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he prevailing paradigm in methane research is that bio-

logical methane production is exclusive to anoxic or near-

anoxic habitats such as sediments and oxygen-deficient
bottom waters in lakes. Paradoxically, methane supersaturation in
oxic lake waters is widely reported. To resolve this paradox while
preserving the paradigm, some researchers assume this methane
originates entirely from anoxic sources and is then transported to
the oxic waters through physical processes!~3. However, multiple
recent studies have repeatedly shown, methane production can
and does occur under oxic conditions on land, in the seas and in
freshwaters, driven by diverse organisms within different life
domains (Table 1 and references therein) and via photochemical
conversion?. These findings raise legitimate questions about the
nature of the environmental dynamics and global budget of
methane. Because oxic methane production (OMP) is a recent
discovery, its contribution to atmospheric emission is unknown.
We conducted a whole-lake basin methane mass balance and
analysed relevant literature data to estimate the contribution of
OMP to surface emission versus lake morphometry.

Because the dynamics of methane concentration and isotope
signal in lake waters are influenced by different and opposing
processes simultaneously, one cannot meaningfully deduce the
presence or absence of OMP without properly accounting for
modulations by physical and biological processes. For example,
underestimating surface emission or ignoring oxidation would
lead to incorrect interpretation of methane concentration and
isotope data and incorrect dismissal of OMP (Supplementary
Note 1).

By balancing the gains and losses of epilimnetic methane in a
stratified water column, we estimated the contribution of oxic
versus anoxic methane to surface emission (Supplementary
Fig. 1). Epilimnetic methane may originate from lateral and

vertical transport from anoxic zones, ebullition, and internal oxic
production (OMP); surface emission and oxidation are the
loss terms.

Surface methane emission can be measured directly using a
flux chamber, or, in the absence of direct measurements, it is
often modelled from surface-water methane concentrations and
wind speeds. Both methods are commonly used but the results
can differ considerably, and there exist many different wind-
based models (for a more detailed discussion we refer readers
to the literature>®). Notably in their manuscript, Peeters and
Hofmann excluded our direct measurements of methane fluxes to
the atmosphere and exclusively rely on modelling approaches
(Supplementary Note 2). We instead combined direct measure-
ments with models that were established for the target lake.
Therefore, we consider that our direct measurement approach
minimises methodological and model biases, and better repre-
sents reality.

For Lake Hallwil, we used the littoral sediment-to-water
methane flux as determined by Donis et al.” who implemented
two littoral sediment core measurements sampled at 3 and 7 m
depth and applying Fick’s law. In contrast, Peeters and Hof-
mann implemented only the upper sediment core into their re-
analysis. They justify this choice by stating the cores’ methane
isotope signature vary. As the depth of Lake Hallwil’s surface
mixed layer increased over the seasonal progression’, both
sediment cores should be considered in the mass balance
especially in the light of natural variability. For Lake Stechlin,
we used data from two mesocosms and the open-water to
resolve littoral methane input (Supplementary Notes 3 and 4).
We estimated ebullitive methane fluxes as negligible in Lake
Stechlin®®. We further applied an ebullitive flux of 1.2+
0.8 mmolm=2d~! to Lake Hallwill?, giving a total sediment

TDepartment of Environmental Microbiology and Biotechnology, University of Warsaw, Warsaw, Poland. 2 Department of Experimental Limnology, Leibniz
Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany. 3 Department of Biosciences, Swansea University, Swansea, UK. 4 Aquatic Physics
Group, Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Science, University of Geneva, Geneva, Switzerland. ® Department of
Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany. © Institute of Biochemistry and Biology, Potsdam University,
Potsdam, Germany. ®email: marcoguenthel@gmail.com; daniel. mcginnis@unige.ch; hgrossart@igb-berlin.de; k.w.tang@swansea.ac.uk

| (2021)12:1205 | https://doi.org/10.1038/s41467-021-21216-1| www.nature.com/naturecommunications 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21216-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21216-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21216-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21216-1&domain=pdf
http://orcid.org/0000-0002-4514-2606
http://orcid.org/0000-0002-4514-2606
http://orcid.org/0000-0002-4514-2606
http://orcid.org/0000-0002-4514-2606
http://orcid.org/0000-0002-4514-2606
http://orcid.org/0000-0002-5090-5575
http://orcid.org/0000-0002-5090-5575
http://orcid.org/0000-0002-5090-5575
http://orcid.org/0000-0002-5090-5575
http://orcid.org/0000-0002-5090-5575
http://orcid.org/0000-0002-4658-8597
http://orcid.org/0000-0002-4658-8597
http://orcid.org/0000-0002-4658-8597
http://orcid.org/0000-0002-4658-8597
http://orcid.org/0000-0002-4658-8597
http://orcid.org/0000-0002-6870-4018
http://orcid.org/0000-0002-6870-4018
http://orcid.org/0000-0002-6870-4018
http://orcid.org/0000-0002-6870-4018
http://orcid.org/0000-0002-6870-4018
http://orcid.org/0000-0002-6163-4299
http://orcid.org/0000-0002-6163-4299
http://orcid.org/0000-0002-6163-4299
http://orcid.org/0000-0002-6163-4299
http://orcid.org/0000-0002-6163-4299
http://orcid.org/0000-0002-9141-0325
http://orcid.org/0000-0002-9141-0325
http://orcid.org/0000-0002-9141-0325
http://orcid.org/0000-0002-9141-0325
http://orcid.org/0000-0002-9141-0325
https://doi.org/10.1038/s41467-021-21215-2
mailto:marcoguenthel@gmail.com
mailto:daniel.mcginnis@unige.ch
mailto:hgrossart@igb-berlin.de
mailto:k.w.tang@swansea.ac.uk
www.nature.com/naturecommunications
www.nature.com/naturecommunications

MATTERS ARISING

Table 1 Literature examples of oxic methane production (OMP) in different habitats and by different domains of life.
Organism Domain CH, production rate Evidence Reference
TERRESTRIAL
Plants Eukaryote INC, I1SO Keppler et al. (2006)20
Plants Eukaryote INC Messenger et al. (2009)21
Methanogens Archaea INC, ISO, OMIC Angel et al. (2011)22
Fungi Eukaryote INC, 1SO Lenhart et al. (2012)23
Plants Eukaryote INC, I1SO Althoff et al. (2014)24
Methanogens Archaea MB, OMIC, PHYS Angle et al. (2017)'4
Cyanobacteria Prokaryote INC, ISO Bizic et al. (2020)!>
MARINE
Mixed assemblage INC, OMIC Karl et al. (2008)"7
Bacteria Prokaryote INC, STAT Damm et al. (2010)2>
Cyanobacteria Prokaryote INC White et al. (2010)26
a-Proteobacteria Prokaryote INC, OMIC Carini et al. (2014)27
Haptophytes Eukaryote INC, ISO Lenhart et al. (2016)28
Bacteria Prokaryote INC, OMIC Repeta et al. (2016)2°
Haptophytes Eukaryote INC, I1SO Klintzsch et al. (2019)30
Cyanobacteria Prokaryote INC, ISO Bizic et al. (2020)1>
y-Proteobacteria Prokaryote INC Ye et al. (2020)32
Haptophytes Eukaryote INC Klintzsch et al. (2020)3
FRESHWATER
Methanogens, algae Archaea, 38-58 nmol I=1day—! (Lake Stechlin) INC Grossart et al. (201"
Eukaryote
Methanogens, algae Archaea, 210-240 nmol I=1day~" (Lake Cromwell) ISO, MB Bogard et al. (2014)33
Eukaryote
-, y-proteobacteria Prokaryote INC, OMIC Yao et al. (2016)"3
Mixed assemblage 110 nmol I=1day~" (Lake Hallwil) MB Donis et al. (2017)7
y-Proetobacteria Prokaryote 0.2-0.7 nmol I=Tday—" (Yellowstone Lake)  INC, ISO, OMIC Wang et al. (2017)34
Mixed assemblage ISO, MB, PHYS DelSontro et al. (2018)3°
Proteobacteria Prokaryote 54-257 nmol =1 day~" (Lake Bonney) INC, OMIC Li et al. (2019)36
Cyanobacteria Prokaryote INC, OMIC Khatun et al. (2019)37
Mixed assemblages 72-88 nmol I=1day—" (Lake Stechlin) MB Glinthel et al. (2019)3°
78-138 nmol I=Tday~" (Lake Hallwil)
Cyanobacteria Prokaryote INC, I1SO Bizic et al. (2020)!>
Cyanobacteria Prokaryote STAT Khatun et al. (2020)38
Green algae, diatoms, Eukaryote 50-210 nmol =1 day~" (Lake Stechlin) INC, ISO, MB, STAT Hartmann et al. (2020)'8
cryptophytes
Picoeukaryotes, diatoms Eukaryote STAT Leon-Palmero et al. (2020)#1
Proteobacteria Prokaryote 24-547 nmol I=1day~" (5 Lakes) INC, ISO, OMIC Perez-Coronel and
Beman (2020)42
OMP evidence type: INC incubation experiments, ISO isotope techniques, MB mass balance approaches, OMIC molecular biological methods, PHYS physical modelling, STAT statistical analyses.
OMP has been observed in different limnic systems, e.g. temperate and arctic regions (DelSontro et al. 201835, Li et al. 2019)36, high-elevation (Perez-Coronel and Beman, 2020)%2, and throughout the
oligo-to-eutrophic nutrient spectrum (DelSontro et al., 201835, Khatun et al., 202038, Ye et al., 2020)32.

methane input of 3 mmolm—2d~! when combined with the
diffusive flux, which is higher than the value assumed by
Peeters and Hofmann. Vertical diffusive input was calculated
from empirically measured methane concentration profiles and
turbulent diffusivities. We parameterised methane oxidation as
30% of internal production for Lake Stechlin; in a sensitivity
analysis, we evaluated this assumption and also considered the
most conservative scenario, e.g., OMP set to minimum. For
Lake Hallwil, methane oxidation rates were measured by
experiments.

By balancing the different input and output fluxes, we pro-
duced the first system-wide OMP estimate for Lake Stechlin,
which agrees well with direct bottle incubation measurements
reported earlier!!l. To further account for (seasonal) variabilities
and measurement uncertainties, we conducted Monte Carlo
simulations and sensitivity analysis applying various con-
servative scenarios to the mass balance. It is, however, worth
noting that the mass balance is sensitive to the flux para-
meterisation and the accuracy of its result is hinged on how

reliably one accounts for these fluxes. To better resolve OMP
and allow for more general and firm statements about OMP
(including different lake systems), future studies should aim to
reduce uncertainties associated with the littoral methane input
(e.g. methodological uncertainty in sediment core measure-
ments!2) and methane oxidation—two key parameters in the
epilimnetic methane budget.

OMP by diverse organisms (Table 1) and pathways!3-15
point to its wider potential relevance on a global scale. To
examine how OMP may vary according to lake characteristics,
we combined our results with analysis of literature data to
estimate OMP contribution in relation to basin morphometry
(Supplementary Note 5). The epilimnetic methane sources
considered here are littoral sediment and OMP. On a whole-
system level, the relative contributions of these sources are
proportional to the total littoral sediment area and the epi-
limnion volume, respectively. Because the ratio of littoral
sediment area to epilimnion volume decreases with increasing
lake size, the contribution of OMP to surface emission is
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expected to increase with lake size. This trend does not change
even when we assume a larger littoral sediment area by
decreasing the sediment slope as suggested by Peeters and
Hofmann (Fig. 1). As the current OMP dataset is limited to
only a few lakes (four data points based on mass balance and
seven based on transport modelling), future studies should aim
to increase the number and types of lakes to verify the trend on
a larger scale.

Note, as Peeters’ and Hofmann’s re-analysis excludes internal
methane modulation, their OMP estimates reflect net rates
while our study presents gross rates. Accordingly, their con-
tribution pattern of oxic versus anoxic methane source to
surface emission (NOMC) cannot be directly compared to our
estimates (OMC) (further discrepancy is explained by Supple-
mentary Note 5).
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Oxic methane production defies the century-old teaching of
anoxic methanogenesis and the convention of considering only
anoxic sources in methane research; as such, skepticism is
expected. While some may dismiss OMP as irrelevant!®, others
take a more practical approach and investigate the phenomenon
at the ecological, organismal, and molecular levels'>17. However,
the novelty of OMP also means researchers are still trialling
different methods, each with their limitations (Table 2).

A better understanding of production, storage, consumption,
and distribution processes of methane, including methane
produced in oxic environments, is needed to improve the
assessment of the global methane cycle. This requires better
spatio-temporal data resolution and better constraints of data
uncertainties by using multiple methods. For instance, OMP
rates determined by bottle incubations can complement results
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Fig. 1 Oxic methane contribution (OMC) to surface emission in relation to lake morphology. Comparison of (a) the original relationship and (b) the
alternative parameterisation using a smaller sediment slope angle. Asq is the littoral sediment area and V is the surface mixed layer volume. Note, OMC is
defined as in our original study; the x-axis is linearly scaled, and the y-axes is scaled to log; 7.

Approach Description

Table 2 Overview on approaches to investigate oxic methane production (OMP) in lake waters.

Caveats

Reference examples

Incubation of
o Lake water
e Enrichment cultures

Cultivating microbes in closed containers and
recording CH,4 concentration over time.
Additionally, the change in 13C/12C carbon isotope
ratio in dissolved methane can be measured.

Metagenomics Molecular analysis of relevant enzyme machinery

or genes.

Statistical analysis Methane concentration is measured together with
other lake parameters. Statistical models are
applied to test for correlative significance and

predictive power.

Physical modelling Combining physical mechanistic aspects with

correlative analysis.

Mass balance of epilimnion in
e Whole-lake basin or
e Mesocosms/enclosures

Methane input and output fluxes for the epilimnion
are experimentally determined and balanced.
Discrepancy is attributed to OMP.

Methane isotope analysis
e Comparing ambient
signatures or

e |sotope budgets

Analysing carbon (and hydrogen) stable isotope
signatures of methane sources and considering
isotope fractionation by biochemical and physical
reactions (e.g., oxidation, OMP, phase exchange).
Analogue to mass balance.

Bottle enclosure may alter the light and nutrient
conditions versus in situ. Long-term incubations
(exceeding hours) may not reflect in situ
conditions due to changes to the production-
consumption equilibrium (e.g., nutrient depletion,
community alterations).

Qualitative evidence. Presence of relevant genes
and enzymes indicates production potential, but
actual production rate can be affected by
inhibitors, missing precursors, unfavourable
conditions, epigenetic modulation, etc.

Individual methane sources and sinks can be
overlooked due to the complex lake water
methane cycling. Results lack mechanistic
understanding of the underlying processes.

Underrepresentation of internal biological
modulation (oxidation and OMP).

Accuracy of OMP production rates depends on
how reliably methane fluxes have been
determined. Spatio-temporal data resolution is
often limited.

This analysis requires knowing (i) the quantity of
all mass fluxes, (ii) isotope characteristics of all
methane sources, (iii) isotope fractionation by
biochemical and physical processes. Different
precursors and biochemical production/
consumption pathways can result in different
isotope signatures.

Grossart et al. 201",

Bizic et al. (2020)'®,

Giinthel et al. (2020)40,
Hartmann et al. (2020)'8,
Klintzsch et al. (2019, 2020)30.31

Carini et al. (2014)?7,
Yao et al. (2016)'3,
Perez-Coronel and
Beman (2020)42

Fernandez et al. (2016)3,
Giinthel et al. (2020)40,
Khatun et al. (2020)38,
Leon-Palmero et al. (2020)4

Peeters et al. (2019)'®

Bogard et al. (2014)33,
Donis et al. (2017)7,
Gunthel et al. (2019)3°,
Peeters et al. (2019)'6,
Hartmann et al. (2020)'8

Tang et al. (2014)°,
DelSontro et al. (2018)35,
Giinthel et al. (2020)40,
Hartmann et al. (2020)'8,
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based on mass budgets, as we did in our study. The incor-
poration of methane carbon!8 and hydrogen!? isotope data into
mass budgets is a promising way to further tease apart the
different methane sources. Omic approaches can be used to
investigate the different OMP pathways and the organisms
involved.

We have discussed the caveats of our mass balance analysis, such
as the limited amount of OMP and littoral flux data, limited types
of lakes being considered, and the influence by other compounding
factors. The global significance of OMP can only be fully assessed
when more relevant data become available, but this also requires
researchers to look beyond the anoxic paradigm and consider OMP
in future methane measurements. We hope our and others’ work
will continue to stimulate more research and constructive discus-
sions on this topic.

Data availability
Data are made available in graphical or tabular form throughout the paper and
Supplementary Information. Source data are provided with this paper.
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