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Preface

This thesis is dedicated to the theoretical development and practical application of machine
learning methods to content-based multimedia analysis and retrieval. For clarity and in order
to avoid confusion, a special attention must be given to the way this thesis interprets and uses
the term multimedia, that has a great number of meanings and ways of being understood,
and whose definitions continuously evolve and change keeping the pace with technological
progress.

According to the literal meaning that comes from the latin multus = “many, multiple ...”
and medium = “a channel or system of communication, information, or entertainment”, mul-
timedia relates to the use of computers to present text, graphics, video, animation, and sound
in an integrated way. However, the perception of the term multimedia is distinctively different
from the perspective of a machine learning system, or any multimedia information system in
general. An information system deals with the same bit pattern abstraction of the digitized
and possibly encoded information, irrespective of its sensory origins. As some authors put
it, multimedia in this context refers to any visual information, audio information or textual
information, taken either separately or in combination. Digital multimedia information is
immediately visible, audible, readable and in most cases understandable to the user, but not
to the system. This important discrepancy between the digital representation and semantic
interpretation is known as semantic gap problem, which is the main focus of the machine
learning techniques developed in this thesis.
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Abstract

One of the major challenges in content-based multimedia retrieval is due to the problem of
semantic gap encountered as a consequence of significant disparities between inherent repre-
sentational characteristics of multimedia and its meaningful content sought by the user. This
work concerns the advancement of the semantic augmentation techniques focused on bringing
together low-level visual representation of multimedia and its semantics thus attempting to
alleviate the above semantic gap problem by augmenting the information used by a multi-
media database system in order to improve the efficiency of access and retrieval. The main
emphasis and contributions of this work summarized below are in the domain of supervised
discriminative learning methods and ensemble techniques.

Proposed is a non-parametric distance-based discriminant analysis method, DDA, focused
on finding a discriminative linear transformation that enhances data conformance to the
compactness hypothesis and its inverse. The sought transformation, in turn, is found as a
solution to an optimization problem formulated in terms of inter-observation distances only,
using the technique of iterative majorization. The proposed approach is suitable for both
binary and multiple-class categorization problems, and can be applied as a dimensionality
reduction technique. In the latter case, the number of discriminative features is determined
automatically since the process of feature extraction is fully embedded in the optimization
procedure.

In order to overcome the limiting assumption of linearity of the sought disciminative
transformation, a kernel-based extension of the above discriminant analysis method, KDDA,
is formulated whereby the optimization criterion is expressed in terms of distances projected
from a feature space induced by a given kernel function. Additionally, an application of
indefinite kernels rendered as unrestricted linear combinations of hyperkernels is considered
in the KDDA framework. The proposed formulation entails a solution of a series of quadratic
minimization problems, whose computationally advantageous property of being convex is
guaranteed regardless of the definiteness of the selected kernel function. Finally, an adverse
condition referred to as the false positive projection effect is studied and its elimination
strategies are assessed.

Using the above DDA method as a basic building block classifer, a hierarchical ensemble
learning approach is developed and applied in the context of multimedia semantic augmenta-
tion. In contrast to the standard multiple-category classification setting that assumes inde-
pendent, non-overlapping and exhaustive set of semantic categories, the proposed approach
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models explicitly the hierarchical relationships among target classes, and estimates their rel-
evance to a query as a trade-off between the goodness of fit to a given category description
and its inherent uncertainty.

Finally, a motivational analogy of the DDA optimization criterion formulation to that
of the analytical center machine approach extended to a case with several separating hyper-
planes is considered. An explicit multiple-hyperplane extension of the optimal separating
hyperplane classifier is formulated and investigated from the point of view of optimization
problem complexity and generalization performance guarantees. The latter properties are
derived in terms of the associated fat-shattering dimension bound.
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Chapter 1

Introduction

The vast increase of the amount of available multimedia content necessitates the development
of new techniques and methods that not only are able to store and retrieve data effectively,
but also can, with or without user’s assistance, overcome the semantic gap problem. The said
problem is encountered due to major disparities between inherent representational character-
istics of multimedia, such as color, texture, shape or motion descriptors, and its meaningful
content sought by the user. Exacerbated by the issue of perception subjectivity, i.e. the
change of relevance judgments from one individual to another, the semantic gap problem
represents a formidable challenge that has been shown to adversely affect the performance of
many multimedia database retrieval systems [132]. Naturally, this area has been a prominent
research direction addressed by a great number of approaches originating from such areas as
machine learning, statistics, natural language processing, etc.

In the discussion that follows, we would like to identify such approaches as those of seman-
tic augmentation since most of them are specifically focused on bringing together low-level
visual representation of multimedia and its semantics thus augmenting the information used
by a multimedia database system in order to improve the efficiency of access and retrieval.
The choice of a referral term as general as semantic augmentation allows us to encompass
and analyse holistically a great variety of techniques that are designed but with one common
goal: to alleviate the semantic gap problem, solved in the case of each individual method
via an extremely diverse range of paradigms and formulations related to indexing, learning,
classification, categorization, prediction, etc. This choice of terminology is ultimately linked
to the way the term multimedia is perceived throughout this thesis. Namely, multimedia is
broadly understood as any combination of representation of human-perceptible information,
whose automatically computable characteristics do not contain direct expression of seman-
tics sought by a user. Thus, digital images, waveform audio signals, video shots are all seen
as acceptable instances of multimedia to which semantic augmentation techniques may be
applied.

In order to set a proper context for describing the contributions of this thesis, our further
consideration will focus on two groups of methods for semantic augmentation: interactive
(Section 1.1) - the adaptive approaches that are guided by relevance feedback supplied by
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CHAPTER 1. Introduction

the user, and automatic (Section 1.2) - those attempting to derive useful correlations between
representational characteristics of multimedia and its semantic aspects by applying techniques
that do not involve the user.

1.1 Interactive semantic augmentation

The common trait of the methods belonging to the first group of techniques to be considered
is the assumption of active user presence during the retrieval process. The user is regarded as
the principal source of semantic knowledge in various possible scenarios of interaction. This
knowledge may not be explicitly mapped onto a semantic concept (i.e., named) at the end
of the process but we consider that the level of description or discrimination attained during
the interactive process is high enough to be called semantic.

In this section, we therefore review the most common ways of capturing and exploiting
user interaction in view of enhancing the retrieval process. In most systems, user interaction
is taken as relevance feedback [127] from a search result to a subsequent search step. In this
scheme, the user is offered a search result and (s)he should mark (some) items of this set as
being relevant or irrelevant (possibly under a fine scale).

Primarily, this mechanism allows for having a direct computation of individual items’
importance within the search context. This is exploited in the computation of Rocchio’s
formulation [125] for adapting term weight at search time (section 1.1.1). From a different
viewpoint, when considering that relevance feedback creates inter-item relationships, one may
then derive properties from their co-occurence. This is used in both association rule mining
and collaborative filtering (section 1.1.2). Alternatively, the interaction may be exploited in a
Bayesian framework. Relevance feedback is therefore the base for learning and classification
(section 1.1.3). These techniques are originally essentially blind to the type of item under
management. In section 1.1.5, we review some schemes that adapt these into the content of
interactive image retrieval. More specifically, various tasks classically associated to CBIR are
combined into an integrated framework for a collaborative interactive semantic description
of the data.

1.1.1 Rocchio’s algorithm

Many of the early methods for interactive semantic augmentation emerged from the efforts
proven effective in the field of document retrieval, and were built according to the scheme
illustrated in Figure 1.1. These approaches were closely tied to the underlying vector space
model [131] inheriting the weight calculation rules based on the notions of term and inverse
document frequencies, and processed relevance judgments supplied by the user via an additive
adjustment formula known as Rocchio’s algorithm:

Qnew = αQold + β
∑

Di + γ
∑

D̄i, (1.1)

14



1.1. Interactive semantic augmentation

User(s)

Document
Ranking

Rocchio
Algorithm

Initial
Query

Relevance
Feedback

Figure 1.1: Typical scenario of retrieval with relevance feedback

where Qold is a query feature vector from the previous relevance feedback iteration, Di and
D̄i are given documents from relevant and non-relevant sets, respectively, and α, β and γ are
tuning parameters. Using this strategy, integrated with the vector space model for retrieval,
the notion of similarity is interactively adapted to the user profile by distorting components
of the indexing space.

The Viper system [140] adapts classical document retrieval techniques to the context of
CBIR. It includes Rocchio’s algorithm as a way to handle feedback and to account for the
sparsity of positive examples against negative examples. By tuning β and γ parameters in
Equation (1.1), this system is robust against abundant negative examples that would normally
make retrieval inconsistent [125].

1.1.2 Association rules and collaborative filtering

While the above feedback strategy is based on the features of the items within the collection,
the principle here is to derive knowledge from the users themselves.

Assuming the same system is accessed by several users, one wishes to predict information
in a given case based on a history of interaction. Let a dataset (collection) D be composed
of items, regrouped in itemsets. We wish to create associations between itemsets X and Y

(X ∩Y = ∅) within a particular transaction T (e.g. query process) of the form X ⇒ Y . That
is, within a particular context of interaction, we wish to state that whenever itemset X is
considered, itemset Y will also be considered. More formally, we wish to estimate the value
of

P (Y ⊆ T |X ⊆ T ) (1.2)

Müller et al. [110], propose to use this technique to achieve long-term learning in the context
of Content-based Image Retrieval in the Viper system based on the vector space model
for retrieval. From usage log, relevance feedback is exploited to derive association rules
between pairs of images marked relevant or otherwise. Rather than acting of the documents
themselves, the authors propose to apply a long-term weight to the basic image features so
as to set emphasis on discriminant features.
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CHAPTER 1. Introduction

Collaborative filtering approach [122] uses aggregated subjective evaluations from a group
of users to recommend items to an active user. Typically, from a history of choices made by
a population of users on a number of items, one wishes to predict the choice of a user on a
particular item. That is, propagating other user’s choices onto a particular user, based on
known correlations between that particular user and others who already made a decision on
that item. More formally, let vi,j be the vote of user ui on item oj and Ii the set of items on
which user ui has made a decision. Then, in the simplest case, vi = (

∑
j∈Ii

vi,j)/|Ii| is the
average vote of user ui on Ii, which correlates with the profile of user ui. Thus, the predicted
feedback v̂a,j of active user ua on item oj �∈ Ia is given by the “profile” of user ua added with
a weighted combination of personalised votes on item oj (vi,j for all ui �=a).

v̂a,j = va + κ

n∑
i=1;i�=a

w(a, i)(vi,j − vi), (1.3)

where the weight w(a, i) represents the correlation between user ua and user ui. In early
studies, this is simply taken as the Pearson correlation coefficient

w(a, i) =

∑
j(va,j − va)(vi,j − vi)√∑

j(va,j − va)2
∑

j(vi,j − vi)2
. (1.4)

User choices are accumulated. After showing a certain profile (va) by interacting with the
system, user ua then receives recommendations for subsequent searches.

It is important to note here that items are blindly considered as entities and that the
complete recommendation procedure is done without any knowledge of the item features.
The performance of the system is uniquely based on the quality of the correlation computed
and the consistency of the information propagated. In [77], this system is used to create
a WebMuseum able to distinguish between styles of painting, simply by accumulating user
relevance feedback.

1.1.3 Bayesian handling of relevance feedback

Here, we still consider the classical relevance feedback protocol. Simply, positive and nega-
tive examples become the base for a Bayesian classification. In [142], positive and negative
examples are treated separately. Positive examples are successively used to estimate the pa-
rameters of a Gaussian distribution of their features. Negative examples are used as center
of penalty functions so that inferred results “stay away” from these examples (this process is
referred to as a ‘dibbling process’ in [142]).

Similarly, Vasconcelos and Lippman [129] propose to use positive and negative examples
in a learning cycle by first evaluating a classification based on positive examples xt and, based
on the N best positive classes, solve an equation of the type

S∗
i = argmaxi

{
α log

P (xt|Si = 1)
P (ȳt|Si = 1

+ (1 − α) log
P (Si = 1|x1 · · · xt−1)
P (Si = 1|ȳ1 · · · ȳt−1)

}
, (1.5)
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1.1. Interactive semantic augmentation

integrating ȳt as negative examples over time t. Equation (1.5) simply states that the class
best described by the set of positive and negative examples at hand is that maximizing the
posterior odds ratio between hypothesis “class i is the target” and “class i is not the target”.

A different setup, yet using similar techniques has been used in the classical Cox et al.’s
PicHunter browsing system [32]. It is assumed that the user seeks a specific target within the
collection. (S)he is then successively proposed samples of the collection containing the most
probable targets infered by the system using a Bayesian posterior estimation.

1.1.4 Active learning

Still in the spirit of learning from feedback, Tong and Chang [144] among others [25, 71]
propose to use Support Vector Machines (SVM) for achieving concept active learning. The
essential trait of the active learning approach is its ability to proactively select the examples
for which relevance feedback is solicited from the user, as opposed to simply asking to label a
random subset thereof. The said selection, in turn, is based on focusing on the examples whose
classification is difficult. The approach has been further enhanced by Gosselin and Cord [53]
by making the selection process depend on the current ranking of samples, rather than on
the less stable decision boundary of the classifier at a given feedback iteration. Among the
earlier developed active learning methods are such techniques as uncertainty sampling [90]
and query by committee [46]. In the latter approach the subsequent query for feedback is
chosen by the principle of maximal disagreement among a committee of classifiers.

1.1.5 Image specific framework

Most of the previous techniques have been developed in the context of document retrieval
and may be applied on multimedia in general, provided the right features are used. In the
field of CBIR, a number of alternative usage of relevance feedback have been proposed. Here,
we do not just aim at creating adaptive similarity associations between documents (ie feature
vectors), we wish to derive further useful properties of the image themselves.

For example, in [70, 72], Jing et al. propose a strategy to discovering region importance
in images handled by a CBIR system. The strategy is to pre-segment the images using the
classical JSEG algorithm [39] and then to compute inter-region similarity. A region and an
image are called similar if the image contains a region similar to the region the image is
compared with. Among the set of positive examples, each region is weighted by a region
frequency (RF) denoting its consistency with other regions within the positive set. Then,
based on a scheme similar to the TF*IDF scheme for document retrieval, Inverse Image
Frequency (IIF) is also computed as the importance of a given region within an image (ie its
ability to characterize the image) Finally, the region importance (RI) of region i in a given
image is computed as

RIi =
RFi ∗ IIFi∑n

j=1RFj ∗ IIFj
, (1.6)
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CHAPTER 1. Introduction

where n is the number of regions within the image. This region importance is finally accu-
mulated in a linear scheme along the feedback steps.

The fact of deriving region importance within images is an appealing process since it forms
a step towards identifying objects within the image. From there, several processes may be fa-
cilitated. This is true for retrieval, becoming region-based retrieval but also segmentation and
compression. In [98], this is discussed, along with the presentation of a complete integrated
framework for interactive document retrieval and description. The main observation is that
any interaction with the data may be a valuable semantic input. The proposal is therefore to
make the data accessible from a number of ways including retrieval, description, viewing and
so on. An important aspect is that the data is accessed from several points by several peo-
ple. In the proposed system, the authors aim at incrementally and collaboratively gathering
and inferring high-level information on the data immersed within this system. Eventually,
content description may be fixed into a knowledge base. It is shown that such an approach
tightly relating content-based retrieval and content description poses new solvable challenges,
as opposed to classical CBIR whose performances tend to saturate in current systems.

Image collection

Query
image(s)

Relevance feedback

Index

Description

judgements
Relevance

Similarity
function Result

User

DR

RJK

Ontology

Description

Textual

Description

Partition

FeaturesFeature
extraction

Segmentation

Annotation

Data

definition
Feature

Im
ag

e−
to

−
te

xt

K
RJU

U RJ
RJ

K K RJ

Data representation (DR)

Figure 1.2: The functional schema of a CBIR system completed with possible acquisition
of semantic knowledge. K, RJ and U mark places where a priori Knowledge,
Relevance Judgments and User interaction may be inserted, respectively

In the setup shown in Figure 1.2, user knowledge is captured at various locations of an
integrated framework. Techniques such as that described in the previous sections may then
be used to infer long-term semantic knowledge about the data.
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1.2. Automatic semantic augmentation

1.2 Automatic semantic augmentation

Similarly to the methods described in the previous section, many of the automatic semantic
augmentation techniques have their origins in the areas of textual document retrieval and
statistical natural language processing.

1.2.1 Latent semantic indexing

One of the most influential text-based approaches whose main principles are still actively
used in research to date is that of latent semantic indexing (LSI) [37]. Introduced as a means
to tackle the problem of synonymy, i.e., the non-uniqueness of sets of words (or, terms)
that can describe the same concept, the LSI method assumes existence of an underlying la-
tent semantic structure in the textual data partially obscured by the randomness of word
choice. In order to recover such latent structure, the method performs a truncated singular
value decomposition of the original term-document co-occurrence matrix (see Figure 1.3(a))
transforming it into its reduced-rank approximation. Thus, the main idea behind this trans-
formation is to capture the major term to document association relations ignoring minor
differences in terminology. Finally, a cross-language variation of the LSI (CL-LSI), proposed
by Landauer and Littman [86], that allows a query in one language to retrieve documents in
another language can be considered a conceptual prototype of a whole family of automatic
semantic augmentation methods [106, 121, 165, 166]. Indeed, as can be seen from a compar-
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Figure 1.3: A comparison of vector space models in LSI-based methods

ison of term-document matrices for CL-LSI and Multimedia-LSI methods shown in Figures
1.3(b) and 1.3(c), one can easily replace the part that corresponds to the other language
keyword information with multimedia feature data extracted from images, videos, etc. Thus,
instead of retrieving documents in a language different from that of a query, it should be
possible to find multimedia “documents” whose visual content corresponds to that of a query
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CHAPTER 1. Introduction

specified by keywords, and vice versa. In other words, the same approach can be used to
establish important associations between visual feature representation of multimedia and its
corresponding semantics conveyed by the annotation keywords. And this is exactly the issue
explored in detail by LSI-based automatic semantic augmentation methods such as those of
Zhao and Grosky [166, 165] and others mentioned before.

1.2.2 Cross-language modeling

An analogous idea of treating the visual feature data as another language to translate key-
words to and from is developed in a substantially different state of the art approach proposed
by Barnard et al. [7, 6]. According to the adopted translation model, the authors consider
the problem of object recognition as the one of machine translation. Given a representation
in one form (image regions, or blobs, derived by clustering segmented images) they attempt
to turn it into another form (keywords) using a developed model that acts in the capacity
of a lexicon. Thus, the pairs of images and their respective annotation keyword sets are
regarded as aligned bitexts, in which word-to-blob correspondence is to be established (see
Figure 1.4 for an example). Finally, the sought correspondence is determined by optimizing

SEASKY SUN

Segmentation

Images

Keywords

Blobs

Figure 1.4: An example of correspondence between image regions (blobs) and annotation
keywords sought by the translation model approach [7, 6]

the likelihood of word-to-blob association over all possible assignments, expressed as:

p(w|b) =
N∏

n=1

Mn∏
j=1

Ln∑
i=1

p(anj = i)t(w = wnj |b = bni), (1.7)

where N is the number of images, Mn is the number of keywords associated with the n-th
image, Ln is the number of blobs that the n-th image is segmented into, p(anj = i) is the
probability of association of a particular blob bi with a specific keyword wj , and t(w = wnj |b =
bni) is the transition probability of word w given blob b. This likelihood is subsequently
maximized via the EM algorithm [38]. A further development of these ideas by Jeon et
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1.2. Automatic semantic augmentation

al. [69] lead to the cross-media relevance model for automatic image annotation and retrieval,
while research efforts with a greater focus on various aspects of the underlying generative
probabilistic models undertaken by Blei and Jordan [17] produced correspondence latent
Dirichlet allocation, - a model that finds conditional relationships between latent variable
representations of sets of image regions and sets of words. The latter method’s properties were
assessed through a comparison with two alternative hierarchical mixture models of image data
and associated text (Gaussian-multinomial mixture model and Gaussian-multinomial latent
Dirichlet allocation) demonstrating its superior performance on the applications of automatic
image annotation, automatic image region annotation, and text-based image retrieval.

A method proposed by Vinokourov et al. [154] explores the similar cross-language paradigm
for learning a semantic representation of web images and their associated text. In contrast
to the above mentioned approaches [6, 7, 17, 69], these authors take a different route and
choose not to model the latent semantic aspects via generative probabilistic schemes. Instead,
they focus more on statistical techniques, namely, the kernel Canonical Correlation Analysis
(KCCA) [155], originally developed for extracting the translation-invariant semantics from
the aligned corpora in English and French, i.e., where every text in one language xi ∈ X
has a corresponding translation yi ∈ Y in another language. The main hypothesis of such a
technique is that having the corpus {xi}N

i=1 mapped to some high-dimensional feature space
Fx as Φ(xi) and corpus {yi}N

i=1 to Fy as Φ(yi), it is possible to learn semantic directions
fx ∈ Fx and fy ∈ Fy in those spaces so that the projections (fx,Φ(xi))

N
i=1 and (fy,Φ(yi))

N
i=1

of the original data in two different languages would be maximally correlated. This leads to
a correlation coefficient maximization problem, formulated as given in (1.8):

ρF = max
(fx,fy)∈F

∑
i (fx,Φ(xi)) (fy,Φ(yi))√∑

i (fx,Φ(xi))
2 ∑

j (fy,Φ(yj))
2
, (1.8)

which, as the authors show, can be solved as a generalized eigenvalue problem. Of course, the
same underlying formalism can be applied not only to extract translation-invariant semantics
from aligned bilingual texts, but also to find correlations between, for instance, web images
and their attached textual annotation [61, 154] and subsequently query an image database
only by keywords.

1.2.3 Statistically motivated techniques

Considering the automatic semantic augmentation approaches we have mentioned so far, the
powerful influence of the natural language processing and modeling perspectives is evident.
However, there exist a number of methods derived from purely statistical premises, such as
that of Mori et al. [109] based on dual clustering of visual and associated keyword information,
also referred to as the co-occurrence model in some sources [7, 6, 69]. The authors propose
to subdivide every image from the annotated collection into a number of non-overlapping
segments, each of which inherits keywords associated with its corresponding image. Then, the
visual feature representations of these segments are clustered by vector quantization and the
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estimates of likelihood of each keyword for every cluster are derived by pooling the associated
keyword frequencies. Having established such a clustering, the method then processes a query
image with unknown annotation by subdividing it into segments and predicting its likely
keywords from those of the clusters to which the query image segments are most similar.

A two-dimensional multiresolution hidden Markov model (2D MHMM) [92] is at the
core of another statistical approach to automatic semantic augmentation proposed by Li and
Wang [93]. The author’s system for automatic linguistic indexing of pictures (ALIP) operates
with a predefined number of semantic image categories, specified by sets of keywords according
to the problem domain. For each category, the system profiles a 2D MHMM using as input
the feature vectors extracted from training images at multiple resolutions and arranged on a
pyramid grid. Once the training is complete, the set of the obtained 2D MHMM’s together
with the keywords of their corresponding categories are stored in a common dictionary of
semantic concepts (see Figure 1.5). This dictionary can subsequently be used to annotate

Training DB
for concept 1 2D MHMM model

for concept 1

Extraction
Feature

Training DB
for concept 2 2D MHMM model

for concept 2

Extraction
Feature

Trained dictionary
of semantic concepts

2D MHMM model
for concept N

Training DB
for concept N

Extraction
Feature

Figure 1.5: Structural design of the ALIP system [93]

new, i.e. not present in the training sets, images, which is done by selecting the keywords
of the categories whose 2D MHMM’s yield highest likelihoods computed from the features
extracted from the images to be annotated.

The advent of supportvector machines [33, 152], whose excellent performance was backed
up by strong results of the statistical learning theory [153], prompted the development of
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1.3. Proposed research in context

a great number of classification-based methods. Starting with the direct application of
support vector machines to color histogram data of digital images [24], there appeared
more sophisticated techniques focused on introducing local and region-based visual fea-
ture sets [14] alongside the kernels suitable for such features [57], incorporating domain
knowledge in terms of useful invariances [119], reformulating the problem in the multiple-
instance learning context [2], and so on. Further improvements are continuously being made
in this popular research area, which is evidenced by an ever-growing number of contribu-
tions [11, 34, 55, 120, 158].

1.3 Proposed research in context

While by no means complete from the point of view of providing a representative overview of
all relevant methods, the above discourse serves the purpose of setting context for the research
described in this thesis. The contributions presented in the chapters to follow belong to the
group of automatic semantic augmentation methods, and are considered from the machine
learning [103] perspective. From this vantage point, the proposed techniques are designed
to be able to improve their performance based on previous experience and results in an
autonomous fashion, in an attempt to eliminate the need for, or alleviate the burden placed
on, human intuition in the analysis of a problem at hand. Even though the need for expert
knowledge and human intuition may never be completely obviated due to the importance of
clever engineering decisions in data representation and characterization, the machine learning
approach provides a clear and incontestable advantage. Indeed, by solving a more general
and, likely, far more difficult problem of machine learning, the same technology may be
applied to a wide variety of particular problems without having to redesign the solution from
scratch each time. That is, once solved, the same general method is applicable in the above
mentioned scenarios of semantic augmentation for digital images, waveform audio signals,
video shots, and in many other possible settings.

This thesis adopts the above machine learning perspective in approaching the problem
of semantic augmentation of multimedia databases for efficient access and retrieval, and
establishes a number of contributions in the areas outlined below.

• Discriminant analysis. Choosing the field of discriminant analysis as a starting point
of this study reflects a deliberate bias and preference for a discriminative machine learn-
ing method over an alternative generative approach. This decision is motivated by a
number of reasons, most important of which are the following [148]. First, a discrimina-
tive model has much more flexibility in the parts of input space where posterior proba-
bilities differ significantly from 0 or 1, whereas generative approaches model details of
input data dsitribution which may be irrelevant for determining posterior probabilities.
Second, discriminative models are typically very fast at making predictions for test
data, while generative models often require an iterative solution (albeit there definitely
exist some pathological cases where generative models are fast and discriminative ones
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are slow). Third, other things being equal, it is expected that discriminative methods
would have better predictive performance since they are trained to predict the class
label rather than the joint distribution of input data and labels. Thus, taking into
account the specific properties of the intended application of semantic augmentation,
we develop a distance-based transformational discriminant analysis technique, DDA.
An extensive effort is undertaken to make the DDA formulation non-parametric assert-
ing minimal assumptions on input data distribution, asymmetric to match the most
popular deployment scenario in 1-againt-all classification, and transformation-based in
order to allow for extensions, post-processing and the use of the derived transforma-
tion to provide a discriminative distance metric. This metric accounts for differences
in the scales of different features, removes global correlations and redundancies among
features to some extent, and adapts to the fact that some features may be much more
informative about the class labels than others. In order to fulfill these conditions, the
DDA’s ability to extract discriminative features and reduce input data dimensional-
ity, while determining the number of sufficient dimensions automatically, is of crucial
importance. From the semantic augmentation point of view, DDA provides a binary
learning machine to be used to discriminate between a certain high level semantic con-
cept and its complement, e.g. to determine whether a digital image is showing an entity
of interest or not.

• Kernel-based methods. Many linear machine learning algorithms have been en-
hanced through a special sort of functions known as kernels1 in order to be able to deal
with more complex learning problems requiring non-linear decision functions. Simi-
larly, the DDA method is cast as a non-linear discriminant analysis technique, thereby
overcoming the linearity assumption of the sought discriminative transformation, and
naturally leading to the development of KDDA, a kernel extension of DDA. This is ac-
complished by reformulating the problem in terms of distances projected from a richer,
possibly infinite-dimensional, feature space induced by a chosen kernel function. An
important aspect distinguishing KDDA from other kernel-based methods is the con-
vexity of the formulation that holds regardless of whether or not an underlying kernel
is positive definite. This property is evaluated empirically by incorporating indefinite
kernels in KDDA. In several application domains [163] these kernels are known to corre-
spond to distance measures that better capture perceptual similarity. Additionally, an
adverse condition referred to as the false positive projection effect is examined and its
elimination strategies are assessed. With respect to semantic augmentation, the KDDA
approach not only extends previous formulation to non-linear cases, but also lets the
binary learning machine of DDA be effectively used with non-metric dissimilarity mea-
sures via indefinite kernels.

• Classifer ensembles. Rarely do we encounter a practical semantic augmentation prob-

1We defer the detailed discussion of kernels till Chapter 3.
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lem that can be handled in its entirety by a single binary learning machine. A natural
and, coincidentally, the most popular extension for the case with several classes, cate-
gories or target semantic concepts is to derive as many binary learning machines, one for
each class label and, if needed, perform some arbitrage among their predictions. In the
present study, it is argued that such construct and its variations are disadvantageous
from the semantic augmentaion perspective, because of the limiting assumption of the
set of target semantic concepts being independent, non-overlapping, and exhaustive.
While providing a means to extend many existing techniques to a multiple-category
case, this assumption may lead to inconsistent results, e.g. predicting fairly unlikely
combinations of concepts such as “submarine” and “desert sand” for a test video shot,
or estimating an error of misclassification of “river” as “lake” to be as important as
misclassifying “river” as “fighter jet”. In order to address these limitations, an ap-
proach is proposed to model explicitly the hierarchical semantic relationships among
the target classes that are automatically derived and extended via a semantic lexicon.
Practically, this method is implemented as a hierarchical semantic ensemble (HSE) of
individual classifiers, realized as DDA binary learning machines that interact by influ-
encing each other’s decisions through the links mandated by the structure of relations
among corresponding semantic concepts. Thus, HSE utilizes the earlier developed DDA
classifiers as basic building blocks in a hierarchical structure of a more sophisticated
learning machine, designed to be applied in the domain of semantic augmentaion with
multiple inter-related target classes.

• Theoretical issues. In addition to the empirical evaluation of all of the proposed
methods, an express effort is made to establish theoretical connections and analogies
with some extant state-of-the-art machine learning methods. Through this anaylsis, an
important detail of the DDA formulation reliance on several separating hyperplanes is
highlighted and examined separately. The latter inquiry is performed in the context of
margin-based classification, providing some new results on generalization performance
of the classifier in question and thus revealing promising venues for future investigations.

1.4 Plan of the thesis

Chapter 2 covers in detail the linear formulation of the proposed distance-based discriminant
analysis method. It accentuates some of its important properties alongside the implemen-
tational details, concluding with an empirical evaluation of the developed approach and a
discussion with respect to a number of existing techniques. Chapter 3 presents an extension
of the proposed distance-based discriminant analysis formulation to a kernel formulation,
allowing more complex nonlinear machine learning problem to be solved within the same
framework. The provided material also considers certain aspects specific to kernel-based
methods, such as use of indefinite kernels and elimination of a false positive projection effect.
Chapter 4 considers the distance-based discriminant analysis method from a different point of
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view, deploying it as a basic building block classifier in a more sophisticated learning machine.
The latter construct is a hierarchical semantic ensemble of classifiers that models explicitly
the relationships among the target semantic classes in order to overcome the consequences
of the limiting assumption of them being independent, non-overlapping and exhaustive. The
experimental evaluation of the proposed method is carried out in comparison with alternative
ensemble techniques, as well as considering different types of baseline classifiers. Chapter 5
is dedicated to a more detailed scrutiny of some theoretical issues linked to the formulation
of the proposed distance-based discriminant analysis. It is followed by some closing remarks
and perspectives for future work in Chapter 6.
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Chapter 2

Distance-based discriminant

analysis (DDA)

This chapter describes a discriminant analysis method whose development is driven by the
motivation to create a technique with a range of properties both suitable and beneficial
in the area of intended application, i.e. automatic semantic augmentation. The sought
characteristics include:

• ability to perform discriminative feature extraction and dimensionality reduction, while
possessing the means to determine how many dimensions are sufficient to distinguish
among a given set of classes,

• assymetry of formulation suitable for the most popular deployment scenarios in 1-
against-all classification, as well as in the case of data set imbalance,

• transformational and non-parametric specification that would allow for extensions, use
as a discriminative data pre-processing technique, minimal assumptions on data distri-
bution, and maximum utilization of the capabilities of the prospective classifier, such
as nearest neighbor (NN) [44], to be used with the transformed data,

• ease of extension to a multiple-category case, together with the property of being effi-
ciently approximated and computed.

The following sections provide a detailed account of the proposed method and the various
aspects relating to its formulation, algorithmic specification, numerical implementaion, ex-
tensions, and experimental evaluation.

2.1 Problem formulation

Suppose that we seek to distinguish between two classes represented by data sets X and
Y having NX and NY m-dimensional observations, respectively. For this purpose, we are
looking for such transformation matrix T ∈ R

m×k, k � m, such that {X 	→ X ′, Y 	→ Y ′},
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CHAPTER 2. Distance-based discriminant analysis (DDA)

that places instances of a given class near each other while relocating the instances of the
other class sufficiently far away. In other words, we want to ensure that the compactness
hypothesis [3] holds for either of the two classes in question, while its opposite is true for
both.

While the above preamble may fit just about any class-separating discriminant analysis
method profile (e.g., [21, 42, 49, 62, 159]), we must emphasize several important assertions
that distinguish the presented method and naturally lead to the problem formulation that
follows. First of all, we must reiterate that one of our primary goals is to improve the NN
performance on the task of discriminant analysis. Therefore, the sought problem formulation
must relate only to the factors that directly influence the decisions made by the NN classifier,
namely - the distances among observations. Secondly, in order to benefit as much as possible
from the non-parametric nature of the NN, the sought formulation must not rely on the
traditional class separability and scatter measures that use class means, weighted centroids
or their variants [48] which, in general, connote quite strong distributional assumptions.
Finally, an asymmetric product form should be more preferable, justified as consistent with
the properties of the data encountered in the target application area of multimedia retrieval
and categorization [169], as well as beneficial from the viewpoint of insightful parallels to
some margin-based state-of-the-art techniques considered in Chapter 5.

Let dW
ij (T ) denote a Euclidean distance between observations i and j from transformed

data set X ′ given a transformation matrix T , and, analogously, dB
ij(T ) specify a distance

between the i-th observation from data set X ′ and the j-th observation from data set Y ′,
where superscripts “W” and “B” stand for within-class and between-class type of distance,
respectively:

dW
ij =

√
(xi − xj)TTT T (xi − xj), (2.1)

dB
ij =

√
(xi − yj)TTT T (xi − yj), (2.2)

for {xi}NX
i=1 ∈ R

m, {yj}NY
j=1 ∈ R

m. Using this notation, the sought discriminative data trans-
formation can be obtained by minimizing the following criterion1 :

J(T ) =

⎛
⎝NX∏

i<j

Ψ
(
dW

ij (T )
)⎞⎠

2
NX (NX−1)

⎛
⎝NX∏

i=1

NY∏
j=1

dB
ij(T )

⎞
⎠

1
NXNY

, (2.3)

where the numerator and denominator of (2.3) represent the geometric means of correspond-
ing distances, and Ψ

(
dW

ij (T )
)

denotes a Huber robust estimation function [67] parametrized

1Here and in several other places we will use shorthand

NX�

i<j

to designate double product

NX�

i=1

NX�

j=i+1

.
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by a positive constant c and defined as:

Ψ(dW
ij ) =

⎧⎪⎨
⎪⎩

1
2
(
dW

ij

)2
if dW

ij ≤ c;

cdW
ij − 1

2
c2 if dW

ij > c.
(2.4)

The choice of Huber function in (2.3) is motivated by the fact that at c the function switches
from quadratic to linear penalty allowing to mitigate the consequences of an implicit uni-
modality assumption that the formulation of the numerator of (2.3) leads to. Additionally,
Huber function has several attractive properties that greatly facilitate the derivation of the
majorizing inequalities, as will be shown in section 2.2.2.

In the logarithmic form, criterion (2.3) is written as:

log J(T ) =
2

NX(NX − 1)

NX∑
i<j

log Ψ
(
dW

ij (T )
)− 1

NXNY

NX∑
i=1

NY∑
j=1

log dB
ij(T ) (2.5)

= αSW (T ) − βSB(T ),

which highlights the theoretical underpinnings motivating the above formulation. Indeed,
log J(T ), being a weighted sum of log-barrier functions [111], may be viewed as an extended
formulation of analytic center machine (ACM) method that finds a separating hyperplane as
an analytic center of the classifier version space [146], discussed in greater detail in Chapter 5.
For notational convenience, the first and the second summation terms of (R.1) are going to be
referred to as SW (T ) (“within” distances) and SB(T ) (“between” distances) in the following
discussion to allow for a more convenient notation and due to their apparent functional
similarity with the notions of within- and between-class scatter measures used in a number of
well-known discriminant analysis techniques [42, 43, 49, 62]. We will also shorten the notation
by reassigning the normalizing quantities 2

NX(NX−1) and 1
NXNY

to α and β, respectively.
Although a straightforward differentiation of (R.1) might appear sufficient in order to

proceed with a generic optimization search technique such as gradient descent, our prelimi-
nary experiments showed that the quality of the found solutions is severely impaired by the
problems due to local minima and considerable degree of dependence on the initial starting
value, as detailed in section 2.4. Moreover, the computational costs of such an endeavor very
quickly become prohibitive2 , especially if one adheres strictly to the main premise of this
work, i.e., uses only pairwise distances among observations linked to quadratic complexity,
as opposed to deviations from class means (linear complexity) of the customary class sep-
arability and scatter measures abundant in clustering literature. The computational cost
situation will be further exacerbated if, in addition to the descent direction, a proper step
length must be calculated, so that gradient descent does not overshoot and actually manages
to improve the optimization criterion, while the latter outcome is guaranteed by the intro-
duced below iterative majorization technique (and, hence its alternative name: ”guaranteed

2Consider, for example, a small set of 500 images represented by 300-dimensional feature vectors. A brute

force computation of the descent direction will entail ≈ 5002 pairwise distance calculations at each of the 3002

elements of the sought matrix leading to ≈ 2 · 1010 calculations.
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descent”). Furthermore, some of the tested state-of-the-art optimization routines, such as
SQP and Quasi-Newton with line search, did not scale well either and happened not to be
able to converge, even on fairly simple data sets.

In order to avoid the above pitfalls, it was decided to derive some useful approximations
of criterion (R.1) that would make the task of its optimization amenable to a simple iterative
procedure based on the majorization method, which we discuss in the following section.

2.2 Iterative majorization

2.2.1 General overview of the method

As stated in [18, 149, 63], the central idea of the majorization method is to replace the
task of optimizing a complicated objective function f(x) by an iterative sequence of simpler
minimization problems in terms of the members of the family of auxiliary functions µ(x, x̄),
where x and x̄ vary in the same domain Ω. In order for µ(x, x̄) to qualify as a majorizing
function of f(x), the auxiliary function µ(x, x̄) is required to fulfill the following conditions,
for x, x̄ ∈ Ω:

• the auxiliary function µ(x, x̄) should be simpler to minimize than f(x),

• the original function must always be less or equal to the auxiliary function:

f(x) ≤ µ(x, x̄), (2.6)

• the auxiliary function should touch the surface of the original function at the supporting
point3 x̄:

f(x̄) = µ(x̄, x̄). (2.7)

To understand the principle of minimizing a function by majorization, consider the following
observation [18]. Let the minimum of µ(x, x̄) over x be attained at x∗. Then, (2.6) and (2.7)
imply the chain of inequalities

f(x∗) ≤ µ(x∗, x̄) ≤ µ(x̄, x̄) = f(x̄). (2.8)

This chain of inequalities is named the sandwich inequality by De Leeuw [88], because the
minimum of the majorizing function µ(x∗, x̄) is squeezed between f(x∗) and f(x̄). A graphic
illustration of these inequalities is shown in Figure 2.1 for two subsequent iterations of iterative
majorization of function f(x). Thus, given an appropriate function µ(x, x̄), the iterative
majorization (IM) algorithm proceeds as follows:

1. Assign an initial supporting point x̄ = x̄0 ∈ Ω,
choose tolerance ε;

3The similar notation will be used further on, where a dash over a variable name will signify that the

variable either depends on or is itself a supporting point.
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Figure 2.1: Illustration of two subsequent iterations of the iterative majorization method.
The first iteration starts by finding the auxiliary function µ(x, x0), which is lo-
cated above the original function f(x) and touches at the supporting point x0.
The minimum of the auxiliary function µ(x, x0) is attained at x1, where f(x1) can
never be larger than µ(x1, x0). This completes one iteration. The second iteration
proceeds analogously from supporting point x1, and so on, until convergence.

2. Find a successor point xs : xs = arg minx∈Ω µ(x, x̄);

3. If f(x̄) − f(xs) < ε, then stop;

4. Set x̄ = xs, go to 2.

The essential property of the above procedure is that it generates a non-increasing sequence
of function values, which converges to a stationary point whenever f(x) is bounded from
below and x is sufficiently restricted. As noted by Fletcher [45], the found point is in most
cases a local minimizer. Furthermore, according to the results reported by Van Deun et
al. [149], the majorization method has a valuable property of a low to negligible dependence
on the initial value, compared to other applicable techniques. Another advantage of the
majorization approach is due to the fact that there exist a number of specifically tailored
global optimization techniques, such as objective function tunneling [18], that can be applied
if the problem domain is abundant with low quality local minima. In the next section we
will derive the majorizing expressions of (R.1) and show how they are used for optimizing
the chosen criterion.
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2.2.2 Majorizing the optimization criterion

It can be verified that majorization remains valid under additive decomposition. Therefore,
a possible strategy for majorizing (R.1) is to deal with SW (T ) and −SB(T ) separately and
subsequently recombine their respective majorizing expressions.

We begin by noting that the logarithm, as much as any other concave function, can always
be majorized by a straight line y = ax+ b whose coefficients a = 1/x̄ and b = log(x̄) − 1 are
determined from the majorization requirements (2.6) and (2.7) rendering

log(x) ≤ x̄−1x+ log(x̄) − 1. (2.9)

Also, as previously reported in [29, 63], Huber distance (2.4) is convex and has a bounded
second derivative, and hence can be majorized by a convex quadratic function:

Ψ(x) ≤ 1
2
w̄x2 +

1
2

(v̄ + sign(x̄− c)v̄) , (2.10)

where x > 0, and coefficients v̄ and w̄ are defined as:

v̄ =
1
2
cx̄− 1

2
c2, (2.11)

w̄ =

{
1 if x̄ ≤ c;
c
x̄ if x̄ > c.

(2.12)

Combining (2.9) and (2.10) together while substituting the result into the formulation of
SW (T ), we can obtain its majorizing expression µSW

(T, T̄ ):

SW (T ) =
NX∑
i<j

log Ψ
(
dW

ij (T )
)

≤
NX∑
i<j

w̄ij ·
(
dW

ij (T )
)2

2Ψ
(
dW

ij (T̄ )
) +K1

= µSW
(T, T̄ ), (2.13)

where T, T̄ ∈ R
m×m, T̄ is a supporting point for T , w̄ij is a weight of the Huber function

majorizer, that in this case is equal to 1 if Ψ(dW
ij (T̄ )) < c or c/Ψ(dW

ij (T̄ )) otherwise, and K1

is a constant term that collects all of the other terms that are irrelevant from the point of
view of minimization with respect to T . Switching to matrix notation (see Appendix A for
derivation details), we define a square symmetric matrix R:

rij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− w̄ij

Ψ
(
dW

ij (T̄ )
) if i �= j;

−
NX∑

k=1,k �=i

rik if i = j;
(2.14)

which lets us rewrite the majorizing expression of SW (T ) in its final form, as follows:

µSW
(T, T̄ ) =

1
2
tr

(
T TXTRXT

)
+K1. (2.15)

32



2.2. Iterative majorization

An attempt to majorize −SB(T ) directly runs into problems due to the difficulties of
finding a proper quadratic majorizing function of the negative logarithm. As a practical
solution we consider two alternative replacements of − log(x) in −SB(T ):

• a piece-wise linear approximation,

• a second order Taylor expansion.

According to the first alternative, we replace the neg-logarithm with its piece-wise linear
approximation (see an illustration in Figure 2.2), which, in turn, can be represented as a sum

2 4 6 8
−2

−1

0

1

2

3
−log(x)
piece−wise linear approximation

Figure 2.2: Piece-wise linear approximation of − log(x)

of the functions defined as:

g(x;x0, l, r) =

{
r(x− x0) if x ≥ x0,

−l(x− x0) if x < x0;
(2.16)

where l + r > 0, to ensure convexity. It is easy to see that the family of functions defined
in (2.16) is one of the many possible generalizations of the absolute value function |x|, the
former being equivalent to the latter whenever x0 = 0 and l = r = 1. Similarly to |x|,
g(x;x0, l, r) can be majorized by a quadratic ax2 + bx+ c with coefficients

a =
r + l

4|x̄− x0| , (2.17)

b =
r − l

2
− (r + l)x0

2|x̄− x0| , (2.18)

c =
(r + l)x2

0

4|x̄− x0| +
(l − r)x0

2
+

(r + l)|x̄− x0|
4

, (2.19)
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CHAPTER 2. Distance-based discriminant analysis (DDA)

for a supporting point x̄ and a > 0, b and c determined directly from the majorization
requirements (2.6) and (2.7). Figure 2.3 depicts an example of a function from g(x;x0, l, r)
family alongside its majorizer. The final expression of the majorizer based on the piece-wise

−4 −2 0 2 4
0

2

4

6

8

10

12

14 quadratic majorizer
g(x;0,3,1)

x
support

=1.8 

Figure 2.3: Example of a quadratic majorizer of g(x; 0, 3, 1) around supporting point x̄ = 1.8

linear approximation, as shown in the Appendix A, is quite unwieldy and computationally
costly even for a moderate number of g-family functions comprising the approximation. For
this reason, we chose the other solution provided by a Taylor series expansion, as a faster
and more stable alternative4 .

Following the second approach, we express every term of SB(T ) using a second order
Taylor series expansion of the logarithm function around a supporting point T̄ :

log
(
dB

ij(T )
) ≈ −1

2

(
dB

ij(T )

dB
ij(T̄ )

)2

+ 2
dB

ij(T )

dB
ij(T̄ )

+ log
(
dB

ij(T̄ )
)− 3

2
. (2.20)

Substituting (2.20) into the expression of −SB(T ) leads to:

−SB(T ) = −
NX∑
i=1

NY∑
j=1

log dB
ij(T )

≈ 1
2

NX∑
i=1

NY∑
j=1

(
dB

ij(T )

dB
ij(T̄ )

)2

− 2
NX∑
i=1

NY∑
j=1

dB
ij(T )

dB
ij(T̄ )

+K2, (2.21)

4A more detailed analysis may demonstrate that resorting to the Taylor series approximation might break

compliance with the majorization requirements in the strict sense. However, the empirical evidence proved

otherwise (see section 2.4), confirming the technique as an alternative of preference.
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2.2. Iterative majorization

where K2 is a constant term that collects all of the other terms that are irrelevant from the
point of view of minimization with respect to T . One may notice that in (2.21) only the second
term, the sum of appropriately scaled negative Euclidean distances, requires majorization
since the other two are either constant with respect to T or given as a quadratic which is
simple enough to handle as is.

In order to find a majorizing expression of (2.21) we will make use of a well-known fact
frequently mentioned in literature [18, 29, 149, 63], stating that the negative of a Euclidean
distance is linearly majorizable:

−||x|| ≤ − x̄
Tx

||x̄|| (2.22)

which is a direct consequence of the Cauchy-Schwarz inequality ||x||||x̄|| ≥ x̄Tx. Switching
to matrix notation (see Appendix A for derivation details), we define a square symmetric
matrix G of size N = NX +NY , such that5 :

gij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1(
dB

ij(T̄ )
)2 for i ∈ [1;NX ]

and j ∈ [NX + 1;N ],

− 1(
dB

ij(T̄ )
)2 if i ∈ [NX + 1;N ]

and j ∈ [1;NX ],

−
NX+NY∑
k=1,k �=i

gik if i = j,

(2.23)

which, combined with the result of (2.22) substituted into (2.21), lets us derive the majorizing
expression for −SB(T ) in its final form, as follows:

µ−SB
(T, T̄ ) =

1
2
tr(T TZTGZT ) − 2tr(T TZTGZT̄ ) +K2, (2.24)

where Z is the matrix obtained by joining X and Y together, row-wise:

Z =

[
X

Y

]
. (2.25)

Finally, combining results (2.15) and (2.24), we obtain a majorizing function of the log J(T )
optimization criterion:

µlog J(T, T̄ ) = αµSW
+ βµ−SB

=
α

2
tr

(
T TXTRXT

)
+
β

2
tr(T TZTGZT ) − 2βtr(T TZTGZT̄ ) +K3, (2.26)

5The elements gij of matrix G not affected by the first two rules of (2.23) are assumed to have been initially

set to zero.
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that can be used to find an optimal transformation T minimizing log J(T ) criterion via the
iterative procedure outlined in section 2.2.1. Similarly to the expressions shown in (2.13) and
(2.21), K3 is a constant term that collects all of the other terms that are irrelevant from the
point of view of minimization with respect to T .

2.2.3 Minimization of the majorizer of log J(T )

It is possible to minimize (R.2) with respect to T in a straightforward fashion by setting
its derivative to zero and solving the resulting system of linear equations with any of the
computationally efficient methods, such as QR decomposition [50]. However, it is often rec-
ommended [8, 83, 87] that a length-constrained (or, regularized, as usually referred to in the
domains of signal processing, inverse problems [13] and regularized risk minimization [152])
solution be found by deploying such techniques as weight-limiting, weight decay, etc., espe-
cially in the case of classifiers capable of achieving zero training error, to prevent overfitting
and thus improve generalization performance of the classifier. In order to find an optimal
transformation T that satisfies the length constraint, we first form the Lagrangian function

L = µlog J(T, T̄ ) + λ(tr(T TT ) − ∆), (2.27)

where λ is a Langrangian multiplier and ∆ is the value of the length constraint that is
estimated from the classification performance on a validation data set [103]. It follows from
(2.27) that an optimal solution T is:

T = (M + 2λI)−1L (2.28)

where M is defined as α
βX

TRX+ZTGZ, L is equal to 2ZTGZT̄ , and I is an identity matrix.
Plugging (2.28) back into the expression of the length constraint, we obtain the following:

∆ = tr
(
LT (M + 2λI)−1(M + 2λI)−1L

)
= tr

(
LTU

1
(2λI +D)2

UTL

)
. (2.29)

where U and D are the respective matrices of eigenvectors and eigenvalues of M . Here, we
have used the fact that symmetric matrices M and M+2λI have the same eigenvectors, while
the eigenvalues of M + 2λI are equal to those of M increased by 2λ. Also, to simplify the
notation of (2.29), the reciprocal and squaring operations should be understood as applied to
the diagonal matrix D on the element by element basis taking into account the magnitudes
of each eigenvalue so as to avoid division by zero problems. Clearly, (2.29) is an equation of
one variable λ with a computable derivative, that is easily solved by any suitable root-finding
technique, such as Newton-Raphson method, or with a method specifically tailored to solving
this type of problems, commonly referred to as a TRS, i.e. trust region problem [107, 126].
Once the constraint-satisfying value λ has been found, the optimal transformation T , i.e. the
successor point in the iterative majorization algorithm is recovered as:

Ts = U (2λI +D)−1 UTL, (2.30)
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where the bracketed expression is a diagonal matrix whose inverse is easily computed through
the reciprocal of the diagonal elements.

It should be mentioned that for the problems such as minimization of (R.2) the universally
suggested approach [63, 75] is to decompose the design matrices of each quadratic component
of the function being optimized into a sum of a diagonal positive definite and a negative defi-
nite matrices, and use the definiteness property to derive another majorizing inequality. This
method, although theoretically sound and well-justified, in our experiments demonstrated a
significantly slower rate of convergence induced by larger condition number of the matrices
involved, and thus was subsequently replaced by the solution defined in (2.30), even though
the latter method involves a costly eigendecomposition operation.

2.3 Putting it all together

2.3.1 Complete algorithm

Considering all of the derivations we have desribed so far, the complete distance-based dis-
criminant analysis (DDA) algorithm for iterative majorization of log J(T ) criterion (R.1) can
be specified as follows:

Algorithm DDA.

1. Assign an initial supporting point T̄ = T̄0 ∈ R
m×m;

2. Find a successor point Ts using (2.30);

3. If log J(T̄ ) − log J(Ts) < ε, then stop;

4. Set T̄ = Ts, go to 2.

2.3.2 Dimensionality reduction

Observe that setting the column size of T to an arbitrary value k � m renders the presented
method of DDA a dimensionality reduction technique6 that may be used in a variety of
applications such as feature selection, low-dimensional data visualization, etc. Moreover, the
value of k, i.e., the exact number of dimensions the data can be reduced to without loss of
discriminatory power with respect to (R.1), is precisely determined by the number of non-
zero singular values of T . Indeed, the distances between the transformed observations may
be viewed as distances between the original observations in a different metric TT T , that can

6A word of caution is in order as for the choice of k = 1, which corresponds to an ill-posed combinatorial

problem [18].

37



CHAPTER 2. Distance-based discriminant analysis (DDA)

be expressed as TT T = USV TV SUT = UkS
2
kU

T
k using the singular value decomposition of

T . The obtained expression reveals that the effect of the full-dimensional transformation
T is captured by the first k left-singular vectors of T scaled by the corresponding non-zero
singular values, whose number gives an answer to the question of how many dimensions are
needed in the transformed space.

A summary of various other properties that distinguish DDA from existing dimensionality
reduction methods is provided in section 2.5.

2.3.3 Multiple class discriminant analysis

While the above discussion is concentrated mostly on the two-class configuration, it is straight-
forward to generalize the presented formulation to a multiple-class discriminant analysis set-
ting, for the number of classes K ≥ 2:

log JK(T ) =
K−1∑
i=1

(
α(i)SW (T )(i) − β(i)SB(T )(i)

)
, (2.31)

for per-class quantities of (R.1) indexed by superscript (i). Note that (R.4) becomes exactly
(R.1) for the two-class formulation, when K = 2. Again, similarly to the latter case, the
particular class to be left out may be determined using domain knowledge, or via statistical
techniques, i.e., by maximum within-class variance in the original feature space, etc. In order
to accommodate the changes required for adopting (R.4), the individual matrices R and G

from (2.15) and (2.24) will be replaced with

RK =
K−1∑
i=1

α(i)

β(i)
R(i), and (2.32)

GK =
K−1∑
i=1

G(i), (2.33)

respectively, where each of the matrices R(i) is computed according to (2.14) using observa-
tions from class i, while matrices G(i) are calculated as indicated in (2.23) with proper index
interval adjustment for computing distances between data points of a given class i and the
rest of the data set.

2.4 Experimental results

2.4.1 UCI Benchmark data set performance

Our preliminary empirical analysis was based on data sets from the UCI Machine Learning
Repository [16]. First of all, we verified that the solutions of the optimization problem formu-
lated in section 2.1 found by the proposed method were of better quality and less dependent
on the choice of the initial value compared to those of generic techniques, confirming the
results reported by Van Deun [149] and Webb [161]. Indeed, numerous random initializations
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Figure 2.4: Sonar data: local minima-prone solutions found by the gradient descent method.
The target dimensionality of the sought discriminative subspace was set to k = 2

of the gradient search led to inferior as well as unstable results reflected in higher values of
log J (see examples for the Sonar data set in Figure 2.4), while the IM-based method regu-
larly reached far lower criterion values, as seen in Figure 2.5, and proved nearly insensitive
to the choice of the initial supporting point. In addition to that, we thoroughly verified that
the convergence property of the IM procedure was indeed preserved, as illustrated in Fig-
ure 2.5, despite the use of a Taylor series approximation in the derivation of (R.2). Finally,
we validated the proposed dimensionality reduction technique by analysing how the classi-
fication performance varied with respect to k, the dimensionality of the transformed space,
and how it was related to the number of non-zero singular values of the full-dimensional
transformation, an example of which for the Sonar data set is depicted in Figure 2.6. Figure
2.6(b) plots 10 largest singular values of the full-dimensional transformation, in descending
order, while Figure 2.6(a) documents the results of 10-fold cross-validation performance with
respect to the transformed space dimensionality. It is easy to see that the singular values
beyond the 7th one are virtually zero, which corresponds to the point after which increasing
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Figure 2.5: Convergence of the iterative majorization procedure in the DDA method. The
horizontal and vertical axes correspond to the iteration number and optimization
criterion value, respectively.

the transformed space dimensionality, by either setting k to a particular value (dot-filled
bars) or using a larger number of appropriately scaled left-singular vectors (shaded bars), no
longer significantly improves the classification performance, as confirmed by Chow test for
structural change [26] at 99% confidence.

Further, the results of classification performance in terms of error rate of two types of
experiments were compared. For the first type of experiments, which we will refer to as
simply “NN” experiments, we measured classification error rate of the NN classifier using
10-fold cross-validation [162]. In the second type of experiments, that are going to be called
“DDA+NN” experiments, an additional stage of applying a discriminating transformation T
derived with the proposed DDA method prior to measuring the cross-validation performance
of the NN classifier was introduced. Therefore, the goal of this analysis was to assess the
effect of applying a DDA transformation on the accuracy of the NN classifier.

Several well-known data sets from the UCI Machine Learning Repository [16] were used in
our experiments. All of the available data from each data set were utilized on the “as is” basis
without performing any preprocessing, such as feature expansion for categorical, discrete or
binary attributes. For some datasets, specific instructions were supplied as for partitioning
the data into the training and testing portions, in which cases cross-validation procedure was
not applied. The summary of important characteristics of the data sets used for testing is
shown in Table 2.1. The error rates of NN and DDA+NN data classification experiments
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Figure 2.6: Dimensionality reduction experiments: classification performance results and sin-
gular values of the transformation matrix. The dashed lines mark the boundary
that determines the sufficient dimensionality of the transformed space.

averaged over twenty trial cross-validation runs are presented in Table 2.2. The obtained
results confirm our conjecture about the positive effect of applying the DDA transformation
on the accuracy of the NN classifier showing an improvement in performance (see Table 2.2).

2.4.2 Low-level feature representation

In order to assess the proposed DDA method in the context of the semantic augmentation
domain, we perform a number of basic experiments of visual object recognition, categorization
and semantic retrieval, where multimedia data is provided in the form of digital images and an
algorithm is examined to determine how well it can learn the associated semantic information.
Before detailing these experiments, however, we take a closer look at the low-level visual
feature representation of the said image data, as extracted by the Viper system [141].
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Table 2.1: Summary of data set characteristics

Data set Classes Attributes Examples

Hepatitis 2 19 155

Ionosphere 2 34 200
Diabetes 2 8 768

Heart 2 13 270

Monk’s Problem 1 2 6 432

Balance 3 4 625

Iris 3 4 150

DNA 3 180 2000
Vehicle 4 18 846

Table 2.2: Classification results for UCI data sets

Data set % Error of NN % Error of DDA+NN
Hepatitis 29.57 0.00

Ionosphere 13.56 7.14

Diabetes 30.39 27.11

Heart 40.74 21.11

Monk’s P1 14.58 0.69
Balance 21.45 3.06

Iris 4.00 3.33

DNA 23.86 6.07

Vehicle 35.58 24.70

Viper uses a palette of 166 colors, derived by uniformly quantizing the cylindrical HSV
color space (see an illustration shown in Figure 2.7(a)) into 18 hues, 3 saturations, and 3
values. These are augmented by 4 gray levels. This choice of quantization means that more
tolerance is given to changes in saturation and value, which is desirable since these channels
can be affected by lighting conditions and viewpoint. The choice of the HSV color space is
due to its perceptual uniformity and a relatively low complexity of computation and inversion
in comparison to such alternatives as CIE-LUV and CIE-LAB [137].

As for the texture features, Viper employs a bank of real, circularly symmetric Gabor
filters, see Figure 2.7(b), defined in the spatial domain by:

fmn(x, y) =
1

2πσ2
m

e
−x2+y2

2σ2
m cos[2π(u0mx cos θn + u0my sin θn)], (2.34)

where m indexes the scales of the filters, and n their orientations. The center frequency of
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(a) HSV cylindrical color space: the hue angle is

determined by pixels’ color from the visual spec-

trum, the saturation is a measure of whiteness of

the color, and the value is a measure of the pixel

brightness

(b) Texture via Gabor filter: a set of image fea-

tures is obtained by convolving an image with a

number of Gabor filters providing a local energy

estimate

Figure 2.7: Color and texture visual information

the filter is specified by u0m . The half-peak radial bandwidth is given by:

Br = log2

(
2πσmu0m +

√
2 ln 2

2πσmu0m −√
2 ln 2

)
, (2.35)

where Br is chosen to be 1, i.e. a bandwidth of one octave, which then allows us to compute
σm:

σm =
3
√

2 ln 2
2πu0m

. (2.36)

The highest center frequency is u01 = 0.5
1+tan(1/3) ≈ 0.5, so that it is within the discrete

frequency domain. The center frequency is halved at each change of scale, which implies that
σ is doubled (2.36). The orientation of the filters varies in steps of π/4, and three scales
are used. These choices result in a bank of 12 filters, which renders appropriate coverage
of the frequency domain with little overlap between the filters. Given the 10 band energy
quantization, this design provides 120 global texture characteristics of the image. Combining
this information with the color data, we obtain a common 286-dimensional feature vector
representation for every image.

2.4.3 Application to visual object recognition

For our object recognition experiments we chose a recently developed database ETHZ80 for
object categorization and recognition composed of entities corresponding to the basic level of
human knowledge organization [89]. The database contains high-resolution color images of
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Figure 2.8: The 8 classes of objects of the ETHZ-80 database. Each class contains 10 objects
with 41 views per object, for a total of 3280 images

80 objects from 8 different classes, for a total of 3280 images, an overview of which is shown
in Figure 2.8.

The training set comprised images taken one per class object viewed from a fixed position,
while the rest (3200 images) was allocated to the test set. An illustration of a training
set image from class “car” and several test set images is provided in Figure 2.9. Again,

Figure 2.9: An illustration of images of the same class used in the training (leftmost) and
test (the rest) sets

similarly to the setup described above (see section 2.4.1), we compared performance results
for “NN”and “DDA+NN” experiments for each of the 8 classes, but this time, using a one-
against-all classification configuration typically encountered in ensemble learning [40], and
setting target dimensionality to 2D according to the magnitude of the transformation singular
values as explained in section 2.3.2. The results are summarized in Table 2.3.

Table 2.3: Object recognition results for the ETHZ80 image database

Object class % Error of NN % Error of DDA+NN % Error of DDA+NN
(unconstrained) (constrained)

(1) Apple 4.47 18.66 0.75

(2) Car 14.47 18.72 5.78

(3) Cow 12.12 16.91 10.97

(4) Cup 3.09 16.94 2.22
(5) Dog 14.00 16.66 12.72

(6) Horse 14.47 14.84 13.16

(7) Pear 6.13 18.94 3.84

(8) Tomato 2.50 16.87 1.88

It is importnant to emphasize here that image representation for these experiments was
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reduced via DDA to two dimensions only. Nevertheless, as shown in the last column of
Table 2.3, the proposed technique still was able to descrease recognition error rate, which
improved the overall performance average. The results in Table 2.3 also reveal the importance
of the length constraint (or, regularization), introduced in (2.27), for the purpose of avoiding
data over-fitting problems. Both unconstrained and length-constrained solutions found by
the DDA procedure lead to zero error rate on the training data, but, as can be easily seen
from Table 2.3, their performance turned out to be drastically different on the test data
sets, demonstrating an adequate generalization capability induced by the length-constrained
version of the proposed method. Consistent with the figures reported earlier for color- and
texture-based feature sets [89], the error rates are highest for classes 3, 5 and 6. An example
of the 2D representation of the training set for image class 2 obtained by DDA is shown
in Figure 2.10. As can be easily seen from the figure, the target class images are well
separated from those of all of the other classes seen to be freely mixed together in the
derived 2D discriminative subspace, which is exactly the requirement one seeks to satisfy
in one-against-all classification. Additionally, the separation margin visually noticeable in

Class (2) "car"

Figure 2.10: Result of applying a discriminative dimensionality-reducing (286 to 2) DDA
transformation to the training set for recognition of objects from class (2) “car”.
Images from class 2 are projected close to each other while images belonging
to the other classes are freely scattered maintaining a certain distance margin
from class 2

the shown projection suggests that the proposed method may perform as well or better
as margin-based techniques. We touch upon this observation in the following section and
examine deeper theoretical connections in Chapter 5.
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2.4.4 Application to semantic image retrieval

In addition to the tests mentioned above, we also explored empirically the influence of the
DDA transformation on the performance of other classification methods, including NN as a
baseline, on the task of semantic image retrieval. For these experiments, three potentially
overlapping image sets were selected from the Washington University annotated image collec-
tion [94], based on the presence of keywords “trees”, “cars” and “ocean” in their annotation.
Every classifier was then tested by 10-fold cross-validation. The results of these experiments
demonstrate that applying the DDA transformation not only consistenly improves NN clas-
sifier accuracy, but also provides a boost in performance to some more advanced non-linear
classification methods, such as SVM [33], as shown in Table 2.4.

The latter finding emphasises the importance of the alternative interpretation we gave to
the DDA method in section 2.3.2. That is, in addition to the explicitly sought transformation
T , the technique may also be seen as providing a discriminative distance metric TT T that
accounts for differences in the scales of different features, removes global correlations and
redundancies among features to some extent, and adapts to the fact that some features may
be much more informative about the class labels than others. This observation is easily
illustrated by the example of SVM classifier with a Gaussian kernel7 :

kΣ(xi, xj) = e−(xi−xj)
T Σ−1(xi−xj), (2.37)

for some covariance matrix Σ and observations xi, xj represented as column vectors. A typical
choice of Σ here is an identity matrix multiplied by some constant factor. However, when the
DDA technique is applied to preprocess the training data before the SVM learning occurs,
the SVM classifier fully takes advantage of the discriminative features extracted by the DDA
method since the kernel products can now be seen as evaluated in a new discriminative metric
TT T :

kΣ(xi, xj) = e−(xi−xj)T TT T (xi−xj). (2.38)

This eventually results in SVM being able to find a simpler solution involving fewer support
vectors and better generalization properties, which naturally leads to an improvement in
classification performance, as shown in Table 2.4.

From the empirical point of view, in order to verify that non-trivial collection-independent
learning has occurred, we also examined the categorization performance of the derived above
category-specific DDA transformations on a completely separate image set taken from the
COREL database. The empirical evidence demonstrates that the application of the DDA
transformation leads to robust categorization of unseen images producing semantically rel-
evant matches that may (Figure 2.11, row one) or may not (Figure 2.11, row two) share
the same vocabulary with the query category, as well as allowing images to be assigned to
multiple relevant categories (Figure 2.11, the last two images in both rows).

7We consider kernel-based methods in more detail in the following chapter.
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Table 2.4: Semantic image retrieval results

Classifier % Error on image data set
Trees Ocean Cars

Fisher’s LDA 43.89 45.56 17.72

SVM (linear) 31.11 21.11 1.58

DDA+SVM (linear) 17.78 11.11 1.40

SVM (gaussian) 23.89 16.67 1.58

DDA+SVM (gaussian) 17.78 11.11 1.40
NN 38.33 19.44 2.46

DDA+NN 18.89 18.33 1.23

TREES

Query category:

mountain, road,

trees, grass

bar, street,

town, trees

water, boats,

coast, trees

water, trees,

mountains, clouds

OCEAN

Query category:

water, rock,

coast, clouds

water, bay,

islands, clouds

water, boats,

coast, trees

water, trees,

mountains, clouds

Figure 2.11: Examples of semantic image retrieval. The semantic query specified as a natural
language keyword is shown on the left. The true (manually assigned) annotation
keywords are listed underneath each image. The annotation keywords overlap-
ping with the query are in bold font.

2.5 Discussion

In this section we briefly review some of the previously developed approaches of discrimi-
nant analysis and dimensionality reduction, demonstrating on simple examples the essential
differences between existing techniques and the proposed DDA method.

First, we consider principal component analysis (PCA), a fundamental tool for dimen-
sionality reduction that finds a set of orthogonal vectors that account for as much as possible
of the data’s variance. Apparently, PCA method disregards class membership information
altogether and consequently is of limited use as a discriminatory transform. This conjecture
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is easily confirmed by comparing 2D projections of the Hepatitis dataset by the PCA and
DDA methods illustrated in Figure 2.12, which shows a perfect class separation for the latter
approach explaining its 100% classification accuracy reported earlier (see Table 2.2). The
singular value decomposition of the resulting transformation reveals that there is only one
significantly different from zero singular value, meaning that in order to distinguish between
the two classes one may use just one dimension, i.e., project the data set onto a line, as seen
in Figure 2.12(b).
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Figure 2.12: 2D projections of the Hepatitis dataset

Fisher’s linear discriminant analysis (LDA) [42, 43, 48] projects original data into a smaller
number of dimensions, while trying to preserve as much discriminatory information as possible
by maximizing the ratio of between-class scatter over within-class scatter. Based on the
second order statistical information, the method is proven to be optimal whenever data
classes are represented by unimodal Gaussians with well-separated means. A violation of this
assumption drastically deteriorates LDA’s performance, as seen in Figure 2.13 that compares
class separation achieved by the projections found by LDA and DDA methods for the classical
XOR problem [143]. As for the DDA approach, Figure 2.13 illustrates that the proposed
technique does not require data Gaussianity assumption. Furthermore, the method can
determine discriminative projection transformations of up to as many dimensions as there
are in the data, whereas LDA is limited by rank restrictions on the between-class scatter
matrices to have no more than K − 1 dimensions, where K is the number of classes.

A biased discriminant analysis (BDA) approach [168, 169] developed with a goal in mind
to improve efficiency of interactive multimedia retrieval applications, is based on an appealing
idea of asymmetric treatment of positive and negative relevance feedback examples that is
brilliantly conveyed by a famous citation: “All happy families are alike, each unhappy family
is unhappy in its own fashion” (L. Tolstoy, Anna Karenina). According to this metaphor,
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−5 0 5 10
−5

0

5

10

DDA projection

L
D

A
 projection

Figure 2.13: XOR problem solution obtained by the LDA and DDA methods

the approach seeks a compact representation of the class of positive examples, while the
only constraint placed on negative examples is to stay away as far as possible from the
positives. This technique excels in overcoming several important drawbacks of LDA induced
by scatter matrix rank restrictions and Gaussianity assumptions and, conceptually, is closest
to the two-class version of the proposed DDA method. However BDA’s implementation is
occasionally offset by suboptimal solutions whenever the observations from the two classes
overlap considerably along the direction orthogonal to that of minimal variance of the positive
examples. An illustration of this adverse condition is depicted in Figure 2.14).
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Figure 2.14: Solution of the “dominant variance direction” problem obtained by the BDA
and DDA methods

Another advantage of relying exclusively on the distances among the observations lets
us relax the sought transformation orthogonality condition often found necessary in other
methods. For instance, feature transformation based on maximizing mutual information be-

49



CHAPTER 2. Distance-based discriminant analysis (DDA)

tween transformed data and their corresponding class labels proposed by Torkkola et al. [145]
parametrizes the transformation via planar rotations and hence is by design orthogonal, as
are those of other methods, which operate on orthogonal subspaces.

There also exist other discriminant analysis methods that are specifically designed to work
well for non-Gaussian data sets (e.g., NDA [49]) and target the nearest neighbor classifier
performance (e.g., a recent enhancement of NDA proposed in [21]), whose main difference
from DDA lies in the fact that these methods still rely on parametric within-class scatter
matrices. This is likely to explain why these approaches are generally outperformed by the
SVM techniques, while DDA demonstrates comparable results (see Table 2.4).

Among iterative techniques, DANN [62] and CDW [116] methods must be highlighted.
Similarly to the proposed DDA, the class-dependent weighted (CDW) dissimilarity approach
seeks to optimize a certain criterion for improving NN classification accuracy, which is done
by deploying the Dinkelbach’s algorithm [41] combined with gradient descent. Effectively,
a transformation found by the CDW method may be considered a restricted case of the
DDA transformation where no dimensionality reduction is allowed and T is required to be
diagonal. As opposed to CDW, the discriminant adaptive nearest neighbor (DANN) approach
does permit global dimensionality reduction. It operates according to an iterative scheme to
obtain a metric modifying local neighborhoods, which makes it different from the DDA in
the way that DANN does not optimize any global criterion or objective function. However,
both DDA and DANN in many cases lead to similar results, as demonstrated in Figure 2.15.
This illustration shows how DDA transformation corrects the decision of an NN classifier
and, conceptually, is an exact reproduction of the motivational example used by the authors
in [62] to describe the intuition behind their technique.
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Figure 2.15: Effect of DDA on local neighborhoods - a comparison to DANN [62]
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2.6 Summary

We have described a semantic augmentation method formulated in the discriminant analysis
framework. The presented method focuses on finding a transformation of the original data
that enhances its degree of conformance to the compactness hypothesis and its inverse, which
has been shown to lead to a better recognition performance. The classification accuracy has
been shown to improve not only with the classifier of choice, NN, but also with more advanced
non-linear methods, such as SVM. The latter result underlines the important alternative use
of the derived transformation in the capacity of a discriminative metric that accounts for
differences in the scales of different features, removes to some extent global correlations and
redundancies, and adapts to the fact that some features may be much more informative about
the class labels than others.

The presented DDA formulation extends naturally from binary to multiple class dis-
criminant analysis problems. The method can also serve as a discriminating dimensionality
reduction technique with the ability to overcome the limitation of the classical parametric
approaches that typically extract at most K−1 features for a K-class problem, while possess-
ing the means to determine in a data-dependent fashion how many dimensions are sufficient
to distinguish among a given set of classes.

We have verified the classification performance of the proposed DDA method and its ex-
tensions on a number of the benchmark data sets from UCI Machine Learning Repository [16]
and on the real-world semantic image retrieval tasks. The encouraging results demonstrated
that the method outperforms several popular methods, and improves classification accuracy,
sometimes dramatically, making it an excellent candidate for the intended application of
automatic semantic augmentation.
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Chapter 3

Kernel distance-based discriminant

analysis (KDDA)

The introduction of kernels made solving a variety of complex machine learning problems
plausible not only by techniques specifically tailored for such settings, such as neural net-
works [15, 124], but also by many algorithms, originally designed as linear. In this chapter,
we seek to overcome a linearity assumption of the transformation derived by the previously
described DDA approach, leading to a formulation of its kernel extension, KDDA. Addition-
ally we focus on two particular aspects of KDDA. The first, that opens up a possibility of
using indefinite kernels, stems from a theoretical property of KDDA problem formulation
convexity that holds irrespective of the definiteness of the kernel in question. And the sec-
ond, observed through an empirical evaluation of KDDA as well as several other projective
non-linear discriminant analysis methods, results in an adverse condition referred to as the
false positive projection effect, often encountered in classification with data set imbalance.
The following sections provide a detailed discussion of the topics outlined thus far.

3.1 Brief introduction to kernel methods

Kernel methods have been successfully applied and become prevalent in many areas of pattern
recognition and machine learning [1, 22, 28, 35, 54, 56, 123], owing to the solid foundations of
the underlying algorithms from the statistical learning theory [153], flexibility and existence
of fast and efficient implementations [27, 73, 74]. For any kernel method, an essential compo-
nent that serves to provide algorithm modularity and represent a problem-specific similarity
measure for diverse structured and unstructured types of data is expressed through a kernel
function [135]. The term kernel stems from the first use of this type of function in the area
of integral operators studied by Hilbert and others [30, 100]. A function k which gives rise
to an operator Tk via

Tkf(x) =
∫
X
k(x, x′)f(x′)dx′ (3.1)
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is called the kernel of Tk. The following theorem represents a basic functional analysis result
that provides valuable insight and helps understand many important properties of kernels
and kernel methods.

Mercer’s theorem [100]. Suppose k : X×X → R is symmetric and satisfies supx,x′ k(x, x′) <
∞, and define an operator

Tkf(x) =
∫
X
k(x, x′)f(x′)dx′; (3.2)

suppose Tk : L2(X ) → L2(X ) is positive semi-definite∫
X

∫
X
k(x, x′)f(x)f(x′)dxdx′ ≥ 0 (3.3)

for all f ∈ L2(X ). Let λi, ψi be the eigenfunctions and eigenvectors of Tk, with∫
X
k(x, x′)ψi(x′)dx′ = λiψi(x). (3.4)

Then

1.
∑

i λi <∞,

2. supx ψi(x) <∞,

3. k(x, x′) =
∑∞

i=1 λiψi(x)ψi(x′),

where the convergence is uniform in x, x′.

The above result indicates important properties of a kernel function of being continous,
symmetric and positive semi-definite, specifies a mapping Φ : X → F

x 	→ Φ(x) =
(√

λ1ψ1(x),
√
λ2ψ2(x), . . .

)
(3.5)

and suggests that k(x, x′) corresponds to a inner product in this mapped normed space F ,
since

k(x, x′) = (Φ(x))T Φ(x′). (3.6)

Table 3.1 lists some of the most popular kernel functions used in practice, while more so-
phisticated kernels, including those not fully satisfying Mercer’s theorem, are discussed at a
later time in section 3.3. The identity (3.6) constitutes the basis for the so-called “kernel
trick”: given an algorithm which is formulated in terms of inner products, one can construct
an alternative algorithm by replacing inner products with a kernel function. The benefits of
this technique are apparent: an existing algorithm can be extended by applying it to the data
mapped into a rich and expressive feature space F where the solution may be far simpler
than in the original input space X , while the actual mapping does not need to be carried
out explicitly1 because of the computational shortcut provided by the kernel. By the same
token, the method of distance-based discriminant analysis (DDA) discussed in Chapter 2

1or, as is in the case of Gaussian kernel, simply cannot be explicitly computed.

54



3.1. Brief introduction to kernel methods

Table 3.1: Kernel functions in common use: Gaussian RBF parametrized either by σ ∈ R or
distance metric Σ−1, Polynomial with a ∈ R, d ∈ N, and Sigmoid with a, b ∈ R.
While Gaussian and Polynomial kernels satisfy Mercer’s theorem, this is not always
the case with the Sigmoid kernel, as discussed further in section 3.3.

Gaussian RBF k(x, x′) = exp
(−||x−x′||

σ2

)
k(x, x′) = exp

(−(x− x′)T Σ−1(x− x′)
)

Polynomial k(x, x′) = (〈x, x′〉 + a)d

Sigmoid k(x, x′) = tanh(a〈x, x′〉 + b)

is amenable to a kernel formulation owing to a simple identity linking distances and inner
products:

||x− x′|| =
√
xTx− 2xTx′ + x′Tx′, (3.7)

which is the basis for what literature refers to as the kernel trick for distances [133]. But
before we move on to the derivation of the kernel extension of the DDA method, let us briefly
state two more results of substantial importance that will be necessary to be relied upon
later: the definition of a Reproducing Kernel Hilbert Space and the Representer Theorem.

Definition (Reproducing Kernel Hilbert Space). Let X be a non-empty set (the index
set) and denote by H a Hilbert space of functions f : X → R. H is called a reproducing kernel
Hilbert space endowed with inner product 〈·, ·〉 (and the norm ||f || =

√〈f, f〉) if there exists
a function k : X × X → R with the following properties.

1. k has the reproducing property

〈f, k(x, ·)〉 = f(x) for all f ∈ H, x ∈ X ;

in particular, 〈k(x, ·), k(x′, ·)〉 = k(x, x′) for all x, x′ ∈ X

2. k spans H, i.e. H = span{k(x, ·)|x ∈ X} where X is the completion of the set X .

In other words, feature space F described above may be completed to be an RKHS by
adding the limit points of all series that are convergent in the norm induced by the inner
product2 ||f || =

√〈·, ·〉 [135], which provides many benefits such as as existence of projections,
etc., but most importantly has the advantage that the solutions of optimization in an RKHS
under certain conditions may be found as a linear combination of a finite number of basis
functions, corresponding to the cardinality N of the training data set, regardless of the
dimensionality of the space where the optimization is carried out [31, 76, 112]:

2Please note a slight distinction in notation describing dot (inner, scalar) products: 〈·, ·〉 and aT a. The

former is going to be used in the generic context, e.g. in functional spaces, whereas the latter will be called

upon to emphasize the vectorial treatment of the data it is applied to.
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Theorem (Representer Theorem). Denote by Ω : [0,∞) → R a strictly monotonic in-
creasing function, by X ,Y sets, and by l : (X × R

2)N → R
⋃{∞} an arbitrary loss function.

Then each minimizer f ∈ H of the regularized risk

l((x1, y1, f(x1)), . . . , (xN , yN , f(xN ))) + Ω(||f ||H)

admits a representation of the form

f(x) =
N∑

i=1

αik(xi, x),

where αi ∈ R for all 1 ≤ i ≤ N .

3.2 Kernel reformulation of DDA

Let us suppose that there is a space F where samples of training data can be mapped via
Φ : R

m → F , such that there exists a kernel function k(x, y) = (Φ(x))T Φ(y), where x, y ∈ R
m

and k : R
m ×R

m → R. We will also assume that the discriminative transformation is sought
in F as a projection matrix ω of size [�F × d], where �F is the dimensionality of F , and d
is the dimension of the derived discriminative projection subspace, such that the columns of
ω lie in the span of all training samples mapped in F , by virtue of the Representer Theorem:

ω =

[
N∑
i

α
(1)
i Φ(zi)

N∑
i

α
(2)
i Φ(zi) . . .

N∑
i

α
(d)
i Φ(zi)

]
, (3.8)

where zi is one of the NX + NY samples from the training data compound matrix Z, as
defined in (R.3). The distances between images of samples x and y projected from F by
solution ω are thus expressed as:

�
2
xy(ω) = (Φ(x) − Φ(y))T ωωT (Φ(x) − Φ(y))

= tr
(
ωT (Φ(x) − Φ(y))(Φ(x) − Φ(y))Tω

)
=

d∑
j

(
N∑
i

α
(j)
i (k(zi, x) − k(zi, y))

)2

. (3.9)

In matrix notation (R.8) can be simplified as:

�
2
xy(ω) ≡ �2

xy(P ) = tr
(
P THxyP

)
(3.10)

where P ∈ R
N×d is the sought nonlinear transformation represented as a matrix collecting all

of the α(j)
i coefficients, Hxy = (Kx−Ky)(Kx−Ky)T , andKs = [k(z1, s), k(z2, s), . . . , k(zN , s)]

T

denotes a vector of kernel evaluations for sample s over all of the training data.
In view of (R.9), the logarithm of the DDA optimization criterion (2.3) can now be

expressed in terms of distances projected from a richer, possibly infinite-dimensional feature
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space F :

log J(P ) =
2

NX(NX − 1)

NX∑
i=1

NX∑
j=i+1

log Ψ
(
�

W
ij (P )

)

− 1
NXNY

NX∑
i=1

NY∑
j=1

log�B
ij (P ) (3.11)

The treatment of the obtained criterion differs only slightly compared to the linear case.
Similarly to the way it is done in the DDA method, as described in equations (2.9)-(R.2)
in Chapter 2, we express convex parts of the criterion by their respective approximations
majorized by quadratics [63], while the concave parts are linearized. The former simple
algebraic manipulation relies on the Cauchy-Schwarz inequality, while the latter is a direct
consequence of the concavity of the log-function, whose combined application leads to the
following approximation:

µlog J(P, P̄ ) =
1

NX(NX − 1)
tr

(
P T

KXB(P̄ )KT
XP

)
+

1
2NXNY

tr
(
P T

KXY CK
T
XY P

)
+

2
NXNY

tr
(
P T

KXYG(P̄ )KT
XY P̄

)
+ const, (3.12)

where P̄ is the current solution, KX , KXY are Gram matrices of kernel inner products
evaluated over X and all data, respectively, and B, C, G are positive semi-definite design
matrices independent of P . Elements bij of B are defined as:

bij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− w̄ij

Ψ
(
�W

ij (P̄ )
) if i �= j;

−
NX∑

k=1,k �=i

bik if i = j;
(3.13)

where w̄ij is a weight of the Huber function majorizer, that in this case is equal to 1 if
Ψ(�W

ij (P̄ )) is less than the robustness threshold c, or c/Ψ(�W
ij (P̄ )) otherwise. For matrices

C and G, their non-zero elements mij are defined as:

mij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rij for i ∈ [1;NX ]
and j ∈ [NX + 1;N ],

rij for i ∈ [NX + 1;N ]
and j ∈ [1;NX ],

−
NX+NY∑
k=1,k �=i

mik for i = j,

(3.14)

where rij is equal to −1 and −1
�B

ij (P̄ )
for C and G, respectively. More derivation details are

provided in Appendix B. Finally, taking into account theoretical considerations mentioned
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in secion 2.2.3 confirmed by experimental results in section 2.4.3, we define a regularized
formulation

µreg
log J(P, P̄ ) =

1
NX(NX − 1)

tr
(
P T

KXB(P̄ )KT
XP

)
+

1
2NXNY

tr
(
P T

KXY CK
T
XY P

)
+

2
NXNY

tr
(
P T

KXYG(P̄ )KT
XY P̄

)
+λ

(
tr(P T

KXY P ) − ∆
)
, (3.15)

where a Lagrange multiplier λ introduces an L2 norm regularizer expressible as a trace (Rep-
resenter Theorem).

The approximations used to derive µlog J(P, P̄ ) are chosen so as to ensure that the resulting
expression’s value is never less than the objective to be minimized, and thus provides an upper
bound of the criterion (R.10). By optimizing (R.11) iteratively, every subsequent iteration
achieves a goal function value that is better or at least as good as the one from the previous
iteration, which leads to covergence under the practically reasonable objective boundedness
assumption. In Chapter 2, section 2.4.1 this iterative process has been shown to attain
more robust as well as better quality local minima, compared to the standard optimization
techniques, such as gradient descent, etc.

More formally, such an iterative scheme that constitutes the core of the KDDA, the ker-
nelized extension of the distance-based discriminant analysis method, can be written as the
following algorithm:

Algorithm KDDA.

1. Assign an initial starting point P̄ = P̄0 ∈ R
N×d, set convergence tolerance ε;

2. Find a successor point Ps : Ps = arg minP µlog J(P, P̄ ) subject to a regularization
constraint;

3. If log J(P̄ ) − log J(Ps) < ε, then stop;

4. Set P̄ = Ps, go to 2.

3.3 Indefinite kernels via hyperkernels

In contrast to the vast majority of kernel-based techniques for discriminant analysis and
classification whose numerical stability, convergence and theoretical performance guarantees
depend crucially on the positive semi-definiteness (PSD) of the underlying kernel function,
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3.3. Indefinite kernels via hyperkernels

the KDDA method is free from such a restriction. Indeed, the computationally convenient
convexity of the described above approximation (R.11) is due to the PSD property of matri-
ces B and C only, which is true by construction (see Appendices A and B), and hence is not
affected even when the so-called indefinite kernels [58, 113] are applied. These kernels do not
satisfy Mercer’s theorem in the strict sense and hence may produce indefinite Gram matri-
ces, presenting some difficulties to the traditional computational methods [58]. Nevertheless,
an impressive suite of indefinite kernel methods have been proposed and proven effective in
practice by successfully applying jittered [36], tangent distance [60], Kullback-Leibler diver-
gence [108], dynamic time warping [5], distance substitution [59] indefinite kernel functions.
In addition to these empirical results, there exist some important theoretical contributions
and facts on indefinite kernels as well, such as the recent studies on Reproducing Kernel Krein
Spaces (RKKS) [113], the indefiniteness of the sigmoid kernel k(x, x′) = tanh(axTx′ + b) of
neural networks for certain paramter range [95, 152], or convenient convex SVM problem
formulations obtained with a broad class of conditionally positive definite kernels [133], the
geometric margin interpretation attainable for indefinite kernels producing co-oriented pro-
jected and feature space separating hyperplane normal vectors [58], as well as many other
results and efforts that motivate further examination of indefinite kernels in the KDDA frame-
work, especially given the fact that KDDA by design is built to tolerate indefinite kernels.
In the discussion that follows we consider the application of the hyperkernel method [114]
within the KDDA framework with an important modification - the removal of the kernel PSD
constraint.

3.3.1 Overview of hyperkernel method

The approach of hyperkernels [114] automatically adjusts kernel parameters in a data-dependent
fashion and uses the kernel trick on the space of kernels in order to be able to control the
complexity of the learned kernel function via a regularized quality functional Qreg. By anal-
ogy with the definition of the regularized risk functional Rreg commonly used in the support
vector machines [33, 153]:

Rreg = Remp + λ||f ||2H (3.16)

the regularized quality functional Qreg is a sum of a quality functional Qemp and a regular-
ization term:

Qreg = Qemp + λQ||k||2H (3.17)

where the former term tells how well matched kernel k is to the given data set, while the
latter is the norm of the kernel in Hyper-RKHS H for some positive regularization constant
λQ. The insight of the hyperkernel approach that specifies H and finds an appropriate kernel
in an infinite space of possible solutions much in the same way a suitable hypothesis is found
in the RKHS induced by a fixed kernel in the regularized risk minimization problem, is based
on an appealing and elegant idea. Namely, the method defines a compound set X = X × X
treating kernel k as a function k : X → R, which allows to extend the definition of an RKHS
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for the case of a hyperkernel k : X × X → R, thus arriving at the concept of Hyper-RKHS,
H:

Definition (Hyper Reproducing Kernel Hilbert Space). Let X be a non-empty set,
and denote by H := H × H the compound index set. The Hilbert space H of functions
k : X → R, endowed with inner product 〈·, ·〉 (and the norm ||k|| =

√〈k, k〉) is called a
Hyper Reproducing Kernel Hilbert Space if there exists a hyperkernel k : X ×X → R with the
following properties.

1. k has the reproducing property

〈k, k(x, ·)〉 = k(x) for all k ∈ H;

in particular, 〈k(x, ·), k(x′, ·)〉 = k(x, x′).

2. k spans H, i.e. H = span{k(x, ·)|x ∈ X}.
More importantly, it is shown that the Representer Theorem holds for Hyper-RKHS:

Theorem (Representer Theorem for Hyper-RKHS). Let H be a Hyper-RKHS, X a
set, Qemp an arbitrary empirical quality functional. Then each minimizer k ∈ H of the
regularized quality functional

Qreg = Qemp + λQ||k||2H
admits a representation of the form

k(x, x′) =
N∑
i,j

βijk((xi, xj), (x, x′)) for all x, x′ ∈ R (3.18)

where βij ∈ R for all 1 ≤ i, j ≤ N .

In other words, even though the optimization of Qreg may be carried over a whole space
of kernels, it is still possible to find an optimal solution of (3.17) by choosing among a finite
number. Further, by applying the method of power series construction it is possible to derive
a number of hyperkernels that satisfy all of the conditions stated in the definition of Hyper-
RKHS, for instance:

k(x, x′) = (1 − λh)
∞∑
i=0

(
λhk(x)k(x′)

)i =
1 − λh

1 − λhk(x)k(x′)
, (3.19)

for 0 < λh < 1, defines harmonic hyperkernel, which in the case of Gaussian kernel becomes:

k((x, x′), (x′′, x′′′)) =
1 − λh

1 − λh exp (−σ2(||x− x′||2 + ||x′′ − x′′′||2)) , (3.20)

where σ specifies a default kernel width, which by no means needs to be a close approximation
to the one appropriate for the problem in question, and λh guides the hyperkernel’s preference
over various kernel widths, e.g., small λh emphasizes wide kernels almost exclusively, while
a value close to 1 treats all widths equally. Likewise, a number of other hyperkernels are
designed, such as mixed polynomial-Gaussian, translation-invariant, ARD [96, 97], etc.
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3.3.2 Indefinite KDDA

Note that for βi,j ∈ R, (3.18) is not necessarily positive semi-definite [99], which is why
the original hyperkernel method imposes an additional constraint and ends up solving a
semidefinite optimization problem when Qemp is replaced with a standard formulation of
regularized risk functional (3.16). However, in the case of KDDA, we are not restricted by
this PSD requirement and by virtue of the Representer Theorem for Hyper-RKHS can replace
Qemp with (3.15). Furthermore, the co-orientation condition [58] is automatically fulfilled by
the regularization term of the KDDA formulation. Thus, the regularized quality functional
minimization problem in the KDDA case becomes:

QKDDA
reg = µlog J(P, P̄ , β, β̄) + λ

(
tr(P TK(β)P ) − ∆

)
+ λQβ

TKβ (3.21)

where the approximation of the criterion sought to be minimized µlog J(P, P̄ , β, β̄) now de-
pends on hyperkernel expansion coefficients βi,j collected in vector β in addition to P , K is
a hyperkernel Gram matrix, K(β) is a N ×N kernel matrix obtained by reshaping an N2-
element vector Kβ, and λ and ∆ are regularization parameters. Finally, a practical solution
scheme is obtained by breaking down (3.21) into a two-stage alternating optimization prob-
lem with a projection stage, that solves (3.21) for P while fixing current β, and a hyperkernel
stage, that solves (3.21) for β while fixing current P . In summary, the iterative procedure of
the KDDA method with indefinite kernels can be stated as follows:

Algorithm Indefinite KDDA.

1. Assign an initial starting point P̄ = P̄0 ∈ R
N×d, β̄ = β̄0 ∈ R

N2
, set tolerance ε

2. Fix β and solve projection stage:

P = arg min
P
µlog J(P, P̄ ) + λ

(
tr(P TK(β)P ) − ∆

)
3. Fix P and solve hyperkernel stage:

β = arg min
β
µlog J(β, β̄) + λ

(
tr(P TK(β)P ) − ∆

)
+ λQβ

TKβ

4. If log J(P̄ , β̄) − log J(P, β) < ε, then stop

5. Set P̄ = P , β̄ = β and go to 2

Notably, step 2 of the above algorithm involves the same optimization formulation as the
one detailed in the previous section 3.2, provided that the new Gram matrices have been
recomputed and fixed, such that KXY ≡ K(β). The problem from step 3 essentially reduces
to a large-scale convex quadratic minimization problem with a single linear constraint, instead
of the original hyperkernel method’s SDP problem solving which, in general, takes longer than
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A

A’

Π

Figure 3.1: Geometric intuition: a sketch of the false positive projection of region A′.

solving a quadratic program [114]. Similarly to the other variants of the algorithm discussed
before, the iterative procedure for indefinite KDDA converges because of the boundedness of
the objective function and stage-wise improvement at each iteration.

3.4 False positive projection effect

While the previous section concentrated on the KDDA framework extension stemming from
a rather theoretical property of its formulation that tolerates the use of indefinite kernels,
this section will focus on some other aspect of the KDDA method revealed through empirical
evaluation. Namely, we now turn to the discussion of the false positive projection effect, a
condition that arises mainly in unbalanced data sets when a projective nonlinear classifier
utilizing a Gaussian kernel learns a decision function that erroneously associates regions of
the input space with a certain, singled out target class. The explicit distinction of such target
class, usually referred to as “positive”, is due to natural asymmetry of the problem in ques-
tion, induced by class imbalance typical for 1-against-all classification scenarios, substantial
difference in prior probabilities, misclassification costs, and so on [81].

A sketch of this adverse effect is shown in Figure 3.1. Here, an asymmetric projective
nonlinear classifier, such as KDDA or BiasMap [168, 169, 167], learns a discriminative pro-
jection Π that ensures maximum compactness of the positive class observations, depicted as
crosses, relative to the scatter of the negative class observations, depicted as circles. One
may notice, however, that the obtained decision region in the projection plane Π corresponds
to two distinct parts of the spherical mapping manifold in feature space � : A and A′. In
this setup, all test data mapped into A′ are classified as positive, assuming such mapping is
possible [134], even though the region contains none of the training samples of the positive
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3.4. False positive projection effect

class to support such a decision, and likely corresponds to the input space areas where the
negative class is far more probable. Thus, a false positive projection of A′ takes place. Some
examples of the occurrence of this adverse condition with KDDA, BiasMap and KFD [101]
classifiers are demonstrated on simple 2D data sets in Figure 3.2. The data samples belong-

(a) Sought boundary (b) KDDA

(c) BiasMap (d) Kernel Fisher Discriminant

Figure 3.2: An illustration of an ideal class separation boundary (3.2(a)) and examples of the
false positive projection (FPP) effect occurrence in various nonlinear projective
methods, (3.2(b)-3.2(d)). Input space regions subject to FPP are denoted as A′.
All methods use Gaussian kernels with σ = 2.

ing to the positive and negative classes are shown as crosses and circles, respectively, while
yellow-colored areas highlight the regions of input space classified as positive.

Alternatively, the false positive projection occurrence in the KDDA approach may be
thought of as caused by a considerable multiplicity of solutions x∗ of Φ(x∗)Tω = u, for u ∈ U ,
where U is a region of projection of positive examples in Π. While this conjecture certainly
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CHAPTER 3. Kernel distance-based discriminant analysis (KDDA)

merits a separate investigation into preventive modifications such as multiplicity-reducing
signed distance inequalities, its universal applicability is yet to be established. Therefore,
in the following discussion we will focus only on the method-independent post-processing
strategies, i.e. the techniques that do not alter the method in question, but are applied once
the learning process has been completed.

3.4.1 Line tracing elimination strategy

In order to summarize the description provided in the previous section and be able to formu-
late a simple post-processing strategy for elimination of the false positive projection effect,
we make an observation analogous to that used in the cluster assignment rule of the support
vector clustering method, SVC [12], section 2.2: a data sample is subject to false positive
projection if it is classified as positive, but lies across the decision boundary with respect
to all of the positive class training samples. This prompts a straightforward strategy based
on sampling or “tracing” classification decisions along the simplest possible linear paths be-
tween a test sample and positive class training data, leading to the following algorithm for
detecting and rejecting the predictions on the test samples erroneously classified as positive.

Algorithm FPP elimination by line tracing.

1. Obtain a candidate test sample t classified as positive;

2. Select sets Li = {λt+ (1 − λ)xi : λ ∈ {0, h, 2h, . . . , 1}} ,∀xi ∈ X, i = 1 . . . NX , and
discretization step 0 < h < 1;

3. If each of Li has a sample classified as negative, declare false positive projection and
reject positive classification decision on t.

An illustration of the above algorithm applied to the KDDA method is shown in Figure 3.3.
Here, two sample straight lines are traced in the input space from candiadate test points T1

and T2. While a positive classification decision is retained on T1, it is rejected on T2, since on
every straight line connecting it to the positive samples of the training data there exist points
classified as negative. The latter fact is detected by verifying the classification decisions in the
learned nonlinear projection, on points sampled from sets Li using a simple uniform sampling
technique as adoped in the SVC method, and switching to a Newton-Raphson root-finding
routine when necessary.

3.4.2 Filter classifier elimination strategy

The simplicity of the above described elimination strategy comes at a price of having to impose
crude linear constraints on the obtained decision boundary, which may negate the benefits
of learning a complex nonlinear classifier. For that reason, we also consider a filter classifier
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(a) 2D Input space
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(b) Nonlinear projection in 2D

Figure 3.3: Applying line-tracing strategy for the false positive projection (FPP) effect elim-
ination: positive classification decision is accepted for T1, but rejected for T2

elimination strategy, implemented by introducing a high-recall add-on classifier that limits
the input space domain admissible for positive classification. That is, a given test sample
must be predicted as positive by both classifier in question and the filter. Practically, the
filter is implemented as a multiple-hyperplane classifier [82].

3.5 Experimental results

3.5.1 False positive projection elimination

For the purpose of a preliminary investigation, we conducted a series of experiments on the
synthetic nested cuboid data sets, an 2D example of which was earlier shown in Figure 3.2(a).
The positive and negative class observations were sampled inside and outside of randomly
generated cuboids with the imbalance ratio of 100, and submitted to classification by KDDA,
K-BiasMap and KFD using a Gaussian kernel with σ = 2. Due to substantial class imbalance,
and in order to assess the degree of performance degradation due to false positive projection,
the classification performance is separately calculated over the positive and negative class
instances. The true positive rate a+, or sensitivity, is the fraction of the positive class
samples predicted correctly. Similarly, the true negative rate a−, or specificity, is the fraction
of the negative class samples predicted correctly. The overall performance is thus assessed
by evaluating geometric mean accuracy

GM =
√
a+ × a− (3.22)

that takes into account prediction accuracy on both classes [84], and specificity

SP = a− (3.23)
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designed to quantitatively measure the effect of false positives on classification performance.
The results achieved by the three methods alone (denoted None, meaning no FPP elimination
strategy is used) as well as their performance enhanced by the FPP elimination techniques
described in sections 3.4.1 and 3.4.2 (denoted Tracing and Filter, respectively) are listed
in Table 3.2. The reported figures demonstrate a statistically significant improvement in

Table 3.2: GM accuracy and specificity (in %%) for nested cuboid synthetic data set

Method
None Tracing Filter
GM SP GM SP GM SP

KDDA 70.0
(±2.4)

96.6
(±1.1)

70.9
(±2.7)

99.6
(±0.1)

75.4
(±2.7)

99.6
(±0.2)

BiasMap 55.3
(±3.0)

99.1
(±0.5)

54.7
(±3.2)

99.5
(±0.2)

55.3
(±3.3)

99.6
(±0.1)

KFD 65.1
(±3.5)

73.3
(±5.9)

76.5
(±2.6)

99.6
(±0.2)

75.3
(±3.2)

99.7
(±0.1)

specificity for KDDA and KFD methods leading to an overall geometric mean accuracy
increase, while at the same time pointing out the overly conservative nature of the BiasMap
method where the changes are not significant.

For our content-based multimedia retrieval experiments we used ETHZ80 collection [89],
whose digital images belonging to several semantic categories were represented by 286-
dimensional feature vectors containing 166 global color histogram and 120 Gabor filter texture
descriptors extracted by the Viper system [141], as was described previously in section 2.4.3.
Kernel parameters were determined by cross-validation so as to maximize performance of
KFD, and fixed afterwards. The obtained results for each method in terms of averaged
geometric mean accuracy and specificity in the “one-against-all” classification scenario are
given in Table 3.3. The reported figures generally confirm the hypothesis that false positive

Table 3.3: GM accuracy and specificity (in %%) for ETHZ80 image collection

KFD BiasMap KDDA
none tracing filter none tracing filter none tracing filter

GM 82.7 82.7 82.7 58.0 59.2 71.4 76.8 77.2 82.2

SP 94.5 94.6 94.7 50.0 54.0 74.4 79.8 80.7 83.6

projection elimination strategies increase specificity leading to a better GM accuracy. These
findings also demonstrate that even simple post-processing methods, such as line tracing, may
sometimes be sufficient to enhance classification performance, while further benefits may be
extracted from more sophisticated techniques, such as the filter method of an add-on high
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recall classifier.

3.5.2 Evaluation of Indefinite KDDA

As a basis for comparison with the proposed method of Indefinite KDDA, section 3.3.2, we
used related discriminant analysis techniques, already mentioned in the previous sections:
Kernel Fisher Discriminant (KFD), Kernel Biased Discriminant Analysis (BiasMap), and
KDDA with a fixed kernel function. Kernel parameters for these approaches were deter-
mined by cross-validation, and fixed throughout. The parameters for the Indefinite KDDA
technique were set to ∆ = 1 by using a validation data set, while hyperkernel parameters
were specified as λh = 0.6 to provide an adequate coverage of various kernel widths by the
Gaussian harmonic hyperkernel (3.19) and λQ = 1 according to the recommendations from
the authors of the hyperkernel approach [114]. The obtained results for each method in terms

Table 3.4: Object categorization results for the ETHZ80 image database in terms of geometric
mean accuracy (in %%).

Object class KFD BiasMap KDDA Indefinite KDDA

Apple 90.35 61.56 86.02 83.21

Car 76.62 72.27 66.39 82.86

Cow 59.02 53.40 56.51 69.25

Cup 94.69 56.37 87.06 93.49
Dog 76.09 40.09 70.86 78.31

Horse 81.25 39.06 67.00 76.95

Pear 86.76 68.73 86.91 86.39

Tomato 96.66 72.73 93.45 94.05

Average 82.68 58.03 76.78 83.06

of geometric mean accuracy evaluated on the ETHZ80 digital image collection are given in
Table 3.4. Here, we see that the indefinite kernel extension of the KDDA technique enhances
the baseline KDDA method fine-tuned by cross-validation with a resulting increase of ac-
curacy from 76.78% to 83.06%. In addition to that, one may observe that the proposed
approach outperforms, albeit sometimes by a small margin, all other alternative discrimi-
nant analysis techniques considered. It also should be noted that in all 8 semantic category
classes, the spectra of the Gram matrices at convergence contained both negative and positive
eigenvalues, thus confirming the hypothesis on the usefulness of indefinite kernels.
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3.6 Summary

In order to overcome the limiting assumption of linearity of the sought disciminative trans-
formation, a kernel-based extension of the above discriminant analysis method, KDDA, is
formulated whereby the optimization criterion is expressed in terms of distances projected
from a feature space induced by a given kernel function.

Additionally, an application of indefinite kernels rendered as unrestricted linear combi-
nations of hyperkernels is considered in the KDDA framework. The proposed formulation
entails a solution of a series of quadratic minimization problems, whose computationally
advantageous property of being convex is guaranteed regardless of the definiteness of the se-
lected kernel function. This advantageous aspect of KDDA permits it to be used with kernels
derived from non-metric distance measures that may better capture the perceptual similarity
defining relations among higher level semantic concepts. Finally, an adverse condition re-
ferred to as the false positive projection effect is studied and some of its elimination strategies
are assessed.
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Chapter 4

Hierarchical semantic ensembles of

classifiers (HSE)

In this chapter we examine automatic semantic augmentation methods where the target
classes are described through general natural language as keywords, terms and semantic con-
cepts. This problem setup is usually referred to as the semantic categorization, keyword
prediction, autoannotation or automatic linguistic indexing tasks. The diversity in the prob-
lem terminology reflects the variety of contributions from numerous research domains that
have been proposed to date, as we have briefly discussed in Chapter 1. For instance, an
appealing idea of treating the multimedia feature data as another language to translate se-
mantic keywords to and from is developed with the aid of generative probabilistic models
by Barnard et al. [6, 7]. A family of methods [106, 121, 165], related to the cross-language
extension of the latent semantic indexing (LSI) technique [37, 86], permit the retrieval of
multimedia semantics via low-level feature queries.

Yet, the majority of the other approaches consider the multimedia autoannotation prob-
lem in the multiple-category classification framework, where unseen documents must be as-
signed to one or more predefined semantic categories. In [52], for instance, the authors focus
on improving several popular ensemble schemes, such as OPC (one per class), PWC (pair-wise
coupling) and ECOC (error-correcting output codes). The methods developed in [23, 91, 93]
decompose a multiple-category classification task into a collection of binary classification
problems and propose ways of recombining effectively the individual predictions from classi-
fiers as diverse as SVM, BPM, 2D-MHMM. The semantic categories for these and many other
classification-based techniques are generally assumed to be independent, non-overlapping and
sufficient to cover all of the problem domain.

The approach presented here is also formulated as a classification-based method, but dif-
fers from the above work in the important respect that the relationships among the semantic
categories derived from the individual keywords of the annotation corpora are explicitly mod-
eled in Bayesian terms, leading to a more consistent autoannotation performance. Further-
more, the proposed method broadens the range of the derived annotation allowing to predict
more general notions or semantically-related keyword groups in addition to individual key-
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words present in the training data vocabulary. Another benefit of the proposed formulation
is that it gives an answer to such an important question as how many keywords the system
should predict and whether it is reasonable to predict anything at all.

4.1 Problem formulation

We employ a hierarchical ensemble of binary classifiers in order to perform semantic anno-
tation of unseen images. Given a training set of annotated images {It,Kt}n

t=1, where It and
Kt represent the feature vector of a given image and its associated set of noun keywords,
respectively, the concept hierarchy H = {Ci}N

i=1 is a directed graph whose edges are defined
by the “hypernym-hyponym” relationships1 connecting the vertices, or nodes, represented
by all of the unique nouns comprising the annotation vocabulary V =

⋃n
t=1Kt and their

hyponyms derived from WordNet, a semantic lexicon of English language [102]. For instance,
a hypernym WordNet query for a single keyword k = {tree}, k ∈ V , returns an ordered set of
corresponding hypernyms, as depicted in Figure 4.1(a), that establishes a path graph from
the most generic semantic notion sought, an entity, to the actual keyword in question via a
chain of related hyponym concepts, Figure 4.1(b). These paths are subsequently aggregated
over the whole vocabulary V , while making certain that the duplicates links connecting the
same vertices, as well as the vertices with only one child are removed. In the resulting hierar-
chy H, every concept Ci occupies a separate node, and is associated with a binary classifier
Θi designed to distinguish the set of leaf concepts subsumed (directly or indirectly) by Ci,
denoted as L(Ci), from all of the others. An example of a hierarchy derived for a simple
vocabulary V :{beach, flower, grass, mountain, rock, sky, tree} is shown in Figure Q.1.

In order to perform the autoannotation of an unseen image represented by a low-level
feature vector IU , each concept Ci is assessed as a potential candidate. Thus, the set of
possible annotations is no longer restricted to be V , as is the case for the majority of other
similar techniques. The relevance of Ci is seen as a trade-off between, on one hand, how well
the input data IU fits the description of Ci from the classification accuracy point of view,
and, on the other hand, how specific or non-ambiguous the candidate set of keywords L(Ci)
is. In our method, the first of these two quantites is represented by the posterior probability
of a concept given the data, P (Ci|IU ), while the second one is estimated as the posterior
probability of a concept given the assumption that a particular keyword k from the set of all
hyponyms of Ci is chosen correctly, denoted as P (Ci|k).

For a given concept Ci, the estimate of P (Ci|IU ) is determined according to the following
theorem, which is a reformulation of a previously established result described in [85]:

Theorem, Kumar et al., 2002 [85]. The posterior probability P (Ci|IU ) for any input IU
is the product of the posterior probabilities of all the internal classifiers along a unique path

1Note that A is a hyponym of B, if every A is a (kind of) B. Inversely, A is a hypernym of B, if every B

is a (kind of) A.
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tree
       => woody plant, ligneous plant
           => vascular plant, tracheophyte

                   => organism, being
                       => living thing, animate thing

                               => entity, physical thing
                           => object, physical object

               => plant, flora, plant life

(a) WordNet query output for keyword tree

tree

entity, physical thing

object, physical object

living thing, animate thing

organism, being

plant, flora, plant life

vascular plant, tracheophyte

woody plant, ligneous plant

(b) A corresponding path graph

Figure 4.1: Illustration of “hypernym-hyponym” relationship extraction from WordNet

from the root node to Ci, i.e.

P (Ci|IU ) =
�(Ci)−1∏

l=0

P (C(l+1)
i |IU , C(l)

i ), (4.1)

where �(Ci) is the depth of Ci (the depth of the root concept C1 is 0), C(l)
i is the concept at

depth l on the path from the root node to Ci, such that C(�(Ci))
i ≡ Ci and C(0)

i ≡ C1.

In order to ensure that (4.1) is applicable in the case of classifiers with non-probabilistic
outputs, such as SVM [33], a sigmoid function is fit to the raw classifier output values fi, as
described in detail in Section 4.3. As for P (Ci|k), the Bayes theorem allows to express this
quantity in terms of statistics of the training data as shown in (4.2):

P (Ci|k) =
P (k|Ci)P (Ci)∑

Cj∈H P (k|Cj)P (Cj)
, (4.2)
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Figure 4.2: Classifier hierarchy example. Shaded nodes denote Ci ∈ V

where P (Ci), a prior probability of concept Ci, is estimated from the training data as:

P (Ci) =

∑
C∈L(Ci)

freq(T )(C)∑
C∈V freq

(T )(C)
, (4.3)

and P (k|Ci), the worst-case estimate of the probability of choosing a correct annotation
keyword k as an instance of Ci given the degree of generality of concept Ci, is deduced from
the hyponym set cardinality information derived from WordNet:

P (k|Ci) =
minC∈L(Ci) freq

(W )(C)
freq(W )(Ci)

. (4.4)

In (4.3) and (4.4), the frequency of a given concept in the training data and the cardinality
of the WordNet hyponym set are denoted as freq(T ) and freq(W ), respectively.

Finally, assuming that the likelihood of the input data IU given Ci is not dependent on
the correctness of a particular choice of k from the hyponym set of Ci, we obtain the following
result regarding concept relevance:

ρ ≡ P (Ci|IU , k) ∝ P (Ci|IU )P (Ci|k), (4.5)

which essentially represents a means of comparison of different hypothesis concepts {Ci} that
takes into account both the goodness of fit of the data IU to a given concept description and
the concept’s inherent degree of uncertainty or specificity. The next section illustrates these
notions.

72



4.2. Illustrative example

4.2 Illustrative example

Let us come back to the simplified 12-concept classifier hierarchy given in Figure Q.1. To
be able to observe the effect of each of the two factors contributing to the final estimate of
the concept relevance, we plot separately the computed values of P (Ci|k), Figure 4.3(c), and
P (Ci|IU ), Figure 4.3(b)2 , for a sample test image query depicted in Figure 4.3(a). As the
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0

0.1

0.2

0.3

0.4

0.5

0.6

C
12

 =
 "

m
ou

nt
ai

n"

C
11

 =
 "

be
ac

h"

C
10

 =
 [g

eo
lo

gi
ca

l f
or

m
at

io
n]

C
9 =

 "
ro

ck
"

C
7 =

 "
flo

w
er

"

C
8 =

 "
gr

as
s"

C
5 =

 [n
at

ur
al

 o
bj

ec
t]

C
2 =

 "
sk

y"

C
6 =

 "
tr

ee
"

C
4 =

 [v
as

cu
la

r 
pl

an
t]

C
3 =

 [o
bj

ec
t] C

1 =
 [e

nt
ity

]

C
i

P
(C

i|I U
)

(b) Goodness of fit P (Ci|IU )
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(c) Specificity P (Ci|k)

Figure 4.3: Individual contributions of factors P (Ci|IU ) and P (Ci|k)

diagrams show, there is a natural tendency among the values of P (Ci|IU ) to favor simpler,
more general concepts, such as object, due to the smaller number of terms to be evaluated in
product (4.1). Quite the opposite trend is noticeable among the estimates of P (Ci|k) that

2One may note that P (C1|IU ) �= 1 as shown in the figure, contrary to what (4.1) may imply. This is

explained by our use of the global prior of the root concept entity computed from overall WordNet statistics.
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tend to promote very specific, unambiguous concepts, such as tree, taking into account their
prior probabilities as well. This very trade-off of “Goodness of fit vs. Specificity” is captured
by the concept relevance, ρ, leading to the results listed in Table 4.1 that demonstrate a

Table 4.1: Candidate concepts ranked by relevance

Rank − log2 ρ(Ci) Concept Ci

1 5.41 C6 = tree
2 7.46 C2 = sky
3 8.44 C4 = vascular plant
4 9.84 C8 = grass
5 12.64 C7 = flower
6 17.26 C1 = entity

7 17.87 C3 = object
8 19.42 C5 = natural object
9 21.00 C9 = rock
10 44.32 C10 = geological formation
11 55.97 C12 = mountain
12 56.35 C11 = beach

reasonable degree of coherence between the top ranking concepts Ci and the true keywords
of the query KU = {flowers, path, grass, trees}.

Another important property of the proposed method that the figures from Table 4.1 help
highlight is its ability to determine exactly how many of the top-ranked concepts should
be predicted. Many existing approaches [6, 7, 106] resolve this issue by specifying a tun-
able “refuse-to-predict” parameter that regulates the propensity of image regions to emit
concepts or, as some other techniques, by simply considering a fixed number of top-ranked
entries. In our case, the relevance of the root node, ρ1 = ρ(C1), provides a natural threshold
that determines the number of candidate annotation concepts to be selected. An intuitive
interpretation of the negative logarithm of this quantity comes from the minimum message
length (MML) principle of information theory [157], which interprets − log2 ρ1 as the null-
model hypothesis test that corresponds to transmitting all the data, since the root concept
subsumes all of the other concepts, as is. According to the MML principle, any hypothesis
that cannot better the null-model is not acceptable. In our example, this assertion makes us
discard all of the candidate concepts ranked 6 or worse (see Table 4.1).

4.3 Probabilistic outputs for baseline classifiers

Having discussed the general formulation of the proposed method, we now turn our atten-
tion to the basic building blocks of the ensemble, namely, the individual binary classifiers.
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The main criteria for selecting baseline classifiers Θi for each candidate concept Ci were
superiority in performance and suitability for the task. Thus, we chose two main types of
classifiers: support vector machines [33, 153] due to their exceptional performance record and
a great degree of flexibility with various types of kernels, and the transformational approach
of distance-based discriminant analysis, described in Chapers 2 and 3, as well as [79, 80],
that demonstrated very competitive results on the problems specific to the target application
domain.

The first of the two techniques, support vector machines (SVM) introduced in greater
detail in Appendix C, produces an uncalibrated output defined as:

f(x) = h(x) + b, (4.6)

where
h(x) =

∑
i

yiαik(xi,x) (4.7)

lies in a Reproducing Kernel Hilbert Space (RKHS)� induced by a kernel k [135, 156]. Train-
ing an SVM minimizes regularized risk [33, 153], an estimate of the training misclassification
rate plus a penalty term corresponding to the norm of h in the RHKS

C
∑

i

(1 − yifi)+ +
1
2
||h||� , (4.8)

where fi = f(xi), which also corresponds to the minimization of a bound on the test misclas-
sification rate [153]. The classification decision is made based on the sign of the raw output
f(x).

The other method, distance-based discriminant analysis (DDA), finds a data transforma-
tion T ∈ R

m×n as a solution to the problem of minimization of criterion (R.1). The main
advantages of the approach are its non-parametric nature, asymmetric class treatment ap-
propriate for scenarios with a large degree of imbalance among the classes, and the ability to
select the dimensionality of the target space automatically. When using DDA, the classifica-
tion decision is made based on the class label of the nearest neighbor in the T -transformed
space. An important fact that becomes evident even from the above succint overview of the
SVM and DDA methods is that neither of the two techniques produces a probabilistic output,
as required by (4.1). It is therefore necessary to fit posterior probabilities to the raw outputs
of the classifiers, which is done by implementing the approach from [117] briefly introduced
below.

Considering a posterior probability of a given concept C out of its hierarchical context to
simplify the notation, we may obtain the following expression via the Bayes theorem:

P (C|f) =
p(f |C)P (C)

p(f |C)P (C) + p(f |C)P (C)
, (4.9)

where f = f(IU) is the raw output of the classifier given query IU , which for SVM is defined
by (4.6) whereas for DDA it is a signed nearest neighbor distance, P (C) and P (C) are
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prior probabilities of C and its complement, p(f |C) and p(f |C) are the corresponding class-
conditional densities. Assuming exponential behavior of the class-conditional densities, (4.9)
simplifies to a parametrized sigmoid function:

P (C|f) =
1

1 + exp(Af +B)
. (4.10)

The parameters A and B of (4.10) are fit using maximum likelihood estimation from a
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Figure 4.4: Posterior probability fit for concept “trees”

training data set (fi, ti), where ti is a concept membership indicator such that ti = 1 for C,
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and zero otherwise. The problem of finding A and B thus becomes that of minimizing the
negative log-likelihood of the training data:

min
A,B

−
∑

i

ti log(pi) + (1 − ti) log(1 − pi), (4.11)

where

pi =
1

1 + exp(Afi +B)
. (4.12)

In order to solve (4.11) in a robust fashion, the model-trust algorithm [51] suggested by the
author is used.

Figure 4.4 shows an example of applying this posterior probability fitting technique to
the output values of a Gaussian kernel SVM classifier for the leaf concept trees. Figure 4.4(a)
plots the histograms of class-conditional densities derived from tenfold cross-validation, while
Figure 4.4(b) demonstrates the fit of the sigmoid function (4.10) to the posterior probabilities
computed from the class-conditional densities via Bayes’ rule. It should be noted that other
alternative posterior fitting methods are applicable and may even be more preferrable, given
the most recent (at the time of this writing) results on probabilistic interpretation of SVM [56],
which opens promising venues for future research.

4.4 Experimental Results

In our experiments we have used data from two separate image collections for training and
testing in an attempt to ensure collection-independent learning. The training data was de-
rived from the Washington University annotated digital image collection [94] with about 600
images, while the testing data constituted a 254 image subset, New Zealand and Ireland
sections, from Corel image database. The visual information for each training image was
represented by 286-dimensional feature vector as described in Chaper 2, section 2.4.2. An-
notation keywords appearing only once were eliminated from the target vocabulary V , from
which a hierarchical ensemble of semantically related concepts was constructed. The result-
ing hierarchy is shown in Figure 4.5, where each concept is specified together with hyponym
cardinality needed for calculating (4.4).

The preliminary evaluation was to be judged from the point of view of the traditional
information retrieval measures of precision and recall [4, 130, 150] expressed in terms of
cardinalities of three sets of abstract documents (i.e., annotated digital images in our case):

• R - set of documents relevant to a given query Q,

• A - answer set of documents produced in response to Q by the system being tested,

• Ra - the intersection of sets R and A,
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and defined as

Recall =
|Ra|
|R| , (4.13)

Precision =
|Ra|
|A| , (4.14)

providing an estimates of the fraction of the relevant documents that have been retrieved,
and the fraction of the retrieved documents that are relevant. In order to be able to judge
the performance of the presented method in terms of the precision and recall indicators, we
have adopted the following strategy. Whenever a non-leaf concept, Ci /∈ V , is predicted,
it is evaluated as a union of its underlying keywords, L(Ci), thus bridging the vocabulary
gap between the derived concepts, e.g. [vessel, watercraft], and the actual training data,
e.g. boat, sailboat, ferryboat, rowboat, at the expense of precision. Using the DDA baseline
classifiers [79, 80] for each concept Ci ∈ H, the following precision and recall results on the
test set vocabulary were obtained (see Figure 4.6). As seen from the figure, the high recall
results boosted by keyword group retrieval (see Figure 4.6(a)) do not necessarily correspond
to high frequency common concepts emphasizing the importance of the concept co-occurrence
factors, while the significantly lower precision values for complex concepts, such as church,
fence, boat (see Figure 4.6(b)), indicate that these words are much more often retrieved as a
group of semantically-related keywords, rather than individually. The latter observation of
lower expected precision is a natural consequence of the above straightforward modification
adopted to bridge the gap between the vocabulary of the training data and the one extended
through WordNet. Some words shown in Figure 4.6 may appear to have been truncated, e.g.
leav, fenc, hous, etc., due to stemming [68, 118] of the vocabulary used throughout all of the
experiments.

An illustration of the automatically derived annotation is provided in Figure 4.7, showing
examples occurrences of out-of-vocabulary words being replaced by a visually similar common
concepts Ci ∈ V (top-right image, castle → rock), members of the vocabulary being predicted
as semantically relevant, but more common (and therefore, more likely) concepts Ci (top-left,
buildings → construction), as well as other typical predictions.

In addition to the above experiments, we have compared the presented method to several
popular classifier ensemble techniques, such as OPC, or 1-against-all strategy, and Max Wins
algorithms [47] that combined SVM baseline classifiers. As shown in Table 4.2, the proposed
hierarchical semantic ensemble (HSE) approach achieved better results despite the fact that
only a fixed number of 5 top-ranked singleton concepts was allowed to be predicted, which
was done in order to ensure equal conditions for all of the methods, most of which have no
means of determining exactly the number of concepts in the derived annotation. The first
row of Table 4.2 represents the reference point performance attained by sampling concepts
according to their empirical distribution in the training data annotation, i.e. picking word
tree first, since it is most likely to occur, then sky, and so on, whereas the last row shows
an improvement in performance of the presented HSE method when one considers sibling
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Figure 4.6: Performance indicators on test data vocabulary

concepts3 the same, e.g. sailboat and boat.

We also examined the performance of various types of binary SVM techniques as baseline
classifiers in the proposed HSE framework, as illustrated in Table 4.3. The results of these
studies have confirmed earlier findings [147] stating that state-of-the-art individual classifiers

3Concept A is considered a sibling of concept B if A(�(A)−1) = B(�(B)−1).
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True annotation:

sky, street, buildings, town

Autoannotation:

sky, construction, natural object, artefact

True annotation:

sky, castle, water, tree

Autoannotation:

sky, rock, tree

True annotation:

cows, road, trees, grass

Autoannotation:

bush, tree, grass, vascular plant,

woody plant, organism

True annotation:

sky, water, mountain, trees,

Autoannotation:

sky, water, geological formation,

natural object, artefact

Figure 4.7: Autoannotation of test images

do not necessarily always lead to a better performance in ensembles, while the inadequate
results for the Max Wins technique, the only scheme to be using raw classifier outputs, em-
phasize the importance of the role of fitted posterior probabilities in classification ensembles.
However, one needs to be cautious not to invest all faith and admiration into the pointwise
probability estimates of non-probabilistic classifiers in view of results from Grandvalet et
al. [56] and Zhang [164] regarding consistency and asymptotic properties of such estimates.

4.5 Summary

We have presented a hierarchical ensemble learning method applied in the context of mul-
timedia semantic augmentation. In contrast to the standard multiple-category classifica-
tion setting that assumes independent, non-overlapping and exhaustive set of categories, the
proposed approach models explicitly the hierarchical relationships among target classes us-
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Table 4.2: Classifier ensemble performance restricted to top 5 keywords

Ensemble Baseline % Recall % Precision

classifier

Empirical none 16.13 5.04

Max Wins SVM, polyn. 8.14 3.83

Max Wins SVM, gauss. 10.61 4.47

OPC SVM, polyn. 20.31 7.85

OPC SVM, gauss. 21.27 10.19
HSE DDA 21.22 10.20

HSE+S DDA 28.42 26.88

Table 4.3: HSE performance with respect to the choice of baseline classifier

Baseline classifier % Recall % Precision

SVM, linear 18.12 5.28

SVM, polynomial 18.34 5.67

SVM, gaussian 18.62 6.05

DDA 21.22 10.20

ing WordNet, in a way, bringing together a statistical classification and linguistic modeling
paradigms.

A target class relevance to a query is estimated as a trade-off between the goodness of fit
to a given category description and its inherent uncertainty. The latter aspect, formulated
in Bayesian terms, brings an additional benefit of allowing to determine exactly the number
of categories to be predicted. The promising results of the empirical evaluation confirm the
viability of the proposed approach, validated in comparison to several techniques of ensemble
learning, as well as with different type of baseline classifiers.

In perspective, we plan to explore further the problem of establishing correspondence
between individual annotation keywords and low-level feature descriptors, and improve the
proposed approach my taking advantage of the meaningful structure of the resulting hierar-
chical classification ensemble in order to incorporate relevance feedback from the user, thus
extending the approach to the domain of interactive semantic augmentation methods.
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Chapter 5

Theoretical issues

In this chapter we examine the motivational analogy between the DDA method and such
techniques as support vector machine, SVM [33, 135, 153], and analytic center machines,
ACM [146]. We begin considering the similarities among these approaches with a geometric
interpretation of the separability constraints that gives rise to the notion of version space,
where the solution obtained by an SVM corresponds to a Tchebycheff center and the one
found by an ACM is an analytic center. In this context, the DDA method formulation is
shown to provide an approximation of, or a bound for, the criterion sought to be minimized by
an ACM, while having the additional benefits of allowing the uniform treatment of both sep-
arable and non-separable data set scenarios, and extending the ACM-like formulation to the
case of several separating hyperplanes instead of one. In order to study more rigorously the
implications of the latter setting inherent in DDA, we consider an optimal separating hyper-
plane classifier with an explicit extension to the multiple-hyperplane case, demonstrating the
possibilities of extracting further benefits from such formulation, and deriving generalization
perfromance guarantees in terms of the associated fat-shattering dimension bound.

5.1 Parallels between SVM, ACM and DDA

5.1.1 Geometric interpretation of version space

Let us consider the traditional formulation of the hard margin support vector machine (SVM)
classifier1 , that finds a hyperplane that separates two classes and maximizes the distance
to the nearest data sample from either class. For a training data set comprising a set of
N samples xi ∈ R

m, i = 1 . . . N and their respective class labels yi ∈ {−1, 1}, the sought
hyperplane is determined by solving a convex optimization probem:

max
ω

C (5.1)

subject to: yi〈xi, ω〉 ≥ C, for i = 1 . . . N, (5.2)

||ω|| = 1, (5.3)

1See Appendix C for details on the support vector machine classification method.
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where C is the separation margin, ω is a vector representation of the separating hyperplane
in the generic notation without an intercept term. Then, the set of all ω which separate the
training data correctly and thus represent all feasible solutions is described as

V = {ω|yi〈xi, ω〉 ≥ 0; i = 1 . . . N, ||ω|| = 1} . (5.4)

This set V is referred to as the version space [104, 105, 115], and has an insightful geometric
interpretation. Indeed, each data sample contributes a separability constraint (5.2) that can
be seen as a linear inequality

〈yixi, ω〉 ≥ 0, for i = 1 . . . N, (5.5)

which corresponds to a half-space determined by a hyperplane with normal vector yixi in the
weight space of ω. The intersection of all these half-spaces, some of which, of course, may
be redundant, with a sphere that corresponds to the length constraint (5.3) defines V, as
illustrated in Figure 5.1. It can be shown that the SVM solution is the Tchebycheff center of

Figure 5.1: Illustration of the version space for ω ∈ R
3. Each of the three data samples

introduces a half-space associated with a hyperplane defined by its normal vector
yixi, limiting the set of admissible ω. When combined, these half-spaces form a
cone of feasible ω, which after intersection with the sphere corresponding to the
length constraint (5.3) renders the version space V, shown as a shaded area

the version space, which geometrically coincides with the center of the largest sphere inscribed
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in V [136]. However, when the version space is elongated or asymmetric, the SVMs are not
very effective [146]. This situation is encountered due to the fact that Tchebycheff center
may no longer be in proximity of the Bayes point, a theoretically optimal solution which is
known to be approximated by the center of mass of the version space [64, 66, 160]. As a
result, the SVM solution in this case might provide a poor estimate of the Bayes-optimal
decision boundary. While there exist some alternative solutions seeking to approximate the
Bayes point directly [65, 128], the underlying problem of computing a center of mass of a
polyhedron in a high-dimensional space still presents a formidable challenge. On the other
hand, an easily computable center has been proposed by Sonnevend [138, 139] and referred
to as analytic center of a convex polytope. The said center smoothly depends on data, is
invariant with respect to affine transformations and can be computed by minimizing a strictly
convex function over the convex polytope. Furthermore, some studies have shown that the
Bayes point in the version space may be approximated reasonably well by computing the
minimum of a special class of potential functions, that can be naturally adopted in analytic
center methods [19]. In the discussion that follows, we examine one such method called an
Analytic Center Machine (ACM [146]) and establish the links between its formulation and
that of the DDA method described in Chapters 2 and 3.

5.1.2 Comparing ACM and DDA formulation

The concept of an analytic center comes from the domain of interior point optimization
methods [20]. Let us define the slack si ∈ R to measure how well solution ω matches the i-th
separability constraint (5.5)

si = yi〈xi, ω〉 ≥ 0, for i = 1 . . . N, (5.6)

that becomes negative whenever its corresponding constraint is violated, or remains positive
otherwise. A set of solutions ω, compact or otherwise, for which all of the slacks si are
positive is called a feasible region. An interior point is then, as the name implies, any ω

located strictly inside of the feasible region. Furthermore, for each constraint we define a
potential function [111], that goes to infinity as we approach the boundary of the feasible
region:

φi(si) = − log(si), for i = 1 . . . N. (5.7)

Finally, the logarithmic barrier is obtained by combining the potential functions corresponding
to all of the separability constraints

Φ(s) = −
N∑

i=1

log(si), for s = (s1, . . . , sN ). (5.8)

The point at which (5.8) attains its minimum is defined as the analytic center of the feasible
region. Minimizing the above log barrier subject to a length constraint that ensures com-
pactness of the feasible set constitutes the essence of the ACM method. Needless to say, the
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ACM technique assumes that the feasible region is not empty, i.e. the data is separable, in
contrast to the SVM approach that may handle non-separable data set scenarios, cf. (4.8).

Now let us recall the formulation of log J(T ) (R.1), the optimization criterion of the DDA.
Its second half is expressed as a geometric mean of between-class distances, and in logarithmic
form is defined as

−βSB(T ) = − 1
NXNY

NX∑
i=1

NY∑
j=1

log dB
ij(T ). (5.9)

Also, assume for the moment that T is no longer a transformation matrix, but a column
vector, as per notation (5.1)-(5.3)

T ≡ ω ∈ R
m. (5.10)

Then, the squared between-class distances can be expressed as

(
dB

ij

)2
= 〈zi, ω〉2 + 2〈zi, ω〉〈−zj , ω〉 + 〈−zj , ω〉2, (5.11)

where, according to the DDA notation (R.3), zi and zj are training data samples belonging
to opposite classes. By taking the log of (5.11) and applying the arithmetic-geometric mean
inequality

n
√
a1a2 . . . an ≤ 1

n
(a1 + a2 + . . . + an), (5.12)

for a1, a2, . . . an ≥ 0, we obtain

−1
2

(
log〈zi, ω〉 + log〈−zj , ω〉 +

log 2
3

)
≥ − log dB

ij (5.13)

Finally, by summing (5.13) through the respective indices of each class, i = 1 . . . NX , j =
1 . . . NY , and subsequently dividing by NXNY , as required by the DDA formulation (5.9),
we arrive at

1
2

⎛
⎝− 1

NX

NX∑
i=1

log〈zi, ω〉 − 1
NY

NY∑
j=1

log〈−zj , ω〉 − log 2
3

⎞
⎠ ≥ (5.14)

− 1
NXNY

NX∑
i=1

NY∑
j=1

log dB
ij ≡ −βSB(T ), (5.15)

where the first two terms inside the brackets of (5.14) can be seen as log barriers of the
ACM method, averaged separately over the respective number of data samples in each class2.
The result (5.14)-(5.15) may give rise to a number of motivating observations. First, the
between-class portion of the DDA optimization criterion may be construed as a lower bound
for, or approximation of, the weighted log barrier of ACM. Analogous results obtained by
DDA and ACM in the ideal case when the training data set is perfectly separable and nearly

2Of course, a slight difference in notation needs to be taken into account, according to which the class labels

encoded by variables yi ∈ {−1, 1} in ACM and SVM formulations are stated explicitly in DDA as different

signs of the samples belonging to opposite classes, zi and −zj .
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equidistantly projected, 〈zi, ω〉 � 〈−zj , ω〉, can be attributed to the fact the objective func-
tions of the two methods become similar3 under these conditions. Second, the DDA method
may be interpreted as a close relative of ACM, because of the adoption of negative logarithm
potential functions, but with an important distinction: both separable and non-separable
data sets are treated uniformly, since the within-class and between-class distances are non-
negative, and thus are always in the admissible domain of the logarithm, save for the case of
indefinite kernels, see Chapter 3, section 3.3. The latter distinction makes the DDA appear
similar to the SVM, since neither of the two requires class separability, whereas ACM faces a
problem with an empty feasible region when data samples are not separable. Finally, the unit
column size of the of the sought transformation T (the dimensionality of the target space),
as considered in (5.10), is atypical for the DDA. Indeed, the best empirical performance of
the developed method has been observed when the target space dimensionality is greater
than one. In the above context of SVM and ACM, this corresponds to having several sepa-
rating hyperplanes used in a classifier, instead of one. This fact distinguishes the developed
technique from the other methods considered above, and warrants a separate investigation
of the multiple-hyperplane extension within the framework of optimal separating hyperplane
classification, which is undertaken in the section that follows.

However, before considering this setting, a comment for the sake of completeness is in
order. Namely, the above analysis may have established interesting parallels between the
SVM, ACM and DDA methods, but it only considered the between-class distance portion
of the DDA formulation, SB(T ), so what about the other, within-class distance portion,
SW (T )? The answer to this question might appear to defy common sense logic, because
this extra restriction expressed by SW (T ) introduced in the problem formulation actually
makes the optimization problem easier. Indeed, the empirical evidence demonstrates that
diminishing the relative contribution of SW (T ) to the optimization criterion results in a slower
convergence, and eventually leads to severe local minima-related problems when its weight
becomes virtually zero. Hence, in addition to ensuring the fulfillment of the compactness
assumption among one class of data samples, SW (T ) also plays an important role in the
numerical stability of the DDA.

5.2 Multiple-hyperplane classification setting

As already mentioned above, this section is devoted to examining the possible benefits that
can be extracted from the multiple-hyperplane extension of the optimal separating hyper-
plance classification. Apart from the previously discussed DDA motivation, the intuition
behind the idea of introducing one or more extra hyperplanes in a classifier is exemplified in
Figure 5.2, where it is shown how an additional hyperplane may improve the class separation
margin, and thus have the potential to reduce the classification error rate. In the discussion
that follows, we formulate the multiple-hyperplane (MH) classification problem, derive gen-

3For n = 3 and equal ai, the two sides of inequality (5.12) are only different by a small factor of 4

3 3√2
≈ 1.058

87



CHAPTER 5. Theoretical issues

(a) SVM, γ = 1.14 (b) MH, γ = 1.55

Figure 5.2: SVM vs. Multiple-hyperplane (MH) method on a toy problem in 2D: an addi-
tional hyperplane leads to a better separation margin γ (both methods use linear
kernels).

eralization properties of the corresponding classifier, and presents some experimental results.

5.2.1 Multiple-hyperplane classification problem formulation

The standard 2-class optimal separating hyperplane problem setting (5.1)-(5.3) can be ex-
tended trivially in order to accommodate more than one hyperplane4:

max
ω1,...,ωNH

C (5.16)

subject to: yi min
j=1...NH

〈xi, ωj〉 ≥ C, for i = 1 . . . N, (5.17)

||ω1|| = ||ω2|| = . . . = ||ωNH
|| = 1, (5.18)

where NH is the number of hyperplanes, each of which is defined by ωj, for j = 1 . . . NH .
Additionally, we require that the sum of distances to compound border be less or equal to
the sum of signed distances to the average hyperplane ω̄:

∑
i

yi min
j=1...NH

〈xi, ωj〉 �
∑

i

yi〈xi, ω̄〉, (5.19)

where ω̄ = 1
NH

∑
j=1...NH

ωj. This condition ensures some degree of flatness of the compound
border avoiding overfitting. There is guaranteed to be at least one set of hyperplanes that
meets this requirement. The other, more significant role of this average signed distance
constraint, however, will be clarified in the following section. Finally, the decision function

4Note that, similarly to the DDA ideas, this formulation preserves asymmetry with respect to the obser-

vations belonging to the positive class, yi = +1.
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for the multiple-hyperplane classifier is specified as

h(x) = sgn

(
min

j=1...NH

〈x, ω〉
)
. (5.20)

A disadvantage of the proposed formulation is that the above optimization problem may
be quite difficult due to the use of non-differentiable min-function, which necessitates the use
of auxiliary numerical strategies for attaining differentiability via smoothing the loss function5

and avoiding unacceptable local minima via annealed penalty terms. Its advantage, on the
other hand, is that (5.16-5.19) are expressed in terms of dot products, and thus are easily
extended to nonlinear cases via the kernel trick.

5.2.2 Generalization performance assessment

The following result establishes the generalization properties of the proposed technique.

Proposition, Error bound for MH classifier. Consider thresholding a class F of func-
tions minj=1...NH

〈xi, ωj〉 with unit weight vectors on an inner product space X and fix γ ∈ �+.
For any probability distribution D on X × {−1, 1} with support in a ball of radius R around
the origin, with probability 1 − δ over l random examples S, any hypothesis f ∈ F that has
margin mS(f) ≥ γ on S has error no more than

ε(l,F, δ, γ)=
2
l

(
64R2

γ2
log

elγ

4R
log

128lR2

γ2
+ log

4
δ

)
, (5.21)

provided l > 2/ε and 64R2/γ2 < l.

Note that the above error bound is the same as presented in [33] for a single hyperplane
case. In order to clarify the intuition behind this result, we need to emphasize that formulation
(5.16-5.19) inherits a lot from that of an optimal separating hyperplane classifier, and thus
shares many common qualities. Indeed, one may observe that the proof of a standard result
on fat-shattering dimension, fatF, of an optimal hyperplane classifier [135, 10, 151] becomes
applicable in the multiple-hyperplane setting, once the average signed distance constraint
(5.19) has been taken into account. Consider the following proposition.

Proposition, Fat-shattering dimension bound for MH classifier. Suppose that X is
the ball of radius R in R

n, X = {x ∈ R
n : ||x|| ≤ R}, and consider the set

F = {x 	→ min
j=1...NH

〈x, ωj〉 : ||ωj || ≤ 1
γ
, x ∈ X}. (5.22)

Then fatF(γ) ≤
(

R
γ

)2
.

5For instance, one possible alternative that worked well in practice was to replace min(a, b) with its differ-

entiable approximation 1
2
(a + b −�(a − b)2 + δ), whose smoothness is controlled through δ > 0.
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Proof. The proof proceeds in a manner similar to that of [135]. Assume that x1, . . . , xr are γ-
shattered by the multiple-hyperplane classifier. Consequently, for all class labels y1, . . . , yr ∈
{−1, 1}, there exists a set ω1, . . . , ωNH

with ||ωj || ≤ 1
γ for j = 1 . . . NH , such that

yi min
j=1...NH

〈xi, ωj〉 ≥ 1, for i = 1 . . . r. (5.23)

Summing (5.23) over i = 1 . . . r yields
r∑

i=1

yi min
j=1...NH

〈xi, ωj〉 ≥ r. (5.24)

According to the average signed distance constraint:∑
i

yi min
j=1...NH

〈xi, ωj〉 �
∑

i

yi〈xi, ω̄〉, (5.25)

where ω̄ = 1
NH

∑
j=1...NH

ωj . Combining (5.24) and (5.25), we obtain:

1
NH

r∑
i=1

yi

⎛
⎝NH∑

j=1

〈xi, ωj〉
⎞
⎠ ≥ r, (5.26)

which can be written in the form of an inner product as

1
NH

〈
Ω,

r∑
i=1

yiS
Txi

〉
≥ r, (5.27)

where Ω =
[
ωT

1 ωT
2 . . . ωT

NH

]T
, a column vector containing parameters of all of the hyper-

planes, and S = 1T ⊗ I for a vector 1 of all ones with length NH . By the Cauchy-Schwartz
inequality, we have

1
NH

〈
Ω,

r∑
i=1

yiS
Txi

〉
≤ 1
NH

||Ω||
∥∥∥∥∥

r∑
i=1

yiS
Txi

∥∥∥∥∥ ≤ 1
γ
√
NH

∥∥∥∥∥
r∑

i=1

yiS
Txi

∥∥∥∥∥ , (5.28)

Combining (5.27) and (5.28) obtains

rγ
√
NH ≤

∥∥∥∥∥
r∑

i=1

yiS
Txi

∥∥∥∥∥ . (5.29)

To bound the right-hand side of (5.29), consider the case when labels yi are Rademacher
variables, i.e., IID with P (yi = 1) = P (yi = −1) = 1

2 . From the fact that the expectation
E{yiyk} = 0 when i �= k, and that y2

i = 1, we obtain

E

∥∥∥∥∥
r∑

i=1

yiS
Txi

∥∥∥∥∥
2

=
r∑

i=1

E

〈
yiS

Tx,
r∑

k=1

ykS
Txk

〉
(5.30)

=
r∑

i=1

⎛
⎝∑

i�=k

E〈yiS
Txi, ykS

Txk〉 + E
〈
yiS

Txi, yiS
Txi

〉⎞⎠ (5.31)

=
r∑

i=1

E||yiS
Txi||2. (5.32)
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Since ||yiS
Txi|| = ||STxi|| =

√
NH ||xi|| ≤

√
NHR, we get

E

∥∥∥∥∥
r∑

i=1

yiS
Txi

∥∥∥∥∥
2

≤ NHrR
2. (5.33)

If the bound (5.33) is true for the expectation when Rademacher variables are used, then
there must exist at least one set of labels for which it also holds true, that is∥∥∥∥∥

r∑
i=1

yiS
Txi

∥∥∥∥∥
2

≤ NHrR
2. (5.34)

Combining (5.29) and (5.34), we derive the sought bound

fatF(γ) ≤ r ≤
(
R

γ

)2

. (5.35)

Bound (5.21) naturally follows, once (5.35) is introduced into the theoretical result that
establishes the link between the fat-shattering dimension and generalization error [10, 151],
which is listed below.

Corollary 4.14, [33]. Consider thresholding a real-valued function space F with range
[−R,R] and fix γ ∈ R

+. For any probability distribution D on X × {−1, 1}, with proba-
bility 1 − δ over l random examples S, any hypothesis f ∈ F that has margin mS ≥ γ on S
has error no more than

errD(f) ≤ ε(l,F, δ, γ)=
2
l

(
d log

16elR
dγ

log
128lR2

γ2
+ log

4
δ

)
, (5.36)

provided l > 2/ε, d < l, where d = fatF(γ/8).

5.2.3 Empirical evaluation

In an experimental setup similar to those of Chapters 2 and 3, we evaluated the proposed tech-
nique in semantic multimedia retrieval experiments on the data from the ETHZ80 digital im-
age collection [89]. The visual information for each image was represented by 286-dimensional
feature vector containing 166 global color histogram and 120 Gabor filter texture descriptors
extracted by the Viper system [141], as was described previously in section 2.4.3.

For each class, we compared the classification accuracy of the 2-class SVM [33, 153] with
a Gaussian kernel tuned by cross-validation to that of the MH classifier using the same kernel
parameters, but letting the number of hyperplanes vary. The outcome of these experiments
demonstrated that in most cases the performance of the SVM classifier is improved by intro-
ducing extra separating hyperplanes, while the ratio of the class separation margins achieved
by the two methods indicated where such improvement was most likely. The summary of
results is shown in Table 5.1.
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Table 5.1: Classification accuracy (in %%) per class for ETHZ80 image collection. For the
MH classifier, the number in brackets beside the attained accuracy percentage
indicates how many hyperplanes, NH , were used. NH was selected in the range
from one (equivalent to SVM) to ten so as to maximize performance.

Object class Accuracy, Accuracy, Margin ratio,
MH SVM (MH/SVM)

(1) apple 97.12 (6) 96.16 1.37

(2) car 88.44 (2) 88.06 1.10

(3) cow 89.75 (5) 84.59 1.11
(4) cup 95.41 (5) 95.94 1.02

(5) dog 92.37 (6) 83.59 1.77

(6) horse 88.44 (4) 88.09 1.76

(7) pear 95.19 (5) 92.16 1.22

(8) tomato 98.38 (2) 97.66 1.01

5.3 Summary

This chapter makes an effort to establish theoretical connections and analogies with some
existing machine learning methods. Through this anaylsis, an important detail of the DDA
formulation reliance on several separating hyperplanes is highlighted and examined separately.
The latter inquiry is performed in the context of margin-based classification. The performance
of the proposed technique has been assessed theoretically by establishing a bound on gener-
alization error, and practically by evaluating its performance in a semantic image retrieval
task, providing encouraging results. Further research is warranted in order to gain a better
insight into the method’s theoretical properties via Rademacher complexity bounds [9, 78],
and to investigate its performance in related multimedia processing applications.
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Chapter 6

Conclusion

6.1 Remarks and summary

In this thesis, we have adopted a rather general view of the domain of multimedia process-
ing applications. This view has allowed us to subdivide a great variety of methods into the
two groups of interactive and automatic semantic augmentation techniques, and holistically
approach the latter category from the machine learning perspective. Motivated by a number
of requirements specific to the target application, we have developed a method of distance-
based discriminant analysis, DDA, whose performance has proven competitive in comparison
with many state-of-the-art solutions, both general and specifically designed within the au-
tomatic semantic augmentation context. Subsequently, the method has been, on one hand,
extended to a kernel formulation, and, on the other hand, used as a basic building block in
a more sophisticated learning machine termed as the hierarchical semantic ensemble of clas-
sifiers, HSE. From the practical point of view of semantic augmentation, the HSE method
has demonstrated the best performance results, while from the machine learning perspective,
the HSE technique has attested its viability as an alternative method for multiple-category
classification with explicit modeling of relationships among the target class categories. Fi-
nally, an express effort has been made to establish some theoretical connections and analogies
with state-of-the-art machine learning approaches, providing some new results on multpiple-
hyperplane classification, MH, and opening the venues for future investigation. The below
summary reiterates some important details of each of the mentioned contributions of this
work.

• Distance-based discriminant analysis, DDA. The presented discriminant analysis
method focuses on finding a transformation of the original data that enhances its degree
of conformance to the compactness hypothesis and its inverse, which has been shown to
lead to better performance. The classification accuracy has been shown to improve not
only with the classifier of choice, NN, but also with more advanced non-linear methods,
such as SVM. The latter result underlines the important alternative use of the derived
transformation in the capacity of a discriminative metric, which makes it possible to
combine DDA with other methods. The presented DDA formulation extends naturally
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from binary to multiple class discriminant analysis problems, and allows the method to
serve as a discriminating dimensionality reduction technique. In the latter case, DDA
possesses the means to determine in a data-dependent fashion how many dimensions
are sufficient to distinguish among a given set of classes.

• Kernel distance-based discriminant analysis, KDDA. In order to overcome the
limiting assumption of linearity of the sought disciminative transformation, a kernel-
based extension of the above discriminant analysis method, KDDA, is formulated
whereby the optimization criterion is expressed in terms of distances projected from
a feature space induced by a chosen kernel function. In addition to that, two particular
aspects of KDDA method are examined. The first one, that opens up a possibility of us-
ing indefinite kernels, stems from a theoretical property of KDDA problem formulation
convexity that holds irrespective of the definiteness of the kernel in question. The im-
portance of being able to handle uniformly both positive semi-definite, i.e. conventional,
and indefinite kernels from the point of view of semantic augmentation arises from the
inherent link between the latter type of kernels and the corresponding non-metric dis-
tance measures that can better capture perceptual similarity defining relations among
higher level semantic concepts. The second aspect, observed through an empirical eval-
uation of KDDA as well as several other projective non-linear discriminant analysis
methods, lead to a separete study of elimination strategies of an adeverse condition
referred to as the false positive projection effect.

• Hierarchical Semantic Ensemble, HSE. In contrast to the standard multiple-
category classification setting that assumes independent, non-overlapping and exhaus-
tive set of categories, the proposed HSE approach models explicitly the hierarchical re-
lationships among target classes using the WordNet semantic lexicon, bringing together
a statistical classification and linguistic modeling paradigms. A target class relevance to
a query is estimated in a Bayesian framework as a trade-off between the goodness of fit
to a given category description and its inherent uncertainty. An additional advantage
of the HSE method is due to its ability to determine exactly the number of semantic
categories to be predicted for a given test data, including the possibility of predicting
nothing at all.

• Multiple-Hyperplane Classification, MH. An effort is made to establish theoret-
ical connections and analogies between the presented DDA method and some state-
of-the-art machine learning methods, such as support vector machines and analytic
center machines. Through this anaylsis, an important detail of the DDA formulation
reliance on several separating hyperplanes is highlighted and examined separately. The
latter inquiry is performed in the context of margin-based classification and results in
a derivation of a bound on generalization error of the introduced MH classifier.
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6.2 Future perspectives

Many of the achieved results of this work have revealed promising venues for future research.
In binary discriminant analysis, we have seen the benefits of asymmetry and transformational
nature of examined formulation, both of which should be explored further. The apparent ad-
vantages of the iterative majorization technique highlighted through practical experience with
optimizing the criterion of the developed method have shown potential to provide tremendous
help in future development of optimization-based approaches. At the time of this writing, the
latter conjecture has already been confirmed by a number of recent publications document-
ing the increasing popularity of the technique. In the area of kernel-based methods, we have
shown a way to uniformly treat both indefinite kernels and traditional positive semi-definite
kernels. The former type of kernels are linked to the corresponding non-metric distance
measures that can better capture the perceptual similarity, hence the importance of the con-
tribution for the future applications of machine learning algorithms for processing perceptual
information. From the point of view of multiple-category classification, we have demonstrated
the validity of the proposed mechanism to account for relationships among different traget
class categories, which can be applied and easily extended to other domains. Also, we have
already started to explore further the HSE context in order to improve the proposed approach
by taking advantage of the meaningful structure of the resulting hierarchical classification en-
semble in order to incorporate relevance feedback from the user, thus extending the approach
to the domain of interactive semantic augmentation methods. The established theoretical
connections between the proposed technique of disriminant analysis and some state-of-the-
art machine learning methods have underlined unique properties of the proposed formulation
and prompted the commencement of the investgation of the multiple-hyperplane setting in
the large margin classification context.

The overall positive experience and encouraging performance results described throughout
this thesis provide a good reason to believe that further efforts to advance machine learning
technologies for semantic augmentation are both justifiable and viable.
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Appendix A

Matrix derivations for DDA

This section focuses on the intuition behind the definitions of design matrices R and G

specified in (2.14) and (2.23). The derivations listed here are mostly based on those developed
for the SMACOF multi-dimensional scaling algorithm [18].

Let us consider matrix R that is used in calculation of the majorizing expression of SW (T )
represented by a weighted sum of within-distances. In the derivations that follow, we will
assume all weights to be equal to unity, and show afterwards how this assumption can be
easily corrected for. We, thus, begin by rewriting a squared within-distance in the vector
form: (

dW
ij (T )

)2
=

m∑
a=1

(x′ia − x′ja)
2 = (x′

i − x′
j)(x

′
i − x′

j)
T , (A.1)

where x′
i and x′

j denote rows i and j from matrix X ′ = XT , representing the corresponding
observations transformed by T . Noticing that x′

i − x′
j = (ei − ej)TX ′, (A.1) becomes:

(
dW

ij (T )
)2

= (ei − ej)TX ′X ′T (ei − ej)

= tr
(
X ′T (ei − ej)(ei − ej)TX ′)

= tr
(
X ′TAijX

′) , (A.2)

where Aij is a square symmetric matrix whose elements are all zeros, except for those four
indexed by the combinations of i and j that are either 1 (diagonal) or −1 (off-diagonal). For
instance, A13 for i = 1, j = 3 and NX = 3 will have the following form:

A13 =

⎡
⎢⎣

1 0 −1
0 0 0

−1 0 1

⎤
⎥⎦ . (A.3)

Taking into account (A.2), the sum of the squared within-distances can be expressed as:

NX∑
i<j

(
dW

ij (T )
)2

=
NX∑
i<j

tr
(
X ′TAijX

′) = tr
(
X ′TV X ′) = tr

(
T TXTV XT

)
, (A.4)

where V =
∑NX

i<j Aij, for which there exists an easy computational shortcut. Namely, V is
obtained by placing −1 in all off-diagonal entries of the matrix, while the diagonal elements
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are calculated as negated sums of their corresponding off-diagonal values in rows or columns.
That is:

vij =

⎧⎪⎪⎨
⎪⎪⎩

−1, if i �= j;

−
NX∑

k=1,k �=i

vik = NX − 1, if i = j;
(A.5)

For instance, coming back to our previous NX = 3 example, this technique produces:

V =
NX=3∑

i<j

Aij

=

⎛
⎜⎝
⎡
⎢⎣

1 −1 0
−1 1 0

0 0 0

⎤
⎥⎦ +

⎡
⎢⎣

1 0 −1
0 0 0

−1 0 1

⎤
⎥⎦ +

⎡
⎢⎣

0 0 0
0 1 −1
0 −1 1

⎤
⎥⎦
⎞
⎟⎠

=

⎡
⎢⎣

2 −1 −1
−1 2 −1
−1 −1 2

⎤
⎥⎦ . (A.6)

It is not difficult to see that the same result applies to the case of non-unitary weights
associated with each distance, the only difference being that instead of −1 placed into the
off-diagonal elements of V , one should use the negated values of the corresponding weights.
And this is exactly how the matrix formulation of µSW

(T, T̄ ), (2.15), and design matrix R,
(2.14), are obtained:

µSW
(T, T̄ ) =

NX∑
i<j

w̄ij ·
(
dW

ij (T )
)2

2Ψ
(
dW

ij (T̄ )
) +K1 (A.7)

=
NX∑
i<j

w̄ij

Ψ
(
dW

ij (T̄ )
) [

1
2
tr

(
T TXTAijXT

)
+K ′

1

]
(A.8)

=
1
2
tr

⎛
⎝T TXT

NX∑
i<j

w̄ij

Ψ
(
dW

ij (T̄ )
)AijXT

⎞
⎠ +K1 (A.9)

=
1
2
tr

(
T TXTRXT

)
+K1 (A.10)

In order to derive the formulation of matrix G, as specified for the majorizer of −SB(T )
based on Taylor series expansion (2.23), we rewrite (2.22) using the same techniques as we
did in (A.2) arriving at:

−dB
ij(T ) ≤ −tr

(
T TZTCijZT̄

)
dB

ij(T̄ )
, (A.11)

where Cij = (ei − eNX+j)(ei − eNX+j)T is a between-class analog of matrix Aij . From (A.6),
it is apparent that the same type of a computational shortcut used above to obtain V may be
exploited here too. Indeed, matrix F =

∑NX
i=1

∑NY
j=1Cij can be quickly constructed by placing

−1 in the off-diagonal elements that correspond to index locations of the between-distances,
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and subsequently summing with negation to obtain the diagonal entries. An illustration of
the technique for NX = 2, NY = 3 is shown below:

F =
NX=2∑

i=1

NY =3∑
j=1

Cij

=

⎡
⎢⎢⎢⎢⎢⎢⎣

3 0 −1 −1 −1
0 3 −1 −1 −1

−1 −1 2 0 0
−1 −1 0 2 0
−1 −1 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎦
. (A.12)

This is the case of unitary weights. Again, the extension to the non-unitary weight formu-
lation is trivial, and will involve pre-multiplying the off-diagonal entries by the appropriate
quantities, which in the case of G are the reciprocals of the squares of the corresponding
distances, as shown in (2.23).

In the case of a piece-wise linear approximation of the − log(x), the majorizing function of
−SB(T ) no longer has the same matrix G in both linear and quadratic parts of the expression.
It becomes more complex due to separate derivation of a majorizer for each segment, and a
summation has to be carried over all of the segments of the piece-wise linear approximation.
Namely, the linear, GL, and quadratic, GQ, design matrices become:

GL =
Ns∑
t=1

G
(t)
L , (A.13)

GQ =
Ns∑
t=1

G
(t)
Q , (A.14)

G
(t)
L =

NX∑
i=1

NY∑
j=1

Cij

(
(rt + lt)xt

2|dB
ij(T̄ ) − xt|

+
lt − rt

2

)
1

dB
ij(T̄ )

, (A.15)

G
(t)
Q =

NX∑
i=1

NY∑
j=1

Cij

(
(rt + lt)

4|dB
ij(T̄ ) − xt|

)
, (A.16)

where Ns is number of segments of the piece-wise linear approximation, and triples (xt, lt, rt)
are parameters of a g-family function constituting each such segment. The majorizer of
−SB(T ) is thus expressed as

µ−SB
(T, T̄ ) = tr

(
T TZTGQZT

)− tr
(
T TZTGLZT̄

)
+K3, (A.17)

for some constant K3 independent of T . It should be noted that however more complex,
matrices GQ, GL, G and R share an important common property with matrix V : they all
are positive semi-definite.
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Matrix derivations for KDDA

This section exemplifies the derivation of the majorizing expressions for the kernel formula-
tion of the distance-based discriminant analysis (KDDA). We note first the matrix form of
expressions for within- and between-class distances in F :

�
W
ij (ω) ≡ �

W
ij (P )

=
√

tr
(
P T KXAijK

T
XP

)
for i = 1 . . . NX , j = i+ 1 . . . NX , (B.1)

�
B
ij (ω) ≡ �

W
ij (P )

=
√

tr
(
P T KXYCijK

T
XY P

)
for i = 1 . . . NX , j = 1 . . . NY , (B.2)

where KX and KXY are Gram matrices of inner products evaluated via kernel function over
X and all data, respectively:

KX =

⎡
⎢⎢⎢⎢⎣
k(z1, x1) · · · k(z1, xNX

)
k(z2, x1) · · · k(z2, xNX

)
...

. . .
...

k(zN , x1) · · · k(zN , xNX
)

⎤
⎥⎥⎥⎥⎦ , (B.3)

and

KXY =

⎡
⎢⎢⎢⎢⎣
k(z1, z1) · · · k(z1, zN )
k(z2, z1) · · · k(z2, zN )

...
. . .

...
k(zN , z1) · · · k(zN , zN )

⎤
⎥⎥⎥⎥⎦ . (B.4)
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Then, similarly to (A.7)-(A.10), we can derive the majorizing function of the kernel version1

of SW (P ) and design matrix B:

µSW
(P, P̄ ) =

NX∑
i<j

w̄ij ·
(
�W

ij (P )
)2

2Ψ
(
�W

ij (P̄ )
) +K1 (B.5)

=
NX∑
i<j

w̄ij

2Ψ
(
�W

ij (P̄ )
) [

tr
(
P T

K
T
XAijKXP

)
+K ′

1

]
(B.6)

=
1
2
tr

⎛
⎝P T

K
T
X

NX∑
i<j

w̄ij

Ψ
(
�W

ij (P̄ )
)AijKXP

⎞
⎠ +K1 (B.7)

=
1
2
tr

(
P T

K
T
XBKXP

)
+K1 (B.8)

Identity (B.8) relies on the same computational shortcut we have seen in derivation of (A.6)
extended to the case of non-unitary weights. Then, analogously to (A.11), we obtain a
majorizing inequality for kernelized between-class distances:

−�B
ij (P ) ≤ −tr

(
P T

K
T
XY CijKXY P̄

)
�B

ij (P̄ )
. (B.9)

Then, the final expression of the criterion majorizing function µlog J(P, P̄ ), (R.11), is derived
with design matrices C and G defined as

∑NX
i=1

∑NY
j=1Cij and

∑NX
i=1

∑NY
j=1

1
�B

ij (P̄ )
Cij , and con-

structed efficiently through the same shortcut without requiring the summation to be carried
out.

1Note the convention in notation: linear version of optimization criterion and related expressions depend

on T , whereas their kernelized versions are expressed in terms of P .
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Support vector machine

formulation

In this section we provide a detailed account of the 2-class optimal separating hyperplane
problem formulation, that constitutes the essence of the support vector machine, SVM, classi-
fication method [152]. The unique solution of the said problem is a hyperplane that separates
the two classes by maximizing the margin, or the minimum distance from the hyperplane to ei-
ther class, which provably leads to better classification performance on test data [33, 135, 152].
Consider the following optimization problem

max
ω

C (C.1)

subject to: yi〈xi, ω〉 ≥ C, for i = 1 . . . N, (C.2)

||ω|| = 1, (C.3)

for a training data set comprising a set of N samples xi ∈ R
m, i = 1 . . . N and their respective

class labels yi ∈ {−1, 1}, and class separation margin C. Constraints (C.2) ensure that all
data samples are at least a signed distance C from the decision boundary defined by ω,
whereas (C.3) helps avoid equivalent solutions that are a positive multiple of each other. The
formulation is simplified when (C.3) is introduced into (C.2) by dividing all inequalities by
the norm of ω and changing variables so as to make C = 1/||β||, which leads to an equivalent
problem:

min
ω

1
2
||ω||2 (C.4)

subject to: yi〈xi, ω〉 ≥ 1, for i = 1 . . . N. (C.5)

This is an optimization problem with a convex objective function and linear inequality con-
straints, whose Langrange function is

LP =
1
2
||ω||2 −

N∑
i=1

αi (yi〈xi, ω〉 − 1) . (C.6)
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CHAPTER C. Support vector machine formulation

Owing to the convexity of formulation (C.4-C.5), the sought hyperplane is obtained by solving
the Wolfe dual of (C.6)

LD =
N∑

i=1

αi − 1
2

N∑
i=1

N∑
j=1

αiαjyiyj〈xi, xj〉, for αi > 0, (C.7)

obtained by setting to zero the derivative of (C.6) with respect to ω and substituting the result
back into (C.6). The strong duality also implies that the solution must satisfy complementary
slackness of the Karush-Kuhn-Tucker conditions

αi (yi〈xi, ω〉 − 1) = 0, for i = 1 . . . N, (C.8)

from which the sparseness of the SVM solution follows. Indeed, in the dual representation
ω =

∑
i αiyixi depends only on a limited number of data samples xi lying precisely on the

boundary of the separating margin, i.e. yi〈xi, ω〉 = 1, and whose corresponding αi > 0. The
rest of the data set has yi〈xi, ω〉 > 1 and αi = 0, thus having no influence on the obtained
solution. Data samples with non-zero αi are called support vectors, and hence the name of the
method - support vector machine. The classification of test data is performed by computing
the SVM decision function

h(x) = sgn〈x, ω〉. (C.9)

In practical scenarios, however, it may not be possible to separate the two classes perfectly
due to such issues as noise in data samples, inadequacy of representation, difficulty of the
problem, etc. In order to account for the overlap among samples, a more general SVM
formulation maximizes the separation margin, but allows some observations to be on the
wrong side of the margin. This is done by modifying the separability constraints (C.2):

yi〈xi, ω〉 ≥ C(1 − ξi), (C.10)

for i = 1 . . . N , ξi ≥ 0 and
∑

i ξi ≤ constant. The value of slack variable ξi denotes the
proportional amount by which the corresponding sample is off to the wrong side of its margin.
Since a misclassification occurs whenever ξi > 1, the bound on

∑
i ξi is a bound on the total

number of permitted misclassifications on the training data set. Through a change in variables
similar to that of (C.4)-(C.5), we derive

min
ω

1
2
||ω||2 (C.11)

subject to: yi〈xi, ω〉 ≥ 1 − ξi, (C.12)

ξi ≥ 0, (C.13)∑
i

ξi ≤ constant, (C.14)
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for i = 1 . . . N . Setting K to be the slack variable bound, an equivalent formulation of
(C.11)-(C.14) is obtained

min
ω

1
2
||ω||2 + K

N∑
i=1

ξi (C.15)

subject to: yi〈xi, ω〉 ≥ 1 − ξi, (C.16)

ξi ≥ 0, (C.17)

whose Langrange function is

LP =
1
2
||ω||2 + K

N∑
i=1

ξi −
N∑

i=1

αi (yi〈xi, ω〉 − (1 − ξi)) −
N∑

i=1

µiξi, (C.18)

for i = 1 . . . N , and αi, µi, ξi ≥ 0. Then, solution ω for the non-separable case is uniquely
characterized by the Wolfe dual obtained analogously to (C.7), together with the Karush-
Kuhn-Tucker conditions

αi [yi〈xi, ω〉 − (1 − ξi)] = 0, (C.19)

µiξi = 0, (C.20)

yi〈xi, ω〉 − (1 − ξi) ≥ 0. (C.21)

Furthermore, (C.19) and (C.21) imply that at the solution, the slack variables ξi are given
by

ξi = [1 − yi〈xi, ω〉]+ , (C.22)

where subscript “+” indicates positive part. Substituting (C.22) into (C.15) leads to a regu-
larized risk formulation of the SVM1, well studied in the statistical learning theory [153]

min
ω

N∑
i=1

[1 − yif(xi)]+ + λ||ω||2, (C.23)

where
f(x) = 〈xi, ω〉. (C.24)

Finally, the dual representation of the problem solution implies that inner product formulation
of (C.24) is easily extended to non-linear cases via kernel trick, as discussed in Chapter 3.

1cf. (3.16) and (4.8)
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Publications

The work described in this thesis has led to the publication of the following materials.

• KOSINOV, S. Visual object recognition using distance-based discriminant analysis.
Tech. Rep. 03.07, Computer Vision and Multimedia Laboratory, Computing Centre,
University of Geneva, Rue Général Dufour, 24, CH-1211, Geneva, Switzerland, 2003.

• KOSINOV, S., AND MARCHAND-MAILLET, S. Overview of approaches to semantic
augmentation of multimedia databases for efficient access and content retrieval. In
Proceedings of the 1st International Workshop on Adaptive Multimedia Retrieval (AMR
2003)/ (Hamburg, 2003).

• KOSINOV, S., AND MARCHAND-MAILLET, S. Evaluation of distance-based discrim-
inant analysis and its kernelized extension in visual object recognition. In Proceedings
of the 7th International on signal/image processing and pattern recognition (UkrObraz
2004)/ (Kijiv, Ukraine, 2004).

• KOSINOV, S., AND MARCHAND-MAILLET, S. Hierarchical ensemble learning for
multimedia categorization and autoannotation. In Proceedings of the 2004 IEEE Signal
Processing Society Workshop (MLSP 2004)/ (Sao Luis, Brazil, 2004), pp. 645-654.

• KOSINOV, S., AND MARCHAND-MAILLET, S. Multimedia autoannotation via hi-
erarchical semantic ensembles. In Proceedings of the Int. Workshop on Learning for
Adaptable Visual Systems (LAVS 2004)/ (Cambridge, UK, 2004).

• KOSINOV, S., MARCHAND-MAILLET, S., AND PUN, T. Iterative majorization ap-
proach to the distance-based discriminant analysis. In Proceedings of the 28th Annual
Conference of the GfKl 2004/ (Dortmund, Germany, March 9-11 2004).

• KOSINOV, S., MARCHAND-MAILLET, S., AND PUN, T. Visual object categoriza-
tion using distance-based discriminant analysis. In Proceedings of the 4th International
Workshop on Multimedia Data and Document Engineering/ (Washington, DC, July
2004).
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• KOSINOV, S., MARCHAND-MAILLET, S., AND PUN, T. Countering the false posi-
tive projection effect in nonlinear asymmetric classification. In The IEEE Symposium
on Signal Processing and Information Technology (ISSPIT’05)/ (Athens, Greece, De-
cember, 18-21 2005).

• KOSINOV, S., TITOV, I., AND MARCHAND-MAILLET, S. Large margin multiple
hyperplane classification for content-based multimedia retrieval. In Machine Learning
Techniques for Processing Multimedia Content, ICML Workshop/ (Bonn, Germany,
August, 11 2005).

• KOSINOV, S., AND MARCHAND-MAILLET, S. Visual object categorization with
indefinite kernels in discriminant analysis framework. In Proceedings of SPIE Photon-
ics West, Electronic Imaging 2006, Multimedia Content Analysis, Management, and
Retrieval 2006 (EI122)/ (San Jose, USA, January, 15-19 2006).
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[101] Mika, S., Rätsch, G., Weston, J., Schölkopf, B., and Müller, K. Fisher
discriminant analysis with kernels. In Neural Networks for Signal Processing IX (1999),
Y.-H. Hu, J. Larsen, E. Wilson, and S. Douglas, Eds., IEEE, pp. 41–48.

[102] Miller, G. A. Wordnet: a lexical database for English. Commun. ACM 38, 11 (1995),
39–41.

[103] Mitchell, T. Machine Learning. McGraw Hill, 1997.

[104] Mitchell, T. M. Version spaces: An approach to concept learning. Tech. Rep.
HPP-79-2, Stanford University, Palo Alto, CA, 1978.

[105] Mitchell, T. M. Version spaces: An approach to concept learning. PhD thesis,
Stanford University, 1979.

[106] Monay, F., and Gatica-Perez, D. On image auto-annotation with latent space
models. In Proc. ACM Int. Conf. on Multimedia (ACM MM) (November 2003).
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Résumé

R.1 Préface

Cette thèse porte sur le développement théorique et l’application pratique de méthodes
d’apprentissage automatique à l’analyse et la récupération de multimédia par le contenu.
Afin d’être clair et pour éviter toute confusion, une attention particulière doit être portée
à la manière dont cette thèse interprète et utilise le terme multimédia. Ce terme possède
plusieurs significations et interprétations, ses définitions évoluant et se transformant en par-
allèle avec le progrès technologique.

D’après sa signification littérale, dérivant du latin multus = “plusieurs, multiple...” et
médium = “un système de communication, information ou distraction”, le multimédia repré-
sente l’utilisation d’ordinateurs pour présenter des textes, graphiques, vidéos, animations et
sons de manière intégrée. Or, l’utilisation du terme multimédia est tout à fait différente du
point de vue d’un système d’apprentissage automatique, ou de tout autre système d’information
multimédia en général. Un système d’information traite la même abstraction binaire d’une in-
formation digitalisée et parfois codée, quelle que soit son origine sensorielle. Comme certains
auteurs le discutent, le multimédia dans ce contexte se réfère à n’importe quelle informa-
tion visuelle, auditive ou textuelle, unique ou combinée. L’information multimédia digitale
est immédiatement visible, audible, lisible et dans la plupart des cas compréhensible par
l’utilisateur, mais pas pour le système. Cette divergence importante entre la représentation
digitale et la représentation est connue sous le nom de fossé sémantique, la cible principale
des techniques développées dans cette thèse.

R.2 Problématique

Dans cette thèse, nous identifions les approches qui s’intéressent au fossé sémantique discuté
plus haut, comme étant celles d’augmentation sémantique puisque la plupart d’entre elles
portent spécifiquement sur le rapprochement de représentations visuelles de documents mul-
timédia de bas niveau et la signification de ces même documents pour en améliorer l’efficacité
d’accès et de récupération. Le choix d’un terme de référence aussi général que l’augmentation
sémantique nous permet d’inclure et d’analyser entièrement un grand nombre de techniques
qui ont le même but: atténuer le phenomène de fossé sémantique, résolu dans chaque méthode
individuelle à travers un vaste éventail de paradigmes et formulations qui se rapportent à
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l’indexation, l’apprentissage, la classification, la catégorisation, la prédiction, etc. Ce choix
de terminologie est lié à la manière dont le terme multimédia est per cu tout au long de cette
thèse. Multimédia est compris comme étant n’importe quelle combinaison de représentation
d’une information humainement compréhensible, dont les caractéristiques automatiquement
calculables ne contiennent pas d’expression directe d’une signification pouvant être recherchée
par l’utilisateur.

Un bon contexte pour décrire la contribution de cette thèse est défini en considérant
deux groupes de méthodes pour l’augmentation sémantique: interactives - les approches
adaptatives qui sont guidées par un retour de pertinence de l’utilisateur, et automatiques -
celles qui tentent de dériver des corrélations utiles entre des caractéristiques représentatives
du multimédia et ses aspects sémantiques en appliquant des techniques qui n’impliquent
pas d’utilisateur. Les méthodes du premier groupe considèrent l’utilisateur comme étant la
source ultime d’information sémantique. Elles corrigent leur solution de manière itérative
en demandant et en incorporant un feedback de l’utilisateur et contiennent des contribu-
tions importantes telles que l’algorithme de Rocchio, le filtrage collaboratif, l’estimation de
pertinence Bayesienne, l’apprentissage actif entre autres. D’un autre côté, les méthodes du
second groupe agissent de manière complètement autonome et ne sollicitent jamais d’aide de
l’utilisateur, comptant uniquement sur des techniques comme l’apprentissage automatique, la
classification, l’analyse discriminante, l’indexation par sémantique sous-jacente, l’analyse de
corrélation entre les langues, pour induire les significations recherchées à partir des données
d’entrâınement à leur disposition. Les contributions présentées dans cette thèse appartien-
nent au groupe des méthodes d’augmentation sémantique automatique et sont considérées du
point de vue de l’apprentissage automatique. De ce point de vue, les techniques proposées
sont con cues pour être capables d’améliorer leur performances sur la base des expériences et
résultats précédents de fa con autonome, dans une tentative d’éliminer le besoin, ou alléger
le poids placé sur l’intuition humaine dans l’analyse d’un problème posé. Malgré le fait
que le besoin de connaissance et d’intuition humaine ne pourra probablement jamais être
complètement éliminé à cause de l’importance de décisions intelligentes dans la représentation
et la caractérisation des données, l’approche de l’apprentissage automatique présente un
avantage clair et incontestable. En effet, en résolvant un problème plus général et probable-
ment plus difficile en apprentissage automatique, la même technologie peut s’appliquer à une
grande variété de problèmes particuliers sans avoir à reconstruire la solution à partir de rien
à chaque fois. Une fois résolue, la même méthode générale est applicable dans les scénarios
d’augmentation sémantique pour les images digitales, les signaux auditifs, les films vidéo, et
autres combinaisons.

Cette thèse adopte la perspective de l’apprentissage automatique dans l’approche des
problèmes d’augmentation sémantique dans l’accès et la récupération efficace à l’intériuer de
collections multimédia et établit plusieurs contributions dans les domaines détaillés dans les
chapitres suivants, à savoir l’analyse discriminante, l’apprentissage par machine à noyaux et
la contexte adapté de classification hiérarchique.
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R.3 Analyse discriminante

Le choix du domaine de l’analyse discriminante comme point de départ de notre étude reflète
une tendance et une préférence délibérées pour une méthode d’apprentissage automatique
discriminante par rapport à une approche alternative générative. Cette décision est motivée
par un certain nombre de raisons. D’abord, le modèle discriminant a beaucoup plus de flexi-
bilité dans les parties de l’espace d’entrée où les probabilités postérieures diffèrent de manière
significative de 0 ou de 1, alors que les approches génératives modèlisent des détails de dis-
tribution de données de l’espace d’entrée ce qui peut être non pertinent pour déterminer
des probabilités postérieures. En second lieu, les modèles discriminants sont en général très
rapidea à produire des prévisions pour des données-tests, alors que les modèles génératifs
exigent souvent une solution itérative. Troisièmement, toutes choses étant égales, on peut
prévoit que les méthodes discriminants aient une meilleure performance prédictive puisqu’ells
sont definies pour prévoir le label de classe plutôt que distribution commune des données de
l’espace d’entrée et des labels. Ainsi, tenant compte les propriétés spécifiques de l’application
destinée à l’augmentation sémantique, nous développons une technique d’analyse discrimi-
nante transformationnelle basée sur la distance, DDA. Un effort dédié est engagé à faire à la
formulation de la DDA pour soutenir un caractère non paramétrique avec prétentions mini-
males sur la distribution de données de l’espace d’entrée, asymétrique à apparier le scénario
de déploiement le plus populaire ”1-against-all”, et basé sur la transformation du domaine
d’entré afin de tenir compte d’extensions, post-traitement et l’utilisation de la transforma-
tion dérivée pour fournir une métrique discriminante. Cette métrique explique les différences
dans les échelles de différents caractéristiques, retire les corrélations globales et redondances
parmi des caractéristiques dans une certaine mesure, et s’adapte au fait que quelques car-
actéristiques peuvent être beaucoup plus instructifs au sujet des labels de classe que d’autres.
Afin de satisfaire ces dernieres conditions, la capacité de la DDA à extraire les caractéristiques
distinctifs et réduire la dimensionnalité de données de l’espace d’entrée, tout en déterminant
le nombre de dimensions suffisantes automatiquement, est d’importance cruciale. Du point de
vue de l’augmentation sémantique, la DDA fournit une machine binaire d’apprentissage util-
isable pour distinguer entre un certain concept sémantique et son complément, par exemple
déterminer si l’image montre un object d’intérêt ou pas. Plus formellement, la formulation
de la technique d’analyse discriminante basée sur la distance (DDA) est récapitulée comme
suit.

Dans le cadre de l’analyse discriminante, on recherche à distinguer entre deux ou plusieurs
classes ou catégories sémantiques prédéfinies de documents multimédia. En considérant au
départ le cas simple de deux classes sémantiques, nous recherchons une transformation des
caractéristiques qui place les exemples d’une des classes proches les uns des autres, tout en
tenant les exemples de l’autre classe suffisamment eloignés dans l’espace de caractéristiques
considéré. En d’autres termes, la transformation linéaire recherchée T ∈ R

m×k doit trans-
former les valeurs de façon à respecter l’hypothèse de compacité dans le but d’améliorer la
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performance de la méthode de plus proche voisin (Neearest Neighbour, NN). Formellement,
une telle transformation est caractérisée comme étant la solution d’un problème de minimi-
sation globale du critère suivant:

log J(T ) =
2

NX(NX − 1)

NX∑
i<j

log Ψ
(
dW

ij (T )
) − 1

NXNY

NX∑
i=1

NY∑
j=1

log dB
ij(T ) (R.1)

où NX , NY sont les nombres d’observations dans les ensembles de données X et Y corre-
spondant aux caractéristiques des deux classes; dW

ij (T ) dénote une distance entre les points i
et j à l’intérieur de l’ensemble de données X transformé par T , et, de façon analogue, dB

ij(T )
indique distances entre le point i de l’ensemble de données transformées X et le point j de
l’ensemble des données transformées Y , Ψ

(
dW

ij (t)
)

est une fonction d’évaluation robuste de
Huber.

Le problème de minimisation (R.1) est résolu par la technique de majorisation itérative,
qui remplace l’optimisation globale d’une fonction quelconque par une suite itérative de min-
imisations plus simples de fonctions auxiliaires. Etant donné les propriétés de ces fonc-
tions auxiliaires, généralement appellées fonctions de majorization, la procédure itérative
produit une suite non-croissante de valeurs de fonction convergeant vers un point station-
naire qui est une fonction minimum locale sous certaines contraintes. Pour le critère choisi
d’optimisation, (R.1), nous dérivons une fonction de majorization approximative (à une con-
stante indépendante de T près) comme exprimé en (R.2):

µlog J(T, T̄ ) =
α

2
tr

(
T TXTRXT

)
+
β

2
tr(T TZTGZT ) − 2βtr(T TZTGZT̄ ), (R.2)

où T̄ est le point support de la transformation recherchée, c’est-à-dire, sa valeur à l’itération
actuelle, R et G sont les matrices pour les calculs des distances, et Z est la matrice qui
contient les deux ensembles de données X et Y (rassemblés par lignes):

Z =

[
X

Y

]
. (R.3)

À chaque itération, la minimisation de (R.2) est résolue sous la contrainte de régularisation
parametrée par ∆, produisant un résultat qui devient un point support de l’itération suivante,
et ainsi de suite, jusqu’à ce que la convergence soit atteinte. Ce processus de dérivation de
la transformation discriminante ainsi que la classification de NN constitue l’essence de la
méthode d’analyse discriminante basée sur la distance (DDA) que nous proposons et qui est
récapitulée par l’algorithme ci-dessous :

Algorithme DDA.

1. assigner un premier point support T̄ = T̄0 ∈ R
m×k;

2. trouver le point successeur :

Ts = arg min
T
µlog J(T, T̄ ) + λ

(
tr(T TT ) − ∆

)
;
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3. si log J(T̄ ) − log J(Ts) < ε, s’arrêter;

4. assigner T̄ = Ts, aller en 2.

Notons que le choix de la taille (en colonnes) de T à une valeur arbitraire k � m transforme
notre méthode en une technique de réduction de dimension, laquelle peut être utilisée dans
différentes applications telles que la sélection de caractéristiques, la visualisation de données,
etc. Par ailleurs, la valeur de k, c’est-à-dire la dimension jusqu’à laquelle les données peuvent
être réduites sans perte de pouvoir discriminant (selon (R.1)), est déterminée avec précision
par le nombre de valeurs singulières différentes de zéro de T . En effet, les distances entre
les observations transformées peuvent être considérées comme distances entre les observa-
tions originales dans une métrique différente TT T . Ceci peut être exprimé en utilisant la
décomposition en valeur singulières TT T = USV TV SUT = UkS

2
kU

T
k . L’expression obtenue

indique que l’effet de la transformation est capturé par les k premiers vecteurs singuliers
gauches multipliés par leur valeurs singulières différentes de zéro. Ce nombre k donne une
réponse à la question de combien de dimensions sont nécessaires pour représenter l’espace
transformé.

La discussion ci-dessus sous-entend une configuration de deux classes. La généralisation
de la formulation présentée à une configuration d’analyse discriminante pour un nombre de
classes K ≥ 2 ne pose pas de problèmes particuliers:

log JK(T ) =
K−1∑
i=1

(
α(i)SW (T )(i) − β(i)SB(T )(i)

)
. (R.4)

A noter que (R.4) devient (R.1) pour K = 2.
En plus de la transformation explicitement recherchée, notre DDA peut également fournir

une métrique discriminante qui tient compte des différences d’échelles pour des caractéristiques
différentes, supprimer dans une certaine mesure les corrélations et les redondances globales
parmi des caractéristiques et s’adapte au fait que certaines caractéristiques peuvent être
beaucoup plus informatives en termes de labels de classes que d’autres. Cette observation
est aisément illustrée par l’exemple de la machine à vecteur de support (ou support à vaste
marges – SVM) avec noyau Gaussien:

kΣ(xi, xj) = e−(xi−xj)
T Σ−1(xi−xj), (R.5)

pour une certaine matrice Σ de covariance et des observations xi, xj représentée comme des
vecteurs colonne. Un choix typique de σ est la matrice d’identité multipliée par un cer-
tain facteur constant. Cependant, quand la DDA est appliquée pour prétraiter les données
d’entrâınement avant la procédure SVM, le classifieur SVM tire pleinemnt profit des car-
actéristiques les plus disriminantes extraites par la DDA. Les produits des noyaux pouvant
être vus comme évalués dans une nouvelle métrique discriminante TT T :

kΣ(xi, xj) = e−(xi−xj)
T TT T (xi−xj). (R.6)
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Cela conduit au fait que le SVM est potentiellement capable de trouver une solution plus
simple, impliquant peu de vecteurs de support et améliorant les propriétés de généralisation,
ce qui mène naturellement à une amélioration de performance de classification, comme con-
firmé par les résultats expérimentaux. Une évaluation empirique plus poussée a confirmé
la performance de classification de la méthode proposée de DDA et ses extensions sur un
certain nombre d’ensembles de données de référence (ensembles UCI) et sur les tâches de
recherche sémantique d’images par le contenu. Les résultats encourageants ont démontré que
l’approche proposée de DDA surpasse plusieurs méthodes populaires, et améliore le qualité
de classification quand combinée avec d’autres techniques. Ceci fait de la DDA un excellent
candidat pour l’application visée d’augmentation sémantique automatique.

R.4 Méthodes basées sur noyaux

Un grand nombre d’algorithmes linéaires d’apprentissage automatique ont été mis en valeur à
travers l’utilisation de noyaux afin de pouvoir traiter des problèmes plus complexes exigeant
des fonctions de décision non-linéaires. De même, la méthode DDA peut être étendue en
une technique d’analyse discriminante non linéaire , surmontant l’hypothése de linéarité de
la transformation discriminante recherchée et menant naturellement au développement de la
KDDA, une extension basée sur les noyaux de la DDA. Ceci est fait en reformulant le problème
en termes de distances projetées de l’espace de caractéristiques plus riche, potentiellement de
dimension infinie, induit par une fonction de noyau choisie comme détaillé ci-dessous.

Soit un espace F duquel des échantillons des données d’entrâınement peuvent être ex-
traites par l’intermédiaire de Φ : R

m → F , tels qu’il existe une fonction noyau k(x, y) =
(Φ(x))T Φ(y), où x, y ∈ R

m et k : R
m × R

m → R. Nous supposerons également que la trans-
formation distinctive est recherchée dans F comme une matrice ω de projection de la taille
[�F × d], où �F est la dimension de F , et d la dimension du sous-espace de projection dis-
criminante dérivé, tel que les colonnes de ω se situent dans l’espace de toutes les échantillons
de formation tracé dans F . Alors, en vertu du Théorème de Representation:

ω =

[
N∑
i

α
(1)
i Φ(zi)

N∑
i

α
(2)
i Φ(zi) . . .

N∑
i

α
(d)
i Φ(zi)

]
, (R.7)

où zi est un des NX +NY échantillons provenant des données d’entrâınement de la matrice
composée Z (cf (R.3)). Les distances entre les images des échantillons x et y projetées dans
F par la solution ω sont ainsi données par:

�
2
xy(ω) = (Φ(x) − Φ(y))T ωωT (Φ(x) − Φ(y))

= tr
(
ωT (Φ(x) − Φ(y))(Φ(x) − Φ(y))Tω

)
=

d∑
j

(
N∑
i

α
(j)
i (k(zi, x) − k(zi, y))

)2

. (R.8)
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On peut simplifier (R.8) en utilisant une notation matricielle:

�
2
xy(ω) ≡ �2

xy(P ) = tr
(
P THxyP

)
(R.9)

où P ∈ R
N×d est la transformation non-linéaire recherchée et représentée comme une matrice

rassemblant tout les α(j)
i , Hxy = (Kx −Ky)(Kx −Ky)T . Ks = [k(z1, s), k(z2, s), . . . , k(zn, s)]

t

dénote un vecteur d’évaluations du noyau pour l’échantillon s et tout le reste de l’ensemble
des données d’entrâınement.

Du fait de (R.9), le logarithme du critère de l’optimisation de DDA (R.1) peut maintenant
être exprimé en termes de distances projetées dans un espace plus riche et potentiellement
de dimension infinie F :

log J(P ) =
2

NX(NX − 1)

NX∑
i=1

NX∑
j=i+1

log Ψ
(
�

W
ij (P )

)

− 1
NXNY

NX∑
i=1

NY∑
j=1

log�B
ij (P ) (R.10)

Le traitement du critère obtenu diffère légèrement du cas linéaire. De même que pour la DDA,
l’optimisation de (R.10) est obtenue par majorisation itérative. La fonction de majorisation
est, dans ce cas:

µlog J(P, P̄ ) =
1

NX(NX − 1)
tr

(
P T

KXB(P̄ )KT
XP

)
+

1
2NXNY

tr
(
P T

KXY CK
T
XY P

)
+

2
NXNY

tr
(
P T

KXYG(P̄ )KT
XY P̄

)
+ const, (R.11)

où P̄ est la solution courante, KX , KXY sont des matrices des produits scalaires des noyaux
évalués entre X et toutes les données, respectivement, et B, C et G sont matrices positives
semi-définies indépendantes de P .

Un aspect important distinguant la KDDA d’autres méthodes basées sur les noyaux est
la convexité de la formulation qui persiste indépendamment du fait que le noyau fondamental
est défini positif. Cette propriété est évaluée empiriquement par l’incorporation des noyaux
indéfinis dans la KDDA. Dans plusieurs domaines d’application, ces noyaux sont connus
comme correspondant à des mesures de distance qui modélisent la similitude perceptuelle.

On examine ensuite une condition défavorable dénommée “effet de projection faussement
positif” et on évalue des stratégies d’élimination.

Pour l’augmentation sémantique, l’approche KDDA étend la formulation précédente au
cas non linéaire, et rend également la machine de classification binaire DDA utilisable si
on l’utilise avec des mesures non-métriques de dissimilarité par l’intermédiaire des noyaux
indéfinis.
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R.5 Ensembles hiérarchique de classifieurs

La plupart des problèmes pratiques d’augmentation sémantique ne peuvent être traités en
totalité par une machine binaire simple. L’extension la plus populaire dans des cas multi-
classes, multi-catégories ou multi-concepts sémantiques est de dériver autant de machines
binaires que nécessaire, une pour chaque label de classe et, potentiellement établir un ar-
bitrage parmi leurs prédictions. Dans notre étude, nous postulons qu’une telle construc-
tion et ses variations ne sont pas avantageuses dans le contexte d’augmentation sémantique.
La raison fondementale est l’hypothèse d’un ensemble de concepts sémantiques cibles étant
indépendant, non-redondant, et exhaustif. Tout en fournissant les moyens d’étendre les tech-
niques existantes à des cas multi-catégories, ceci peut mener à des résultats contradictoires,
par exemple des prédictions de combinaisons de concepts peu probables telles que le “sous-
marin” et de “sable de désert” ou à estimer une erreur de fausse classification entre “fleuve” et
“lac” aussi importante qu’entre “fleuve” comme “avion”. Afin de réduire ces limitations, nous
proposons une approche pour modéliser explicitement les rapports sémantiques hiérarchiques
entre les classes visées, automatiquement dérivés et étendus grâce à un lexique sémantique.
En pratique, cette méthode génère un ensemble sémantique hiérarchique (HSE) de différents
classifieurs, chacun exprimé comme une machines binaire DDA. Tous travaillent ensemble
en influençant des décisions de autres par des liens exprimés par la structure des relations
inter-concepts

Etant donné un ensemble de documents d’etrâınements annotés {It,Kt}n
t=1, où It représente

le vecteur caractéristiques d’un document donné et Kt son ensemble de mots-clés associé, la
structure de HSE est déterminée par la hiérarchie de concepts H = {Ci}N

i=1, formant un
graphe orienté. Les arêtes de H sont définies par les rapports de type ”hypernym-hyponym”
qui lient ses noeuds Ci, représentés par tous les noms uniques du vocabulaire d’annotation
V =

⋃n
t=1Kt et leurs hyponyms (extraits de WordNet). Dans H, chaque concept Ci occupe

un noeud séparé, et est associé à un classifieur binaire Θi conçu pour distinguer l’ensemble
de concepts feuilles inclu (directement ou indirectement) par Ci (noté L(Ci)) de tous les
autres. Un exemple d’une hiérarchie dérivée pour un vocabulaire simple V :{beach, flower,
grass, mountain, rock, sky, tree} est donné en Figure Q.1. Afin d’arriver à l’augmentation
sémantique d’une image représentée par un vecteur de caractéristiques IU , chaque concept Ci

est évalué en tant que candidat potentiel. Ainsi, le choix des annotations possibles n’est plus
limité par V , ce qui est le cas pour la majorité d’autres techniques semblables. La pertinence
de Ci est vue comme différence entre, d’une part, la correspondance entre la représentation
des données IU et la description de la catégorie Ci et d’autre part, le niveau de détail ou
de non-ambigüıté apporté par l’ensemble de mots-clés candidats L(Ci). Dans méthode HSE
que nous proposons, la première variable est représentée par la probabilité postérieure d’un
concept par rapport aux données, P (Ci|IU ), tandis que la seconde variable est estimée comme
P (Ci|k), la probabilité postérieure d’un concept donné sachant qu’un mot-clé k de l’ensemble
de tous les hyponyms de Ci est choisi. Formulé en termes bayésiens, la méthode HSE apporte
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Figure R.1: Exemple de hiérarchie. Les noeuds grisés appartiennent à Ci ∈ V

la possibilité supplémentaire de pouvoir déterminer automatiquement le nombre de concepts
Ci à prédire. Les résultats encourageant de l’évaluation empirique menée sur plusieurs ensem-
bles d’apprentissage et plusieurs classifieurs confirment la viabilité de l’approche proposée.

R.6 Aspects théoriques

En plus de l’évaluation empirique de toutes les méthodes proposées, un effort particulier
a été investi pour établir des relations théoriques entre nos propositions et les mthodes de
classification modernes. Ainsi, des évaluations sont menées pour trouver des parallèles entre
les techniques DDA, SVM et ACM (Analytical Center Machine). Nous commencons par
la traduction géométrique des contraintes de séparabilité qui engendre la notion de l’espace
de version (version space), dont la solution obtenue par un SVM correspond à un centre
de Tchebycheff et celle définie par l’ACM est un centre analytique. Dans ce contexte, la
formulation de la DDA est démontrée comme étant une approximation du critère minimisé
par ACM. Des résultats analogues sont obtenus par la DDA et la technique ACM dans le cas
idéal où les ensembles de données sont parfaitement séparables et leurs projections presque
equidistantes. Ceci peut être attribué au fait les critères des deux méthodes deviennent
semblables dans ces conditions. En outre, la méthode DDA peut être vue comme un parent
proche d’ACM, en raison de l’utilisation des fonctions potentielles du “-log”. On note toutefois
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une distinction importante: les ensembles de données séparables et non-séparables sont traités
de la même façon, car les distances sont toujours non négatives et donc toujours dans le
domaine admissible du logarithme (excepté pour le cas des noyaux indéfinis, comme cités
précédemment). Cette dernière dernière distinction rapproche la DDA des SVM, puisque ni
l’un ni l’autre n’exige la séparabilité de données, alors que ACM ne permet pas une région
adminissible vide (par exemple, si les échantillons de données ne sont pas séparable). En
conclusion, la taille 1 en colonnes de la transformation recherchée nécessaire pour effectuer
l’analyse ci-dessus, est atypique pour le DDA. En effet, notre meilleure performance empirique
est observée quand la dimension de l’espace de cible est supérieure à 1. Pour SVM et ACM,
ceci correspond à avoir plusieurs hyperplans de séparation utilisés dans un classifieur, au lieu
d’un seul. Afin d’étudier plus rigoureusement des implications de la dernière configuration
inhérente à la DDA, nous considérons une extension explicite au cas d’hyperplans multiples
(MH), démontrant ainsi les possibilités d’extension d’une telle formulation, garantissant la
généralisation de performance en termes de la notion de “fat-shattering”.

R.7 Perspectives futures

Plusieurs résultats contenus dans ce travail ouvrent des voies intéressantes pour de prochaines
recherches. Dans l’analyse binaire discriminante, nous avons vu le bénéfice de l’asymétrie
et de l’orientation de la formulation vers une transformation de l’espace. Ceci mérite une
exploration plus poussée. Les avantages apparents de la technique de majorisation itérative
sont mis en valeur empiriquement. Nous préconisons l’usge de cette technique là une une
optimisation est mise en jeu. Notre proposition est confortée par le nombre croissant de
publications impliquant cette stratégie numérique.

Dans le domaine des méthodes basées sur les noyaux, nous avons proposé une manière
uniforme de traiter les noyaux indéfinis comme les noyaux semi définis positifs tradition-
nels. Ce premier type de noyaux est lié à des mesures correspondant à des distances non
métriques pouvant potentiellement mieux capturer la similarité perceptuelle. Ceci renforce
l’importance de cette contribution à l’application d’algorithmes d’apprentissage automatique
dans le traitement de l’information perceptuelle.

Pour les classifications multi-catégories, nous avons démontré la validité du mécanisme
proposé pour expliquer les relations entre différentes catégories-cibles, qui peut être appliqué
et facilement étendu à d’autres domaines. Nous avons d’ailleurs déjà commencé à explorer
plus avant le contexte HSE afin d’améliorer l’approche proposée en prenant avantage de
la structure donnée par la classification hiérarchique résultante. Ceci afin d’incorporer un
retour (feedback) de l’utilisateur, étendant ainsi l’approche au domaine des méthodes de
l’augmentation sémantiques interactives.

Les connections théoriques établies entre nos propositions sur l’analyse discriminante et
les méthodes d’apprentissage modernes soulignent les propriétés uniques de la formulation
proposée. Ceci nous a conduit à une étude des configurations à hyperplans multiples dans le
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contexte des marges larges.
L’expérimentation ecourageante et les résultats positifs décrits tout au long de cette thèse

nous donnent à penser que la recherche de progrès sur les technologies d’apprentissage au-
tomatique pour l’augmentation sémantique sont à la fois viables et justifiables.
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