
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Article scientifique Article 2024                                     Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

Strongly coupled fermionic probe for nonequilibrium thermometry

Ravell Rodríguez, Ricard; Mehboudi, Mohammad; Horodecki, Michał; Perarnau Llobet, Marti

How to cite

RAVELL RODRÍGUEZ, Ricard et al. Strongly coupled fermionic probe for nonequilibrium thermometry. 

In: New journal of physics, 2024, vol. 26, n° 1, p. 013046. doi: 10.1088/1367-2630/ad1d75

This publication URL: https://archive-ouverte.unige.ch/unige:181771

Publication DOI: 10.1088/1367-2630/ad1d75

© The author(s). This work is licensed under a Creative Commons Attribution (CC BY 4.0) 

https://creativecommons.org/licenses/by/4.0

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:181771
https://doi.org/10.1088/1367-2630/ad1d75
https://creativecommons.org/licenses/by/4.0


            

PAPER • OPEN ACCESS

Strongly coupled fermionic probe for
nonequilibrium thermometry
To cite this article: Ricard Ravell Rodríguez et al 2024 New J. Phys. 26 013046

 

View the article online for updates and enhancements.

You may also like
Optimal parameter estimation of open
quantum systems
Yinghua Ji,  , Qiang Ke et al.

-

Quantum Fisher information as a signature
of the superradiant quantum phase
transition
Teng-Long Wang, Ling-Na Wu, Wen Yang
et al.

-

Sub-quantum Fisher information
M Cerezo, Akira Sone, Jacob L Beckey et
al.

-

This content was downloaded from IP address 129.194.144.144 on 27/11/2024 at 15:08

https://doi.org/10.1088/1367-2630/ad1d75
/article/10.1088/1674-1056/abc0d1
/article/10.1088/1674-1056/abc0d1
/article/10.1088/1367-2630/16/6/063039
/article/10.1088/1367-2630/16/6/063039
/article/10.1088/1367-2630/16/6/063039
/article/10.1088/2058-9565/abfbef


New J. Phys. 26 (2024) 013046 https://doi.org/10.1088/1367-2630/ad1d75

OPEN ACCESS

RECEIVED

9 November 2023

REVISED

31 December 2023

ACCEPTED FOR PUBLICATION

11 January 2024

PUBLISHED

24 January 2024

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Strongly coupled fermionic probe for nonequilibrium thermometry
Ricard Ravell Rodríguez1,2,∗, Mohammad Mehboudi3, Michał Horodecki2

and Martí Perarnau-Llobet4,∗
1 Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo, 14, 48009 Bilbao, Spain
2 International Centre for Theory of Quantum Technologies, University of Gdańsk, Jana Bażyńskiego 1A, 80-309 Gdańsk, Poland
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Abstract
We characterise the measurement sensitivity, quantified by the quantum Fisher information (QFI),
of a single-fermionic thermometric probe strongly coupled to the sample of interest, a fermionic
bath, at temperature T. For nonequilibrium protocols, in which the probe is measured before
reaching equilibrium with the sample, we find new behaviour of the measurement sensitivity
arising due to non-Markovian dynamics. First, we show that the QFI displays a highly
non-monotonic behaviour in time, in contrast to the Markovian case where it grows
monotonically until equilibrium, so that non-Markovian revivals can be exploited to reach a higher
QFI. Second, the QFI rate is maximised at a finite interrogation time t∗, which we characterize, in
contrast to the solution t∗ → 0 known in the Markovian limit (Pavel Sekatski and Martí
Perarnau-Llobet 2022 Quantum 6 869). Finally, we consider probes make up of few fermions and
discuss different collective enhancements in the measurement precision.

1. Introduction

Estimating the temperature of quantum systems is challenging but crucial; temperature appears as a relevant
parameter in the Gibbs state of quantum systems even if they evolve unitarily [1–3]. The growing field of
quantum thermometry is dedicated to developing cutting edge experimental protocols for reading out the
temperature of cold systems operating at the quantum regime [4–7]. It is also devoted to investigating the
fundamental bounds on achievable precision that are set by quantum physics through Cramér–Rao
inequalities [8, 9]. More recently, we have witnessed an effort in making the practical and fundamental sides
meet, with new experiments working close to the fundamental theoretical bounds [10–15] and a more
general characterisation of sub-optimal measurements in the theory side [4, 5, 8, 9, 16–31].

A standard scheme involves a small quantum system, used as a probe or thermometer, and a sample of
interest at temperature T. After preparing the probe in a suitable state and letting it interact with the sample,
the former is measured to infer T. The theory of thermometry is well understood when the probe reaches
equilibrium before being measured, a regime known as equilibrium thermometry. Starting from the
fundamental bounds on the sensing precision of [18], the form of optimal probes has been characterized [16,
32]; and the impact of strong coupling, bath induced correlations, and sub-optimal measurements has been
readily studied [33–35]. The non-equilibrium regime, i.e. when the probe is measured before reaching
equilibrium, requires a more precise knowledge of the non-equilibrium dynamics but also offers new
possibilities for estimating T with a higher precision [16, 19, 36, 37] and lower backaction [38]. This has
been extensively explored in the context of ultracold gases [4, 5, 39–43]. The fundamental precision limits of
non-equilibrium thermometry have been established in [44] when the dynamics of the probe are well
described by Markovian dynamics. Beyond this regime, much less is known about the form of optimal
protocols, and more generally about the impact of strong coupling and correlations (see [43] for recent
interesting progress). In this work, we aim to make progress in this direction by characterising the
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metrological properties of a fermionic probe, make up of a single or few fermions, strongly coupled to an
ultracold fermionic bath.

We organise the paper as follows. In section 2 we introduce the resonant-level model, which involves a
single-fermion (strongly) coupled to a fermionic bath in the wide band limit. Next, in section 3 we discuss
the error in the estimation process and corresponding bounds. Section 4 is dedicated to our first results
regarding equilibrium thermometry with strong coupling, with emphasis in the ultracold regime. In
section 5 we present our results for non-equilibrium thermometry, in particular by deriving corrections to
the result of [44] arising due to the finiteness of the system-bath coupling. We extend our considerations to
multiple-fermionic probes and discuss the impact of bath-induced interactions in section 6. Finally, in
section 7 we make some concluding remarks.

2. Resonant level model

We consider a single fermionic mode strongly coupled to a fermionic reservoir, also known as the resonant
level model [45]. This model becomes exactly solvable in the wide band limit, which makes it an ideal testbed
for analysing strong coupling quantum thermodynamics [46–54], and here we exploit it for nonequilibrium
thermometry.

Consider a bath of non-interacting fermions that rests at thermal equilibrium with chemical potential µ
at some temperature T. The Hamiltonian of the fermionic bath reads

HB =
∑
q

ωqb
†
qbq, (1)

where b†q and bq are the fermionic creation and annihilation operators for the mode q in the bath with the
corresponding energy ωq. We are interested in estimating the temperature of the Fermionic bath. The state of
the bath can thus be written as

πB =
e−(HB−µN)/T

Z
, (2)

with Z := Tre−(HB−µN)/T being the partition function, and N :=
∑

q b
†
qbq.

As for the probe, we consider a single fermionic mode—extension to multiple fermionic modes is
discussed later in section [6]. Let the Hamiltonian of the probe be

Hp = ϵd†d, (3)

with d† and d being the fermionic creation and annihilation operators of the probe mode with the energy ϵ.
The probe can be initially prepared in any suitable state. However, as we just have a single fermionic mode,
due to fermionic super-selection rules the only physical states are incoherent in the number basis and should
admit ρp(0) = p0(0)|0⟩⟨0|+(1− p0(0))|1⟩⟨1| for any time, where |0⟩ and |1⟩ correspond to having 0 or 1
fermions in the mode, respectively.

In order to acquire information about the bath temperature, one allows for probe-bath interaction. To
this aim we consider the following linear interaction

HI =
∑
q

(
tqb

†
qd+ t∗qd

†bq
)
. (4)

Putting everything together, the total Hamiltonian reads

H=Hp +HB +HI, (5)

and the initial state is ρPB(0) = ρp(0) πB. At any given time, the state of the probe is

ρp (t) = TrB
[
e−itHρPB (0)e

−itH
]
. (6)

As already discussed, the probe’s state respects the fermionic super-selection rule, and at any time it should
read ρp(t) = p1(t)|1⟩⟨1|+(1− p1(t))|0⟩⟨0|. Thus, it suffices to find p1(t) to fully characterise the state at any
time. This can be done by noting that

p1 (t) = Tr
[
ρp (t)d

†d
]
=
〈
d†d(t)

〉
, (7)

where we moved into the Heisenberg picture in the last equality.

2
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2.1. Dynamics
For completeness, now we present the solution of the exact dynamics [45], following the approach presented
in [52, 54]. We start from the Heisenberg equations of motion for

〈
d†d(t)

〉
. By using the fermionic algebra,

i.e. {d,d†}= I, {bq,b†k}= Iδqk, and {bq,bk}= {d,b†q}= {d,d}= 0, and some straightforward calculations
one finds [see [45] and appendix A for details]

ḋ(t)+ iϵd(t)+

ˆ t

0
χ(s− t)d(s)ds=−iξ (t) . (8)

Here, we have defined

ξ (t) :=
∑
q

t∗q e
−iωqtbq (0) , (9)

which can be seen as a Brownian force, and

χ(t) :=
∑
q

|tq|2eiωqtΘ(t) =
Θ(t)

2π

ˆ ∞

−∞
dωΓ(ω)eiωt, (10)

which can be seen as a memory kernel and is responsible for memory effects. Here, the Heaviside function
Θ(t) guarantees causality. Finally,

Γ(ω) := 2π
∑
q

|tq|2δ
(
ω−ωq

)
, (11)

is the bath spectral density. The two time-correlation functions of the bath are often entering the equations
of the motion and they read

〈
ξ† (t)ξ (s)

〉
=
∑
qq ′

t∗q tq ′ei(ωqt−ωq ′ s)
〈
b†q (0)bq ′ (0)

〉
=
∑
q

|tq|2eiωq(t−s)fβ
(
ωq

)
=
∑
q

|tq|2eiωq(t−s)fβ
(
ωq

)ˆ ∞

−∞
dωδ

(
ω−ωq

)
=

1

2π

ˆ ∞

−∞
dωfβ (ω)Γ(ω)e

iω(t−s), (12)

with the Fermi distribution defined as

fβ (ω) =
1

eβ(ω−µ) + 1
. (13)

To proceed further, we restrict to the wide-band limit, i.e. we take a flat spectral density Γ(ω) = Γ. It is not
difficult to verify that in this limit χ(t) = Γδ(t). The solution to equation (8) reads

d(t) = e(−iϵ−Γ
2 )td(0)− i

ˆ t

0
dse(iϵ+

Γ
2 )(s−t)ξ (s) . (14)

By putting equations (12) and (14) together, one gets

p1 (t) = ⟨d†d(t)⟩= e−Γt
〈
d†d(0)

〉
+

ˆ t

0

ˆ t

0
ds du e(iϵ+

Γ
2 )(s−t)e(−iϵ+Γ

2 )(u−t)
〈
ξ† (u)ξ (s)

〉
= e−Γtp1 (0)+

2Γ

π

ˆ ∞

−∞
dωfβ (ω)

1− 2e−Γt/2 cos [(ω− ϵ) t] + e−Γt

Γ2 + 4(ω− ϵ)
2 , (15)

See the appendix for details. This integral can be evaluated numerically. Clearly, p1(t) is a function of the
bath temperature, thus it can be used to infer the bath temperature. In the next section, we address how one
can do so and what are the precision limits in doing that.

3
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2.2. The rate equation
While our study is founded on the exact solution of the equations of motion, here we would like present a
Gorini–Kossakowski–Lindbladian–Sudarshan (GKLS) master equation [55, 56] against which we contrast
our main results throughout the paper. In particular, following [57] one can find the following master
equation

∂tρp (t) =−i
[
Hp, ρp (t)

]
+Γ(1− fβ (ϵ))D [d]ρp (t)+Γfβ (ϵ)D

[
d†
]
ρp (t) , (16)

where we defined the super operators D[A]◦ := A ◦A† − 1/2(A†A ◦+ ◦A†A). One can use this in the
Heisenberg picture to find the so called rate equation

∂tp1 (t) =−Γ[p1 (t)− fβ (ϵ)] , (17)

that can be solved to obtain

p1 (t) = e−Γtp1 (0)+
(
1− e−Γt

)
fβ (ϵ) . (18)

While this equation is useful in a variety of settings it should be revisited in strong coupling regime, or at
small temperatures, or for short times. In our results below we see when/how the thermometry precision
obtained from this approximation deviates from that of the exact solution i.e. equation (15).

3. Ultimate limits on estimating the temperature

We assume that one can always break down our thermometry protocol into three stages of (i) preparing the
probe in an appropriate state ρ(0), (ii) encoding the temperature into the probe via probe-bath interaction,
after which the probe evolves to ρ(t), and (iii) performing a measurement with POVM elementsMx ⩾ 0 and∑

xMx = I. Repeating this total k times, one gets a dataset of outcomes x= {x1, . . . ,xk} which one can use to
assign an estimate T̃(x) to the temperature. The estimator is unbiased if on average is equivalent to the true
temperature, that is

∑
x px(t)T̃(x) = T, with px(t) = Πkpxk(t) and px(t) = Tr[Mxρp(t)]. The Cramér-Rao

inequality states that the error—quantified by the mean square error—of any unbiased estimator is lower
bounded by the inverse of the Fisher information. That is [58, 59]

∆2T̃ :=
∑
x

px (t)
(
T̃(x)−T

)2 ⩾ 1

F [px (t)]
=

1

kF [px (t)]
, (19)

with the Fisher information defined as

F [px(t)] :=
∑
x

px(t) [∂T logpx(t))]
2
, (20)

which is an additive quantity for repeated measurements (independent probabilities), hence the final
equality on the rhs of (19). At the limit of large k, the CRB is known to be saturated, e.g. by using the
maximum likelihood estimator [60, 61]. As such, we take the total Fisher information F [px(t)] as our figure
of merit. For a two-outcome measurement, the Fisher information is simple and reads

F [px (t)] =
[∂Tp1 (t)]

2

(1− p1 (t))p1 (t)
. (21)

Before explicitly analysing F [px(t)], some general remarks can be make about the optimisation of
F [px(t)] for the protocols considered. To begin with, at stage (i), the initial state of the probe is bounded to
be diagonal. Since the Fisher information is convex [62–64] the optimal initial state is therefore either the
ground state, or the exited state. Furthermore, at the stage (ii) we assume the freedom in choosing how long
the probe evolves before being measured. Here, we also analyse how the Fisher information depends on the
coupling strength and other parameters of the system. We do so in two paradigmatic frameworks:
equilibrium and non-equilibrium thermometry which we will explain in the following sections. Finally, at
stage (iii) the measurement can be optimised to the one with the maximum Fisher information, a.k.a. the
quantum Fisher information (QFI) which is officially defined as

FQ
[
ρp (t)

]
:=max

{Mx}
F [px (t)] . (22)

4
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Since the maximisation is over measurement realisations one can write down the ultimate limit, the
quantum Cramér-Rao bound, on the error which can be potentially saturated for large enough k. We have:

∆2T̃⩾ 1

kF [px (t)]
⩾ 1

kFQ
[
ρp (t)

] . (23)

While the maximisation in (22) may look non-trivial, one can write down an explicit expression for the QFI
in terms of the density matrix [62–64]

FQ
[
ρp (t)

]
= Tr

[
ρp (t)Λ

2
]
, where Λρp (t)+ ρp (t)Λ≡ 2∂Tρ(T) . (24)

The observable Λ which is defined above is actually forming the basis for the optimal measurement as well.
Lastly, let us remark that in case the probe is a single fermion, the only possible measurement is the
population measurement and the optimisation over all measurements is unnecessary, thus when dealing with
a single fermion we simply use the Fisher information terminology, instead of the QFI. However, in case of
multiple fermions (section 6) we use the QFI.

4. Equilibrium thermometry

We first consider equilibrium thermometry, where the probe reaches a steady state due to the interaction
with the sample. This scenario is relevant when time is not a resource; instead the total number of probing
repetitions k is fixed. One often assumes that the probe reaches a steady state before being measured—i.e.
one measures ρp(∞). In the simple case of weak interaction between the probe and the system, the probe
thermalizes and its state reads ρp(∞) = τ = e−βHp/Z , i.e. a Gibbs state.

In this scenario, the optimal measurements are energy measurements [16, 65, 66] and the Fisher
information of the probe at equilibrium is proportional to its heat capacity [66]. On the other hand, in the
case of strong interactions between the probe and the system, the steady state of the probe is described by the
mean-force Gibbs state [67].

For bosonic baths and probes, it has been shown that one can highly improve the precision when
estimating ultralow temperatures by increasing the coupling between the system and the probe [20, 33, 34].
This can be understood by noting that for finite coupling, the QFI of the probe becomes sensitive to the
spectrum of the full Hamiltonian (probe+sample), which is gapless. As a consequence, the relative error
(∆T̃/T) when T→ 0 diverges polynomialy [20, 28, 29], instead of the standard exponential growth for
gapped systems [18]. We find a qualitatively similar behaviour for fermionic systems, as explained below.

When the probe reaches a steady state (t→∞), equation (15) reduces to

p1 (∞) =
2Γ

π

ˆ ∞

−∞
dω

fβ (ω)

Γ2 + 4(ω− ϵ)
2 . (25)

Firstly, in the weak coupling regime, one can see that limΓ→0 p1(∞) = fβ(ω) which coincides with the steady
state of the GKLS rate equation (18). For this canonical state, one can find the Fisher information
analytically. In equilibrium thermometry, it is common practice to study the minimum noise-to-signal ratio
as a figure of merit, which by using the CRB reads

∆2Tmin

T2
:=

1

T2FQ [px (∞)]
. (26)

By using equation (21) one can find

∆2Tmin

T2
=

(
1+ eβ(ϵ−µ)

)2
(ϵ−µ)

2
β2eβ(ϵ−µ)

. (27)

Limiting to a scenario with a fixed effective gap ϵeff = ϵ−µ > 0, one can see that the FI is optimal at some
temperature T∗ ≈ 0.42ϵeff. At higher temperatures T→∞ the noise-to-signal ratio diverges polynomially

with temperature, i.e. ∆2Tmin
T2 ∝ (T/ϵeff)2. On the other hand, as β →∞ the error diverges exponentially, i.e.

∆2Tmin
T2 ∝ (βϵeff)

−2 exp(βϵeff). This exponential divergence is expected from canonical states with a finite
[effective] energy gap.

Moving to the strong coupling regime, we compute the QFI via the exact solution (25). Our results are
illustrated in figure 1, which shows that the error at low temperatures diverges polynomially with

temperature. A numerical analysis suggests that for low enough temperatures we have ∆2Tmin
T2 ∝ T−2−α where

α≈ 2.05. This behaviour is a consequence of the fact that the spectrum of the total Hamiltonian (5) is

5



New J. Phys. 26 (2024) 013046 R Ravell Rodríguez et al

Figure 1. Loglog scale plot of the minimum relative error, 1/(T2FQ[px(∞)]) as a function of temperature T. Different
interaction strengths Γ are considered. For comparison, we also plot the relative error for a thermal state—that is the solution of
the GKLS master equation—the dashed line. We set ϵ−µ= 1.

Figure 2. Plot of the quantum Fisher InformationFQ as a function of the coupling strength Γ for T/(ϵ−µ) = 0.1. The red point
corresponds to the maximum value of the plot and it corresponds to the value obtained for the optimal coupling strength
Γ∗/(ϵ−µ). Inset: plot of Γ∗/(ϵ−µ) for the steady state as a function of the temperature T. We set ϵ−µ= 1 for both plots.

gapless [20, 29], and has also been observed in other models [20, 28, 29, 31]. At the limit of high
temperatures the behaviour coincides with the canonical distribution as the master equation becomes more
reliable. Furthermore, contrary to the canonical distribution, the exact solution is highly impacted by the
coupling Γ—even though for weak coupling strengths (Γ≪ ϵ−µ) and for temperatures T≈ ϵ−µ the
Markovian approximation approaches the exact results, as expected. We analyse this behaviour in figure 2
where we fix the temperature to the low regime and depict QFI vs the coupling Γ. Evidently, the behaviour is
non-monotonic, i.e. there exist an optimal Γ which in general depends on the temperature. This is in
contrast to scenarios with a bosonic probe here at low temperatures increasing the coupling monotonically
improves the precision close to T= 0 [4, 33, 34]. To illustrate more the dependence of the optimal coupling
strength Γ∗ in the regime of low temperatures, we plot the inset of figure 2 the optimal Γ (Γ∗) as a function
of temperature T. One can see that for ultralow temperatures Γ∗ stays approximately constant. Recently, and
more similarly to our result, a non-monotonic behaviour was also seen in thermometry of bosonic samples
when using qubits as probes [35].

5. Non-equilibrium thermometry

We now change paradigm and consider a dynamical scenario, where one is allowed to measure the
thermometer before it reaches its steady state.

5.1. Fisher information
Motivated by the fact that the Markovian approximation is not trustful for all time regimes, in this subsection
we compute the Fisher Information as a function of time, for the transient dynamics of our model.
Regarding the temperature regime which is more interesting to us, we see that in figure 1, for temperatures
small with respect to the fermionic gap, i.e. T≪ ϵ−µ one can see that the behaviour between the results
obtained from the Markovian approximation and the analytical ones start to differ significantly. On the other

6
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Figure 3. Loglog plot scale of quantum Fisher Information vs time (in units of ϵ−µ) for different couplings. The dashed line
corresponds to the Markovian master equation with decay rate Γ = 0.1. We set T/(ϵ−µ) = 0.05, ϵ−µ= 1, and we start from
the ground state.

hand, for T≫ ϵ−µ this is no longer true and one can see that regardless of the coupling strength, the
behaviours are the same in both approaches. Hence we focus on the transient behaviour when T≪ ϵ−µ.

For that matter, we compute the QFI using equation (21) where the excited probability p1(t) is described
in (15). The discrepancy can be seen in figure 3 where there is a stark contrast between the Markovian and
exact dynamics. In the Markovian case, the analytical formula for the QFI can be found by putting together
equations (18) and (21) and reads

FQ =
β4

(
ϵ− ϵe−Γt

)2
(2cosh(βϵ)+ 2)2

(
− 1

eβϵ+1 − e−Γt
(
p1 (0)− 1

eβϵ+1

)
+ 1

)(
1

eβϵ+1 + e−Γt
(
p1 (0)− 1

eβϵ+1

)) , (28)

which grows monotonically in time for any value of the parameters. Thus the Fisher Information keeps
increasing until asymptotically saturating to the value corresponding to the Gibbs state for a given
temperature. On the other hand, for the exact solution, one can see that there are revivals for short times
which are original to non-Markovian effects. These revivals lead to a higher QFI than that obtained in the
Markovian limit, whose saturation requires performing a measurement on the probe before it thermalises. It
is important to highlight that the existence of an optimal time in the exact model is a consequence of the
non-Markovian nature of the dynamics. This fact can be contrasted with the previous studies of Bosonic
baths, where the existence of a finite optimal time is also observed [19, 68]. In the bosonic case, however, the
optimal time is also observed in the Lindbladian master equation approach, even for non-coherent input
states [68]. This is due to the fact that in the Bosonic case the rates contain some information about the
temperature—which will be lost in the steady state. Instead, in our model, in the wide-band limit, the rate Γ
is independent of temperature, and thus we see the sensitivity grows monotonically in the Markovian case.
Hence, the origin of the optimality of the Fisher information at finite times roots in non-Markovianity of the
dynamics.

5.2. Fisher information rate
In this section, we consider another figure of merit to quantify the advantages in the precision when working
in the transient regime, namely the Fisher Information rate. This is useful when the equilibration time is long
or generally speaking if time is a metrological resource. More precisely, we consider what is the optimal
sensing strategy for a given total time τ . During this time, we repeat k= τ/t times (t is a free parameter that
can be optimised) the following procedure: probe preparation, evolution for a time t, and measurement. As
such, the total Fisher information is equivalent to τF [px(t)]/t. Putting the constant τ aside, and following [8,
16, 44, 68–71], in this case our effective figure of merit will be shifted to the rate of the Fisher information
defined as

F̃ [px (t)] :=
FQ [px (t)]

t
. (29)

From equation (29) is clear that measurement time is crucial, in particular there exist an optimal
measurement time. That is

t∗ := argmax
t F̃ [px (t)] . (30)

7
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Figure 4. Plot of quantum fisher information over time vs Γt for different Γs. The solid line corresponds to the case of Markovian
Master equation (with the decay rate being Γ = 0.1). We set ϵ−µ= 1, and we start from the ground state of the dot.

Figure 5. Contour plot of Γt∗ as a function of Γ/(ϵ−µ) and T/(ϵ−µ). We set ϵ−µ= 1, and we start from the ground state of
the dot.

In the weak coupling regime, we can use the GKLS master equation to calculate F̃ [px(t)] analytically by
using p1(t) from equation (18). For instance, if the inital state is p1(0) = 0 one finds

F̃ [px (t)] =
(ϵ−µ)

2
β4

(
eΓt − 1

)
eβ(ϵ−µ)

t
(
eβ(ϵ−µ) + 1

)2 (
eβ(µ−ϵ) + eΓt

) . (31)

We depict the Fisher information rate as a function of time in figure 4 (blue straight lines.) It can be seen that
the rate is maximum at t∗ → 0, in agreement with previous results [16, 44, 71]. In fact, when using the GKLS
master equation it has been shown that the optimal measurement time approaches zero under quite generic
weak probe-sample interactions [44].

Moving to the strong coupling regime, we exploit the exact solution (15) to compute numerically the rate
of the FI. We depict this in figure 4. We immediately notice that the dependence of t∗ on the coupling and the
temperature is by no means trivial. Clearly, we see from figure 4 that quite generically Γt∗ > 0, and hence the
optimal time is strictly larger than zero, contrary to the Lindbladian master equation.

In order to elucidate more on the behaviour of t∗ with respect to the temperature T and the coupling Γ,
we make a contour plot which is shown in figure 5. We plot Γt∗ as a function of Γ and T, where the
adimensional quantity Γt∗ is the comparison between the optimal time and the thermalisation rate of the
probe. As a sanity check, we see that limΓ→0Γt∗ → 0 which is the expected result for the weak coupling limit
[16, 44, 71]. On the other hand, as the coupling Γ increases the quantity Γt∗ also increases which can also be
seen from figure 4.

Finally, in figure 6, we plot the maximum value of the accumulated Fisher Information as a function of Γ
to see that the maximum value does not increase monotonically with Γmaking the behaviour richer. As in
the equilibrium case, there is an optimal coupling strength that maximises the QFI.

8
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Figure 6. Loglog scale plot of the maximum value of the Fisher Information rate for different Γs. We set ϵ−µ= 1, and we start
from the ground state of the dot.

6. Extension to multiple fermionic probes

We now consider the multiple fermionic scenario where n fermioins are embedded in a common bath. In
this case, the total Hamiltonian reads

H=
n∑

i=1

ϵi d
†
i di +

∑
q

ωqb
†
qbq +

n∑
i=1

∑
q

(
tqb

†
qdi + t∗qd

†
i bq

)
, (32)

where we assume the fermions are non-interacting, and their interaction with the bath is independent of
their index. In the appendix, we discuss the general solution to this model. Let us here consider two insightful
scenarios.

6.1. The symmetric case
Firstly, we consider a case where all the fermions have the same energy, ϵ. Exploiting this symmetry, we can
define a new set of fermions such that only one mode is coupled to the bath. For instance, with two fermions
the Hamiltonian can be rewritten as

H= ϵd†+d+ + ϵd†−d− +
∑
q

ωqb
†
qbq +

√
2
∑
q

(
tqb

†
qd+ + t∗qd

†
+bq

)
, (33)

where d± = d1±d2√
2
. On the one hand, the mode d− is not coupled to any other mode hence evolves freely. It

therefore gets no information about the bath temperature. On the other hand, the coupling of the d+ mode
to the bath is intensified by a

√
2 coefficient. Generalising to N fermions, the model has one effective fermion

evolving through the dynamics with coupling strength
√
NΓ. As such, all our previous results with a single

fermion apply to this case too, simply by replacing Γ→
√
NΓ. Note that in this case, the optimal

measurement is performed in the basis of d+, which is nonlocal in the space of the original fermions. Note
also that the steady state is not unique because it depends on the initial conditions (because the expectation
value for the second mode will fulfill ⟨d†−d−(t)⟩= ⟨d†−d−(0)⟩).

6.2. Two fermions with different gaps
Setting the gaps to be different, breaks down the symmetry. Here, we ask ourselves about additivity of the
QFI, i.e. how does the Fisher information of a system with two fermion in a common bath—which we
denote by FQ[ρ12(t)]—compare to that of the same two fermions embedded in independent baths—which
we denote FQ[ρ1(t)⊗ ρ2(t)]. While the latter is additive, the former can be in general sub-additive, additive,
or super-additive. Thus, we wonder

FQ [ρ12 (t)]
?

>=< FQ [ρ1 (t)⊗ ρ2 (t)] . (34)

Let us remark that in the common bath setting, the optimal measurement and the QFI should be chosen by
solving equation (24). This can be simply done by solving for ρ12(t), as explained in the appendix.

In figure 7, we test the additivity by depicting the two sides of equation (34) as a function of time. One
can see that for the chosen range of parameters the QFI is initially sub-additive, but at longer times becomes
super additive, i.e. FQ[ρ12(t)]⩾ FQ[ρ1(t)⊗ ρ2(t)]. To shed more light on the long time behaviour, in figure 8
we plot the ratio between the steady state QFI in the two scenarios. Particularly, we can see that at low
temperatures (T≪∆ϵ−µ, where∆ϵ≡ ϵ2 − ϵ1) and for weak couplings (Γ≪∆ϵ−µ) the QFI is super
additive, that is the bath-induced correlations are helping to improve the precision. On the other hand, at
higher temperatures, and specially at the weak coupling one sees that the two scenarios perform equal and
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Figure 7. LogLogPlot of quantum Fisher information versus Γt. Green line represents the case in which two fermions are
embedded in the same bath, that is FQ[ρ12(t)]. Blue line represents the case in which each fermion is independently in contact
with a fermionic bath, that is FQ[ρ1(t)⊗ ρ2(t)]. Here, we set the parameters to∆ϵ−µ= 1, Γ = 0.5, T= 1 and we start from
the ground state for both fermions.

Figure 8. Loglog scale plot of the ratio betweenFQ[ρ12(t)] andFQ[ρ1(t)⊗ ρ2(t)] (F12/F1⊗2) for different Γ’s in the steady state
limit. We see that at small couplings the ratio goes to one, as expected—since the Markovian master equation holds and the steady
state is thermal. However, at stronger couplings this is not the case, which is specifically more pronounced at lower temperatures.
Here, we set∆ϵ−µ= 1.

therefore the QFI is additive. Our results agree with those obtained in [43] where the authors showed that for
a system consisting of two qubits in a Fermi gas, the superadditivity of the QFI appear (so the bath
correlations help in enhancing the precision) in the regimes of low temperatures—in accordance to our
findings—and for low couplings between the bath and the impurities—again in agreement with our results.

7. Conclusions

Thermometry in ultracold gases presents a formidable challenge, and recent research aims at characterising
the potential of non-invasive measurements via small quantum probes [8]. In this work, we characterised the
thermometric potential of fermionic probes strongly coupled to a fermionic environment, by calculating
their dynamics without resorting to any approximations apart from the wide-band limit. Our investigation
encompasses two fundamental thermometry scenarios: equilibrium and non-equilibrium thermometry.

In the context of equilibrium thermometry, we demonstrated that the minimum noise-to-signal ratio for
low temperatures diverges polynomially when the coupling is strong, in contrast to the standard exponential
decay obtained from the weak coupling solution. A similar behaviour had been observed in other models for
strong coupling quantum thermometry, and can be understood by noting that that the full Hamiltonian of
probe+sample is gapless [20, 28, 29]. Our results exhibit significant sensitivity to the coupling between the
bath and the probe, with the optimal interaction strength being a non-trivial function of the temperature
(see figure 1).

In the transient regime, when the system has not reached equilibrium, we studied two figures of merit:
the QFI and its rate. For the QFI, we noted that whereas for Markovian dynamics it grows monotonically
with time, this is no longer true for the exact non-Markovian dynamics. In the latter, we showed revivals in
the QFI due to non-Markovianity effects that can be exploited for a higher measurement sensitivity.
Regarding the rate of the Fisher information, it is known that this quantity is maximised in the limit t→ 0
for Markovian dynamics so that the optimal protocol consists of a fast measure-and-prepare strategy [44].
Here we showed that whenever the Markovian approximation breaks down, this strategy quickly becomes
suboptimal and the Fisher information rate is maximized for a finite t∗ > 0. The dependence of t∗ on the
temperature and coupling strength is non-trivial and shown in figure 5.
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Additionally, we have explored scenarios involving multiple probes simultaneously immersed in the same
fermionic bath, which we solved analytically. We studied superadditivity at the steady state for two specific
temperatures that could be considered as low and high. At low temperatures, we observed that the Fisher
Information of the probes collectively coupled to a single bath is higher than the sum of the Fisher
information obtained with each fermion connected to a separate bath. As expected, such a phenomenon
disappears at high temperatures due to the lack of correlations.

Several intriguing open questions await future exploration. For scenarios involving more than one
fermion, is the experimental setup we have examined here feasible, or should we consider all fermions
connected to the same bath with varying coupling strengths? Furthermore, we have exclusively considered
the minimum noise-to-signal ratio, which imposes restrictions on the specific measurement that one carries.
One could wonder about sub-optimal measurements in the multi-fermion case. A promising avenue for
future research involves studying precision when there is uncertainty about the temperature to be estimated,
using Bayesian thermometry [27] or other tighter and more realistic bounds, such as Bhattacharya or
Barankin [72]. Finally, in light of recent work [7], exploring the potential of adaptive protocols to enhance
the results presented here represents an interesting avenue for further investigation.
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Appendix A. Extension to multiple fermions

Here, we present an extension of the resonant level model to n fermions, which is based upon [54]. We
consider n fermions imbued in the same fermionic bath. The systems is given by

H=
n∑

i=1

Ei d
†
i di +

∑
q

ωqb
†
qbq +

n∑
i=1

∑
q

(
tqb

†
qdi + t∗qd

†
i bq

)
. (A1)

Calculating the Heisenberg equations for the operators, we get the system of equations

iḋj (t) = Ejdj (t)+
∑
q

t∗qbq (t) , (A2)

iḃq (t) = ωqbq (t)+
∑
j

tqdj (t) . (A3)

First, we solve the equation for bq defining a variable vq(t) = eiωqtbq(t). We get that the solution for this
variable is

vq (t) =−i
∑
j

tq

ˆ t

0
dseiωqsdj (s)+ vq (0) . (A4)

Moving back to bq(t) and knowing that bq(0) = vq(0) (just by the definition) we finally have

bq (t) =−i
∑
j

tq

ˆ t

0
dseiωq(s−t)dj (s)+ e−iωqtbq (0) . (A5)
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We now proceed injecting the solution to (A2)

ḋj (t) =−iEjdj (t)− iξ (t)−
∑
j

ˆ t

0
χ(s− t)dj (s)ds, (A6)

where ξ(t) =
∑

q t
∗
q e

−iωqtbq(0) and χ(t) =
∑

q |tq|2eiωqt. So, if we look at the last term of rhs, we can simplify
it by

ˆ t

0

∑
q

|tq|2eiωq(s−t)dj (s) =

ˆ ∞

−∞
dωδ

(
ω−ωq

) 2π
2π

ˆ t

0
ds
∑
q

|tq|2eiω(s−t)dj (s)

=
1

2π

ˆ t

0
ds

ˆ ∞

−∞
dωΓ(ω)eiω(s−t)dj (s) ≈︸︷︷︸

Γ(ω)≈Γ

1

2π

ˆ t

0
ds

ˆ ∞

−∞
dωΓeiω(s−t)dj (s)

= Γ

ˆ t

0
dsδ (s− t)dj (s) =

Γ

2
dj (t) , (A7)

where we have used the wide-band approximation and considered the spectral density to be flat.
Thanks to (A7), and the properties of Delta function, namely

´ t
0 dsδ(s− t)f(s) = 1/2f(t), we have

ḋj (t) =−iEjdj (t)− iξ (t)− Γ

2

∑
j

dj (t) =−i

(
Ej − i

Γ

2

)
dj (t)− iξ (t)− Γ

2

∑
l̸=j

dl (t) . (A8)

One can write the previous equation in vectorial form as

˙⃗
d= Ad⃗− iξ (t)Iv (A9)

where Iv represents a vector make of ones, d⃗= (d1,d2, · · · ,dn) and

A=


−i

(
E1 − i Γ2

)
0 · · · 0

0 −i
(
E2 − i Γ2

)
· · · 0

... · · ·
. . . 0

0 · · · · · · −i
(
En − i Γ2

)
+



0 Γ
2

Γ
2 · · · Γ

2
Γ
2 0 Γ

2 · · · Γ
2

... Γ
2 0 Γ

2
Γ
2

...
...

. . .
. . . Γ

2
Γ
2 · · · · · · Γ

2 0

 . (A10)

To solve (A9), one follows the same trick as before defining a variable D⃗= e−Atd⃗ to finally obtain

d⃗= eAtd⃗(0)− i

ˆ t

0
dse−A(s−t)ξ (s)Iv. (A11)

From here, we can solve (A11) by means of numerical calculations. From the components of d⃗ one can
get all the information of the state. In the simplest case with one fermion (E1 ≡ ϵ), one gets

d(t) = e(−iϵ−Γ
2 )td(0)− i

ˆ t

0
dse(iϵ+

Γ
2 )(s−t)ξ (s) . (A12)

Assuming now that the initial state of the fermion+bath system is given by ρ(0) = ρS(0)e−β(HB−µN)/Z and
noting that ⟨b†qbq ′(0)⟩= δq,q ′ fβ(ωq) where fβ(ωq) =

1
1+eβ(ωq−µ) corresponds to the Fermi distribution and µ

is the chemical potential of the reservoir. With this, we can calculate ⟨d†d(t)⟩ as

p1 (t) = ⟨d†d(t)⟩= e−Γt⟨d†d(0)⟩+
ˆ t

0
ds

ˆ t

0
ds ′e

Γ
2 (s−t+s ′−t)e−iϵ(s ′−s)⟨ξ∗ (s ′)ξ (s)⟩ (A13)

= e−Γtp1 (0)+

ˆ t

0
ds

ˆ t

0
ds ′e

Γ
2 (s−t+s ′−t)e−iϵ(s ′−s)

∑
q

|tq|2e−iωq(s−s ′)fβ
(
ωq

)
(A14)

≈ e−Γtp1 (0)+
Γ

2π
e−Γt

ˆ ∞

−∞
dω

ˆ t

0
ds

ˆ t

0
ds ′e

Γ
2 (s+s ′)e−i(ϵ−ω)(s ′−s)fβ (ω) (A15)

= e−Γtp1 (0)+
2

π

ˆ ∞

−∞
dωΓfβ (ω)

1− 2e−Γt/2 cos [(ω− ϵ) t] + e−Γt

Γ2 + 4(ω− ϵ)
2 , (A16)

where again we have used the wide-band limit. The result corresponds to equation (15) from the main text.
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Appendix B. Fluctuation dissipation relation

The real part of the memory kernel and the two time correlation functions of the bath admit a
fluctuation-dissipation relation in the frequency domain. On the one hand

C̃(ω ′) :=

ˆ ∞

−∞

〈
ξ†ξ (t)

〉
eiω

′tdt= 2π fβ (−ω ′)Γ(−ω ′) , (B1)

on the other hand, we have

χ̃(ω ′) :=

ˆ ∞

−∞
χ(t)eiω

′tdt=
1

2
Γ(−ω ′)+

i

2π

ˆ ∞

−∞
dω

Γ(ω)

ω+ω ′ , (B2)

and hence

C̃(ω) = 4π fβ (ω)Re χ̃(ω) . (B3)

Appendix C. Short times expansion

If we expand d(t) up to the second order in t, we have

d(t)≈ d(0)+ ḋ(0) t+
1

2
d̈(0) t2 = d(0)+ t(−iE1d(0)− iξ (0))+

1

2
t2
(
−iE1ḋ(0)− iξ̇ (0)−χ(0)d(0)

)
,

(C1)

where we used the expression (A6) and its derivative. If we now compute the population up to the second
order

⟨d†d(t)⟩= (1+ iE1t)(1− iE1t)n0 + t2⟨ξ∗ (0)ξ (0)⟩− E21t
2n0 −χ(0)n0t

2 + 0
(
t3
)

(C2)

where the remaining terms are 0 because we consider that our initial state is of the form ρ= ρSτB where τB is
the thermal state for the bath. In addition, we have

⟨ξ∗ (0)ξ (0)⟩=
∑
q

t∗q
∑
q ′

tq ′⟨bq (0)bq ′ (0)⟩=
∑
q

∑
q ′

t∗q tq ′ fβ
(
ωq

)
δq,q ′ =

1

2π

ˆ ∞

−∞
dωΓ(ω) fβ (ω) , (C3)

and

χ(0) =
∑
q

|tq|2 =
ˆ ∞

−∞
dωδ

(
ω−ωq

)∑
q

|tq|2
2π

2π
=

1

2π

ˆ ∞

−∞
dωΓ(ω) , (C4)

where fβ(ω) is the Fermi distribution for temperature 1/β and frequency ω.
Finally, we can write the population as

⟨d†d(t)⟩= n0 +
t2

2π

ˆ ∞

−∞
dωΓ(ω)

(
fβ (ω)− n0

)
. (C5)

C.1. Short time fisher information
Let us assume that the initial state is a pure state with n0 = 1. Plugging equation (C5) in equation (29) one
gets

F [px (t)]≈
t2 (∂Tα)

2

tα
, (C6)

where we define

α :=
1

2π

ˆ ∞

−∞
dωΓ(ω)(1− fβ (ω)) . (C7)

As a result, F̃ [px(t)]∝ t for short times. This means, it is never optimal to measure the probe immediately,
there is an optimal time.
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