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a b s t r a c t

Reactive oxygen species (ROS) are integral components of multiple cellular pathways even though ex-
cessive or inappropriately localized ROS damage cells. ROS function as anti-microbial effector molecules
and as signaling molecules that regulate such processes as NF-kB transcriptional activity, the production
of DNA-based neutrophil extracellular traps (NETs), and autophagy. The main sources of cellular ROS are
mitochondria and NADPH oxidases (NOXs). In contrast to NOX-generated ROS, ROS produced in the
mitochondria (mtROS) were initially considered to be unwanted by-products of oxidative metabolism.
Increasing evidence indicates that mtROS have been incorporated into signaling pathways including
those regulating immune responses and autophagy. As metabolic hubs, mitochondria facilitate crosstalk
between the metabolic state of the cell with these pathways. Mitochondria and ROS are thus a nexus of
multiple pathways that determine the response of cells to disruptions in cellular homeostasis such as
infection, sterile damage, and metabolic imbalance. In this review, we discuss the roles of mitochondria
in the generation of ROS-derived anti-microbial effectors, the interplay of mitochondria and ROS with
autophagy and the formation of DNA extracellular traps, and activation of the NLRP3 inflammasome by
ROS and mitochondria.

& 2015 Published by Elsevier B.V.
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1. Introduction

Reactive oxygen species (ROS) such as superoxide and hydro-
gen peroxide are integral components of multiple cellular path-
ways even though excessive or inappropriately localized ROS da-
mage cells. In immunity-related pathways ROS can function as
anti-microbial effector molecules and as signaling molecules that
regulate such processes as nuclear factor-kB (NF-kB) transcrip-
tional activity and the production of DNA-based neutrophil ex-
tracellular traps (NETs) [1–3]. ROS are also involved in pathways
that regulate autophagy within and outside the context of im-
munity [4,5].

The main sources of cellular ROS are mitochondria and NADPH
oxidases (NOXs). After the identification of NOX as the producer of
ROS during the phagocyte oxidative burst, initial studies on im-
mune-related ROS focused on phagocyte NOX. However, increas-
ing evidence indicates that ROS production in the mitochondria,
once thought to be an unwanted by-product of oxidative meta-
bolism, is regulated by immune signaling pathways and in-
corporated into immune responses [6,7]. Mitochondria and po-
tentially mitochondrial ROS are also components of pathways
regulating apoptosis [8], stem cell differentiation [9], autophagy
[10], and cellular [11,12] and tissue-level [13] inflammation. As
hubs of cellular metabolism, mitochondria integrate these path-
ways with the metabolic state of the cell.

Their involvement in multiple pathways that determine the
response of cells to disruptions in cellular physiology such as in-
fection, sterile damage, and metabolic imbalance establish ROS
and mitochondria as a nexus of cellular homeostasis. In this re-
view, we discuss the generation of ROS-derived anti-microbial
effectors, the interplay of mitochondria and ROS with autophagy
and NET formation, and activation of the NLRP3 inflammasome by
ROS and mitochondria. While the contributions of NOX-generated
ROS to these processes are described, we mainly focus on the
emerging roles of ROS produced in the mitochondria (mtROS).

2. Antimicrobial role of ROS

The main role of ROS during bacterial infection has traditionally
been described as that of a bactericidal effector during the oxidative
burst observed in monocytes after the engulfment of bacterial pa-
thogens and maturation of the resulting phagosome into a phago-
lysosome [14,15]. The phagocyte NOX (NOX2), a heterodimer of
transmembrane proteins Nox2 and p22phox, is recruited and acti-
vated by accessory proteins to generate superoxide inside the
phagolysosome. After conversion of superoxide to hydrogen per-
oxide by superoxide dismutase (SOD), an additional step via mye-
loperoxidase (MPO) is believed to generate hypochlorous acid [16].
This final radical is believed to be the main ROS responsible for

bactericidal activity in phagocytes [16]. NOX2 activation has also
been linked to pH modulation inside the phagosome [17]. ROS
production inside the phagosome leads to an increase in in-
traphagosomal pH. These changes in pH regulate proteases in the
phagosome that can also be key effectors in bacterial killing [18,19].

NOX2 deficiency in humans is the main factor in chronic
granulomatous disease (CGD) [20]. In the absence of efficient ROS
production through NOX2, CGD patients exhibit a propensity for
repeated bacterial and fungal infections that cannot be properly
resolved without antibiotics. CGD patients also exhibit chronic
inflammation [17]. In contrast, MPO deficiency in humans does not
cause a comparable increase in sensitivity to bacterial infection
[21]. The more severe phenotype from NOX2 deficiency suggests a
role for ROS in innate immunity beyond being substrates for MPO-
dependent direct oxidation of pathogens’ molecules.

Although CGD patients do have an increased sensitivity to
some bacterial infections, this sensitivity is species-specific and
varies depending on the specific mutations responsible for NOX2
deficiency [17]. CGD patients are not completely im-
munocompromised; thus, it is clear that NOX2-independent me-
chanisms are involved in efficient bacterial clearance by the innate
immune system. Another important source of ROS is the electron
transport chain (ETC) of mitochondria. Increasing evidence sup-
ports the involvement of mtROS in the immune response.

3. Mitochondrial ROS in the immune response

As for phagocyte NOX, mitochondria are recruited to phago-
somes to produce ROS during infection. Recruitment and increased
mtROS production occur downstream of Toll-like receptor (TLR)
signaling during Salmonella infection of macrophages [6]. TLR ac-
tivation leads to tumor necrosis factor receptor-associated factor 6
(TRAF6) translocation to mitochondria, where it interacts with
evolutionarily conserved signaling intermediate in Toll pathways
(ECSIT), a protein involved in the assembly of ETC complex I
(Fig. 1A). TRAF6-mediated ubiquitination of ECSIT leads to in-
creased mtROS production in macrophages. Without this addi-
tional ROS production monocytes in this study were unable to
properly clear the bacterial infection, even with an efficient NOX
response.

A recent study revealed that Mycobacterium tuberculosis (Mtb)
infection triggers mtROS production via activation of the RIP1/RIP3
pathway by the pro-inflammatory cytokine tumor necrosis factor
(TNF) [22]. Increased mtROS correlated with an increased bacter-
icidal effect. However, excessive mtROS levels induced pro-
grammed necrosis that released the bacteria from the macro-
phages. Preventing the ROS-mediated death of the macrophages in
this study prolonged the overall bactericidal activity of the innate
response.
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An mtROS increase in macrophages has been observed to be
essential for efficient clearance of Listeria monocytogenes [23]. In
this case, interferon (IFN)-γ activates ERRα (estrogen-related re-
ceptor α) and PGC-1β (peroxisome proliferator-activated receptor γ
coactivator-1β) to promote mtROS production by directly targeting
the IFN-γ/signal transducer and activator of transcription 1 (STAT1)
signaling pathway. Macrophages lacking either ERRα or PGC-1β did
not exhibit increased mtROS and developed a higher L. mono-
cytogenes burden.

It is important to note that, although the bactericidal effect of
ROS/mtROS is supported by a plethora of experimental data, the
exact mechanisms are not fully understood. Some of our limits in
understanding these mechanisms come from the difficulty of
quantitating different ROS species in vivo during the immune re-
sponse. Another challenge is the microorganism-specific sensitiv-
ities to different ROS, which prevents the use of a single model
organism to study the overall bactericidal effect of ROS. An in-
depth description of these limits can be found in a recent review
[24] and will not be fully explored here. Recent work has shown
the capacity of host-produced hydrogen peroxide during bacterial
infection to act as a secondary messenger and decrease the
amount of tyrosine phosphorylation of bacterial proteins [25]. The
ROS-mediated loss of tyrosine phosphorylation in this study led to
a decrease in virulence of Campylobacter jejuni. The direct effects of
ROS on bacteria may thus act at different levels with bacterial
clearing as the end result.

Another aspect to take into account in these host–pathogen
interactions is the selective pressure that immune responses put
on pathogens. Indeed, high concentrations of ROS can have a
bactericidal effect on Salmonella, but as Burton and colleagues
have highlighted, Salmonella has developed the ability to adapt to
sub-lethal doses of ROS [26]. It has also been shown that this
bacterium can use some of the by-products of ROS chemistry in
the lumen of the gastrointestinal tract as electron acceptors to
enhance bacterial growth [27].

Salmonella might also manipulate mtROS production via the
Wnt signaling pathway. During infection, the secreted Salmonella
effector protein AvrA increases expression of Wnt and promotes β-
catenin transcriptional activity downstream of Wnt activation
[28]. In a separate study, Yoon and colleagues performed a large
scale RNA interference screen to identify key proteins that affect
mitochondrial metabolism [29]. These authors showed that Wnt
signaling significantly upregulates mitochondrial biogenesis and
that the corresponding increase in ROS production ultimately
leads to oxidative damage. In the Salmonella study, Wnt activation
was analyzed in the context of stem cell maintenance in the gut;
further analyses are needed to confirm whether this infection-
stimulated Wnt activation could also lead to increased mtROS
production.

4. Mitochondrial ROS generation and regulation

ROS generation in the mitochondria is due to the oxidation of
metabolic intermediates of the ETC and is tightly regulated to
prevent the oxidative damage of cellular processes. mtROS is
produced in the ETC in the form of superoxide, with complex I
often seen as the main source [30]. It is nonetheless difficult to
associate mtROS generation in cellulo to a particular complex in
the ETC. Quinlan and coworkers have shown that the 2-oxoacid
dehydrogenase and the pyruvate dehydrogenase complexes can
have a strong contribution to mtROS production [31].

Cytosolic ROS, originating in the mitochondria or produced by
NOX, can stimulate additional ROS production via activation of re-
dox-sensing protein kinase C (PKC) isoforms and Src family kinases
[32–34]. In neutrophils and endothelial cells, activation of PKC and

cSrc by mtROS upon its translocation to the cytosol leads to ROS
production by NOX2 [32,34]. In vascular endothelial cells, ROS
produced by NOX2 in response to angiotensin II signaling has been
reported to cause increased mtROS production downstream of
PKCε-mediated activation of the mitochondrial ATP-sensitive Kþ

channel [32]. However, it is important to note that NOX4, which can
be upregulated in response to angiotensin II [35], localizes to mi-
tochondria and can directly affect mtROS production [36].

Major factors in mtROS regulation are ROS scavenging enzymes
that eliminate excess ROS. Three SODs facilitate the conversion of
superoxide to hydrogen peroxide. SOD1 is found in the inter-
membrane space as well as in the cytosol [37], SOD2 is targeted to
the mitochondrial matrix [38], and SOD3 is anchored to the ex-
tracellular matrix [39]. Following conversion of superoxide to hy-
drogen peroxide, catalase, peroxiredoxins and glutathione perox-
idases perform a final reducing step to convert hydrogen peroxide
into water (Fig. 1B). In addition to its enzymatic activity, SOD1 has
recently been shown to act as a transcription factor in response to
a general elevation of cellular ROS. Upon exposure of cells to hy-
drogen peroxide, SOD1 translocated to the nucleus, bound to
promoters, and upregulated the expression of genes involved in
oxidative resistance and repair [40].

Changes of either expression or localization of these enzymes
are likely to modulate mtROS and thus to regulate various sig-
naling pathways. Factors involved in this spatial segregation in-
clude voltage-dependent anion channels [41]. As superoxide is
membrane impermeable, it needs either to be produced directly in
the cytosol or to diffuse through a pore complex in order to par-
ticipate in cellular signaling or to have any other effect outside of
the mitochondria.

Although mtROS production was once seen as merely an acci-
dental by-product of oxygen metabolism in mitochondria, it is
now clear that ROS contributes to various signaling pathways [42].
Depending on the context and triggering stimuli, mtROS produc-
tion can lead to different cellular responses such as cellular
adaptation to hypoxia [43], cellular differentiation [44], autophagy
[5], inflammation [45], or an immune response [6]. Over-
production of mtROS can occur in the absence of infection and has
been implicated in tumor growth [46] and hypertension [47,48].
While roles for mitochondria and mtROS in immune responses are
starting to be well documented, the mechanistic link between
immune signaling and mtROS production are not yet clearly
understood.

5. Mitochondrial ROS are involved in autophagy

Macroautophagy (herein termed autophagy) is a cellular pro-
cess conserved in all eukaryotes for degrading dysfunctional or-
ganelles or large cytosolic molecules. Different from the single-
membraned phagolysosome formation, autophagy employs a
double-membraned vesicle, the autophagosome, to progressively
engulf cytoplasmic constituents. After the fusion of an autopha-
gosome with single-membraned lysosome(s), an autolysosome is
formed, within which the inner autophagosome membrane and its
cellular contents are degraded [49]. The key regulator of autop-
hagy induction is target of rapamycin (TOR or mTOR for the
mammalian homolog), which forms two distinct complexes.
However, only TOR complex 1 (TORC1) functions as the major
nutrient and energy sensor of the cell: in nutrient-rich conditions,
TORC1 inhibits autophagosome formation while in starvation
conditions TORC1 is inactivated to allow induction of autophagy
[50]. More than 30 autophagy-related proteins have been identi-
fied, and their molecular functions are discussed elsewhere
[51,52]. Autophagosomes have been shown to recruit selective
receptors that deliver specific cargos, such as cytosolic proteins
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and organelles, for degradation [53]. Physiological stresses, such as
nutrient and energy deprivation can trigger autophagy, which
results in the degradation and recycling of nutrients and essential
building blocks of the cells for sustaining metabolic functions and
survival [54]. Autophagy is also involved in pathological condi-
tions, such as eliminating intracellular pathogens and degrading
damaged organelles [55,56].

One of the most investigated cargo-specific autophagic path-
ways is mitophagy, through which damaged mitochondria are
degraded. A recent study showed that the homeostasis of mtROS
plays an important role in the autophagy pathway. Superoxide has
been shown to be the major type of ROS that is responsible for
regulating autophagy. Starvation for glucose, L-glutamine, or pyr-
uvate induces superoxide production, while starvation for amino
acids induces both superoxide and hydrogen peroxide production,
further leading to stimulation of autophagy (Fig. 2). Over-
expression of SOD2, which degrades superoxide into hydrogen
peroxide in the mitochondria, suppresses autophagy. Catalase,
which decreases both superoxide and hydrogen peroxide levels,
also suppresses starvation-induced autophagy [10].

A fast growing area of autophagy research focuses on its role in
host defense against bacterial infection, also referred to as xeno-
phagy [57]. As a crucial part of the host innate immune defense,
the autophagy pathway is often the target of manipulation by
intracellular bacteria. Strategies, such as modification of the bac-
terial surface, scavenging of ROS, and secretion of virulence factors,
enable intracellular bacteria to avoid or circumvent killing by au-
tophagy [58]. Manipulations of autophagy (xenophagy) by various
infectious bacteria have been reviewed comprehensively
[57,59,60]. Here we focus mainly on findings from recent studies
on the roles of ROS in xenophagy. Probably due to the complexity
of ROS metabolism and to limitations in current detection meth-
ods, a number of the studies did not confirm the source of ROS.
However, it is commonly accepted that the principal sources of
ROS in the cell during infection are NOX2 and the ETC of mi-
tochondria [61].

During infection by the pathogenic Streptococcus pneumoniae,
intracellular ROS produced by host cells induce bactericidal au-
tophagy by inhibiting the PI3K-I/Akt/mTOR signaling pathway
[62]. To avoid being digested, Streptococcus suis serotype 2 ex-
presses the superoxide dismutase SodA to inhibit the host xeno-
phagic response by reducing upstream ROS signaling [63].Mtb also
bypasses host defense mechanisms by inhibiting autophagy
(Fig. 2). The “enhanced intracellular survival” gene (eis) con-
tributes to this inhibition. Infection of macrophages by an eis-de-
ficient Mtb strain induced ROS generation from mitochondria and
NOX2 and activated autophagy [64]. A later report identified Mtb
eis as an Nɛ-acetyltransferase that participates in acetylating
DUSP16/MKP-7, a JNK-specific phosphatase, and negatively reg-
ulates autophagy by inhibiting JNK-dependent ROS signaling dur-
ing Mtb infection [65]. Additionally, the mannosylated glycopro-
tein phosphoribosyltransferase, a mycobacterial virulence factor
located in the cell wall, also assists inhibition of bactericidal au-
tophagy through suppression of host ROS production [66].

Autophagy is the target of some first-line anti-tuberculosis
drugs. It has been shown that isoniazid and pyrazinamide stimu-
late ROS production by NOX2 and mitochondria in Mtb-infected
host cells and activate autophagy. Treatment with either a NOX2
inhibitor or mtROS scavenger reduced the antibiotic-induced au-
tophagy in Mtb-infected macrophages [67].

6. The interplay of extracellular traps, autophagy and ROS

As the front-line defense against microbial infections, human
neutrophils were previously thought to employ only two

strategies to kill invading pathogens: engulfment of microbes and
secretion of anti-microbials. A third strategy, formation of Neu-
trophil Extracellular Traps (NETs), was discovered in 2004 as a
phenomenon by which neutrophils kill extracellular pathogens by
releasing decondensed chromatin associated with antimicrobial
proteins including myeloperoxidase, histones, and proteinases
[68]. This DNA-based structure, released from neutrophils during
a type of cell death called NETosis, helps to trap bacteria in the
blood circulation and inside tissues and to increase the local
concentration of anti-microbial enzymes around the trapped
bacteria. Thus, NETs increase bacterial killing efficiency while
minimizing the damage to neighboring cells by sequestering toxic
compounds released from neutrophils into a constrained area
[69,70].

It has been shown that NET formation requires both ROS gen-
eration and autophagy induction [71]. Phorbol myristate acetate
(PMA)-stimulated neutrophils exhibited increased ROS production
from NOX2 and an elevated autophagosome formation, leading to
NET formation. Inhibition of either NOX2 or autophagy prevents
intracellular chromatin decondensation and NET formation [72].
Several other in vivo and in vitro studies also showed that inhibi-
tion of autophagy decreases NET formation [73,74]. Autophagy
induction is negatively controlled by the metabolic checkpoint
kinase mTOR [75]. Itakura and colleagues inhibited mTOR prior to
stimulating neutrophils with the bacterial peptide formyl-Met-
Leu-Phe and observed increased autophagy and NET formation.
This effect was suppressed by inhibiting a NOX2-generated re-
spiratory burst [76].

NETs are associated with cancer. The granulocyte colony-sti-
mulating factor (G-CSF) produced by many tumors also serves as a
factor to prime neutrophils to produce NETs [77]. The extracellular
chromatin released through NET formation in the blood
circulation is a coagulant and promotes the formation of cancer-
associated thrombosis [78]. Boone and colleagues found that in
pancreatic ductal adenocarcinoma patients and animal models,
serum DNA and citrullinated histone H3, the markers of NET for-
mation, increased. Inhibition of autophagy or genetic ablation of
receptor for advanced glycation end-products (RAGE), a
pattern recognition receptor that activates pro-inflammatory cy-
tokines, lowered the level of NET formation in the tumor
microenvironment [79]. However the inhibition mechanism of
RAGE on autophagy and NET formation still needs to be further
studied.

It has been widely reported that NOX2-generated ROS function
as signaling molecules in NET formation [68,70]. Moreover, neu-
trophils from CGD patients, in contrast to neutrophils with func-
tional NOX2, do not produce NETs upon exposure to Staphylo-
coccus aureus [3]. A NOX2-independent pathway activated by Ca2þ

ionophores has also been described [80]. Douda and colleagues
recently showed that raising the intracellular level of Ca2þ in
neutrophils by adding calcium ionophores significantly activated
the small conductance calcium-activated potassium channel SK3
and mitochondrial ROS production, leading to NOX2-independent
NET formation (Fig. 2) [81].

The formation of DNA-based extracellular traps has been ob-
served in other types of phagocytic immune cells from vertebrates
and invertebrates [82]. Some of the cell types expel mitochondrial
DNA instead of chromosomal DNA after bacterial or pharmacolo-
gical stimulation [83]. There are few reports about the potential
interactions of extracellular traps formation, mitochondrial ROS
generation and autophagy activation. The detailed study of this
topic may expand our current scopes on DNA based host defense
mechanism and further enhance our understanding of the me-
chanisms of immunodeficiency, as well as inflammatory and au-
toimmune conditions.
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7. The NLRP3 inflammasome: a sensor of homeostatic
disruptors

Inflammasomes are innate immunity-related signaling com-
plexes that initiate and/or enhance the secretion of pro-in-
flammatory cytokines in response to pathological disruptions in
cell physiology such as infection or the death of neighboring cells.
The sensor components of inflammasomes are Nucleotide Binding
Domain-Leucine Rich Repeat proteins (NLRs), whose ligands in-
clude pathogen-associated molecular patterns (PAMPs) such as
flagellin, and AIM2 (Absent In Melanoma 2), which recognizes
double-stranded DNA [84]. NLRs also recognize damage-asso-
ciated molecular patterns (DAMPs) such as mitochondrial DNA
[85,86]. Sensing of a PAMP or DAMP promotes the activation of the
cysteine protease caspase-1, the subsequent caspase-1-mediated
processing of the pro-forms of interleukin (IL)-1β and IL-18, and
the secretion of the mature cytokines. Inflammasome signaling
can initiate pyroptosis, a mode of induced cell death that releases
DAMPs and cytokines to promote inflammation [87]. In contrast to
TLRs that monitor for PAMPs and DAMPs at the cell surface and
within the endolysosomal system, inflammasome sensors monitor
the cytosolic compartment.

NLRP3 (NLR, pyrin domain-containing 3) is the sensor com-
ponent of the NLRP3 inflammasome. In addition to being activated
during infection with viruses [88–90], bacteria [91–96], fungi
[97,98], protozoa [99], and helminths [100], the NLRP3 in-
flammasome responds to DAMPs such as ATP (via the P2�7 re-
ceptor) and histones [91,101,102], environmental agents such as
silica and asbestos [103–105], and molecules associated with dis-
ease states such as uric acid crystals (gout), cholesterol crystals
(atherosclerosis), and islet amyloid polypeptide (diabetes) [106–
108]. Its activation by wide array of stimuli underscores the central
role of the NLRP3 inflammasome in the response to disruptions in
cellular homeostasis and its importance in multiple infectious and
non-infectious inflammatory diseases.

The structural diversity of NLRP3 inflammasome stimuli sug-
gests that activation is more complex than the binding of PAMPs
and DAMPs. Indeed, studies have not yet delineated a central ac-
tivation pathway upon which all NLRP3 stimuli converge. Shared
mechanisms include a drop in intracellular Kþ concentration
[109,110], increases in Ca2þ concentration [111–114], and lysoso-
mal disruption [103,115,116]. Activation of the NLRP3 inflamma-
some has been covered in great detail elsewhere [11,84,117–119].
Here we will focus on the mechanisms that involve ROS and
mitochondria.

8. ROS and NLRP3 inflammasome activation

8.1. Inflammasome priming

NLRP3 inflammasome activation involves two steps: a priming
step that readies the inflammasome components for activation
and an activation step that results in inflammasome assembly,
processing, and IL-1β secretion [120,121]. In the priming step, the
transcription factor NF-κB is activated downstream of TNF, IL-1β,
and TLR signaling pathways and subsequently increases the ex-
pression of NLRP3 and pro-IL-1β [122–124]. Pretreatment with the
general ROS scavenger N-acetyl-L-cysteine (NAC) inhibits NF-κB-
dependent priming [125]. This inhibition is presumably due to a
requirement for ROS in NF-κB activation [2]. Priming also occurs at
the post-translational level [126,127]. Lypopolysaccharide (LPS)-
TLR signaling induces mtROS production that might contribute to
priming [7]. Mitochondrial complex I inhibitors, which stimulate
mtROS production, have been observed to prime in the absence of
LPS, although not all reports agree on this [45,110,127,128]. LPS-

TLR signaling can prime the NLRP3 inflammasome independently
of transcription via deubiquitination of NLRP3, and ROS-scaven-
ging by NAC blocks deubiquitination and subsequent inflamma-
some activation [127].

8.2. Inflammasome Activation

NLRP3 binds caspase-1 indirectly via the adapter protein ASC
(apoptosis-associated speck-like protein containing a caspase re-
cruitment domain) [129,130]. Activation involves the oligomer-
ization of these components. Formation of ASC-containing ag-
gregates, processing of pro-caspase-1, and IL-1β processing and
secretion are used to assess NLRP3 inflammasome activation.

ROS have been implicated in the activation step. Initial studies
focused on NOX2 as the relevant ROS source: inhibition or
knockdown of NOX2 were found to block IL-1β secretion in re-
sponse to NLRP3 stimuli [105,109,131]. However, cells from CGD
patients, which have null mutations in NOX components, still re-
spond to NLRP3 stimuli [132–134]. The inhibition of this NOX-in-
dependent activation by ROS scavengers indicates that other
sources of ROS can activate the NLRP3 inflammasome [134].

Indeed, mitochondrial ROS are involved in NLRP3 inflamma-
some activation. Mitochondrial complex I inhibitors increase the
production of mtROS and induce IL-1β secretion via NLRP3 acti-
vation, and this activation is blocked by ROS scavengers [45,128].
Inflammasome activation by ATP also involves an increase in
mtROS production [113,135–138] and is blocked by mitochondria-
specific ROS scavengers [90,138]. Ca2þ appears to mediate in-
duction of mtROS production by ATP. Murakami and colleagues
observed that inhibiting cytosolic Ca2þ mobilization blocked
mtROS production and inflammasome activation by ATP and
proposed a model in which mitochondrial uptake of increased
cytosolic Ca2þ causes mitochondrial damage and mtROS produc-
tion [113]. NLRP3 inflammasome activation by liposomes and silica
crystals requires an mtROS-dependent influx of Ca2þ via the
TRPM2 cation channel [139]. This Ca2þ influx could promote ad-
ditional mtROS production.

Defects in mitophagy, an autophagy pathway that degrades
malfunctioning mitochondria, activate NLRP3 inflammasome par-
tially due to an increase in mtROS [45,138,140,141]. Increased
mtROS downstream of NLRP3 activation may act as a positive
feedback mechanism that sustains activation [138,140,141].

9. Links between ROS and NLRP3 inflammasome activation

Although numerous studies indicate a role for ROS in activation
of the NLRP3 inflammasome, the actual mechanisms remain
poorly defined. ROS have been implicated in Ca2þ influx, Kþ ef-
flux, the exacerbation of mitochondrial damage, modification of
DAMPS sensed by NLRP3, and post-translational modification of
inflammasome components [86,89,127,138,139,142]. Blocking
cellular antioxidant responses to ROS can inhibit NLRP3 in-
flammasome activation [143–145]. This observation is partially
due to the fact that excess ROS levels can negatively affect protein
function. In response to ATP, sod1� /� mice were observed to se-
crete less IL-1β than wild type controls due to overproduction of
ROS and a consequential oxidation of caspase-1 [146]. Nrf2 and
TXNIP, proteins involved in the response to oxidative stress, con-
tribute to NLRP3 inflammasome activation independently of reg-
ulating caspase-1 oxidation.

9.1. Activation by thioredoxin-interacting protein

Thioredoxin-interacting protein (TXNIP), which binds the an-
tioxidant thioredoxin (TRX) under no/low oxidative stress

J. Dan Dunn et al. / Redox Biology 6 (2015) 472–485476



conditions and is thus considered to be pro-oxidant, is released
upon oxidative stress [147,148]. Zhou and colleagues observed
ROS- and TXNIP-dependent caspase-1 processing and IL-1β

secretion upon stimulation with ATP, alum, uric acid crystals, or
silica [149]. Co-precipitation experiments indicate an interaction
between TXNIP and NLRP3 [149,150], and immunostaining

Fig. 1. (A) mtROS in bacterially triggered immune responses. mtROS contribute to Salmonella clearing. TLR/TRAF6 pathway activation leads to poly-ubiquitination of ECSIT
in the mitochondria and increase mtROS in macrophages. Mycobacterium infection triggers a TNF response via RIP1/RIP2 that increases mtROS in macrophages, first
increasing bactericidal effects but ultimately leading to macrophage death and increased bacterial dissemination. Listeria infection triggers mtROS through an INF-γ
response, activating ERRα and PGC-1β and the INF-γ/STAT1 pathway contributing to macrophage clearing of the bacteria. (B) mtROS generation. Superoxide is produced as
an intermediate in the electron transport chain (ETC). In the mitochondria matrix excess superoxide is reduced to hydrogen peroxide by SOD2. Superoxide in the inter-
membrane space can be exported to the cytoplasm through VDAC. It is then transformed into hydrogen peroxide by SOD1 and finally reduced to water through catalase,
peroxiredoxins and glutathione peroxidases.
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showed an ROS-dependent recruitment of TXNIP and NLRP3 to
mitochondria and or mitochondria-associated membranes in a
subsequent study [45]. The authors proposed a model in which the
ROS induced by NLRP3 stimuli cause dissociation of TXNIP from
TRX. TXNIP then binds to NLRP3 to activate the inflammasome.
TXNIP plays a role in insulin resistance and is upregulated in re-
sponse to glucose; these data may explain the implication of IL-1β
and inflammation in type 2 diabetes [149]. Inflammasome acti-
vation mediated by binding of NLRP3 by TXNIP was also observed
in studies on homocysteine-induced kidney damage and on liver
damage induced by a combination of D-galactosamine and LPS
[151,152]. In contrast to the above results, another study on in-
flammasome activation within the context of diabetes observed
ROS-dependent and TXNIP-independent activation of NLRP3 by
islet amyloid polypeptide. Wild-type and txnip�/� macrophages
secreted similar levels of IL-1β in response to IAPP and also when
stimulated with silica, ATP, uric acid crystals [108].

Park et al. observed no requirement for TXNIP in NLRP3 acti-
vation by ATP, nigericin, or uric acid crystals but did observe that
macrophages from txnip�/� mice secreted less IL-1β than wild-
type cells in response to LPS or to E. coli in the absence of addi-
tional stimuli [153]. LPS treatment induced higher levels of in-
ducible nitric oxide synthase (iNOS) expression in txnip�/� mac-
rophages than wild-type cells; this increased expression correlated
with increased binding of the iNOS promoter by NF-κB. The re-
sulting elevated NO levels caused an increase in S-nitrosylation of
NLRP3 and caspase-1, which was previously demonstrated to in-
hibit NLRP3 inflammasome activation after prolonged exposure to
LPS [135]. Treatment with an iNOS inhibitor restored IL-1β secre-
tion to wild-type levels [153]. The authors propose a model in
which TXNIP negatively regulates induction of iNOS by LPS-in-
duced activation of NF-κB. In the absence of TXNIP, enhanced in-
duction of iNOS by NF-kB leads to levels of NO sufficient to in-
activate NLRP3 (Fig.3).

S-nitrosylation of NLRP3 appears to be a mechanism by which
the adaptive immune response minimizes inflammation-induced

pathology during M. tuberculosis infection [154]. The crystal
structure of NLRP3 identified a disulfide bond between a cysteine
in the pyrin domain (PYD) and a cysteine in a loop connecting to
the nucleotide-binding domain [155]. PYD is in the C-terminus of
NLRP3 and is required for interaction with ASC; oxidation of the
thiols into a disulfide bond might be a mechanism by which ROS
contribute to inflammasome activation. The C-terminus of NLRP3
is more sensitive to S-nitrosylation than the N-terminus [135].
Disruption of this disulfide bridge by NO could inhibit NLRP3 as-
sociation with ASC and thereby prevent NLRP3 inflammasome
activation.

The two models for TXNIP regulation of the NLRP3 inflamma-
some are not mutually exclusive and might intersect. For example,
TXNIP released from TRX due to oxidative stress could inhibit NF-
kB signaling to dampen the inflammatory response and produc-
tion of additional reactive oxygen and nitrogen species. Interest-
ingly, the transient repression of TXNIP mRNA levels by LPS sti-
mulation might enable additional modulation of the inflammatory
response [108,153,156].

9.2. Activation by Nrf2

The transcription factor NF-E2-related factor 2 (Nrf2) links ROS
to NLRP3 activation via the antioxidant response. In no/low stress
conditions, Nrf2 is bound to the cullin E3 ubiquitin ligase adapter
Keap1, which targets Nrf2 for ubiquitination and subsequent
proteasomal degradation [157–159]. Modifications of cysteine
thiols in Keap1 by oxidative stress promotes Nrf2 stabilization by
disrupting the Keap1–Nrf2 interaction [160].

The initial evidence demonstrating a role for Nrf2 in NLRP3
inflammasome activation is from a study on inflammation within
the context of atherosclerosis. Cholesterol crystals, abundant in
atherosclerotic plaques, were found to activate the NLRP3 in-
flammasome via an Nrf2-dependent mechanism in macrophages
[107]. Later studies demonstrated that macrophages from nrf2� /�

mice secreted less IL-1β than wild-type cells in response to the

Fig 2. The Roles of ROS in autophagy and extracellular trap formation. Autophagy can be induced by reactive oxygen species (ROS) produced by mitochondria and phagocyte
NADPH oxidase (NOX2) in response to nutrient starvation and bacterial infection. Bacteria such as Mycobacterium tuberculosis inhibit autophagy by decreasing mitochondrial
and NOX2-generated ROS. Autophagy, mitochondrial ROS, and NOX2-generated ROS have also been found to be important for extracellular trap (ET) formation. The me-
chanisms of how these three factors are involved and interact in ET formation, especially in mitochondrial DNA-based ET formation, are not clear.
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established NLRP3 activators alum, silica, uric acid crystals, ATP,
and nigericin and that knockdown of Nrf2 inhibited the response
to uric acid crystals in THP-1 macrophages [128,150].

Nrf2 protein but not transcript levels increase in response to
LPS exposure, and pretreatment of cells with ROS scavengers block
this accumulation [128]. Although the timing of this increase in
Nrf2 levels corresponds to the priming step of inflammasome
signaling, Nrf2 does not appear to have a direct role in priming:
absence of Nrf2 had no effect on IL-1β, NLRP3, and ASC expression
[107,128]. In its resting state, a fraction of Nrf2 associates with the
mitochondria in a ternary complex with Keap1 and PGAM5, a
mitochondrial outer membrane resident phosphatase that has
been implicated in programmed cell death [161,162]. ROS pro-
duced downstream of NLRP3 stimuli cause dissociation of Nrf2
from Keap1 and translocation to the cytosol, where it associates
with ASC aggregates [128]. This mitochondrial localization places
Nrf2 in a prime position to sense mtROS. Indeed, increased mtROS
due to mitochondrial complex I inhibitors activate Nrf2- and
NLRP3-dependent IL-1β secretion [128]. However, treatment with
ROS scavengers after LPS-induced increase in Nrf2 protein did not
block IL-1β secretion in response to silica [128]. It is possible that
the localization of Nrf2 at the mitochondrial outer membrane
renders preventing its interaction with mtROS difficult.

Determining whether this activation in the presence of ROS sca-
vengers is due to a ROS-independent activation of Nrf2, a unique
aspect of activation by silica, or an insufficient sequestration of
mtROS from Nrf2 requires further examination.

Defects in autophagy, which have been linked to activation of
NLRP3 inflammasome via the accumulation of defective mi-
tochondria and a concomitant increase in mtROS [45,138], also
increase Nrf2 levels. Accumulated p62/SQSTM1 binds Keap1 and
causes its dissociation from Nrf2 [163,164]. Transcription factor
activity of Nrf2 also contributes to NLRP3 activation. Nrf2 upre-
gulates heme oxygenase-1 (HO-1) in response to uric acid crystals
stimulation, and inhibition of HO-1 reduced IL-1β secretion in
response to uric acid crystals [150]. A role for HO-1 in NLRP3 in-
flammasome activation during bacterial infection has also been
described [165]. Nrf2 downregulates expression of TXNIP and
upregulates genes involved in the antioxidant response, in au-
tophagy, and in mitochondrial biogenesis [164,166,167]. Thus, Nrf2
appears to contribute to modulation of NLRP3 as it also activates it
(Fig. 3).

10. Additional roles for mitochondria and NLRP3 activation

10.1. Activation by mitochondrial DAMPs

Mitochondrial DAMPs (mtDAMPs), indicators of mitochondrial
damage/dysfunction, can activate the inflammasome in addition to
or in lieu of mtROS (Fig. 4). Shimada et al. reported that infection
with Salmonella or Chlamydia or treatment with NLRP3 stimulators
such as ATP caused mitochondrial dysfunction and release of mi-
tochondrial DNA (mtDNA). Upon oxidation, presumably due to the
observed increased mtROS levels produced under the same con-
ditions, oxidized mtDNA bound to and activated NLRP3 [86]. Na-
kahira et al. observed release of mtDNA downstream of mtROS-
dependent NLRP3 activation that enhanced IL-1β secretion, but
direct binding of mtDNA by NLRP3 was not assessed [138].

Cardiolipin, a phospholipid of bacteria and the inner mi-
tochondrial membrane, activates the NLRP3 inflammasome
downstream of mitochondria dysfunction [142]. Iyer et al. found
that the antiobiotic linezolid, which is used to treat infections with
multi-drug resistant bacteria and can cause myelosuppression,
activates the NLRP3 inflammasome via a mechanism that is in-
dependent of ROS, dependent on Kþ efflux, and involves re-
cruitment of NLRP3 to the mitochondria and its binding to cardi-
olipin [142]. Cardiolipin was also required for NLRP3 activation
downstream of mtROS-dependent stimuli such as ATP, silica, and
nigericin [142]. Cyclosporin A, which stabilizes mitochondria by
inhibiting mitochondrial permeability transition, and knockdown
of cardiolipin synthase inhibited IL-1β secretion and caspase-1
processing by linezolid, ATP, and silica [142]. These data suggest
that ROS-dependent and -independent pathways converge on
mitochondrial damage and identify cardiolipin as an mtDAMP.
Moreover, these results implicate bacterial cardiolipin as a po-
tential NLRP3 activator.

The GTPase dynamin-related protein 1 (Drp1), which promotes
fragmentation of mitochondria, is required for activation of NLRP3
during infection with vesicular stomatitis virus (VSV) [88]. NLRP3
activation involved recruitment of Drp1 to the mitochondria
where it caused fragmentation and aggregation of mitochondria
and production of mtROS. Knockdown of Drp1 inhibited mi-
tochondrial damage and IL-1β secretion in response to VSV but not
uric acid crystals, ATP, or nigericin [88]. The link between mi-
tochondrial damage and NLRP3 activation might be mtROS or
mtDAMPs.

Fig. 3. Regulation of NLRP3 Inflammasome Activation by Reactive Oxygen Species.
In response to pathogen-associated molecular patterns (PAMPs) and damage-as-
sociated molecular patterns (DAMPs), which are stimuli that indicate a disruption
in cellular homeostasis, NLRP3, ASC, and caspase-1 assemble into a supramolecular
complex, the inflammasome, that processes the inactive form of the pro-in-
flammatory cytokine interleukin-1β (pro-IL-1β) into its active form (IL-1β) and
promotes inflammation. NLRP3 inflammasome stimuli induce mitochondrial re-
active oxygen species (ROS) production. ROS might act directly on inflammasome
components by oxidizing thiols. Super oxide dismutase (SOD) prevents the accu-
mulation of excess levels of ROS that inhibit inflammasome activation. ROS-
mediated release and/or damage of mitochondrial molecules produce mitochon-
drial DAMPs (mtDAMPs) that bind to NLRP3 (see Fig.4 for more details). ROS pro-
mote calcium (Ca2þ) influx by activating plasma membrane cation channels. Mi-
tochondrial dysfunction caused by Ca2þ uptake further promotes mitochondrial
ROS release. ROS have been implicated in potassium (Kþ) efflux, which activates
the inflammasome via a mechanism that might enhance Ca2þ influx. Oxidation of
thioredoxin (TRX) by ROS causes dissociation of thioredoxin-interacting protein
(TXNIP) from TRX. Subsequent binding of NLRP3 by TXNIP, possibly at the mi-
tochondria, leads to inflammasome activation. In response to lipopolysaccharide
(LPS) detection, NF-κB upregulates expression of inducible nitric oxide synthase
(iNOS), which produces nitric oxide (NO) that can inhibit inflammasome activation.
TXNIP inhibits the transcriptional activity of NF-κB to attenuate this upregulation
and thus prevent inhibition of inflammasome activation. Under no/low oxidative
stress conditions, Nrf2 is in a complex comprising Keap1 and the mitochondrial
outermembrane protein PGAM5. Oxidation of thiols in Keap1 releases Nrf2 from
the complex and leads to Nrf2 association with and activation of the inflamma-
some. Some Nrf2 translocates to the nucleus and upregulates heme oxygenase-1
(HO-1) expression, which in turn activates the inflammasome. Nrf2 also upregu-
lates expression of anti-oxidant genes, which attenuate ROS levels, and mitophagy-
activating genes, which decrease ROS produced by dysfunctional mitochondria.
Nrf2 further modulates inflammasome activation by repressing TXNIP expression.
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10.2. Activation by mitochondrial metabolites

Mitochondrial metabolites related to the tricarboxylic acid
(TCA) cycle and the ETC can also contribute to NLRP3 activation.
Misawa et al. observed a role for NADþ , which decreases when the
ETC is inhibited. NLRP3 activators such as ATP and uric acid crys-
tals decreased NADþ levels, which, via decreased activity of the
NADþ dependent Sirt2 deacetylase, caused accumulation of
acetylated tubulin and subsequent trafficking of mitochondria to
the perinuclear region in close apposition to the ER [168]. Inter-
actions between the ER and mitochondria contribute to NLRP3
inflammasome activation [45]. Colchicine, an inhibitor of micro-
tubule polymerization, disrupted this trafficking and reduced IL-1β
secretion [168]. The NADþ-dependent deacetylase Sirt1 in-
activates NF-κB and Nrf2 [169,170]. Given the role of NF-κB in in-
flammasome priming, a drop in NADþ might inhibit Sirt1 and
contribute to increased expression of NLRP3 and pro-IL-1β and
further inflammasome activation [124]. The effects of the Nrf2
acetylation state on its activation of NLRP3 activation are not

known.
The TCA cycle intermediate citrate accumulates in the cytosol

of LPS-stimulated macrophages, likely due to an NF-κB-dependent
increase in expression of the mitochondrial citrate carrier, and
contributes to ROS and NO production [171,172]. An intriguing
recent study demonstrated that Salmonella strains with TCA cycle
mutations that caused citrate buildup activate the NLRP3 in-
flammasome via an mtROS-dependent mechanism [95]. Citrate of
bacterial origin should be indistinguishable from that of mi-
tochondrial origin. Thus, it is possible that the cell senses the ci-
trate as an indicator of mitochondrial damage or altered metabo-
lism and that this activates the inflammasome within the context
of infection. How the bacterial citrate gains access to the host
cytosol and how it activates NLRP3 await elucidation.

10.3. Activation by the mitochondrial antiviral signaling protein

The mitochondrial antiviral signaling protein (MAVS) was ori-
ginally identified as a mitochondrial membrane protein that

Fig. 4. Mitochondrial Regulation of NLRP3 Inflammasome Activation.Mitochondria activate the NLRP3 inflammasome, a supramolecular signalling complex, comprising
NLRP3, ASC, and caspase-1, that processes the inactive form of the pro-inflammatory cytokine interleukin-1β (pro-IL-1β) into its active form (IL-1β) to promote inflammation.
Indicators of dysfunctional mitochondria contribute to inflammasome activation. Within eukaryotes, molecules such as cardiolipin and mitochondrial DNA (mtDNA), which
are unique to the proteobacterially derived mitochondria, are sequestered inside healthy mitochondria. Damaged mitochondria expose these molecules to the cytosol, where
they are recognized as mitochondrial damage-associated molecular patterns (mtDAMPs). Damaged mitochondrial also produce reactive oxygen species (ROS) that promote
inflammasome activation (see Fig. 3 for more details). Binding of ROS-oxidized mtDNA to NLRP3 promotes inflammasome activation. Cardiolipin is translocated to the
mitochondrial outermembrane, where it binds NLRP3, in response to increased mtROS or in response to the antibiotic linezolid (lzd) via a ROS-independent mechanism. This
translocation is blocked by cyclosporin A (cyA), which inhibits mitochondrial permeability transition. Caspase-1 activated by NLRP3 further damages mitochondria, and the
resulting release of mtROS and mtDAMPs enhances inflammasome activation. Dynamin-related protein 1(Drp1), which promotes mitochondrial fragmentation and po-
tentially the release of mtDAMPs, contributes to inflammasome activation during viral infection. A decrease in NADþ levels caused by disruptions in the electron transport
chain of damaged mitochondria inhibits the activity of the NADþ-dependent deacetylases Sirt1 and Sirt2. Inactive Sirt2 leads to inflammasome activation via a mechanism
that involves the trafficking of mitochondria along acetylated microtubules to be in close proximity to the ER. Deacetylation by Sirt1 inhibits the transcriptional activity of
NF-κB. Decreased Sirt1 activity allows increased expression of NLRP3 and pro-IL-1β. Salmonella mutants that produce excessive levels of the tricarboxylic acid cycle in-
termediate citrate activate the inflammasome via a mechanism that requires mitochondrial ROS; a build-up of mitochondrially produced citrate in the cytosol might also
promote inflammasome activation. Prior to inflammasome assembly during viral infection, NLRP3 is recruited to the mitochondria by mitochondrial anti-viral signalling
protein (MAVS), and this association is enhanced by mitofusins 1 and 2 (mtfn).
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activates the interferon response upon infection with viruses [173].
Recent evidence suggests that MAVS also activates the NLRP3 in-
flammasome during viral infection and in response to non-parti-
culate NLRP3 stimuli [89,174–176]. MAVS-mediated activation in-
volved transient recruitment of NLRP3 to the mitochondria prior
to NLRP3 association with ASC [174,175]. It also involved a ROS-
dependent increase in plasma membrane permeability and sub-
sequent drop in intracellular Kþ [89]. It should be noted that the
data do not agree on whether non-viral stimuli activate NLRP3 via
MAVS and that the involvement of ROS was not addressed in all of
the studies. Further work is needed to determine the mechanism
(s) of NLRP3 activation by MAVS and whether it is unique to viral
infection.

Mitofusins are outer mitochondrial membrane GTPases that are
proposed to regulate mitochondrial fusion. Ichinohe and collea-
gues observed that mitofusin 1 and 2 are required for activation of
NLRP3 during viral infection [90]. Activation required recruitment
of NLRP3 to mitochondria, was independent of ROS production,
and enhanced the association of NLRP3 with MAVS [90].

11. A Unified model of NLRP3 inflammasome activation?

The NLRP3 inflammasome is activated by a wide array of sti-
muli and conditions whose only common feature appears to be
that they are indicators of disruptions in cellular homeostasis. This
diversity in stimuli is reflected by the numerous molecules, pro-
teins, and events that have been implicated in its activation
pathways. Whether these pathways converge upstream of, at, or
downstream of NLRP3 itself (i.e., no commonalities other than
NLRP3-dependent IL-1β secretion) remains a matter of debate.
Though consensus has certainly not been achieved, most proposed
pathways involve ROS/mtROS and/or mitochondria.

Mitochondria may serve in non-mutually exclusive capacities
as a signaling platform and as a source of DAMPs. Recruitment of
NLRP3 to the mitochondria in response to infection and en-
dogenous stimuli places it in close proximity to stimuli (mtROS),
ligands (mtDNA and cardiolipin), and activating/adaptor proteins
(Nrf2, mitofusins, MAVS). Mitochondria are thus a focal point of
NLRP3 activation. Even so, different mechanisms of NLRP3 acti-
vation are possible. For example, cardiolipin and mtDNA may not
be required for NLRP3 activation during viral infection.

ROS have multiple points of entry: the priming step, initiation
of an antioxidant response (dissociation of Nrf2 and TXNIP), in-
duction and/or indication of mitochondrial damage, oxidation of
NLRP3 itself or its ligands, and possibly Kþ efflux. Some of the
disagreements over the role of ROS might be explained by mi-
tochondrial DAMPs or the fact that high ROS levels can inhibit
caspase-1. However, other discrepancies, such as whether ROS are
dispensable for priming and whether stimuli such as ATP and uric
acid crystals require ROS are more difficult to resolve [135–137].

Based on observations that the antioxidant response is im-
portant for NLRP3 activation [107,144,146,149], it has been pro-
posed that the overall redox state of the cell may account for some
of the contradictory data [143,177,178]. Cells in tissue culture are
exposed to higher levels of oxygen than their normal environ-
ments and thus upregulate their antioxidant capacity. Conse-
quently, high levels of ROS production are necessary to induce an
antioxidant response sufficient for NLRP3 activation. In contrast,
freshly prepared primary cells have a low antioxidant capacity. In
these cells, the low level of ROS induced by LPS is sufficient to
activate NLRP3 in the absence of a second signal [143]. More re-
search is required. As the field continues to identify additional
aspects of NLRP3 inflammasome signaling and regulation and the
extent to which these mechanisms are impacted by the redox state
of the cell, it will get closer to resolving the current contradictions.

12. Final remarks

The acquisition of the endosymbiont protobacterium that
evolved into mitochondria gave early eukaryotes a more efficient
means of ATP production but also a source of potentially danger-
ous ROS. It was thus advantageous to cells to develop and/or en-
hance antioxidant mechanisms to counteract increased ROS from
damaged mitochondria and to evolve mechanisms such as au-
tophagy to degrade damaged mitochondria in response to ROS
produced by dysfunctional mitochondria. These countermeasures
mitigate the toxic potential of ROS. As a consequence, ROS have
been co-opted as not just danger signals but also as actively gen-
erated signaling molecules.

Similarly, the mechanisms regulating mitochondria function
and sensing mitochondrial damage have been co-opted by cellular
immune response pathways. Mitochondria are used as a source of
ROS to produce anti-microbial effectors. Autophagy is used to
eliminate bacteria from the cytosol. ROS have roles in activating
autophagy and in the formation of extracellular DNA traps. Path-
ways that regulate the metabolic homeostasis of cells intersect
with immune pathways via the mitochondria. This intersection is
exemplified by the NLRP3 inflammasome. Mitochondrial dys-
function, sensed by the exposure of mtDAMPs to the cytosol, al-
terations in metabolite levels, and/or increased mtROS, activates
the NLRP3 inflammasome. The dysfunction can result from the
activation of pathways that sense the presence of microbes or from
the direct targeting of mitochondria by pathogens. It can also re-
sult from non-infectious diseases such as diabetes, gout, and
atherosclerosis.

Many questions regarding the central roles of mitochondria
and ROS in regulating cellular homeostasis remain. Do mtROS have
direct anti-microbial effects, or do they only function as signaling
molecules? If mtROS are anti-microbial effectors, then how do
they gain access to phagosome-bound pathogens? What are the
actual mechanisms that mediate ROS signaling? Is it a direct
modification of proteins? Is it indirectly via activation of anti-
oxidant proteins? Which species of ROS are important in which
pathways? How does the redox state of the cell impact ROS sig-
naling? Answering such questions will increase our understanding
of cellular regulatory mechanisms and provide potential points for
therapeutic intervention in a range of infectious and non-in-
fectious diseases.
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