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Abstract 
 

The work presented in this thesis was aimed at exploring the homodecoupling methods 

implemented in different two-dimensional NMR experiments. The main goal was to 

demonstrate the advantages of these experiments in terms of resolution and the information 

content they provide with respect to “routinely” used experiments. Furthermore, the 

limitations and complementarity of the methods were investigated. 

The first part of the work consisted in assembling a toolbox of two-dimensional 

homonuclear high-resolution experiments homodecoupled in the F1 indirect dimension (DIAG, 

CLIP-COSY, TOCSY). The homodecoupling leads to elimination of the J-scalar coupling splitting in 

the F1 dimension, significantly simplifying the multiplet pattern and reducing the signal overlap 

probability. The full multiplets, being invaluable providers of structural information, are 

preserved in the direct F2 dimension, where high resolution and thus complete separation of 

the multiplet components comes usually with no cost in experimental time. In our toolbox, the 

presence of the J-coupling constants in at least one dimension has been considered more 

important than the possible further increase in resolution by decoupling the signals in both 

spectral dimensions. 

The specific experiments were built upon a common template sequence, which 

facilitated their implementation and use. The general scheme was introduced by Thrippleton 

and Keeler, where the mixing sequence - if present - is embraced by two z-filters that serve to 

purge the desired magnetization from any other unwanted contributions - mainly the zero-

quantum coherences. All the experiments exploit the in-phase magnetization, which ensures 

that the signals belonging to one multiplet will be all positive and thus not prone to cancellation 

– in contrast to many routinely used experiments such as the DQF-COSY. 

A particular attention has been put on the modularity of the whole structure. The 

experiments, employing decoupling elements based on different mechanisms, are 

complementary to each other and can be used to access the maximum of structural 

information, not easily available by other methods. The particular information that can be 

obtained from the spectra provided by each of the experiment depends mainly on the type of 

the mixing, if present. 

The DIAG experiment lacks any mixing and thus, in principle, produces only diagonal 

signals. If decoupled in the F1 indirect dimension, it primarily aims at separating the chemical 

shift and J-coupling interactions while not providing any information about the correlations 

between spins. This experiment largely benefits from the possibility to drastically reduce the 

spectral window in F1. The much more recently proposed F1-decoupled and aliased DIAG can 
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be compared to the J-resolved spectroscopy introduced in the solution NMR methodology 

much earlier. Experiments separating interactions are highly desirable as they offer the 

possibility to simplify the spectra and to facilitate the precise measurement of the J - coupling in 

isolated multiplets.  

In order to tackle more complex structural problems, we propose the insertion of in-

phase based mixing sequences in the toolbox to provide the F1-decoupled CLIP-COSY and 

TOCSY experiments. 

The CLIP-COSY provides in-phase multiplets of a regular lineshape for both diagonal and 

cross-peaks and it is compatible with the homonuclear decoupling. While the use of the 

selective modulated pulse nemoZS or the PSYCHE element to decouple the indirect dimension 

of the CLIP-COSY ensures its optimal sensitivity, the application of the BIRD filter introduces 

some novel and interesting features in this experiment and can be used to fully reveal the 

multiplet structure of signals not easily reachable by other methods. 

The second, main part of the work, was dedicated to exploiting the toolbox experiments 

as model sequences in order to examine the spectral artifacts. This turned out to be a good 

occasion to explore more theoretical aspects of NMR spectroscopy in general and 

homodecoupling in particular. The path of building the theoretical structure allowing to 

approach the question of artifacts in these “toolbox experiments” was greatly facilitated by 

numerical simulations performed in the Spinach simulation package. 
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 Le travail présenté dans cette thèse visait à explorer les méthodes de homodécouplage 

mises en œuvre dans différentes expériences de RMN bidimensionnelle. L'objectif principal 

était de démontrer les avantages de ces expériences en termes de résolution et du niveau 

d'information qu'elles fournissent par rapport aux expériences utilisées “en routine”. 

 La première partie du travail consistait à assembler une série d'expériences 

homonucléaires bidimensionnelles à haute résolution homodécouplé dans la dimension 

indirecte F1. L’homodécouplage conduit à l’élimination du dédoublement du couplage scalaire 

dans la dimension F1, simplifiant considérablement les multiplets et réduisant la probabilité de 

chevauchement des signaux. Les structures de couplage sont conservées dans la dimension 

directe F2, où une résolution élevée et une séparation complète des composantes du multiplet 

sont généralement obtenues sans augmentation du temps expérimental. Dans notre série 

d’expérience, la présence des constantes de couplage dans au moins une dimension a été jugée 

préférable par rapport à un découplage dans les deux dimensions spectrales. 

 Les expériences sont construites sur une séquence modèle commune, ce qui facilite leur 

mise en œuvre et leur utilisation. Le schéma général a été introduit par Thrippleton et Keeler, 

où la séquence de mélange - quand elle est présente - est entourée de deux filtres z qui servent 

à isoler l’aimantation souhaitée de toute autre contribution - principalement les cohérences de 

zéro quanta. 

 Toutes les expériences exploitent l'aimantation « en-phase », ce qui garantit que les 

signaux appartenant à un multiplet soient tous positifs et ne risquent donc pas d'être annulés - 

contrairement à ce qui se produit dans de nombreuses expériences couramment utilisées telles 

que la DQF-COSY. 

 Un soin particulier a été apporté pour assurer une modularité des expériences. Les 

informations spécifiques pouvant être obtenues à partir des spectres fournis par chacune des 

expériences dépendent donc principalement du type de mélange, le cas échéant. 

 Les expériences qui utilisent des éléments de découplage basés sur différents 

mécanismes sont complémentaires et permettent d’accéder à un maximum d’informations 

structurelles, difficiles à obtenir par d’autres méthodes. 

 L’expérience DIAG est dépourvue de tout mélange et peut donc, en principe ne produire 

que des signaux diagonaux. Découplée dans la dimension indirecte F1, elle vise principalement 

à séparer les interactions de déplacement chimique et de couplage sans fournir d'information 

sur les corrélations entre les spins. Cette expérience bénéficie largement de la possibilité de 

réduire considérablement la fenêtre spectrale en F1. On peut comparer la DIAG - aliasée et 

découplée à l’expérience J-résolu, spectroscopie introduite beaucoup plus tôt dans la 

méthodologie de RMN en solution. De telles expériences sont très intéressantes, car elles 

offrent la possibilité de simplifier les spectres et de faciliter la mesure précise du couplage dans 

des multiplets qui sont désormais isolés. 
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 Afin de résoudre des problèmes structurels plus complexes, nous proposons l'insertion 

de séquences de mélange basées sur le transfert d'aimantation “en-phase” pour obtenir des 

expériences CLIP-COSY et TOCSY découplées en F1. 

 La CLIP-COSY, qui est particulièrement  intéressante, fournit des multiplets en forme 

“en-phase” pour les signaux diagonaux et croisés et est compatible avec le découplage 

homonucléaire. L'impulsion sélective modulée nemoZS ou l'élément PSYCHE, permettant de 

découpler la dimension indirecte de la CLIP-COSY, garantissent une sensibilité optimale. 

L’application du filtre BIRD, introduit quelques caractéristiques nouvelles et intéressantes dans 

cette expérience et peut être utilisée pour révéler pleinement la structure multiplet de signaux 

difficilement accessibles par d’autres méthodes. 

La deuxième partie du travail était consacrée à l’exploitation des expériences de la série 

en tant que séquences modèles afin d’examiner les artéfacts spectraux. Ce fut une bonne 

occasion d’explorer des aspects plus théoriques de la spectroscopie RMN en général et  du 

découplage homonucléaire en particulier. La voie vers la construction de la structure théorique 

permettant d’aborder la question des artéfacts dans ces expériences a été grandement facilitée 

par les simulations numériques effectuées avec le logiciel de simulation “Spinach”. 
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Abbreviations and Symbols  
 

AQ Acquisition time 

BBHD  Broadband Homodecoupling 

BIRD Bilinear Rotation Decoupling 

COSY Correlation Spectroscopy 

CLIP-COSY Clean In-phase Correlation Spectroscopy 

DIAG 2D experiment generating only diagonal signals 

DOSY Diffusion Ordered Spectroscopy 

DQF-COSY Double-Quantum Filtered Correlation Spectroscopy 

HSQC Heteronuclear Single Quantum Coherence 

nemoZS 

 

Zangger-Sterk element with non-equidistantly modulated selective refocusing 

pulse 

PSYCHE Pure Shift Yielded by Chirp Excitation 

rf Radio-frequency irradiation 

SERF Selective Refocusing experiment 

TOCSY Total Correlation Spectroscopy 

ZS Zangger-Sterk element 
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|𝛼⟩, |𝛽⟩ Eigenstates of 𝐼𝑧 for a single uncoupled spin 1 2⁄ ; 

𝛾 Gyromagnetic ratio; 

𝛿 Chemical shift; 

𝛥𝐹 Chirp pulse sweep width; 

𝐻̂ Hamiltonian operator; 

𝜃 Flip angle of a pulse; 

𝐼𝑥, 𝐼𝑦, 𝐼𝑧 Operators corresponding to x, y and z components of angular momentum; 

𝑝 Coherence order; 

𝜌̂, 𝜌 Density operator and its corresponding matrix, respectively; 

ϱ  Angle expressing the tilt of the rotation axis - around which magnetization 

precesses - from the z axis of the rotating frame, if off-resonance effects are 

relevant;  

𝜙𝑝 Phase of a pulse defined as an axis in the transverse plane in the rotating 

frame of reference; 

𝜓 Wavefunction describing the wave characteristics of a spin; 

|𝜓⟩ Ket in the Dirac notation representing wavefunction in a matrix form; 

⟨𝜓| Bra in the Dirac notation representing the matrix adjoint of the ket; 

𝜔0 Larmor frequency; 

𝜔1 Nutation frequency expressing the speed of rotation of spins around the rf 

field applied from the transverse plane in the rotating frame of reference; 

𝜔𝑒𝑓𝑓 Effective frequency expressing the speed of rotation of spins around the 

applied rf field if its direction lies off the transverse plane in the rotating frame 

of reference; 

Ω Offset frequency; 

F1, F2 Frequency axis of indirect and direct dimension, respectively; 

R Rate of the chirp pulse; 

U Propagator of the density matrix; 
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I. Introduction, context, motivation 
 

 The through-chemical bond interaction between spins of the same - or different - type 

leads to the splitting of the observed NMR signals into multiplets.  

 Suppressing the effect of this interaction is a common practice when acquiring, for 

example, 13C spectra, where the knowledge of the values of the heteronuclear J(1H-13C) 

couplings are usually redundant and removing them simplifies and facilitates the interpretation 

of the spectra and increases sensitivity. In this case, each such recovered singlet line 

corresponds to a chemically distinct spin site in a molecule. Heteronuclear decoupling is 

achieved by saturating the magnetization of one of the isotopes to be decoupled, which is 

simple if their Larmor frequencies are significantly different. 

 The homonuclear decoupling, particularly in the case of 1H NMR spectroscopy, brings 

even bigger advantages, as the chemical shift range of the isotope is relatively narrow. The 

overlapping multiplets, often complicated and extended, hinder or even prevent spectra 

interpretation. The quest for the methodology allowing the suppression of the homonuclear 

couplings in order to obtain pure-shift spectrum started already in 1960s[1]. However, 

homonuclear decoupling is much more challenging than its heteronuclear correspondent, as in 

this case, spins of the same isotope must be manipulated separately and differently.  

 The first broadband decoupled proton spectrum was obtained indirectly from the 

projection of the J-resolved spectrum[2]. Among other methods that were proposed over the 

decades, it is compulsory to mention the Pines BIRD element[3] allowing to distinguish between 

protons on the basis of the presence/absence of a chemical bond with a 13C isotope (Section 

III.B.3) and the revolutionary, in this field, spatial encoding proposed by Zangger and Sterk 

(Section III.B.1). Several years ago, a novel element for broadband homonuclear decoupling, 

called PSYCHE[4], has been proposed by Mohammadali Foroozandeh (Section III.B.2.b)). More 

detailed description of these methods, their principles and characteristics will be discussed in 

Section III.B, after introducing the necessary quantum mechanical description of NMR in 

Section II. Deriving from these methods, the work of Morris and his coworkers[5-8] as well as 

many other groups, in the last decade, contributed to a design of a plethora of pure-shift 

experiments, within different categories, for example: 1D 1H pure-shift experiments[9], 2D 

homonuclear experiments decoupled in indirect and/or direct dimension[4, 10], pure-shift 

HSQC[11], pure-shift experiments for 13C enriched compounds[12, 13], pure-shift DOSY[14], 

homodecoupled band-selective experiments[15] and many others.  

 In this thesis, the first part of the work consisted in assembling a toolbox of two-

dimensional homonuclear high-resolution experiments homodecoupled in the F1 indirect 

dimension (DIAG[10] CLIP-COSY[16], TOCSY[17]), see the green part in Figure 1. The 
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homodecoupling serves to reduce the signal overlap probability. However, the full multiplets, 

being an invaluable provider of structural information, are preserved in the direct F2 

dimension, where high resolution and thus complete separation of the multiplet components 

comes usually with no cost in experimental time. In our toolbox, the presence of the J-coupling 

constants in at least one dimension has been considered more important than the possible 

further increase in resolution by decoupling the signals in both spectral dimensions[5]. 

 The specific experiments were built upon a common template sequence, which 

facilitated their implementation and use (Figure 1). The scheme was introduced by Thrippleton 

and Keeler[18], where the mixing sequence (if present) is embraced by two z-filters that serve to 

purge the desired magnetization, stored along the z direction prior to detection, from any other 

unwanted contributions - mainly the zero-quantum coherences. All the experiments exploit the 

in-phase magnetization (in the product operator formalism), which ensures that the signals 

belonging to one multiplet will be all positive and thus not prone to cancellation (Figure 2).  

 

 

Figure 1. The template sequence for the z-filtered experiments of the toolbox with the optional decoupling and 
mixing elements. 

 When analyzing the structure of small molecules or their mixtures by NMR, very often it 

is necessary to complement the 1D spectra with different 2D experiments. In this work, a 

particular attention has been put on the modularity of this toolbox. The experiments, 

employing decoupling elements based on different mechanisms, are complementary to each 

other and can be used to access the maximum of structural information, not easily available by 

other methods. The particular information that can be obtained from the spectra provided by 

each of the experiment depends mainly on the type of the mixing (if present). The choice of the 
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elements of the toolkit will depend on the problem at hand so that the user can optimally 

benefit from the specific advantages of each of the experiments.   

 

 

Figure 2. DQF-COSY (top) and CLIP-COSY (middle) spectra of melezitose showing signals with antiphase and in-
phase patterns, respectively. In the formal description, distinct product operators describe the two types of signals. 
Generally, experiments based on in-phase magnetization are compatible with homonuclear decoupling: the 
spectrum at the bottom shows F1-nemoZS decoupled CLIP-COSY. The CLIP delay in the CLIP-COSY experiments was 
set to Δ = 25 ms. The selective pulse used for decoupling was a 120 ms rsnob with 2x40 irradiation sites.  
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 The DIAG experiment (similar to the δ-resolved experiment[19]) lacks any true mixing and 

thus, in principle, produces only diagonal signals. Even though the sequence ends up with a 90° 

hard pulse, which often plays the role of a minimalistic mixing element, the conditions here are 

not fulfilled for the transfer of magnetization between coupled spins to take place, since all 

spins are aligned with the z direction prior to the pulse.   

 If decoupled in the F1 indirect dimension, it primarily aims at separating the chemical 

shift and J-coupling interactions while not providing any information about the correlations 

between spins. This experiment largely benefits from the possibility to drastically reduce the 

spectral window in F1 (typically by two orders of magnitude, e.g. from 5000 Hz to 50 Hz). This 

causes the so-called “spectral aliasing” and consequently the increase in resolution by the 

factor of the spectral width reduction - in the same experimental time. This comes however 

with the disarranging of the resonance frequencies (chemical shifts) in F1. The usually 

undesired ambiguity, in this case becomes insignificant, as the chemical shift of the diagonal 

signals is obviously the same in F1 and F2 and thus apparent from the direct dimension, see 

Section IV.A.1. 
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Figure 3. The non-aliased (top) and aliased (bottom) DIAG spectra of melezitose.  

 The much more recently proposed F1-decoupled and aliased DIAG can be compared to 

the J-resolved spectroscopy[2] introduced in the solution NMR methodology as soon as in the 

1970s with the same main goal to separate the interactions and obtain the (𝐽, 𝛿)-

representation. The motivation to design an experiment separating the shifts and the couplings, 

which appeared so early in NMR, is easily understood, as the simplification of the spectra and 
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the possibility to study each multiplet in the isolation from others is very appealing to facilitate 

the spectra interpretation.  

 Recent methodological advances contributed to significant improvement of the two, 

fundamentally different, experiments, making the comparison of the resulting spectra 

interesting and quite challenging. First of all, it is quite recent that the homodecoupling 

methods have been improved to the extent as to provide the decoupled spectra with a 

reasonable quality and sensitivity. Secondly, the treatment of aliased 2D spectra, where the 

spectral window in F1 is reduced to the value of tens of Hertz, is well elaborated[20] may 

facilitate the work with such spectra. The limit of tens of Hertz in F1 is kept so to ensure the 

embedding of the most extended multiplets expected in the spectra, just as in the J-resolved 

spectroscopy. Thus, the two classes of experiments (δ- and J-resolved), can be acquired with 

similar experimental parameters for better comparison. Thirdly, sophisticated methods to 

improve the coherence selection in modern experiments (gradients, adiabatic pulses combined 

with gradients, optimized pulses, etc.) are routinely employed. The upgraded coherence 

selection influences the lineshapes of the signals and overall quality of the spectra, also (and 

importantly) in the presence of strong coupling. All the factors listed above contribute to the 

high competitiveness of experiments such as the the F1-decoupled DIAG and the J-resolved (J-

res) and their precise comparison becomes a challenging task, as it requires the knowledge and 

suitable tools to question and examine the nuances that could tip the balance in favor of one of 

those experiments. 

 One important difference that sets the DIAG experiment apart from the J-res is that it is 

a two-dimensional experiment based on the quadrature detection and in principle any mixing 

sequence based on the in-phase magnetization may be inserted in-between the two final 

Keeler’s z-filters in the pulse sequence in order to restore the spin-spin correlations. This makes 

it very attractive as an alternative to the J-resolved experiment, which does not offer this 

flexibility. In fact, the DIAG underpins the presented toolkit. It can be run as a sort of diagnostic 

experiment to provide highly resolved multiplets in a minimum of experimental time – when 

aliased. It can be used to measure couplings in the F2 dimension[10] and can be useful to identify 

strongly coupled spins as those will certainly generate of out-of-diagonal signals[21].  

 However, in order to facilitate the assignment and tackle more complex structural 

problems, a COSY-like experiment, making it possible to track the connectivity between spins, is 

vitally important. We inserted in our toolbox the perfect echo mixing sequence[22], which forms 

the basis of the recently proposed CLIP-COSY experiment[16]. The perfect echo block transfers 

the magnetization between directly coupled spins through the J coupling in a manner 

analogous to the INEPT transfer, ubiquitous in heteronuclear experiments. Since the efficiency 

of the transfer depends on the CLIP delta delay (Figure 1) and the J couplings underlying a given 

signal multiplicity, the intensity of signals in the spectrum will vary. This fickle intensity behavior 
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is however not the only feature that makes the experiment distinct from most of other 

common versions of the COSY experiment. Most importantly, to a great advantage, the CLIP-

COSY provides in-phase multiplets of a regular lineshape for both diagonal and cross-peaks and 

it is compatible with the homonuclear decoupling. While the use of the selective modulated 

pulse (nemoZS[10], Section III.B.1.c) or the PSYCHE element[9] (Section III.B.2.b)) to decouple the 

indirect dimension of the CLIP-COSY ensures its optimal sensitivity, the application of the BIRD 

filter[3] (Section III.B.3) introduces some novel and interesting features in this experiment. It will 

be shown how the BIRD-CLIP-COSY can be used to fully reveal the multiplet structure of signals 

not easily reachable by other methods. 

 Finally, the F1-decoupled TOCSY[17] experiment, based on the extensive transfer of in-

phase magnetization between spins in the entire spin system, turns out to be often 

complementary to the CLIP-COSY experiment, as it shows correlations that may accidentally be 

missing/or be of a very low intensity in the latter one. TOCSY is an invaluable experiment in the 

assignment of compounds like carbohydrates, as it makes the distinction between separate 

rings straightforward. The additional increase in the resolution due to the homodecoupling 

renders the spectral assignment even easier.  

 The second, main part of the work, was dedicated to exploiting the toolbox experiments 

as a model sequences in order to examine the spectral artifacts. This turned out to be a good 

occasion to explore more theoretical aspects of the NMR spectroscopy in general and the 

homodecoupling in particular. The path of building the theoretical structure facilitating the 

approach to the question of artifacts in these “toolbox experiments” was greatly facilitated by 

numerical simulations performed in the Spinach simulation package[23, 24]. 

 The study of artifacts is not a particularly trivial task. First of all, there is a variety of 

possible sources of artifacts, not all being of interest to NMR methodologists. Secondly, 

artifacts are usually much less intense than the desired signals and so their investigation - either 

experimental or by simulations - is quite of a challenge. Finally, the rigorous study of artifacts 

requires rather advanced understanding of a theory of spin dynamics and the mechanism of the 

applied NMR methods. The cost of such study would be probably not rewarded even by finding 

a method to clean spectra coming from a given pulse sequence from the spurious responses 

and it is definitely not of a main interest for most of the users of the “routine” NMR 

spectroscopy. However, the focus that was given to artifacts in this PhD work was beneficial, as 

it resulted in a deeper understanding of some very recent homodecoupling methods and 

pointing out the difficulties associated with their use, which paves the way for a search of 

better solutions.   

  As the homodecoupling relies on separation of interactions, the presence of the strong 

coupling phenomenon, which inherently mixes the coupled spins, causes an evident limitation 

in making the separation ideal. Moreover, the use of novel methods providing an improvement 
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in sensitivity of the decoupled experiments may be disadvantageous in other aspects. For 

example, the employment of multiple-modulated selective pulses or small flip angle adiabatic 

pulses in the middle of the evolution of the indirect dimension, causes transfers of 

magnetization which will behave differently than the (usually main) desired one. This 

magnetization will not contribute to the expected signals but will rather be dispersed in the 2D 

spectrum with an unpredictable phase in the form of what is often referred to as “artifacts”. 

 The precise indication of the sources (imperfections of hard pulses, performance of the 

shaped pulses, the choice of the flip angle and its accuracy, periods of free evolution under the 

action of strong coupling Hamiltonian, mixing period, etc.) of the magnetization evolving 

differently than expected, would allow to assess the frequencies, phases and intensities of 

these artifacts in the 2D spectrum. Obviously, these measurable characteristics of the artifacts 

are a final result deriving from the combination of the different contributions. The 

decomposition of this final result into the distinct steps occurring in time would be a challenge. 

Spin dynamics simulations are necessary for this purpose.  

 Some manual calculations have been done for simple cases (two coupled spins) as a 

method to understand the logic underlying the transformations of the density matrix upon 

different propagators. The aim of reproducing the exact path of the magnetization with the 

help of a simulator should be deliberated over: 

 1. One possible benefit of this approach would be to get an insight into the physics of 

the spin interactions (also with regard to a particular method). This is attractive when new and 

not completely understood methods are studied. Doing it in the context of 2D experiments that 

allow probing the magnetization transfers in the 2D map is much more convenient and 

informative (if not to say: the only way) than to study those effects only from the phase 

distortion in the one-dimensional spectra.  

 2. Another tempting use of a detailed understanding and analysis of the artifacts would 

be to develop a method to eliminate or reduce them and produce improved spectra.  

 For example, formal theoretical analysis concerning the density matrix transformations 

upon different (time-independent and time-dependent Hamiltonians) have been performed, 

with the help of a simulation program, and published for more simple experiments (e.g. J-

resolved experiment[25] and SERF experiment[26]). It consequently led to finding the (partial) 

solution to remove the spectral artifacts: either by an optimized coherence selection (the SERF) 

or smartly designed averaging - Keeler’s trick of substituting the only 180° hard pulse in the 

sequence by a chirp pulse combined with a weak gradient (the J-res).  

 Regarding the strong coupling artifacts present in the spectra of the toolbox 

experiments, a methodological trick – similar to the one used to eliminate these artifacts in the 

J-res – could likely be proposed to achieve their elimination or reduction. However, considering 

the main differences between J-res and DIAG: the presence of the mixing pulse(s) and the 
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necessity to cycle the sequence for the quadrature, the methodology in this case may require 

some adjustments. The understanding and treatment of artifacts different than the strong 

coupling ones may be more difficult, because they are probably much less systematic. If they 

are related to the hardware or some experimental (but not methodological) issues, there is no 

interest of them in the context of this thesis. On the other hand, artifacts related to the 

imperfections of the pulses will be generally discussed and are of an interest in the perspective 

of designing optimized pulses.  

 3. Yet another application of the study and simulations of artifacts would be to facilitate 

the conception of a software for a fully/semi - automatic spectral analysis. 
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II. Quantum mechanical description of the NMR experiments 
  

 In order to compare rigorously the properties of the different decoupling elements and 

their performances in the studied experiments as well as to demonstrate their 

complementarity, a method for a precise analysis of the magnetization is essential. The 

formalism of quantum mechanics provides a very convenient tool to describe the NMR 

spectroscopy and will be used for the theoretical analysis of the experiments (or its elements) 

studied in this PhD thesis. The aim to write such a formal section is to construct a general 

framework to refer to, when discussing in detail the experiments. Moreover, quantum 

mechanical calculations lie at the core of programs allowing the simulation of the spin dynamics 

and consequently the NMR experiments. It was then necessary to introduce the basic 

theoretical treatment to pave the way for the future developments in the context of this work, 

which can greatly profit from simulations (Spinach simulations of the experiments, with the 

focus on the artifacts analysis, are currently under preparation). 

 

A. The Hamiltonian operator and the density operator 

 

 In NMR, one measures frequencies at which the nuclear spins “precess”, which is 

directly proportional to the differences between the energy levels of the spin system. This 

section serves to demonstrate that the energy may not only be measured in an NMR 

experiment, but can also be calculated as the eigenvalues of a quantum mechanical operator 

called Hamiltonian. This approach turns out to be very useful to understand spectra containing 

signals whose source may not be easily identified, for example the spectral artifacts often 

associated with some imperfections of the pulse sequence. However, the origin of such signals 

is sometimes intrinsic to the spin system and the spin interactions within it. Thus, if the 

frequency of the “artifacts” (and so the energy of the spin system) can be calculated and 

translated to their root, one can have an access to a (beneficial) manipulation of these signals. 

 An arbitrary state of any physical system, for example an atomic nucleus in a magnetic 

field, is labelled by a vector of a vectorial space called a Hilbert space[27]. A state, labeled by the 

vector and described by a corresponding wavefunction can be written as a linear combination 

(superposition) of some basis states: 

 

  |𝜓⟩ = 𝑐1|1⟩ + 𝑐2|2⟩, (1) 
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where |𝜓⟩ is the ket (in the Dirac notation) specifying this state. The basis states |1⟩, …, |𝑛⟩ can 

be represented by orthogonal unit vectors and the coefficients 𝑐1, …, 𝑐𝑛 express the 

contribution of each of the basis state in the superposition. These coefficients play a central 

role in the link between the formal description and the experiment, as will be shown. 

 Operators act on vectors in this Hilbert space and, in general, transform them to 

different vectors. There is a special class of operators that do not modify the vectors, but at 

most scale them. Those vectors are called eigenvectors (eigenstates) of the operators and the 

scaling factors are called the eigenvalues associated with these eigenvectors. The crucial point 

is that these eigenvalues correspond to physical variables (like the energy for example) and can 

be measured in an experiment.  

 The very important Hamiltonian operator 𝐻̂ determines the total energy of a quantum-

mechanical system, according to  

 

 𝐻̂|𝜓⟩ = 𝜀|𝜓⟩ (2) 

 

where 𝜀 is the energy (the measurable eigenvalue of the Hamiltonian operator acting on a 

wavefunction describing a given state of the system).  

 Noteworthy, in NMR, all spin interactions: with the static magnetic field, the rf pulses, 

the other spins etc. can be represented by a corresponding Hamiltonian operator. Any pulse 

sequence (like COSY, HSQC etc.) can be seen in this context as a series of different Hamiltonians 

applied sequentially - to a given state of a spin system that changes under each action of any 

Hamiltonian - that altogether lead to the final state which will be manifested in the form of the 

spectrum after the Fourier Transform.   

 The calculation of the energy values measured in an experiment is equivalent to the 

calculation of the so-called expectation value of a quantum mechanical operator, given by a 

scalar product of  ⟨𝜓| and 𝐻̂|𝜓⟩: 

 

  〈𝐻̂〉 = ⟨𝜓|𝐻̂|𝜓⟩ (3) 

 

where ⟨𝜓|= ⟨1|𝑐1
∗ + ⟨2|𝑐2

∗ +⋯+ ⟨𝑛|𝑐𝑛
∗  and the asterisk indicates the complex conjugate, as 

the 𝑐1, …, 𝑐𝑛 are complex numbers. After performing simple calculations and knowing that 

states and operators can be expressed as vectors/matrices, it can be shown that this is 

equivalent to: 
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〈𝐻̂〉 = 𝑇𝑟(𝜌 ∙ 𝐻) = 𝑇𝑟((
𝑐1𝑐1

∗ ⋯ 𝑐1𝑐𝑛
∗

⋮ ⋱ ⋮
𝑐𝑛𝑐1

∗ ⋯ 𝑐𝑛𝑐𝑛
∗
) ∙ (

⟨1|𝐻̂|1⟩ ⋯ ⟨1|𝐻̂|𝑛⟩

⋮ ⋱ ⋮
⟨𝑛|𝐻̂|1⟩ ⋯ ⟨𝑛|𝐻̂|𝑛⟩

))

= 𝑐1
∗𝑐1⟨1|𝐻̂|1⟩ + 𝑐1

∗𝑐2⟨1|𝐻̂|2⟩ + ⋯+ 𝑐𝑛
∗𝑐𝑛−1⟨𝑛|𝐻̂|𝑛 − 1⟩

+ 𝑐𝑛
∗𝑐𝑛⟨𝑛|𝐻̂|𝑛⟩ 

(4) 

 

where 𝜌 is the matrix representation of the so-called density operator 𝜌̂. The density matrix 

describes how the basis states superpose to form a state. This information is coded in the form 

of products of the coefficients (elements of the density matrix). Importantly, as the 𝑐1, …, 𝑐𝑛 are 

complex numbers, they carry an information not only about the amplitude, but also the relative 

phase of the basis states in the superposition. In other words, in order to calculate the energy 

values of a given state of a system under a given Hamiltonian (e.g. to simulate the NMR 

spectrum), it is necessary to know how this Hamiltonian acts on the basis states and what is 

exactly their superposition in the state. 

 In the special case when the basis states |1⟩, …, |𝑛⟩ are the eigenstates of a given 

Hamiltonian 𝐻̂, its expectation value is: 

 

 〈𝐻̂〉 = 𝜀1 ∙ 𝑐1
∗𝑐1 +⋯+ 𝜀𝑛 ∙ 𝑐𝑛

∗𝑐𝑛. (5) 

 

 For example, the influence of an external magnetic field on a spin system such as two 

coupled spins, each with a spin ½, can be expressed as the Hamiltonian: 𝐻̂ = −𝛾𝐵0 ∙ 𝐼𝑧 = 𝜔0 ∙

𝐼𝑧 acting on a wavefunction: |𝜓⟩ = 𝑐𝛼𝛼|𝛼𝐼𝛼𝑆⟩ + 𝑐𝛼𝛽|𝛼𝐼𝛽𝑆⟩ + 𝑐𝛽𝛼|𝛽𝐼𝛼𝑆⟩ + 𝑐𝛽𝛽|𝛽𝐼𝛽𝑆⟩. In this 

case, the four basis states superposing to form the |𝜓⟩ are also the eigenstates of the 

Hamiltonian and the corresponding eigenvalues are: 𝜀𝛼𝐼𝛼𝑆 =
1
2⁄ , 𝜀𝛼𝐼𝛽𝑆 = 0, 𝜀𝛽𝐼𝛼𝑆 = 0, 𝜀𝛽𝐼𝛽𝑆 =

1
2⁄ . The eigenvalues of a Hamiltonian are the energies of the associated eigenstates 

(commonly called energy levels) and determine the energy separation between these levels. 

This has a direct impact on the probabilities of transition between the levels and consequently 

on what is observed in a NMR experiment. The possibility to calculate these probabilities allows 

accounting for a frequency, an amplitude (intensity) and a phase of each signal in a 1D 

spectrum. It is important to add, that the transitions between the states may or may not 

happen – this depends on a specific Hamiltonian, which acts on a system. This issue is 

addressed in the following section. 
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B. Evolution of the density matrix 

 

 As described in the previous section, the eigenstates and eigenvalues of the Hamiltonian 

𝐻̂ = −𝛾𝐵0 ∙ 𝐼𝑧 acting upon a spin system are used to formally describe the energy quantization 

(energy levels degeneracy) in a quantum-mechanical system, at equilibrium. The NMR 

spectroscopy is possible only if the system is dragged away from the equilibrium and changes 

over time. The information about this change can be retrieved from the time-dependent 

Schrödinger equation: 

 

 
𝑑

𝑑𝑡
|𝜓⟩ = −𝑖𝐻̂|𝜓⟩, (6) 

 

which states that the integral of the wavefunction with respect to time is equal to the output of 

the action of the Hamiltonian operator 𝐻̂ on this wavefunction multiplied by – 𝑖 imaginary 

number. This time evolution of a system can be accurately described by the evolution of the 

density matrix, since, what changes in time, are the coefficients (probabilities) and not the basis 

states themselves.  

 The equation that relates the evolution of the density operator to the Hamiltonian, is 

called Liouville-von Neumann equation: 

 

 𝑑𝜌̂

𝑑𝑡
= −𝑖[𝐻̂, 𝜌̂]. 

(7) 

 

This equation provides the fundamental criterion for the evolution of a system to take place at 

all, which is only when the commutator of the density operator and the Hamiltonian operator is 

non-zero. 

 The understanding of the rules underlying the evolution of the density matrix in time, 

under different Hamiltonians, is the core of the NMR methodology development. The ability to 

find an algorithm to optimize any chosen elements of the density matrix (while it is evolving 

under a series of Hamiltonians in time) is equivalent to designing a way to control the evolution 

of the magnetization up to the final desired state.  

 When the Hamiltonian is time-independent, the solution of the Liouville-von Neumann 

equation (as it requires the integration of equations including the imaginary unit – 𝑖 present in 

the coefficients in the density matrix) can be written in terms of the operator exponentials: 

 

 𝜌̂(𝑡) =  𝑒−𝑖𝐻̂𝑡𝜌̂(0)𝑒+𝑖𝐻̂𝑡 (8) 
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The general notation is also often used: 𝜌̂(𝑡) =  𝑈𝜌̂(0)𝑈, where 𝑈 represents the exponential 

function in Eq (8) is called the propagator. 

 Solving this equation requires the calculation of a matrix exponential, which is 

straightforward when a diagonal matrix represents the Hamiltonian, and it is more demanding 

when the matrix is not diagonal.  

 In the above equation, if the Hamiltonian operator 𝐻̂ is represented by a diagonal 

matrix, the matrix exponential is also a diagonal matrix such that, e.g.: 

 

 
𝐻̂ = (

𝜀1 0
0 𝜀2

);  𝑒𝐻̂ = (
𝑒𝜀1 0
0 𝑒𝜀2

); 
(9) 

 

The evolution of the density matrix in this particular case is as simple as its elements acquiring a 

phase label determined by the energy levels of the system (phase modulation), for example, if 

an uncoupled spin is considered in the Hilbert space: 

 

 𝜌 = (
𝜌11 𝜌12
𝜌21 𝜌22

) (10) 

 

 𝜌(𝑡) = 𝑒−𝑖𝐻̂𝑡 ∙ (
𝜌11 𝜌12
𝜌21 𝜌22

) 𝑒+𝑖𝐻̂𝑡. (11) 

 

Then, the evolution of the element 𝜌12 can be expressed as: 

  

 𝜌12
𝐻̂𝑡
→  𝜌12 ∙ 𝑒

𝑖(𝜀2−𝜀1)𝑡 (12) 

 

and generally: 

 

 𝜌𝑖𝑗
𝐻̂𝑡
→  𝜌𝑖𝑗 ∙ 𝑒

𝑖(𝜀𝑗−𝜀𝑖). (13) 

  

 In the case where the Hamiltonian is represented by a non-diagonal matrix, it must first 

be diagonalized by solving the secular equation, which enables the matrix exponential to be 

calculated. In this case, the matrix exponential consists of non-zero diagonal and off-diagonal 

elements equal to cos(𝜔𝑡) and/or sin(𝜔𝑡) (amplitude modulation) where 𝜔 corresponds to a 

frequency (energy) determined by the given Hamiltonian.  
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C. Radio-frequency pulse 

 

1. General description and a hard pulse 

 

 As mentioned above and in accordance with the Liouville-von Neumann equation (Eq 

(7)), a quantum mechanical system evolves in time only if the density operator that describes 

the system and the acting/propagating Hamiltonian do not commute. It is very common to 

choose the propagators of the density matrix in a way that 𝐻̂ and 𝜌̂ are orthogonal (in addition 

to the fact that they do not commute). For example, operators like 𝐼𝑥 or 𝐼𝑦 do not commute 

with 𝐼𝑧, they are orthogonal to each other and to 𝐼𝑧 and the following commutation 

relationships hold: 

 

 [𝐼𝑥, 𝐼𝑧] = −𝑖𝐼𝑦 

[𝐼𝑦, 𝐼𝑧] = +𝑖𝐼𝑥 

(14) 

 

Moreover, the 𝐼𝑥 or 𝐼𝑦 ensure the full interconversion of the 𝐼𝑧 eigenstates. 

 

 
𝐼𝑥 | 𝛼⟩ = +

1

2
| 𝛽⟩         𝐼𝑥 |𝛽⟩ = +

1

2
 | 𝛼⟩ 

𝐼𝑦 | 𝛼⟩ = +
1

2
𝑖| 𝛽⟩         𝐼𝑦 |𝛽⟩ = −

1

2
𝑖| 𝛼⟩ 

(15) 

 

This explains why the rf pulses are usually applied from the transverse plane in the rotating 

frame. It will be shown below, that on-resonance rf pulses are in fact described by the 

quantum-mechanical operators corresponding to the x and y components of the angular 

momentum 𝐼𝑥 and 𝐼𝑦. Importantly, the interconversion of the basis states corresponds to the 

generation of a coherence.  

 It is however noteworthy that the operators that are neither perpendicular nor parallel 

(the latter is the extreme case when the commutator is zero) to a given density operator, will 

still trigger the evolution of the system.  

 It is essential for the analysis carried out in this thesis to provide the formal description 

of the action of rf pulses on the magnetization in a given state. Since pulses are oscillating 

signals, the full Hamiltonian is time-dependent:   

 

 𝐻̂ = 𝜔0𝐼𝑧 + 𝐻̂𝑅𝐹(𝑡) 

 

(16) 

where: 𝐻̂𝑅𝐹(𝑡) ≅  −
1

2
𝛾𝐵𝑅𝐹 ∙ {cos(𝜔𝑟𝑒𝑓𝑡 + 𝜙𝑝)𝐼𝑥 + sin(𝜔𝑟𝑒𝑓𝑡 + 𝜙𝑝)𝐼𝑦}. 
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 The rotating frame transformation, based on adjusting the frequency of the oscillation 

of the rf pulse (𝜔𝑟𝑒𝑓) to the Larmor frequency (± the chemical shift) of the spins in a given 

magnetic field, allows to remove the time-dependence from the above expression and the 

Hamiltonian becomes:  

 

 𝐻̂𝑟𝑜𝑡 ≅ Ω𝐼𝑧 + 𝜔1 ∙ {cos(𝜙𝑝)𝐼𝑥 + sin(𝜙𝑝)𝐼𝑦} 

 

(17) 

where Ω is the offset frequency and 𝜔1 = |
1

2
𝛾𝐵𝑅𝐹| is the nutation frequency (labeled 

sometimes as 𝜔1) and it is always positive. The nutation frequency is the measure of the rf field 

amplitude. 𝜙𝑝 is the phase of the pulse - the axis in the rotating frame along which the pulse is 

applied. The 𝐻̂𝑟𝑜𝑡 is a sum of the Hamiltonian describing the interaction of the spins with the 

external magnetic field and the time-independent 𝐻̂𝑅𝐹_𝑟𝑜𝑡 contribution. In case of an on-

resonance (no offset frequency) x pulse, the Hamiltonian is as simple as: 

 

 𝐻̂𝑟𝑜𝑡 = 𝐻̂𝑅𝐹_𝑟𝑜𝑡 = 𝜔1𝐼𝑥 

 

(18) 

It is worth to highlight that the exact form of the Hamiltonian will depend on the phase of the 

pulse 𝜙𝑝, since the matrix representation of 𝐼𝜙𝑝 (operator corresponding to angular 

momentum component along axis defined by 𝜙𝑝 angle) depends on 𝜙𝑝 and consequently, the 

rotation induced by the propagator 𝑒
−𝑖𝜔𝐼𝜙𝑝𝑡 is sensitive to the phase of the pulse (note that 𝜔 

may not always be 𝜔1 but may be 𝜔𝑒𝑓𝑓). In order to calculate what happens with a physical 

system under the Hamiltonian 𝐻̂𝑅𝐹_𝑟𝑜𝑡 = 𝜔1𝐼𝑥, it is sufficient to calculate this “sandwich” 

relationship: 

 

 𝜌̂(𝑡) =  𝑒−𝑖𝐻̂𝑅𝐹_𝑟𝑜𝑡∙𝑡𝜌̂(0)𝑒+𝑖𝐻̂𝑅𝐹_𝑟𝑜𝑡∙𝑡 (19) 

 

 𝜌̂(𝑡) =  𝑒−𝑖𝜔1𝑡∙𝐼𝑥𝜌̂(0)𝑒+𝑖𝜔1𝑡∙𝐼𝑥  (20) 

 

In the case of the hard pulse, the duration 𝑡 of the pulse and its amplitude 𝜔1 can be directly 

related to the flip angle 𝜃 =  𝜔1𝑡. 

 

 𝜌̂(𝑡) =  𝑒−𝑖𝜃∙𝐼𝑥𝜌̂(0)𝑒+𝑖𝜃∙𝐼𝑥 (21) 

 

The pulse propagator is thus:  
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 𝑈 = 𝑒−𝑖𝜃∙𝐼𝑥  

 

(22) 

The particular combination of the duration, amplitude and phase of the pulse will all contribute 

together to produce the unique propagation of the density operator from an arbitrary state n 

to another arbitrary state m.   

 The equation above can be generalized for a pulse applied from an arbitrary axis in the 

transverse plane: 

 

 𝑈 =  𝑒−𝑖ϕ∙𝐼𝑧 ∙ 𝑒−𝑖𝜔1𝑡∙𝐼𝑥 ∙ 𝑒+𝑖ϕ∙𝐼𝑧 (23) 

 

or, going further, for a pulse applied from an arbitrary axis, which may not lie in the transverse 

plane of the rotating frame: 

 

 𝑈 =  𝑒−𝑖ϕ∙𝐼𝑧 ∙ 𝑒−𝑖ϱ∙𝐼𝑦 ∙ 𝑒−𝑖𝜔𝑒𝑓𝑓𝑡∙𝐼𝑧 ∙ 𝑒+𝑖ϱ∙𝐼𝑦 ∙ 𝑒+𝑖ϕ∙𝐼𝑧 (24) 

 

where: 𝜔𝑒𝑓𝑓 = √𝜔1
2 + Ω2 and ϱ = 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝜔1

Ω
); ϱ is the angle expressing the tilt of the 

rotation axis from the z axis (or equivalently 90° - δ from the transverse plane). 

 It is evident from the equations above that if the rf pulse is applied from an arbitrary 

axis and the offset effect is not negligible, the rotation of the density matrix (or in other words 

the trajectory of the magnetization) will be more complex than when a hard x pulse is applied. 

Here, the propagator is not directly perpendicular to the density operator (if we assume that 

𝜌̂(0) represents magnetization in equilibrium along z) but yet it is composed of rotations along 

several perpendicular axes. The two operators: 𝜌̂(0) and 𝐻̂𝑅𝐹_𝑟𝑜𝑡 do not commute but they are 

not orthogonal either. The interconversion of the eigenstates of the operators along z (for 

example 𝛼/𝛽 for 𝐼𝑧 or 𝛼𝛽/𝛽𝛽 for 𝐼𝑧+𝑆̂𝑧 etc.) is not the same as in case when operators 

orthogonal to the z direction are involved in the propagation. There will be less coherence with 

order ±1 generated (less of the transverse magnetization) and moreover, some elements of 

the density matrix may acquire an additional phase as the interconversion of the basis states 

can be thought of as “partial”.   

 If the dependence of each of the rotation in a composite propagator could be precisely 

controlled and the overall effect for all possible combinations of the parameters influencing the 

rotations could be predicted, it would be then possible to better design the propagation path 

and manipulate the magnetization in a more controlled way. 
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2. Soft pulses 

 

 A soft pulse (selective pulse) is an rf pulse with a small rf amplitude, e.g. small value of 

the nutation frequency relative to isotope bandwidth (see Eq (17)). The amplitude of the rf 

pulse is inversely proportional to its duration and so the selective pulses are much longer than 

the hard pulses (order of ms rather than μs for isotopes such as 1H and 13C in a typical NMR 

magnet with a field strength of 5-20 T). Soft pulses are also more frequency selective (act on a 

narrower bandwidth) than the hard ones. A very selective pulse, for example a 120 ms 1% 

truncated Gaussian[28] can excite a bandwidth as small as 18 Hz. Rsnob pulse[29] of the same 

duration can selectively refocus magnetization in a bandwidth of 20 Hz. This means that only a 

small portion of the spins of a given isotope, having their chemical shift in this narrow 

frequency range, will be precessing with the rf field. In other words, only the spins on-resonance 

with this pulse and will be affected by its action similarly to as was described above in the 

context of the hard pulses – regarding the geometry of the rotations etc. For all other spins, the 

offset Ω𝐼𝑧 term will be largely dominating and so their trajectories will be quite different than 

for the on-resonance spins. Ideally, they should be barely affected by the pulse and a minimum 

trajectory should be induced. In terms of the rotating frame model, the selective pulse seems 

static only for the small portion of the on-resonance spins. For all the other spins, the pulse will 

seem as “moving” or - in the vector model - the axis around which they will precess is not fixed 

and may not lie in the transverse plane. This situation can be thought of either as the 

frequencies of the spin precession and the moving pulse being so different that the spins are 

not affected, or that the Hamiltonian representing the magnetization and the pulse are (almost) 

parallel and, if indeed parallel, they do commute, preventing any spin evolution. 

 For soft pulses, the on-resonance frequency can be chosen by the user. On Bruker 

spectrometer, this is done either by the SPOFFS parameter, which shifts the carrier frequency 

of the soft pulses generator, or by directly multiplying the shape of the pulse by a complex 

exponential with the chosen frequency.  

 If, on the other hand, the pulse shape is modulated by a function like cos (𝜔1), 

equivalent to adding two shapes each modulated by 𝑒𝑥𝑝(+𝜔1) and exp(−𝜔1), respectively, 

spins at the two symmetrical frequencies +𝜔1 and −𝜔1 will be instantaneously on-resonance. 

Similarity can be drawn between such a pulse modulation and the amplitude modulation of the 

two-dimensional dataset, which causes the lack of the frequency discrimination and the mirror 

effect in the corresponding spectrum after the FT.  
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3. Chirped pulse 

 

 A chirped pulse (in its most basic form) is a frequency-modulated pulse. For such pulses, 

the “on-resonance situation” constantly changes during the duration of the pulse, so that there 

cannot be a one fixed frequency chosen for the rotating frame transformation. In order to 

consider the spin dynamics under the action of the frequency-modulated pulse in the static 

vector model, the rotating frame should accelerate together with the pulse rather than having a 

fixed rotation frequency. This pulse, at each given instant of time 𝑡′(1) has an instantaneous 

frequency (𝜔𝑐
′
(1)

technically equivalent to a specific  𝑆𝑃𝑂𝐹𝐹𝑆′(1)), which will be on-resonance 

with a portion of spins precessing with a frequency equal to this instantaneous frequency of the 

pulse. An instant later 𝑡′(2), this instantaneous pulse frequency 𝜔𝑐
′
(2)

, will be different and a 

different portion of spins will be affected by the pulse. Moreover, since the rotating frame is 

moving, at each time instant 𝑡′, there is the corresponding instantaneous phase 𝜙′. The latter is 

the fixed axis in the transverse plane of this instantaneous rotating frame along which the pulse 

is applied to a particular fraction of spins that will rotate around this axis up to the desired flip 

angle is reached according to the pulse calibration.  

 A phase-modulated chirped pulse, in contrast to a general hard pulse represented by Eq 

(17), is described by the time-dependent equation: 

 

 𝐻̂𝑐(𝑡) ≅ Ω𝐼𝑧(𝑡) + 𝜔1(𝑡) ∙ {𝑐𝑜𝑠(𝜙𝑐(𝑡))𝐼𝑥 + 𝑠𝑖𝑛(𝜙𝑐(𝑡))𝐼𝑦} (25) 

 

And only upon the instantaneous rotating frame transformation it becomes: 

 

 𝐻̂𝑖𝑛𝑠𝑡𝑎𝑛𝑡_𝑟𝑜𝑡 ≅ Ω𝐼𝑧 + 𝜔1(𝑡) ∙ {𝑐𝑜𝑠(𝜙𝑐)𝐼𝑥 + 𝑠𝑖𝑛(𝜙𝑐)𝐼𝑦}, (26) 

 

with the 𝜔1(𝑡) being a slowly varying amplitude, as shown in Figure 4. 
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Figure 4. Features of linearly swept chirp: x and y components of the RF field (a), amplitude envelope (b), chirp’s 
phase (c), chirp’s instantaneous frequency (d). 

 The chirped pulse can be described by the basic equations of motion for the constant 

acceleration motion, where the position is given by the integral over the velocity 

increasing/decreasing linearly in time (and analogically for the chirp: the position is given by the 

integral over the frequency linearly changing in time). The formula describing the position 

(phase) must have a quadratic time-dependence to ensure the linearity of the velocity 

(frequency) change. 

 

 

Figure 5. First and second derivatives of the motion resulting in a linear velocity sweep and a constant acceleration.  
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The phase, frequency and the rate of the chirp are thus given by: 

 

 
𝜙𝑐(𝑡𝑐) = ∫ 𝜔𝑐

′
𝑡

0

(𝑡𝑐
′)𝑑𝑡′ 

(27) 

  
𝜔𝑐(𝑡𝑐) =

𝑑𝜙𝑐
𝑑𝑡𝑐

 
(28) 

  𝜔𝑐(𝑡𝑐) = 𝐹𝑖𝑛𝑖𝑡 + 𝑅𝑡𝑐 (29) 

  𝜙𝑐(𝑡𝑐) = 𝜙0 + 𝑅𝑡𝑐
2 (30) 

 

where 𝜙𝑐(𝑡) is the overall phase of the chirp pulse accumulated during its entire duration, 𝜙0 is 

the initial phase, 𝜔𝑐
′  is the instantaneous frequency and the 𝜔𝑐(𝑡) is a time-dependent 

frequency of the chirp equal to the initial frequency 𝐹𝑖𝑛𝑖𝑡 that varies in time according to the 

pulse rate 𝑅 =
Δ𝐹

𝑡𝑐
, equal to the ratio between the range of all affected frequencies and the time 

in which it happens. 

 Knowing all the parameters of the chirp, it is then possible to determine the exact 

moment during the pulse duration in which a given portion of spins is affected by the pulse and 

to relate it to the phase of the pulse at this moment. With this information, it is possible to 

make a first step into modeling of the spin dynamics during the chirp by assuming that during 

the considered very short time interval, everything happens as if the pulse behaved as a hard 

pulse. This simplification of the actual situation makes it possible to consider the exact matrix 

form of the propagator and analyze the mechanism of certain pulse sequence elements crucial 

for the experiments studied in this thesis.  

   

a) Phase-modulated vs saltire chirp  

 

 Expressing the phase of a chirp as: 𝜙𝑐 = 𝑅 ∙ (𝑡 − 𝑡0)
2 =

Δ𝐹

𝑡𝑝
∙ (𝑡 − 𝑡0)

2, where 𝑡0 = 0 and 

𝑡 varies from −𝑡𝑐/2 to +𝑡𝑐/2, allows to rewrite the general Eq omitting the offset, as:  

 

 
𝐻̂𝑐_𝐿𝐻(𝑡) ≅ 𝜔1(𝑡) ∙ {𝑐𝑜𝑠 (𝜋 ∙

Δ𝐹

𝑡𝑐
∙ (𝑡 − 𝑡0)

2) + 𝑖 ∙ 𝑠𝑖𝑛 (𝜋 ∙
Δ𝐹

𝑡𝑐
∙ (𝑡 − 𝑡0)

2)}

= 𝜔1(𝑡) ∙ 𝑒
𝑖∙𝜋∙
Δ𝐹
𝑡𝑐
∙(𝑡−𝑡0)

2

 

 

(31) 

for a chirp pulse with a linear low-to-high frequency sweep and 
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𝐻̂𝑐_𝐻𝐿(𝑡) ≅ 𝜔1(𝑡) ∙ {𝑐𝑜𝑠 (𝜋 ∙

Δ𝐹

𝑡𝑐
∙ (𝑡 − 𝑡0)

2) − 𝑖 ∙ 𝑠𝑖𝑛 (𝜋 ∙
Δ𝐹

𝑡𝑐
∙ (𝑡 − 𝑡0)

2)}

= 𝜔1(𝑡) ∙ 𝑒
−𝑖∙𝜋∙

Δ𝐹
𝑡𝑐
∙(𝑡−𝑡0)

2

 

 

(32) 

for a chirp pulse with a linear high-to-low frequency sweep[30]. 

 Just as several soft pulses with different offset frequencies (with respect to the 

transmitter frequency) can be added together in order to excite simultaneously several 

different frequencies – with the special case being the biselective pulse where the two shapes 

with offsets exp(+𝜔1) and exp(−𝜔1) are added resulting in cos (𝜔1) modulation of the pulse – 

in the same way, two chirped phase-modulated pulses can be added to produce the amplitude-

modulated chirped pulse (called saltire pulse): 

 

 
𝐻̂𝑐_𝑠𝑎𝑙𝑡𝑖𝑟𝑒(𝑡) ≅ 𝜔1(𝑡) ∙ {𝑐𝑜𝑠 (𝜋 ∙

Δ𝐹

𝑡𝑐
∙ (𝑡 − 𝑡0)

2)}. 
(33) 

 

D. Coherence orders and single transition operators 

  

  As already mentioned (Section II.A), the density matrix elements correspond to the 

coefficients that describe how the basis states superpose in a given state. A given Hamiltonian 

operator acting on the density matrix will modify the superposition of the basis states. In order 

to find the matrix representation of any operator (density operator or operator representing a 

pulse or free precession) it is necessary to consider the action of a given operator on all basis 

states that superpose and fully describe the system. For example, if two weakly coupled spins 

are considered in a Hilbert space, the general matrix form 𝐴 of any operator 𝐴̂ acting on such a 

system is: 

 

 𝐴 =

(

 
 

⟨𝛼𝐼𝛼𝑆|𝐴̂|𝛼𝐼𝛼𝑆⟩ ⟨𝛼𝐼𝛼𝑆|𝐴̂|𝛼𝐼𝛽𝑆⟩ ⟨𝛼𝐼𝛼𝑆|𝐴̂|𝛽𝐼𝛼𝑆⟩ ⟨𝛼𝐼𝛼𝑆|𝐴̂|𝛽𝐼𝛽𝑆⟩

⟨𝛼𝐼𝛽𝑆|𝐴̂|𝛼𝐼𝛼𝑆⟩ ⟨𝛼𝐼𝛽𝑆|𝐴̂|𝛼𝐼𝛽𝑆⟩ ⟨𝛼𝐼𝛽𝑆|𝐴̂|𝛽𝐼𝛼𝑆⟩ ⟨𝛼𝐼𝛽𝑆|𝐴̂|𝛽𝐼𝛽𝑆⟩

⟨𝛽𝐼𝛼𝑆|𝐴̂|𝛼𝐼𝛼𝑆⟩ ⟨𝛽𝐼𝛼𝑆|𝐴̂|𝛼𝐼𝛽𝑆⟩ ⟨𝛽𝐼𝛼𝑆|𝐴̂|𝛽𝐼𝛼𝑆⟩ ⟨𝛽𝐼𝛼𝑆|𝐴̂|𝛽𝐼𝛽𝑆⟩

⟨𝛽𝐼𝛽𝑆|𝐴̂|𝛼𝐼𝛼𝑆⟩ ⟨𝛽𝐼𝛽𝑆|𝐴̂|𝛼𝐼𝛽𝑆⟩ ⟨𝛽𝐼𝛽𝑆|𝐴̂|𝛽𝐼𝛼𝑆⟩ ⟨𝛽𝐼𝛽𝑆|𝐴̂|𝛽𝐼𝛽𝑆⟩)

 
 

 (34) 

 

The numerical value of each of the element can be calculated by considering the effect of an 

acting operator(s) on the orthogonal basis states, as given in Eq (15); importantly, when 

operators such as: 𝐼𝑥, 𝑆̂𝑥, 𝐼𝑦, 𝑆̂𝑦 act on basis states, they interconvert them. The 𝐼 operators do 
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not affect the spin S and vice versa. The orthogonality implies: < 𝛼|𝛼 > = 1, < 𝛼|𝛽 > = 0, etc. 

For example:  

 

 < 𝛼𝛼 | 𝐼𝑧 + 𝑆̂𝑧 | 𝛼𝛼 > = < 𝛼𝛼 | 𝐼𝑧 | 𝛼𝛼 > + < 𝛼𝛼 | 𝑆̂𝑧 | 𝛼𝛼 > =  
1

2
< 𝛼𝛼|𝛼𝛼 >

+
1

2
< 𝛼𝛼|𝛼𝛼 > = 1;  

 < 𝛼𝛼 | 𝐼𝑥 + 𝑆̂𝑥 | 𝛼𝛼 > = < 𝛼𝛼 | 𝐼𝑥 | 𝛼𝛼 > + < 𝛼𝛼 | 𝑆̂𝑥 | 𝛼𝛼 > =  
1

2
< 𝛼𝛼|𝛽𝛼 >

+
1

2
< 𝛼𝛼|𝛼𝛽 > = 0; 

 < 𝛼𝛼 | 𝐼𝑥 | 𝛼𝛼 > = < 𝛼𝛼 |  
1

2
 | 𝛽𝛼 > =  

1

2
< 𝛼𝛼|𝛽𝛼 > = 0; 

 < 𝛼𝛼 | 𝐼𝑥 + 𝑆̂𝑥 | 𝛼𝛽 > = < 𝛼𝛼 | 𝐼𝑥 | 𝛼𝛽 > + < 𝛼𝛼 | 𝑆̂𝑥 | 𝛼𝛽 > =  
1

2
<

𝛼𝛼 |𝛽𝛽 > + 
1

2
< 𝛼𝛼| 𝛼𝛼 > =

1

2
; 

(35) 

etc. 

 

And thus, for example: 

 
𝐼𝑧 + 𝑆𝑧 = (

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

) and 𝐼𝑥 + 𝑆𝑥 =

(

 
 
 

0
1

2

1

2
0

1

2
0 0

1

2
1

2
0 0

1

2

0
1

2

1

2
0)

 
 
 

. 

 

(36) 

It is interesting to note that the 𝐼𝑥 + 𝑆𝑥 sum can either correspond to a density matrix 

describing the magnetization vector aligned along the 𝑥 axis or a hard pulse applied from the 𝑥 

axis of the rotating frame and acting on both spins. The apparent equivalency of these two 

entities - adverted by the same notation - is somewhat striking. 

 The most common starting point of any NMR experiment is the generation of the 

transverse magnetization by a 90° pulse applied along a non-arbitrary axis such as x or y. As 

mentioned earlier (Section II.C.1), the interconversion of the 𝛼 and 𝛽 states when using such 

pulse is complete and the generated magnetization will be represented by a matrix, which has 

eight equal non-vanishing elements (four of them may just differ by the sign). They all 

correspond to “transitions” between two states differing in the magnetic quantum numbers by: 

±1. For example, the element 𝜌21 = ⟨𝛼𝐼𝛽𝑆|𝜌̂|𝛼𝐼𝛼𝑆⟩, if non-zero, is associated with the 

“transition” between the two states |𝛼𝐼𝛽𝑆⟩ and |𝛼𝐼𝛼𝑆⟩. The difference in the magnetic 

quantum numbers between the two states is: 𝑀|𝛼𝐼𝛽𝑆⟩ –𝑀|𝛼𝐼𝛼𝑆⟩ =  0 − 1 = −1, i.e. it is 

anallowed transition. The “transition” is here referred to the interconversion of the states 𝛼 

and 𝛽 and named also, as already mentioned, a “coherence”. 



 25 

 Generally, the Δ𝑀𝑟𝑠 between two states |𝑟⟩ and|𝑠⟩ refers to the order of coherence 𝒑, 

so that Δ𝑀𝑟𝑠 = 𝑝𝑟𝑠.  

 It is clear now that a density matrix (and importantly the observable magnetization) can 

be described in terms of single-element basis operators. Each of them will correspond to a 

single line belonging to a given multiplet. For example, the element 𝜌21 = ⟨𝛼𝐼𝛽𝑆|𝜌̂|𝛼𝐼𝛼𝑆⟩ 

corresponds to 𝐼𝛼𝑆̂− operator as it is the spin S polarization that is “inverted” and leads to the 

generation of a coherence of order 𝑝 = −1. In this notation, the spin on which there is the 

coherence is called the active spin and its coupling partner is called the passive spin. On the 

other hand, an element like for example 𝜌32 = ⟨𝛽𝐼𝛼𝑆|𝐴̂|𝛼𝐼𝛽𝑆⟩ corresponds to 𝐼−𝑆̂+ operator 

which represents the zero-quantum coherence 𝑝 = 0, etc. From the Figure 6 it is clear that 

when a system of two coupled spins is considered in the Hilbert space, there are eight elements 

corresponding to single-quantum coherences - and other two, two and four - corresponding to 

zero-quantum, double-quantum and populations, respectively.   

 

Figure 6. (a) General form of a density matrix for two coupled spins in a Hilbert space with elements labeled with a 
color code according to coherence order it represents, if the given transition takes place. (b) Density matrix with 
eight non-vanishing elements corresponding to single quantum coherences with 𝛥𝑀𝑟𝑠 = +1 and 𝛥𝑀𝑟𝑠 = −1, 
respectively. (c) Corresponding energy levels diagrams with a simplified, graphical representation of the eight single 
quantum coherences with coherence order +1 and -1 (generating N-type and P-type spectra, respectively, if two-
dimensional spectroscopy with mixing is considered). 
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 The transverse magnetization is then described by eight single transition operators 

forming the corresponding base: 

 

 𝐵(±) = {𝐼+𝑆̂𝛼, 𝐼+𝑆̂𝛽 , 𝐼−𝑆̂𝛼, 𝐼−𝑆̂𝛽 , 𝐼𝛼𝑆̂+, 𝐼𝛽𝑆̂+, 𝐼𝛼𝑆̂−, 𝐼1𝛽𝑆̂−} (37) 

 

 It is conventionally assumed that only a coherence with order −1 is observable. Thus, in 

the one-dimensional spectrum, only the four terms: 𝐼−𝑆̂𝛼, 𝐼−𝑆̂𝛽 , 𝐼𝛼𝑆̂−, 𝐼𝛽𝑆̂−, corresponding to 

the density matrix elements: 𝜌31, 𝜌42, 𝜌21 and 𝜌43, respectively, result in observable signals. 

When two-dimensional spectroscopy is considered, it is necessary to retain all the terms, as will 

be discussed in the following Section II.F. 

 While in the description of most of the NMR experiments it is not necessary to consider 

separately each single transition (it is sufficient to look at the entire multiplet at once), this 

approach turns out to be convenient in certain situations, for example when analyzing spectra 

of strongly coupled spins or spectra resulting from experiments utilizing pulses that may lead to 

transfers of magnetization escaping the standard selection rules (for example biselective 

pulses[26]). It also allows analyzing experiments that employ small flip angle pulses. In these 

situations, different components of a given multiplet may experience different rotations, which 

leads to differences in the phase and/or amplitude of signals within one multiplet.  

 

E. Free precession 

 

 It was stated above that the difference Δ𝑀𝑟𝑠 between two states |𝑟⟩ and|𝑠⟩ involved in 

a transition, refers to the order of coherence 𝒑. The coherence order can also be defined by 

what happens to an operator (or product of operators) when a z-rotation through an angle 𝜙 is 

applied. If, as a result of this rotation, the operator acquires a phase of (−𝑝 ∙ 𝜙), the operator is 

classed as having order 𝑝[31]: 

 

 𝜌̂(𝑝)
rotation by ϕ about z 
→                𝜌̂(𝑝) ∙ exp (−𝑖𝑝𝜙). (38) 

 

During the free precession, a system of two weakly coupled spins experiences only a z-rotation, 

as the weak coupling Hamiltonian is given by:  

 

 𝐻̂𝐼𝑆𝑤𝑒𝑎𝑘 = Ω𝐼𝐼𝑧 + Ω𝑆𝑆̂𝑧 + 2𝜋𝐽 ∙ 𝐼𝑧𝑆̂𝑧 (39) 
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The matrix representation of this Hamiltonian is a diagonal matrix as the basis states: |𝛼𝛼⟩, 

|𝛼𝛽⟩, |𝛽𝛼⟩ and|𝛽𝛽⟩ are the eigenstates of this Hamiltonian. When it acts on them, it does not 

change them as the density operator and 𝐻̂𝐼𝑆 commute.  

 

 𝐻̂𝐼𝑆𝑤𝑒𝑎𝑘 =

(

 
 
 
 
 

1

2
(Ω𝐼 + Ω𝑆) +

1

2
𝜋𝐽 0 0 0

0
1

2
(Ω𝐼 − Ω𝑆) −

1

2
𝜋𝐽 0 0

0 0 −
1

2
(Ω𝐼 − Ω𝑆) −

1

2
𝜋𝐽 0

0 0 0 −
1

2
(Ω𝐼 + Ω𝑆) +

1

2
𝜋𝐽)

 
 
 
 
 

 (40) 

 

with the diagonal elements being: 𝜀1, 𝜀2, 𝜀3 and 𝜀4, respectively. 

 However, what evolves under this Hamiltonian is the transverse magnetization. The 

matrix exponential of the diagonal matrix in Eq (40) is also diagonal. Thus, the propagation of 

𝐼𝑥 + 𝑆𝑥: 

 

 (𝑡) = 𝑒−𝑖𝐻𝐼𝑆𝑤𝑒𝑎𝑘𝒕 ∙

(

 
 
 
 
 
0
1

2

1

2
0

1

2
0 0

1

2
1

2
0 0

1

2

0
1

2

1

2
0)

 
 
 
 
 

∙ 𝑒+𝑖𝐻𝐼𝑆𝑤𝑒𝑎𝑘𝒕 (41) 

 

will result in the non-zero elements (SQ coherences) acquiring a phase label according to their 

energy levels: 

 

 

𝐼+𝑆̂𝛼
𝑡1(Ω𝐼𝐼𝑧+Ω𝑆𝑆̂𝑧+2𝜋𝐽𝐼𝑧𝑆̂𝑧)
→                 𝑒𝑥𝑝[−𝑖(Ω𝐼 + 𝜋𝐽)𝑡1] 𝐼+𝑆̂𝛼 

𝐼+𝑆̂𝛽
𝑡1(Ω𝐼𝐼𝑧+Ω𝑆𝑆̂𝑧+2𝜋𝐽𝐼𝑧𝑆̂𝑧)
→                 𝑒𝑥𝑝[−𝑖(Ω𝐼 − 𝜋𝐽)𝑡1] 𝐼+𝐼𝛽 

𝐼−𝑆̂𝛼
𝑡1(Ω𝐼𝐼𝑧+Ω𝑆𝑆̂𝑧+2𝜋𝐽𝐼𝑧𝑆̂𝑧)
→                 𝑒𝑥𝑝[+𝑖(Ω𝐼 + 𝜋𝐽)𝑡1] 𝐼−𝐼𝛼 

𝐼−𝑆̂𝛽
𝑡1(Ω𝐼𝐼𝑧+Ω𝑆𝑆̂𝑧+2𝜋𝐽𝐼𝑧𝑆̂𝑧)
→                 𝑒𝑥𝑝[+𝑖(Ω𝐼 − 𝜋𝐽)𝑡1] 𝐼−𝐼𝛽 

 

𝐼𝛼𝑆̂+
𝑡1(Ω𝐼𝐼𝑧+Ω𝑆𝑆̂𝑧+2𝜋𝐽𝐼𝑧𝑆̂𝑧)
→                 𝑒𝑥𝑝[−𝑖(Ω𝑆 + 𝜋𝐽)𝑡1] 𝐼𝛼𝐼+ 

𝐼𝛽𝑆̂+
𝑡1(Ω𝐼𝐼𝑧+Ω𝑆𝑆̂𝑧+2𝜋𝐽𝐼𝑧𝑆̂𝑧)
→                 𝑒𝑥𝑝[−𝑖(Ω𝑆 − 𝜋𝐽)𝑡1] 𝐼𝛽𝐼+ 

𝐼𝛼𝑆̂−
𝑡1(Ω𝐼𝐼𝑧+Ω𝑆𝑆̂𝑧+2𝜋𝐽𝐼𝑧𝑆̂𝑧)
→                 𝑒𝑥𝑝[+𝑖(Ω𝑆 + 𝜋𝐽)𝑡1] 𝐼𝛼𝐼− 

𝐼𝛽𝑆̂−
𝑡1(Ω𝐼𝐼𝑧+Ω𝑆𝑆̂𝑧+2𝜋𝐽𝐼𝑧𝑆̂𝑧)
→                 𝑒𝑥𝑝[+𝑖(Ω𝑆 − 𝜋𝐽)𝑡1] 𝐼𝛽𝐼− 

(42) 
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 The very important point to make here is that the different elements of the density 

matrix can be grouped according to the phase they will acquire upon a rotation. This makes it 

possible to differentiate between these groups during the pulse sequence. This is the base of 

the coherence selection by phase cycling, gradients or even specially designed algorithms (E-

COSY[32]). 

 

F. Amplitude and phase modulation  

 

 This assumption that only one of the two coherence orders (1 or 1) - constituting the 

transverse magnetization and represented in the basis in Eq (37) - is observable, comes from 

the fact that the magnetization is detected using two orthogonal channels. For each resonance 

in the spectrum, the two signals so acquired are cosine and sine functions of the offset 

frequency Ω. They can be thought of as the real and imaginary parts of a complex exponential 

function describing the time-domain signal. Since both of them are accessible, the “direction” 

of the rotation of the magnetization is known. This is why there is no need to consider all the 

eight basis operators, but only the half of them with 𝑝 = −1. A similar logic applies to special 

experiments such as the J-resolved spectroscopy, where no mixing is present and so the 

information about the direction of the rotation is well preserved. 

 Most standard two-dimensional experiments require a quadrature detection, equivalent 

to collecting two orthogonal components of the magnetization. There are several methods to 

achieve this, the most common being echo-antiecho or States-TPPI procedures. The possibility 

to collect equal amounts of the orthogonal components of the magnetization is the 

consequence of preserving the symmetry between the coherences with 𝑝 = +𝑛 and 𝑝 = −𝑛 

and plays a central role in the possibility to obtain the frequency discrimination and perfectly 

absorptive signals after the 2D Fourier Transformation. The symmetry must be preserved 

during the entire pulse sequence until the last (mixing) pulse, which converts the magnetization 

of orders +𝑛 and −𝑛 to the −1 magnetization, just at the moment when the detection starts. If 

the symmetry cannot be maintained, a phase-twist signals or signals with phase distortion will 

be present in the two-dimensional spectrum.  

 

G. Mixing and coherence transfer, small flip angle pulses 

 

 If a pulse of a flip angle different than 180° is applied to the transverse magnetization of 

at least two coupled spins after they were evolving for some time 𝜏, it plays the role of a mixing 
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pulse. Mixing pulse causes coherence transfer between coupled spins and generation of 

coherences of an order higher or lower than ±1. Again, if we consider the simplified 

geometrical interpretation of the situation (vector model), these transfers can only be triggered 

by a pulse, which is not parallel to the vector representing the magnetization (because the two 

operators must not commute). Since the magnetization usually evolves for some time in the 

transverse plane before the mixing pulse is applied, it acquires a certain phase (the 

magnetization vector may be pointing to any direction in the transverse plane at the moment 

of the occurrence of the pulse). There is only a low probability that the two vectors (the 

magnetization and the phase of the pulse in the rotating frame) will be either perpendicular or 

parallel to each other. More generally, the magnetization vector will be somewhere in between 

the parallel and the perpendicular arrangement with the phase of the pulse (understood here 

as the axis in the rotating frame). This is very often expressed as the fixed relative amount of 

the x and y magnetization (when chemical shift evolution is considered) or as the fixed relative 

amount of the so-called in-phase and antiphase magnetization (when the J-coupling is 

considered). The in-phase and antiphase terms represent the decomposition of the 

magnetization vector  into two perpendicular directions.  

 Even if the two vectors are not perpendicular to each other (but importantly not 

parallel neither), the commutator of the corresponding operators is non-zero and the 

magnetization transfer will occur. Let’s designate the magnetization vector as (𝐼 +

𝑆̂)
𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒_Φ

 and the pulse: 𝐼𝑥 + 𝑆̂𝑥. Under the special condition of this pulse being a 90° pulse 

- and regardless the phase the magnetization has acquired at the moment of the arrival of the 

pulse - the magnetization vector will be moved to a plane which is perpendicular to the 

transverse plane. This change of the geometry by the 90° is illustrated in Figure 7.  
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Figure 7. The geometrical representation of the generation of the amplitude-modulated two-dimensional dataset 
from the phase-modulated dataset by the application of a 90°x mixing pulse. Three time increments are considered 
for the simplicity of the demonstration.  

 The same can be formally calculated through the following propagation (where the 

matrix exponential is specific for an x pulse): 

 

 (𝑡) = (

𝑐2 −𝑖𝑠𝑐 −𝑖𝑠𝑐 −𝑠2

−𝑖𝑠𝑐 𝑐2 −𝑠2 −𝑖𝑠𝑐
−𝑖𝑠𝑐 −𝑠2 𝑐2 −𝑖𝑠𝑐
−𝑠2 −𝑖𝑠𝑐 −𝑖𝑠𝑐 𝑐2

) ∙

(

 
 
 
 
 

0 +
𝑖

2
𝑒𝑖(−Ω𝑆−𝜋𝐽)𝑡 +

𝑖

2
𝑒𝑖(−Ω𝐼−𝜋𝐽)𝑡 0

−
𝑖

2
𝑒𝑖(−Ω𝑆−𝜋𝐽)𝑡 0 0 +

𝑖

2
𝑒𝑖(−Ω𝐼+𝜋𝐽)𝑡

−
𝑖

2
𝑒𝑖(−Ω𝐼−𝜋𝐽)𝑡 0 0 +

𝑖

2
𝑒𝑖(−Ω𝑆+𝜋𝐽)𝑡

0 −
𝑖

2
𝑒𝑖(−Ω𝐼+𝜋𝐽)𝑡 −

𝑖

2
𝑒𝑖(−Ω𝑆+𝜋𝐽)𝑡 0 )

 
 
 
 
 

∙ (

𝑐2 +𝑖𝑠𝑐 +𝑖𝑠𝑐 −𝑠2

+𝑖𝑠𝑐 𝑐2 −𝑠2 +𝑖𝑠𝑐
+𝑖𝑠𝑐 −𝑠2 𝑐2 +𝑖𝑠𝑐
−𝑠2 +𝑖𝑠𝑐 +𝑖𝑠𝑐 𝑐2

) (43) 

 

 

𝑒−𝑖𝜃∙𝐼𝑥  Matrix representation of the transverse 

magnetization, equivalent with Eq (42) 
𝑒+𝑖𝜃∙𝐼𝑥  

 

with 𝜃 =
𝜋

2
 (flip angle) and  𝑐 = cos (

1

2
∙
𝜋

2
), 𝑠 = sin (

1

2
∙
𝜋

2
). 

 So that the propagator in this case is just: 
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𝑈 =

(

 
 
 
 
 

1

2

1

2

1

2
−
1

2
1

2

1

2
−
1

2

1

2
1

2
−
1

2

1

2

1

2

−
1

2

1

2

1

2

1

2 )

 
 
 
 
 

 

 

(44) 

 However, if a small flip angle x pulse (for example 30°) is applied as a mixing pulse, then 

depending on the phase the magnetization has acquired in the transverse plane up to the 

moment when the pulse is applied, it will end up with a certain phase with respect to the phase 

of the detector. In other words, if the two-dimensional dataset acquisition is then considered, 

the magnetization will not be purely amplitude modulated, but an additional phase factor must 

be taken into account (Figure 8). 

 

 

Figure 8. The geometrical representation of the effect of a small flip angle mixing pulse on the transverse 
magnetization. 

 The propagator in this case is: 

 

 𝑈 =

(

 
 
 
 
 
 

2 + √3

4
−
1

4
𝑖 −

1

4
𝑖

− 2 + √3

4

−
1

4
𝑖

2 + √3

4

− 2 + √3

4
−
1

4
𝑖

−
1

4
𝑖

− 2 + √3

4

2 + √3

4
−
1

4
𝑖

− 2 + √3

4
−
1

4
𝑖 −

1

4
𝑖

2 + √3

4 )

 
 
 
 
 
 

 (45) 
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 The important conclusion that can be drawn out of this simple calculations is that in 

case of the two-dimensional dataset acquisition, even though the arrangement between the 

magnetization vector and the vector representing the pulse cannot be perpendicular, the 90° 

flip angle of the pulse may ensure amplitude modulation along one fixed axis in the rotating 

frame. In other words, if the density matrix representing magnetization in the transverse plane 

is rotated by a 90° mixing pulse, then the resulting density matrix will be symmetrical with 

respect to the generated coherences, on the contrary to the small flip angle mixing pulse.  

 The rotation experienced by a spin 𝐼 magnetization in the transverse plane by a mixing 

pulse of any phase 𝜙 and/or any flip angle 𝜃 can be generalized according to trigonometric 

relationships governing the rotations involved in the propagation of the density matrix[33]: 

 

 

𝐼+
𝜃𝐼𝜙
→ 𝑐𝑜𝑠2 (

1

2
𝜃) 𝐼+ + 𝑒𝑥𝑝[+𝑖2𝜙] ∙ 𝑠𝑖𝑛

2 (
1

2
𝜃) 𝐼− +

1

2
 𝑖 𝑒𝑥𝑝[+𝑖𝜙] ∙ 𝑠𝑖𝑛𝜃(𝐼𝛼−𝐼𝛽)  

𝐼−
𝜃𝐼𝜙
→ 𝑐𝑜𝑠2 (

1

2
𝜃) 𝐼− + 𝑒𝑥𝑝[−𝑖2𝜙] ∙ 𝑠𝑖𝑛

2 (
1

2
𝜃) 𝐼+ −

1

2
 𝑖 𝑒𝑥𝑝[−𝑖𝜙] ∙ 𝑠𝑖𝑛𝜃(𝐼𝛼−𝐼𝛽)  

𝐼𝛼
𝜃𝐼𝜙
→ 𝑐𝑜𝑠2 (

1

2
𝜃) 𝐼𝛼 + 𝑠𝑖𝑛

2 (
1

2
𝜃) 𝐼𝛽 +

1

2
𝑖 𝑠𝑖𝑛𝜃 ∙ (𝐼+ 𝑒𝑥𝑝[−𝑖𝜙]−𝐼− 𝑒𝑥𝑝[+𝑖𝜙])  

𝐼𝛽
𝜃𝐼𝜙
→ 𝑐𝑜𝑠2 (

1

2
𝜃) 𝐼𝛽 + 𝑠𝑖𝑛

2 (
1

2
𝜃) 𝐼𝛼 −

1

2
𝑖 𝑠𝑖𝑛𝜃 ∙ (𝐼+ 𝑒𝑥𝑝[−𝑖𝜙]−𝐼− 𝑒𝑥𝑝[+𝑖𝜙])  

 

(46) 

 The transverse magnetization after a period of free precession, represented by the non-

diagonal density matrix with the eight non-zero elements (SQC), each with the corresponding 

phase label, is rotated by the mixing pulse propagator and ends up as another matrix with all 

elements being non-zero. In fact, each term representing a single-quantum coherence on a 

given spin is transferred with a given amplitude (probability) and phase (the proportion of the 

real and imaginary part of the number expressing the probability) to terms representing single-

quantum coherences on the coupled partner and moreover populations, zero-quantum and 

double-quantum coherences. All these just enumerated terms can be represented by operators 

involving all possible combinations of products of the 𝐼+, 𝐼−, 𝐼𝛼, 𝐼𝛽 operators.  

 The sign and amplitude of a transition from each single element of the density matrix 

representing the ±1 coherence to all possible observable elements - as calculated by the 

equations just above - will be manifested as a positive or negative peaks with the corresponding 

amplitude in the 2D spectrum. This means that the phase label that each of the elements 

acquires during each incremented period of evolution just prior to the mixing pulse does not 

need to be taken into account when these transition probabilities are calculated. This is 

justified by the fact that the phase label acquired in the transverse plane is precisely translated 

to an amplitude modulation of the 2D dataset. This is apparently ensured by the fact that the 

magnetization vector before the rotation and after the rotation are 90° out of phase with 
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respect to each other. For the purpose of a demonstration, all possible transfers from just one 

single transition operator (normally eight are present before mixing) are calculated: 

 

 

𝜙𝑙𝑎𝑏𝑒𝑙  𝐼+𝑆̂𝛼
90𝑥
°  𝑚𝑖𝑥𝑖𝑛𝑔 𝑝𝑢𝑙𝑠𝑒

→              

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼−𝑆̂𝛼 ∙ 𝑠𝑖𝑛
2 (
𝜋

4
) ∙ 𝑐𝑜𝑠2 (

𝜋

4
) = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙

1

4
∙ 𝐼−𝑆̂𝛼  

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼−𝑆̂𝛽 ∙ 𝑠𝑖𝑛
2 (
𝜋

4
) ∙ 𝑠𝑖𝑛2 (

𝜋

4
) = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙

1

4
∙  𝐼−𝑆̂𝛽 

 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼𝑎𝑆̂− ∙
1

2
𝑖 𝑠𝑖𝑛 (

𝜋

2
) ∙ −

1

2
𝑖 𝑠𝑖𝑛 (

𝜋

2
) = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙

1

4
∙ 𝐼𝑎𝑆̂− 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼𝛽𝑆̂− ∙ −
1

2
𝑖 𝑠𝑖𝑛 (

𝜋

2
) ∙ −

1

2
𝑖 𝑠𝑖𝑛 (

𝜋

2
) = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙ −

1

4
∙ 𝐼𝛽𝑆̂− 

 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼𝛼𝑆̂𝛽 ∙
1

2
 𝑖 𝑠𝑖𝑛 (

𝜋

2
) ∙ 𝑠𝑖𝑛2 (

𝜋

4
) = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙

1

4
𝑖 ∙ 𝐼𝛼𝑆̂𝛽   

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼𝛽𝑆̂𝛼 ∙ −
1

2
𝑖 𝑠𝑖𝑛 (

𝜋

2
) ∙ 𝑐𝑜𝑠2 (

𝜋

4
) = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙ −

1

4
𝑖 ∙ 𝐼𝛽𝑆̂𝛼 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼𝛼𝑆̂𝛼 ∙
1

2
𝑖 𝑠𝑖𝑛 (

𝜋

2
) ∙ 𝑐𝑜𝑠2 (

𝜋

4
) = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙

1

4
𝑖 ∙ 𝐼𝛼𝑆̂𝛼   

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼𝛽𝑆̂𝛽 ∙ −
1

2
 𝑖 𝑠𝑖𝑛 (

𝜋

2
) ∙ 𝑠𝑖𝑛2 (

𝜋

4
) = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙ −

1

4
𝑖 ∙ 𝐼𝛽𝑆̂𝛽 

 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼−𝑆̂− ∙ 𝑠𝑖𝑛
2 (
𝜋

4
) ∙ −

1

2
𝑖 𝑠𝑖𝑛 (

𝜋

2
) = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙ −

1

4
𝑖 ∙ 𝐼−𝑆̂− 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼+𝑆̂+ ∙ 𝑐𝑜𝑠
2 (
𝜋

4
) ∙ +

1

2
𝑖 𝑠𝑖𝑛 (

𝜋

2
) = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙

1

4
𝑖 ∙ 𝐼+𝑆̂+ 

 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼−𝑆̂+ ∙ 𝑠𝑖𝑛
2 (
𝜋

4
) ∙ +

1

2
𝑖 𝑠𝑖𝑛 (

𝜋

2
) = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙

1

4
𝑖 ∙ 𝐼−𝑆̂+ 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼+𝑆̂− ∙ 𝑐𝑜𝑠
2 (
𝜋

4
) ∙ −

1

2
𝑖 𝑠𝑖𝑛 (

𝜋

2
) = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙ −

1

4
𝑖 ∙ 𝐼+𝑆̂− 

 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼+𝑆̂𝛼 ∙ 𝑐𝑜𝑠
2 (
𝜋

4
) ∙ 𝑐𝑜𝑠2 (

𝜋

4
) = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙

1

4
∙ 𝐼+𝑆̂𝛼 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼+𝑆̂𝛽 ∙ 𝑐𝑜𝑠
2 (
𝜋

4
) ∙ 𝑠𝑖𝑛2 (

𝜋

4
) = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙

1

4
∙ 𝐼+𝑆̂𝛽   

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼𝛼𝑆̂+
1

2
𝑖 𝑠𝑖𝑛 (

𝜋

2
) ∙
1

2
𝑖 𝑠𝑖𝑛 (

𝜋

2
) = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙ −

1

4
∙ 𝐼𝛼𝑆̂+ 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼𝛽𝑆̂+ −
1

2
𝑖 𝑠𝑖𝑛 (

𝜋

2
) ∙ −

1

2
𝑖 𝑠𝑖𝑛 (

𝜋

2
) = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙ −

1

4
∙ 𝐼𝛽𝑆̂+ 

 

(47) 

where: 𝜙𝑙𝑎𝑏𝑒𝑙 = 𝑒𝑥𝑝[−𝑖(Ω𝐼 + 𝜋𝐽)𝑡1]. 

 

For the complementary term  𝐼−𝑆̂𝛼, as a simple example, only the transfers to the four directly 

observable terms are calculated: 

 

 

𝜙𝑙𝑎𝑏𝑒𝑙  𝐼−𝑆̂𝛼
90𝑥
°  𝑚𝑖𝑥𝑖𝑛𝑔 𝑝𝑢𝑙𝑠𝑒

→              

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼−𝑆̂𝛼 ∙ 𝑐𝑜𝑠
2 (
𝜋

4
) ∙ 𝑐𝑜𝑠2 (

𝜋

4
) = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙

1

4
∙ 𝐼−𝑆̂𝛼  

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼−𝑆̂𝛽 ∙ 𝑐𝑜𝑠
2 (
𝜋

4
) ∙ 𝑠𝑖𝑛2 (

𝜋

4
) = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙

1

4
∙  𝐼−𝑆̂𝛽 

 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼𝑎𝑆̂− ∙ −
1

2
𝑖 𝑠𝑖𝑛 (

𝜋

2
) ∙ −

1

2
𝑖 𝑠𝑖𝑛 (

𝜋

2
) = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙ −

1

4
∙ 𝐼𝑎𝑆̂− 

(48) 
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𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼𝛽𝑆̂− ∙
1

2
𝑖 𝑠𝑖𝑛 (

𝜋

2
) ∙ −

1

2
𝑖 𝑠𝑖𝑛 (

𝜋

2
) = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙

1

4
∙ 𝐼𝛽𝑆̂− 

 

 If, in a similar experiment, a small flip angle pulse is used as a mixing, the transfers from 

any term (out of the eight SQC) to all the other sixteen terms do not have the same amplitude 

and, moreover, transfers originating from terms representing coherence -1 and +1, 

respectively, are not symmetrical neither. Thus, the probabilities calculated from the equations 

do not correspond to the intensities of the signals in the 2D spectrum. These probabilities 

correspond to intensities in the theoretical P and N spectra, however, the acquired 2D 

spectrum will have phase-distorted signals. In fact, in this case the phase modulation is not 

exactly translated to the amplitude modulation, as the two vectors: magnetization before the 

rotation and after the rotation are not 90° phase-shifted with respect to each other. This means 

that after the mixing, the dataset is not purely amplitude modulated, but there is some phase 

factor to be taken into account that influences the phase of the signals in the 2D spectrum.  

 Assuming a small flip angle pulses, typically 10°- 30°,  

 

 

𝑐𝑜𝑠2 (
1

2
𝜃) ≈ 1  

𝑠𝑖𝑛2 (
1

2
𝜃) ≈

1

4
𝜃2  

𝑠𝑖𝑛𝜃 ≈ 𝜃  

(49) 

 

and the transfer probabilities are: 

 

 

𝜙𝑙𝑎𝑏𝑒𝑙  𝐼+𝑆̂𝛼
𝜃𝑥 𝑚𝑖𝑥𝑖𝑛𝑔 𝑝𝑢𝑙𝑠𝑒
→             

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼−𝑆̂𝛼 ∙
1

4
𝜃2 ∙ 1 = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙

1

4
𝜃2 ∙ 𝐼−𝑆̂𝛼  

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼−𝑆̂𝛽 ∙
1

4
𝜃2 ∙

1

4
𝜃2 = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙

1

16
𝜃4 ∙  𝐼−𝑆̂𝛽 

 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼𝛼𝑆̂− ∙
1

2
𝑖 𝜃 ∙ −

1

2
𝑖 𝜃 = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙

1

4
𝜃2 ∙ 𝐼𝛼𝑆̂− 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼𝛽𝑆̂− ∙ −
1

2
𝑖 𝜃 ∙ −

1

2
𝑖 𝜃 = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙ −

1

4
𝜃2 ∙ 𝐼𝛽𝑆̂− 

 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼𝛼𝑆̂𝛽 ∙
1

2
𝑖 𝜃 ∙

1

4
𝜃2 = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙

1

8
𝑖 𝜃3 ∙ 𝐼𝛼𝑆̂𝛽 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼𝛽𝑆̂𝛼 −
1

2
𝑖 𝜃 ∙ 1 = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙ −

1

2
𝑖 𝜃 ∙ 𝐼𝛽𝑆̂𝛼 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼𝛼𝑆̂𝛼 ∙
1

2
𝑖 𝜃 ∙ 1 = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙

1

2
𝑖 𝜃 ∙ 𝐼𝛼𝑆̂𝛼   

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼𝛽𝑆̂𝛽 ∙ −
1

2
𝑖 𝜃 ∙

1

4
𝜃2 = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙ −

1

8
𝑖 𝜃3 ∙ 𝐼𝛽𝑆̂𝛽 

 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼−𝑆̂− ∙
1

4
𝜃2 ∙ −

1

2
𝑖 𝜃 = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙ −

1

8
𝑖 𝜃3 ∙ 𝐼−𝑆̂− 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼+𝑆̂+ ∙ 1 ∙
1

2
𝑖 𝜃 = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙

1

2
𝑖 𝜃 ∙ 𝐼+𝑆̂+ 

 

(50) 
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𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼−𝑆̂+ ∙
1

4
𝜃2 ∙

1

2
𝑖 𝜃 = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙

1

8
𝑖 𝜃3 ∙ 𝐼−𝑆̂+ 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼+𝑆̂− ∙ 1 ∙ −
1

2
𝑖 𝜃 = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙ −

1

2
𝑖 𝜃 ∙ 𝐼+𝑆̂− 

 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼+𝑆̂𝛼 ∙ 1 = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼+𝑆̂𝛼 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼+𝑆̂𝛽 ∙ 1 ∙
1

4
𝜃2 = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙

1

4
𝜃2 ∙ 𝐼+𝑆̂𝛽 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼𝛼𝑆̂+ ∙
1

2
𝑖 𝜃 ∙

1

2
𝑖 𝜃 = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙ −

1

4
𝜃2 ∙ 𝐼𝛼𝑆̂+ 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼𝛽𝑆̂2+ ∙ −
1

2
𝑖 𝜃 ∙

1

2
𝑖 𝜃 = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙

1

4
𝜃2 ∙ 𝐼𝛽𝑆̂− 

 

where: 𝜙𝑙𝑎𝑏𝑒𝑙 = 𝑒𝑥𝑝[−𝑖(Ω𝐼 + 𝜋𝐽)𝑡1]. 

 

For the complementary term  𝐼−𝑆̂𝛼, as an example, only the transfers to the four directly 

observable terms and the populations are calculated: 

 

 

𝜙𝑙𝑎𝑏𝑒𝑙  𝐼−𝑆̂𝛼
𝜃𝑥 𝑚𝑖𝑥𝑖𝑛𝑔 𝑝𝑢𝑙𝑠𝑒
→             

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼1−𝐼2𝛼 ∙ 1 ∙ 1 = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼1−𝐼2𝛼  

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼1−𝐼2𝛽 ∙ 1 ∙
1

4
𝜃2 = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙

1

4
𝜃2 ∙  𝐼1−𝐼2𝛽 

 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼1𝛼𝐼2− ∙ −
1

2
𝑖 𝜃 ∙ −

1

2
𝑖 𝜃 = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙ −

1

4
𝜃2 ∙ 𝐼1𝛼𝐼2− 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼1𝛽𝐼2− ∙ −
1

2
𝑖 𝜃 ∙ −

1

2
𝑖 𝜃 = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙ −

1

4
𝜃2 ∙ 𝐼1𝛽𝐼2− 

 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼1𝛼𝐼2𝛽 ∙ −
1

2
𝑖 𝜃 ∙

1

4
𝜃2 = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙ −

1

8
𝑖 𝜃3 ∙ 𝐼1𝛼𝐼2𝛽 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼1𝛽𝐼2𝛼 ∙
1

2
𝑖 𝜃 ∙ 1 = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙

1

2
𝑖 𝜃 ∙ 𝐼1𝛽𝐼2𝛼 

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼1𝛼𝐼2𝛼 ∙ −
1

2
𝑖 𝜃 ∙ 1 = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙ −

1

2
𝑖 𝜃 ∙ 𝐼1𝛼𝐼2𝛼   

𝜙𝑙𝑎𝑏𝑒𝑙 ∙ 𝐼1𝛽𝐼2𝛽 ∙
1

2
𝑖 𝜃 ∙

1

4
𝜃2 = 𝜙𝑙𝑎𝑏𝑒𝑙 ∙

1

8
𝑖 𝜃3 ∙ 𝐼1𝛽𝐼2𝛽 

(51) 

 

 The fact that the elements representing the single quantum coherences are transferred 

to other elements with different coherence orders can be thought of (using the vector model) 

as transferring a magnetization from one plane to another plane. The magnetization still exists 

but since it is not in the transverse plane, it will not induce current in the receiver coil.  

 Spectra resulting from 2D experiments using small flip angle mixing pulse are not 

expected to be in pure absorption because the shift by the 90° of the first pulse (in two 

consecutive transients for the quadrature detection) will not have the same effect on the 

magnetization as it has when a 90° mixing pulse is used. In fact, when a 90° mixing pulse is 

used, the transition probabilities and sign are such that a following property regarding the P 

and N type spectra can be calculated: 
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90𝑥 − 𝑡1 − 90𝑥 − 90𝑥 (𝑁 − 𝑡𝑦𝑝𝑒) 𝑎𝑛𝑑 (𝑃 − 𝑡𝑦𝑝𝑒)

 
90𝑦 − 𝑡1 − 90𝑥 − 90𝑥 (𝑁 − 𝑡𝑦𝑝𝑒) 𝑎𝑛𝑑 (𝑃 − 𝑡𝑦𝑝𝑒) 

 
 

Figure 9. N-type and P-type DQF-COSY spectra of two coupled spins and the effect of changing the phase of the first 
pulse.  

Of course, it should be noted that the sign and amplitude of the absorptive signals in these P 

and N spectra is theoretical (calculated according to the Eq (46)). In reality, P and N spectra 

necessarily have the phase-twist lineshapes. 

 The property shown in Figure 9 is not valid when a small flip angle pulse is used as a 

mixing[31]. Using phase shift different than 90° in the two steps of the quadrature could 

probably be considered. Another solution to this problem of phase-distorted signals in 

experiments based on small flip angle mixing pulses, is to go through a non-direct (requiring 

more than one step) path, to reach the observable magnetization. In other words, the 

observable magnetization present just after the small flip angle mixing pulse and having 

undesirable dependency on the rotations needed for the quadrature detection, can be ignored 

at first. Instead, a different part of the magnetization may be chosen at this step – the one that 

is not observable yet, but has the advantageous dependence on rotations (for example the 

populations part of the magnetization, compare Eq (50) and Eq (51)). Subsequently, additional 

pulse(s) can be applied to make the magnetization observable. This trick has been employed by 

Bodenhausen and co-workers[34] in their z-filtered COSY experiment in order to improve the 

phase properties of the small flip angle COSY. Similar selection is used in the PSYCHE element, 
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as only the population terms should be retained between the small flip angle rotations coming 

from the two chirped pulses (see Section III.B.2.b).  

 More generally (apart from the context of small flip angle pulses), the same principle of 

introducing a multi-step - employing additional pulses and delays - mixing, in order to adjust the 

trajectory of the magnetization, is used for example in multiple-quantum filtered (MQF) 

spectroscopy[35, 36].   

 

H. Weak versus strong coupling 

  

 In a strongly coupled system, the Zeeman basis states: |𝛼𝐼𝛼𝑆⟩, |𝛼𝐼𝛽𝑆⟩, |𝛽𝐼𝛼𝑆⟩ and |𝛽𝐼𝛽𝑆⟩ 

are not anymore the eigenstates of the free precession Hamiltonian, which has the form: 

 

 𝐻̂𝐼𝑆𝑠𝑡𝑟𝑜𝑛𝑔 = Ω𝐼𝐼𝑧 +Ω𝑆𝑆̂𝑧 + 2𝜋𝐽 ∙ (𝐼𝑥𝑆̂𝑥 + 𝐼𝑦𝑆̂𝑦 + 𝐼𝑧𝑆̂𝑧), (52) 

 

where the coupling part of the Hamiltonian is often referred to as secular isotropic Hamiltonian 

𝐻̂𝐽𝑖𝑠𝑜 = 2𝜋𝐽 ∙ (𝐼𝑥𝑆̂𝑥 + 𝐼𝑦𝑆̂𝑦 + 𝐼𝑧𝑆̂𝑧). However, the eigenstates of this Hamiltonian can be found 

as a certain combination of the Zeeman basis states. A very convenient and intuitive way to  

express it is that, for the 𝐻̂𝐼𝑆𝑠𝑡𝑟𝑜𝑛𝑔  operator, in order to avoid causing any rotation to the 

Zeeman basis states, or in other words to prevent transforming them in any way - it must be 

the combination of the rotated Zeeman basis states that will constitute the eigenstates. It may 

be equivalently expressed the other way round: during the free precession of a strongly 

coupled spin system, the magnetization experiences not only a z rotation, but the trajectory is 

more complex and the axis of the rotation has all three perpendicular components. Notably, 

the phase acquired by a given operator as a result of a z-rotation is a criterion to assess the 

coherence order of an operator or products of operators, as discussed in Section II.E. In case of 

the strong coupling, this definition cannot be applied here directly, or, in other words: “in a 

strongly coupled spin system coherences can no longer be assigned to individual spins”[25]. 

 What should be highlighted here is that only sometimes the basis states are identical to 

the eigenstates. The basis states, orthogonal to each other, serve to entirely represent a given 

spin system, which does not necessarily imply that a Hamiltonian acting on these basis states 

do not change them. In fact, in NMR, we usually choose Hamiltonians in such a way as to exert 

a change in a system. It is quite a special case that the basis states are equally the eigenstates of 

the weak coupling Hamiltonian representing the evolution during free precession and that the 

system acquires only an additional phase factor (it is like a scaling factor here), which is not the 

case in the currently discussed system of strongly coupled spins.  
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 The four eigenstates of the 𝐻̂𝐼𝑆𝑠𝑡𝑟𝑜𝑛𝑔  with the corresponding eigenvalues are: 

 

 

1. |𝛼𝛼 >   𝐸1 =
1

2
(Ω𝐼 + Ω𝑆 + 𝜋𝐽) 

2. 𝑐𝑜𝑠𝜃|𝛼𝛽 > − 𝑠𝑖𝑛𝜃|𝛽𝛼 > 𝐸2 =
1

2
(∆Ω − 𝜋𝐽) 

3. 𝑐𝑜𝑠𝜃|𝛽𝛼 > + 𝑠𝑖𝑛𝜃|𝛼𝛽 > 𝐸3 =
1

2
(−∆Ω − 𝜋𝐽) 

4. |𝛽𝛽 >   𝐸4 =
1

2
(−Ω𝐼 −Ω𝑆 + 𝜋𝐽) 

 

(53) 

The strong coupling parameter 𝜃, which indicates the strength of the coupling interaction, is 

defined as: tan 2𝜃 =
2𝜋𝐽

Ω𝑆−Ω𝐼
, and the positive parameter ∆Ω = √(Ω𝐼 − Ω𝑆)2 + 4𝜋2𝐽2, which is 

roughly equal to the chemical shift difference, when the coupling is not too strong (otherwise, 

when Ω𝐼 ≈ Ω𝑆, the parameter starts to depends only on the coupling constant: ∆Ω = 2𝜋𝐽). 

 The matrix representation of the strong coupling Hamiltonian is not diagonal, Eq (54), 

just as for example the matrix representing the x pulse: 𝜔1𝐼𝑥: 

 

 𝐻̂𝐼𝑆𝑠𝑡𝑟𝑜𝑛𝑔 =

(

 
 
 
 
 

1

2
(Ω𝐼 + Ω𝑆) +

1

2
𝜋𝐽 0 0 0

0
1

2
(Ω𝐼 − Ω𝑆) −

1

2
𝜋𝐽 𝜋𝐽 0

0 𝜋𝐽 −
1

2
(Ω𝐼 − Ω𝑆) −

1

2
𝜋𝐽 0

0 0 0 −
1

2
(Ω𝐼 + Ω𝑆) +

1

2
𝜋𝐽)

 
 
 
 
 

 (54) 

 

The matrix exponential of non-diagonal matrices will contain some elements with a 𝑐𝑜𝑠 and/or 

𝑠𝑖𝑛 modulation that will be “conveyed” to the elements of the matrix being propagated in the 

form of an amplitude modulation of its elements, unlike the diagonal matrix exponentials that 

”furnish” just an additional phase label.   

 In most course books, the effect of the strong coupling is illustrated as the modification 

of the energy levels and, consequently, the modification of transition probabilities, leading to 

the “famous” roof effect. It is very useful however, in particular in the context of two-

dimensional experiments, to consider the intensity distortions in the 1D spectra of strongly 

coupled spins as a result of magnetization transfer[21, 37]. When the chemical shift difference 

between coupled spins becomes small relative to the coupling, the effective secular coupling 

Hamiltonian (𝐻̂𝐼𝑆𝑠𝑡𝑟𝑜𝑛𝑔) resembles the one active during Hartmann-Hahn coherence transfer 

periods. The Hartmann-Hahn transfer is of a great importance in the context of this thesis, as it 

underlies the magnetization transfers during the strong coupling[21], the TOCSY mixing[38] and 

even the special rotation during a biselective pulse[26, 39]. Regarding this magnetization transfer, 
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an analogy can be drawn between an action of the strong coupling Hamiltonian and a mixing 

pulse, both represented by a non-diagonal matrices. 

 The TOCSY experiment uses a period called spin-locking to cause a coherence transfer. 

The spin-locking effect may be achieved by applying a long, strong radiofrequency pulse in the 

presence of which the individual chemical shifts start to lose their effect on the spin dynamics 

and it is the Hamiltonian shown in Eq (55) that dominates the evolution of the system (compare 

with Eq (52)): 

 

 𝐻̂𝑠𝑝𝑖𝑛−𝑙𝑜𝑐𝑘 = 𝜔1(𝐼𝑥 + 𝑆̂𝑥) + 2𝜋𝐽 ∙ (𝐼𝑥𝑆̂𝑥 + 𝐼𝑦𝑆̂𝑦 + 𝐼𝑧𝑆̂𝑧). (55) 

 

 In the strong coupling limit, the Hamiltonian has a very similar form, with the difference 

that the 𝜔1 is replaced by Ω = Ω𝐼 ≈ Ω𝑆 and 𝐼𝑥 + 𝑆̂𝑥 by 𝐼𝑧 + 𝑆̂𝑧 (see Eq (52)). 

 

 𝐻̂𝐼𝑆𝑠𝑡𝑟𝑜𝑛𝑔 = Ω(𝐼𝑧 + 𝑆̂𝑧) + 2𝜋𝐽 ∙ (𝐼𝑥𝑆̂𝑥 + 𝐼𝑦𝑆̂𝑦 + 𝐼𝑧𝑆̂𝑧) (56) 

 

 In both cases (TOCSY and strong coupling), the two spins aim towards equivalency – 

which is known as the Hartmann-Hahn condition - and it is the J-coupling term that will cause 

the transfer. In such an arrangement, the two spins evolve “together”, which, in this simple 

system, can be accurately described as the evolution of the sums or differences of the single 

spin operators (or sums/differences of the products of the spin operators)[38]: 

 

 

Σ𝑘 =
1
2⁄ {𝐼𝑘 + 𝑆𝑘} 

Δ𝑘 =
1
2⁄ {𝐼𝑘 − 𝑆𝑘} 

Σ𝑘𝑙 =
1
2⁄ {𝐼𝑘𝑆𝑙 + 𝐼𝑙𝑆𝑘} 

Δ𝑘𝑙 =
1
2⁄ {𝐼𝑘𝑆𝑙 − 𝐼𝑙𝑆𝑘} 

(57) 

 

(where k, l = x, y, z), with the following commutation relations: 

 

 

[𝐻̂𝐽𝑖𝑠𝑜 , Σ𝑘] = 0 

[𝐻̂𝐽𝑖𝑠𝑜 , Σ𝑘𝑙] = 0 

[𝐻̂𝐽𝑖𝑠𝑜 , Δ𝑘] = 𝑖Δ𝑙,𝑚 

[𝐻̂𝐽𝑖𝑠𝑜 , Δ𝑙𝑚] = −𝑖Δ𝑘 

(58) 

 

where k, l, m is a cyclic permutation of (x, y, z). 
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 It is clear that the sum of operators or their products cannot evolve, however, the 

difference evolves according to the equation: 

 

 
𝑨
𝑏𝑩𝑡
→ 𝑨 cos 𝑏𝑡 − 𝑪 sin 𝑏𝑡, 

 
(59) 

which is a direct consequence of the Liouville-von Neumann equation and is true exclusively if 

the following commutation relations hold: 

 

 
[𝑨, 𝑩] = 𝑖 𝑪 

[𝑩, 𝑪] = 𝑖 𝑨. 
(60) 

 

For example, the populations: 𝐼𝑧 + 𝑆̂𝑧 = (

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

) do not evolve under the strong 

coupling Hamiltonian, unlike the term: 𝐼𝑧 − 𝑆̂𝑧 = (

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

). 

 Similarly, the difference: (𝐼𝑥 − 𝑆̂𝑥) evolves according to: 

 

 
(𝐼𝑥 − 𝑆̂𝑥)  

𝐻̂𝐽𝑖𝑠𝑜  ∙ 𝜏

→     (𝐼𝑥 − 𝑆̂𝑥) ∙ 𝑐𝑜𝑠(2𝜋𝐽𝐼𝑆𝜏)+(𝐼𝑦𝑆̂𝑧 − 𝐼𝑧𝑆̂𝑦) ∙ 𝑠𝑖𝑛(2𝜋𝐽𝐼𝑆𝜏)   
(61) 

 

which, after simple calculations becomes:  

 

 
𝐼𝑥
𝐻̂𝐽𝑖𝑠𝑜 ∙ 𝜏

→     
1

2
𝐼𝑥 ∙ (1 + 𝑐𝑜𝑠(2𝜋𝐽𝐼𝑆𝜏))+

1

2
𝑆̂𝑥 ∙ (1 − 𝑐𝑜𝑠(2𝜋𝐽𝐼𝑆𝜏))

+ (𝐼𝑦𝑆̂𝑧 − 𝐼𝑧𝑆̂𝑦) ∙ 𝑠𝑖𝑛(2𝜋𝐽𝐼𝑆𝜏)   

(62) 

 

 This equation shows that, in the strong coupling approximation, an in-phase 

magnetization along the x axis  evolves not only into antiphase magnetization (the usual 

situation) but moreover into an in-phase and antiphase magnetization on the coupled partner. 

In the absence of the strong coupling, such transfer is possible only if an rf mixing pulse is 

applied.  

 In a 1D NMR spectrum, such transfers, which involve the evolution of magnetization 

from x to y axis (being 90° out-of-phase) cannot be resolved (which, on the contrary, is possible 
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in 2D, where the two dimensions are perpendicular) and will result only in the intensity 

distortion[21], as shown in Figure 10.  

 

 

Figure 10. Simulated DIAG spectrum of an AB system: 𝛿1 = 0.05 ppm, 𝛿2 = −0.05 and 𝐽12 = 8 Hz. (a) 1D proton 
spectrum; (b) and (c) 1D proton spectra resulting from excitation of only one of the two spins, by an ideal pulse 

represented by either 𝐼𝑥  or 𝑆̂𝑥  operator, but not the sum of 𝐼𝑥  and 𝑆̂𝑥; (c) the corresponding non-decoupled DIAG 
spectrum. 

 The simulations show the 1D spectrum of two strongly coupled spins with the “roof 

effect” and the theoretical “decomposition” of this spectrum into spectra of the spins excited 

independently by an “ideal selective pulse” (excitation effectuated by propagating the density 

matrix with either 𝐼𝑥 or 𝑆̂𝑥 operator and not 𝐼𝑥 + 𝑆̂𝑥). The spectra illustrate the transfer of 

magnetization to the strongly coupled partner during the free precession. In a 2D experiment, 

lacking any mixing pulse or possessing just 90° pulse for the in-phase transfer before detection 

(as in DIAG), the transfers will give rise to anti-phase signals at the frequency 𝛺𝐼 and 𝛺𝑆 in F1, 

and 𝛺𝑆 and 𝛺𝐼 in F2[21], respectively. For example, in a non-decoupled DIAG experiment, the z-

filtered magnetization is placed in a transverse plane in the form of 𝐼𝑥 by the last 90° pulse (one 

should assume the pulse to be 90y° in this case) just before the detection. During the 

acquisition, the mixed states evolve and the antiphase signals, on the anti-diagonal of what 

would be a standard cross-peak multiplet, will be generated. In other words, this transfer 

results in forming a special kind of a “reduced multiplet pattern” in the spectrum. This can be 

thought of as transfers only between connected transitions (See Section III.B.2 and Figure 13) 

taking place. What is unusual, however, is that the signals resulting from these transfers do not 

have the same sign (to say the “in-phase” pattern) on the anti-diagonal of a cross-peak 

multiplet. The exact sign (“plus” or “minus”) in the calculations depends on whether the 
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transfer is considered for a term belonging to the P or the N group (See for example Eq (47) and 

Eq (48) and Figure 9. In the present case of the strong coupling, the antiphase pattern of the 

anti-diagonal of a multiplet could be seen as a result of a “mixing” between the P and N paths. 

The existence of these two distinct paths is dictated by the effect on the detectable 

magnetization upon the switch of the phase of the (usually) first pulse by 90°. The possibility to 

intervene in this “mixing” between the P and N datasets (if spins are strongly coupled), when 

2D experiments with quadrature are considered, will be explored in a future work. Possible 

directions to develop this idea may be to separate the processing of the P and N spectra or to 

use more sophisticated propagation path in order to produce a rotation being a combination of 

several rotations.   

 A 2D experiment, where no mixing is present and out-of-diagonal signals are not 

expected unless spins are strongly coupled, can be seen as a special correlation experiment, 

connecting exclusively the spins, whose wavefunctions are mixed[21].  

 In the F1-decoupled DIAG, the antiphase signals at the positions that are usual for cross-

peaks (in standard correlation experiments), persist, however, since the J is refocused in F1, the 

antiphase multiplet components are spread horizontally. Again, this magnetization is a result of 

the Hartmann-Hahn condition being fulfilled and manifested during the detection. 

 All transfers related to strong coupling or coming from weakly-coupled spins which were 

rendered temporarily equivalent and show more complex behavior during the decoupling in 

the middle of the t1 evolution, will result in signals at chemical shifts different than shifts of the 

individual spins. Very often, the “artifact” will resonate in-between the individual shifts of the 

spins. However, if the part of the pulse sequence in which the spin echo should take place (but 

does not) has a duration of tens of milliseconds (very selective 180° refocusing pulses) – the 

magnetization may acquire an additional phase and amplitude and will result in signals with 

chemical shift, phase and amplitude different from the ones of the individual spins or their 

average. 
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III. Homonuclear decoupling in F1 
 

A. Spin echo 

  

 The aim of this chapter is to present the general mechanism underlying the 

homonuclear decoupling and, subsequently, the specific methods based on this mechanism. 

One of the main challenges of the project was to understand the fundamental differences 

between the older methods and the recently introduced PSYCHE method (see Section I) in 

order to systematically compare their performance and, if possible, to optimize the latter one. 

Since the analysis of the PSYCHE decoupling as well as the artifacts in the spectra require the 

use of the polarization operators, the introduction to the quantum mechanical description of 

NMR was necessary and concepts introduced in the previous chapter will be used to advantage 

in the present one.   

 The spin echo element lies at the core of experiments (such as the toolbox ones) 

allowing to eliminate and/or separate interactions. Generally, the spin echo relies on the 

inversion of the evolution of interactions in the middle of a given period of time 𝜏 and their 

consequent elimination in the end of this period. However, it should be noted that not in all 

cases it is possible to eliminate all existing interactions in the same spin echo sequence.  

 It is very intuitive to understand the spin echo from a demonstration using the Cartesian 

product operators that conveniently describe the 𝜋 rotations applied in the middle of a 𝜏 

period. When a hard 𝜋 pulse is used, the chemical shift is refocused, but the J evolves: 

 

 

𝐼𝑧
90𝑥
°

→ −𝐼𝑦

𝜏

2
 (Ω𝐼𝐼𝑧+Ω𝑆𝑆̂𝑧+2𝜋𝐽𝐼𝑧𝑆̂𝑧)

→                 − 𝐼𝑦𝑐𝑜𝑠(𝜋𝐽𝜏)𝑐𝑜𝑠(Ω𝐼𝜏) + 2𝐼𝑥𝑆̂𝑧𝑠𝑖𝑛(𝜋𝐽𝜏)𝑐𝑜𝑠(Ω𝐼𝜏)

+ 𝐼𝑥𝑐𝑜𝑠(𝜋𝐽𝜏)𝑠𝑖𝑛(Ω𝐼𝜏) + 2𝐼𝑦𝑆̂𝑧𝑠𝑖𝑛(𝜋𝐽𝜏)𝑠𝑖𝑛(Ω𝐼𝜏) 

𝜋(𝐼𝑦+𝑆̂𝑦)
→      

𝜏

2
 (Ω𝐼𝐼𝑧+Ω𝑆𝑆̂𝑧+2𝜋𝐽𝐼𝑧𝑆̂𝑧)

→                 − 𝐼𝑦𝑐𝑜𝑠(𝜋𝐽𝜏) + 2𝐼𝑥𝑆̂𝑧𝑠𝑖𝑛(𝜋𝐽𝜏) 

(63) 

 

On the other hand, in order to cause a selective J coupling refocusing, the hard 𝜋 pulse must be 

followed by a selective 𝜋 pulse applied to one of the spins, here 𝐼, and then only the chemical 

shift modulates the in-phase terms:  

 

 𝐼𝑧
90𝑥
°

→ −𝐼𝑦

𝜏

2
 (Ω𝐼𝐼𝑧+Ω𝑆𝑆̂𝑧+2𝜋𝐽𝐼𝑧𝑆̂𝑧)

→                 −𝐼𝑦𝑐𝑜𝑠(𝜋𝐽𝜏)𝑐𝑜𝑠(Ω𝐼𝜏) + 2𝐼𝑥𝑆̂𝑧𝑠𝑖𝑛(𝜋𝐽𝜏)𝑐𝑜𝑠(Ω𝐼𝜏)

+ 𝐼𝑥𝑐𝑜𝑠(𝜋𝐽𝜏)𝑠𝑖𝑛(Ω𝐼𝜏) + 2𝐼1𝑦𝐼2𝑧𝑠𝑖𝑛(𝜋𝐽𝜏)𝑠𝑖𝑛(Ω𝐼𝜏) 

(64) 
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𝜋(𝐼𝑥+𝑆̂𝑥)+𝜋(𝐼𝑥)
→           

𝜏

2
 (Ω𝐼𝐼𝑧+Ω𝑆𝑆̂𝑧+2𝜋𝐽𝐼𝑧𝑆̂𝑧)

→                 −𝐼𝑦𝑐𝑜𝑠(Ω𝐼𝜏) + 𝐼𝑥𝑠𝑖𝑛(Ω𝐼𝜏) 

 

 However, for the purpose of in-detail analysis of the spectral artifacts which may be 

generated during a spin echo and in order to explain the new selective refocusing PSYCHE 

method, alternative to the methods based on 𝜋 rotations, it is convenient to consider the spin 

echo in the subset of a single transition operator base, given in Eq (37).  

 For example, the operator 𝐼+𝑆̂𝛽 evolves during a period 𝜏 acquiring a phase determined 

by the density matrix transformation upon the propagator involving the free precession 

Hamiltonian for two weakly coupled spins. If, in the middle of this period, the coherence on the 

active spin changes sign and the polarization of the passive spin is inverted, the 𝛿 chemical shift 

will be refocused: 

 

 

𝐼+𝑆̂𝛽

𝜏

2
 (Ω𝐼𝐼𝑧+Ω𝑆𝑆̂𝑧+2𝜋𝐽𝐼𝑧𝑆̂𝑧)

→                 𝑒𝑥𝑝 [−
1

2
𝑖(Ω𝐼 − 𝜋𝐽)𝜏] 𝐼+𝑆̂𝛽

𝜋(𝐼𝑥+𝑆̂𝑥)
→      𝑒𝑥𝑝 [−

1

2
𝑖(Ω𝐼 − 𝜋𝐽)𝜏] 𝐼−𝑆̂𝛼  

𝜏

2
 (Ω𝐼𝐼𝑧+Ω𝑆𝑆̂𝑧+2𝜋𝐽𝐼𝑧𝑆̂𝑧)

→                 𝑒𝑥𝑝 [−
1

2
𝑖(Ω𝐼 − 𝜋𝐽)𝜏] 𝑒𝑥𝑝 [+

1

2
𝑖(Ω𝐼 + 𝜋𝐽)𝜏] 𝐼−𝑆̂𝛼,  

 

(65) 

which simplifies to:  

 
𝑒𝑥𝑝[𝑖𝜋𝐽𝜏]𝐼−𝑆̂𝛼. 

 
(66) 

This term in the spectrum will give rise to a single peak at the chemical shift displaced by 𝜋𝐽 

from the chemical shift 𝛿 = 0. In other words, only the frequency related to the J coupling can 

be read in the spectrum.  

 Similarly, the J coupling is refocused if, in the middle of the evolution period 𝜏, the 

coherence on the active spin remains unchanged but the polarization of the coupling partner 

(the passive spin) is inverted: 

 

 

𝐼−𝑆̂𝛽

𝜏

2
 (Ω𝐼𝐼𝑧+Ω𝑆𝑆̂𝑧+2𝜋𝐽𝐼𝑧𝑆̂𝑧)

→                 𝑒𝑥𝑝 [+
1

2
𝑖(Ω𝐼 − 𝜋𝐽)𝜏] 𝐼−𝑆̂𝛽

𝜋(𝐼𝑥+𝑆̂𝑥)+𝜋(𝐼𝑥)
→            

𝑒𝑥𝑝 [+
1

2
𝑖(Ω𝐼 − 𝜋𝐽)𝜏] 𝐼−𝑆̂𝛼

𝜏

2
 (Ω𝐼𝐼𝑧+Ω𝑆𝑆̂𝑧+2𝜋𝐽𝐼𝑧𝑆̂𝑧)

→                 𝑒𝑥𝑝 [+
1

2
𝑖(Ω𝐼 − 𝜋𝐽)𝜏] 𝑒𝑥𝑝 [+

1

2
𝑖(Ω𝐼 + 𝜋𝐽)𝜏] 𝐼−𝑆̂𝛼 

 

(67) 

which simplifies to: 

 

 𝑒𝑥𝑝[𝑖Ω𝐼𝜏]𝐼−𝑆̂𝛼. (68) 
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 In the equations above, the spin echo is achieved when a sign preceding the chemical 

shift frequency or the J-coupling frequency under the exponential is inverted. The sign 

preceding the former depends on the sign of the coherence, whereas the sign preceding the 

latter term depends on the polarization of the coupled partner. In the same way as the 

symmetry between the terms with opposite sign in two equal periods of evolution must be 

retained to induce a spin echo, the symmetry in the positive and negative coherences during 

𝑡1plays a pivotal role in the possibility to obtain absorption lineshapes in 2D. In an analogical 

way, in a system of three coupled spins, in order to decouple a spin from its two coupling 

partners, after they all get treated by a hard 180° pulse, it is only the active spin that should be 

selectively flipped back: 

 

 

𝐼−𝑆̂𝛽𝐾𝛽

𝜏

2
 (Ω𝐼𝐼𝑧+Ω𝑆𝑆̂𝑧+Ω𝐾𝐾̂𝑧+2𝜋𝐽∙∑𝑀̂𝑧𝑁̂𝑧)

→                          𝑒𝑥𝑝 [+
1

2
𝑖(Ω𝐼 − 𝜋𝐽𝐼𝑆 − 𝜋𝐽𝐼𝐾)𝜏] 𝐼−𝑆̂𝛽𝐾𝛽

𝜋(𝐼𝑥+𝑆̂𝑥+𝐾̂𝑥)+𝜋(𝐼𝑥)
→               

𝑒𝑥𝑝 [+
1

2
𝑖(Ω𝐼 − 𝜋𝐽𝐼𝑆 − 𝜋𝐽𝐼𝐾)𝜏] 𝐼−𝑆̂𝛼𝐾𝛼  

𝜏

2
 (Ω𝐼𝐼𝑧+Ω𝑆𝑆̂𝑧+Ω𝐾𝐾̂𝑧+2𝜋𝐽∙∑𝑀̂𝑧𝑁̂𝑧)

→                           

𝑒𝑥𝑝 [+
1

2
𝑖(Ω𝐼 − 𝜋𝐽𝐼𝑆 − 𝜋𝐽𝐼𝐾)𝜏] 𝑒𝑥𝑝 [+

1

2
𝑖(Ω𝐼 + 𝜋𝐽𝐼𝑆 + 𝜋𝐽𝐼𝐾)𝜏] 𝐼−𝑆̂𝛼𝐾𝛼  = 𝑒x𝑝[𝑖Ω𝐼𝜏]𝐼−𝑆̂𝛼𝐾𝛼 , 

(69) 

 

where M, N is a cyclic permutation of (I, S, K). 

 

B. Methods for homonuclear decoupling 

 

1. Zangger-Sterk method 

 

 In recent years, the most common method to perform the broadband homonuclear 

decoupling was the use of the so called Zangger-Sterk element, introduced for the first time in 

1996[17]. It was proposed at that time as an alternative to projecting the sheared J-resolved 

spectra to attain the pure-shift spectrum. This brilliant method combines the use of a hard 180° 

and a selective refocusing 180° pulse in the presence of a weak field gradient.  

 As demonstrated in Section III.A, the consequence of applying the overall 2𝜋 rotation to 

the active spin and the selective 𝜋 rotation to the passive spins, results in unperturbed chemical 

shift evolution of the active spin and refocusing its J-coupling to the passive spins. The principal 

constraint of this approach for the broadband decoupling is the necessity to repeat the 

selective experiment for each signal in the spectrum. The Zangger-Sterk method overcomes this 

limitation in a very neat way: the introduction of a spatial encoding of the frequency shift. This 

enables the “simultaneous” refocusing of different spins in different positions in the sample by 
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a single selective refocusing pulse tailored to a single frequency.  Selective pulses coupled with 

gradients are used since decades in MRI (Magnetic Resonance Imaging)[40, 41], where the object 

to be imaged (often human tissues) is first excited with the rf radiation and subsequently 

emitted with intensity depending on the efficiency of the emission (different in different 

tissues). In this way, the signal carries the information about the position thanks to the 

presence of the gradient. It was an ingenious idea of Zangger and Sterk to use the frequency 

encoding to run a decoupling of individual signals in different positions along the NMR sample 

tube in a single experiment. 

a) Spatial encoding 

 

 Spatial encoding relies on applying a magnetic field gradient, usually along the z axis, 

simultaneously with a frequency-selective or frequency-swept pulses. The effective field is thus 

made regularly inhomogeneous: 

 

 𝐵𝑧 (𝑒𝑓𝑓) = 𝐵0 + 𝐺𝑧, (70) 

 

where 𝐺 is the magnetic field gradient in units of field per unit length: G cm-1 and 𝑧 is the 

coordinate along the field direction, measured (in cm). The encoding gradient is usually applied 

in such way that in the middle (along the gradient direction) of the active volume of the sample 

the field is unchanged with respect to 𝐵0, whereas the field increases (𝐵𝑧 (𝑒𝑓𝑓) = 𝐵0 + 𝐺𝑧) or 

decreases (𝐵𝑧 (𝑒𝑓𝑓) = 𝐵0 − 𝐺𝑧) when going up or down the sample, respectively. 

 This arrangement makes it possible to manipulate interactions occurring over a range of 

different magnetic fields in one sample. Then, these interactions are slightly different in each of 

these fields, since the energy levels are modified - notably, the precession frequency of spins 

varies between these different fields and consequently each spin acquires a spatially-

dependent phase along the sample’s length. For example, if one takes a single spin resonating 

at exactly 500 MHz in one of these fields, the spin may well resonate, if properly adjusted, with 

any frequency in a range of 500 MHz ± 2.5 kHz, in one of the other fields (different z position in 

the tube), etc. A recorded signal of this single spin in this gradient would correspond to one 

broad signal covering 10 ppm. The spatial variation of the frequency in the presence of a 

gradient can be employed for several different applications. Some of them will be discussed 

here, whereas those requiring the chirp pulse applied together with the weak gradient will be 

presented in Section III.B.2.a). 

 First of all, the spatially-dependent phase for each given spin in the presence of a field 

gradient can be used to average out to zero the magnetization with the different phases along 

the length of the sample. For example, the standard Bruker gradient unit provides the 
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maximum field gradient of: 𝐺 = 58𝐺 𝑐𝑚⁄ = 0.0058 𝑇 𝑐𝑚⁄ . When such a strong gradient – and 

with sufficient duration - is applied to a sample containing proton spins, the frequency of each 

individual spin differs so much along the sample that the magnetization is completely 

dephased, resulting to no signal. Gradients are indeed commonly used to select a desired part 

of a coherence (the one which does not evolve at all) and dephase the unwanted one (the one 

that acquires the spatially varying phase). For example:  

 

 𝑆 =
1

𝐿
∫ 𝑒𝑥𝑝[+𝑖[(Ω𝐼 − 𝜋𝐽) + Ω𝑧]𝜏]dz ∙ 𝐼−𝑆̂𝛽
𝐿

0
→ 0,  (71) 

 

where S is the signal approaching zero intensity if 𝐿 is properly adjusted to the duration and 

strength of 𝐺. 

 Secondly, when the gradient strength is much weaker and frequency-selective pulses 

are applied along, the spatial encoding can be used to the advantage of rendering the 

frequency (and so the phase) equal for spins with normally different chemical environment and 

thus different chemical shift: 

 

 

𝑒𝑥𝑝[+𝑖[(Ω𝐼 − 𝜋𝐽) + Ω𝑧1]𝜏] 𝐼−𝑆̂𝛽 

𝑒𝑥𝑝[+𝑖[(Ω𝑆 − 𝜋𝐽) + Ω𝑧2]𝜏] 𝐼𝛽𝑆̂− 

(Ω𝐼 − 𝜋𝐽) + Ω𝑧1 = (Ω𝑆 − 𝜋𝐽) + Ω𝑧2 

(72) 

 

The possibility to act on a spin system in a way as if being able to do it on several different 

spectrometers (or equivalently as if using several selective pulses each with different offset) at 

the same time, gives a great flexibility and allows to speed-up certain experiments enormously.  

 Variation of the field that is of interest for the broadband homonuclear decoupling is 

typically the one which ensures that a single frequency of each spin resonating in assumed 

spectral range of 0-10 ppm can be spread by the encoding gradient over 10 ppm (typical 

spectral width in proton spectra), in the sample length of 1.5 cm, so that a spin resonating with 

no gradient at frequency corresponding to 8 ppm, may now resonate at all frequencies 

corresponding to the range of 13 ppm and 2 ppm with the encoding gradient applied. In order 

for the gradient to cover 10 ppm (4981.816 Hz) on a 500 MHz spectrometer, it should have a 

strength calculated as follows: 

 

 𝐺 =
𝑆𝑊𝐺
𝛾 ∙ 𝐿

=
4981.86 𝐻𝑧

4258 𝐻𝑧 𝐺⁄  ∙  1.5 𝑐𝑚
= 0.78𝐺 𝑐𝑚⁄ , (73) 

 

which corresponds to 1.3% of the max (58𝐺 𝑐𝑚⁄ ) provided by our gradient unit. 
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b) Multiple-modulated pulse 

 

 The main disadvantage of the use of the Zangger-Sterk element is that the decoupled 

spectra have a very low sensitivity. The reason is that unlike in the standard experiments, the 

decoupled signals here come from a narrow “slice” of the sample volume. The thickness of the 

“slice” is defined by the bandwidth of the selective pulse applied together with the gradient of 

certain strength. It is this bandwidth that determines what is the range of slightly different spin 

frequencies (comprised in the volume slice) that are (or almost are) on-resonance with the 

pulse. For example, all frequencies in a range of 0-20 Hz form one slice, if a very selective pulse 

exerts an effect over this range. This directly implies that the sensitivity problem is especially 

salient when a high selectivity is required – as the more selective pulse will refocus the 

magnetization in a narrower slice of the sample volume. This also points to another problem 

related to the selectivity of the refocusing pulse, as it is impossible to decouple spins that 

resonate with frequencies differing by less than the bandwidth of the pulse and being within 

one slice. 

 A way of overcoming the sensitivity issue is to use a modulated selective pulse, which is 

a sum of several shapes, each with different offset. For example, a modulated pulse could be a 

sum of four shapes with offsets: 3 ppm, 5 ppm, 7 ppm and 9 ppm. In such an arrangement, 

each spin, for instance one with offset 6 ppm without any gradient, would then be selectively 

refocused when resonating at frequencies corresponding to 3 ppm, 5 ppm, 7 ppm and 9 ppm in 

four different positions in the sample, respectively The resulting decoupled signals are four 

times more intense. Since the four offsets differ by the same number of Hz (2 ppm ≈ 1000 Hz), 

also the four positions differ by the same distance (cm). The number of modulations as high as 

40-50 could be used in order to increase the intensity by the same factor. One problem related 

to increasing the number of positions where a spin is refocused is that the probability of two 

coupled spins being accidentally refocused in the very same position increases. This situation 

would prevent them from being properly decoupled. The denser the irradiation sites, the higher 

the probability of recoupling, since the refocusing takes place in increased number of positions 

within the finite length of the active volume. 

 One problem in using multiple-modulated pulses should be addressed. It is important to 

ensure that all the signals in the spectrum can be affected in the same number of positions in 

the active volume of the sample. To remedy this issue, the encoding gradient should be 

increased and several blocks of irradiations should be used, in order to homogenously cover the 

observed spectral window. Figure 1 shows a situation in which the spins resonating on the 

borders of the observed SW (with frequency higher than 8 ppm and lower than 2 ppm) will be 

excited only in one position, in contrast to spins from the central region of the SW. On the 

contrary, Figure 12 in the following section, shows two blocks of 50 irradiations applied with a 
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gradient covering 20 ppm in order to ensure homogenous coverage of the entire observed 

region SW = 10 ppm.      

 

  

Figure 11. Scheme showing a doubly modulated pulse (exciting at 3 ppm and 7 ppm) applied with the Gs covering 
10 ppm. The green and red “shoulders” show the spread of the chemical shift due to the gradient for spins that 
without any gradient would resonate at 5 ppm and 10 ppm. In the region outside the 2-8 ppm, indicated in blue, 
spins are non-homogenously refocused.  

 

c) nemoZS 

 

 An interesting improvement of the multiple-modulation of the selective pulse was 

proposed in Cotte et al. [10]. A novel way to add the individual pulse shapes into the composite 

shape was designed to account for the increased number of recoupling artifacts coming as a 

price for the increased sensitivity due to multiple positions at which magnetization at the same 

frequency is selectively refocused. The modification relies on a non-equidistant separation of 

the irradiation sites in a way so that the artifacts resulting from the casual refocusing of coupled 

spins in the same position are averaged out. In the nemoZS element, an effort is put to ensure 

the homogenous refocusing of all observed signals. The scheme of the multiple modulation 

should be optimized with respect to the characteristics of a given isotope, as it was 

demonstrated and published for the case of 13C-13C homonuclear decoupling in 13C-enriched 

cholesterol[42].  
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Figure 12. Scheme showing a selective pulse with two blocks of 50 irradiation sites with the Gs covering  20 ppm in 
order to homogenously refocus all spins resonating in the range 0-10 ppm. The green and red “shoulders” show the 
spread of the chemical shift due to the gradient for spins that without any gradient would resonate at 0.1 ppm and 
9.9 ppm. 

 

2. Small flip angle pulses 

 

 The effects of the implementation of a small flip angle (typically 20°) mixing pulses were 

intensely studied in the mid-80s[32, 34, 43]. Such pulses have an interesting impact on the 

magnetization, as they restrict the coherence transfers to take place primarily between 

connected transitions in the energy level diagram.  

 For the sake of the demonstration of the mechanism, the graphical representation of 

the Hamiltonian eigenstates and coherences in an energy level diagram is discussed for a 

system of three weakly coupled spins. In such system, the important concept of the passive 

coupling can be introduced. As shown in Figure 13(a), the energy levels of this system form a 

three-dimensional cube-like diagram. 
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Figure 13. (a) Energy level diagram for three coupled spins I, S and K with connected and anti-connected transitions 
from coherence on the I spin to different coherences on the K spin.  (b) A fragment of a schematic COSY spectrum of 
the ISK spin system, showing the diagonal and cross-peaks centered at frequency 𝛺𝐼 in the F1 dimension. The 
dashed line indicates the part of the diagonal that passes through this section of the spectrum. The phase shift 
between the diagonal and cross-peak signals has been ignored for the simplicity of the demonstration and thus all 
signals are represented in absorption. The red, blue and green arrows indicate the splitting due to the JSK, JIS and JIK, 
respectively. The red and black asterisks pinpoint the connected and anti-connected transitions, respectively. (c) The 
reduced I-I diagonal and I-K cross-peak signal patterns when transitions between only the connected transitions 
take place. 
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 In this cubic representation of the energy levels, three sets of parallel lines can be 

distinguished (purple, orange and uncolored dashed, respectively), each set corresponding to 

one of the three coupled spins. The three sets are perpendicular to each other. The parallel 

lines in each of the set correspond to the four lines of a doublet of doublet pattern. It can be 

noticed that each individual single quantum coherence of a given spin can be transferred to the 

four lines of its coupling partner upon application of a mixing pulse and be observed as a 

separate signal in a 2D spectrum. In Figure 13a, for example, the coherence 𝐼−𝑆̂𝛼𝐾̂𝛼 is 

transferred to the four lines of the spin 𝐾 and represented by four arrows. Importantly, in two 

of the four transitions, the polarization of the passive spin 𝑆 does not change and in the 

remaining two, the polarization of the passive spin 𝑆 gets inverted. The two classes of 

transitions are easily distinguished in the diagram, as the former pair of transitions “belongs” to 

the same plane as the original coherence and the latter pair “belongs” to a plane, which is 

“shifted up” by the polarization difference on the passive spin. The ones where the polarization 

of passive spin remains unchanged are called: connected transitions and the ones where the 

polarization of all passive spins change (in this example there is only one passive spin S), are 

called anti-connected transitions. The order of connectivity of the connected transitions in this 

example is r = 0 (as none of the passive spins changes its polarization) and of the anti-

connected transitions it is r = 1 (as one passive spin changes its polarization). The transition: 

𝐼−𝑆̂𝛼𝐾̂𝛼 → 𝐼𝛽𝑆̂𝛼𝐾̂− is classified as progressive, as the two levels that embrace the transition: 

𝛼𝛼𝛼 → 𝛽𝛼𝛽 differ in the magnetic quantum number by: ∆(𝑀𝛽𝛼𝛽 −𝑀𝛼𝛼𝛼) = −2. The 

complementary transition: 𝐼−𝑆̂𝛼𝐾̂𝛼 → 𝐼𝛼𝑆̂𝛼𝐾̂− is called regressive with the ∆(𝑀𝛼𝛽𝛽 −𝑀𝛽𝛽𝛼) =

0. The manner in which the single mixing pulse propagator rotates the density matrix in order 

to provoke coherence transfer is determined by the solution of the Liouville-von Neumann 

equation (Eq (7)) and directly given by the Eq (46). It is clear that peaks representing 

correlations between the progressively and regressively connected transitions have opposite 

phase (the antiphase arrangement). Since such dependence on the rotation by a single mixing 

pulse is intrinsic to the spin dynamics, it is impossible to overcome this phase feature. It will be 

shown in Section IV.B that in order to achieve the in-phase pattern of signals originating from 

the progressive and regressive transitions it is necessary to use more sophisticated mixing 

sequence to modify the phase and amplitude properties of the transitions. It was also 

mentioned in Section II.H that when strong coupling interaction takes place, the regressive 

(progressive) transitions that normally have the same sign for all spins contributing to a 

multiplet pattern, may appear in the antiphase arrangement instead (Figure 10). 

 What is essential for this section is that the small flip angle pulses discriminate in favor 

of terms in which the spin states of the passive spins are preserved.  
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 If, on the other hand, one or two hard small flip angle pulses are combined with a hard 

180° pulse, the transfers of coherence occur mainly between the anti-connected transitions. In 

this case, the spin states (polarizations) of the passive spins are changed while the active spin’s 

coherence remains unaffected. Notably, this effect was discussed above (Section III.A, Eq (67)), 

where the 180°hard + 180°sel pulse element was presented. In other words, there is an inherent 

selectivity in the action of the small flip angle pulse as it discriminates the spins during the 

coherence transfers according to their polarization.  

 It was clear already in the mid-80s[43] that such a restriction of transitions induced in the 

middle of the 𝑡1 results in the time-reversal of the evolution under scalarinteractions[32] and 

hence the broadband F1-homodecoupling. There is however one fundamental difference 

between the small flip angle pulse that could be used for selective refocusing of the J-couplings 

and a selective refocusing 180° pulse, in that the former still induces the mixing of the spin 

states and thus generates the cross-peaks, even though in a reduced form (Figure 13 (c)). 

Hence, it is important to highlight that, when inserted in the middle of 𝑡1, the small flip angle 

pulse generates the magnetization that would normally lead to diagonal signals and the one 

that would lead to the cross-peaks with the anti-phase pattern - if the element was used to 

separate spectral dimensions, which is not the case in this particular application for 

homodecoupling.  

 The presence of the reduced cross-peaks is used to a great advantage in some important 

two-dimensional correlation experiments[32, 34], however, in the context of the homonuclear 

decoupling it is a limitation, as the responses are undesirable. That is probably one of the main 

reasons why the property of the small flip angle pulses was not really exploited as a 

homodecoupling method for decades. 

 The recent work of James Keeler[25, 44, 45] remarkably contributed to the revival of these 

ideas. 

 

a) Keeler’s one-shot dephasing of unwanted coherences 

 

 This subsection does not relate only to small flip angle pulses, it is more general, 

however it fits well as an introduction to the PSYCHE element, which owes its functionality not 

only to the special property of the small flip angle pulses but equally to the spatiotemporal 

averaging provided by simultaneous use of chirped pulses and weak pulsed-field gradient.  

 Hence, it is worthwhile to assemble and reconsider the most important solutions 

brought by Keeler and co-workers[18, 25, 44, 45] to enable the manipulation of coherences in a way 

not accessible by more standard methods (phase cycling, gradients). The logic they rely on is 

absolutely crucial to understand the mechanism of the PSYCHE decoupling. The several 
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methods discussed here were introduced for different applications, however, they are based on 

the same principle. The one-shot zero-quantum filter had major repercussions for the NMR 

methodology of small organic molecules. It achieves the differentiation between the ZQ 

coherences and the z-magnetization and elimination of the former in a single pulse sequence 

element. The separation of the two types of magnetization, both having the coherence order: 

𝑝 = 0, was a problematic issue for decades. The Keeler’s filter is based on the simultaneous use 

of a weak gradient and a frequency-swept pulse[46]. This arrangement allows for a 

spatiotemporal encoding of interactions as spins of a given frequency can be affected by an 

action of a pulse at different times in different positions in the sample. The characteristics of 

the chirp excitation were discussed in Section II.C.3 and the description of the spatial encoding 

was given in Section III.B.1.a). The addition of the time parameter to the spatial distribution of 

the frequency of a given spin offers an increased flexibility for an independent treatment of 

different coherences. In other words, the magnetization can be selectively excited not only with 

regard to the resonance frequency but also with respect to time.   

 Generally, the ZQ terms do not acquire a spatially dependent phase in the presence of 

the gradient Eq (74), because the difference of two offsets in different positions in the sample 

along which the gradient is applied has the same value, even though the offsets themselves 

vary along the sample length.  

 

 
𝑒𝑥𝑝[𝑖[(+ Ω𝐼 + Ω𝑧1 − Ω𝑆 − Ω𝑧1)]𝜏] 𝐼−𝑆̂+ =  𝑒𝑥𝑝[𝑖[(+ Ω𝐼 − Ω𝑆)]𝜏] 𝐼−𝑆̂+ 

𝑒𝑥𝑝[𝑖[(+ Ω𝐼 + Ω𝑧2 − Ω𝑆 − Ω𝑧2)]𝜏] 𝐼−𝑆̂+ =  𝑒𝑥𝑝[𝑖[(+ Ω𝐼 − Ω𝑆)]𝜏] 𝐼−𝑆̂+ 
(74) 

 

However, in Keeler’s sequence element, the ZQ terms are dephased due to the fact that in 

different positions in the sample, a different fraction of its evolution is refocused by spin-echo. 

The spin-echo occurring at different moments going from the top to the bottom of the sample 

is ensured by the chirped 180° pulse (Figure 14 and Eqs (75) - (78)).  
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Figure 14. Schematic representation of the action of a 180° chirp pulse in the presence of an encoding gradient. 

In the position 1 along the tube the chirp causes a spin echo at the moment 𝜏𝑧1: 

 

 𝑒𝑥𝑝[𝑖[(+ Ω𝐼 + Ω𝑧1 − Ω𝑆 − Ω𝑧1)](𝛼𝑡𝑐)] 𝐼−𝑆̂+ 

180𝑐
° (𝐼𝜙𝑧1+𝑆̂𝜙𝑧1)(𝜏𝑧1)

→                𝑒𝑥𝑝[𝑖[(+ Ω𝐼 + Ω𝑧1 − Ω𝑆 − Ω𝑧1)](𝛼𝑡𝑐)]  

∙ 𝑒𝑥𝑝[𝑖[(− Ω𝐼 − Ω𝑧1 + Ω𝑆 + Ω𝑧1)](𝛼𝑡𝑐)] 𝐼+𝑆̂− , 

(75) 

 

which gives:  

 

 𝐼+𝑆̂− 

(no position-dependent phase), 

 

which then evolves during the remaining part of the chirp pulse: 

 

 
𝐼+𝑆̂−

(1−2𝛼)𝑡𝑐 
→      𝑒𝑥𝑝[𝑖[(− Ω𝐼 − Ω𝑧1 + Ω𝑆 + Ω𝑧1)]((1 − 2𝛼)𝑡𝑐)] 𝐼+𝑆̂− 

= 𝑒𝑥𝑝[𝑖[(− Ω𝐼 + Ω𝑆)]((1 − 2𝛼)𝑡𝑐)] 𝐼+𝑆̂− 

(position-dependent phase) 

(76) 
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And similarly in the position 2, the spin echo occurs at the moment 𝜏𝑧2:   

 

 

𝑒𝑥𝑝[𝑖[(+ Ω𝐼 + Ω𝑧2 − Ω𝑆 − Ω𝑧2)](𝛽𝑡𝑐)] 𝐼−𝑆̂+ 

180𝑐
° (𝐼𝜙𝑧2+𝑆̂𝜙𝑧2)(𝜏𝑧2)

→                𝑒𝑥𝑝[𝑖[(+ Ω𝐼 + Ω𝑧2 − Ω𝑆 − Ω𝑧2)](𝛽𝑡𝑐)]

∙ 𝑒𝑥𝑝[𝑖[(− Ω𝐼 −Ω𝑧2 + Ω𝑆 + Ω𝑧2)](𝛽𝑡𝑐)] 𝐼+𝑆̂− 

(77) 

 

which gives: 𝐼+𝑆̂−. Then: 

 

  𝐼+𝑆̂−
(1−2𝛽)𝑡𝑐 
→      𝑒𝑥𝑝[𝑖[(− Ω𝐼 − Ω𝑧2 + Ω𝑆 + Ω𝑧2)](1 − 2𝛽)𝑡𝑐] 𝐼+𝑆̂− 

= 𝑒𝑥𝑝[𝑖[(− Ω𝐼 + Ω𝑆)](1 − 2𝛽)𝑡𝑐] 𝐼+𝑆̂− 
(78) 

 

 It can be noted that even though the spins 𝐼 and 𝑆 are not affected by the chirp pulse at 

the same instant of time, what matters in the present application is the possibility to invert 

both spins in an interval of time much shorter than the overall evolution (before and after 

180𝑐
° ) of the ZQ. 

 One other important point to note here is that the ZQ coherence to be dephased during 

the filter is generated by the 90° hard pulse at the beginning of the filter from the antiphase 

magnetization present at that time in the transverse plane. So the amount and phase of the ZQ 

coherence is well-defined at the beginning of this filter. Moreover, it is easy to calculate the 

fraction of the ZQ coherence that can be dephased within the filter, conditional to the filter 

parameters. Firstly, it is only the 𝑐𝑜𝑠 part of the entire ZQ coherence: 𝑒𝑥𝑝[𝑖[(− Ω𝐼 +

 Ω𝑆)]((1 − 2𝛼)𝑡𝑐)] 𝐼−𝑆̂+ that will contribute to the observable signal: 

 

 𝑍𝑄𝑜𝑏𝑠(𝛼) = cos (Ω𝑍𝑄(1 − 2𝛼)𝑡𝑐) (79) 

 

where 𝛼 = 𝑧/𝐿, if the sample is enclosed between 𝑧 = 0 and 𝑧 = 𝐿 and the chirp pulse sweeps 

over the frequencies of all spins between 𝑧 = 0 and 𝑧 = 𝐿 in time 𝑡𝑐. The attenuation factor, A, 

is then obtained by integrating 𝑍𝑄𝑜𝑏𝑠(𝛼) over the whole sample[18]: 

 

 
𝐴 =  

1

𝐿
∫cos [Ω𝑍𝑄 (1 − 2

𝑧

𝐿
) 𝑡𝑐]

𝐿

0

𝑑𝑧 =
sinΩ𝑍𝑄𝑡𝑐
Ω𝑍𝑄𝑡𝑐

. 

 

(80) 

 A very similar trick, also based on a “moving spin echo” along the sample length was 

used for the suppression of strong coupling artifacts in J-resolved spectra[25]. This application is 
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quite impressive, as the strong coupling artifacts are intrinsic to the spin system and arise from 

the way the basis states superpose in this system. However, as already mentioned, the density 

matrix describing a particular state of the system and the matrices representing the 

propagators can be seen as entities expressing a certain geometry, e.g. 𝐼x, 𝐼z, 𝐼y ∙ cos (𝜃), etc. 

Broadly speaking, the strong coupling can be seen as differing from the weak one in terms of 

geometry. The deliberate choice of the combination of propagators with respect to a given 

form of a density matrix may lead to minimization of certain elements of the former which may 

correspond to minimization of signals coming from the strong coupling interaction.  In the 

case where spins are strongly coupled, a 180° pulse can cause a coherence transfer (mixing) 

between coupled spins, which is normally not allowed. In Keeler’s version of the J-spectroscopy 

(Figure 15), the magnetization resulting from this transfer acquires a spatially dependent phase 

in a variable delay 𝛼𝑡𝑐 ensured by the chirp pulse. This magnetization cannot be refocused by 

spin echo (unlike the desired one that is indeed refocused) because the frequency of its 

evolution is different on both sides of the central 180° pulse: Ω𝐼 and Ω𝑆, respectively (or Ω𝑆 and 

Ω𝐼, respectively).  

 

 

Figure 15. Schematic representation of the action of the two 180° chirp pulses in the presence of a weak gradient 
allowing the spatiotemporal averaging of the strong coupling artifacts during the J-spectroscopy sequence. 
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 An equivalent reasoning underlies the design of the sequence proposed by Keeler[45] to 

retain only the diagonal responses in his anti-z-COSY experiment (designed specifically for 

broadband homonuclear decoupling) and remove all the correlation signals. Again, any 

magnetization that is transferred to the coupling partner by a mixing pulse cannot undergo a 

spin echo, as the evolution on both sides of the pulse occurs with different frequencies. Thus, 

the evolution of the diagonal magnetization during 𝛿 is refocused by spin echo arranged by two 

rotations of pulses of small flip angle and the cross-peaks are dephased during this variable 

delay, as shown in In such an arrangement, the combined effect of the two small flip angle 

pulses becomes equivalent to the effect of a rotation provided by a 180° pulse. The novelty in 

this experiment, with respect to those described previously[18, 25], relies on the fact that it is the 

excitation and not the spin echo that is time-dependent in the consecutive experiments in the 

series where 𝛿 is varied (Figure 16a).  

 

   

Figure 16. (a) The N-type spectrum of the anti-z-COSY incorporating the multi-scan cross-peak suppression scheme 
proposed by Pell and Keeler where the δ is varied at each scan. (b) Conceptual one-shot version of the sequence in 
(a), never reported. 
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b) PSYCHE 

 

(1) Mechanism 

 

 The PSYCHE element, introduced recently by Mohammadali Foroozandeh[9], combines 

the ideas introduced above (Section III.B.2.a)) in a truly genuine way. Most importantly, it takes 

advantage of the method of Pell and Keeler to imitate the deprivation of the small flip angle 

“mixing pulses” from its “mixing ability”. Of course, in reality, the mixing still occurs but the 

“mixed magnetization” tends to be eliminated. PSYCHE adds time-dependent excitation to the 

“selectivity” provided by the small flip angle rotation and successfully exploits the small flip 

angle property for homodecoupling when inserted in the middle of t1, being a much older idea 

in itself[43]. The PSYCHE element quickly gained a significant popularity. The main reasons for 

the enthusiastic reception of the method in the community are: the significantly improved 

sensitivity of the decoupled spectra (with respect to most of other broadband homonuclear 

decoupling approaches) and the relative ease of the implementation. However, the theoretical 

bases of the mechanism underlying the PSYCHE decoupling were not thoroughly discussed yet 

in the literature. Indeed, as mentioned by the author of the technique himself: “Paradoxically, 

PSYCHE is one of the trickiest of pure shift NMR techniques to understand, but one of the 

easiest to use[47].” It is worth mentioning, that PSYCHE may not only be used as a 

homodecoupling element, but can be implemented in any experiment requiring separate 

treatment of the subsets of spins of the same nuclei, as already demonstrated[30] e.g. for the 

phase-sensitive J-resolved spectroscopy. 

 The element consists in two chirped pulses (either phase- or amplitude-modulated) 

calibrated in a way as to exert a rotation of magnetization by a small angle (typically 10° - 30°) 

applied simultaneously with the encoding gradient of 1 - 3%. In this way, the interactions are 

spatiotemporally encoded.  

 A common set of parameters used for the PSYCHE homodecoupling in the proton 

spectra is: 

 Gradient: 𝐺 =
𝑆𝑊𝐺

𝛾∙𝐿
=

12 𝑝𝑝𝑚

4258 𝐻𝑧 𝐺⁄  ∙ 1.5 𝑐𝑚
= 0.94𝐺 𝑐𝑚⁄ ≈ 1.6% of the max. 

 Chirp duration: 𝑡𝑐 = 15 𝑚𝑠 (thus the duration of the entire element is 30 𝑚𝑠) 

 Total Sweep-Width: Δ𝐹 = 10000 𝐻𝑧. Assuming the total 2 x 20% smoothing, the 

amplitude of the chirp is constant over Δ𝐹 = 6000 𝐻𝑧.  

 The rate of the chirp: 𝑅 =
Δ𝐹

𝑡𝑐
=
10000 𝐻𝑧

15 𝑚𝑠
=
20 𝑝𝑝𝑚

15 𝑚𝑠
=
12 𝑝𝑝𝑚

9 𝑚𝑠
. 

 For example, if the chemical shift difference between two coupled spins is: ∆𝛿 =

1 𝑝𝑝𝑚, the two spins will be affected by the chirp with the delay of ∆(𝜏𝐼_𝑧 − 𝜏𝑆_𝑧)  = 0.75 𝑚𝑠 
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and the distance between positions in the tube where the respective spins are resonant with 

the irradiation is: ∆(𝐼_𝑧 − 𝑆_𝑧) = 0.125 𝑐𝑚. 

 Similarly to the discussed Keeler’s method[45] for dephasing cross-peaks in his z-cosy 

experiment, also the PSYCHE benefits from the time-dependent excitation (time-dependent 

generation of coherences).  

 The discrimination between the “diagonal” and the “mixed” magnetization (both 

observable with the coherence order 𝑝 = 1) generated within the PSYCHE element, is based on 

the fact that the phase label acquired by the “diagonal” during the duration of the chirps plus 

the gradient period is independent on the moment in which it is generated by the chirp, on the 

contrary to the ”cross-peak” magnetization. Due to the fact that a weak gradient is applied 

together with the chirped pulses, the chirp affects a spin with a given offset at different times in 

different positions in the sample and thus the term that would contribute to the same cross-

peak but originates from different positions in the sample is labeled by a spatially-dependent 

phase and consequently can be dephased to, ideally, avoid contributing to the spectrum. 

 It is very convenient to analyze the PSYCHE element by modeling a two-spin system 

(weak coupling is assumed) under the influence of the chirp and in the presence of the 

encoding gradient, as it illustrates the relevant features of the method. 

 One may consider what happens in a sample containing two coupled spins I and S with 

offsets Ω𝐼 and Ω𝑆, respectively; (for a demonstration, only the term 𝐼1−𝐼2𝛼 is traced here). The 

calculations are done according to the simplified pulse sequence in Figure 17b, which is 

equivalent to the actual one in Figure 17a, requiring an additional 180° pulse and a few more 

delays for technical reasons.  
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Figure 17. (a) Pulse sequence of the F1-decoupled DIAG experiment and (b) the simplified, but theoretically 
equivalent version of it.  
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 First, all the spins are instantaneously excited from the equilibrium to the transverse 

plane, where they acquire a phase label during the first half of the t1 evolution and then are 

rotated by a hard 180° pulse. Then, each spin evolves during an additional 𝛼𝑧𝑛𝑡𝑐 delay, where 

𝛼𝑧𝑛 is the fraction of the duration of the chirp pulse before a given spin is affected by the pulse 

according to its chemical shift in position 𝑧𝑛.  

 

 
𝐼−𝑆̂𝛼

𝑒𝑣𝑜𝑙.  (
𝑡1
2
) 

→       𝑒𝑥𝑝 [+
1

2
𝑖(Ω𝐼 + 𝜋𝐽)𝑡1] 𝐼−𝑆̂𝛼

180°(𝐼𝑥+𝑆̂𝑥)
→        

𝑒𝑣𝑜𝑙.  𝛼𝑧𝑛𝑡𝑐 
→         

𝑒𝑥𝑝 [+
1

2
𝑖(Ω𝐼 + 𝜋𝐽)𝑡1] ∙ 𝑒𝑥𝑝[−𝑖(Ω𝐼 − 𝜋𝐽)𝛼𝐼_𝑧𝑛𝑡𝑐] 𝐼+𝑆̂𝛽 

(81) 

 

Subsequently, the term 𝐼+𝑆̂𝛽 with its phase label is then transferred to all possible terms 

according to Eq (46). In this demonstration it is assumed that the small flip angle chirp is 

resonant with a spin 𝐼 in the position 𝑧1 at the moment 𝜏𝑧1 (after the time 𝛼𝐼_𝑧1𝑡𝑐 of free 

evolution from the beginning of the chirp) and that the magnetization is rotated along the x axis 

in the rotating frame of reference. However, as explained in detail in Section II.C.3, in the case 

of a phase-modulated chirp, the instantaneous phase of a chirp at a given time is expressed by 

the integral of its instantaneous frequency at this moment. 

 A comment is needed regarding the possible situations when the spatiotemporal 

excitation is considered. Coupled spins I and S cannot have the same frequency in one single 

position (e.g. 𝑧1), so it will not happen that they are both affected in this very position. There 

will be certain positions in which some spins I and S have the same resonance frequency (the 

same offset) and they will be affected at the same moment (e.g. 𝛼𝐼_𝑧2,𝑆_𝑧3𝑡𝑐) by the sweeping 

chirp, for example, positions 𝑧2 and 𝑧3 (see Figure 18). In most of the other positions, the spins I 

and S have different offset frequencies and will be affected one after the other, for example: 

spin 𝐼 at the time 𝜏1 at the position 𝑧1 and spin 𝑆 at the time 𝜏4 at position 𝑧4, and: 𝛼𝐼_𝑧3𝑡𝑐 ≠

𝛼𝑆_𝑧4𝑡𝑐 (see Figure 18). Importantly, the population terms (and ZQ, DQ) that are of interest in 

the PSYCHE, can be generated from the SQ terms when the two spins are affected by the pulse 

but also when either 𝐼 or 𝑆 spin is “touched” alone, e.g. transfers of the type: 𝐼+𝑆̂𝛽 →

𝐼+𝑆̂+ (𝐷𝑄) or 𝐼+𝑆̂− (ZQ) or 𝐼𝛼𝑆̂𝛽 (populations).  
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Figure 18. A schematic model of the PSYCHE element showing situations that can occur in different positions in the 
sample, for example the simultaneous excitation of two coupled spins I and S in two different positions (here 𝑧1 and 
𝑧2) or the phase of the pulse being equal at the top and the bottom (blue dashed line) of the sample, due to the 
symmetry of the parabola representing the phase of the chirp.  
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 Coming back to the outcome of the equation Eq (81) as said above, the term Î+Ŝβ with 

its phase label is transferred, upon the rotation by the first chirp, to all possible terms according 

to Eq (46). It is worth to note that, using only the single rotation by the small flip angle pulse, 

we would already be in a position to produce a spectrum with decoupled signals (among other 

coherences), as mainly the term Î−Ŝβ would be generated, but not the Î−Ŝα (thanks to the 

“selectivity” characteristic for the small flip angle rotation). The decoupling using a one chirped 

small flip angle pulse was tested and indeed led to decoupling. No phase distortions were 

observed,  

 

 

Figure 19. DIAG spectrum of melezitose decoupled with a single 20°, 40 ms chirped pulse.  
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 It should be considered whether and - if yes - why, going through populations is 

advantageous in PSYCHE. As a reminder from Section II.G, in experiments employing small flip 

angle pulses, it is beneficial to go through populations (two-step versus one-step process) as 

they are subsequently transferred to SQC with a symmetry regarding the P/N terms which is 

not the case when the SQC are used directly. This is of importance when the two small flip 

angle pulses play the role of the mixing, unlike in the present application.  

 In the PSYCHE method, the terms of interest after the first small flip angle rotation are 

the populations, for example: 𝐼𝛽𝑆̂𝛽, that come out with certain amplitude, given by the Eq (46). 

Thus, continuing the analysis from Eq (81) we proceed to Eq (82): 

 

 
𝑒𝑥𝑝 [+

1

2
𝑖(Ω𝐼 + 𝜋𝐽)𝑡1] ∙ 𝑒𝑥𝑝[−𝑖(Ω𝐼 − 𝜋𝐽)𝛼𝐼𝑧1𝑡𝑐] 𝐼+𝑆̂𝛽

20𝑐 
° 𝐼𝜙𝑐(𝑡)(𝜏𝑧1)

→           

−
1

2
𝑖𝜃 ∙ 𝑒𝑥𝑝 [+

1

2
𝑖(Ω𝐼 + 𝜋𝐽)𝑡1] ∙ 𝑒𝑥𝑝[−𝑖(Ω𝐼 − 𝜋𝐽)𝛼𝐼𝑧1𝑡𝑐]𝐼𝛽𝑆̂𝛽. 

(82) 

  

This term will not evolve between the two small flip angle pulses (2 ∗ (1 − 𝛼𝐼_𝑧1𝑡𝑐)) – unless 

we approach the strong coupling situation - but it will be rotated by the second small flip angle 

pulse. After the second rotation, the terms of interest are those representing the magnetization 

of coherence order 𝑝 = 1 (SQ coherences). Among them, there is the part of the magnetization 

where the coherence stays on the first spin Eq (83) and Eq (84) and the one where it is 

transferred to the second spin (Eq (85) and Eq (86)). Then, both terms evolve during the 

remaining 𝛼𝐼_𝑧1𝑡𝑐 delay of the second chirp. The diagonal term: 

 

 

−
1

2
𝑖𝜃 ∙ 𝑒𝑥𝑝 [+

1

2
𝑖(Ω𝐼 + 𝜋𝐽)𝑡1] ∙ 𝑒𝑥𝑝[−𝑖(Ω𝐼 − 𝜋𝐽)𝛼𝐼𝑧1𝑡𝑐] 𝐼𝛽𝑆̂𝛽

20𝑐 
° 𝐼𝜙𝑐(𝑡)(𝜏𝑧1)

→           

−
1

2
𝑖𝜃 ∙

1

2
𝑖𝜃 ∙ 𝑒𝑥𝑝 [+

1

2
𝑖(Ω𝐼 + 𝜋𝐽)𝑡1] ∙ 𝑒𝑥𝑝[−𝑖(Ω𝐼 − 𝜋𝐽)𝛼𝐼𝑧1𝑡𝑐]

∙ 𝑒𝑥𝑝[+𝑖(Ω𝐼 − 𝜋𝐽)𝛼𝐼𝑧1𝑡𝑐] 𝐼−𝑆̂𝛽 

(83) 

 

simplifies to:  

 

 
𝑒𝑥𝑝 [+

1

2
𝑖(Ω𝐼 + 𝜋𝐽)𝑡1] 𝐼−𝑆̂𝛽 

(84) 

 

and the “cross-peak” term: 

 

 
−
1

2
𝑖𝜃 ∙ 𝑒𝑥𝑝 [+

1

2
𝑖(Ω𝐼 + 𝜋𝐽)𝑡1] ∙ 𝑒𝑥𝑝[−𝑖(Ω𝐼 − 𝜋𝐽)𝛼𝐼𝑧1𝑡𝑐] 𝐼𝛽𝑆̂𝛽

20𝑐 
° 𝐼𝜙𝑐(𝑡)(𝜏𝑧1)

→           
(85) 
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−
1

2
𝑖𝜃 ∙

1

2
𝑖𝜃 ∙ 𝑒𝑥𝑝 [+

1

2
𝑖(Ω𝐼 + 𝜋𝐽)𝑡1] ∙ 𝑒𝑥𝑝[−𝑖(Ω𝐼 − 𝜋𝐽)𝛼𝐼_𝑧1𝑡𝑐]

∙ 𝑒𝑥𝑝[+𝑖(Ω𝑆 − 𝜋𝐽)𝛼𝐼_𝑧1𝑡𝑐] 𝐼𝛽𝑆̂− 

 

simplifies to: 

 

 𝑒𝑥𝑝 [+
1

2
𝑖(Ω𝐼 + 𝜋𝐽)𝑡1] ∙ 𝑒𝑥𝑝[−𝑖(Ω𝐼 − Ω𝑆)𝛼𝐼𝑧1𝑡𝑐] 𝐼𝛽𝑆̂−. (86) 

 

The cross-peak terms, on the contrary to the diagonal ones, are modulated according to 𝛼𝐼_𝑧1𝑡𝑐 

and therefore may be dephased. 

 Note that the rotating pulse is called: 20𝑐 
° 𝐼𝜙𝑐(𝑡)(𝜏𝑧1) to account for the instantaneous 

phase of the pulse at a given time 𝜏𝑧1, but the calculations were done for an x pulse: 

20𝑐 
° 𝐼𝑥(𝑡)(𝜏𝑧1) as a demonstration. 

 The term representing the “diagonal” signal is labeled only by the phase corresponding 

to the evolution during 𝑡1 and the modulation does not involve the J coupling: 

 

 𝑒𝑥𝑝[+𝑖Ω𝐼𝑡1] 𝐼𝛽𝑆̂−. (87) 

 

Note that in order to ensure the decoupling, the sign of the coherence on both sides of the 

PSYCHE element must be opposite and it is ensured by the symmetric strong gradients 

surrounding the decoupling element.  

 The simulated distortions in phase and amplitude of the signals in the presence of 

strong coupling when decoupling is done with small flip angle hard pulses are shown in Figure 

20. 
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Figure 20. Simulated DIAG spectra of three coupled spins 𝛿1 = 0.8 ppm, 𝛿2 = 1.0 ppm, 𝛿3 = 1.1 ppm decoupled 
with two 20° hard pulses applied along the x axis. The simulation was run assuming weak coupling Hamiltonian 
(left) and strong coupling Hamiltonian (right). The cross-sections were taken along F1, as marked by the dark blue 
dashed line in the 2D spectra. 

 Regarding the efficiency of the dephasing of the unwanted terms, it should be 

considered that if the gradient covers around 10 ppm and the chirp sweeps over the 10 ppm 

(usually it sweeps over more than that, so the sweep over the 10 ppm is well controlled), then 

the magnetization can be imagined to be excited in infinitely narrow “slices”. In this case, the 

frequency difference (and so the phase difference) between such “slices” is so small, that it 

would not be sufficient for dephasing. A criterium stating what is the phase variation in a given 

length that would ensure sufficient dephasing should be evaluated. It will depend on the 

gradient and the rate of the chirp.   

 It is interesting to highlight at this point the difference between the ZQ-filter of Keeler[18] 

and the ZQ dephasing in the PSYCHE element. Keeler’s filter is designed to dephase the ZQ 

coherences generated by a hard pulse of either a small (10° - 30°) or 90° flip angle (or a mixing, 

like in the TOCSY experiment). The filter itself consists in a weak gradient and a chirped pulse 

calibrated to 180° as to induce the spin-echo in the evolution of the ZQ at different times in 
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different z positions (Section III.B.2.a)). In such a way, the ZQ coherences acquire a spatially-

dependent phase and are averaged out. In the PSYCHE element, the terms seem to be 

dephased in a similar way as the cross-peaks: as a consequence of the time delay between the 

moments at which the ZQ terms are generated in different z positions along the tube. 

 

(2) Sensitivity and spectral quality 

 

 The PSYCHE got the fame of a method that is “much more sensitive than most other 

broadband homonuclear decoupling approaches”[48]. Indeed, from our experience, the 

sensitivity of the spectra decoupled with PSYCHE competes fairly with those decoupled with 

densely modulated selective pulse (comparison data published for 13C-13C decoupling[42] and 

unpublished for the 1H-1H decoupling). The nemoZS was reported to provide sensitivity of 15-45 

times[10] higher than when a non-modulated selective pulse of the same duration is used 

(original ZS experiment).  

 Regarding the spectral quality, it has been observed that PSYCHE produces strong 

signals approximately at the mean of chemical shifts of coupled spins in F1, as discussed in 

more detail in Section V. The intensity of these disturbing responses does not seem to be 

proportional to the strength of the coupling. The trends in the appearance of these signals were 

studied using Spinach simulations. Some work with the simulations is still required in order to 

present systematic comparisons and draw unambiguous conclusions. One difficulty in this study 

was to reliably estimate the accuracy of the spatial discretization when simulating spatially 

encoded experiments.  

 The appearance of these signals is closely related to the fact that the PSYCHE element is 

not strictly an optimized refocusing element such as the selective shaped 180° pulses like 

Rsnob, Reburp, etc. The performance of the PSYCHE depends on the efficiency of the dephasing 

of the undesired coherences that it produced itself. Thus, the quality of the spectra may be 

quite sensitive to the proper adjustment of the mutually related parameters: chirps rate, the 

strength of the encoding gradient and the spin system. Moreover, a small amount of 

magnetization represented by terms in which the polarization of the coupling partner changes 

is also inherently produced by the small flip angle pulses. The amount of this magnetization – 

which obviously affects the quality of the decoupled spectrum, scales with the flip angle.   

  

3. The BIRD element 

 

 The BIRD (BIlinear Rotation Decoupling) element is one of the oldest sequences 

invented to produce homonuclear decoupling[3]. However, since then, it was never really used 
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for this purpose. It has been brought back to the modern pure shift methodology quite recently 

by Morris and co-workers[6] and it is also ubiquitously used in the real-time decoupling, where 

the BIRD blocks are inserted in-between the chunks of the detected signal[49].  

 It was Alex Pines and his co-worker who had the ingenious idea to exploit the sparse 13C 

nuclei as an auxiliary local field having the ability to induce a rotation of a proton spin without 

any interference with the state of its coupled partner. In fact, the BIRD element consists in two 

180° pulses applied simultaneously to 13C and 1H, “sandwiched” between a pair of 90° pulses 

acting on 1H only. The net effect of this sequence is to invert only those protons that are 

directly J-bonded to the 13C isotope. Since the inversion is applied to the magnetization in the 

transverse plane and combined with an additional 180° hard pulse, the chemical shift of the 

satellites is correctly preserved, while the J-coupling splitting is eliminated. Interestingly, it has 

been also reported in the original publication[3] that a series of such bilinear rotations with 

appropriate phase shifts of the rf irradiation can be used in order to decouple strongly coupled 

spins. As discussed in Section II.H, the rotation occurring when strongly coupled spins freely 

precess, must be described by operators acting along three orthogonal directions. Thus, in 

order to decouple strongly coupled spins, it would be necessary to combine several rotations to 

account for the three-dimensionality of the coupling interactions in a way to average them to 

zero[3].  

 The efficiency of the decoupling and - at the same time - the sensitivity penalty to be 

paid for the selective treatment of a subset of spins, lies in the sparsity of the 13C, dictated by 

the 1% natural abundance of this isotope. Molecules differening by isotopic substitutionare 

called isotopomers. 

  

4. Comparison and complementarity 

 

 Neither PSYCHE nor nemoZS can assure impeccable decoupling of signals arising from 

strongly coupled spins. In nemoZS, the problem is related not only to the modification of the 

energy levels and more complex magnetization trajectory during the spin echo, but also to the 

intrinsic limitation of the selective pulse which cannot be illimitably long. When two spins are 

affected together by the selective pulse, the decoupling cannot be successful. (Notably, in case 

of broader multiplets, if only part of transitions belonging to a given multiplet is affected by the 

selective pulse, a partial decoupling occurs; this issue is interesting from the point of view of the 

spin physics and the quality of decoupling and will be studied with the help of Spinach in the 

future work).  

 In the PSYCHE method, since even hard small flip angle pulses (when the spins are 

touched together) lead to decoupling, the problem seems to be mainly related to the “mixing” 
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of the basis states of strongly coupled spins, which impairs the small flip angle pulses to 

discriminate between the passive spins according to their polarization. 

 The use of the BIRD filter for decoupling offers the possibility to restrict the observation 

only to protons attached to the 13C isotope. This means that the spin dynamics during the BIRD-

based homodecoupling of a given proton spectrum concerns different spin systems than those 

present when using methods ignoring the 13C isotope. Furthermore, regarding 2D experiments, 

the refocusing of the J coupling interaction in the F1 indirect dimension takes place in a 

different spin system network than the one present during the detection, if the standard 

broadband decoupling of 13C isotope is used during the detection. The symmetry of the spin 

system network between t1 and t2 is restored when the decoupler during acquisition is 

switched off. Depending on the situation, it may or may not be advantageous to preserve the 
13C in the detected dimension.  

 The interest of introducing a distinct isotope to a given spin system lies in the flexibility 

of causing different splitting patterns which may be complementary in cases where spins are 

strongly coupled. If one of two signals with very similar chemical shift is split by a coupling large 

enough as to separate the transitions, the strong coupling condition is not fulfilled anymore, 

(Figure 21). 

 

Figure 21. Simulated 1D 1H NMR spectra of an ABX system: A = 4.3 ppm, B = 4.27 ppm, X = 4.8 ppm, JAB = 5 Hz, JAX 
= 12 Hz, JBX = 4.9 Hz. a) The spins A and B are very strongly coupled, their corresponding signals severely overlap 
and the intensities of the individual transitions are distorted. b) 13C spin was added as a fourth spin into the spin 
system and it is 1JC,H - bonded to the B spin; B is the 13C satellite here. The JAB  is revealed when the B multiplet is 
additionally splitted by the large heteronuclear coupling. The signal A remains distorted due to similar chemical 
shifts of A and B. The antiphase magnetization transferred between A and B is visible because transitions of B were 
moved away. 
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IV. Toolbox of F1-homodecoupled 2D experiments 
 

A. The DIAG experiment 

 

 The DIAG[10], issued as an improved version of the δ-resolved[19] experiment, has been 

designed to address the need to rapidly asses the chemical shift and multiplicity of signals by 

separating them in an aliased top-resolution 2D spectrum. The experiment takes an enormous 

advantage of the F1-decoupling and the spectral aliasing, which can be applied by any user, by 

simply adjusting the acquisition parameters. The simplicity of the experiment is its big asset – it 

can be easily implemented and the desired information is directly available without any need of 

“unusual” spectral processing. The DIAG pulse sequence can be thought of as NOESY/TOCSY 

sequence, out of which the mixing period has been removed, however, the two one-shot 

Keeler’s filters are preserved in order to ensure the most efficient filtration of the in-phase 

decoupled magnetization from unwanted contributions. The DIAG, in principle generating 

signals only along the diagonal, turns out to be an excellent model experiment to study the 

effectiveness of the J-refocusing in a much more informative way than 1D (like the se-SPFGE[15], 

selective - single pulse field gradient echo), since all the non-refocused magnetization will show 

up as out-of-diagonal artifacts.  

 

1. Aliasing  

 

 Spectral aliasing occurs when the detected signal is not sampled with a sufficient rate. It 

is particularly easy to cause the aliasing of a NMR spectrum on a spectrometer. The only thing 

which needs to be done is the reduction of the spectral window (in the F1 indirect dimension) 

in the acquisition parameters. For example, the typical SW = 10 ppm in a proton spectrum can 

be changed to 0.1 ppm, or if 13C dimension is considered, SW may be reduced from 200 ppm to 

10 ppm. 

 The lowpass sampling theorem (or Nyquist condition) states that we must sample at a 

rate at least twice that of the highest frequency that we want to detect. For example, if a 

proton spectrum of the spectral width of 10 ppm (corresponding to 5000 Hz in the 500 MHz 

spectrometer) is to be acquired, the sampling rate fs should be at least 10000 Hz. This 

determines the short time intervals at which oscillating signal should be sampled (called the 

Dwell time): 𝛥𝑡 = 𝐷𝑊 =
1

10000
𝐻𝑧. The number of samples (points) - TD - multiplied by the 

dwell time gives the so-called acquisition time AQ (not experimental time), which determines 
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for how long the magnetization is acquired. For example, if 512 points (corresponding to 

increments in F1) are acquired to obtain COSY spectrum with SW = 10 ppm, the acquisition time 

(AQ) is 51.2 ms (Eq (88)), whereas if the SW is reduced to 0.1 ppm, the acquisition time 

increases 100 times (Eq (89)). 

 

 𝐴𝑄(𝑆𝑊=10 𝑝𝑝𝑚) = 𝑇𝐷 ∙ 𝐷𝑊 = 512 ∙ (
1

2 ∙ 5000
) = 51.2 𝑚𝑠 (88) 

 

 𝐴𝑄(𝑆𝑊=0.1 𝑝𝑝𝑚) = 𝑇𝐷 ∙ 𝐷𝑊 = 512 ∙ (
1

2 ∙ 50
) = 5120 𝑚𝑠 (89) 

 

 In terms of resolution, if the TD is fixed, it is advantageous to detect the magnetization 

for longer time; the experimental time remains almost exactly the same, but two spins 

precessing with similar frequency, for example differing by 20 Hz, during a short detection do 

not have enough time to distinguish themselves – that results in non-resolved signals. The 

longer the acquisition time, the higher the resolution. In fact, the spectral resolution increases 

by the factor equal to the reduction of the spectral width. 

 

Figure 22. Graph showing the dependence of the duration of the acquisition time and the possibility to distinguish 
between two spins precessing with similar frequencies. In this example, two carbons resonating at 45 (green) and 
55 Hz (red) in a 20 kHz window (200 ppm at 100 MHz) are considered. The dashed lines indicate the acquisition 
time of 12.8 ms and 128 ms, respectively and in both cases 512 points are acquired.  

 The immediate consequence of using such atypically short spectral width when 

acquiring a NMR spectrum, besides the very high resolution, is the so-called “spectral aliasing”, 

which causes ambiguities in frequencies. It can be understood even in a very intuitive way that 

with so few points taken when detecting the signal in such a relatively long acquisition time, it 

is impossible to represent correctly the frequencies in the NMR signal. The actual frequency of 

precession could be very high, but with poor sampling, it would look like a very low frequency, 

which is shown in Figure 23. 



 74 

 

Figure 23. The undersampling is illustrated by the green points. All the three different frequencies illustrated in 
these three subplots alias to the low frequency shown in green. 

 When aliasing for example a DIAG spectrum, the diagonal of the original spectrum 

appears in the aliased one as if it was cut in pieces, but with high-resolution signals attached to 

it, Figure 24. In this special experiment - the fact that the chemical shifts in F1 are not in their 

usual positions, but all fall in the range of SWalias = 0.1 ppm - is not problematic, since obviously 

the chemical shifts of diagonal signals are the same in F1 and F2 and can be read easily from the 

direct dimension.  
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Figure 24. The non-aliased (top) and aliased (bottom) DIAG spectra of melezitose. 

 In the aliased spectrum, the signals appear at frequencies given by the modulo function: 

 

 𝑣𝑎 = 𝑚𝑜𝑑 (𝑣0 +
𝑆𝑊𝑎
2
− 𝐶𝐹, 𝑆𝑊𝑎) −

𝑆𝑊𝑎
2
+ 𝐶𝐹  (90) 

 

where 𝑣0 is the true frequency, 𝑆𝑊𝑎 the width of the spectrum and CF the position of the 

carrier frequency. 
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2. Comparison of the DIAG and J-resolved spectroscopy 

 

a) Separation of interactions 

 

 The acquisition parameters, when aliasing the DIAG, become well comparable with 

those used in the J-resolved spectroscopy. In the latter, the spectral width in F1 is typically 50 

Hz, since the F1 is the J-only dimension. Such a frequency range is covered by several co-

occurring scalar couplings. Thus, the ratio SW1/TD(F1) in the J experiment determines the 

resolution of a multiplet - separation of the individual transitions. It is in opposition to the DIAG, 

where the F1 is the δ-only dimension and thus the maximal t1 in this dimension sets the limit in 

the possibility to detect two spins as individual signals. The DIAG experiment has proven to 

provide signals separated by as little as 2-3 Hz. On the other hand, the resolution in the F2 

direct dimension, which normally is limited only by relaxation (but not the precious 

experimental time), defines the chemical shift separation between different spins in J-res and 

multiplet resolution in DIAG. 

 From our experience, the multiplets extracted from both experiments are of very similar 

quality. A more in-depth analysis of the signals lineshapes could probably reveal some subtle 

differences as a consequence of these two experiments being radically different yet used for 

the same purpose - measurement of J-coupling constants after separation from the chemical 

shift evolution.  

 

b) Lineshapes and strong coupling 

 

 The J-resolved experiment is fundamentally not a pure shift experiment. Lacking any 

mixing, it generates, what could be called – reduced diagonal multiplets with active transitions 

on the anti-diagonal of what would be a standard 2D multiplet.  

 



 77 

 

Figure 25. Original form of a J-res spectrum (left) and a spectrum sheared by 45° out of which a pure-shift spectrum 
is easily obtained by projection along the F1 dimension.  

However, when shared by 45°, the projection along the indirect dimension results in a singlet 

for each chemical shift. Moreover, since no mixing is present in the sequence, the J-res is a 

phase modulated experiment, which means that after the FT, the signals have the phase-twist 

lineshape. The 45° projection of the phase-twist lineshape in the frequency space is zero, thus, 

before the shearing, an absolute mode processing is necessary, which prevents this experiment 

to be applicable to solve problems requiring a top-resolution.  

 The main reason to compare the DIAG experiment to the J-res and cognate 

experiments[26, 30, 50, 51] is the long-standing interest in this family of methods resulting in quite a 

rich choice of publications from the last decades, reporting on many different aspects of the 

technique. Many improvements to the original sequence have been proposed. On the contrary, 

the δ-resolved family of experiments is a much younger competitor in the NMR methodology 

and thus the research performed in the field of the J-res was quite inspiring in the present 

study.  

 There are some methodological issues that allow drawing a parallel between these two 

families and learning in a reciprocal way. For example, the selectively inverting/refocusing 

element is as essential for broadband homonuclear decoupling as it is to invert the direction of 

evolution of the magnetization and have an access to J and anti-J spectra[44] to combine them 

and produce the absorption lineshapes. These two areas (quadrature and spin-echo) interfuse 

and consequently, methods invented for one of them, may be useful for the other.  

 Besides the absorption lineshapes[44], one other very important advancement in 

increasing the quality of the J-spectra was Keeler’s method to eliminate the strong coupling 

artifacts by spatiotemporal averaging[25].  
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c) DIAG vs. TSE-PSYCHE 2D J spectroscopy 

 

 The most recent version of the J-resolved spectroscopy is the so-called TSE-PSYCHE (for 

triple-spin echo PSYCHE) 2D J-spectroscopy, where the central refocusing 180° hard pulse is 

replaced by a 180° chirped pulse with gradient and, in order to ensure the absorption 

lineshapes, inversion of the evolution of the magnetization is provided by PSYCHE. For the 

evolution during the chirp to be compensated, a symmetrical 180° chirped pulse is added in the 

sequence. The experiment is said to provide “virtually artefact-free 2D J spectra with excellent 

sensitivity, absorption mode lineshapes and no need for any special or non-linear post-

processing.”[51] The experiment still requires however the shearing by 45°. The high quality of 

the spectra is attributed to the replacement of all pulses by chirp pulses with weak gradients, 

making the sequence to be entirely deprived from hard pulses.  

 The DIAG experiment equally provides multiplets with absorption lineshapes and 

sensitivity comparable to TSE-PSYCHE 2D J. However - if decoupled with the PSYCHE decoupling 

element - very intense artifacts are present between (strongly) coupled spins (see Section V), 

even though two Keeler’s z-filters are kept in the end of the sequence to enhance the filtration 

of magnetization after applying the PSYCHE-based homodecoupling.  

 First, after learning that 180° hard pulses may lead to manifestation of the mixing 

effects when spins are strongly coupled, we were tempted to apply Keeler’s trick to the DIAG 

sequence. Tests with the modified sequence, where all 180° hard pulses are substituted by 

chirps have been performed and indeed, it seemed that the appearance of these signals is 

somewhat less random and they are less pronounced. However, in some spectra resulting from 

experiments using the nemoZS decoupling and traditionally the 180° hard pulses, those artifacts 

were less intense. This was the first indication for us that the responses may be related to the 

decoupling method itself and that additional filtration is needed to improve the performance of 

PSYCHE with respect to the nemoZS. It was striking however that such an intense artifacts were 

never reported in the first articles on PSYCHE[9, 30], available in 2016, when the research of the 

author of this thesis started.  

 The second indication that the PSYCHE performance in DIAG and J-res may be related to 

the presence of the mixing pulse(s) came during the very first simulation of the DIAG 

experiment using the Spinach simulation package, where the original code “psyche_1d” offered 

by Mohammadali Foroozandeh, was used as a starting point. It became clear that, in order to 

reproduce properly the coherence selection and the quadrature in the F1-decouled DIAG 

experiment, it is necessary to retain symmetrical coherence transfer pathways during the t1 

evolution. That prompted us to hypothesize that some magnetization transfers related to the 

use of the PSYCHE element can be made observable only if a mixing is present. In fact, the 



 79 

original pseudo-2D PSYCHE sequence as well as the TSE-PSYCHE 2D J spectroscopy are based on 

sequences requiring only one of the paths (+1 or -1) to be retained.  

 The only truly 2D experiment acquired and published by 2016, exploiting the PSYCHE 

decoupling, was F1-decoupled TOCSY[4], however, the problem of artifacts was not discussed. 

Moreover, knowing that transfers of magnetization not symmetrical with respect to spin-echo 

may occur in the presence of strong coupling, it made me to wonder wheatear the P and N 

datasets, which could be separated from the Bruker-acquired full dataset, are symmetrical in 

this case and if there is a potential to examine/process this datasets separately or, alternatively, 

to introduce a non-standard scheme for phase incrementation for the quadrature. These issues 

will be explored in the future work. .   

 

 To summarize, the DIAG experiment, though excellent to acquire highly resolved 

multiplets in a minimum experimental time, does not provide any information about the 

connectivity between spins (unless they are strongly coupled). Thus, a mixing allowing the 

restration of the COSY-type correlations is highly desired.  

 

B. The CLIP-COSY experiment 

1. The pulse sequence  

 

 As it was already noted, often, it is not a single pulse which marks the borderline 

between the t1 and t2, but it is rather a combination of several pulses and delays that constitute 

the “mixing period”. Such mixing can be seen as an adjustment of the trajectory of the 

magnetization in order to prepare it in a desired way for the start of the t2 evolution.  

 The CLIP-COSY experiment[16] (Figure 26) employs the perfect echo[22] sequence as the 

mixing period. The sequence consists in five pulses with carefully chosen phases and can be 

considered as two sequential spin-echoes that refocus the offsets but not the J-couplings. The 

mixing is flanked by two one-shot Keeler’s z-filters. 

Figure 26. The sequence of the CLIP-COSY experiment with the optional homodecoupling in F1. 
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 The product operator description of the CLIP-COSY experiment shows the fate of the 

magnetization from the moment of excitation.  

 

 

𝐼𝑧
90𝑥
°

→ −𝐼𝑦
𝑡1
→ 

 

−𝐼𝑦 ∙ 𝑐𝑜𝑠(Ω𝐼𝑡1) ∙ 𝑐𝑜𝑠(𝜋𝐽𝑡1) 

+𝐼𝑥 ∙ 𝑠𝑖𝑛(Ω𝐼𝑡1) ∙ 𝑐𝑜𝑠(𝜋𝐽𝑡1) 

−2𝐼𝑥𝑆𝑧 ∙ 𝑐𝑜𝑠(Ω𝐼𝑡1) ∙ 𝑠𝑖𝑛(𝜋𝐽𝑡1) 

−2𝐼𝑦𝑆𝑧 ∙ 𝑠𝑖𝑛(Ω𝐼𝑡1) ∙ 𝑠𝑖𝑛(𝜋𝐽𝑡1) 

90𝑥
°

→  
−𝐼𝑧 ∙ 𝑐𝑜𝑠(Ω𝐼𝑡1) ∙ 𝑐𝑜𝑠(𝜋𝐽𝑡1) 

+𝐼𝑥 ∙ 𝑠𝑖𝑛(Ω𝐼𝑡1) ∙ 𝑐𝑜𝑠(𝜋𝐽𝑡1) 

−2𝐼𝑥𝑆𝑦 ∙ 𝑐𝑜𝑠(Ω𝐼𝑡1) ∙ 𝑠𝑖𝑛(𝜋𝐽𝑡1) 

−2𝐼𝑧𝑆𝑦 ∙ 𝑠𝑖𝑛(Ω𝐼𝑡1) ∙ 𝑠𝑖𝑛(𝜋𝐽𝑡1) 

 

In the first stage the magnetization evolves exactly as in the simplest COSY experiment, 

however, the observable magnetization generated by the first 90° hard pulse at this point is 

ignored here and only the −𝐼𝑧 term (marked in blue above) is selected by the Keeler’s z-filter. 

The product 𝑐𝑜𝑠(Ω𝐼𝑡1) ∙ 𝑐𝑜𝑠(𝜋𝐽𝑡1) expresses the modulation of the signals in t1 (both diagonal 

and cross-peaks, since both arise from this one term). In the calculations of the trajectory of the 

magnetization during the mixing, this product will be carried passively and, for simplification, is 

labeled by 𝑐𝑐(𝑡1) =  𝑐𝑜𝑠(Ω𝐼𝑡1) ∙ 𝑐𝑜𝑠(𝜋𝐽𝑡1) in the following: 

𝑧−𝑓𝑖𝑙𝑡𝑒𝑟
→      𝐼𝑧 ∙ 𝑐𝑐(𝑡1)

90𝑥
°

→ −𝐼𝑦 ∙ 𝑐𝑐(𝑡1)

∆

2
, 180𝑥

° ,
∆

2
→       

−𝐼𝑦 ∙ 𝑐𝑐(𝑡1)𝑐𝑜𝑠(𝜋𝐽∆) 

−2𝐼𝑥𝑆𝑧 ∙ 𝑐𝑐(𝑡1)𝑠𝑖𝑛(𝜋𝐽∆) 
90𝑦
°

→  
−𝐼𝑦 ∙ 𝑐𝑐(𝑡1)𝑐𝑜𝑠(𝜋𝐽∆) 

−2𝐼𝑧𝑆𝑥 ∙ 𝑐𝑐(𝑡1)𝑠𝑖𝑛(𝜋𝐽∆) 

 

 
∆

2
, 180𝑥

° ,
∆

2
→       

−𝐼𝑦 ∙ 𝑐𝑐(𝑡1)𝑐𝑜𝑠(𝜋𝐽∆)𝑐𝑜𝑠(𝜋𝐽∆) 

+2𝐼𝑥𝑆𝑧 ∙ 𝑐𝑐(𝑡1)𝑐𝑜𝑠(𝜋𝐽∆)𝑠𝑖𝑛(𝜋𝐽∆) 

−2𝐼𝑧𝑆𝑥 ∙ 𝑐𝑐(𝑡1)𝑠𝑖𝑛(𝜋𝐽∆)𝑐𝑜𝑠(𝜋𝐽∆) 

−𝑆𝑦 ∙ 𝑐𝑐(𝑡1)𝑠𝑖𝑛(𝜋𝐽∆)𝑠𝑖𝑛(𝜋𝐽∆) 

90𝑥
°

→  

−𝐼𝑧 ∙ 𝑐𝑐(𝑡1)𝑐𝑜𝑠(𝜋𝐽∆)𝑐𝑜𝑠(𝜋𝐽∆) 

+2𝐼𝑥𝑆𝑦 ∙ 𝑐𝑐(𝑡1)𝑐𝑜𝑠(𝜋𝐽∆)𝑠𝑖𝑛(𝜋𝐽∆) 

+2𝐼𝑦𝑆𝑥 ∙ 𝑐𝑐(𝑡1)𝑠𝑖𝑛(𝜋𝐽∆)𝑐𝑜𝑠(𝜋𝐽∆) 

−𝑆𝑧 ∙ 𝑐𝑐(𝑡1)𝑠𝑖𝑛(𝜋𝐽∆)𝑠𝑖𝑛(𝜋𝐽∆) 

 

𝑧−𝑓𝑖𝑙𝑡𝑒𝑟
→       

+𝐼𝑧 ∙ 𝑐𝑐(𝑡1)𝑐𝑜𝑠
2(𝜋𝐽∆) 

+𝑆𝑧 ∙ 𝑐𝑐(𝑡1)𝑠𝑖𝑛
2(𝜋𝐽∆) 

90𝑥
°

→  
−𝐼𝑦 ∙ 𝑐𝑐(𝑡1)𝑐𝑜𝑠

2(𝜋𝐽∆) 

−𝑆𝑦 ∙ 𝑐𝑐(𝑡1)𝑠𝑖𝑛
2(𝜋𝐽∆) 

 

During the first of the two echoes, the antiphase terms are generated, for the coherence 

transfer to occur upon the subsequent application of the central 90°y pulse. The second echo 

serves principally to interconvert the antiphase magnetization (now on the second spin) along 

the x-axis to the in-phase magnetization along the y-axis. This magnetization will give rise to the 

cross-peaks (as it was evolving with frequency Ω𝐼 in 𝑡1 and will evolve with frequency Ω𝑆 in 𝑡2. 

On the other hand, the initial in-phase magnetization along the y-axis, generated at the very 

beginning of the perfect echo, remains unaffected by the entire mixing sequence. It will lead to 

the diagonal signals, provided that the trigonometric term multiplying the product operator is 

not zero: 𝑐𝑜𝑠2(𝜋𝐽∆) ≠ 0. The final (fifth) 90°x pulse of the perfect echo drags the two in-phase 

terms representing the forthcoming diagonal and the cross-peak magnetization away from the 
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transverse plane and align it with the z direction, where it is filtered out from any other (not z) 

magnetization. Thus prepared, the clean in-phase magnetization is eventually made observable 

by the very last 90°x pulse of the entire sequence.  

 It is easy to note that the pulses transfer the magnetization between coupled protons in 

the same way as the well-known refocused INEPT sequence transfers the coherence from 

proton spins to the coupled 13C spins, where the antiphase proton magnetization is prepared 

and transferred to the 13C. During the following second delay, the anti-phase on carbon 

interconverts into the in-phase magnetization. During the entire period, the carbon and proton 

chemical shift evolutions are refocused in spin-echoes. 

 As the coherence between coupled spins is usually transferred through the antiphase 

terms, which are always perpendicular to the anterior in-phase terms, the single rotation 

provided by an individual mixing pulse will preserve the phase discrepancy between the terms 

that will eventually lead to diagonal and cross-peaks, respectively. The combination of pulses 

with deliberately chosen phases and delays adjusted for the interconversion and manipulation 

of the in-phase and antiphase states can lead to the fine-tuning of the modulation of these two 

kinds of terms (future diagonal and cross-peak terms). This is what is achieved in the CLIP-COSY 

experiment – both the diagonal and the cross-peaks arise from in-phase terms described by 

operators aligned with the same axis in the vector model (y in this example). Thus, all the 

resulting signals can be phased to absorption and moreover, very importantly, all the individual 

multiplet components will have the same phase.  

 There is one additional advantage of the fact that the cross-peak signal is modulated 

just as the diagonal by 𝑐𝑜𝑠(Ω𝐼𝑡1) ∙ 𝑐𝑜𝑠(𝜋𝐽𝑡1) in t1. In most of other COSY-type experiments, the 

cross-peaks come from antiphase magnetization, which must be then necessarily sine 

modulated, e.g. 𝑠𝑖𝑛(Ω𝐼𝑡1) ∙ 𝑠𝑖𝑛(𝜋𝐽𝑡1). A sine-modulated FID starts from zero and thus a time is 

required for the build-up of the signal. With this respect, the advantage of the CLIP-COSY is that 

there is no minimal limit of points to be acquired to avoid serious drop in signals intensity.  

 It is noteworthy that even if the very first version of the COSY experiment was 

introduced in NMR as early as in 1976[52] the CLIP-COSY experiment, taking advantage of the 

extended mixing sequence of the perfect echo, was proposed only very recently (2016)[16]. It 

adds to the long-lasting trend of searching for ways to improve the phase behavior of the COSY 

spectra. It was clear that a COSY experiment based solely on in-phase magnetization, besides 

other advantages, would be compatible with the recently fast-developing homonuclear 

decoupling. A homodecoupled COSY experiment would be invaluable in assigning spectra 

where a limit in resolution is difficult to overcome by standard methods (complex multi-

component mixtures, mixtures of chemically cognate species, etc.).  

 However, all the advantages of the CLIP-COSY come with one major disadvantage, which 

is the variable intensity of signals in the spectra, which depends on coupling constants in a 
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given spin system and the ∆ delay in the perfect echo element. Sometimes, the intensity of 

signals may be lower than the noise level and thus rendering the spectrum not reliable in 

indicating the through-bond correlations between the spins. This issue is discussed in detail in 

the following section. 

 

2. Signals intensity vs. clip delta delay 

   

 One of the features that sets the CLIP-COSY apart from many other variants of the COSY 

experiment, is that the magnetization at the very beginning of the detection period (beginning 

of the t2), is modulated not only by the chemical shift and – if not F1-decoupled – the J-scalar 

coupling in t1, but moreover by the J-scalar coupling evolving during the four delays 
∆

2
 of the 

perfect echo sequence. (See the modulation of the final terms in the product operator 

description of the experiment above, marked in orange). These additional terms multiplying the 

operators (or their products) carry an information about the amount of the in-phase 

magnetization corresponding to the “source” spin and its coupled partner, respectively, at the 

time of the last pulse before detection and therefore translates to the intensity of the signals. It 

is noteworthy that in most of the standard experiments where the operators before the 

detection are modulated exclusively during 𝑡1, it is only the rf mixing pulse (its flip angle, phase, 

offset) which will influence the intensity of the generated or transferred magnetization with a 

specific geometry. Here, in addition to a pulse, the extra modulation must be taken into 

account.   

 Each active coupling contributes with a  𝑐𝑜𝑠2(𝜋𝐽𝑎𝑐𝑡∆) coefficient to the modulation of 

the “diagonal” term (each of the two spin echoes comes up with the factor 𝑐𝑜𝑠(𝜋𝐽𝑎𝑐𝑡∆)) and 

each passive coupling contributes an additional: 𝑐𝑜𝑠2(𝜋𝐽𝑝𝑎𝑠𝑠∆). The “cross-peak” term on the 

other hand is additionally modulated by 𝑠𝑖𝑛2(𝜋𝐽𝑎𝑐𝑡∆) and each passive coupling adds 

𝑐𝑜𝑠(𝜋𝐽𝑝𝑎𝑠𝑠∆). This can be easily summarized in Eq (91) and Eq (92), respectively. 

 

 
𝐼𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙_12 = 𝑐𝑜𝑠

2(𝜋𝐽12∆) ∙ ∏ 𝑐𝑜𝑠2(𝜋𝐽1𝑖∆)

𝑛

𝑖≠1,2

 
(91) 

 

 
𝐼𝑐𝑟𝑜𝑠𝑠−𝑝𝑒𝑎𝑘_12 = 𝑠𝑖𝑛

2(𝜋𝐽12∆) ∙ ∏ 𝑐𝑜𝑠(𝜋𝐽1𝑖∆) ∙ ∏ 𝑐𝑜𝑠(𝜋𝐽2𝑗∆)

𝑚

𝑗≠1,2

𝑛

𝑖≠1,2

 
(92) 
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where n and m are the number of coupling partners of spins 1 and 2 respectively. Thus, the 

intensity of signals in the two-dimensional spectrum is a function of the J-coupling values and 

the chosen ∆ delay. Moreover, while the diagonal signals will be always positive (modulated by 

products of functions to a power of two), the cross-peaks may also be negative (due to the 

product with 𝑐𝑜𝑠(𝜋𝐽𝑝𝑎𝑠𝑠∆)). What is essential however, the multiplet components of either 

diagonal or cross-peaks will all have the same sign. Hence, even in case of low resolution CLIP-

COSY spectra, where the active coupling is not resolved, the signals will not cancel out as in 

antiphase-based experiments. What can however happen, is the cancellation of the positive 

and negative signals (where the sign results from the dependency on ∆), if they happen to 

overlap.   

 Note that the intensity of signals generated in standard experiments depends only on 

the part of the magnetization selected out of all magnetization to contribute to the spectrum 

and the flip angle of the pulses. Thus for example, the DQF-COSY has half the intensity of the 

original COSY experiment, as only the DQ terms (which are in two times smaller quantity than 

the SQ) contribute to the spectrum, but then, all the signals are made observable by the same 

90°x mixing pulse and get from it the same intensity coefficient.  

 It may seem that the intensity dependence in the CLIP-COSY experiment, strictly linked 

to individual signals and difficult to guess for complex systems without the necessity of actually 

doing the calculations, may pose some troubles when analyzing the spectra. For example, it 

may happen that the intensity of certain cross-peaks reaches zero due to an unfortunate 

combination of the coupling constants present in the spin system and the CLIP delay. On the 

other hand however, the possibility to precisely relate the intensity of a given signal to the J 

couplings while deliberately choosing the delay may be exploited to some advantage. In order 

to maximize the signals intensity, a suitable CLIP delay should be chosen so that the product of 

functions that underpins the intensity of a given signal reaches its maximum.  

 As an example, the intensity of chosen cross-peaks expected in the CLIP-COSY spectrum 

of androstene were calculated on the basis of measured J couplings for a range of the CLIP 

delays  (Figure 27). Generally, short delays (up to 25 ms) are somewhat preferred - as the 

behavior of the functions is well predictable in this interval of arguments – however, often far 

from optimal for certain signals. It can be clearly seen from the graphs that in order to 

significantly maximize certain signals, a complementary experiment should be run with a longer 

delay. 
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Figure 27. Calculated intensities of cross-peaks of chosen signals of androstene in CLIP-COSY experiment as a 
function of a CLIP delta delay Δ [sec]. 

 

3. Three-dimensional CLIP-COSY experiment 

 

 In order to emphasize all cross-peaks, it would be necessary to run several CLIP-COSY 

experiments, each optimized for a given combination of active and passive couplings. In order 

to completely remove the intensity variation of the signals, the 
Δ

2
 delays could be incremented 

so to obtain a dataset that is suitable to be Fourier transformed. In fact, we turned this 

conceptual experiment into reality. In this 3D CLIP-COSY, each diagonal and cross-peak evolves 

into a characteristic pattern in the frequency domain of the third, J-only dimension, dictated by 

the same equations that modulate the intensity in the time domain as shown before (Eq (91) 



 85 

and Eq (92)). The sum of the absolute values of all the multiplet components would provide a 

CLIP-COSY experiment, without the intensity dependence.  

 

Figure 28. (a) Pulse sequence of the 3D CLIP-COSY. (b) Pulse sequence of a selective 2D experiment allowing the 
acquisition of spectra of the selectively excited proton and its J-bonded partners. (c) Schematic representation of 
the 3D CLIP-COSY experiment. The F3 is the directly detected dimension, the F1 is the homodecoupled indirect 
dimension and F2 is a dimension resulting from the incrementation of the CLIP delta delay Δ and Fourier 
Transformation. (d) An example of a 2D spectrum, acquired with a pulse sequence shown in (b) and equivalent to 
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the cross-section of the 3D spectrum taken along the F2 and at δ12a = 1.27 ppm in F1. The diagonal signal 12a is 
positive and its cross-peaks have antiphase patterns.  

 The experiment, not thoroughly explored yet, is very interesting conceptually, since the 

introduction of the third dimension, perpendicular to the other two, may enable the disclosure 

of the magnetization (including possible artifacts), generated during the mixing. This advantage 

of replacing a constant delay by an incremented delay in the context of artifacts has been 

already used[53] to reveal coherence transfer pathways associated with PSYCHE, not detected 

previously. 

 

4. Comparison with other pure-shift COSY experiments 

 

 Several versions of COSY experiments with decoupling in the indirect dimension have 

already been published[5, 54]. The first of them is not based on in-phase magnetization, but 

achieves the J-coupling suppression thanks to the constant time acquisition and was proposed 

by Gareth Morris – this is the constant time multiple quantum-filtered COSY (CT-MQF-COSY). It 

should be reminded, for the fair comparison with the CLIP-COSY experiment, that the signals in 

constant time COSY experiments are represented by equations of the type: 

 

 
−𝑠𝑖𝑛(Ω𝐼𝑡1) ∙ 𝑐𝑜𝑠(𝜋𝐽𝑇) ∙ 𝐼𝑥 

+𝑠𝑖𝑛(Ω𝐼𝑡1) ∙ 𝑠𝑖𝑛(𝜋𝐽𝑇) ∙ 2𝐼𝑧𝑆𝑦. 
(93) 

 

They represent the diagonal and the cross-peaks, respectively and the T stands for the constant 

time period. Note that in the particular example, the mixing consisted in a single 90° pulse, 

which is not the case in DQF/MQF. Nevertheless, the equations serve to demonstrate that 

there is only one modulation frequency in 𝑡1 (no splitting due to the J-coupling). The additional 

term multiplying the operators (or their products) carry an information about the amount of 

the in-phase and antiphase magnetization at the time of the last pulse before detection and 

therefore translates to the intensity of the signals in the 2D spectrum.   

 The CT-MQF-COSY experiment would not be compatible with any of the 

homodecoupling elements based on selective refocusing as the experiment exploits the 

antiphase terms and decoupling would make the signal intensity to collapse to zero. However, 

since the technique does not require the selective treatment of different spin subsets (with the 

active spins being usually a much smaller subset than the passive ones), the main advantage of 

this approach is the relatively high sensitivity of the pure-shift spectrum. However, the 

relaxation losses in this experiment can be significant because for every t1 increment, the 

period between the excitation and detection is constant. The higher the resolution needed, the 
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longer should be the T period. In most of other COSY experiments, the relaxation losses are 

much smaller when the increments are shorter and increase steadily with t1.  

 Another experiment – the PSYCOSY[54], published very recently (2018), is an in-phase 

experiment and the first COSY-like to use the PSYCHE decoupling element to eliminate the J-

coupling splitting from the F1-indirect dimension. This experiment, just as the F1-decoupled 

CLIP-COSY, separates the chemical shift evolution from the J-coupling evolution and the 

coherence transfer. Those two evolutions take place in separate periods in the sequence, 

before the detection starts. Whereas in the CLIP-COSY the coherence transfer occurs during the 

perfect echo sequence, in the PSYCOSY it is just a delay during which the J-couplings evolve. In 

such a way, the t1 period can be made very long in order to greatly increase the digital 

resolution, but without the need to take care of the results of long J evolution. The latter would 

result in appearance of cross-peaks coming from spins coupled through several bonds (up to 

five or six), which would rather hinder than facilitate the spectral interpretation. 

 

5. BIRD-decoupled CLIP-COSY experiment 

 

 The BIRD-based decoupling inserted in the middle of the t1 evolution of a 2D 

homonuclear experiment ensures that each diagonal signal in the spectrum comes from a 

proton attached to 13C in a different isotopomer. During the mixing, the magnetization is then 

transferred to the proton coupling partners that are not attached to the 13C isotope, but are still 

coupled to it through heteronculear couplings of a longer range. Thus, each 1D spectrum 

extracted from a BIRD-decoupled 2D homonuclear spectrum along the F2 direct dimension is a 

fingerprint of a given isotopomer. 

 The pulse sequence of the BIRD-decoupled CLIP-COSY experiment is shown in Figure 29. 

The only modification with respect to the other toolbox experiments using nemoZS or PSYCHE 

decoupling is the additional initial loop with the 180° pulse on the 13C channel being applied in 

every second scan in order to ensure the best possible elimination of the residual passive 

magnetization (proton spins attached to 12C). As mentioned in Section III.B.4, the broadband 13C 

decoupling during acquisition may be optionally switched on/off. 
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Figure 29. The BIRD-F1-decoupled CLIP-COSY sequence with optional broadband decoupling of the 13C during 
acquisition.  
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V. Spectral artifacts 
 

 As James Keeler stated, “scientists prefer to interpret the NMR spectra as if they are 

weakly coupled – each multiplet corresponds to single nuclear environment and each line 

within the multiplet represents a set of spin states associated with the coupling partners. In 

practice, the effects of strong coupling are usually evident and these assumptions no longer 

hold.”[25] He actually proved, an in-detail analysis of the source, that the modulation and 

propagation of the signals coming from second-order effects can lead to finding a method to 

suppress them, contrarily to what was believed for a long time – that the strong coupling 

artifacts are unavoidable. The term “artifacts” in the context of strong coupling is often used in 

the literature and this thesis, however, it is somewhat imprecise, because the signals that 

originate from the special interaction when spins are strongly coupled are, fundamentally, not 

artifacts, but naturally occurring responses. It is however their different dependence on the 

propagation during the pulse sequence - with respect to the weakly coupled spins - that makes 

them usually appear with different phase, amplitude and frequency than the majority of the 

signals and hence these strong coupling responses are undesired in the spectrum. The 

manipulation of strong coupling artifacts may however differ for different experiments, as the 

way how the magnetization is propagated always depends on the propagation pathway used in 

a specific pulse sequence.  

 In this thesis, the difficulty to systematically study the artifacts was due to the necessity 

to first distinguish between different types of artifacts. This required quite a long-term studying 

of the NMR methodology in general and the strong coupling artifacts in particular. Some of the 

artifacts observed in the spectra may be related rather to experimental issues than special spin 

interactions. For example, the proper adjustment of gradients (their strength, length and 

position) and suitable phase cycling may be essential to improve the quality of the spectrum. 

The artifacts in our experiments are not ultimately classified and described yet but the aim of 

this work was to tread the ground to their systematic detection, simulation, explanation and, 

tentatively – elimination. 

 The presence of artifacts in DIAG spectra, originating from different sources, have been 

for the first time signalized in the work published in 2015[10].  

 The most convenient experiment to start with is the DIAG experiment, as there is no 

mixing sequence in it. The ideal experimental output of this sequence is shown in Figure 31 

where all signals overlapping in 1D are spread with high resolution in the second indirect 

dimension and the projection along F2 provides a pure shift spectrum.  
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Figure 30. Region of interest of a F1-nemoZS-homodecoupled DIAG spectrum of melezitose, where the out-of-
diagonal artifacts are below the chosen signal intensity threshold. This spectrum is equivalent with an “ideal” DIAG 
spectrum. 

 

A. Comparison of the spectral quality of– decoupled DIAG spectra employing 

nemoZS, PSYCHE and BIRD elements. 

 

 The “true” appearance of non-aliased full spectra of melezitose is shown in Figure 31. 

The PSYCHE and nemoZS-decoupled spectra show non-absorptive artifacts along the half-

diagonal, marked with a red dashed line. Some of these artifacts are also spread in the form of 

several intense, dispersive signals along the F1 dimension. The BIRD-decoupled spectrum is 

devoid of such artifacts. One should note that for a fair comparison, the BIRD-decoupled 

spectrum is shown with intensity increased four times with respect to other spectra. Those 

spurious signals may be somewhat reduced by using a very long homospoil pulse (100 ms) 

placed between the two final z-filters in the sequence. However, this comes at the cost of an 

increased amount of artifact signals looking like a kind of “noise” along the F1, Figure 32.  
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Figure 31. The comparison of DIAG spectra decoupled in F1 with nemoZS, PSYCHE and BIRD elements showing some 
of the out-of-diagonal artifacts. Spectra were acquired with TD (F2, F1) = (8k, 512), NS = 2 and processed with SINE 
window function.  
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Figure 32. The comparison of PSYCHE-DIAG spectra acquired with homospoil with duration 1 ms and 100 ms, 
respectively. Spectra were acquired with TD (F2, F1) = (4k, 512), NS = 2. The full spectra are processed without any 
window function, the enlargements are processed with a SINE window function.  

 

 The artifacts resistant to the long homospoil gradient are signalized in Figure 33 and 

shown in the enlarged regions in Figure 34. Rectangular patterns in color show the positions of 

these out-of-diagonal artifacts. The right-up and left-down angles of the rectangles drawn with 

dashed lines indicate the diagonal signals of a pair of coupled spins, whereas the right-down 

and left-up angles – the positions of cross-peaks. The half-transparent filled rectangles laying at 

the center of the vertical sides of the dashed rectangles highlight the antiphase artifacts 

resonating at half the frequency difference between frequencies of the two coupled spins in F1. 

These artifacts correspond well with the signals expected on account of the calculations 

presented in the theoretical sections. For example, the rectangle marked with the green dashed 

line points at the signals of protons 3ax and 4. The numbers are written with a green font. The 

signal 3ax is additionally involved in a coupling with 2ax and thus the symbol is bicolored 

(yellow and green). 
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Figure 33. The comparison of DIAG spectra decoupled in F1 with nemoZS, PSYCHE and BIRD element showing some 
of the out-of-diagonal artifacts (the green and red squares) and a signal with irregular multiplet pattern (orange 
square). 
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Figure 34. The comparison of DIAG spectra decoupled in F1 with nemoZS, PSYCHE and BIRD elements showing some 
of the out-of-diagonal artifacts (enlargements).  

 

 What can be seen from the figures is that some artifacts are present at the positions of 

cross-peaks (the left-up and right-down angles of the dashed rectangles). Their multiplicity is 

preserved only in F2 and the signals have antiphase pattern. In F1 they are singlets. The full 

pattern is not very well visible in the Figures above as the intensity of the signals is quite low 

(the strength of the coupling is not very high); most often, it is the positive part of the antiphase 

pattern that is visible, in fact the intensities of the positive and negative parts are not the same. 

The origin of these signals was discussed in Section II.H.  In 2D, they are generated during 

acquisition; this is why they are decoupled in F1.  

 Similar transfer of magnetization, if strong coupling is present, is expected to happen in 

the period between the preparation and detection, notably, during the sequence element 

responsible for a spin echo (Section III.B.2.a) in the middle of t1. This magnetization will not be 

refocused, as it evolves with different frequencies on both sides of the element. (It should be 

noted that expressing the phenomenon as “magnetization transfer” or “mixing of the basis 

states” depends on the basis in which the spin system is considered; if we describe the process 

in the Hilbert space, we speak about transfer of magnetization during, for example, the 180° 
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hard pulse). Such a magnetization is expected to be detected in the spectrum approximately at 

the mean value of their chemical shifts in F1 and indeed it is observed experimentally as intense 

signals with unpredictable phase.  

  If those artifacts were originating from just the mixing of the basis states, as described 

by Eq (53) and manifested by rotation induced by the hard 180° and/or “theoretical” selective 

180° pulse with no duration (as used in simulations) – their characteristics could be easily 

calculated. In this case they would be equivalent with the artifacts that Keeler described and 

suppressed in his J-resolved experiment[25]. The multiplicity patterns of these artifacts in DIAG 

could be rationalized from Eq (57) and Eq (62). Also, their intensity would be comparable with 

the intensity of signals appearing at the “cross-peaks positions”. Such artifacts, with the [+ +] 

pattern (in the upper row) and [- -](in the lower row) are visible in BIRD-decoupled spectra 

where strong coupling occurs, Figure 34, highlighted by a half-transparent pink rectangles.  

 However, in DIAG experiment, where either the very long selective pulses (non-

equidistantly modulated) or the PSYCHE element is used, there are different sources of 

magnetization, which can result in signals just at the middle between the frequencies of 

coupled spins in F1. As was shown by Nuzillard[26] in the context of the SERF experiment, when 

the evolution during biselective pulses are used and the Hamiltonian describing the spin 

dynamics depends on time through the shaped envelope, a condition similar to the one in the 

Hartmann-Hahn transfer is fulfilled. The consequence of it is that magnetization can be 

transferred between spins even when they are weakly coupled. Such a magnetization also 

contributes to the signals at the average of chemical shifts in F1.  

 The PSYCHE element is the most problematic with this respect, as it is inherent to pulses 

of a small flip angle to generate cross-peak responses (Sections II.G and III.B.2). This is why they 

usually play a role of mixing pulses[32, 34].Moreover, a considerable amount of ZQ coherences is 

also produced within the PSYCHE element. Even if, in principle, those two classes of terms 

should be dephased as a result of spatiotemporal averaging, their presence may be very 

sensitive to experimental parameters, above all the duration of the chirped pulses. As 

demonstrated by Eq (80), it is clear that the attenuation of unwanted coherences depends on 

the duration of the chirp and its rate, which is related to the range of frequencies that should 

be covered by the sweeping pulse. One should note that this equation does not describe strictly 

the attenuation of unwanted coherences in the PSYCHE element, since here, the generation of 

these terms is time-dependent (see Section III.B.2.b)), unlike in the Keeler’s z-filter. 

 When the content of the colorful boxes in Figure 35 are examined for spectra decoupled 

with nemoZS and PSYCHE, respectively, it appears that in some cases the methods seem to be 

complementary, as the very intense artifacts observed in PSYCHE, are not so intense in nemoZS 

and vice versa. This complementarity may however not be systematic. Simulations that could 

establish precisely the criteria for this complementarity will be the objective of future work. 
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 In the BIRD-decoupled DIAG and CLIP-COSY spectra, quite intense artifacts looking like 

𝑡1 noise appear where spins are strongly coupled (for example Figure 39 and Figure 42). These 

artifacts change position and intensity, depending whether the broadband decoupler is active 

or not during the acquisition. This comes as no surprise as the spin system changes in either 

case. Those artifacts were initially attributed to the low sensitivity of the experiment, 𝑡1 noise 

or experimental artifacts due to. The Spinach simulations were useful to confirm that these 

signals result from the spin system itself.  

 

B. Artifacts versus duration of PSYCHE 

 

 Regarding the PSYCHE element and its overlooked disposition to dephase unwanted 

coherences and its dependence on the duration of the decoupling element, this parameter was 

tested. It was observed that, indeed, the phase and amplitude of the signals at the average of 

chemical shifts of coupled spins in F1 change upon variation of the length of the PSYCHE 

element, as shown in Figure 35. It should be noted that the intensity of the spectra was 

adjusted to expose the artifacts in the semi-transparent rectangular colored frames and so that 

some recoupling artifacts are additionally visible at the distance of J/2 along F1 up and down 

from the diagonal decoupled signals.  
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Figure 35.  The comparison of PSYCHE-DIAG spectra acquired with different durations of the decoupling element: 
2x7 ms, 2x15 ms, 2x30 ms, 2x50 ms; the strength of the gradient for spatial encoding was kept constant (1%). 
Spectra were acquired with TD (F2, F1) = (4k, 256), NS = 2. The spectra were processed using SINE window 
functions. 
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Figure 36. Comparison of F1 cross-sections extracted at position marked by the dashed black lines in figures above 
and corresponding to protons 1’a and 4, respectively. The asterisk marks the artifact in between coupled spins. It 
can be seen that the intensity of these artifacts does not change linearly with the duration of the PSYCHE element.   

 

 A rationalization of the generation of undesired terms within the PSYCHE element and 

the efficiency of their dephasing with respect to the parameters of the PSYCHE element 

(duration of chirps, its relation to the strength of the encoding gradient etc.) will be studied in 

future work. Spinach simulations will facilitate the examination of these transfers now when 

the theoretical background has been established as presented in this thesis and will facilitate 

the design of simulations and experimental tests.  
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VI. Complementarity of the decoupling elements with respect to 

strong coupling 
 

 It is generally assumed that if Δ𝛿 ≤ 𝐽 the spins are classified as very strongly coupled, 

however, already with Δ𝛿 ≤ 10𝐽, strong coupling features can be recognized in the spectra.  

 There is a considerable number of strongly coupled spins in the carbohydrate 

melezitose, for example, the fructofuranosyl ring of the sugar is an example of ABMXY system 

(H-3′, 4′, 5′, 6𝑎
′ , 6𝑏

′ ). The chemical shifts and couplings in this system are summarized in Table 1.  

 
Table 1. Scalar couplings (Hz) present in the glucopyranosyl ring of melezitose. 

 

Table 2. Ratio /J. If lower than 10, it indicates strong coupling interaction.  

 

 

Melezitose 

ring A, glucopyranosyl 

Signal 1𝑎
′ 1𝑏

′ 3′ 4′ 5′ 6𝑎
′ 6𝑏

′ 

𝜹 3.635 3.785 4.2985 4.2845 3.904 3.835 3.831 

1𝑎
′        

1𝑏
′ 12.3       

3′        

4′   8.5     

5′        

6𝑎
′     7.6   

6𝑏
′     2.4 12.4  

Melezitose 

ring A, glucopyranosyl 

Signal 1𝑎
′ 1𝑏

′ 3′ 4′ 5′ 6𝑎
′ 6𝑏

′ 

𝜹 3.635 3.785 4.2985 4.2845 3.904 3.835 3.831 

1𝑎
′        

1𝑏
′ 6.1       

3′        

4′   0.8     

5′        

6𝑎
′     4.5   

6𝑏
′     15.2 0.2  
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It can be seen that the protons 3’ and 4’ are very strongly coupled, with Δ𝛿 = 6.98 𝐻𝑧 and 

𝐽4′−3′ = 8.50 𝐻𝑧. Such strongly coupled spins are not expected to be decoupled by neither the 

PSYCHE nor the nemoZS elements. In fact, the 1D and 2D multiplet shows completely mixed 

transitions. 

 

 Figure 37. Enlarged regions of DIAG spectra decoupled in F1 with nemoZS and PSYCHE showing the very strongly 
coupled 3’ and 4’ and the dispersive artifacts correlating these signals with their partner 5’.  

 The BIRD-decoupling is perfectly complementary in this case to nemoZS and PSYCHE, as 

the satellites 3’ and 4’ are not strongly coupled and they do not interact with any neighboring 

spins neither. When broadband 13C decoupling is used during the acquisition, the signal will be 

decoupled in F1, but the strong coupling interaction will still be present and observed in the 

direct dimension, as we “cut off” the effect of the 13C. Without 13C decoupling during 

acquisition, the first order multiplets can be eventually disclosed by profiting from the presence 

of the 13C isotope in both dimensions, Figure 38 d, f. 
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Figure 38. Enlarged region of the BIRD-decoupled DIAG spectrum showing signals 3’ and 4’ well resolved in the F1 
dimension, but still manifesting second order effects in the F2 dimension. The spectrum on the left was acquired 
with TD(F2, F1) = 8k, 512 and AQ(F2,F1) = 3.15, 0.2 s (it should be noted that the AQ should not be as long if 13C 
broadband decoupling is active during acquisition, this dataset was run unintentionally with these parameters). The 
spectrum on the right was acquired with TD(F2, F1) 4k, 512 and AQ(F2,F1) = 1.58, 0.2 sec. The spectrum shown in 
the right bottom enlargement acquired with TD(F2, F1) =8k, 512 and AQ(F2,F1) = 3.15, 0.2 s.  

 The coupling constant 𝐽4′−3′  can be then measured experimentally from the non-13C-

decoupled BIRD-DIAG experiment. The coupling can be measured precisely from the 3’ diagonal 

signal splitted only by this coupling and appearing as a doublet with 𝐽4′−3′ = 8.5 Hz. The 

diagonal signal 4’ is splitted by two coupling constants: 𝐽4′−3′  and 𝐽4′−5′. The latter cannot be 

measured precisely due to limit in resolution in F2 (the spectrum was acquired with the 
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following parameters in the F2 direct dimension: TD = 2048, SW = 1.3 ppm, AQ = 1.58 s). It is 

clear however that the two couplings are very similar, since the signal 4’ shows a triplet pattern. 

Previously, these couplings could not be observed with the precision provided by our 

experiment and it was reported that: “… the relevant coupling constants were obtained 

through computer-aided simulations, because classical calculation procedures failed. The values 

[are] 𝐽4′−3′ = 7.6 Hz and 𝐽5′−3′ = 8 Hz[55].  

 Subsequently, the BIRD-decoupled CLIP-COSY can be acquired in order to provide the 

cross-peaks in the form of multiplets splitted not only by homonuclear JH-H couplings, but 

additionally by heteronuclear couplings through 2 or 3 bonds, 2,3JC-H. It is particularly interesting 

in this experiment to be able to reveal the cross-peaks that lie very close to the diagonal 

(situation common when spins are strongly coupled). Normally in such situations, diagonal 

peaks severely overlap with their corresponding cross-peaks. In our experiment, the diagonal 

signals are displaced far apart from the diagonal by the 1JC-H coupling, (Figure 39). 
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Figure 39. BIRD-decoupled CLIP-COSY spectrum without broadband 13C decoupling during acquisition (top); 
enlargement showing multiplets splitted by homo- and heterenuclear couplings.  
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Figure 40. Examples of cross-sections extracted along F2 from the BIRD and PSYCHE-decoupled CLIP-COSY 
experiments and coupling constants that contribute to the splitting of the respective signals. 

 In certain cases, the additional split generated by the presence of the 13C isotope in a 

spin system may be used to a great advantage to obtain information about the heteronuclear 

couplings, which may give additional insights into the structure of the molecule. However, 

often, the additional splitting of proton signals having very similar chemical shift by the long 

range JC,H couplings, such as the protons 5” and 6”a (Figure 40, second cross-section from the 

top) may lead to an extensive overlap (with respect to standard protons spectra) and eventually 

a failure in revealing the coupling constants. 

 It is noteworthy that in correlation experiments like the BIRD-decoupled CLIP-COSY or 

TOCSY and with the broadband decoupler active during acquisition, cross-peaks lying above and 

below the diagonal originate from transfers of magnetization within a given pair of proton 

spins, where the pair belongs to a different spin system when the cross-peak along F1 and F2 is 

generated, respectively. This loss of symmetry in the magnetization transfers may lead to a 

different lineshape of cross-peaks on both sides of the diagonal (in addition to different 

multiplicity – the cross-peaks symmetry known from typical 2D experiments is lost when F1-

decoupled). 
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Figure 41. Fragment of BIRD-decoupled CLIP-COSY spectrum showing the cross-peak 4’-5’ on both sides of the 
diagonal. When above it, the cross-peak results from a transfer of magnetization from strongly coupled 3’ and 4’. 
When below the diagonal, it results from transfers from the weakly coupled isotopomers 3’ and 4’.  

 The BIRD-decoupling based experiments (BIRD-DIAG, BIRD-CLIP-COSY, BIRD-TOCSY) are 

essential to retrieve the coupling constants in such seriously mixed signals as 3’ and 4’. 

However, applying the BIRD method to decouple very crowded proton spectra may sometimes 

be adverse. This can occur when the distance between a satellite and its coupling partner 

approximately matches half of the large heteronuclear coupling: the strong coupling interaction 

between the part of the broad multiplet of the satellite and the partner will take effect and 

complicate the spectrum. An illustrative example of this situation was found in a spectrum of 

strychnine, where one part of the diagonal signal of isotopomer 3 (splitted by the large 1JCH 

heteronuclear coupling) shows a strong coupling interaction with the signal of the isotopomer 

2, (see red circles in Figure 42)). 
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Figure 42. Fragment of a 2D F1-BIRD-decoupled DIAG spectrum of strychnine showing the aromatic protons 1, 2 
and 3 splitted by the large 1JCH  ~ 145 Hz couplings (top) and the Spinach simulations of 1D spectra of this spin 
system in the presence/absence of 13C isotope.  

 Coming back to the melezitose, the fructofuranosyl ring was used as a model to 

reproduce, by simulation, the artifacts that result from spin interactions in isotopomers. First, 

the coupling constants and chemical shifts were adjusted according to a simple manual fitting 

of a one-dimensional simulated spectrum (Mnova) with the experimental one. Then, the 
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spectrum was simulated using Spinach, assuming the strong coupling Hamiltonian, and 

theoretically decomposed, as discussed in Section II.H and shown in Figure 10 for two strongly 

coupled spins.  

 

 

Figure 43. The F2-trace extracted from PSYCHE-CLIP-COSY at 𝛿 ≈ 4.285 ppm showing the mixed 3’ and 4’ diagonal 
signals and the cross-peak 4’-5’ (top), Mnova simulation of the fructofuranosyl ring with a simple manual fitting 
(middle) and the experimental 1D spectrum (bottom). 
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Figure 44. Simulated 1D spectra of the fructofuranosyl ring; the 1D spectra were “theoretically” decomposed into 
spectra with selective excitation (performed sequentially for each spin in the spin system), in order to show the 
transfers between strongly coupled spins. When keeping the 13C in the spin system, each selectively excited 
spectrum corresponds to a distinct isotopomer.  
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 In the two-dimensional spectra, the artifacts resulting from these transfers will evolve in 

the indirect dimension according to their frequency in given intervals of the pulse sequence. 

The fact that several spins may be strongly coupled and that each pulse and delay contributes 

to the rotation of this magnetization according to the Hamiltonian of the interaction (or in 

other words there is the constantly changing commutation relationship between the 

propagator and the density matrix describing the magnetization), the magnetization turns out 

to not only appear in between the coupled spins, but it is observed as being distributed over 

the F1 indirect dimension, as shown in Figure 45.  

 

  
 

Figure 45. Simulation of BIRD-DIAG spectra with and without 13C decoupling during acquisition. 

 It is noteworthy that the spectra shown on the left side of Figure 44 would correspond 

to cross-sections extracted along the F2 dimension of a DIAG experiment, if (and only if) the 

strong coupling interaction was not existing in the F1 dimension. The reason is that the 1D 

spectra shown in Figure 44 are perfectly separated (they were simulated by applying a 

theoretical pulse selectively to one proton). If strong coupling would exist in F1, the lineshapes 

of signals extracted from the spectrum would be additionally distorted. The F1-BIRD-decoupled 

experiments give the possibility to have an access to cross-sections of a 2D spectrum, from 

which the strong coupling interactions can be examined as in the theoretical spectra, since in F1 

the spins are not mixed in the same way as in F2.   
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Figure 46.  Cross-sections extracted from Spinach simulations of 2D BIRD-decoupled DIAG spectra. 

Simulated spectrum in Figure 47 can be compared to the experimental one in Figure 38. 
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Figure 47. Enlarged region of the BIRD-decoupled DIAG spectrum showing signals 3’ and 4’ splitted by the large 
carbon coupling in F2 dimension and manifesting the first order structure in both dimensions. (a) experimental 
signal, (b) simulated signal. 
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VII. Conclusions and Perspectives  
 

 The initial aim of the work was to assemble an uniform set of experiments for fast and 

simplified assignment of resonances with the possibility to precisely measure couplings, even in 

cases where it is greatly impeded, such as strong coupling.  

 There is a plethora of different methods to achieve the simplification of spectra by 

homonuclear decoupling or other techniques – band-selective spectroscopy, J-resolved 

spectroscopy, z-COSY, E-COSY, etc. Thus, producing such a simplification was not a goal of the 

research in itself. Rather, it seemed necessary to evaluate the performance of the different 

methods in different situations. This task turned out to be quite demanding, taking into account 

how detailed the comparison needs to be to examine methods that all lead to similar results 

and overall successful homodecoupling. What sets them apart is the different mechanism that 

they are based on and performance in cases when spins are strongly coupled.  

 The study of the strong coupling artifacts in the F1-decoupled two-dimensional 

(correlation) experiments was organized in a way as to find a link between the features 

observed in 1D spectra (mainly the “roof effect” and intensity distortions), the family of J-

resolved experiments (for which quite a significant amount of literature data is available) and 

the 2D experiments developed in our group. 

 Since the exact mechanism of the PSYCHE method and its performance in the context of 

different experiments was not thoroughly studied and reported, it became a great part of this 

work to understand it and estimate the sources of artifacts that were observed in the spectra. 

Moreover, since the element was introduced quite recently, it has not been much modified. 

One motivation in this project was to explore possibilities of improving its performance.  

 For that purpose, a basic theoretical ground has been prepared and the key rules 

binding the modern NMR methods have been revised and discussed. This was a first necessary 

step to be able to develop a package of simulations of the studied experiments. The main usage 

of spin simulation programs is to strengthen the link between the appearance of the spectrum 

and its formal description. The theoretical description facilitates significantly the search for 

improved solutions in NMR methodology.  

 The theoretical considerations developed in this thesis should be useful to better design 

the simulations and to get more precise information about the simulated system. That would 

eventually and tentatively lead to proposing solutions for further improvement of the existing 

methods.  

 Some difficulties encountered in the development of this project were, among others: 

making the link in applicability of analysis performed for 2-3 spins in much larger spin systems 

and the considerable time of the simulations treating explicitly the spatial encoding. Moreover, 
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quite a basic knowledge of the spin dynamics of this thesis author was hindering the capacity to 

relate the appearance of the simulated signals to their origin in a more systematic way by the 

decomposition of the simulation into smaller elements.  
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Appendix 
 

A. Experimental details 

 

 All spectra were recorded at 298 K on a Bruker DRX 500 spectrometer with a 5‐mm DCH 
13C–1H cryogenic probe equipped with a z‐gradient coil. The durations of the 90° pulses were 

10.0 and 10.3 μs for 1H and 13C, respectively. The relaxation delay was set to 2 s. The pulses 

used for homonuclear decoupling were centered in the middle of the detected window.  

 For the ZS‐decoupled spectra, the selective refocusing pulses applied during the 

encoding gradient (Gs) were Rsnob[41] pulses. For the modulation generating non‐equidistantly 

separated irradiation sites, the lists of frequencies contained two blocks of n = 50 irradiation 

sites, where, in each block, the distance between first and second site was (1/3)Δ (where Δ = 

SW/n) and SW = 20 ppm.  The distance was gradually incremented up to (2/3)Δ. Such a 

modulated pulse covered 20 ppm, but homogenous coverage was ensured over 10 ppm. The 

encoding gradient in this case was calculated to cover a spectral domain of 10 ppm, equal to 

the one covered by each block of irradiations, which was 0.78 G cm−1 (1.3 % of the maximum 

strength). The duration of the Rsnob pulse was 120 ms with refocusing bandwidth of 156 and 

78 Hz, respectively. The power of the modulated pulses was set by calibrating the non-

modulated pulses using the Shape Tool (part of Bruker's Topspin 3.5 software), which resulted 

in calculated change of power level with respect to the 10.0 μs hard 90° pulse on the 1H channel 

The calculated powers were finally increased by a factor corresponding to the 50 irradiation 

sites. 

 For the PSYCHE decoupling experiments, most of the time the two 10 kHz saltire 

chirps[30] had (each) a duration of 15 ms 20% smoothing. In some tests chirps with duration 

(each) of 7, 30, and 50 ms were also employed. The power of each double saltire chirp is set 

automatically by the pulse program, but was verified using the following calculations [5]: (a) A 

single adiabatic phase modulated chirp (sweeping from low to high frequency) was generated 

according to the desired durations (7, 15, 30, and 50 ms, respectively), bandwidth (10 kHz), and 

number of points (14,000) and saved; the same was repeated for a chirp sweeping from high to 

low frequency. The two phase modulated chirps sweeping in opposite directions were added by 

using the Manipulate/Add Shapes option in the Shape Tool by aligning to the center of the 

shape and scaling to 100%. (b) Such a single but now amplitude modulated (saltire) non-

adiabatic chirp was integrated by using Analysis/Integrate Shape (analyze integr3) option in the 

Shape Tool by introducing duration of the single saltire chirp (7, 15, 30, and 50 ms, 

respectively), desired flip angle (20°), and duration of the hard 90° pulse on the 1H channel 
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(10.0 μs). (c) Finally, the obtained change of power level (dB) was added to the power of the 

hard 90° pulse on the 1H channel (−11.05 dB). The power of the double saltire chirp element 

was set to the resulting value. During the chirp pulses, a constant field gradient of 0.58 G cm−1 

(1% of the maximum power) was applied. 
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B. Pulse programs 

 

1. nemoZS - decoupled homonuclear experiments 

 

a) DIAG 

 

;bbhd_ZS_diag 
;based on TOCSY with ZQ elimination from 
;M. J. Thrippleton and J. Keeler 
;Angew.Chem.Int.Ed. 42, 3938-3941 (2003). 
;with Zangger-Sterk homodecoupling  
;J. A. Aguilar, S. Faulkner, M. Nilsson & G. A. Morris, 
;Angew. Chem. Int. Ed. 49, 3901-3903 (2010). 
;J. A. Aguilar, A. A. Colbourne, J. Cassani, M. Nilsson, G. A. Morris,  
;Angew. Chem. Int. Ed., 51, 6460-6463 (2012). 
;A. Cotte, A, D. Jeannerat, Angew. Chem. Int. Ed., 54 (20), 6016-6018 (2015). 
;avoid selective pulses parameters to be overwritten by inconnmr 
 
;$CLASS=HighRes 
;$DIM=2D 
;$TYPE= 
;$SUBTYPE= 
;$COMMENT= 
 
#include <Avance.incl> 
#include <Delay.incl> 
#include <Grad.incl> 
 
"d0=3u" 
"in0=inf1/2" 
"in1=2*in0" 
"p2=p1*2" 
"p22=p32" 
"p27=500u" 
"d27=500u" 
"d13=50u" 
"d18=d13+p27+d27" 
"d11=30m" 
"d12=20u" 
"d7=500u" 
"d6=d7" 
 
1 ze 
2 d11 
3 d12 pl1:f1 
  d1 
  p1 ph1 
  d0 
; the homodecoupling starts here 
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  d13 UNBLKGRAD  
  p27:gp3 
  d27 
  p2 ph6 
  d13 
  p27:gp3*-1 
  d27 
  100u pl0:f1 
  3u  
  (center (p22:gp4) (p32:sp29 ph7):f1) 
  100u pl1:f1 
  d13 
  p27:gp7*-1    
  d27 
; the homodecoupling ends here 
  d0 
  p2 ph5 
  d18 
  3u  
  p1 ph2 
; magnetisation moved to z 
  5u pl0:f1 
  300u gron0 
  p11:sp1:f1 ph4 
  100u groff 
  5u pl0:f1 
  d6 gron5 
  300u gron0 
  p12:sp2:f1 ph4 
  100u groff 
  d7 
  5u  pl1:f1 
  4u BLKGRAD   
  p1 ph3 
  ; magnetisation moved to plane for aquisition 
  go=2 ph31 
  d11 mc #0 to 2 F1PH (ip1, id0&dd1) 
exit 
 
ph1=0 2               ;first hard pulse 90 
ph2=0 0               ;hard pulse 90 sending magnetization to z for filtering 
ph3=0 0               ;hard pulse 90 sending magnetization to plane after filtering 
ph4=0                  ;sweep pulse as filter 
ph5=0 0               ;hard pulse 180 
ph6=0 0               ;hard pulse 180 during t1 
ph7=0 0               ;selective pulse 180 
ph31=0 2 
 
;pl0 : zero power (120 dB) 
;pl1 : high power 
;p1  : 90 degree high power pulse 
;p11 : duration of first sweep 
;p12 : duration of second sweep 
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;d0  : incremented delay 
;d1  : relaxation delay 
;d6  : duration of homospoil 
;d7  : recovery delay 
;sp1 : strength for first sweep 
;sp2 : strength for second sweep 
;sp29: strength for selective pulse for homodecoupling 
;gpz0: gradient strength for ZQ suppression 
;gpz3: gradient for selective refocusing  
;gpz4: gradient for spatial encoding 
;gpz5: gradient strength for homospoil 
;gpz7: gradient for selective refocusing 
;in0 : 1/(2 * SW) = DW 
;nd0 : 2 
;NS  : 2 * n 
;DS  : 8 
;td1 : number of t1 increments 
;MC2 : States-TPPI 
 
;for z-only gradients: 
;gpz0: 5% 
;gpz3: 30% 
;gpz4: 1% 
;gpz5: 40% 
;gpz7: 60% 
 
;use gradient files: 
;gpnam3: SMSQ10.100 
;gpnam4: RECT.1 
;gpnam7: SMSQ10.100 
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b) CLIP-COSY 

 

;bbhd_ZS_clip_cosy 
;based on TOCSY with ZQ elimination from 
;M. J. Thrippleton and J. Keeler 
;Angew.Chem.Int.Ed. 2003, 42, 3938-3941 
;with Zangger-Sterk homodecoupling 
;clean in-phase transfer according to  
;Koos, M. R. M.; Kummerlowe, G.; Kaltschnee, L.; Thiele, C. M.; Luy, B.  
;Angew.Chem.Int.Ed. 2016, 55, 7655-7659 
 
;$CLASS=HighRes 
;$DIM=2D 
;$TYPE= 
;$SUBTYPE= 
;$COMMENT= 
 
#include <Avance.incl> 
#include <Delay.incl> 
#include <Grad.incl> 
 
"d0=3u" 
"in0=inf1/2" 
"in1=2*in0" 
"p2=p1*2" 
"p22=p32" 
"p27=500u" 
"d27=500u" 
"d13=50u" 
"d18=d13+p27+d27" 
"d11=30m" 
"d12=20u" 
"d7=500u" 
"d6=d7" 
 
1 ze 
2 d11 
3 d12 pl1:f1 
  d1 
  p1 ph1 
  d0 
; the homodecoupling starts here 
  d13 UNBLKGRAD  
  p27:gp3 
  d27 
  p2 ph6 
  d13 
  p27:gp3*-1 
  d27 
  100u pl0:f1 
  3u  
  (center (p22:gp4) (p32:sp29 ph7):f1) 
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  100u pl1:f1 
  d13 
  p27:gp7*-1    
  d27 
; the homodecoupling ends here 
  d0 
  p2 ph5 
  d18 
  3u  
  p1 ph2 
; magnetisation moved to z 
  5u pl0:f1 
  300u gron0 
  p11:sp1:f1 ph4 
  100u groff 
  5u pl1:f1 
; the in-phase transfer starts here 
  p1 ph2 
  d20 
  p2 ph8 
  d20 
  p1 ph8 
  d20 
  p2 ph8 
  d20 
  p1 ph2 
; the in-phase transfer ends here 
  5u pl0:f1 
  d6 gron5 
  300u gron0 
  p12:sp2:f1 ph4 
  100u groff 
  d7 
  5u pl1:f1 
  4u BLKGRAD   
  p1 ph3 
; magnetisation moved to plane for detection 
  go=2 ph31 
  d11 mc #0 to 2 F1PH (ip1, id0) 
exit 
 
ph1=0 2               ;first hard pulse 90 
ph2=0 0               ;hard pulse 90 sending magnetization to z for filtering 
ph3=0 0               ;hard pulse 90 sending magnetization to plane after filtering 
ph4=0                  ;sweep pulse as filter 
ph5=0 0               ;hard pulse 180 
ph6=0 0               ;hard pulse 180 during t1 
ph7=0 0               ;selective pulse 180 
ph8=1                  ;hard pulses in CLIP transfer 
ph31=0 2 
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;pl0 : zero power (120 dB) 
;pl1 : high power 
;p1  : 90 degree high power pulse 
;p11 : duration of first sweep 
;p12 : duration of second sweep 
;d0  : incremented delay 
;d1  : relaxation delay 
;d6  : duration of homospoil 
;d7  : recovery delay 
;d20: CLIP delay: 1/(4J(HH))                                   
 
;sp1 : strength for first sweep 
;sp2 : strength for second sweep 
;sp29: strength for selective pulse for homodecoupling 
;gpz0: gradient strength for ZQ suppression 
;gpz3: gradient for selective refocusing  
;gpz4: gradient for spatial encoding 
;gpz5: gradient strength for homospoil 
;gpz7: gradient for selective refocusing 
;in0 : 1/(2 * SW) = DW 
;nd0 : 2 
;NS  : 2 * n 
;DS  : 8 
;td1 : number of t1 increments 
;MC2 : States-TPPI 
 
;for z-only gradients: 
;gpz0: 5% 
;gpz3: 30% 
;gpz5: 40% 
;gpz7: 60% 
 
;use gradient files: 
;gpnam3: SMSQ10.100 
;gpnam4: RECT.1 
;gpnam7: SMSQ10.100 
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2. PSYCHE - decoupled homonuclear experiments 

 

a) DIAG 

 

;bbhd_psyche_diag 
;based on TOCSY with ZQ elimination from 
;M. J. Thrippleton and J. Keeler 
;Angew. Chem. Int. Ed. 42, 3938-3941 (2003). 
;with PSYCHE homodecoupling 
;J. A. Aguilar, S. Faulkner, M. Nilsson & G. A. Morris, 
;Angew. Chem. Int. Ed. 49, 3901-3903 (2010). 
;J. A. Aguilar, A. A. Colbourne, J. Cassani, M. Nilsson, G. A. Morris, 
;Angew. Chem. Int. Ed., 51, 6460-6463 (2012). 
;M. Foroozandeh, R. W. Adams, N. J. Meharry, D. Jeannerat, M. Nilsson, G. A. Morris, Angew. Chem. Int. Ed. Engl. 
53, 6990 (2014). 
;A. Cotte, A, D. Jeannerat, Angew. Chem. Int. Ed., 54 (20), 6016-6018 (2015). 
;avoid selective pulses parameters to be overwritten by inconnmr 
 
;automatic calculation of power for the chirps 
 
#include <Avance.incl> 
#include <Delay.incl> 
#include <Grad.incl> 
 
"d0=3u" 
"in0=inf1/2" 
"in1=2*in0" 
"p2=p1*2" 
"p22=p32" 
"p27=500u" 
"d27=500u" 
"d13=50u" 
"d18=d13+p27+d27" 
"d11=30m" 
"d12=20u" 
"d7=500u" 
"d6=d7" 
 
"cnst50=(cnst20/360)*sqrt((2*cnst21)/(p32/2000000))" 
"p30=1000000/(cnst50*4)" 
"cnst31=(p30/p1)*(p30/p1)" 
"spw29=plw1/cnst31" 
 
1 ze 
2 d11 
3 d12 pl1:f1 
d1 
p1 ph1 
d0 
; the homodecoupling starts here 
d13 UNBLKGRAD  
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p27:gp3 
d27 
p2 ph6 
d13 
p27:gp3 
d27 
p27:gp7 
d27 
100u pl0:f1 
3u 
(center (p22:gp4) (p32:sp29 ph7):f1) 
100u pl1:f1 
d13 
p27:gp7  
d27  
d27   
d27 
; the homodecoupling ends here 
d0 
p2 ph5 
d18 
3u  
p1 ph2 
; magnetisation moved to z 
5u pl0:f1 
300u gron0 
p11:sp1:f1 ph4 
100u groff 
5u pl0:f1 
d6 gron5 
300u gron0 
p12:sp2:f1 ph4 
100u groff 
d7 
5u  pl1:f1 
4u BLKGRAD  
p1 ph3 
; magnetisation moved to plane for detection 
go=2 ph31 
d11 mc #0 to 2 F1PH (ip1, id0&dd1) 
exit 
 
ph1=0 2  ;first hard pulse 90 
ph2=0 0  ;hard pulse 90 sending magnetization to z for filtering 
ph3=0 0  ;hard pulse 90 sending magnetization to plane after filtering 
ph4=0    ;sweep pulse as filter 
ph5=0 0  ;hard pulse 180 
ph6=0 0  ;hard pulse 180 during t1 
ph7=0 0  ;selective pulse 180 
ph31=0 2 
 
;pl0 : zero power (120 dB) 
;pl1 : high power 
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;p1  : 90 degree high power pulse 
;p11 : duration of first sweep 
;p12 : duration of second sweep 
;d0  : incremented delay 
;d1  : relaxation delay 
;d6  : duration of homospoil 
;d7  : recovery delay 
;sp1 : strength for first sweep 
;sp2 : strength for second sweep 
;sp29: strength for PSYCHE double chirp element for homodecoupling 
;gpz0: gradient strength for ZQ suppression 
;gpz3: gradient for selective refocusing 
;gpz4: gradient for PSYCHE element 
;gpz5: gradient strength for homospoil 
;gpz7: gradient for selective refocusing 
;cnst20: desired flip angle for PSYCHE pulse element (degrees) (normally 10-25) 
;cnst21: bandwidth of each chirp in PSYCHE pulse element (Hz) (normally 10000) 
;p32: duration of double-chirp pulse element 
;in0 : 1/(2 * SW) = DW 
;nd0 : 2 
;NS  : 2 * n 
;DS  : 8 
;td1 : number of t1 increments 
;MC2 : States-TPPI 
 
;for z-only gradients: 
;gpz0: 5% 
;gpz3: 30% 
;gpz4: 1-3% 
;gpz5: 40% 
;gpz7: 60% 
 
;use gradient files: 
;gpnam3: SMSQ10.100 
;gpnam4: RECT.1 
;gpnam7: SMSQ10.100 
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b) CLIP-COSY 

 

;bbhd_psyche_clip_cosy 
;based on TOCSY with ZQ elimination from 
;M. J. Thrippleton and J. Keeler 
;Angew.Chem.Int.Ed. 2003, 42, 3938-3941 
;with PSYCHE homodecoupling;clean in-phase transfer according to 
;Koos, M. R. M.; Kummerlowe, G.; Kaltschnee, L.; Thiele, C. M.; Luy, B. 
;Angew.Chem.Int.Ed. 2016, 55, 7655-7659 
 
;$CLASS=HighRes 
;$DIM=2D 
;$TYPE= 
;$SUBTYPE= 
;$COMMENT= 
 
#include <Avance.incl> 
#include <Delay.incl> 
#include <Grad.incl> 
 
"d0=3u" 
"in0=inf1/2" 
"in1=2*in0" 
"p2=p1*2" 
"p22=p32" 
"p27=500u" 
"d27=500u" 
"d13=50u" 
"d18=d13+p27+d27" 
"d11=30m" 
"d12=20u" 
"d7=500u" 
"d6=d7" 
"d20=1/(4*cnst22)" 
 
"cnst50=(cnst20/360)*sqrt((2*cnst21)/(p32/2000000))" 
"p30=1000000/(cnst50*4)" 
"cnst31=(p30/p1)*(p30/p1)" 
"spw29=plw1/cnst31" 
 
1 ze 
2 d11 
3 d12 pl1:f1 
d1 
p1 ph1 
d0 
; the homodecoupling starts here 
d13 UNBLKGRAD  
p27:gp3 
d27 
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p2 ph6 
d13 
p27:gp3 
d27 
p27:gp7 
d27 
100u pl0:f1 
3u  
(center (p22:gp4) (p32:sp29 ph7):f1) 
100u pl1:f1 
d13 
p27:gp7 
d27 
d27 
d27; the homodecoupling ends here 
d0 
p2 ph5 
d18 
3u  
p1 ph2; magnetisation moved to z 
5u pl0:f1 
300u gron0 
p11:sp1:f1 ph4 
100u groff 
5u pl1:f1; the in-phase transfer starts here 
p1 ph2 
d20 
p2 ph8 
d20 
p1 ph8 
d20 
p2 ph8 
d20 
p1 ph2; the in-phase transfer ends here 
5u pl0:f1 
d6 gron5 
300u gron0 
p12:sp2:f1 ph4 
100u groff 
d7 
5u pl1:f1 
4u BLKGRAD   
p1 ph3 
go=2 ph31 
d11 mc #0 to 2 F1PH (ip1, id0) 
exit 
 
ph1=0 2               ;first hard pulse 90 
ph2=0 0               ;hard pulse 90 sending magnetization to z for filtering 
ph3=0 0               ;hard pulse 90 sending magnetization to plane after filtering 
ph4=0                 ;sweep pulse as filter 
ph5=0 0               ;hard pulse 180 
ph6=0 0               ;hard pulse 180 during t1 
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ph7=0 0               ;PSYCHE pulse element 
ph8=1                 ;hard pulses in CLIP transfer 
ph31=0 2 
 
;pl0 : zero power (120 dB) 
;pl1 : high power 
;p1  : 90 degree high power pulse 
;p11 : duration of first sweep 
;p12 : duration of second sweep 
;d0  : incremented delay 
;d1  : relaxation delay 
;d6  : duration of homospoil 
;d7  : recovery delay 
;d20: CLIP delay: 1/(4J(HH)) 
;cnst22: homonuclear J(HH) coupling 
;sp1 : strength for first sweep 
;sp2 : strength for second sweep 
;sp29: strength for PSYCHE double chirp element for homodecoupling 
;gpz0: gradient strength for ZQ suppression 
;gpz3: gradient for selective refocusing 
;gpz4: gradient for spatial encoding 
;gpz5: gradient strength for homospoil 
;gpz7: gradient for selective refocusing 
;in0 : 1/(2 * SW) = DW 
;nd0 : 2 
;NS  : 2 * n 
;DS  : 8 
;td1 : number of t1 increments 
;MC2 : States-TPPI 
;cnst20: desired flip angle for PSYCHE pulse element (degrees) (normally 10-25) 
;cnst21: bandwidth of each chirp in PSYCHE pulse element (Hz) (normally 10000) 
;p32: duration of double-chirp pulse element 
 
;for z-only gradients: 
;gpz0: 5% 
;gpz3: 30% 
;gpz4: 1-3% 
;gpz5: 40% 
;gpz7: 60% 
 
;use gradient files: 
;gpnam3: SMSQ10.100 
;gpnam4: RECT.1 
;gpnam7: SMSQ10.100 
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3. BIRD – decoupled homonuclear experiments 

a) DIAG 

 

;bbhd_BIRD_diag 
;based on TOCSY with ZQ elimination from 
;M. J. Thrippleton and J. Keeler 
;Angew.Chem.Int.Ed. 42, 3938-3941 (2003). 
;with BIRD homodecoupling 
;using 1H broadband homodecoupling during acquisition 
;using dwellmode explicit 
;CH2 groups may be left as doubletts with 2J(HH) spliting 
;J.A. Aguilar, M. Nilsson & G.A. Morris, Angew. Chem. 123, 9716-9717 (2011) 
;P. Sakhaii, B. Haase & W. Bermel, J. Magn. Reson. 199, 192-198 (2009) 
 
;$CLASS=HighRes 
;$DIM=2D 
;$TYPE= 
;$SUBTYPE= 
;$COMMENT= 
 
#include <Avance.incl> 
#include <Grad.incl> 
#include <Delay.incl> 
#include <De.incl> 
 
"d0=3u" 
"in0=inf1/2" 
"p2=p1*2" 
"p4=p3*2" 
"p27=500u" 
"p29=300u" 
"d2=1s/(cnst2*2)" 
"d6=d7" 
"d7=500u" 
"d11=30m" 
"d12=20u" 
"d13=50u" 
"d14=2*d0+p4" 
"d18=d13+p27+d27" 
"d27=500u" 
 
"l1=l0-1" 
"DELTA2=d2-larger(p2,p14)/2" 
;"TAU=p14" 
"TAU=larger(p2,p14)" 
"DELTA1=TAU/2" 
"TAU1=p2" 
"l30=0" 
 
1 ze 
  d11 pl12:f2 
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2 d11 do:f2 
3 d12 pl1:f1 
  d1 
        (p1 ph1):f1  
  d2 pl0:f2 
  if "l30 %2 == 0" 
                { 
                (center (p2 ph1):f1 (p14:sp3 ph6):f2 ) 
                } 
  else 
                { 
                (center (p2 ph1):f1 (TAU):f2 ) 
                } 
        4u iu30  
        d0 
; the homodecoupling starts here 
        d13 UNBLKGRAD   
        p27:gp3 
       d27 
        p2 ph6 
        d13 
        p27:gp3*-1 
        d27 
        3u 
        4u 
; the BIRD filter starts here 
        (p1 ph7) 
        DELTA2 
        (center (p2 ph7) (p14:sp3 ph6):f2 ) 
        DELTA2 
        (p1 ph7) 
        d2 
; the BIRD filter ends here 
        d13 
        p27:gp7 *-1  
        d27 
; the homodecoupling ends here 
        d0 
        4u 
        p2 ph5 
        d18 
        3u 
        4u 
        p1 ph3 
; magnetisation moved to z 
        5u pl10:f1 
        300u gron0 
        p11:sp1:f1 ph4 
        100u groff 
        5u pl10:f1 
        d6 gron5 
        300u gron0 
        p12:sp2:f1 ph4 
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        100u groff 
        d7 
        5u  pl1:f1 
        4u pl12:f2  
        4u  
        p1 ph3 
; magnetisation moved to plane for detection 
        go=2 ph31 cpd2:f2 
        d11 do:f2 mc #0 to 2 F1PH(ip1, id0) 
exit 
 
ph1=0 
ph2=0 
ph3=3 
ph4=0 
ph5=0 
ph6=0 
ph7=0 0 1 1 2 2 3 3 
ph23=0 
ph25=1 
ph30=0 
ph31=0 2 2 0 
 
;pl1 : f1 channel - power level for pulse (default) 
;pl2 : f2 channel - power level for pulse (default) 
;pl12: f2 channel - power level for CPD/BB decoupling 
;sp3: f2 channel - shaped pulse (180 degree inversion) 
;spnam3: Crp60,0.5,20.1 (Crp80,0.5,20.1) 
;p1 : f1 channel -  high power pulse 
;p2 : f1 channel - 180 degree high power pulse 
;p14: f2 channel - 180 degree shaped pulse for inversion 
;     = 500usec for Crp60,0.5,20.1 
;d1 : relaxation delay 
; 1-5 * T1 
;d2 : 1/(2J)XH 
;d11: delay for disk I/O  [30 msec] 
;cnst2: = J(XH) 
;NS  : 2 * n 
;DS  : 8 
;cpd2: decoupling according to sequence defined by cpdprg2 
;pcpd2: f2 channel - 90 degree pulse for decoupling sequence 
 
;for z-only gradients: 
;gpz0: 5% 
;gpz3: 30% 
;gpz4: 1-3% 
;gpz5: 40% 
;gpz7: 60% 
 
;use gradient files: 
;gpnam3: SMSQ10.100 
;gpnam4: RECT.1 
;gpnam7: SMSQ10.100 
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b) CLIP-COSY 

 

;bbhd_BIRD_CLIP_COSY 
;based on TOCSY with ZQ elimination from 
;M. J. Thrippleton and J. Keeler 
;Angew.Chem.Int.Ed. 42, 3938-3941 (2003) 
;with BIRD homodecoupling 
;using 1H broadband homodecoupling during acquisition 
;using dwellmode explicit 
;CH2 groups may be left as doubletts with 2J(HH) spliting 
;J.A. Aguilar, M. Nilsson & G.A. Morris, Angew. Chem. 123, 9716-9717 (2011) 
;P. Sakhaii, B. Haase & W. Bermel, J. Magn. Reson. 199, 192-198 (2009) 
 
;$CLASS=HighRes 
;$DIM=2D 
;$TYPE= 
;$SUBTYPE= 
;$COMMENT= 
 
#include <Avance.incl> 
#include <Grad.incl> 
#include <Delay.incl> 
#include <De.incl> 
 
"d0=3u" 
"in0=inf1/2" 
"p2=p1*2" 
"p4=p3*2" 
"p27=500u" 
"d27=500u" 
"d13=50u" 
"d18=d13+p27+d27" 
"d11=30m" 
"d12=20u" 
"d7=500u" 
"d6=d7" 
"d14=2*d0+p4" 
"d2=1s/(cnst2*2)" 
"p29=300u" 
 
"l1=l0-1" 
"DELTA1=d7-12u"  
"DELTA2=d2-larger(p2,p14)/2" 
"TAU=p14" 
"TAU1=p2" 
"l30=0" 
 
1 ze 
  d11 pl12:f2 
2 d11 do:f2 
3 d12 pl1:f1 
  d1 



 138 

   (p1 ph1):f1 
  d2 pl0:f2 
  if "l30 %2 == 0" 
     { 
     (center (p2 ph1):f1 (p14:sp3 ph6):f2 ) 
     } 
  else 
     { 
     (center (p2 ph1):f1 (TAU):f2 ) 
     } 
  4u iu30 
  d0 
; the homodecoupling starts here 
  d13 UNBLKGRAD 
  p27:gp3 
  d27 
  p2 ph6 
  d13 
  p27:gp3*-1 
  d27 
  3u 
  4u 
; the BIRD filter starts here 
  (p1 ph7) 
  DELTA2 
  (center (p2 ph7) (p14:sp3 ph6):f2 ) 
  DELTA2 
  (p1 ph7) 
  d2 
; the BIRD filter ends here 
  d13 
  p27:gp7 *-1 
  d27 
; the homodecoupling ends here 
  d0 
  4u 
  p2 ph5 
  d18 
  3u 
  4u 
  p1 ph3 
; magnetisation moved to z 
  5u pl10:f1 
  300u gron0 
  p11:sp1:f1 ph4 
  100u groff 
  5u pl1:f1 
; the in-phase transfer starts here 
  p1 ph2 
  d20 
  p2 ph8 
  d20 
  p1 ph8 
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  d20 
  p2 ph8 
  d20 
  p1 ph2 
; the in-phase transfer ends here 
  5u pl10:f1 
  d6 gron5 
  300u gron0 
  p12:sp2:f1 ph4 
  100u groff 
  d7 
  5u  pl1:f1 
  4u pl12:f2 
  4u BLKGRAD 
  p1 ph3 
; 
  go=2 ph31 cpd2:f2 
  d11 do:f2 mc #0 to 2 F1PH(ip1, id0) 
exit 
 
ph1=0 
ph2=0 
ph3=3 
ph4=0 
ph5=0 
ph6=0 
ph7=0 0 1 1 2 2 3 3 
ph8=1                 ;hard pulses in CLIP transfer 
ph23=0 
ph25=1 
ph30=0 
ph31=0 2 2 0 
 
;pl1 : f1 channel - power level for pulse (default) 
;pl2 : f2 channel - power level for pulse (default) 
;pl12: f2 channel - power level for CPD/BB decoupling 
;sp3: f2 channel - shaped pulse (180degree inversion) 
;spnam3: Crp60,0.5,20.1 (Crp80,0.5,20.1) 
;p1 : f1 channel -  high power pulse 
;p2 : f1 channel - 180 degree high power pulse 
;p14: f2 channel - 180 degree shaped pulse for inversion 
;     = 500usec for Crp60,0.5,20.1 
;p16: homospoil/gradient pulse                            [1 msec] 
;p29: gradient pulse 3                                    [300 usec] 
;d1 : relaxation delay; 1-5 * T1 
;d2 : 1/(2J)XH 
;d11: delay for disk I/O                                  [30 msec] 
;d16: delay for homospoil/gradient recovery 
;d62: length of block between decoupling pulses : = aq/l0 [< 20-25 msec] 
;d63: = d62/2 
;cnst2: = J(XH) 
;l0 : number of blocks during acquisition time 
;adjust to get d62 as required 
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;ns: 1 * n, total number of scans: NS * TD0 
;ds: >= 16 
;cpd2: decoupling according to sequence defined by cpdprg2 
;pcpd2: f2 channel - 90 degree pulse for decoupling sequence 
 
;for z-only gradients: 
;gpz1: 20% 
;gpz2: 80% 
;gpz3: 60% 
;gpz4: 3% 
;gpz5: 5% 
 
;use gradient files: 
;gpnam1: SMSQ10.100 
;gpnam2: SMSQ10.100 
;gpnam3: SMSQ10.100 
;gpnam4: SMSQ10.50 
;gpnam5: SMSQ10 
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