
q → 1 or q → 0. In Appendix A we provide a more gen-
eral statement of the above theorem—which allows one
to consider several Bell inequalities at once and also al-
lows for non-full-correlation terms in these inequalities—
as well as a detailed proof. Interestingly, the technique
used in our proof also provides an original way to derive
the simplest Bell inequality of Clauser-Horne-Shimony-
Holt (CHSH) [18], as discussed in Appendix B.

A remarkable feature of the ‘Bell inequality’ (4) is that
it involves the quantifier ‘∃ q...’. As a consequence, de-
spite its appearance it actually defines a nonlinear con-
straint on N ′-local correlations. One could eliminate the
quantifier by minimizing the left-hand-side of Eq. (4) over
q; this would indeed lead to explicitly nonlinear Bell in-
equalities (see below and Appendices C–F). However, it
will be convenient in general to keep these quantifiers (in
a practical test, they could be eliminated later, by opti-
mizing the parameters q directly for the specific values of



3

a)

b) N

c)

d)

N

e)

FIG. 2. In the main text, we discuss a variety of networks: a) the scenario of bilocality, b) a general chain network featuring
N sources and M = N + 1 observers, c) a 3 branch star network, d) a general star-shaped network with N branches, and e) a
network featuring a different topology, illustrating the versatility of our method.

the observed statistics). In fact, Theorem 1 also applies
to an initial Bell inequality for N -local correlations that
features quantifiers itself. Our technique can therefore be
used in an iterative manner, and allows one to construct
Bell inequalities for a broad class of networks, as we shall
see below.

Bilocality.— Let us first apply the above method to
the simplest non-trivial network N consisting of M = 2
parties A1 and A2 connected to a single source S1, that
is, the usual Bell scenario [1, 2]. In that case, N -local
(i.e. here, simply ‘Bell local’) correlations satisfy the well-
known CHSH inequality [18]:

〈a
1
0+a11

2 a2
0〉+ 〈a

1
0−a

1
1

2 a2
1〉 ≤ 1 . (6)

The network N ′, obtained by adding an independent
source S2 linked to party A2 and to a new party A3,
corresponds here to the scenario of ‘bilocality’ [8, 9]; see
Fig. 2a. Applying Theorem 1 starting from the CHSH in-
equality and with X 2

+ = {0} and X 2
− = {1}, we find that

N ′-local (i.e., bilocal) correlations satisfy the inequality

∃ q ∈ [0, 1] such that

1
q 〈
a10+a11

2 a2
0
a30+a31

2 〉+ 1
1−q 〈

a10−a
1
1

2 a2
1
a30−a

3
1

2 〉 ≤ 1 . (7)

It is still fairly easy, in this first example, to eliminate the
quantifier. As we show in Appendix C, this constraint
(when combined with similar forms obtained from other
versions of CHSH) is equivalent to the (nonlinear) ‘bilocal
inequality’ derived previously in [9].

Next we discuss the quantum violation of the above
Bell inequality, thus considering the entanglement swap-
ping scenario. Assume that each source Si (i = 1, 2)
emits two particles in the 2-qubit Werner state %(vi) =
vi|Φ+〉〈Φ+| + (1−vi)11/4, with vi ∈ [0, 1], |Φ+〉 =
1√
2
(|00〉 + |11〉), and 11/4 the fully mixed state of two

qubits. Moreover, the parties A1 and A3 perform sin-
gle qubit projective measurements given by operators
â1

0 = â3
0 = σ̂z+σ̂x√

2
(for x1, x3 = 0) or â1

1 = â3
1 = σ̂z−σ̂x√

2

(for x1, x3 = 1); here σ̂z and σ̂x are the Pauli matri-
ces. Finally, the intermediate party A2 performs projec-

tive two-qubit measurements given by â2
0 = σ̂z ⊗ σ̂z (for

x2 = 0) or â2
1 = σ̂x⊗ σ̂x (for x2 = 1). Defining V = v1v2,

one finds

〈a1
x1a2

x2a3
x3〉 = (−1)x

1x2+x2x3 V

2
, (8)

so that

〈a
1
0+a11

2 a2
0
a30+a31

2 〉 = 〈a
1
0−a

1
1

2 a2
1
a30−a

3
1

2 〉 =
V

2
. (9)

Noting that minq∈[0,1]

(
1
q
V
2 + 1

1−q
V
2

)
= 2V , we find that

the quantum correlations thus obtained violate the Bell
inequality (7)—and hence is non-bilocal—for any V > 1

2 ,
as already shown in [8].

Chain network.— The above procedure can be iterated
in order to characterize N -local correlations on a one-
dimensional chain network (see Fig. 2b). First, starting
from the previous bilocality network (with 2 sources and
3 parties), we add a new party A4, and a source S3 con-
nected to A3 and A4. Applying Theorem 1 to the Bell
inequality (7), and choosing X 3

+ = {0} and X 3
− = {1},

we find that ‘trilocal’ correlations satisfy the inequality

∃ q, r ∈ [0, 1] such that

1

8

[
1
q

1
r 〈(a

1
0+a1

1)a2
0a

3
0(a4

0+a4
1)〉

+ 1
q

1
1−r 〈(a

1
0+a1

1)a2
0a

3
1(a4

0−a4
1)〉

+ 1
1−q

1
r 〈(a

1
0−a1

1)a2
1a

3
0(a4

0+a4
1)〉

− 1
1−q

1
1−r 〈(a

1
0−a1

1)a2
1a

3
1(a4

0−a4
1)〉
]
≤ 1 . (10)

Note that it is in principle possible to write the above con-
straint without quantifiers, and end up with a nonlinear
Bell inequality (as in the case of bilocality above). We
discuss this operation in Appendix D. However, in this
case the nonlinear form appears to be extremely cumber-
some and of no practical use.

Next, we extend our analysis to chains of arbitrary
lengths, focusing on linear Bell inequalities with quanti-
fiers. By further iterating the argument, we obtain the
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following inequality for chains of N independent sources
and M = N + 1 parties:

∃ q2, . . . , qN ∈ [0, 1] such that

1

2N

∑
x1,...,xN+1

1
q2
x2
. . . 1

qN
xN

(−1)x
1x2+x2x3+...+xNxN+1

〈a1
x1 . . . aN+1

xN+1〉 ≤ 1,

(11)

with for each j, qj0 = qj and qj1 = 1− qj .
Let us discuss quantum violations. Consider that each

source Si sends two particles in the Werner state %(vi);
party A1 measures either â1

0 = σ̂z+σ̂x√
2

or â1
1 = σ̂z−σ̂x√

2
;

parties j, with 2 ≤ j ≤ N and j even, measure either
âj0 = σ̂z ⊗ σ̂z or âj1 = σ̂x ⊗ σ̂x; parties j, with 3 ≤ j ≤ N

and j odd, measure either âj0 = σ̂z+σ̂x√
2
⊗ σ̂z+σ̂x√

2
or âj1 =

σ̂z−σ̂x√
2
⊗ σ̂z−σ̂x√

2
; for N even, party AN+1 measures either

âN+1
0 = â1

0 = σ̂z+σ̂x√
2

or âN+1
1 = â1

1 = σ̂z−σ̂x√
2

; for N odd,

party AN+1 measures either âN+1
0 = σ̂z or âN+1

1 = σ̂x.

Defining V =
∏N
i=1 vi, one finds

〈a1
x1 . . . aN+1

xN+1〉 = (−1)x
1x2+x2x3+...+xNxN+1 V

2N/2
. (12)

The left-hand side of inequality (11) is then given by

2N/2 V

4N−1

∑
x2,...,xN

1
q2
x2
. . . 1

qN
xN

. (13)

Noting that minq2,...,qN
(∑

x2,...,xN
1
q2
x2
. . . 1

qN
xN

)
= 4N−1,

we find that the quantum correlations thus obtained vi-
olates the Bell inequality (11)—and hence are non-N -
local—for V > 2−N/2. This proves a conjecture made
in [9]. Interestingly, note that although the global corre-
lations become very weak for large N and V < 1, their
nonlocality can nevertheless be revealed using the Bell
inequality (11).

Star network.— To discuss star-shaped networks, we
start from the bilocality network, i.e., a linear chain of
3 parties connected by 2 sources. For clarity, we re-label
the parties by calling A1 and A2 the first and last par-
ties in the chain, and B the middle one. The input and
output of B are now denoted by y and by = ±1, re-
spectively. Clearly, N -local correlations satisfy the Bell
inequality (7), with a2

x2 replaced by by and a3
x3 replaced

by a2
x2 .

Similarly to our previous constructions, let us add a
source S3, connected now to party B and to a new party
A3. The network N ′ thus obtained has a 3-branch star
shape (see Fig. 2c). Applying Theorem 1 to the Bell
inequality of Eq. (7) (and with the two subsets of party
B’s inputs Y+ = {0} and Y− = {1}), we find that N ′-
local correlations satisfy the inequality

∃ q, r ∈ [0, 1] such that

1
q

1
r 〈

a10+a11
2

a20+a21
2

a30+a31
2 b0〉

+ 1
1−q

1
1−r 〈

a10−a
1
1

2
a20−a

2
1

2
a30−a

3
1

2 b1〉 ≤ 1 . (14)

Iterating the above procedure, we obtain a star-shaped
network N consisting of N independent sources Si, each
connected to one out of N parties Ai and to a single cen-
tral party B, as depicted in Fig. 2d. For such a network,
we find that N -local correlations satisfy the inequality

∃ q1, . . . , qN−1 ∈ [0, 1] such that

1
q1
. . . 1

qN−1
〈a

1
0+a11

2 . . .
aN0 +aN1

2 b0〉

+ 1
1−q1 . . .

1
1−qN−1

〈a
1
0−a

1
1

2 . . .
aN0 −a

N
1

2 b1〉 ≤ 1 . (15)

As shown in Appendix E, by eliminating the quantifiers
one can recover here the nonlinear Bell inequalities de-
rived in [10], which generalize the bilocal inequalities
of [9] to the star-shaped network considered here. For
violations of these inequalities in quantum theory, we re-
fer the reader to Ref. [10].

Other topologies.— To illustrate the versatility of our
framework, we now discuss a network which is neither a
linear chain nor star-shaped. Specifically, we start from a
network N consisting of a single source S1 connected to
3 parties A1, A2 and A3. Here, N -local (i.e., Bell-local)
correlations satisfy the Mermin inequality [19]:

〈a
1
0a

2
1+a11a

2
0

2 a3
0〉+ 〈a

1
0a

2
0−a

1
1a

2
1

2 a3
1〉 ≤ 1 . (16)

Adding a source S2, linked to partyA3 and to a new party
A4, we obtain a network N ′ sketched in Fig. 2e. Using
Theorem 1 and choosing X 3

+ = {0} and X 3
− = {1} we

find that N ′-local correlations have to obey the following
Bell inequality:

∃ q ∈ [0, 1] such that

1
q 〈

a10a
2
1+a11a

2
0

2 a3
0
a40+a41

2 〉+ 1
1−q 〈

a10a
2
0−a

1
1a

2
1

2 a3
1
a40−a

4
1

2 〉 ≤ 1 .

(17)

Let us again discuss quantum violations. Con-
sider that S1 sends a noisy 3-qubit state: ρ1(v1) =
v1|GHZ〉〈GHZ|+ (1−v1)11/8 with |GHZ〉 = 1√

2
(|000〉+

|111〉) and where 11/8 is the fully mixed state of three
qubits, while S2 sends 2-qubit Werner state %2(v2) as de-
fined previously. Take for instance the following measure-
ments: for parties A1, A2 and A4, â1

0 = â2
0 = â4

0 = σ̂x+σ̂y√
2

and â1
1 = â2

1 = â4
1 = σ̂x−σ̂y√

2
; for A3, â3

0 = σ̂x ⊗ σ̂x and

â3
1 = σ̂y ⊗ σ̂y. We then get

〈a
1
0a

2
1+a11a

2
0

2 a3
0
a40+a41

2 〉 = 〈a
1
0a

2
0−a

1
1a

2
1

2 a3
1
a40−a

4
1

2 〉 =
V√

2
,

where V = v1v2. Minimizing again over q, we find
that quantum correlations violate the Bell inequality (17)
when V > 1

2
√

2
.

Discussion.— We presented a simple and efficient
method for generating Bell inequalities tailored for net-
works with independent sources. The relevance of our
method was illustrated with various examples, featuring
strong quantum violations.
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While we focused here on the case of binary inputs
and outputs for each observer, our technique can also be
used for deriving Bell inequalities with more inputs and
outputs. In fact, the only requirements that we explicitly
made use of is that party AM has binary outputs and the
added observer AM+1 has binary inputs and outputs. In
Appendix F, we illustrate for instance a case with ternary
inputs for parties A1 and A2 in the bilocality scenario,
which also includes non-full-correlation terms. In prin-
ciple our technique could also allow for any numbers of
outputs for parties A1, . . .AM−1; it would just become
quite cumbersome to write without resorting to correla-
tors. Extending our method to the case where the party
AM has more outputs, and party AM+1 has an arbitrary
number of inputs and outputs, is left for future work.

Finally, it would be interesting to derive Bell inequali-
ties tailored for networks featuring loops. In the present
work we could only discuss acyclic networks, as our
method allows us to ‘add a leaf’ to a graph, but not to
create a cycle. Note however that, given a Bell inequal-
ity tailored for a network with a loop, our method can
readily be applied in order to add a leaf; however, we are
not aware of any nontrivial Bell inequality for networks
containing a loop, despite intense research efforts in this
direction [9, 11].

Note added.— While writing up this manuscript, we
became aware of related work by Lee and Spekkens [21]
and Chaves [22], discussing polynomial Bell inequalities
for networks.
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Appendix A:
General statement and proof of our main theorem

Below we give the full version of our main theorem and
its proof. Consider a network N with M parties Aj and
N independent source Si, and a Bell inequality tailored
for it, with inputs xj and binary outputs ajxj = ±1. The
new network N ′ is obtained by adding one source, SN+1,
and one new party AM+1. SN+1 is linked to just one
party of N , say AM , and to the new party, AM+1. The
inputs and outputs of AM+1 are both taken to be binary,
labeled by xM+1 = 0, 1 and aM+1

xM+1 = ±1 respectively.
Here in order to also consider non-full-correlation terms,
we introduce, for each party, a ‘trivial’ input xj = ∅ with
a corresponding trivial output aj∅ = 1; this will allow us

to write for instance 〈a1
x1a2
∅ . . . a

M
∅ 〉 = 〈a1

x1〉.
Given a set of constraints capturing N -local correla-

tions, we obtain novel constraints for N ′-local correla-
tions as follows.

Theorem 2. Suppose that the correlators 〈a1
x1 . . . aMxM 〉

in any N -local model satisfy a set of Bell inequalities of
the form{ ∑

x1,...,xM

β
(k)

x1,...,xM 〈a1
x1 . . . aMxM 〉 ≤ L(k)

}
k
, (A1)

for some real coefficients β
(k)

x1,...,xM , some ‘N -local bounds’

L(k), and different values of k. Then N ′-local correla-
tions (for the network N ′ obtained from N as described

http://arxiv.org/abs/1404.4812
http://arxiv.org/abs/1506.03880
http://arxiv.org/abs/1506.04325
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above) satisfy the following constraint: either there ex-
ists q ∈ ]0, 1[ such that for all k and for any partition of
the set of party AM ’s nontrivial inputs into two disjoint
subsets XM+ and XM− ,

1

q
Σ

(k)
X+

+
1

1− q
Σ

(k)
X−

+ Σ
(k)
∅ ≤ L(k) (A2)

for

Σ
(k)
X±

=
∑

x1,...,xM−1,

xM∈XM
±

β
(k)

x1,...,xM 〈a1
x1 . . . aMxM

aM+1
0 ±aM+1

1

2 〉,
(A3)

Σ
(k)
∅ =

∑
x1,...,xM−1

β
(k)

x1,...,xM−1,∅ 〈a
1
x1 . . . aM−1

xM−1〉 ; (A4)

or Σ
(k)
X−

= 0 and Σ
(k)
X+

+Σ
(k)
∅ ≤ L

(k) for all k and all XM± ;

or Σ
(k)
X+

= 0 and Σ
(k)
X−

+Σ
(k)
∅ ≤ L

(k) for all k and all XM± .

Theorem 2 is a generalization of Theorem 1 as given
in the main text. It allows for terms that are not ‘full
correlators’, and tells us that if one wants to apply Theo-
rem 1 to different initial Bell inequalities, the same value
of q can be used for all those inequalities.

Proof of Theorem 2. Consider anN ′-local model with in-
dependent random variables λi (1 ≤ i ≤ N) attached to
the N sources Si (as in the general description of a N -
local model in the main text) and an independent ran-
dom variable µ ∈

W

, distributed according to ρ W(µ),
attached to the source SN+1. (We call it µ rather than
λN+1 to ease notation, and to highlight the particular
role it plays in our construction.) We assume, without
loss of generality, that the model is deterministic (as any
randomness used locally could be included in the vari-
ables λi), with binary response functions ajxj (~λAj ) = ±1,

aMxM (~λAM , µ) = ±1 and aM+1
xM+1(µ) = ±1 for parties Aj

with 1 ≤ j ≤M−1, AM and AM+1, respectively.

Let us define

W

± =
{
µ ∈

W∣∣ aM+1
0 (µ) = ±aM+1

1 (µ)
}
, (A5)

q± =
∫

W

±
dµρ W(µ) , ρ W

±(µ) = ρ W(µ)/q± , (A6)

such that q++q− = 1, and so that ρ W

± define normalized
measures on

W

±, resp. (if q± = 0, we let ρ W

±(µ) be any
normalized measure on

W

±).

Let us then calculate, for this N ′-local model:

〈a1
x1 . . . aMxM

aM+1
0 ±aM+1

1

2 〉

=

∫
Λ1

dλ1 ρ1(λ1) . . .

∫
ΛN

dλN ρN (λN )

∫

W

dµρ W(µ)

a1
x1(~λA1) . . . aM-1

xM-1(~λAM-1)aMxM (~λAM , µ)
aM+1
0 (µ)±aM+1

1 (µ)
2

= q±

∫
Λ1

dλ1 ρ1(λ1) . . .

∫
ΛN

dλN ρN (λN )

∫

W

±

dµ± ρ W

±(µ±)

a1
x1(~λA1) . . . aM−1

xM−1(~λAM−1)ãMxM,µ±
(~λAM )

= q±

∫

W

±

dµ± ρ W

±(µ±) 〈a1
x1 . . . aM−1

xM−1 ã
M
xM,µ±

〉, (A7)

with the (deterministic) response function

ãMxM,µ±
(~λAM ) = aMxM (~λAM , µ±)aM+1

0 (µ±), where we

relabeled µ → µ± (which is formally understood as an
additional input for party AM ) depending on whether
µ ∈

W

±, and where the correlator 〈a1
x1 . . . a

M−1
xM−1 ã

M
xM,µ±

〉
is N -local.

Suppose now that the correlators 〈a1
x1 . . . aMxM 〉 of any

N -local model satisfy the set of Bell inequalities (A1)
(which may already involve quantifiers of the form
‘∃ q . . .’). Let us divide the set of party AM ’s nontriv-
ial inputs into two disjoint subsets XM+ and XM− . By
relabeling party AM ’s inputs as in xM → (xM, µ+) if
xM ∈ XM+ and xM → (xM, µ−) if xM ∈ XM− , and
by writing now the corresponding outputs as ãMxM,µ±

, it

clearly follows that for all µ+ and µ−, N -local correlators
〈a1
x1 . . . a

M−1
xM−1 ã

M
xM,µ±

〉 satisfy, for all k,

S
(k)
X+,µ+

+ S
(k)
X−,µ−

+ Σ
(k)
∅ ≤ L(k), (A8)

where

S
(k)
X±,µ±

=
∑

x1,...,xM−1,

xM∈XM
±

β
(k)

x1,...,xM 〈a1
x1 . . . aM−1

xM−1 ã
M
xM,µ±

〉 , (A9)

and with Σ
(k)
∅ as defined in Eq. (A4). By Eqs. (A3)

and (A7), S
(k)
X±,µ±

are such that

Σ
(k)
X±

= q±

∫

W

±

dµ± ρ W

±(µ±)S
(k)
X±,µ±

. (A10)

Consider first the case where q± ∈ ]0, 1[. Averaging
Eq. (A8) over µ+ ∈

W

+ and µ− ∈

W

−, and using
Eq. (A10) (after divinding it by q±), we recover Eq. (A2)
with q = q+.

In the case where q+ = 1 and q− = 0, first note that
the Bell inequalities (A1) for N -local correlations also
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imply the Bell inequalities∑
x1,...,xM−1,

xM∈XM
+

β
(k)

x1,...,xM 〈a1
x1 . . . aMxM 〉

−
∑

x1,...,xM−1,

xM∈XM
−

β
(k)

x1,...,xM 〈a1
x1 . . . aMxM 〉

+
∑

x1,...,xM−1

β
(k)

x1,...,xM−1,∅ 〈a
1
x1 . . . aM−1

xM−1〉 ≤ L(k) , (A11)

where we simply changed the sign in front of the coeffi-
cients βx1,...,xM with xM ∈ XM− (this can indeed be seen
by letting party AM locally flip their outputs when their
inputs are in XM− .) Averaging the two families of Bell
inequalities, replacing aMxM by ãMxM,µ+

(as in (A8)–(A9)

above), averaging over µ+ ∈

W

+ and using Eq. (A10),

we find that Σ
(k)
X−

= 0 and Σ
(k)
X+

+ Σ
(k)
∅ ≤ L

(k).
Similarly, in the case where q+ = 0 and q− = 1, we find

that Σ
(k)
X+

= 0 and Σ
(k)
X−

+ Σ
(k)
∅ ≤ L(k), which concludes

the proof of Theorem 2.

Appendix B:
Obtaining CHSH from the proof of Theorem 2

Interestingly, our proof of Theorem 2 above provides a
way to derive the well-known CHSH Bell inequality [18],
in a similar spirit to our iterative construction of N -local
inequalities.

Consider a trivial network N consisting of only one
party A1. By adding a source and a new party A2 to N
as previously, we obtain a network N ′ that corresponds
to the typical scenario of a Bell experiment. According
to Eq. (A7), the correlators obtained in a N ′-local—i.e.,
simply ‘Bell-local’ [1, 2]—model satisfy

〈a1
x1
a20±a

2
1

2 〉 = q±

∫

W

±

dµ± ρ W

±(µ±) 〈ã1
x1,µ±

〉. (B1)

The integral above corresponds to the average of the
quantities 〈ã1

x1,µ±
〉 ∈ [−1, 1], and is therefore itself in the

interval [−1, 1]. The combination 〈a1
0
a20+a21

2 〉+ 〈a1
1
a20−a

2
1

2 〉
is thus a convex sum of quantities in [−1, 1], with non-
negative weights q+ and q− = 1− q+. This implies that

− 1 ≤ 〈a1
0
a20+a21

2 〉+ 〈a1
1
a20−a

2
1

2 〉 ≤ 1, (B2)

which is simply the CHSH Bell inequality.

Appendix C:
Recovering the bilocal inequality of Ref. [9]

Let us define, as in [9],

I = 〈a
1
0+a11

2 a2
0
a30+a31

2 〉 , J = 〈a
1
0−a

1
1

2 a2
1
a30−a

3
1

2 〉 .

Note that in our derivation of (7), we could have ap-
plied Theorem 2 to the set of all four equivalent versions
of CHSH of the form

σ〈a
1
0+a11

2 a2
0〉+ τ〈a

1
0−a

1
1

2 a2
1〉 ≤ 1 , (C1)

for any combination of σ, τ = ±1. This would have led
to four different versions of the inequality in Eq. (7) (all

for the same q) with 〈a
1
0+a11

2 a2
0
a30+a31

2 〉(= I) replaced by

σI and 〈a
1
0−a

1
1

2 a2
0
a30−a

3
1

2 〉(= J) replaced by τJ . Combin-
ing the four Bell inequalities thus obtained, we find that
bilocal correlations satisfy

∃ q ∈ [0, 1] such that 1
q |I|+

1
1−q |J | ≤ 1 . (C2)

One easily finds that the minimal value of 1
q |I|+

1
1−q |J |

is (
√
|I|+

√
|J | )2, obtained for q =

√
|I|√

|I|+
√
|J|

(or for any

q if I = J = 0). Eq. (C2) is thus equivalent to√
|I| +

√
|J | ≤ 1 , (C3)

which is indeed the bilocal inequality derived in [9].

Appendix D:
Bell inequality for trilocality in the nonlinear form

In the main text, we derived a Bell inequality for the
scenario of ‘trilocality’, that is, a chain network with
3 sources and 4 observers. This inequality, given in
Eq. (10), can be rewritten without quantifiers. We define
here

I = 〈a
1
0+a11

2 a2
0a

3
0
a40+a41

2 〉, J = 〈a
1
0+a11

2 a2
0a

3
1
a40−a

4
1

2 〉,

K = 〈a
1
0−a

1
1

2 a2
1a

3
0
a40+a41

2 〉, L = 〈a
1
0−a

1
1

2 a2
1a

3
1
a40−a

4
1

2 〉,

and using q− = 1 − q, r− = 1 − r, we multiply Eq. (10)
by 2qq−rr−:

f = 2qq−rr− − q−r−I − q−rJ − qr−K + qrL ≥ 0 ,

(D1)

at the price of losing discriminating power when some of
the I, J,K,L = 0.

The set of correlations is bounded by f = 0, when q, r
are such that f is maximized; the polynomial equation for
this boundary is thus given by the system {f = 0, ∂f∂q =

0, ∂f∂r = 0}. The variables q, r can be removed using an
elimination ideal [23], giving a polynomial W of degree
9 with 286 terms. Observing that Eq. (D1) is symmetric
under the group G of order 8 generated by {I ↔ −L}
and {I → K → −L → J → I}, the polynomial W
can be decomposed using the primary invariants f1 =
I + J +K − L, f2 = JK − IL, f3 = I2 + J2 +K2 + L2,
f4 = −I2JK+ IJ2L+ IK2L−JKL2 and the secondary
invariants g1 = 1, g2 = I3 +J3 +K3−L3 of the invariant
ring R[I, J,K,L]G [24]:

W = W1 g1 +W2 g2 ≥ 0, (D2)
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with factors W1, W2:

W1 =f8
1 + f2f

7
1 − 18f7

1 − 31f2f
6
1 − 6f3f

6
1 + 20f6

1 − 11f2
2 f

5
1

+174f2f
5
1 − 6f2f3f

5
1 + 74f3f

5
1 + 2f4f

5
1 − 24f5

1

+183f2
2 f

4
1 + 11f2

3 f
4
1 − 148f2f

4
1 + 130f2f3f

4
1 − 52f3f

4
1

−30f4f
4
1 + 8f4

1 + 40f3
2 f

3
1 − 496f2

2 f
3
1 + 11f2f

2
3 f

3
1

−60f2
3 f

3
1 + 88f2f

3
1 + 45f2

2 f3f
3
1 − 494f2f3f

3
1 + 72f3f

3
1

−14f2f4f
3
1 − 10f3f4f

3
1 − 180f4f

3
1 − 312f3

2 f
2
1 − 6f3

3 f
2
1

+288f2
2 f

2
1 − 117f2f

2
3 f

2
1 − 24f2

3 f
2
1 − 24f2f

2
1

−510f2
2 f3f

2
1 + 300f2f3f

2
1 − 24f3f

2
1 − 108f2f4f

2
1

+90f3f4f
2
1 + 120f4f

2
1 − 48f4

2 f1 + 384f3
2 f1 − 6f2f

3
3 f1

−42f2
2 f

2
3 f1 + 120f2f

2
3 f1 − 84f3

2 f3f1 − 144f2
2 f1

+828f2
2 f3f1 − 120f2f3f1 + 24f2

2 f4f1 + 12f2
3 f4f1

+888f2f4f1 + 36f2f3f4f1 + 336f3f4f1 − 144f4f1

+48f4
2 − 288f3

2 + 6f2f
3
3 + 48f2

2 + 135f2
2 f

2
3 + 24f2f

2
3

−324f2
4 + 432f3

2 f3 − 120f2
2 f3 + 24f2f3 + 768f2

2 f4

+12f2
3 f4 − 336f2f4 + 84f2f3f4 + 48f3f4 + 48f4

W2 = 2f5
1 + 2f2f

4
1 − 36f4

1 − 56f2f
3
1 − 6f3f

3
1 + 40f3

1

−16f2
2 f

2
1 + 240f2f

2
1 − 6f2f3f

2
1 + 40f3f

2
1 + 4f4f

2
1

−48f2
1 + 192f2

2 f1 + 4f2
3 f1 − 176f2f1 + 68f2f3f1

+16f3f1 − 72f4f1 + 16f1 + 32f3
2 − 320f2

2 + 4f2f
2
3

+32f2 + 24f2
2 f3 − 40f2f3 − 16f2f4 − 8f3f4 − 144f4.

Such a nonlinear form is however clearly too cumber-
some for any practical use. Nevertheless, the quantum
correlations of Eq. (12), for which I = J = K = −L =
V/23/2, lead to the inequality W = 3V 4(1− 23/2 V ) ≥ 0,
which is violated for V > 2−3/2.

Appendix E: Recovering the Bell inequalities
of Ref. [10] for star networks

Let us define here, as in [10],

I= 〈a
1
0+a11

2 . . .
aN0 +aN1

2 b0〉 =
1

2N

∑
x1,...,xN

〈a1
x1 . . . aNxN b0〉,

J=〈a
1
0-a11
2 . . .

aN0 -aN1
2 b1〉=

1

2N

∑
x1,...,xN

(-1)
∑
xj

〈a1
x1 . . .aNxN b1〉.

By initially starting from all four versions of CHSH of
the form (C1), one can actually obtain a stronger con-
straint than Eq. (15), namely

∃ q1, . . . , qN−1 ∈ [0, 1] such that
1
q1
. . . 1

qN−1
|I|+ 1

1−q1 . . .
1

1−qN−1
|J | ≤ 1 . (E1)

One easily finds that the minimal value of the left hand
side of the inequality above, for q1, . . . , qN−1 ∈ [0, 1], is

(N
√
|I| + N

√
|J | )N , obtained for all qj =

N
√
|I|

N
√
|I|+N
√
|J|

(or

for any qj if I = J = 0). Eq. (E1) is thus equivalent to

N
√
|I| + N

√
|J | ≤ 1 , (E2)

which is indeed the Bell inequality for N -local correla-
tions in a star-shaped network derived in [10].

Appendix F:
Extending the Bell inequality I3322 to bilocality

In this appendix, we illustrate how our extension tech-
nique can be applied to Bell inequalities which feature
more than two inputs as well as marginal terms. To give
a specific example, we start from the simple Bell inequal-
ity I3322 [20] in the standard Bell scenario (with two par-
ties A1 and A2 sharing a source S1), expressed here in
correlation form:

〈a1
0a

2
0〉+ 〈a1

0a
2
1〉+ 〈a1

0a
2
2〉+ 〈a1

1a
2
0〉

+〈a1
1a

2
1〉 − 〈a1

1a
2
2〉+ 〈a1

2a
2
0〉 − 〈a1

2a
2
1〉

−〈a1
0〉 − 〈a1

1〉+ 〈a2
0〉+ 〈a2

1〉 ≤ 4 . (F1)

Adding a new observer A3, and a new independent
source S2 connected to A2 and A3, we arrive at the sce-
nario of bilocality. Applying Theorem 2 to the above
Bell inequality, and choosing for instance X 2

+ = {0} and
X 2
− = {1, 2}, we find that ‘bilocal’ correlations satisfy the

Bell inequality

∃ q ∈ [0, 1] such that

1
q 〈(a

1
0+a1

1+a1
2+1)a2

0
a30+a31

2 〉

+ 1
1−q
[
〈(a1

0+a1
1−a1

2+1)a2
1
a30−a

3
1

2 〉+ 〈(a1
0−a1

1)a2
2
a30−a

3
1

2 〉
]

−〈a1
0〉 − 〈a1

1〉 ≤ 4 . (F2)

Following a similar procedure to that discussed in Ap-
pendix C, the above inequality (after adding absolute
values as above) can be rewritten without quantifier. We
obtain the nonlinear form√

|I ′| +
√
|J ′| ≤

√
|L′| , (F3)

where we have defined

I ′ = 〈(a1
0+a1

1+a1
2+1)a2

0
a30+a31

2 〉 , (F4)

J ′ = 〈(a1
0+a1

1−a1
2+1)a2

1
a30−a

3
1

2 〉+ 〈(a1
0−a1

1)a2
2
a30−a

3
1

2 〉 , (F5)

L′ = 4 + 〈a1
0〉+ 〈a1

1〉 . (F6)

Note that we could also adopt a different choice for
X 2
±, or we could exchange the parties A1 and A2 when

writing the I3322 inequality (F1), which would result in
different Bell inequalities for bilocal correlations.
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