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STRUCTURE DE LA THESE 

L’administration transdermique des peptides et des protéines offre de nombreux avantages 

par rapport aux injections parentérales et implants auxquels on recourt actuellement par manque 

d’alternatives.  Cependant, l’excellente fonction barrière de la peau empêche le passage de ces 

molécules par simple diffusion passive et conduit au développement de nombreuses stratégies 

permettant de la surmonter.  Parmi elles, la ionophorèse permet d’augmenter la perméation cutanée 

par le biais d’un faible courant électrique.  Le premier chapitre de la présente thèse permet de placer 

la ionophorèse dans le contexte de l’administration transdermique des molécules de nature peptidique 

ou protéinique en passant en revue les technologies actuellement disponibles ou en cours de 

développement, présentant leur principe, les mécanismes impliqués, leurs applications potentielles 

ainsi que leurs limitations. 

Bien que la ionophorèse soit une technique relativement ancienne, son application à 

l’administration transdermique de molécules telles que les peptides a moins de vingt ans et de 

nombreux aspects d’ordre mécanistique restent encore à explorer.  Dans ce contexte, le chapitre 2 

présente l’étude de l’effet de la séquence en acides aminés sur le transport ionophorétique d’une série 

de tripeptides dérivés de la structure des analogues de la gonadolibérine (LHRH) et de la 

somatostatine, administrés in vitro à travers de la peau d’oreilles de porc.  Les contributions relatives 

des deux mécanismes de transport que sont l’électroosmose et l’électromigration ont été déterminées 

pour chacun d’eux, ainsi que l’évolution de ces contributions en fonction des conditions 

expérimentales.   

Alors que de nombreuses relations structure - perméation quantitatives ont été établies dans 

le cas de l’administration transdermique passive (faisant intervenir des paramètres tels que la 

lipophilie et/ou la capacité à former des liaisons hydrogène), seuls quelques modèles reliant le 

passage ionophorétique de molécules à des paramètres de taille ont été décrits.  Le but du troisième 

chapitre est donc d’offrir une étude systématique et quantitative portant sur l’effet des propriétés 

physicochimiques des tripeptides étudiés (propriétés définies par des descripteurs tridimensionnels 

obtenus par modélisation moléculaire) sur leur transport ainsi que sur l’inhibition de l’électroosmose, 

phénomène observé lors de l’administration ionophorétique de plusieurs peptides. 

Enfin, l’évaluation de la faisabilité de l’administration transdermique par ionophorèse d’un 

analogue de la somatostatine (vapréotide) ainsi que celle d’un analogue de la LHRH (triptoréline) font 

l’objet des chapitres 4 et 5, respectivement.  Y est étudiée l’influence de différents paramètres tels que 

la densité du courant appliqué, la concentration du peptide, la présence d’ions compétiteurs ou le type 

de tissu, sur le passage transcutané ainsi que sur l’électroosmose. 
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INTRODUCTION 

La peau, chef-d’œuvre architectural 

D’une surface variant de 1.5 à 2 m2, la peau est un organe formé de deux tissus superposés, 

l’épiderme et le derme.  La couche la plus superficielle de l’épiderme est la couche cornée.  D’une 

épaisseur de 10 à 20 µm, elle est composée de 10 à 20 strates de cellules mortes (cornéocytes) 

remplies de filaments de kératine (70%) et de lipides (20%), arrangées à l’intérieur d’une matrice 

lipidique extracellulaire (ceramides 40%, acides gras libres 20%, cholesterol ~25%) de façon à former 

un assemblage similaire à un modèle de « briques et ciment » [1;2].  Directement sous la couche 

cornée, se trouve l’épiderme vivant, épithélium comprenant différents types de cellule (kératinocytes, 

mélanocytes, cellules de Langerhans et cellules de Merkel).  Quant au derme, c’est un tissu conjonctif 

principalement constitué de fibroblastes, fibres de collagène et fibres élastiques.  C’est lui qui contient 

les vaisseaux sanguins et les récepteurs sensoriels de la peau. 

 
Figure 1. Structures principales de la peau, ses annexes et les tissus sous-cutanés 

La peau et ses annexes (glandes sudoripares et sébacées, poils et ongles) remplissent de 

nombreuses fonctions visant à empêcher des facteurs de l’environnement, tels que les bactéries, 

l’abrasion, la chaleur, le froid et les substances chimiques, de perturber l’homéostasie de l’organisme.  

De par sa structure lamellaire unique, c’est la couche cornée qui confère à la peau l’essentiel de sa 

précieuse fonction barrière. 
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La peau, voie d’administration 

Si de nombreuses préparations pharmaceutiques sont appliquées sur la peau en vue d’une 

action locale, notamment pour le traitement des différentes dermatoses, d’autres sont destinées à 

avoir une action sur l’ensemble de l’organisme, via la circulation sanguine.  Ces systèmes, 

communément appelés patchs et définis par la Pharmacopée européenne sous le terme « dispositifs 

transdermiques », permettent de libérer au niveau systémique, des principes actifs qui sont mal 

absorbés par d’autres voies ou subissent une dégradation trop importante lors d’un premier passage 

hépatique.  Si le marché de cette forme galénique est important (3,9 milliards de dollars en 2002, 6,7 

milliards prévus pour 2007) [3], seuls une dizaine de principes actifs sont actuellement 

commercialisés, conséquence de l’excellente fonction barrière de la peau.  En effet, cette dernière 

limite la gamme des molécules susceptibles d’être administrées par un dispositif transdermique passif.  

En plus d’être pharmacologiquement puissant, l’agent thérapeutique doit répondre à certains critères 

d’ordre physicochimique tels qu’un poids moléculaire relativement faible (<500 Daltons), un coefficient 

de partage octanol-eau modéré (10<Ko/w<1000), et une solubilité aqueuse raisonnable (>1mg/ml) [4].  

Afin d’élargir le champ d’application thérapeutique de la voie transdermique à des molécules plus 

grandes et plus polaires, de nombreuses stratégies impliquant un transport actif des molécules à 

travers la peau ont été développées [5].  Parmi elles, la ionophorèse se distingue par son innocuité, 

son confort d’utilisation et son état de développement avancé [6]. 

L’ionophorèse, principe 

L’ionophorèse utilise un courant électrique de faible intensité (<0.5 mA/cm2) pour faciliter et 

contrôler le transport de molécules à travers la peau.  Un dispositif ionophorétique consiste en un 

patch contenant 2 électrodes (une anode et une cathode) que l’on connecte à une source de courant.  

Le principe actif contenu dans le patch est véhiculé par le biais de différents mécanismes de 

transport ;  en plus de l’électromigration (effet direct du champ électrique appliqué sur les espèces 

chargées), et de l’augmentation de la perméabilité cutanée induite par le courant, les molécules 

chargées positivement (placées dans le compartiment anodique) bénéficient d’un troisième 

mécanisme intitulé électroosmose, un flux de solvant qui résulte de la charge nette négative de la 

peau à pH physiologique.  Ce flux permet également le transport de molécules neutres. 

Outre les avantages propres à la voie transdermique, la ionophorèse offre la possibilité, en 

modulant l’intensité du courant appliqué, d’adapter le profil d’administration aux besoins de chaque 

patient ou chaque phase de traitement.  Cette caractéristique permet également une administration de 

type pulsatile, particulièrement profitable pour les principes actifs exerçant des effets 

pharmacologiques différents en fonction du profile d’administration (e.g., la gonadolibérine (LHRH) et 

ses analogues) ou pour ceux susceptibles d’induire un phénomène de tolérance (e.g., vasopressine).  
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Aussi, un traitement peut être rapidement stoppé en cas de nécessité par simple arrêt du courant, ce 

qui présente un avantage précieux par rapport aux implants. 

L’ionophorèse, application aux peptides et protéines 

Les propriétés physicochimiques des peptides et des protéines ainsi que leur forte 

susceptibilité à la dégradation, tant chimique qu’enzymatique, rendent leur administration difficile.  On 

recourt actuellement presque essentiellement à la voie parentérale, avec son lot d’inconvénients et la 

faible compliance qui en résulte.  Le développement d’alternatives efficaces et confortables pour le 

patient fait l’objet de très nombreuses recherches et représente un véritable défi.  De par leur taille et 

leur relative hydrophilie, ces composés ne sont pas à même de diffuser passivement à travers la peau 

et d’atteindre ainsi la circulation systémique.  Cependant, leur caractère souvent chargé fait de ces 

molécules de bons candidats à la ionophorèse. 

L’application de la ionophorèse à l’administration de peptides pharmacologiquement actifs a 

commencé à la fin des années quatre-vingts et a suscité beaucoup d’intérêt [7].  De nombreux 

peptides tels que la protiréline (PTH) [8], l’angiotensine [9], l’octréotide [10], la gonadolibérine (LHRH) 

et ses analogues [11-15], l’arginine-vasopressine [16], la calcitonine [17] et l’hormone 

parathyroïdienne [18] ont été étudiés et administrés avec succès, tant in vitro que in vivo.  

L’extraordinaire potentiel commercial que représente l’insuline conduit inévitablement à une recherche 

considérable portant sur son administration par cette voie [19].  De par certaines propriétés 

défavorables, tant physicochimiques (e.g., poids moléculaire ~6000 Da, charge négative) que 

pharmacodynamiques (doses élevées requises pour effet pharmacologique), son administration par 

ionophorèse s’avère extrêmement difficile.  Cependant, si les protéines de poids moléculaire élevé 

sortent du spectre d’application de la ionophorèse, l’administration de peptides spécifiques se révèle 

être un objectif tout à fait réalisable. 
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CHAPITRE 1 

Stratégies actuelles pour l’administration 
transdermique des peptides et des protéines 

Yannic B. Schuetz1,2, Aarti Naik1,2, Richard H. Guy3,,Yogeshvar N. Kalia1,2,* 

1 Section des sciences pharmaceutiques, Université de Genève, Quai Ernest-Ansermet 30, Genève, 
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2 Centre Interuniversitaire de Recherche et d’Enseignement, “Pharmapeptides”, Site d’Archamps, F-
74160 Archamps, France. 

3 Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK. 

Résumé 

L’administration transdermique est à la pointe de la recherche dans le domaine du 

développement de méthodes non-invasives pour l’administration systémique des principes actifs de 

structure peptidique ou protéinique résultant de la révolution biotechnologique.  De nombreuses 

approches ont été proposées pour surmonter l’excellente fonction barrière de la peau; alors que 

certaines agissent simplement au niveau de la drogue ou en augmentant de façon transitoire la 

perméabilité de la peau, d’autres sont conçues dans le but d’outrepasser ou même d’enlever la 

couche superficielle de la peau.  Cet article passe en revue les technologies qui font actuellement 

l’objet d’investigations, en allant de celles encore aux prémices de leur développement, comme 

l’administration assistée par le laser, aux techniques plus abouties ayant déjà conduit à des produits 

commercialisés (les systèmes d’injection à pression), en passant par celles dont la faisabilité a déjà 

été démontrée, comme les microaiguilles.  Les principes, les mécanismes impliqués, les applications 

potentielles, les limitations ainsi que la sécurité d’utilisation sont discutés pour chacune des 

approches, et les dispositifs les plus avancés sont décrits. 
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Abstract 

Transdermal delivery has been at the forefront of research addressing the development of  non-

invasive methods for the systemic administration of peptide and protein therapeutics generated by the 

biotechnology revolution.  Numerous approaches have been suggested for overcoming the skin’s 

formidable barrier function; while certain act simply on the drug formulation or transiently increase the 

skin permeability, others are designed to by-pass or even remove the outermost skin layer.  This 

article reviews the technologies currently under investigation, ranging from those in their early-stage 

development, such as laser-assisted delivery to others, where feasibility has already been 

demonstrated, such as microneedle systems, and finally more mature techniques that have already 

led to commercialisation (for example, velocity based technologies).  The principles, mechanisms 

involved, potential applications, limitations and safety considerations are discussed for each approach, 

and the most advanced devices in each field are described. 

Keywords:  Transdermal drug delivery, peptide and protein delivery, iontophoresis, electroporation, 

sonophoresis, microneedles, encapsulation, jet-injectors, stratum corneum ablation 
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1. PEPTIDE AND PROTEIN DELIVERY 

Revolutionary advances in biotechnology have given rise to numerous protein and peptide 

entities with therapeutic potential.  One of the major challenges to the successful clinical use of these 

“biotech” molecules is their efficient and targeted delivery to the site of action.  Presently, parenteral 

delivery is the most routinely employed method for administering polypeptide agents, which are 

otherwise completely destroyed when given orally.  These compounds often have short plasma half-

lives, need frequent injections and are, therefore, associated with poor compliance.  In recent years, 

alternative and more patient-friendly modes of drug delivery have been extensively investigated. 

2. TRANSDERMAL DELIVERY 

Over the past few decades, the skin has generated a great deal of interest as a portal for the systemic 

delivery of drugs [1].  The potential advantages of this mode of administration have been well 

documented [2].  The worldwide transdermal market is currently worth more than US$ 4 billion, yet is 

based on only thirteen drugs.  This rather limited number of transdermal drugs is explained by the 

skin’s excellent barrier function, which is accomplished entirely and quite remarkably by the outermost 

few microns of tissue, the stratum corneum: often referred to as a “brick and mortar” structure [3].  

 

Hair 
 

Figure 1.  Major skin structures. 

In addition to being pharmacologically potent, a therapeutic agent must possess a balance of 

physicochemical properties that render it permeable: a relatively low molecular weight (<500 Daltons), 

a moderate octanol-water partition coefficient (10 <Ko/w<1000), reasonable aqueous solubility 

(>1mg.ml-1) and modest melting point (<200°C) [4].  

Most, if not all, peptides and proteins, being large and hydrophilic, do not satisfy these criteria. 

Yet, the transdermal delivery of these potent therapeutic agents is of particular interest, since 
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percutaneous administration overcomes many of the problems associated with conventional therapy.  

Hence, to expand the range of drugs that can be delivered transdermally, and to include peptides and 

proteins, a number of enhancement technologies are under investigation. 

3. FROM SKIN SURFACE TO SYSTEMIC CIRCULATION 

Before being taken up by blood vessels in the upper papillary dermis and prior to entering the 

systemic circulation, substances permeating through the skin must cross the stratum corneum and the 

viable epidermis.  There are three possible pathways leading to the capillary network: across the 

continuous stratum corneum (SC), through hair follicles and their associated sebaceous glands, or via 

sweat ducts.  Although, the “as-the-crow-flies” diffusion distance across the SC is no more than 10-15 

µm, the actual diffusional pathway may be upto fiftyfold greater, depending on the route taken (Fig.1).  

While crossing the viable skin layers, peptidic drugs can undergo extensive enzymatic degradation [5-

7]; numerous proteases (including endopeptidases and exopeptidases) have been detected in the 

skin, both in the dermis and the epidermis [6-8].  However, as a result of the rapid uptake of 

penetrants into the general circulation on arrival in the highly vascularized dermal papillary layer, 

peptide/protein metabolism is most likely to occur during passage through the epidermal layer [9].  

Although this phenomenon may appear to mitigate one of the benefits of transdermal delivery 

(avoidance of gastrointestinal and hepatic enzymatic metabolism), the extent of epidermal catabolism 

is of course dependent on (a) the application area (e.g., patch size), and (b) the rate of epidermal 

transport - parameters that are optimized in the design of “active” transdermal systems.  In addition, 

peptide formulations can also be designed to incorporate specific enzyme inhibitors [10, 11].  

Parenthetically, certain energy-driven enhancement techniques may also impact on enzyme activity, 

as reported for ultrasound, which is suggested to deactivate certain skin enzymes [12, 13]. 

This article reviews the current state of transdermal peptide drug delivery technology. The 

strategies are classified as a function of the manner in which they overcome the skin barrier (Fig. 2).  

The approaches range from formulation optimisation, to energy-driven techniques including 

electrically-assisted transport, through to methods designed to enhance drug delivery by by-passing 

the barrier or even by removing it. 

4. FORMULATION OPTIMISATION 

Peptide drugs, which are hydrophilic and often charged molecules, pass through lipophilic 

membranes such as the SC with some difficulty, if at all.  To counteract this, there are two main 

approaches available to the formulation scientist: (a) the use of chemical enhancers to transiently 

modify the SC permeability (i.e. render the SC more “leaky” towards hydrophilic molecules), and (b) 

modification of the therapeutic molecule to render it more hydrophobic and therefore “acceptable” to 

the membrane.  The latter strategy involves either chemical derivatization, or encapsulation within a 

lipophilic core. 
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Figure 2.  Current strategies for transdermal drug delivery. 

Italicized legends signify those technologies, which are still in their infancy or are unlikely to find an application in 
peptide and protein delivery in the near future. 

4.1 Chemical penetration enhancers 

There exists an extensive literature on penetration enhancers, their mechanisms of action and 

effects on the skin, and their impact on the permeation of applied molecules [14, 15].  These 

compounds appear to act by disrupting or altering the ordered lipid structure of the SC.  Whereas 

numerous studies on the passive delivery of peptides and proteins with chemical enhancement were 

conducted during the 80’s and 90’s [16], research in this area has somewhat “run out of steam”, 

primarily for two reasons.  First, while low MW therapeutics usually tolerate formulation with these 

permeation enhancers, proteins are less comfortable in the company of these aggressive chemicals.  

The second and most important reason concerns safety.  Unfortunately, for most enhancers, activity is 

closely correlated with irritation, rendering them clinically unacceptable [17]. Thus, because of the 

extremely low permeability coefficients of peptide and protein drugs - readily predicted from their 

hydrophilicity and molecular size - the magnitude of enhancement required to ensure delivery of 

pharmacologically effective concentrations is expected to be beyond the capability of chemical 

enhancers tolerated by the skin. 

4.2 Chemical modification 

Whereas improved intestinal absorption through chemical modification with various fatty acids 

has been reported for some peptide and protein drugs, the application of this approach to transdermal 

delivery is quite new.  A few research groups have studied the cutaneous delivery of derivatives of 

peptides such as the vasoactive intestinal peptide [18] and interferon α [19].  The absorption of 

palmitoyl derivatives of interferon α (p-IFNα) into the viable layers of human breast skin was eightfold 

greater compared to the parent peptide, suggesting that this approach might find an application in 
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topical delivery.  The enhancement potential in transdermal delivery is less obvious, given that only a 

two-fold increase in the percutaneous absorption of p-IFNα was observed.  These results must also be 

treated with caution given the surprisingly elevated passive permeability of the parent polypeptide 

(1.47 ng/cm2/h). 

Finally, one must question whether a modest improvement in delivery is sufficient to warrant the 

additional regulatory complexities concomitant with the prodrug strategy.  During drug development, 

the chemically-modified derivative will have to undergo – as for the parent molecule - extensive 

toxicological testing in addition to the suite of developmental investigations. 

4.3 Encapsulation technologies 

Encapsulation consists of the entrapment of drug within delivery systems such as microspheres, 

liposomes and nanoparticles.  Liposomes, typically consisting of phospholipids and cholesterol, are 

thermodynamically stable vesicles with an aqueous core and at least one surrounding bilayer.  

Niosomes, analogues of liposomes, are non-phospholipid vesicles formed by the self-assembly of 

nonionic surfactants in an aqueous dispersion.  Niosomes and classical liposomal systems have been 

found to be effective in forming drug reservoirs in the upper layers of the skin, for local therapy.  The 

controlled topical delivery of cyclosporin A [20] and interferon α [21] has been studied: ≤ 1µg/cm2 of 

liposomally encapsulated interferon α was found in human skin after a 24 hour in vitro application.  

However, the use of liposomes and niosomes for the systemic delivery of macromolecules across the 

skin has not been successful to-date. 

Transfersomes are ultradeformable carriers that are claimed to be driven across the skin by the 

transdermal hydration gradient [22].  They are suggested to be sufficiently flexible to pass through 

pores appreciably smaller than their own size (200-300 nm).  Insulin-loaded transfersomes were 

reported to induce a modest 15% decrease of blood glucose concentration in healthy human 

volunteers [23], a response which is unlikely to provoke a therapeutic effect in diabetic patients. 

Ethosomes are phospholipid vesicular systems containing ethanol in relatively high 

concentrations.  According to Touitou et al., ethanol fluidises both the ethosomal lipids and the SC 

lipid mortar; the soft, malleable vesicles then penetrate through the disorganized lipid bilayers [24].  

Several studies have been conducted with non-peptidic drugs such as testosterone [25], 

trihexyphenidyl hydrochloride (currently used for the treatment of Parkinson’s disease) [26] and 

zidovudine (an antiviral agent) [27].  As is often the case, insulin, because of its huge potential market, 

was the first peptide studied.  The effect of a transdermal insulin formulation on blood glucose levels 

was investigated in vivo in normal and diabetic rats.  Despite the significant decrease (≤ 60%) in blood 

glucose levels achieved in both normal and diabetic rats [28], it is clear that a corresponding effect in 

humans would require significant scaling-up, which remains to be demonstrated. 

Finally, although encapsulation might be considered to offer some protection from cutaneous 

enzymes, the point at which the drug leaves its ‘protective capsule’ during its passage through the 

tissue has yet to be determined.  Moreover, any benefits offered are likely to be offset by formulation 

stability issues. 
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5. ENERGY DRIVEN METHODS 

5.1 Iontophoresis 

Iontophoresis is a century-old technique developed to deliver charged molecules through the 

skin at an enhanced rate via application of a small electric current (≤ 0.5 mA/cm2).  The drug reservoir 

on the surface of the skin is in contact with an electrode of the same charge as the solute, connected 

to a grounding electrode and a power supply. In addition to electromigration (direct effect of the 

applied electric field on the charged species), and current-induced modification of passive skin 

permeability, positively charged compounds (present in the anodal compartment) benefit from a third 

transport mechanism called electroosmosis, a convective solvent flow which is a consequence of the 

skin’s net negative charge at physiological pH.  This flow also enhances the transport of neutral 

compounds. 

A feature of iontophoresis, which distinguishes it from other enhancement technologies, is that it 

acts primarily on the molecule itself.  The technique does not simply involve passive transport of the 

drug following barrier disruption: the driving force comes from the applied electric field and is not solely 

dependent upon the concentration gradient, as in passive delivery. Hence, by modulating the current 

applied, iontophoresis allows adaptation of the delivery input rate and profile to the needs of each 

patient or phase of treatment, and offers the possibility of pulsatile drug delivery.  Although the 

advantages of “constant” or “sustained” plasma concentrations have long been endorsed, there are a 

number of therapies which benefit from the conventional “peak and trough” plasma profiles.  

Moreover, certain peptides such as human parathyroid hormone (PTH) and luteinizing hormone-

releasing hormone (LHRH) have distinct, and often opposing, pharmacological effects depending on 

their delivery profile.  LHRH, for example, must be administered as a bolus every 60-90 min to treat 

female infertility, but must be given as a continuous infusion in the treatment of certain cancers.  

Pulsatile delivery is also desirable where downregulation and tolerance may be a concern, as 

demonstrated for vasopressin [29].  Considerable interest has been and continues to be shown in the 

iontophoretic delivery of therapeutic peptides and proteins which, given their often charged character, 

are good candidates for this technology.  Numerous peptides including Thyrotropin releasing hormone 

(TRH) [30], angiotensin [31], octreotide [32], luteinizing hormone releasing hormone (LHRH) and 

analogues [33-37] arginine-vasopressin [38], calcitonin [39], human parathyroid hormone (1-34) [40] 

and insulin [41] have been studied.  Many of these peptides have also been the subject of mechanistic 

investigations, and electroosmosis has been proposed to be the predominant mechanism governing 

the iontophoretic transdermal delivery of large (molecular weight ≥ 1000 Da) cationic peptides [42].  

However, peptides containing closely juxtapositioned cationic and lipophilic residues are able to inhibit 

this transport mechanism, and hence their own transport, by altering the permselectivity properties of 

the skin when iontophoresed [43-48].  This inhibition may be considered as a limitation in the 

iontophoretic transdermal delivery of certain peptide drugs containing this structural motif.  

Nevertheless, leuprolide, a synthetic nonapeptide analogue of LHRH containing D-Leu-Leu-Arg at 

position 6-8 (corresponding to the mentioned structural signature) has been successfully delivered in 
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vivo in humans to produce a peak LH response similar to that by subcutaneous injection [49].  Other in 

vivo studies have also compared the delivery profile obtained after iontophoresis, to that measured 

after conventional needle injections, to demonstrate the potential of this administration route.  Such an 

example is illustrated in Figure 3 for the delivery of the growth hormone releasing factor GRF (1-44), 

where steady-state plasma GRF levels after iontophoretic delivery are greater and more sustained, 

relative to those following intravenous and subcutaneous injections [50].   

 

 
Figure 3.  Plasma levels of growth hormone 
releasing factor (GRF) in response to 
transdermal iontophoretic (1 mg/g; 0.17 mA/cm2; 
5 cm2 patch), intravenous (10 µg/kg; 0.025 mg/ml) 
and subcutaneous (10 µg/kg; 0.025 mg/ml) GRF 
administration to the guinea pig.   
Reprinted from Ref. [50], with permission from 
Elsevier. 
 

 

Not surprisingly, the iontophoretic delivery of insulin has provoked much attention.  However, 

while the delivery of regular insulin by iontophoresis might be sufficient to treat a small mammals, the 

best deliveries achieved, even with monomeric insulin analogues [51], are still 1-2 orders of magnitude 

below those necessary to match the basal secretion level in humans [41]. 

Owing to the advanced nature of transdermal iontophoretic research and development, these 

systems are relatively well-characterized and understood.  For example, the recently launched 

LidoSite™ device (Figure 4; Vyteris Inc., NJ, USA) [52] for local anaesthesia and the IONSYS™ 

system for fentanyl delivery (Alza Corp., CA, USA; 

currently awating final FDA approval) offer 

iontophoretic platforms, which can be potentially 

adapted and customized to the local and systemic 

iontophoretic administration of peptide drugs. 

 

 

 

Figure 4.  LidoSite™, an iontophoretic delivery system 
for lidocaine (Vyteris Inc., NJ, USA). Reproduced with 
permission from Ref. [52]. 

5.2 Electroporation 

First used for the introduction of DNA material into cells in vitro, the use of electroporation for 

transdermal delivery was suggested about 10 years ago.  Unlike iontophoresis, which employs small 
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currents (transdermal voltages ≤ 10V) for relatively long periods of time (many minutes to hours), 

electroporation involves exposure of the skin to relatively high voltages (approx. 100-1000 V) for short 

times, typically 1 to several hundred milliseconds, which in turn create intense electric fields across the 

thin stratum corneum.  Molecular transport through transiently permeabilized skin is thought to result 

from a variety of mechanisms: enhanced diffusion through the aqueous pathways produced in the lipid 

bilayers, electrophoretic movement (for charged species) and, to a small extent, electroosmosis [53]. 

A study investigating insulin delivery demonstrated that while less than 0.6 µg/cm2 insulin was 

transported across porcine epidermis after electroporation (100 V, 1 Hz, 1 ms pulse for 10 min.), 

around 13 µg/cm2 (~0.33 U/cm2) reached the receptor compartment when delivered from a formulation 

containing phospholipids under the same electroporation regime [54].  The treatment of a diabetic 

patient (36U, daily) is obviously unfeasible with such an input, but this 20-fold enhancement in 

transport demonstrates the potential for synergistic combination of electrically-assisted and chemical 

technologies. 

Transdermal heparin transport across human skin in vitro was possible at therapeutic rates with 

electroporation, whereas the low-voltage iontophoretic flux with the same time-averaged current was 

an order of magnitude lower [55].  Similarly, electroporation significantly enhanced the flux of human 

parathyroid hormone (1-34) in comparison to iontophoresis [40], suggesting that high-voltage pulsing 

creates transient changes in skin permeability, which do not occur during iontophoresis. 

However, while electrically-assisted skin delivery via iontophoresis has been widely investigated 

in humans and shown to be safe and well-tolerated, very few human studies have been conducted 

with electroporation.  In electrochemotherapy investigations, where electric pulses greater than 1000 V 

were applied to the skin of melanoma patients to facilitate the chemotherapeutic treatment of tumour 

nodules, muscle contractions and mild pain were reported during each pulse in addition to a transient 

erythema [56].  Although these unwanted side effects subsided after the pulse, further investigation is 

required to determine whether transdermal drug delivery by electroporation is clinically feasible. 

5.3 Sonophoresis 

Sonophoresis (or phonophoresis) is defined as the movement of drugs through intact skin and 

into soft tissue under the influence of an ultrasonic perturbation [57].  Low-frequency ultrasound 

(frequencies below 100 kHz) has been demonstrated to induce the greatest transdermal transport 

enhancement [58, 59].  Numerous studies have been devoted to understanding the mechanisms of 

sonophoresis [60-63].  Acoustic cavitation, the formation and collapse of gaseous cavities, plays the 

dominant role in low-frequency sonophoresis [64, 65], although significant stratum corneum lipid 

removal has also been reported [60] and may explain the increased skin permeability observed during, 

and after, low-frequency ultrasound application. 

Mitragotri et al. reported the delivery of insulin (6000 Da), γ-interferon (17000 Da), and 

erythropoietin (48000 Da) in vitro, across human epidermis using ultrasound (20 kHz, 100-ms pulses 

applied every second for 4 hours).  The insulin flux achieved was shown to be sufficient to treat a 

diabetic subject assuming a transdermal patch area of 40 cm2 containing insulin at a concentration of 

100 U/ml [66, 67].  Yet, despite this optimistic calculation, a sonophoretic insulin patch has not been 
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developed, highlighting the challenge of extrapolating from in vitro studies to clinical scenarios.  

Similarly, a 50% reduction in blood glucose subsequent to low-frequency insulin sonophoresis in rats 

(Fig. 5;[68]), while offering a valid “proof-of-concept”, does not guarantee that a similar approach will 

work in an adult diabetic patient. 

 

 

 

 

Figure 5.  Blood glucose levels in rats after 
intramuscular injection of insulin 0.5 U and 
sonophoresis of insulin (I = 2.5 Watts/cm2, teff = 6 
min., tUS = 15 min., ton = 3.2 s.).  Reprinted from Ref. 
[68] with permission from Elsevier. 
I = pulse intensity during ultrasound application; teff: total 
duration of ultrasound exposure during treatment time, tUS; ton: 
duration of each ultrasound pulse; tUS: total treatment time 
during which pulsed ultrasound was applied. 
 

On the whole, research into peptide and protein delivery using this technique has been limited, 

although a technological platform for potential applications clearly exists.  An ultrasonic skin 

permeation device (SonoPrep, Sontra Medical, MA, USA), awaiting FDA-510k clearance, enables 

rapid delivery of lidocaine and local skin anæsthesia within five minutes after a brief skin pretreatment 

(55 kHz, ~10 sec pulses) [69].  Nevertheless, the feasibility of such a system at higher intensities and 

over longer periods needs to be examined.  Singer et al. [70] noted minimal urticarial reactions after 

low-intensity ultrasound, but higher-intensity sonophoresis produced significant thermal injuries similar 

to second-degree burns.  Hence, as with other energy-based technologies, sonophoresis exhibits a 

window of parameters within which safe application can be practiced; whether or not this window 

encompasses macromolecular delivery remains to be seen. 

6. MINIMALLY-INVASIVE SYSTEMS 

Numerous "minimally-invasive" strategies for transdermal drug delivery have been described, 

and recently reviewed by Down and Harvey [71].  Often, these technologies are the subject of patent 

claims but their therapeutic utility remains unsubstantiated.  In this section, we have selected systems, 

which have been designed, in effect, to "by-pass" the skin barrier without blatant SC removal.  

Microneedles and velocity-based injectors, because of their ability to breach the SC, offer drug 

delivery platforms that may be suitable for higher MW drugs. 

6.1 Microneedles 

Over the last few years, advances in microelectronics have been innovatively applied to a 

variety of health care-related products – from miniaturized diagnostic tools (for example, biosensors) 
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to microdevices for therapeutic drug administration.  Microneedles (µm dimensions) in various 

geometries and materials (silicon, metal, and polymer) have been produced using recently developed 

microfabrication techniques.  These microneedle arrays are applied to the skin surface such that they 

pierce the epidermis (devoid of nociceptors), creating microscopic holes through which molecules can 

be transported to reach the upper dermal layers.  The microneedle arrays penetrate to the dermal 

microcirculation and allow systemic drug delivery, but are short enough to avoid stimulation of dermal 

nerves. 

Solid microneedles either puncture the skin prior to the application of drug contained in a patch 

system, or are pre-coated with drug and then inserted into the skin.  The first approach implies a two-

step application procedure, which might seriously limit its ease-of-use, whereas the second presents 

the disadvantage of being “surface-limited”: that is, the total amount of drug which can be loaded, and 

hence delivered, is limited by the total microneedle surface.  Microneedles containing a hollow bore 

provide an alternative to solid structures and offer the possibility of transporting drugs through the 

interior of well-defined needles by diffusion or, for more rapid rates of delivery, by pressure-driven 

flow. 

Both solid and hollow microneedles have been used to deliver insulin in vivo in diabetic rats.  

McAllister et al. demonstrated a 70% reduction in blood glucose 5 hours after a 30-min microinfusion 

of insulin at a pressure of 14 psi using hollow microneedles [72].  Solid metal microneedles also 

increased insulin delivery and lowered blood glucose levels by as much as 80% when a 105 

microneedle array was inserted into the skin for 10 minutes and removed before the topical application 

of an insulin solution for 4 hours [73].  Such a reduction of blood glucose in rats corresponds to an 

insulin dose of 1.6-4.1 mU, a dose significantly lower than the ~36 U of insulin required by a typical 

diabetic patient each day (12U tds) [67].  Furthermore, the significant lag time between application and 

therapeutic effect is also of some concern.  Recent in vivo studies, in hairless guinea pig, investigated 

the transdermal delivery of desmopressin using the Macroflux system (Alza Corporation, CA, USA) 

[74, 75].   

ba cba ba ba c

 

Figure 6.  Macroflux patch technology (Alza Corporation, CA, USA)  

A) The patch comprising the coated microneedle array affixed to an adhesive backing. Reprinted from Ref. [74], 
with permission from Elsevier. 

B) The patch loaded on the disposable retainer ring and the reusable applicator.  Reprinted from Ref. [74], with 
permission from Elsevier. 

C) Scanning electron photomicrograph of an array of microprojections (L: 330 μm) and a conventional 25-gauge 
needle. Reprinted with permission from Ref. [77]. 
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The Macroflux system (Figure 6), incorporates a 2 cm2 array of titanium microneedles, which 

can be coated with drug for rapid bolus administration, or used in combination with a drug reservoir for 

continuous passive or iontophoretic applications [75]. When coated with desmopressin, these 

microneedles allowed pharmacologically relevant amounts of this synthetic peptide hormone to be 

delivered, with a bioavailability as high as 85% (c.f., oral and nasal bioavailability of 0.1% and 3.4%, 

respectively) in human volunteers (Figure 7; [76]).  Average systemic deliveries of desmopressin 

ranged from 17 to 34 µg after 5 or 15 minute application time, which is significantly more than the 1 to 

4 µg recommended daily by subcutaneous, intramuscular or intravenous injection in the management 

of primary nocturnal enuresis.  This device has also demonstrated promising results with vaccines 

[77].  
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Figure 7.  Comparison of serum desmopressin concentrations following administration by intravenous 
injection (11 µg), or via a coated microneedle array (82 µg) (microneedle array contact time = 5 min.).  
Reprinted from Ref. [74], with permission from Elsevier. 

 

Microneedles have been described as painless, inducing neither erythema nor edema [78, 79].  

In addition, the µm-scale holes produced are significantly smaller than those created by hypodermic 

needles [80].  However, the reversibility and the consequences of chronic applications of these arrays 

remain to be studied.  The immediate concern with this technology is the possibility of fractured needle 

fragments remaining in the skin, although it has been reported that the majority of silicon microneedles 

remained intact after insertion into skin [78].  Nonetheless, the potential risk of residual material in the 

skin after treatment needs to be examined.  In this respect, metal and polymer microneedles offer 

significant advantages: in addition to being more robust, less expensive and easily scalable for mass 

production, many metal and polymer (especially biodegradable) materials have established safety 

records in medical devices, whereas silicon is a new and relatively untested biomaterial [72].  

Microneedles, essentially a hybrid of hypodermic needles and transdermal patches, provide an 

interesting and promising alternative, currently being pursued by several companies and resulting in 

an impressive number of patents. 
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6.2 Velocity-based technologies 

A jet injector produces a high-velocity jet (>100 m/s) that penetrates the skin and delivers drugs 

into the epidermis, intradermally, subcutaneously, or intramuscularly by means of a compression 

spring or compressed air [81].  Most commercial devices produce a single jet for drug delivery through 

an orifice of around 150 µm in diameter.  These systems resemble a pen, as illustrated in Figure 8. 

 

 

 

 
 
 

Figure 8.  Medi-Jector Vision (Antares Pharma 
Inc., PA, USA), Needle Free Insulin Injection 
System.  
Reproduced with permission from Antares Pharma 
Inc. 
 

Interest in these systems as an alternative to the routine use of needles in vaccination has partly 

stemmed from the increasing incidence of injection-associated, blood-borne pathogen infections 

(hepatitis B, hepatitis C and human immunodeficiency viruses) in developing countries.  An 

exhaustive, web-based document [82] underlines the attention attracted by this technology. 

One category of jet injectors has been developed for the delivery of liquid protein formulations.  

Figure 9 illustrates the similarity of a profile obtained with one such system to that measured after a 

conventional needle injection in a human study.   

 

 

 

 

 

 

Figure 9.  Comparison of serum ganirelix 
concentrations following administration of 
Orgalutran by subcutaneous injection or via 
the Medi-Jector device. 
Adapted from Ref. [117] with permission of Oxford 
University Press/Human Reproduction. 
 

Numerous devices have been on the market for several years.  As shown in Table 1, most of the 

marketed devices are dedicated to insulin and human growth hormone (hGH).  Today, compounds 

such as pegylated interferon alpha (Pegasys), erythropoietin and antibodies are also receiving 

attention for delivery via this system [83]. 
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Table 1. A representative selection of commercially available needle-free jet injectors. 

Device tradename Marketed by Drug (proprietary name) References 

Vitajet Bioject Insulin [81] 

Biojector Bioject Vaccines and other liquid medications  

Cool.click Serono hGH (Saizen) [118] 

Serojet Serono hGH (Serostim)  

Medi-jector Antares Pharma Insulin, hGH, ganirelix (Orgalutran) [117, 119] 

Zomajet Ferring hGH [89] 

Genotropin ZipTip Pfizer hGH (Genotropin) [88] 

 
 

A second category of jet injectors allows Transdermal Powdered Delivery (TPD), for which the 

therapeutic compound is formulated as a powder.  Fine drug particles (20-100 µm in diameter) are 

thus accelerated in a supersonic flow of helium gas to penetrate the outer layers of the skin.  The 

powder injection delivery of salmon calcitonin (s-CT) was studied in rabbits in vivo using the 

PowderJect device (PowderJect Pharmaceuticals plc., recently acquired by Chiron Corporation, CA, 

USA).  The administration of 1 mg of powder containing 40 µg of s-CT using a pressure of 60 bar led 

to an 11% decrease in serum calcium concentration [84].  When the same system was used to deliver 

human insulin to rats, blood glucose concentration was found to decrease by approximately 40% [84].  

Here again, a corresponding effect in humans would require significant scaling-up, which remains to 

be demonstrated.  This technology also allows targeting of DNA and protein vaccines to the epidermis, 

a skin layer which is populated by numerous antigen presenting cells, and therefore offers the 

possibility of needle-free immunization [85]. 

Although dry powder formulations are better suited to storage than solutions, a significant 

limitation of the PowderJect technology is the upper limit on the dose that can be delivered, which is 

approximately 6 mg.  Moreover, the powder must survive the high stress of a gas jet within the device 

and the ballistic impact with the skin at supersonic velocities.  Finally, the dispersed fine particles must 

then dissolve and diffuse into the skin in order to act locally or to reach the systemic circulation. 

With the exception of the PowderJect system, which was reported as being painless during the 

course of Phase I and Phase II clinical studies [84], jet injectors are recognized for their propensity to 

cause pain and bruising [86].  Thus, despite the reported bioequivalence between needle-free devices 

and needle injection, the superiority of jet injectors in terms of comfort and compliance is, according to 

several studies, far from obvious [87-92].  Hence, the undisputable advantage of this technology, 

compared to conventional syringe injection, lies in the absence of a (visible) needle, which may be of 

benefit to children and needle-phobic patients, and in mass injection programs where the risk of 

contamination may be an important concern. 

Since their introduction to the market eight years ago, jet injectors have not revolutionized the 

delivery of insulin in diabetic patients, who for the most part, continue to use conventional injection 
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systems.  This suggests that this innovative technology might not be the choice alternative to the 

parenteral route for delivering peptides and proteins.  However, it seems likely to play a key role in 

tomorrow’s vaccination strategies. 

7. STRATUM CORNEUM ABLATION 

The simplest method for overcoming the barrier imposed by the stratum corneum is to remove it.  

This can be achieved, for instance, by repeated application of adhesive tape to the skin surface.  

However, for a number of reasons - including those of convenience, reproducibility, and patient 

compliance, it is difficult to envisage the routine clinical use of such an approach.  Laser-assisted 

ablation and SC ablation by suctioning are perhaps more realistic approaches but are also likely to be 

associated with patient compliance issues.  Alternative, more recent technologies currently under 

investigation include microscissioning (see section 9.3, below) and radiofrequency thermal ablation. 

7.1 Suction ablation 

Suction ablation uses a vacuum to produce a small blister (5-6 mm in diameter), the upper 

surface of which is excised to reveal a portal for entry of drugs into the dermal circulation [71].  The 

feasibility of this technique was tested in seven healthy volunteers using the antidiuretic peptide 1-

deamino-8-D-arginine vasopressin (DDAVP), in whom the bioavailability was reported to approach 

100 % [93].  In a separate study using an oxytocin antagonist, antocin, therapeutic blood levels were 

measured in healthy volunteers one hour after administration [94].  This technology has resulted in a 

commercial product, Cellpatch (Epiport Pain Relief AB, Sweden), which incorporates all the 

components of the process: suction device, epidermatome (to remove the blister), and a drug 

reservoir.  Clinical studies have tested the feasibility of transepidermal morphine delivery by this 

methodology in normal healthy volunteers [95] and in postoperative patients [96].  The studies 

reported an absence of pain (possibly due to the concomitant delivery of morphine?), erythema and 

scar formation.  Regeneration of the epidermis occurred one week after removal of the system.  

However, the vacuum removal of the epithelium caused pronounced hyperaemia in the de-

epithelialised dermis and the sites showed slight, fading pigmentation even 3 months after treatment, 

suggesting that this procedure may not be appropriate for the treatment of chronic disease.  In view of 

this drawback, and given the absence of published work since 1996, suction ablation is unlikely to be 

a technology of choice in the near future. 

7.2 Laser ablation 

In this approach, the high energy of the laser creates pores in the skin that permit the transit of 

drug through the SC from, for example, a topically applied patch or gel [71].  There are two optimal 

wavelengths at which skin ablation can be achieved: a wavelength absorbed by tissue proteins (2940 

nm) and one absorbed by tissue water (mid-infrared; 2790 nm).  During laser irradiation, the energy is 
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absorbed by the components of the skin in the form of vibrational heating.  Water within the irradiated 

area of the skin quickly reaches its boiling point, and the resulting vapour pressure elicits a 

microexplosion that results in ablation, as the tissue vaporizes.  The rapid loss of energy from the 

ablated site protects the surrounding skin tissues from heat-induced damage.  The level of energy 

imparted to the skin permits removal of the stratum corneum in a controllable fashion. 

The erbium:YAG laser (2940 nm), currently used in plastic surgery for the resurfacing of 

rhytides, scars, photodamage, and melasma [97] was demonstrated to greatly enhance 5-fluorouracil 

permeation across mouse skin in vitro [98].  The only study performed with a peptide showed a 2.1-

fold increase in γ-interferon transport across pig skin using an erbium:YSGG laser (2790 nm) [99]. 

While laser-assisted drug delivery may be technically feasible, many questions regarding safety 

remain unanswered [71]; for the moment, the utility of this technology is likely to be limited to niche 

applications within hospital settings, notably because of the elevated cost of medical lasers. 

7.3 Radiofrequency thermal ablation 

Radiofrequency (RF) thermal ablation is a well-known and effective technology for 

electrosurgery and ablation of malignant tissues.  A thin electrode is placed directly into the tumor; 

application of RF energy results in the passage of an alternating frequency current from the tip of the 

electrode into the surrounding tissue.  The movement of ions, which attempt to follow the change in 

the direction of the alternating current, results in frictional heating of the tissue, producing coagulative 

necrosis and cell ablation [100].  This technique has only recently been adapted for use as a physical 

method to enhance drug transport across the skin.  A closely spaced array of tiny electrodes is placed 

against the skin while an alternating current at radio frequency is applied to each of the 

microelectrodes.  This forms microchannels in the outer layer of the skin through the ablation of cells.  

The ViaDerm RF-microchannel generator (Transpharma Ltd, Israel) consists of 140 stainless steel 

electrodes (length: 100 µm; diameter: 40 µm) spaced 1 mm apart.  When a certain pressure is applied 

to the device in contact with the skin, the RF-generator is activated momentarily, resulting in thermal 

ablation.  Percutaneous penetration studies were performed with granisetron hydrochloride and 

sodium diclofenac in vivo in rats, and in vitro using full thickness porcine ear skin.  The apparent 

permeability coefficients obtained for granisetron and diclofenac transport through porcine skin were 

7.1 and 3.8 times higher for RF-treated skin compared to intact skin, respectively [100].  Experiments 

performed on rats in vivo with bioactive hGH showed a relative bioavailability of approx. 80% 

compared to subcutaneous injection [101]. 

A human safety study on twenty healthy, adult volunteers, reported slight erythema (0.75 out of 

8.0) and negligible pain (5 out of 100) as measured by the Draize irritation index and Visual Analogue 

Scale score, respectively.  An RF thermal ablation device has also been developed by Altea 

Therapeutics (PassPort Patch; GA, USA) and is currently in Phase 1 human clinical trials in the U.S.  
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8. COMBINATION STRATEGIES 

An exhaustive inventory of all the possible combinations and implicated synergistic mechanisms 

with respect to transdermal enhancement offers subject matter for several articles and is clearly 

outside the scope of this review.  The reader is referred to a comprehensive summary of these 

combination strategies with respect to their efficacy and mechanisms [102].  Since the enhancement 

effect can be synergistic, this has added to the interest in the field.  Nearly all combinations have been 

tested, at least in vitro, and some of these have been applied to peptide drug delivery.  These include 

the combination of iontophoresis with chemical enhancers [103, 104], with electroporation [40, 105], 

and with jet injection pre-treatment [106].  The Medipad  (Elan Pharmaceutical Technologies, Ireland), 

is a hybrid system coupling iontophoretic delivery with shallow SC puncture [107].   

The use of two or more technologies – with different mechanisms of action – permits the same 

effect to be achieved with safer levels of the ‘active driving force’; for example, lower currents, or 

reduced levels of chemical enhancers.  However, paradoxically, this synergy may also result in an 

increased toxicity: consider the combination of chemical enhancers with iontophoresis or ultrasound.  

The use of an electrically-assisted method could increase the rate and extent of delivery of the 

chemical enhancer into the skin, or induce a deeper penetration into the tissues, with concomitantly 

increased skin irritation.  Hence, in addition to the evaluation of the practicality of certain dual 

technologies, which might lead to relatively complex devices, safety must be validated in vivo and in 

human volunteers before combination technologies can “take off” and be considered as realistic 

delivery platforms. 

9. NOVEL TECHNIQUES IN EARLY DEVELOPMENT 

The transdermal enhancement technologies presented below are relatively novel approaches in 

early development. Although they have yet to be validated with respect to peptide and protein delivery, 

they are included here because of their ability to overcome the SC barrier function to a greater extent 

than many conventional methods. 

9.1 Photomechanical Waves 

Photomechanical waves (PW) are broadband compressive waves generated by intense laser 

radiation [108].  A PW delivery device consists of a drug reservoir backed with a laser target material 

(e.g., polystyrene).  This system is placed on the skin and the laser is applied to the target.  The 

energy of the laser is strongly absorbed by the target, resulting in the formation of photomechanical 

waves which are hypothesised to transiently permeabilize the stratum corneum.  Drug diffuses 

passively through the channels momentarily created.  The mechanism of channel formation remains to 

be elucidated, but it is known that the effects of PW are due to mechanical forces [109]. 

Different molecules and even microspheres have been measured in the skin layers in vivo after 

PW application [110-113], yet, interestingly, this technique does not appear to permeabilize the 
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stratum corneum, in vitro.  An isolated report describes successful insulin delivery in rats in vivo (~80% 

decrease in blood glucose level), but after pretreatment with an anionic surfactant [114].  Clearly, this 

technique is still very much in its infancy and unlikely to be a realistic contender for transdermal 

peptide delivery.  

9.2 Heat-assisted drug delivery  

Controlled Heat-Assisted Drug Delivery (CHADD; Zars Inc., UT, USA) is the basis of an 

innovative patch consisting of a layer containing a heat-generating chemical component and a 

perforated cover membrane.  When the package is opened, air flows at a controlled rate through the 

holes in the cover membrane into the heating mixture and initiates a chemical reaction that 

spontaneously produces heat.  Heat generated within the patch increases skin temperature and 

thereby drug penetration rates across the skin.  According to the manufacturers, the temperature and 

duration of the reaction can be controlled by the size and number of holes in the cover membrane and 

the precise composition and quantity of the chemical components.  S-Caine Patch (Zars Inc., UT, 

USA) is a new system for anæsthetic delivery [115], which uses the CHADD technology and which 

has successfully completed Phase III trials.  This technology has not yet been applied to peptide and 

proteins although systems containing a benzodiazepine and a 5-hydroxytryptamine receptor (5-HT3) 

antagonist are currently in preclinical development.  One obvious concern with respect to peptides and 

proteins is their thermal instability, which could severely limit the application of this technology. 

9.3 Microscissioning 

Microscissioning entails the use of sharp particles to scize defined areas of the skin.  

Techniques using a combination of momentum transfer and scizing are well known in cosmetic 

dermatology.  The relatively hard, roughened stratum corneum and epidermis resulting from aging 

processes can be removed by moderate velocity, sharp particles impinging obliquely against the skin 

surface.  However, only one published study reports the application of this technology to transdermal 

delivery.  Aluminium oxide particles (10 to 70 µm) were accelerated in a nitrogen stream under a 

pressure of 552 kPa, and directed towards the inner wrist of volunteers, after which the site was 

treated with lidocaine.  The experiments, performed on only two adult subjects, demonstrated full 

anaesthesia around the site within three minutes, whereas topical application without the microconduit 

required approximately 1.5 hours [116].  This technology is very experimental and requires 

considerable work, notably in terms of safety.  The presence of microparticulate debris in the skin as 

well as blood in the 200 µm diameter microconduit (although suggested to be useful for the purposes 

of clinical monitoring of analytes) points to the need for further investigation. 
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10. CONCLUSIONS 

The proliferation of research activity in the field of transdermal drug delivery serves to highlight 

the pressing need for alternatives to the conventional invasive administration of peptides and proteins 

via needles and syringes.  However, regardless of how attractive any new drug delivery concept may 

appear to be, it must not only deliver therapeutically realistic levels of drug to the target site, but must 

also prove its clinical superiority over conventional injections with respect to long-term safety, patient 

compliance, ease-of-use, impact on protein quality (physical, chemical and biological stability) and of 

course, commercial viability (high manufacturing costs would result in a non-viable product). 

It is perhaps this lack of clinical superiority over injectables, which prevents the velocity-based 

approach from being the technology of choice in transdermal peptide and protein drug delivery.  

Iontophoresis, which offers the unique advantage of tight control over the delivery kinetics, is expected 

to gain momentum now that devices are being commercialised.  However, one of the largest sub-

classes of the protein-based therapeutics developed by the biotechnology industry is that of 

monoclonal antibodies, which have been anticipated to represent 30% of pharmaceutical sales by 

2007 [83].  Given their size, iontophoresis, which is more suitable to peptide drugs, is certainly not the 

method of choice to deliver such large macromolecules.  Hence, there is an evident need for 

developing complementary technologies such as microneedles, which represent an excellent example 

of interdisciplinary research. 

With this large range of technologies currently under development, one can hope that in the not 

too distant future, there will be viable transdermal alternatives for the administration of protein and 

peptide based therapeutics thus reducing the need to resort to conventional injections. 

11. EXPERT OPINION 

The oral route is undoubtedly the preferred route of drug administration for most therapeutic 

agents and ideally, this would also be the case for peptide- and protein-based drugs.  However, the 

gastrointestinal tract has evolved to break down macromolecules, including polypeptides, and facilitate 

the absorption of their constituents.  Moreover, upon absorption, the hepatic portal vein takes these 

products to the liver, which is the primary site of biotransformation and conversion of these molecules 

and molecular fragments into products that can be easily eliminated.  Approaches such as 

microemulsions, covalent chemical modification, and carrier-mediated systems, have enabled the oral 

administration of macromolecules to move forward from the proof-of-concept stage.  However, unless 

a peptide (or protein) can be protected from, or rendered resistant to, the catabolic activity in the 

gastrointestinal tract, prohibitively large amounts of (expensive) therapeutic agent will have to be 

delivered to achieve the desired pharmacological effect.  One approach is to use peptides that contain 

D-amino acids and, in general, oral delivery may be more feasible for smaller peptides where there is 

no significant tertiary structure that must be retained.  Based on this logic, it is easier to explain the 

delivery of desmopressin by the oral route and the recent development of a tablet form for the 
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treatment of nocturnal enuresis.  However, with respect to the oral delivery of larger proteins with more 

complex structures, the likelihood of an oral formulation on the market place is far from the horizon.  

Some peptide drugs, for example, nafarelin, are currently available for administration via the 

nasal route.  However, the bioavailability of therapeutic peptides administered by this route is usually 

less than 5%, limiting its appeal and subsequent development.  Pulmonary delivery has aroused much 

interest and a great deal of effort has been devoted to developing pulmonary systems for the delivery 

of insulin.  The development of inhalation systems for targeted local drug delivery in the respiratory 

tract has progressed considerably with the availability of recombinant human deoxyribonuclease for 

the treatment of cystic fibrosis.  Such topical delivery is frequently to be preferred because systemic 

administration might not achieve the desired drug levels at the disease site, or because high systemic 

levels of the drugs, e.g., growth factors, that are required for a local effect at the target tissue, often 

cause unwanted systemic toxicity.  In addition to low bioavailability which, as with nasal delivery, can 

necessitate large and unacceptable drug doses, pulmonary delivery presents paradoxically another 

dilemma: the large alveolar surface area coupled with the extremely fine nature of the epithelium can 

result in an extremely rapid absorption with the risk of a large bolus effect.  Hence, it might be argued 

that the pulmonary delivery of proteins may be restricted to therapeutics that do not induce systemic 

side-effects at high peak serum concentrations or local tissue reactions at the site of absorption. 

The application of therapeutic agents to the skin was first realised for the treatment of 

dermatologic diseases.  Since a significant proportion of the population suffers from dermatological 

disorders, research in this field is expected to steadily continue.  Given some of the similarities in 

formulation strategies, transdermal delivery is expected to benefit from advances in localised dermal 

delivery.  However, the skin is a lipidic barrier membrane and as such, it does not lend itself to the 

facile delivery of hydrophilic or charged peptides and proteins.  Owing to the efficient barrier function 

of the skin, it is difficult to envisage the delivery of peptides with molecular weights greater than 5-10 

kDa at therapeutic input rates by truly non-invasive methods, such as iontophoresis or sonophoresis, 

which do not set out to puncture the membrane and introduce pores or similar transport channels.  It is 

certainly true that iontophoresis is well-suited to peptide delivery owing to the controlled input kinetics 

that it alone can provide.  For the transdermal delivery of larger macromolecules, we will have to resort 

to the “minimally-invasive” techniques such as microneedles and other related technologies that 

abrade or remove the stratum corneum.  These methods certainly open the door to the delivery of a 

much wider range of macromolecules.  The numerous jet-injectors also offer a different way into the 

body and are finding a useful niche for the non-invasive delivery of vaccines and this area, which is 

also open to exploitation by the microneedle platforms, may prove to be very fruitful.  These different 

delivery technologies provide complementary techniques for the administration of different types of 

peptides and proteins and there are clearly many opportunities and unmet needs to be addressed.  

For all of these platforms, the key to success will always be careful selection of the peptide/protein 

therapeutic agent. Given the advantages of the transdermal route, one can hope that the rational 

design and synthesis of therapeutics optimised for transdermal delivery with the correct mix of 

physicochemical properties is not too far off.  It is certain that only such close collaboration between 

medicinal chemists and formulation scientists will enable the successful delivery of tomorrow’s drugs. 



Chapitre 1  27 
 
 

12. REFERENCES 

1.  Cevc,G. (1997): Drug delivery across the skin.  Expert Opinion on Investigational Drugs, 6:1887-
1937. 

2.  Naik,A., Kalia,Y.N., and Guy,R.H. (2000): Transdermal drug delivery: overcoming the skin's 
barrier function.  PSTT, 3:318-326. 

3.  Scheuplein,R.J. and Blank,I.H. (1971): Permeability of the skin.  Physiol.Rev., 51:702-747. 

4.  Guy,R.H. (1996): Current Status and Future Prospects of Transdermal Drug Delivery.  
Pharm.Res., 13:1765-1769. 

5.  Choi,H.-K., Flynn,G.L., and Amidon,G.L. (1990): Transdermal Delivery of Bioactive Peptides: 
The Effect of n-Decylmethyl Sulfoxide, pH, and Inhibitors on Enkephalin Metabolism and 
Transport.  Pharm.Res., 7:1099-1106. 

6.  Banerjee,P.S. and Ritschel,W.A. (1989): Transdermal permeation of vasopressin. I. Influence of 
pH, concentration, shaving and surfactant on in vitro permeation.  Int.J.Pharm., 49:189-197. 

7.  Shah,P.K. and Borchardt,R.T. (1991): A comparison of peptidase activities and peptide 
metabolism in cultured mouse keratinocytes and neonatal mouse epidermis.  Pharm.Res., 8:70-
75. 

8.  Fräki,J.E., Lazarus,G.S., and Hopsu-Havu,V.K. (1983): Protein catabolism in the skin. In: 
Biochemistry and Physiology of the Skin, edited by L.A.Goldsmith, Oxford University Press, New 
York, pp. 338-362.  

9.  Martin,R.J., Denyer,S.P., and Hadgraft,J. (1987): Skin metabolism of topically applied 
compounds.  Int.J.Pharm., 39:23-32. 

10.  Morimoto,K., Iwakura,Y., Nakatani,E., Miyazaki,M., and Tojima,H. (1992): Effects of Proteolytic 
Enzyme Inhibitors as Absorption Enhancers on the Transdermal Iontophoretic Delivery of 
Calcitonin in Rats.  J.Pharm.Pharmacol., 44:216-218. 

11.  Morimoto,K., Iwakura,Y., Miyazaki,M., and Nakatani,E. (1992): Effects of proteolytic enzyme 
inhibitors of enhancement of transdermal iontophoretic delivery of vasopressin and an analogue 
in rats.  Int.J.Pharm., 81:119-125. 

12.  Riesz,P. and Kondo,T. (1992): Free radical formation induced by ultrasound and its biological 
implications.  Free Radical Biol.Med., 13:247-270. 

13.  Hikima,T., Hirai,Y., and Tojo,K. (1998): The effect of ultrasound application on skin metabolism 
of prednisolone 21-acetate.  Pharm.Res., 15:1680-1683. 

14.  Smith,E.W. and Maibach,H.I. (1995): Percutaneous Penetration Enhancers. CRC Press, Boca 
Raton. 

15.  Williams,A.C. and Barry,B.W. (2004): Penetration enhancers.  Adv.Drug Deliv.Rev., 56:603-618. 

16.  Marro,D, Delgado-Charro,M.B., and Guy,R.H., Marro,D. (2001): Transdermal absorption of 
Peptides and Proteins. In: Encyclopedia of Pharmaceutical Technology, edited by J.Swarbrick, 
et al, Marcel Dekker, New York, pp. 2125-2140.  

17.  Lashmar,U.T., Hadgraft,J., and Thomas,N. (1989): Topical application  of penetration enhancers 
to the skin of nude mice: a histopathological study.  J.Pharm.Pharmacol., 41:118-122. 



Chapitre 1  28 
 
 

18.  Gozes,I., Reshef,A., Salah,D., Rubinraut,S., and Fridkin,M. (1994): Stearyl-norleucine-
vasoactive intestinal peptide (VIP): a novel VIP analog for noninvasive impotence treatment.  
Endocrinology, 134:2121-2125. 

19.  Foldvari,M., Attah-Poku,S., Hughes,H., Babiuk,L.A., and Kruger,S. (1998): Palmitoyl derivatives 
of interferon alpha: potential for cutaneous delivery.  J.Pharm.Sci., 87:1203-1208. 

20.  Waranuch,N., Ramachandran,C., and Weiner,N. (1998): Controlled topical delivery of 
cyclosporin A from nonionic liposomal formulations: mechanistic aspects.  Journal of Liposome 
Research, 8:225-238. 

21.  Foldvari,M., Baca-Estrada,M.E., He,Z., Hu,J., Attah-Poku,S., and King,M. (1999): Dermal and 
transdermal delivery of protein pharmaceuticals: lipid-based delivery systems for interferon 
alpha.  Biotechnol.Appl.Biochem., 30:129-137. 

22.  Cevc,G. (1996): Transferosomes, liposomes and other lipid suspensions on the skin: 
Permeation enhancement, vesicle penetration, and transdermal drug delivery.  Critical Reviews 
in Therapeutic Drug Carrier Systems, 13:257-388. 

23.  Cevc,G., Gebauer,D., Stieber,J., Schätzlein,A., and Blume,G. (1998): Ultraflexible vesicles, 
Transfersomes, have an extremely low pore penetration resistance and transport therapeutic 
amounts of insulin across the intact mammalian skin.  Biochim.Biophys.Acta, 1368:201-215. 

24.  Touitou,E., Godin,B., and Weiss,C. (2000): Enhanced delivery of drugs into and across the skin 
by ethosomal carriers.  Drug Dev.Res., 50:406-415. 

25.  Touitou,E., Dayan,N., Bergelson,L., Godin,B., and Eliaz,M. (2000): Ethosomes - novel vesicular 
carriers for enhanced delivery: characterization and skin penetration properties.  
J.Control.Release, 65:403-418. 

26.  Dayan,N. and Touitou,E. (2000): Carriers for skin delivery of trihexyphenidyl HCl: ethosomes vs. 
liposomes.  Biomaterials, 21:1879-1885. 

27.  Jain,S., Umamaheshwari,R.B., Bhadra,D., and Jain,N.K. (2004): Ethosomes: a novel vesicular 
carrier for enhanced transdermal delivery of an antiHIV agent.  Indian Journal of Pharmaceutical 
Sciences, 66:72-81. 

28.  Dkeidek,I. and Touitou,E. (1999): Transdermal absorption of polypeptides.  AAPS Pharm Sci, 
1:S202 

29.  Banga,A.K., Katakam,M., and Mitra,R. (1995): Transdermal iontophoretic delivery and 
degradation of vasopressin across human cadaver skin.  Int.J.Pharm., 166:211-216. 

30.  Sarpotdar,P.P.D.C.R., Liversidge,G.G., and Sternson,L.A. (1989): Facilitated iontophoretic 
delivery of thyrotropin releasing hormone (TRH) across cadaver skin by optimization of 
formulation variables.  Pharm.Res., 6 (Suppl.):S-107 

31.  Clemessy,M., Couarraze,G., Bevan,B., and Puisieux,F. (1995): Mechanisms Involved in 
Iontophoretic Transport of Angiotensin.  Pharm.Res., 12:998-1002. 

32.  Lau,D.T.W., Sharkey,J.W., Petryk,L., Mancuso,F.A., Yu,Z., and Tse,F.L.S. (1994): Effect of 
Current Magnitude and Drug Concentration on Iontophoretic Delivery of Octreotide Acetate 
(Sandostatin) in the Rabbit.  Pharm.Res., 11:1742-1746. 

33.  Heit,M.C., Monteiro-Riviere,N.A., Jayes,F.L., and Riviere,J.E. (1994): Transdermal Iontophoretic 
Delivery of Luteinzing Hormone Releasing Hormone (LHRH): Effet of Repeated Administration.  
Pharm.Res., 11:1000-1003. 

34.  Miller,L.L., Kolaskie,C.J., Smith,G.A., and Rivier,J. (1990): Transdermal Iontophoresis of 
Gonadotropin Releasing Hormone (LHRH) and Two Analogues.  J.Pharm.Sci., 79:490-493. 



Chapitre 1  29 
 
 

35.  Knoblauch,P. and Moll,F. (1993): In vitro pulsatile and continuous transdermal delivery of 
buserelin by iontophoresis.  J.Control.Release, 26:203-212. 

36.  Rodriguez Bayon,A.M. and Guy,R.H. (1996): Iontophoresis of Nafarelin Across Human Skin in 
Vitro.  Pharm.Res., 13:798-800. 

37.  Meyer,B.R., Kreis,W., Eschbache,J., O'Mara,V., Rosen,S., and Sibalis,D. (1988): Successful 
transdermal administration of therapeutic doses of a polypeptide to normal human volunteers.  
Clin.Pharmacol.Ther., 44:607-612. 

38.  Craan-van Hinsberg,W.H.M., Bax,L., Flinterman,N.H.M., Verhoeof,J., Junginger,H.E., and 
Boddé,H.E. (1994): Iontophoresis of a Model Peptide Across Human Skin in Vitro: Effects of 
Iontophoresis Protocol, pH, and Ionic Strength on Peptide Flux and Skin Impedance.  
Pharm.Res., 11:1296-1300. 

39.  Thysman,S., Hanchard,C., and Préat,V. (1994): Human Calcitonin Delivery in Rats by 
Iontophoresis.  J.Pharm.Pharmacol., 46:725-730. 

40.  Medi,B.M. and Singh,J. (2003): Electronically facilitated transdermal delivery of human 
parathyroid hormone (1-34).  Int.J.Pharm., 263:25-33. 

41.  Sage,B.H. (1997): Insulin iontophoresis. In: Protein Delivery - Physical systems, edited by 
L.M.Sanders, et al, Plenum Publishing Corp., New York, pp. 319-341.  

42.  Guy,R.H., Kalia,Y.N., Delgado-Charro,M.B., Merino,V., Lopez,A., and Marro,D. (2000): 
Iontophoresis: electrorepulsion and electroosmosis.  J.Control.Release, 64:129-132. 

43.  Hirvonen,J. and Guy,R.H. (1997): Iontophoretic Delivery Across the Skin: Electroosmosis and Its 
Modulation by Drug Substances.  Pharm.Res., 14:1258-1263. 

44.  Delgado-Charro,M.B. and Guy,R.H. (1994): Characterisation of Convective Solvent Flow During 
Iontophoresis.  Pharm.Res., 11:929-935. 

45.  Delgado-Charro,M.B. and Guy,R.H. (1995): Iontophoretic delivery of nafarelin across the skin.  
Int.J.Pharm., 117:165-172. 

46.  Hirvonen,J., Kalia,Y.N., and Guy,R.H. (1996): Transdermal delivery of peptides by 
iontophoresis.  Nat.Biotechnol., 14:1710-1713. 

47.  Hirvonen,J. and Guy,R.H. (1998): Transdermal iontophoresis: modulation of electroosmosis by 
polypeptides.  J.Control.Release, 50:283-289. 

48.  Hoogstraate,A.J., Srinivasan,V., Sims,S.M., and Higuchi,W.I. (1994): Iontophoretic 
enhancement of peptides: behaviour of leuprolide versus model permeants.  J.Control.Release, 
31:41-47. 

49.  Roberts,M.S., Kreis,W., Eschbache,J., O'Mara,V., Rosen,S., and Sibalis,D. (1990): Transdermal 
versus subcutaneous leuprolide: A comparison of acute pharmacodynamic effect.  
Clin.Pharmacol.Ther., 48:340-345. 

50.  Kumar,S., Char,H., Patel,S., Piemontese,D., Malick,A.W., Iqbal,K., Neugroschel,E., and 
Behl,C.R. (1992): In vivo transdermal iontophoretic delivery of growth hormone releasing factor 
GRF (1-44) in hairless guinea pigs.  J.Control.Release, 18:213-220. 

51.  Langkjaer,L., Brange,J., Grodsky,G.M., and Guy,R.H. (1998): Iontophoresis of monomeric 
insulin analogues in vitro: effects of insulin charge and skin pretreatment.  J.Control.Release, 
51:47-56. 



Chapitre 1  30 
 
 

52.  Kalia,Y.N., Naik,A., Garrison,J., and Guy,R.H. (2004): Iontophoretic drug delivery.  Adv.Drug 
Deliv.Rev., 56:619-658. 

53.  Denet,A.-R., Vanbever,R., and Préat,V. (2004): Skin electroporation for transdermal and topical 
delivery.  Adv.Drug Deliv.Rev., 56:659-674. 

54.  Sen,A., Daly,M.E., and Hui,S.W. (2002): Transdermal insulin delivery using lipid enhanced 
electroporation.  Biochim.Biophys.Acta, 1564:5-8. 

55.  Prausnitz,M.R., Edelman,E.R., Elazer,R., Gimm,J.A., Langer,R., and Weaver,J.C. (1995): 
Transdermal delivery of heparin by skin electroporation.  Biotechnology (N.Y.), 13:1205-1209. 

56.  Sersa,G., Cemazar,M., and Rudolf,Z. (2003): Electrochemotherapy: advantages and drawbacks 
in treatment of cancer patients.  Cancer Ther., 1:133-142. 

57.  Kost,J. (1998): Phonophoresis. In: Electronically Controlled Drug Delivery, edited by B.Berner, 
et al, CRC Press, Boca Raton, pp. 215-228.  

58.  Tezel,A., Sens,A., Tuscherer,J., and Mitragotri,S. (2001): Frequency dependence of 
sonophoresis.  Pharm.Res., 18:1694-1700. 

59.  Chien,Y.W., Siddiqui,O., Shi,W.-M., Lelawongs,P., and Liu,J.-C. (1989): Direct Current 
Iontophoretic Transdermal Delivery of Peptide and Protein Drugs.  J.Pharm.Sci., 78:376-383. 

60.  Alvarez-Roman,R., Merino,G., Kalia,Y.N., and Guy,R.H. (2003): Skin Permeability Enhancement 
by Low Frequency Sonophoresis: Lipid Extraction and Transport Pathways.  J.Pharm.Sci., 
92:1138-1146. 

61.  Merino,G., Kalia,Y.N., and Guy,R.H. (2003): Ultrasound-Enhanced Transdermal Transport.  
J.Pharm.Sci., 92:1125-1137. 

62.  Bommannan,D., Menon,G.K., Okuyama,H., Elias,P.M., and Guy,R.H. (1992): Sonophoresis: II. 
Examination of the mechanism(s) of ultrasound-enhanced transdermal drug delivery.  
Pharm.Res., 9:1043-1047. 

63.  Mitragotri,S., Edwards,D., Blankschtein,D., and Langer,R. (1995): A mechanistic study of 
ultrasonically enhanced transdermal drug delivery.  J.Pharm.Sci., 84:697-706. 

64.  Tezel,A., Sens,A., and Mitragotri,S. (2002): Investigations of the role of cavitation in low-
frequency sonophoresis using acoustic spectroscopy.  J.Pharm.Sci., 91:444-453. 

65.  Tezel,A. and Mitragotri,S. (2003): Interactions of inertial cavitation colapses with stratum 
corneum lipid bilayers.  Biophys.J., 85:1-11. 

66.  Mitragotri,S., Blankschtein,D., and Langer,R. (1995): Ultrasound-mediated transdermal protein 
delivery.  Science, 269:850-853. 

67.  Krall,L.P. (1988): World Book of Diabetes in Practice. Elsevier, New York. 

68.  Boucaud,A., Garrigue,M.A., Machet,L., Vaillant,L., and Patat,F. (2002): Effect of sonication 
parameters on transdermal delivery of insulin to hairless rats.  J.Control.Release, 81:113-119. 

69.  Katz,N.P., Shapiro,D.E., Herrmann,T.E., Kost,J., and Custer,L.M. (2004): Rapid Onset of 
Cutaneous Anesthesia with EMLA Cream After Pretreatment with a New Ultrasound-Emitting 
Device.  Anesth.Analg., 98:371-376. 

70.  Singer,A.J., Homan,C.S., Church,A.L., and McClain,S.A. (1998): Low-frequency sonophoresis: 
pathologic and thermal effects in dogs.  Acad.Emerg.Med., 5:35-40. 



Chapitre 1  31 
 
 

71.  Down,J.A. and Harvey,N.G. (2003): Minimally Invasive Systems for Transdermal Drug Delivery. 
In: Transdermal Drug Delivery, edited by R.H.Guy, et al, Marcel Dekker, New York, pp. 327-359.  

72.  McAllister,D.V., Wang,P.M., Davis,S.P., Park,J.-H., Canatella,P.J., Allen,M.G., and 
Prausnitz,M.R. (2003): Microfabricated needles for transdermal delivery of macromolecules and 
nanoparticles: Fabrication methods and transport studies.  Proc Natl Acad Sci, 100:13755-
13760. 

73.  Martanto,W., Davis,S.P., Holiday,N.R., Wang,J., Gill,H.S., and Prausnitz,M.R. (2004): 
Transdermal delivery of insulin using microneedles in vivo.  Pharm.Res., 21:947-952. 

74.  Cormier,M., Johnson,B., Ameri,M., Nyam,K., Libiran,L., Zhang,D.D., and Daddona,P. (2004): 
Transdermal delivery of desmopressin using a coated microneedle array patch system.  
J.Control.Release, 97:503-511. 

75.  Cormier,M. and Daddona,P. (2002): Macroflux® technology for transdermal delivery of 
therapeutic proteins and vaccines. In: Modified Release Drug Delivery Systems, edited by 
M.J.Rathbone, et al, Marcel Dekker, New York, pp. 589-598.  

76.  Fjellestad-Paulsen,A., Hoglund,P., Lundin,S., and Paulsen,O. (1993): Pharmacokinetics of 1-
deamino-8-D-arginine vasopressin after various routes of administration in healthy volunteers.  
Clin.Endocrinol., 38:177-182. 

77.  Matriano,J.A., Cormier,M., Johnson,J., Young,W.A., Buttery,M., Nyam,K., and Daddona,P.E. 
(2002): Macroflux microprojection array patch technology: a new and efficient approach for 
intracutaneous immunization.  Pharm.Res., 19:63-70. 

78.  Henry,S., McAllister,D.V., Allen,M.G., and Prausnitz,M.R. (1998): Microfabricated Microneedles: 
A Novel Approach to Transdermal Drug Delivery.  J.Pharm.Sci., 87:922-925. 

79.  Kaushik,S., Hord,A.H., Denson,D.D., McAllister,D.V., Smitra,S., Allen,M.G., and Prausnitz,M.R. 
(2001): Lack of Pain Associated with Microfabricated Microneedles.  Anesth.Analg., 92:502-504. 

80.  Prausnitz,M.R. (2004): Microneedles for transdermal drug delivery.  Adv.Drug Deliv.Rev., 
56:581-587. 

81.  Schramm,J. and Mitragotri,S. (2002): Transdermal drug delivery by jet injectors: energetics of jet 
formation and penetration.  Pharm.Res., 19:1673-1679. 

82.  Weniger, B. G. Needle-free jet injection bibliography, device & manufacturer roster, and patent 
list.  2004. (GENERIC) 

83.  King,T. (2003): Protein delivery via pre-filled needle-free liquid injection.  Drug Delivery 
Technology, 3:52-57. 

84.  Burkoth,T.L., Bellhouse,B.J., Hewson,G., Longridge,D.J., Muddle,A.G., and Sarphie,D.F. (1999): 
Tansdermal and Transmucosal Powdered Drug Delivery.  Critical Reviews in Therapeutic Drug 
Carrier Systems, 16:331-384. 

85.  Dean,H.J., Fuller,D., and Osorio,J.E. (2003): Powder and particle-mediated approches for 
delivery of DNA and protein vaccines into the epidermis.  Comp.Immunol.Microbiol.Infect.Dis., 
26:373-388. 

86.  Schneider,U., Birnbacher,R., and Schober,E. (1994): Painfulness of needle and jet injection in 
children with diabetes mellitus.  Eur.J.Pediatr., 153:409-410. 

87.  Dorr,H.G., Zabransky,S., Keller,E., Otten,B.J., Partsch,C.J., Nyman,L., Gillespie,B.K., 
Wilson,A.M., Hyren,C., van Kuijck,M.A., Schuld,P., and Schoenfeld,S.L. (2003): Are needle-free 
injections a useful alternative for growth hormone therapy in children? Safety and 



Chapitre 1  32 
 
 

pharmacokinetics of growth hormone delivered by a new needle-free injection device compared 
to a fine gauge needle.  J Pediatr Endocrinol Metab., 16:383-392. 

88.  Agerso,H., Moller-Pedersen,J., Cappi,S., Thomann,P., Jesussek,B., and Senderovitz,T. (2002): 
Pharmacokinetics and pharmacodynamics of a new formulation of recombinant human growth 
hormone administered by ZomaJet 2 Vision, a new needle-free device, compared to 
subcutaneous administration using a conventional syringe.  Journal of Clinical Pharmacology, 
42:1262-1268. 

89.  Verrips,G.H., Hirasing,R.A., Fekkes,M., Vogels,T., Verloove-Vanhorick,S.P., and Delemarre-Van 
de Waal,H.A. (1998): Psychological responses to the needle-free Medi-Jector or the multidose 
Disetronic injection pen in human growth hormone therapy.  Acta Paediatrica, 87:154-158. 

90.  Bennett,J., Nichols,F., Rosenblum,M., and Condry,J. (1998): Subcutaneous administration of 
midazolam: a comparison of the Bioject jet injector with the conventional syringe and needle.  
J.Oral Maxillofac.Surg., 56:1249-1254. 

91.  Murray,F.T. (2001): HIV Patient Acceptance of a Needle-Free Device (SeroJetTM) for 
Administering Recombinant Human Growth Hormone in the Treatment of HIV Infection-
Associated Cachexia.  Today's Therapeutic Trends, 19:283-295. 

92.  Murray,F.T., Wright,G.J., Landy,H., and et al. (2001): Comparative bioequivalence and patient 
acceptance of recombinant human growth hormone administered by a needle-free jet injector 
device or standard syringe injection.  Today's Therapeutic Trends, 19:137-155. 

93.  Svedman,P., Lundi,S., and Svedman,C. (1991): Administration of antidiuretic peptide (DDAVP) 
by way of suction de-epithelialised skin.  Lancet, 337:1506-1509. 

94.  Lundin,S., Svedman,P., Höglund,P., Breeders,A., and Melin,P. (1995): Absorption of an 
Oxytocin Antagonist (Antocin) and a Vasopressin Analogue (dDAVP) Through a Standardized 
Skin Erosion in Volunteers.  Pharm.Res., 12:2024-2029. 

95.  Westerling,D., Hoglund,P., Lundin,S., and Svedman,P. (1994): Transdermal administration of 
morphine to healthy subjects.  Br.J.Clin.Pharmacol., 37:571-576. 

96.  Svedman,P., Lundi,S., Höglund,P., Hammarlund,C., Malmros,C., and Pantzar,N. (1996): 
Passive Drug Diffusion via Standardized Skin Mini-erosion; Methodological Aspects and Clinical 
Findings with New Device.  Pharm.Res., 13:1354-1359. 

97.  Manaloto,R.M.P. and Alster,T. (1999): Erbium:YAG Laser Resurfacing for Refractory Melasma.  
Dermatol.Surg., 25:121-123. 

98.  Lee,W.-R., Shen,S.-C., Wang,K.-H., Hu,C.-H., and Fang,J.-Y. (2002): The Effect of Laser 
Treatment on Skin to Enhance and Control Transdermal Deliver of 5-Fluorouracil.  J.Pharm.Sci., 
91:1613-1626. 

99.  Nelson,J.S., McCullough,J.L., Glenn,T.C., Wright,W.H., Liaw,L.H., and Jacques,S.L. (1991): 
Mid-infrared laser ablation of stratum corneum enhances in vitro percutaneous transport of 
drugs.  J.Invest.Dermatol., 97:874-879. 

100.  Sintov,A.C., Krymberk,I., Daniel,D., Hannan,T., Sohn,Z., and Levin,G. (2003): Radiofrequency-
driven skin microchanneling as a new way for electrically assisted transdermal delivery of 
hydrophilic drugs.  J.Control.Release, 89:311-320. 

101.  Levin, G., Gershonowitz, A., Sherman, A., Avidov, I., Stern, M., and Philip, M. Viaderm™ - novel 
microelectronic device enhances skin permeability of human growth hormone.  2003. Glasgow, 
Proceedings of the 30th Annual Meeting of the Controlled Release Society. 19-7-0003. (GENERIC) 

102.  Mitragotri,S. (2000): Synergistic Effect of Enhancers for Transdermal Drug Delivery.  
Pharm.Res., 17:1354-1359. 



Chapitre 1  33 
 
 

103.  Choi,E.H., Lee,S.H., Ahn,S.K., and Hwang,S.M. (1999): The pretreatment effect of chemical 
skin penetration enhancers in transdermal drug delivery using iontophoresis.  Skin 
Pharmacol.Appl.Skin Physiol., 12:326-335. 

104.  Pillai,O., Nair,V., and Panchagnula,R. (2004): Transdermal iontophoresis of insulin: IV. Influence 
of chemical enhancers.  Int.J.Pharm., 269:109-120. 

105.  Bommannan,D.B. (1994): Effect of electroporation on transdermal iontophoretic delivery of 
luteinizing hormone releasing hormone (LHRH) in Vitro.  Pharm.Res., 11:1809-1814. 

106.  Sugibayashi,K., Kagino,M., Numajiri,S., Inoue,N., Kobayashi,D., Kimura,M., Yamaguciii,M., and 
Morimoto,Y. (2000): Synergistic effects of iontophoresis and jet injector pretreatment on the in-
vitro skin permeation of diclofenac and angiotensin.  J.Pharm.Pharmacol., 52:1179-1186. 

107.  Meehan,E., Gross,Y., Davidson,D., Martin,M., and Tsals,I. (1996): A microinfusor device for the 
delivery of therapeutic levels of peptides and macromolecules.  J.Control.Release, 46:107-116. 

108.  Doukas,A.G. and Flotte,T.J. (1996): Physical characteristics and biological effects of laser-
induced stress waves.  Ultrasound Med.Biol., 22:151-164. 

109.  Doukas,A.G., McAuliffe,D.J., Lee,S., Venugopalan,V., and Flotte,T.J. (1995): Physical factors 
involved in stress-wave-induced cel injury: The effect of stress gradient.  Ultrasound Med.Biol., 
21:961-967. 

110.  Lee,S., Kollias,N., McAuliffe,D.J., Flotte,T.J., and Doukas,A.G. (1999): Topical drug delivery in 
humans with a single photomechanical wave.  Pharm.Res., 16:1717-1721. 

111.  Lee,S., McAuliffe,D.J., Flotte,T.J., Kollias,N., and Doukas,A.G. (1998): Photomechanical 
transcutaneous delivery of macromolecules.  J.Invest.Dermatol., 111:925-929. 

112.  Lee,S., McAuliffe,D.J., Flotte,T.J., Kollias,N., and Doukas,A.G. (2001): Photomechanical 
transdermal delivery: the effect of laser confinement.  Lasers Surg.Med., 28:344-347. 

113.  Lee,S., McAuliffe,D.J., Kollias,N., Flotte,T.J., and Doukas,A.G. (2002): Photomechanical 
delivery of 100-nm microspheres through the stratum corneum: implications for transdermal 
drug delivery.  Lasers Surg.Med., 31:207-210. 

114.  Lee,S., McAuliffe,D.J., Mulholland,S.E., and Doukas,A.G. (2001): Photomechanical transdermal 
delivery of insulin in vivo.  Lasers Surg.Med., 28:282-285. 

115.  Shomaker,T.S., Zhang,J., Love,G., Basta,S., and Ashburn,M.A. (2000): Evaluating skin 
anesthesia after administration of local anesthetic system consisting of an S-Caine patch and a 
controlled heat-aided drug delivery (CHADD) patch in volunteers.  Clin.J.Pain, 16:200-204. 

116.  Herndon,T.O., Gonzalez,S., Gowrishankar,T.R., Anderson,R.R., and Weaver,J.C. (2004): 
Transdermal microconduits by microscission for drug delivery and sample acquisition.  BMC 
Medicine, 2:12 

117.  Oberyé,J., Mannaerts,B., Huisman,J., and Timmer,C. (2000): Local tolerance, 
pharmacokinetics, and dynamics of ganirelix (Orgalutran) administration by Medi-Jector 
compared to conventional needle injections.  Hum.Reprod., 15:245-249. 

118. Cool.click: a needle-free device for growth hormone delivery. (2001)  Medical letter on drugs and 
therapeutics  43 :2-3. 

119.  Houdijk,E., Herdes,E., Delemarre-Van de Waal, H. (1997):  Pharmacokinetics and 
pharmacodynamics of recombinant human growth hormone by subcutaneous jet- or needle-
injection in patients with growth hormone deficiency.  Acta Paediatrica, 86:1301-1307. 



Chapitre 1  34 
 
 

 



 
 
 

CHAPITRE 2 

Effet de la séquence en acides aminés sur le 
transport des peptides par ionophorèse 



 
 
 

 

 



Chapitre 2  35 
 
 

CHAPITRE 2 

Effet de la séquence en acides aminés sur le 
transport des peptides par ionophorèse 

Yannic B. Schuetz1,2, Aarti Naik1,2, Richard H. Guy3, Yogeshvar N. Kalia1,2,* 

1 Section des sciences pharmaceutiques, Université de Genève, Quai Ernest-Ansermet 30, Genève, 
CH-1211, Suisse. 

2 Centre Interuniversitaire de Recherche et d’Enseignement, “Pharmapeptides”, Site d’Archamps, F-
74160 Archamps, France. 

3 Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK. 

Résumé 

L’objectif de cette étude était d’évaluer l’effet de la séquence en acides aminés sur 

l’administration transdermique des peptides par ionophorèse.  Une série de tripeptides cationiques de 

structure similaire basée sur les séquences (i) 6-8 de la LHRH (Ac-X-Leu-Arg-NH2) et (ii) 3-5 de 

l’octréotide (Ac-X-DTrp-Lys-NH2) ont été étudiés.  L’effet de la concentration en peptide sur le flux 

ionophorétique a été évalué par des expériences de transport réalisées in vitro sur de la peau de porc.  

L’administration simultanée de paracetamol a permis de séparer les contributions de l’électromigration 

(EM) et de l’électroosmose (EO) ainsi que de calculer un facteur d’inhibition électroosmotique (IF).  

Une augmentation de la concentration en peptide dans le compartiment donneur d’un facteur de 2 

induit une augmentation du flux ionophorétique de la plupart des peptides ainsi qu’une inhibition de 

l’électroosmose pour les peptides contenant DNal.  L’amélioration du transport ainsi que l’impact sur 

les composantes EM et EO étaient spécifiques aux peptides.  La réduction du nombre de ions 

compétiteurs dans la formulation augmenta le transport de façon importante, plus spécifiquement la 

contribution EM; elle augmenta également l’IF des composés susceptibles d’interagir avec la 

membrane.  Le flux se montra indépendant du poids moléculaire ainsi que du ClogP.  Le transport 

ionophorétique des peptides n’a pu être rationalisé en termes ni de poids moléculaire, ni de lipophilie 

estimée par méthode fragmentale.  Les résultats suggèrent qu’une approche tridimensionnelle plus 

complexe est nécessaire à l’établissement de relations structure-permeation gouvernant 

l’administration des peptides par ionophorèse. 
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Abstract  

The objective of this study was to investigate the effect of amino acid sequence on the 

transdermal delivery of peptides by iontophoresis.  Structurally-related, cationic tripeptides based on 

the residues at positions (i) 6-8 in LHRH (Ac-X-Leu-Arg-NH2) and (ii) 3-5 in octreotide (Ac-X-DTrp-Lys-

NH2) were studied.  Iontophoretic transport experiments were conducted using porcine skin in vitro to 

investigate the dependence of flux on peptide concentration.  Co-iontophoresis of acetaminophen 

enabled deconvolution of the contributions of electromigration (EM) and electroosmosis (EO) and the 

calculation of an electroosmotic inhibition factor (IF).  A two-fold increase in donor peptide 

concentration increased iontophoretic flux for most peptides, and electroosmotic inhibition for DNal-

containing tripeptides.  The improvement in transport and the impact on the EM and EO components 

were peptide-specific.  A reduction in the number of competing ions in the formulation significantly 

increased transport and, specifically, the EM contribution; it also increased IF of compounds with a 

propensity to interact with the membrane.  No monotonic dependence of flux on either molecular 

weight or lipophilicity was observed.  Iontophoretic peptide transport could not be rationalized in terms 

of either peptide molecular weight or computational 2D estimates of lipophilicity. Data suggest that a 

more complex three-dimensional approach is required to develop structure permeation relationships 

governing iontophoretic peptide delivery. 

Key words: Iontophoresis, electroosmosis, electromigration, skin, peptides 
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INTRODUCTION 

Constant current iontophoresis provides an efficient, controlled method of transdermal drug 

administration since the amount delivered is directly proportional to the quantity of charge passed (i.e., 

the product of the current intensity and the duration of current application).  Modulation of current 

intensity (and profile) enables the drug input rate to be customized to the needs of each patient, or 

phase of treatment, and offers the possibility of noninvasive pulsatile delivery. 

Iontophoresis may be particularly suited to the controlled transdermal delivery of low molecular 

weight peptide therapeutics since these are frequently potent, charged and certain among them, e.g., 

the LHRH analogues, can elicit different pharmacological effects depending on the delivery kinetics 

[1]. 

Under physiological conditions, the skin is negatively charged and convective solvent flow in the 

direction of cation movement complements electromigration and allows the transport of neutral 

molecules.  Hence, the steady-state iontophoretic flux of a cationic peptide (Jpep) is the sum of the 

electromigratory (JEM) and electroosmotic (JEO) contributions (assuming a negligible passive diffusion), 
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where zpep and cpep are the concentration and valence, respectively, of the peptide; F is the 

Faraday constant, and υ the electroosmotic flow; tpep is the fraction of the total applied current density 

(I) carried across the skin by the peptide, its so-called transport number, which can be further defined 

in terms of the charge, concentration and mobility (u) of all ions (i = 1 to n) in the system:  
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The mobilities and concentrations refer to those in the membrane but, for simplicity, are 

frequently considered to be either linearly dependent on, or equal to, the values in solution depending 

on the assumed degree of aqueous character of the transport pathway.  From Equation 1, it is clear, 

given the proportional dependence of iontophoretic flux on both drug concentration and applied 

current that increasing either parameter should increase the flux.  However, the iontophoretic transport 

of certain LHRH analogues, for example, nafarelin [2] and leuprolide [3], has a distinctly nonlinear 

dependence on the peptide concentration in the donor compartment.  Indeed, in a study examining the 

iontophoretic delivery of leuprolide to humans in vivo, plasma concentrations decreased as the 

concentration of the peptide in the iontophoretic device was increased [4].  Analogous behaviour was 

also observed during the iontophoretic delivery of octreotide to rabbits in vivo; bioavailability increased 

with current intensity but decreased with increasing peptide concentration [5]. 

In contrast to nafarelin and leuprolide, LHRH behaves as predicted by theory even though it only 

differs from these analogues in the amino acid at position six (a glycine in LHRH; D-naphthylalanine in 

nafarelin; D-leucine in leuprolide).  Both analogues contain lipophilic residues that, together with the 
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leucine at position 7, create a bulky lipophilic moiety directly adjacent to a positively charged residue 

(Arg8).  It has been suggested that the iontophoretic transport pathway contains accessible lipophilic 

surfaces and anionic sites capable of interacting with lipophilic cations.  In general, these interactions 

could reduce the overall iontophoretic flux for two reasons: (i) the interaction hinders drug transport by 

reducing the electrical mobility of the molecule, and (ii) strong binding could neutralize the skin’s 

negative charge and decrease EO. 

Iontophoresis of a series of oligopeptides, and their effect on mannitol flux, indicated that both 

lipophilicity and a positive charge were required for EO inhibition to occur [6].  These results validated 

the hypothesis that the amino acids at positions 6-8 in LHRH and nafarelin were the key to their 

unique iontophoretic transport behaviour.  The inhibitory effect of the tripeptides was related to their 

proposed lipophilicities [6].  Since the -Phe3-DTrp4-Lys5- sequence in octreotide has the same 

(hydrophobe-hydrophobe-cation) motif identified for the anomalous behavior of leuprolide and 

nafarelin, the inverse dependence of plasma octreotide levels and the peptide dose might also be 

attributed to EO inhibition. 

To-date there has been no systematic and quantitative study of the incremental effect of 

molecular weight/lipophilicity on iontophoretic peptide transport.  The aim of the present work was to 

study the effect of amino acid sequence on the iontophoretic behavior of cationic peptides and to 

identify the role of physicochemical parameters in controlling peptide electrotransport across the skin.  

The first series of structurally-related oligopeptides, Ac-X-Leu-Arg-NH2 (where X=Gly, DAla, DLeu, 

DSer, DCit, DPhe, DTrp, and DNal) was based on the amino acids found at positions 6-8 in LHRH 

analogues.  Substitution of the N-terminal residue enabled a systematic modification of the tripeptide’s 

physicochemical properties.  In addition to acetylation of the N-terminal and amidation of the C-

terminal, the presence of D-amino acids at the N-terminal position further improved resistance to 

cutaneous metabolism.  A second series of tripeptides was based on the sequence at positions 3-5 in 

octreotide (Ac-X-DTrp-Lys-NH2 (where X = Phe, Ser, and Tyr)).  Finally, a series of “hybrid” tripeptides 

(Ac-Phe-DTrp-Arg-NH2, Ac-DNal-Arg-Leu-NH2, Ac-Leu-DNal-Arg-NH2, and Ac-DNal-Leu-Lys-NH2) 

containing residues from the “LHRH” and “octreotide” series was also studied.  In addition to 

quantifying peptide transport, the iontophoretic flux of a co-administered EO marker was measured to 

assess the magnitude of convective solvent flow and to determine the relative contributions of each 

transport mechanism.  Prediction of the relative importance of EM and EO and the identification of 

molecular properties determining whether, and to what extent, a therapeutic peptide inhibits its own 

transport is clearly important for formulation design. 

MATERIALS AND METHODS 

Chemicals 

Tripeptides of the form Ac-X-Leu-Arg-NH2 (where X=Gly, Ala, DAla, DLeu, DSer, DPhe, DTrp, 

DCit (citrulline), and DNal (2-naphthylalanine), Ac-X-DTrp-Lys-NH2 (where X=Phe, Ser, and Tyr), Ac-

Phe-DTrp-Arg-NH2, Ac-DNal-Arg-Leu-NH2, Ac-Leu-DNal-Arg-NH2, and Ac-DNal-Leu-Lys-NH2 were 
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synthesized either by the Institute of Biochemistry at the University of Lausanne (Lausanne, 

Switzerland), or by NeoMPS Inc. (Strasbourg, France).  For conciseness, single letter codes have 

been used for the amino acids in the figures.  Acetaminophen and ninhydrin were purchased from 

Fluka (Sigma-Aldrich Chimie Sarl, France).  Tris (Tris-(hydroxymethyl) aminomethane), Trizma 

hydrochloride and agarose were obtained from Sigma-Aldrich (Sigma-Aldrich Chimie Sarl, France) 

and 1-heptanesulfonic acid sodium salt from Fisher Chemicals (Fisher Scientific, NJ). De-ionized 

water (resistivity > 18 Mohm/cm2) was used to prepare all solutions. 

Analytical procedures 

Arginine-containing tripeptides were quantified by high-performance liquid chromatography with 

on-line post-column fluorescence derivatization [7].  Briefly, the method involved detection of the 

fluorophore derived from condensation of the guanidine moiety of arginine with ninhydrin (contained in 

the mobile phase) in an alkaline stream.  The chromatographic system comprised a Model 600E 

solvent delivery pump, an in-line degasser, a Model 717plus injector and a reaction system equipped 

with a mixing tee, a single-piston pulse-dampened pump and a RXN 1000 reaction coil (Waters 

Corporation, MA).  The mobile phase consisted of either 22 or 38% acetonitrile depending on the 

lipophilicity of the peptide.  The aqueous phase contained 15 mM sodium heptanesulfonate and 5 mM 

ninhydrin, adjusted to pH 3.5 with acetic acid.  The flow rate was 1 ml/min.  After elution through a 

Zorbax SB-C8 column (4.6 mm i.d., 25 cm long, 5 µm particle size) (Agilent Technologies Inc., CA), 

the stream was mixed with a 0.5 M sodium hydroxide solution delivered at a flow rate of 0.5 ml/min.  

Both the column and the reaction coil were maintained at 60°C.  A Waters 474 scanning fluorescence 

detector was used to detect the derivatized fluorophore using an excitation wavelength of 395 nm and 

an emission wavelength of 500 nm. 

The remaining peptides were quantified by high-performance liquid chromatography using the 

same column maintained at the same temperature, but with UV detection.  The mobile phase 

contained acetonitrile and a triethylaminephosphate buffer solution, pH 2.3.  The ratio of organic to 

aqueous phase was dependent on the compound: 30:70 for Ac-DNal-Leu-Lys-NH2 (detected at 228 

nm), 20:80 for Ac-Phe-DTrp-Lys-NH2, and 12:88 for Ac-Ser-DTrp-Lys-NH2 and Ac-Tyr-DTrp-Lys-NH2.  

These latter tripeptides were detected at 278 nm. 

The RSD of repeatability was less than 1% and the quantification limit was typically between 0.2 

and 0.4 µM for all the peptides assayed. 

Similarly, acetaminophen was assayed with a mobile phase comprising 92% water and 8% 

acetonitrile adjusted to pH 3.5 with acetic acid.  The flow rate was 1.5 ml/min.  Acetaminophen was 

detected by its UV absorbance at 243 nm.  The RSD of the repeatability was less than 1 % and the 

quantification limit was 0.7 µM. 

Skin preparation 

Porcine ears were obtained shortly after sacrifice from the local abattoir (SODEXA, Annecy, 

France) and were cleaned under cold running water.  The whole skin was removed carefully from the 
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outer region of the ear and separated from the underlying cartilage with a scalpel.  The tissue was 

then dermatomed (800 µm), wrapped in Parafilm and maintained at –20°C before use for a period no 

longer than 2 months. 

Iontophoresis procedure 

The skin was clamped in three-compartment vertical flow-through diffusion cells (area: 0.726 

cm2), the design of which has been previously described [8].  Tripeptides (2.18 or 4.36 mM) were 

dissolved in a 154 mM Tris/Trizma HCl-buffered solution (pH 7.4).  In addition to the peptide, the 

donor solution (1 ml) always contained 15 mM acetaminophen, which was used to report on the 

convective solvent flow.  The cathodal compartment was filled with 1 ml of 25 mM Tris/Trizma HCl-

buffered (pH 7.4) normal saline.  The receptor compartment, containing ~6 ml of the same electrolyte 

solution, was magnetically stirred and perfused at a flow rate of ~3 ml/h.  

In a second series of experiments, the anode was isolated from the donor solution via a salt 

bridge (100 mM Tris/Trizma HCl in 3% agarose) to minimize the effect of competing ions.  In this case, 

the anodal compartment contained a solution of 25 mM Tris/Trizma HCl normal saline buffered to pH 

7.4.  The solutions in the donor compartment comprised 4.36 mM of the respective peptide and 15 

mM acetaminophen dissolved in 20 mM Tris/Trizma HCl (pH 7.4).  

In all experiments, a constant current (0.5 mA/cm2) was applied for 8 hours via Ag/AgCl 

electrodes connected to a power supply (Kepco, NJ). 

All measurements were made in at least triplicate, using skin from different pigs. 

Quantifying EO inhibition 

Acetaminophen is a neutral hydrophilic compound, with poor passive permeability, that can be 

iontophoretically driven through the skin by electroosmosis.  It was therefore included in the peptide 

formulation in the donor compartment (15 mM) as a marker for the direction and magnitude of 

convective flow. 

For each experiment, an Inhibition Factor (IF) was calculated using the following equation:  

IF = [QA-8h,control] / [QA-8h,peptide] (3) 

where QA-8h,control is the amount of acetaminophen transported into the receptor phase during 8 hours 

of iontophoresis in the absence of peptide, and QA-8h,peptide is the corresponding quantity when a 

tripeptide was simultaneously iontophoresed. 

Determination of EM and EO contributions to iontophoresis 

The iontophoretic flux (J) of a charged species is the sum of the component fluxes - JEM and JEO – 

due to electromigration and electroosmosis (assuming that the passive permeability is negligible): 

pepEOpepEM JJJ ,, +=  (4) 
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During iontophoresis, the current-induced flow of water (Vw) across the skin can be estimated 

from [9]: 

aceacew CJV /=  (5) 

where Jace is the acetaminophen flux and Cace is its concentration in the donor compartment.  It follows 

that, if Vw has been quantified in the presence of drug, then the convective component of its 

iontophoretic transport (JEO) can be calculated by multiplying Vw by the peptide concentration in the 

donor solution (Cpep) [10]: 

pepwEO CVJ ⋅=  (6) 

This analysis makes three assumptions: (a) that peptide and acetaminophen are transported in 

a similar fashion by convective solvent flow, (b) that transport of peptide and acetaminophen is 

independent and there is no interaction between the two species, and (c) that EO transport of the 

marker molecule is proportional to its concentration in the solvent.  

It follows that equations (4)-(6) can be used to estimate the relative contributions of EO and EM 

to the total iontophoretic flux of the peptide. 

Transport number determination 

Transport number was calculated for each tripeptide according to the following equation (derived from 

Equation 1): 

TI
Ftransportpeptidecumulativet peptide ⋅

⋅
=  (7) 

where F is the Faraday constant (96485 C/mol), I is the applied current intensity and T the duration of 

current application. 

Peptide accumulation in the skin 

The uptake of peptide by the skin during iontophoresis was also quantified.  Once the current 

was stopped, the dermatomed skin sample was washed with water, dried on absorbent paper, and 

then placed in 4 ml of the mobile phase used in the HPLC analytical method to extract the peptide.  

After stirring for 14 hours, the solution was filtered (0.45 µm regenerated cellulose syringe filter, 

Alltech, IL) and the peptide was quantified in the normal way. 

Data treatment 

The results were derived from at least triplicate experiments conducted with skin samples 

originating from different pig ears.  Outliers, determined using the Grubbs test, were discarded.  When 

two sets of data where compared, Student t tests were performed.  The level of statistical significance 

was fixed at P < 0.05. 
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RESULTS AND DISCUSSION 

Effect of peptide concentration 

The impact of doubling the donor concentration from 2.18 to 4.36 mM was tested for each 

tripeptide.  The iontophoretic flux for each peptide at the two concentrations is presented graphically in 

Figure 1.   
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Figure 1. The influence of donor [peptide] and [Tris+] on peptide transport across porcine skin in vitro. 

The data for each named peptide is shown in the upper panel (a); the spread of data is illustrated in the lower 
graph (b).  SB denotes the use of a salt bridge to decrease electrolyte concentration. 

According to Faraday’s Law, at low concentrations, and in the absence of peptide-membrane or 

peptide-peptide interactions, electrotransport should increase proportionally with concentration in the 

presence of background electrolyte [11].  However, while doubling the donor concentration resulted in 

significantly increased fluxes for nearly all tripeptides, fluxes of Ac-DNal-Leu-Arg-NH2 and Ac-Leu-

DNal-Arg-NH2 at 4.36 mM were not statistically different from those measured from a donor 

concentration of 2.18 mM.  This can be partly explained by the suppression of convective solvent flow 

induced by these peptides.  Effectively, these two peptides, which both possess a bulky lipophilic 

moiety (leucine adjacent to 2-naphthylalanine) were the only molecules to exhibit EO inhibition 

(IF=2.2; Figure 2).  These results are consistent with the previously reported observation that although 

DNal-Leu-Arg had a significant effect on electroosmosis, there was no inhibition during iontophoresis 

of Ala-Leu-Arg [6]. 
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Figure 2. The influence of donor [peptide] and [Tris+] on electroosmotic inhibition.  

IF =  [QA-8h,control] / [QA-8h,peptide] (see Equation 3 for definitions). 
The data for each named peptide is shown in the upper panel (a); the spread of data is illustrated in the lower 
graph (b). 
SB denotes the use of a salt bridge to decrease electrolyte concentration. 

 

Next, we wished to address whether the transport efficacy of the peptides investigated could be 

correlated to one or several aspects of their physical chemistry (e.g., molecular weight and 

lipophilicity).  However, despite the expansive range of peptides tested - encompassing a spectrum of 

physicochemical signatures, their iontophoretic transport remained, surprisingly, unaffected.  This is 

illustrated in Figure 1, where the mean Jss for each peptide has been plotted as a function of the donor 

formulation; while peptide fluxes generally increased at the higher donor concentration, they did not 

appear to be peptide-specific.  Similarly, their impact on EO at the higher peptide concentration was 

only discernible for two of the peptides tested (Figure 2).  That is, the data dispersion was not 

sufficient to enable discrimination between the peptides on the basis of their physical chemistry. 

Since phenomena such as peptide aggregation and EO inhibition, which are dictated by amino 

acid sequence, and which ultimately affect total iontophoretic transport, are generally concentration-

dependent, it is possible that the use of higher concentrations would have allowed discrimination 
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between the peptides.  However, due to the limited amounts of peptide available, an alternative 

approach was employed to increase transport efficacy.   

Effect of competing ions on peptide delivery 

Ag/AgCl electrodes need chloride ions for anodal electrochemistry (~100mM – for the 

experiments described here) derived from either the molecule under study or from an external source 

(e.g., NaCl or buffer); in the latter case the number of competing cations in the anodal formulation is 

greatly increased.  To increase peptide transport efficacy, the number of competitive cations in the 

donor compartment can be reduced (~20 mM) by using a salt bridge assembly.  This is illustrated in 

Figure 1, which shows the doubling of iontophoretic fluxes upon decreasing donor [Tris+] 

approximately 5-fold.  This increased transport efficacy was similarly reflected by the calculated 

transport numbers: experiments performed at 4.36 mM without a salt bridge resulted in transport 

numbers ranging from 0.0004 to 0.003; values as high as 0.0086 were obtained with the reduced 

levels of donor Tris+.  As a consequence, the EM contribution to the total iontophoretic peptide flux 

was increased when the number of competitive charge carriers was decreased. 

In addition to increasing peptide transport, the reduced competition from donor cations also 

resulted in a more pronounced inhibition of EO for the majority of peptides (Figure 2).  For compounds 

with a propensity to interact with the membrane, the entry of greater quantities of peptide into the skin, 

leads to greater skin charge neutralization and hence, reduced convective solvent flow. 

The total iontophoretic flux is the linear combination of the EM and EO contributions (Eq. (1)).  

Assuming that these components are independent, it is possible to examine the effect of increasing 

peptide concentration on each component separately.  First, with respect to EM, if the peptide 

concentration in the donor compartment is increased from cpep,1 to cpep,2 (assuming that the 

proportionality constant between the concentrations in solution and skin is unity), then the ratio of the 

EM fluxes, JEM,2/JEM,1, is given by: 

( )
( )

21,

12,

1,

2,

∑
∑=

iiipep

iiipep

EM

EM

cuzc
cuzc

J
J

  (9) 

where (Σziuici)n refers to the sum of products of the valence, mobility and concentration of the 

competing charge carriers for the two formulations, respectively.  Under the experimental conditions 

used in this study, the donor compartment contained protonated Tris in addition to the peptide, and the 

receiver contained Cl- ions, therefore expansion of Equation 9 yields: 

( )
( )2,1,

1,2,

1,

2,

peppepClClTRISTRISpep

peppepClClTRISTRISpep

EM

EM

cucucuc
cucucuc

J
J

++

++
=  (10) 

Two limiting conditions are easily identified: 

Case 1: [electrolyte] >> [peptide] 



Chapitre 2  45 
 
 

1,

2,

1,

2,
2,1,

pep

pep

EM

EM
peppepClClTRISTRISpeppep c

c
J
J

cucucucu =⇒>>+<<  (11) 

Case 2: [peptide] >> [electrolyte] 

1
1,

2,
2,1, =⇒<<+>>

EM

EM
peppepClClTRISTRISpeppep J

J
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Thus, at low peptide concentrations, the ratio of EM fluxes is equal to the ratio of the 

concentrations (Case 1).  As peptide concentration is increased relative to the electrolyte levels, the 

EM flux ultimately becomes independent of concentration and the ratio tends to unity (Case 2).  Since 

the background electrolytes in the donor and receiver compartments were in significant excess (either 

20 or 154 mM Tris cation in the donor and 154 mM chloride anion in the receiver) compared to the 

peptide (2.18 or 4.36 mM), CASE 1 was considered to hold for these experiments. 

The effect of increasing peptide concentration on EO can be expressed as follows:  

1,
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2,

1,

2,
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EO

c
c

vc
vc

J
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==  (13) 

Based on Equations 11 and 13, a two-fold increase in peptide concentration is expected to 

result in a corresponding increase in the EM and EO contributions.  The ratio of EM (JEM(4.36/2.18)) 

and EO (JEO(4.36/2.18)) contributions at the two peptide concentrations are shown in  Figure 3a.  The 

JEM(4.36/2.18) and JEO(4.36/2.18) ratios for the Ac-X-DTrp-Lys-NH2 tripeptides were clustered around 

the predicted value of 2, suggesting an equivalent effect on both transport mechanisms.  However, 

there was more variability associated with the Ac-X-Leu-Arg-NH2 series. 

Upon subsequent reduction of the donor electrolyte concentration, the EM and EO contributions 

were markedly different (Figure 3b).  Under these conditions the relative contribution of EO was 

significantly reduced as evidenced by JEO(4.36+SB/2.18) < 1 for most peptides.  In contrast, 

JEM(4.36+SB/2.18) was much higher, ranging from 1 to 8.  The reduced EO was manifested by those 

peptides displaying an IF greater than 1 (Figure 2a).  Concomitantly, the reduction in the number of 

competing cations, significantly increased the fraction of current transported by the tripeptides, 

accounting for an EM contribution of 77 to 93% to the overall transport. 



Chapitre 2  46 
 
 

G-L-R

DL-L-R

DF-L-R

F-D
W-R

F-D
W-K

Y-D
W-K

S-D
W-K

DS-L-R

DW-L-R

DCit-L
-R

DNal-
L-R

DNal-
R-L

DNal-
L-K

L-D
Nal-

R
0.0

0.5

1.0

1.5

2.0

2.5

3.0
EMEO

J i
(4

.3
6)

 / 
J i(

2.
18

)

G-L-R

DL-L-R

DF-L-R

F-D
W-R

F-D
W-K

Y-D
W-K

S-D
W-K

DW-L-R

DCit-L
-R

DNal-
L-R

DNal-
R-L

DNal-
L-K

L-D
Nal-

R
0

1

2

3

4

5

6

7

8

9
EO EM

J i
(4

.3
6+

SB
) /

 J i
(2

.1
8)
a)

b)

 

Figure 3.  The effect of donor peptide concentration (a) and the subsequent impact of reduced donor 
electrolyte (Tris+) levels (b) on the contributions of EM and EO to iontophoretic transport.   

(A) The y-axis, Ji(4.36/2.18), represents the flux ratio of either EM or EO at the two peptide concentrations (2.18 
and 4.36 mM). 
(B) The y-axis, Ji(4.36+SB/2.18), expresses the additional influence of reduced donor Tris+ levels. 

The anomalous behaviour of the Ac-X-Leu-Arg-NH2 series is further illustrated by Figure 4, 

which compares the transport behaviour of Ac-Gly-Leu-Arg-NH2 and Ac-DNal-Leu-Arg-NH2 under 

various experimental conditions.  Whereas the flux of the former was dependent on donor peptide and 

electrolyte levels, transport of the latter was indifferent to the experimental conditions employed 

(Figure 4). 
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Figure 4.  Iontophoretic fluxes and inhibition factors of Ac-Gly-Leu-Arg-NH2 and Ac-DNal-Leu-Arg-NH2 as 

a function of the experimental conditions.  

A = Donor peptide conc. 2.18 mM and electrolyte conc. 154 mM; B = Donor peptide conc. 4.36 mM and 
electrolyte conc. 154 mM and C = Donor peptide conc. 4.36 mM and electrolyte conc. ≅20 mM. 

Peptide accumulation in the skin does not always imply EO inhibition 

At the end of the iontophoretic experiments, bound peptide was extracted from the skin samples 

and quantified.  Generally, greater amounts were recovered for those peptides exhibiting the highest 

inhibition factors.  For example, in the absence of excess Na+, significantly more Ac-Leu-DNal-Arg-NH2 

(260 ± 30 µg, IF = 8 ± 5) was recovered than Ac-DCit-Leu-Arg-NH2, (47 ± 16 µg, IF = 1.1 ± 0.3).  

Conversely, however, the mere accumulation of a cationic peptide in the membrane was not in itself a 

sufficient condition for significant EO inhibition; as typified by Ac-Phe-DTrp-Lys-NH2, (330 ± 40 µg, IF = 

1.8 ± 0.4).  This peptide has approximately the same molecular weight as Ac-Leu-DNal-Arg-NH2; 

although similar amounts were retrieved from the respective skin samples, the latter is a significantly 

more powerful EO inhibitor, as evidenced by its IF, which is ~4.7-fold greater. 

Effect of peptide physicochemical properties on iontophoretic delivery  

Molecular weight and lipophilicity are among physicochemical parameters commonly used to 

describe variations in passive transport across biological membranes.  However, for these model 

tripeptides, there appeared to be no correlation between their transdermal iontophoretic transport and 

either molecular weight or calculated lipophilicity (Figure 5).   
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Figure 5.  Peptide fluxes as a function 
of a) Molecular weight and b) logP 
values calculated using Daylight 
ClogP (Daylight Chemical Information 
Systems, Inc., Mission Viejo, CA 
(www.daylight.com)).  

Donor peptide conc. 4.36 mM and 
electrolyte conc. ≅ 20 mM. 

 

For example, the flux of Ac-DNal-Leu-Arg-NH2 (MW = 526 Da), was ~10-fold lower than that of 

Ac-DTrp-Leu-Arg-NH2, a peptide of comparable molecular weight (MW = 515 Da).  More striking was 

the lack of correlation between peptide flux and lipophilicity over values of calculated P spanning 5 

orders of magnitude.  The flux of Ac-DNal-Leu-Arg-NH2 (ClogP = 0.26) was more than 5-fold lower 

than that of Ac-Phe-DTrp-Arg-NH2, a peptide only slightly less lipophilic (ClogP of -0.15).  This strongly 

suggests that 1D- and 2D-descriptors cannot adequately explain iontophoretic transport in terms of 

peptide physicochemical properties, and that a computational study involving the 3D-spatial 

distribution of these properties over the entire molecular surface is necessary to explain the observed 

transport kinetics. 

CONCLUSIONS 

The electrically-assisted delivery of structurally related tripeptides derived from the amino acid 

sequences at positions 6-8 in LHRH (Ac-X-Leu-Arg-NH2) and 3-5 in octreotide (Ac-X-DTrp-Lys-NH2) 
was investigated to identify the effect of single amino acid substitutions on iontophoretic transport.  

Co-iontophoresis of acetaminophen enabled deconvolution of the EM and EO contributions.  Although 
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increasing donor peptide concentration generally produced an increase in peptide flux, the relative 

effects on EM and EO were peptide-dependent.  Transport was further increased when electrolyte 

levels were reduced and under these conditions, the dominance of electromigration was more 

pronounced.  Nevertheless, certain tripeptides, where the first two residues created a large 

hydrophobic surface in proximity to the positive charge at the C-terminal position were able to shut 

down convective solvent flow.  Qualitatively, lipophilic cations appeared to have poorer transport; 

however there was no direct dependence of transport on either molecular weight or calculated log P.  

It is possible that peptide flux depends on the spatial distribution of lipophilicity and other 

physicochemical parameters.  The increased data dispersion obtained with reduced levels of donor 

electrolyte should prove useful for ongoing computational studies aimed at identifying (i) structure-

permeation relationships governing peptide iontophoresis and (ii) the impact of specific 

physicochemical properties and their spatial distribution on delivery. 
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Résumé 

Cette étude a pour objectifs (i) d’évaluer l’importance de la séquence en acides amines, (ii) 

d’étudier comment la distribution spatiale des propriétés physicochimiques des peptides influence leur 

électrotransport, (iii) de développer un modèle quantitatif permettant de prédire le passage des 

peptides.  Les résultats expérimentaux ont montré que la séquence en acides aminés, qui détermine 

la distribution des propriétés moléculaires au sein du peptide, exerce un effet important sur 

l’administration par ionophorèse : différents arrangements des même résidus résultent en des 

transports différents.  Des études computationnelles ont permis de générer des relations structure-

perméation quantitatives tridimensionnelles (3D-QSPR) basées sur des descripteurs 3D.  Le modèle 

prédit que la ionophorèse est favorisée par l’hydrophilie des peptides alors qu’elle est entravée par 

une hydrophobie volumineuse et localisée.  Les caractéristiques moléculaires qui favorisent 

l’électrotransport à travers la peau sont contraires à celles requises pour une diffusion passive.  Les 

résultats présentent la première analyse de l’électrotransport de peptides en termes de distribution 

spatiale des propriétés moléculaires et offrent un premier pas vers la prédiction ab initio de 

l’administration transdermique des peptides par ionophorèse 
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Abstract 

The aims of this study were (i) to evaluate the importance of amino acid sequence, (ii) to 

investigate how the spatial distribution of peptide physicochemical properties influence their 

electrotransport, and (iii) to develop a quantitative model with which to predict peptide transport rates.  

Experimental results showed that amino acid sequence, which determines the distribution of molecular 

properties over the peptide surface, significantly affected iontophoretic delivery: different 

arrangements of the same residues resulted in different transport behavior.  Computational studies 

generated three-dimensional Quantitative-Structure-Permeation-Relationships (3D-QSPR) based on 

3D descriptors.  The model predicted that iontophoresis was favored by peptide hydrophilicity but 

hindered by voluminous, localized hydrophobicity.  The molecular characteristics that favor 

electrotransport are the converse of those required for passive diffusion across the skin. The data 

represent the first analysis of peptide electrotransport in terms of the spatial distribution of molecular 

properties and provide insight into the ab initio prediction of transdermal iontophoretic peptide delivery.   

Keywords:  transdermal iontophoresis; electroosmosis; skin; peptide; QSPR 
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The skin represents an easily accessible, relatively large site for drug administration.  However, 

the barrier properties of the skin restrict the number of systemically-acting drugs that can be passively 

delivered by this route to a select group of low molecular weight, potent compounds with the 

appropriate balance of physicochemical properties.  Transdermal delivery of potent, therapeutic 

peptides is precluded by their polar (or charged) nature, which limits their transport across the stratum 

corneum, the lipidic rate-limiting barrier to percutaneous transit.  Moreover, attainment of delivery rates 

required to achieve and to maintain therapeutic levels, by simple passive diffusion, would probably 

require large (and unrealistic) patch areas as well as the use of aggressive chemical enhancers to 

reduce skin barrier function (an approach that is likely to be unacceptable for chronic application 

because of local irritation). 

Iontophoresis is an electrically-assisted drug delivery technology that enables non-invasive, 

controlled administration of low molecular weight peptide therapeutics.  A small electric potential is 

used to drive ions into the body; increased drug mobility enables greater amounts to be delivered in 

shorter times.  Drug input rate is controlled by the applied current intensity enabling individualized 

therapy according to patient needs and disease progression.  Moreover, modulation of the current 

allows complex drug delivery profiles to be achieved.  For example, continuous delivery of the LHRH 

analog, leuprolide, used in the treatment of prostate cancer, suppressed testosterone levels and 

resulted in biochemical castration in human volunteers [1].  In contrast, pulsatile administration of 

LHRH, again in humans, was able to mimic the body’s natural release profile and promoted secretion 

of LH [2].  

Electrotransport occurs through two principal mechanisms: electromigration (direct effect of the 

applied electric field on the charged species) and electroosmosis (convective solvent flow in the 

anode-to-cathode direction, as a result of the skin’s net negative charge at physiological pH).  

Although theory suggests, and experiments typically confirm, that electrotransport generally increases 

proportionally with current density and concentration [3], the transport of certain cationic compounds, 

including several peptides, shows the opposite behavior, a phenomenon attributed to an inhibition of 

electroosmosis [4-7].  Subsequent studies, involving measurement of mannitol flux, a marker for 

electroosmosis, during the iontophoresis of a series of oligopeptides, suggested that the presence of a 

bulky hydrophobic moiety adjacent to a positively charged residue, enabled the peptides to bind to the 

negatively charged skin membrane, thereby eliminating the membrane’s cationic permselectivity, and 

shutting down electroosmosis [8]. 

To-date there has been no systematic, quantitative study into the key molecular properties that 

govern peptide electrotransport.  The objectives of the present investigation were to identify these 

parameters and to demonstrate that 1- and 2-dimensional descriptors are inadequate measures to 

account for the complex behavior observed: even for small, dynamic oligopeptides, transport can only 

be interpreted accurately in terms of the 3-dimensional spatial distribution of these properties over the 

molecular surface.  Thus, different arrangements of the same amino acids within a given peptide 

significantly alter transport behavior.  The longer-term goal was to use experimentally determined 

iontophoretic tripeptide fluxes to develop a quantitative structure-permeation relationship (QSPR) 

capable of ab initio prediction of electrotransport.  While several models have been proposed to 
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predict passive skin permeation [9], none employing molecular properties (beyond molecular weight) 

have been developed to explain “active” delivery by iontophoresis. 

RESULTS 

Molecular weight and 2-dimensional parameters are inadequate descriptors of peptide 
transport 

Because of their greater mobilities in an electric field, low molecular weight cations display much 

higher iontophoretic permeabilities than high molecular weight proteins; but molecular weight or size is 

not a sufficiently discriminating parameter to explain subtle differences in transport.   

 

Figure 1. Absence of correlation 
between iontophoretic peptide flux 
and either (a) molecular weight 
(Daltons), or (b) calculated octanol-
water partition coefficient (ClogP).  
Open circles correspond to lysine-
containing peptides 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 

 

Figure 1a clearly shows that this parameter cannot explain the differences observed between 

the peptides studied here.  For example, Ac-DTrp-Leu-Arg-NH2 (n°11) and Ac-DNal-Leu-Arg-NH2 (n°1) 

have similar molecular weights (515 and 526 Da, respectively), but the flux of the former is ~12-fold 

greater (150 ± 50 versus 13 ± 6 nmol/cm2/h).  Similarly, since iontophoretic peptide transport [8] has 
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been correlated with lipophilicity, octanol-water partition coefficients (ClogP) were calculated for all 

compounds.  Although it is generally preferable to use log D to denote lipophilicity of ionizable 

compounds, log P was used here as the ionization state of all the peptides studied was assumed to be 

identical since the experimental pH was always 3 units below the pKa of the basic residue.  Thus the 

effect of ionization on lipophilicity was assumed to be constant in this homologous series of tripeptides 

originated from either arginine or lysine residue.  Figure 1b shows that ClogP is poorly correlated with 

measured peptide flux.  For instance, Ac-Phe-DTrp-Lys-NH2, which is only slightly more hydrophilic 

than Ac-DNal-Leu-Arg-NH2 (calculated ClogP values of 0.263 and 0.449, respectively), had a 10-fold 

higher flux (130 ± 30 versus 13 ± 6 nmol/cm2/h).  Furthermore, multilinear regression analysis failed to 

establish a satisfactory correlation between peptide flux and conventional two-dimensional (2D) 

parameters (e.g., solvent accessible surface area, molecular flexibility, topological indices) included in 

the DRAGON software package [10] (data not shown).  This suggested that 2D descriptors were 

poorly adapted to the task of interpreting electrotransport of these peptides across the skin.  In light of 

these results, a three-dimensional approach was adopted. 

Quantifying physicochemical properties over the 3D molecular surface  

An iterative variable selection allowed a large decrease of the VolSurf molecular descriptors 

derived from the WATER probe, the DRY probe, MLP and MHBPs.  Indeed starting from the 148 

original parameters, only the 24 most pertinent descriptors were retained to describe the iontophoretic 

flux and led to a two-component PLS model, which accounted for 85% of the total variance of the 

matrix (Figure 2).   
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Figure 2.  Relationship between experimental and calculated peptide iontophoretic fluxes using 

the two-component PLS model (13 compounds, 24 descriptors, r2 = 0.85, q2 = 0.78). 
 

The coefficient plot of this model (Figure 3a) shows the contribution of the retained 24 VolSurf 

descriptors.  The vertical bars represent the contribution of each individual descriptor, the height of the 
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columns reflecting the weight of the contribution.  Positive coefficients correspond to descriptors that 

favor peptide transport.   
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Figure 3. PLS coefficient plots correlating VolSurf descriptors with (a) peptide iontophoretic 

flux, and (b) electroosmosis inhibition.   
Volume (V) = isoenergetic contours of hydrophobic interaction regions; capacity factors (CF) = volume 
parameters (Vhydrophilic or Vhydrophobic), divided by the total molecular surface; integy moments (I) = 
resultant (or sum) of the vectors pointing from the centre of mass of the molecule to the centres of the 
hydrophobic regions. 

 

According to this plot, a good iontophoretic transport is favored by molecular hydrophilicity, as 

indicated by the positive Capacity factors derived from the WATER probe (CFWater).  In contrast, the 

descriptors of hydrophobic interactions (VMLPphob, IMLPphob and CFMLPphob) are inversely correlated with 

the measured transdermal fluxes, demonstrating the negative effect of hydrophobicity on peptide 

iontophoretic delivery.  The strongly negative contributions of the integy moments (IMLPphob, resultant 

(or sum) of the vectors pointing from the centre of mass of the molecule to the centres of the 

hydrophobic regions) reveal a major influence of the hydrophobicity distribution on transport; localized 

hydrophobicity, asymmetrically distributed over the molecular surface creates potential interaction 

sites with the membrane that may impede transport. 

As in the case of the peptide flux, an iterative variable selection procedure allowed the 

identification of the most relevant VolSurf descriptors encoding for properties describing 
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electroosmosis inhibition.  Although less successful, the model was nevertheless able to establish a 

correlation between IF and these molecular descriptors.  The coefficient plot (Figure 3b) shows that 

electroosmotic inhibition, and hence decreased transport, is induced by strong hydrophobic 

interactions (positive VMLPphob and CFMLPphob), confirming the above findings that these properties 

hinder peptide transport (Figure 3a).  Moreover, the spatial distribution of the physicochemical 

properties over the molecular surface was again shown to play a role.  Neutralization of skin charge 

and concomitant abolition of electroosmosis was favored by localized hydrophilicity, as evidenced by 

the magnitude of the hydrophilic integy moment contribution (positive IWater).  In physical terms, 

localized hydrophilicity (corresponding to positive charge centers) creates a site capable of strong 

electrostatic interaction with the fixed negative charges in the skin. 

Predicting iontophoretic peptide transport  

The experimental data showed that significantly different fluxes were observed for two 

tripeptides containing different arrangements of the same amino acids, specifically Ac-DNal-Leu-Arg-

NH2 (13 ± 6 nmol/cm2/h) and Ac-Leu-DNal-Arg-NH2 (32 ± 11 nmol/cm2/h).  The PLS model was also 

sensitive to the amino acid arrangement (Figure 2).  The predictive power of the model was, therefore, 

tested by delivering an additional peptide, Ac-Leu-Gly-Arg-NH2, comprising the same amino acids as 

Ac-Gly-Leu-Arg-NH2 - a member of the original (training) set - but with the amino acids arranged in a 

different order.  The predicted iontophoretic flux of Ac-Leu-Gly-Arg-NH2 (149 ± 10 nmol/cm2/h) was 

significantly higher than that of Ac-Gly-Leu-Arg-NH2 (93 ± 1 nmol/cm2/h; calculated). This result was in 

very good agreement with experiments since the iontophoretic flux of Ac-Leu-Gly-Arg-NH2 (150 ± 30 

nmol/cm2/h) was measured higher than that of Ac-Gly-Leu-Arg-NH2 (92 ± 14; experimental). 

DISCUSSION 

Passive diffusion versus iontophoretic delivery 

Accurate in silico prediction of skin permeability to drug substances and other chemical agents 

present in the environment would have considerable utility for both transdermal drug delivery and 

toxicology fields.  This has led to the development of several mathematical models that attempt to 

relate passive skin permeability to the penetrant’s physicochemical properties [9].  Many of these 

models have identified lipophilicity as a key property, which positively contributes to skin permeation 

[11-14].  A recent study using the same 3D molecular interaction fields as used here related the 

physicochemical properties of 79 compounds to their passive permeation across human epidermis in 

vitro (Bajot F., Geinoz S., Rey S., Cruciani G., Guy R. H., Carrupt P.-A., The Volsurf approach in 

structure-permeation relationships: molecular interaction fields focused on specific intermolecular 

interactions, manuscript in preparation).  It was found that good passive skin permeation was favored 

by bulky, localized hydrophobic regions, and that large hydrophilic interaction volumes were 

unfavorable.  In the present study, we have demonstrated that transdermal peptide iontophoresis is 

favored by increased hydrophilicity (as measured by the hydrophilic capacity factor, CFWater) but 
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hindered by strong, localized hydrophobic interactions.  These results emphasize the differences 

between passive and electrically-assisted transport across the skin, and corroborate the idea that 

different transport mechanisms and pathways are involved in passive and electrically-assisted 

transport.  Whereas passive solute permeation occurs mainly via the intercellular, lipidic matrix of the 

stratum corneum [15], it seems likely that ionic shunts [16], essentially aqueous pathways, are 

predominantly involved in iontophoresis. 

External prediction of flux 

Although additional peptides must be tested to determine the real predictive power of the model, 

the similarity between the predicted and experimental iontophoretic flux of Ac-Leu-Gly-Arg-NH2 

constitutes a promising first step towards the validation of the predictive capacity of the model. 

Impact of amino acid sequence 

The experimental iontophoretic flux of Ac-Leu-Gly-Arg-NH2 (150 ± 30 nmol/cm2/h) and Ac-Gly-

Leu-Arg-NH2 (92 ± 14 nmol/cm2/h) confirmed that amino acid sequence influences peptide transport.  

In addition to higher hydrophilic capacity factors, Ac-Leu-Gly-Arg-NH2 has significantly smaller and 

less localized hydrophobic regions thereby (according to the PLS model) favoring iontophoretic 

peptide transport.  Figure 4 illustrates the bulkier hydrophobic surfaces in Ac-Gly-Leu-Arg-NH2 

compared to Ac-Leu-Gly-Arg-NH2.   
 

 

Figure 4. Hydrophobic interactions calculated using the MLP field for (a) Ac-Gly-Leu-Arg-NH2, and (b) Ac-

Leu-Gly-Arg-NH2 at 0.34 kcal/mol.  Integy moments (resultant (or sum) of the vectors pointing from the centre of 

mass of the molecule to the centres of the hydrophobic regions) are shown as grey bars.  

The favored 3D configuration of Ac-Leu-Gly-Arg-NH2 places the leucine side chain adjacent to 

arginine, reducing the “apparent hydrophobicity” of the former and hindering its participation in 

hydrophobic interactions.  Moreover, the carbonyl group in the peptide bond between the Leu and Arg 

residues, provides a polar interaction site, further reducing the lipophilicity of leucine.  It can be seen 

that the hydrophobic interaction region in Ac-Gly-Leu-Arg-NH2 is both larger and more localized and 

accessible.  According to the model, therefore, this localization will influence interactions with the skin 

) 

b) a) 
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transport pathways, and have an impact on the overall transdermal flux.  This effect of amino acid 

arrangement on transdermal iontophoretic delivery is worth further investigation. 

Impact of charge type 

Peptides derived from the somatostatin analogues (Ac-X-DTrp-Lys-NH2), with a C-terminal 

lysine residue, exhibited significantly higher fluxes than their counterparts derived from LHRH (Ac-X-

Leu-Arg-NH2) in which the positive charge originates from the C-terminal arginine residue.  To 

determine whether charge type was implicated in this difference, “hybrid” peptides were synthesized in 

which the arginine in Ac-DNal-Leu-Arg-NH2 (from nafarelin) was replaced by lysine, and the lysine in 

Ac-Phe-DTrp-Lys-NH2 (from octreotide) was replaced by arginine.  Figure 5a shows that, whereas the 

replacement of arginine by lysine increased the “nafarelin-type” peptide flux from 13 ± 6 to 40 ± 12 

nmol/cm2/h, the reverse transformation decreased the “octreotide-type” peptide flux from 130 ± 30 to 

80 ± 17 nmol/cm2/h.   

 

 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 5. Comparing arginine and lysine 
positive charges.   

(a) Effect of charge type on the anodal 
iontophoretic flux of four cationic peptides.  
(b) Electrostatic potential distributions on 
the Van der Waals molecular surface of Ac-
Phe-DTrp-Arg-NH2 (left) and Ac-Phe-DTrp-
Lys-NH2 (right), calculated using the SYBYL 
6.9 molecular modelling package (Tripos 
Associates, MO).  Increasing charge density 
is colour-coded from blue to red. 

 

Charge type certainly appeared to play a significant role, therefore, in the iontophoretic transport 

of cationic oligopeptides - with the primary amine in the lysine side-chain functioning as a more 

favorable positive charge centre than the more delocalized guanidinium group present in arginine.  
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Visualization of the spatial distribution of the electrostatic potential, around the respective charge 

centres on the Van der Waals molecular surface, confirmed the more localized charge, and greater 

charge density, for the primary amine group in lysine (Figure 5b). 

CONCLUSIONS 

The current study provides the first systematic, quantitative analysis of iontophoretic peptide transport.  

It was shown that conventional 2D descriptors could not be correlated to the measured fluxes and that 

it was essential to consider the 3D environment, in particular, the spatial distribution of molecular 

descriptors.  A PLS model was developed and demonstrated that increasing hydrophilicity favored 

peptide transport, whereas bulky and localized hydrophobic regions were a hindrance.  Comparison 

with the preferred physicochemical characteristics for passive diffusion emphasized that iontophoretic 

and passive diffusional transport pathways must be different.  Moreover, the arrangement of the 

constituent amino acids, even for dynamic tripeptide systems, governs electrotransport.  This finding 

merits further investigation as the development of iontophoretic drug delivery systems, especially 

those incorporating peptides, is pursued. 

METHODS 

Log P calculation.  Log P values were calculated using Daylight ClogP version 4.73 (Daylight 

Chemical Information Systems, Inc., Mission Viejo, CA (www.daylight.com)) 

Overview of the 3D approach. The procedure consisted of the following major steps: 

1. Modelling 3D peptide molecular structures. 

2. Computation of the Molecular Lipophilicity Potential (MLP), Molecular hydrogen-bonding 

potentials (MHBPs ) and GRID 3D molecular fields. 

3. Generation of the VolSurf descriptors. 

4. Statistical analysis using partial least squares discriminant analysis (PLS). 

Dataset.  Iontophoretic fluxes of 13 tripeptides derived from LHRH and somatostatin analogs were 

measured in vitro across porcine ear skin, using vertical diffusion cells with a salt bridge system (full 

experimental conditions and a complete description of the effect of formulation conditions on peptide 

transport are given in Y.B.S., A.N., R.H.G. and Y.N.K., Effect of amino acid sequence on transdermal 

iontophoretic peptide delivery, submitted to European Journal of Pharmaceutical Sciences).  All 

tripeptides were blocked both at the N-terminal (by acetylation) and the C-terminal (by amidation) so 

that the charge was only provided by the constitutive amino acid side chains.  For conciseness, single 

letter codes have been used for amino acids in the graphics.  (Cit = Citrulline and Nal = 2-

Naphthylalanine).  Acetaminophen, a neutral hydrophilic compound with poor passive permeability, 

that can be driven through the skin only by electroosmosis, was incorporated in the donor 
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compartment as a marker of the magnitude of convective flow.  For each peptide, an Inhibition Factor 

(IF) was calculated according to the following equation:  

IF = [QA-8h,control] / [QA-8h,peptide] (1) 

where QA-8h,control is the amount of acetaminophen transported into the receptor phase during 8 hours 

of iontophoresis when no peptide was present in the donor solution, and QA-8h,peptide is the 

corresponding quantity when the tripeptide was iontophoresed simultaneously. 
Permeation and inhibition data are collated in Figure 6. 
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Figure 6. Fluxes and inhibition factors of peptides iontophoresed across porcine ear skin in vitro. 

Modelling of 3D molecular structures.  Tripeptides were drawn in their charged state using the 

biopolymer building tool of Sybyl 6.9 (Tripos Associates, MO, 1995), and energy-optimized using the 

Tripos force field (Tripos Associates, MO, 1995).  For each tripeptide, a conformational search was 

performed using the Sybyl Genetic Algorithm protocol.  The lowest energy structure was retained and 

optimized using the Tripos force field.  Minimizations were performed in vacuo (ε = 1). 

Computation of 3D molecular fields (GRID, MLP and MHBPs).  The GRID field is one of the most 

widely used computational tools to map molecular surfaces of drugs and macromolecules [17].  It uses 

a potential based on the total energy of interaction (the sum of Lennard-Jones, H-bonding and 

electrostatic terms) between a target molecule and a probe, which can either be a single atom or a 

group of atoms.  By moving probes over the surface of the target molecule, GRID yields a property 

distribution of attractive and repulsive forces between the probe and the target molecule.  The 

molecular interaction fields were calculated using the WATER and the DRY probes available in the 

GRID program [18].  The WATER probe simulates hydrophilic interactions, whereas the DRY probe 

encodes for polarizability.   
At a given point in space, the MLP represents the result of the intermolecular interactions encoded by 

the lipophilicity of all fragments in the molecule [19].  Thus, the MLP represents the relative affinity of a 
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solute for water and octanol.  The MLP spreads out molecular lipophilicity on the solvent-accessible-

surface of a molecule, allowing a quantitative visualization by color coding.  Negative MLP values 

correspond to “hydrophilic” parts of the molecule, whereas positive MLP values (MLPphob) quantify 

pure hydrophobic interactions.  Molecular hydrogen-bonding potentials (MHBPs) allow the exploration 

of three-dimensional H-bonding properties.  The development of this tool is based on a stepwise 

procedure comparable to that used to calculate the MLP.  Two MHBPs are generated, able to 

distinguish between donor (MHBPdo) and acceptor (MHBPac) H-bonding properties [20]. 

Generation of VolSurf descriptors.  VolSurf allows the extraction of one-dimensional numerical 

descriptors from 3D-isoenergetic (isopotential) contours [17].  The most important descriptors, 

calculated at different energy levels, are: 

• Volumes (V), corresponding to the space enclosed by the isoenergetic contours of hydrophilic 

(hydrophobic) interaction regions 

• Integy moments (I), which are resultants (or sums) of the vectors pointing from the centre of 

mass of the molecule to the centres of the hydrophilic (hydrophobic) regions 

• Capacity factors (CF), which are the volume parameters (V), divided by the total molecular 

surface 

Statistical analysis.  PLS analysis was performed with SIMCA-P 6.1 (Umetrics AB, Sweden, 1996) 

using default settings.  A “leave-one-out” cross-validation procedure was used to quantify the 

predictive power of the PLS model, yielding the predictive correlation coefficient (q2) [21,22].  

Descriptors were discarded if their associated coefficient possessed a confidence interval (derived 

from jack knifing) larger than the coefficient itself.  An iterative procedure was used to progressively 

refine the model and retain the most relevant descriptors. 
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Résumé 

But.  Evaluer la faisabilité de l’administration transdermique du vapréotide, analogue de la 

somatostatine, par ionophorèse. 

Méthode.  Des expériences in vitro ont été réalisées avec de la peau d’oreille de porc soit 

dermatomisée, soit traitée à la chaleur pour l’obtention de l’épiderme.  En plus de la quantification du 

transport du vapréotide dans et à travers le tissu cutané, l’effet de l’administration du peptide sur la 

permsélectivité de la peau a également été mesuré.  L’influence (i) de la densité de courant appliqué 

(ii) du traitement de la peau avant et après ionophorèse, (iii) des ions compétiteurs et (iv) de l’inclusion 

d’albumine dans le récepteur sur l’administration du vapréotide ont été étudiés. 

Résultats.  L’épiderme s’est révélé être un meilleur modèle que la peau dermatomisée pour l’étude 

du transport du vapréotide.  Malgré sa susceptibilité à la dégradation enzymatique, un flux de 1.7 

µg/cm2/h a pu être atteint après 7 heures d’ionophorèse à courant constant (0.15mA/cm2).  

L’extraction après ionophorèse a révélé qu’en fonction des conditions expérimentales, 80 à 300 µg de 

peptide étaient fixés dans la peau.  Le vapreotide interagit avec la peau et exerce une inhibition de 

l’électroosmose dépendante du courant.  Cependant, ni les stratégies de pré-traitement pour saturer 

les sites de fixation, ni les protocoles suivis après ionophorèse dans le but de déplacer le peptide lié 

se sont avérés efficaces. 

Conclusions.  Sur la base du flux de vapréotide mesuré et de ses propriétés pharmacocinétiques, il 

apparaît que des concentrations thérapeutiques sont atteignables avec un patch de 15 cm2. 
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Abstract 

Purpose.  To evaluate the feasibility of delivering vapreotide, a somatostatin analogue, by 

transdermal iontophoresis. 

Methods.  In vitro experiments were conducted using dermatomed porcine ear skin and heat-

separated epidermis.  In addition to quantifying vapreotide transport into and across the skin, the 

effect of peptide delivery on skin permselectivity was also measured.  The influence of (i) current 

density, (ii) pre- and post-treatment of the skin, (iii) competitive ions, and (iv) inclusion of albumin in 

the receptor on vapreotide delivery were investigated.   

Results. Epidermis proved to be a better model than dermatomed skin for vapreotide transport 

studies.  Despite the susceptibility of vapreotide to enzymatic degradation, a flux of 1.7 µg/cm2/h was 

achieved after 7 hours of constant current iontophoresis (0.15 mA/cm2).  Post-iontophoretic extraction 

revealed that, depending on the experimental conditions, 80-300 µg of peptide were bound to the skin.  

Vapreotide was found to interact with the skin and displayed a current-dependent inhibition of 

electroosmosis.  However, neither the pre-treatment strategies to saturate the putative binding sites, 

nor the post-treatment protocols to displace the bound peptide were effective. 

Conclusion.  Based on the observed transport rate of vapreotide and its known pharmacokinetics, 

therapeutic concentrations should be achievable using a 15 cm2 patch. 

Keywords:  transdermal iontophoresis; vapreotide; electroosmosis; skin barrier 
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INTRODUCTION 

Vapreotide is one of several potent long-acting analogues of somatostatin synthesized for 

clinical use in the treatment of acromegaly and endocrine tumors of the gastroenteropancreatic 

system.  It has additionally demonstrated success in the early treatment of oesophageal variceal 

bleeding and has been awarded orphan drug status in the US [1].  These analogues require 

subcutaneous or intramuscular administration.  In an attempt to avoid the parenteral route, more 

convenient “patient-friendly” routes of drug delivery have been investigated.  The results have been 

mixed: orally administered octreotide (an other somatostatin analogue commercialized as 

Sandostatin®) is hampered by a relatively low bioavailability [2] and because of poor local tolerability, 

nasal administration is also inconvenient [3].  The transdermal route is an attractive alternative to 

deliver therapeutic drugs [4].  The physicochemical properties of peptides (charged; high molecular 

weight) render them inappropriate for passive transdermal delivery.  In contrast, iontophoresis, an 

electrically-assisted drug delivery technology, offers a controlled and non-invasive means of 

administration [5].  The two main transport mechanisms during iontophoresis are electromigration 

(direct effect of the applied electric field on the charged species) and electroosmosis (convective 

solvent flow in the anode-to-cathode direction, as a consequence of the skin’s net negative charge at 

physiological pH).  Since electrical mobility decreases with molecular weight, it is hypothesised that 

electroosmosis is the major transport mechanism for peptides [6].  However, it is also known that 

peptides containing adjacent cationic and lipophilic residues can inhibit electroosmosis, and their own 

transport, by altering skin permselectivity [7-12].  The association of these lipophilic cations with the 

membrane neutralizes, to varying extents, the intrinsic negative charge of the skin causing a 

significant reduction in the normal anode-to-cathode electroosmotic flow.  Since the degree of 

inhibition depends on the number of molecules in the skin, it is usually more pronounced at higher 

applied current densities and at increased peptide concentrations. 

The iontophoretic delivery of octreotide has been successfully achieved in rabbits in vivo [13].  

An investigation of the effect of current density and drug concentration on plasma levels of octreotide 

revealed a decrease in the amount of peptide delivered, with increasing concentration.  This might be 

attributed to an inhibition of electroosmosis, since the -Phe3-D-Trp4-Lys5- sequence in octreotide 

corresponds to the structural moiety thought to be a pre-requisite for this phenomenon [10]. 

The aim of the current study was to evaluate the feasibility of delivering vapreotide by 

transdermal iontophoresis.  In view of the structural similarity of vapreotide to octreotide, the 

iontophoretic delivery of vapreotide was expected to interact with the skin and affect electroosmotic 

solvent flow.  Hence, in addition to quantifying peptide transport, the magnitude of electroosmotic flow 

was also determined under the different experimental conditions employed.  Experiments were also 

conducted in the presence of a salt bridge; this allowed the use of lower electrolyte concentrations in 

the donor compartment, decreasing the number of competing charge carriers and, in theory, 

increasing peptide delivery efficiency (5).  The impact of current density and salt bridge use on both 

peptide transport and electroosmotic inhibition was measured.  Different approaches to modulate the 

interactions between the peptide and the skin were investigated, including co-iontophoresis with 

cetrimide, pre- and post-iontophoretic treatment of the skin with Ca2+ and propranolol - substances 
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capable of interacting with the biomembrane and occupying potential “peptide” binding sites.  

Vapreotide transport across heat-separated epidermis and dermatomed skin was compared. 

MATERIALS AND METHODS 

Chemicals 

Vapreotide (MW = 1131.4) D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Trp-NH2, in the form of its 

acetate salt was a generous gift from Debiopharm (Debiopharm Galenic Unit, Switzerland).  

Acetaminophen was purchased from Fluka (Sigma-Aldrich Chimie Sarl, France).  Tris (Tris-

(hydroxymethyl) aminomethane), Trizma hydrochloride, agarose, DL-propranolol and cetrimide were 

obtained from Sigma-Aldrich (Sigma-Aldrich Chimie Sarl, France) and bovine serum albumin was 

purchased from Fluka BioChemika (Sigma-Aldrich Chimie Sarl, France).  De-ionized water (resistivity 

> 18 MOhm/cm2) was used to prepare all solutions. 

Analytical procedures 

Vapreotide extracted from skin samples was quantified using a high-performance liquid 

chromatography system equipped with a variable wavelength UV detector (Waters Corporation, MA, 

USA).  The mobile phase, comprising 25% acetonitrile and 75% triethylaminephosphate buffer 

solution (pH = 2.3), was passed through a C18 PartiSphere column (4.6 mm i.d., 12.5 cm long, 5 µm 

particle size) (Whatman Inc., NJ, USA) maintained at 40°C, at a flow rate of 1 mL/min. The peptide 

was detected at 280 nm.  The RSD of the repeatability was less than 1 % and the limit of quantification 

was 115 ng/ml.  Direct competitive enzyme immunoassay (EIA), as a result of its superior sensitivity, 

was used to quantify the presence of vapreotide in the receptor compartment.  This competitive 

binding assay is based on the relative affinity of (i) the vapreotide (in the sample) and (ii) an enzymatic 

tracer prepared by covalent coupling of vapreotide to an enzyme (acetylcholinesterase), to anti-

vapreotide antibodies.  The quantification limit corresponded to 100 pg/ml. 

Acetaminophen was assayed by high-performance liquid chromatography using a Hypersil 

BDS C8 column (150 mm x 4.6 mm, Supelco, France) maintained at 40°C.  The mobile phase 

(delivered at a flow rate of 1 mL/min) consisted of 92% water and 8% acetonitrile adjusted to pH 3.5 

with acetic acid.  Acetaminophen was detected by its UV-absorbance at 243 nm.  The RSD of the 

repeatability was less than 1 % and the quantification limit was 22 ng/ml. 

Skin preparation 

Porcine ears, obtained from a local abbatoir (Société d’Exploitation d’Abbatage, Annecy, 

France) within a few hours post-mortem, were cleaned under cold running water.  The whole skin was 

removed carefully from the outer region of the ear and separated from the underlying cartilage with a 

scalpel.  The tissue was then either dermatomed (800 µm) or heat-treated to separate the epidermis 

[14]: pieces of fresh full-thickness skin were immersed in water at 58°C for 2 minutes after which the 
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epidermis was carefully separated from the dermis with a spatula.  Pieces of epidermis and 

dermatomed skin were wrapped individually in Parafilm and maintained at –20°C until use and were 

stored for no longer than a period of 2 months. 

Iontophoresis procedure 

The skin was clamped in three-compartment vertical diffusion cells (area: 0.73 cm2), the 

design of which has been previously described [15].  Unless otherwise stated, vapreotide was 

dissolved in a 100 mM NaCl solution that was adjusted to pH = 5.5 with HCl to produce a 3 mM 

solution of the peptide; 1 mL of this solution was placed in the donor (anodal) compartment.  In 

addition to vapreotide, the donor compartment always contained 15 mM acetaminophen.  The 

cathodal compartment was filled with 1 mL of 25 mM Tris/Trizma HCl-buffered (pH 7.4) normal 

saline.  The receptor compartment (~6 mL) was filled with the same electrolyte solution, containing in 

addition, when stated, 44 g/L bovine serum albumin (BSA; to mimic physiological conditions) and was 

stirred magnetically throughout the permeation experiments.  

Constant current iontophoresis was used throughout the study. The current, ranging from 0.05 to 0.5 
mA/cm2 was applied for 4 to 24 hours via Ag/AgCl electrodes connected to a power supply (Kepco, 
NJ, USA). When specified, the anode was isolated from the donor solution via a salt bridge (100 mM 
Tris/Trizma HCl in 3% agarose) to minimize the competition between the peptide and the electrolytes 
necessary for the anodal reaction.  Under these conditions, the anodal compartment contained a 
solution of 25 mM Tris/Trizma HCl normal saline buffered to pH 7.4 and the vapreotide in the donor 
compartment was dissolved in 20mM Tris/Trizma HCl  (pH 7.4).  Schematic representations of these 
two different experimental set-ups are provided in Figure 1. 

 
Figure 1. Schematic representations of the iontophoretic diffusion cell assemblies used in this study. 

Quantifying electroosmotic inhibition 

Acetaminophen is a neutral hydrophilic compound, with poor passive permeability (~2 

nmol/cm2/h); under the influence of an electrical current, this uncharged but polar molecule is driven 

through the skin predominantly by electroosmosis.  Hence, in these studies it was incorporated into 

the donor formulation (15 mM) to report on convective solvent flow. 
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For each experiment, an Inhibition Factor (IF) was calculated using the following equation:  

IF = [QA-8h,control] / [QA-8h,peptide] (1) 

where QA-8h,control is the amount of acetaminophen transported into the receptor phase during 8 hours 

of iontophoresis when no peptide was present in the donor solution, and QA-8h,peptide is the 

corresponding quantity when vapreotide was iontophoresed. 

Effect of current density 

To evaluate the effect of current density on electroosmotic inhibition by vapreotide, current 

densities of 0.15, 0.3 and 0.5 mA/cm2 were applied for 8 hours across dermatomed skin.  A solution of 

3 mM vapreotide in 20 mM Tris/Trizma HCl buffered to pH 7.4 was placed in the donor compartment. 

Additional experiments were also performed using heat-separated epidermis to assess the 

effect of current density on the amount of vapreotide transported.  Again, a 3mM vapreotide donor 

solution was iontophoresed for 8 hours. 

Vapreotide accumulation in the skin 

The uptake of vapreotide into dermatomed skin during iontophoresis was also investigated.  

Upon terminating current application, the skin sample was rinsed with water, dried on absorbent 

paper, and then placed in 4 mL of a mixture acetonitrile/water (25/75).  After agitation for 14 hours, the 

solution was filtered (0.45 µm regenerated cellulose syringe filter, Alltech, IL, USA) and the amount of 

peptide quantified. 

Skin metabolism experiments 

The influence of porcine ear skin on the stability of vapreotide was evaluated by filling the 

receptor compartment with a 5 µM vapreotide solution in 25 mM Tris/Trizma HCl-buffered (pH 7.4) 

normal saline.  Both dermatomed and epidermal skin samples were separately evaluated.  The anodal 

and cathodal compartments were filled with 1 mL of 25 mM Tris/Trizma HCl-buffered (pH 7.4) normal 

saline.  A current of 0.15 mA/cm2 was applied for eight hours and the percentage of intact peptide was 

calculated as follows: 

Intact peptide (%) = %100x
peptideofamountInitial
peptideofamountFinal

 (2) 

Modifying interactions between vapreotide and the skin 

Co-iontophoresis: 1 mL of 4.4 mM vapreotide in 20 mM Tris/Trizma HCl (pH 7.4) containing either 

0.1% or 1%  (2.7 or 27 mM) cetrimide was placed in the anodal compartment and a current of 0.15 

mA/cm2 was applied for either 8 or 24 hours. 
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Pre-treatment: Vapreotide iontophoresis was preceded by the iontophoretic delivery of either 

propranolol or cetrimide: 

A:  A solution of 40 mM propranolol or 0.1% cetrimide in 25 mM Tris/Trizma HCl (pH 7.4) normal 

saline was placed in the anodal compartment and a current of 0.3 mA/cm2 was applied for 8 

hours. 

B:  Subsequently, 1 mL of 4.4 mM vapreotide in 20 mM Tris/Trizma HCl (pH 7.4) was placed in the 

donor compartment and a current of 0.15 mA/cm2 was applied for 24 hours using a salt-bridge. 

Post-treatment: Solutions of CaCl2, NaCl, propranolol and cetrimide were tested with respect to their 

capacity to release vapreotide bound to, and accumulated within, dermatomed skin.  These 

experiments also comprised two parts: 

A:  1 mL of vapreotide (3 mM) in 20 mM Tris/Trizma HCl (pH 7.4) was placed in the donor 

compartment and a current of 0.15 mA/cm2 was applied for 24 hours using a salt-bridge. 

B:  Solutions of either 100 mM CaCl2, 100 mM NaCl, 40 mM propranolol or 0.1% cetrimide in 25 mM 

Tris/Trizma HCl (pH 7.4) normal saline were added to the anodal compartment and a current of 

0.3 mA/cm2 was applied for 8 hours. 

For each pre- and post-treatment experiment, the receptor compartment was replaced between phase 

A and phase B. 

Data treatment 

The results were derived from at least triplicate experiments conducted with skin samples 

originating from different pig ears.  Outliers, determined using the Grubbs test, were discarded.  When 

two sets of data where compared, Student t tests were performed.  The level of statistical significance 

was fixed at P < 0.05. 

RESULTS AND DISCUSSION 

Skin metabolism of vapreotide 

Cutaneous metabolism has been widely investigated [16-18] and several studies into 

transdermal peptide delivery have reported the presence of proteolytic activity in the skin [9;19-21].  

With the concentration tested, only 39 ± 18% of the vapreotide in contact with the dermal face of 

dermatomed skin samples was found to be intact after 8 hours of iontophoresis.  Similarly, only 32 ± 

5% of the peptide remained intact after exposure to the interior epidermal surface.  The levels of 

degradation observed following exposure to either dermatomed skin or isolated epidermis were not 

significantly different.  

Although the presence of proteolytic enzymes in the skin is generally accepted, their exact 

location and distribution in the distinct tissue layers of the skin remains unknown.  Although the 

epidermis is claimed to be the major site of drug degradation, activity has also been ascribed to the 



Chapitre 4  72 
 
 

dermis [17].  Skin contact studies with vapreotide suggest that both epidermal and dermal tissues 

possess some form of proteolytic activity.  Moreover, the results also demonstrate that the enzymes 

located in the epidermis are resistant to the heat separation treatment used to isolate the epidermal 

membrane. 

Nevertheless, it is difficult to extrapolate these in vitro results to the eventual situation in vivo 

(particularly in humans), notably due to major interspecies differences in the structure and function of 

such enzymes.  In addition, the residence time of the peptide in the enzymatic barrier is likely to be 

significantly reduced in vivo as molecules reaching the epidermal-dermal junction are taken up rapidly 

by the skin’s microcirculation.  Although enzymatic activity is expected to be higher in viable tissues, it 

can be argued that ex vivo skin preparation procedures might result in increased release of 

intracellular enzymes.  However, the skin tissue used in these permeation experiments was frozen 

prior to use, a process reported to reduce metabolic activity of skin samples [22].  Thus, in vitro/in vivo 

correlations for labile peptides are complicated by the interplay of these opposing factors. 

Vapreotide transport 

Under the same iontophoretic conditions, significantly more (~10-fold) vapreotide was 

transported across the epidermis (~10 µg) than across dermatomed skin (~1 µg) when using the 

experimental set-up employing a salt-bridge (Figure 2).   

Figure 2. Cumulative amount of vapreotide 
measured in the receptor compartment after 8 
hours of iontophoresis at 0.15 mA/cm2 across 
epidermis and dermatomed skin as a function 
of the experimental set-up. (A: With Salt bridge, 
B: Without salt bridge, C: Without salt bridge; with 
BSA).  
There were statistically significant differences 
between epidermis and dermatomed skin in each 
corresponding experimental condition (p < 0.05). 

It is generally accepted that the remarkable barrier function of the skin is primarily located in the 

outermost layer of the epidermis, the stratum corneum, and that, in vivo, substances are taken up by 

the capillary network adjacent to the epidermal-dermal junction, after diffusing on the order of 100 µm 

through the membrane.  In separate studies (data not shown), there was no difference between the 

amount of vapreotide transported across tape-stripped and intact dermatomed skin, suggesting that 

the stratum corneum was not the rate-limiting barrier to transport at least under in vitro conditions.  

The use of dermatomed skin (~800 µm in thickness) in these in vitro experiments introduces an 

additional mass of dermal tissue, which acts as a “pseudo-receptor” compartment, notably for 

compounds such as vapreotide, which display a high skin affinity.  Therefore, the presence of dermis 

provides an artifactual reservoir for the drug that has already crossed the epidermis, and which, in 
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vivo, would be taken up by the capillaries just below the epidermal-dermal junction.  Thus, epidermis, 

which is a well-established model for transdermal drug delivery, appears to be more appropriate than 

dermatomed skin for transdermal vapreotide transport studies.  The fate of a peptide reservoir in vivo, 

if indeed it exists, remains to be studied. 

Vapreotide accumulation in the skin 

Despite the inefficient transfer of vapreotide across dermatomed skin, significant amounts of 

the peptide (80-300 µg) were recovered from the skin samples after iontophoresis (Table I).  These 

peptide accumulation data further attest to the suspected strong association between molecules 

possessing a positive charge, in close proximity to a lipophilic surface, and the skin.  In addition to 

these specific interactions between the peptide and structures present in the skin, the accumulation 

may also be the result of peptide-peptide interactions, which result in vapreotide aggregation and 

eventually in peptide deposition in the transport pathways.  

Table I. Vapreotide accumulation in the skin after iontophoretic current application for 8-24h using 
formulations containing 1.5-4.4 mM vapreotide.  Experiments were conducted using the experimental 
set-up shown in Figure 1b. 

Experimental condition 
Amount of vapreotide  

in the skin [µg] 

24h iontophoresis at 0.15 mA/cm2, 
4.4 mM donor concentration 

210 ± 10 

8h iontophoresis at 0.15 mA/cm2, 
3 mM donor concentration 

80 ± 20 

18h iontophoresis at 0.5 mA/cm2, 
1.5 mM donor concentration 

300 ± 60 

 

Effect of vapreotide transport on skin permselectivity  

Previous studies investigating iontophoretic transport across hairless mouse, rabbit, porcine 

and human skin have confirmed the existence of skin permselectivity, a phenomenon which gives rise 

to electroosmosis and contributes to the iontophoretic transport of neutral and cationic species [23-25].  

Moreover, the ability of certain lipophilic, peptidic and non-peptidic cations to inhibit the convective 

solvent flow has also been established [10;11;26].  The magnitude and significance of this inhibition 

depends on the skin type and the physicochemical properties of the molecule.  The effect of current 

density on the inhibition of electroosmosis by vapreotide is illustrated in Figure 3.  The inhibitory 

capacity of vapreotide is strongly dependent on the applied current density, increasing the inhibition 

factor by almost 50-fold at 0.5 mA/cm2.  As current density is increased, more charge has to be 

transported across the skin; this is partly carried by the peptide, which is driven into the membrane in 

greater amounts, leading to a more extensive neutralization of the skin’s negative charge and a more 

pronounced inhibition of electroosmosis. 
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Effect of reducing competing ions in the formulation  

Because Ag/AgCl electrodes need chloride ions for anodal electrochemistry, the anodal 

compartment must contain a supply of such ions derived from either the active agent (e.g., 

hydrochloride salts) or from an external source, e.g., NaCl, in which case the total number of cations in 

the anodal formulation is greatly increased.  These cations compete with the positively-charged drug 

as charge carriers.  The use of a salt bridge enables fewer competing cations (~20 mM) to be 

incorporated in the donor compartment, increasing vapreotide transport efficacy, as indicated in Figure 

2.  To confirm that the ionic strength and not the donor pH, which also varied between the two 

experimental set-ups, was responsible for the modified transport of vapreotide, the effect of pH was 

also investigated.  A control experiment using the ‘salt bridge’ set-up was performed at pH 5.5 and 

revealed that there was no significant difference in the quantity of vapreotide transported (11.9 ± 3.8 

µg/cm2 at pH 5.5 versus 10.7 ± 4.5 µg/cm2 at pH 7.4). 
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Figure 4 indicates that the inhibition factor is increased two-fold in the presence of the salt 

bridge.  As discussed above, vapreotide transport increases with use of a salt bridge; hence, more 

peptide reaches the skin membrane, resulting in a more complete neutralization of skin charge and, as 

a result, greater reduction in electroosmotic flow.  However, this increased inhibition is not sufficient to 

outweigh the increased transport resulting from the reduced ion competition (Figure 2).  Finally, the 
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degree of electroosmotic inhibition was also independent of the skin preparation and experimental 

conditions employed (Figure 4).  

In addition to increasing the proportion of charge carried by the peptide, salt bridges allow the 

isolation of the peptide from the electrode compartment and have the advantage of preventing 

interactions between the electrode and the drug.  Patch-based iontophoretic systems employing the 

same principles have been developed where the electrode is separated from the drug reservoir by a 

size exclusion membrane [27]. 

Modifying interactions between vapreotide and the skin  

Given the substantial amounts of peptide measured in the skin, the liberation and subsequent 

transport of even a small fraction of this bound peptide would result in the delivery of significant 

amounts of drug.  A number of different approaches, as shown in Figure 5, were employed to 

modulate the impact of peptide-skin interactions on vapreotide transport.   

Co-application
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Propranolol
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Cetrimide
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Vapreotide 
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Figure 5.  Experimental strategies investigated to reduce the degree of vapreotide fixation to the skin. 

The first approach involved co-iontophoresis of the cationic surfactant, cetrimide.  The results in 

Figure 6a show that co-iontophoresis of 0.1% cetrimide led to a two-fold reduction in the amount of 

peptide recovered from the skin.  As shown in Figure 6b, increasing the cetrimide concentration from 

0.1% to 1% produced a greater effect.  Although it is tempting to attribute this to an interaction of the 

cationic cetrimide with putative binding sites, the observation that peptide transport through the 

membrane was not increased, suggests that the surfactant itself acted as a competing charge carrier. 
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Figure 6.  Effect of co-iontophoresis of cetrimide on the amount of vapreotide bound to the skin.  (a) Co-
iontophoresis of 0.1% surfactant with 4.4 mM vapreotide for 24 hours at 0.15 mA/cm2. (b) Co-iontophoresis of 0.1 
and 1% surfactant with 4.4 mM vapreotide for 8 hours at 0.15 mA/cm2. 

 

To exclude the risk of competition, subsequent studies employed pre-and post-treatment of 

the skin wherein cetrimide and other species known to bind to the membrane, e.g., Ca2+ and 

propranolol were iontophoresed either prior to or after vapreotide iontophoresis.  It has been proposed 

that the lower transport number of Ca2+ as compared to Na+ is due to its superior interaction with 

negatively-charged binding sites in the skin [28].  Likewise, the iontophoresis of propranolol (40 mM) 

has been shown to reduce the electroosmotic transport of mannitol across porcine ear skin [26].  Pre-

iontophoretic treatment with either cetrimide or propranolol was thus attempted to saturate the putative 

binding sites, and hence prevent the interaction of vapreotide with the skin.  Vapreotide transport 

following these pre-treatments was not statistically different from the control (p < 0.05).  Previous 

reports showed that cetrimide pretreatment reduced iontophoretic delivery of propranolol and this was 

attributed to a neutralisation of skin charge (29).  Based on the acetaminophen flux measured in our 

studies, inclusion of cetrimide in the peptide formulation produced a ~two-fold increase in EO inhibition 

as compared to iontophoresis of vapreotide alone; furthermore, it may also accumulate in the transport 

pathways impeding vapreotide passage.  Post-iontophoretic treatment methods were investigated with 

the aim of displacing bound peptide from the skin.  However, almost negligible amounts of the peptide 

(<20 ng/cm2) were released after 8 hours post-iontophoretic treatment with the different cationic 

species tested. 

Taken together, these results indicate that the strategies employed to modify skin-vapreotide 

interactions in order to improve peptide delivery were unsuccessful. 

Can therapeutic amounts of vapreotide be delivered? 

To compare our in vitro vapreotide transport studies with the earlier in vivo investigation 

conducted by Lau et al. into the transdermal iontophoresis of octreotide [13], the final set of 

permeation experiments were conducted without a salt bridge and with BSA in the receptor 

compartment.  The amount of vapreotide reaching the receptor compartment after 4, 6 and 8 hours of 

iontophoretic current application (0.15 mA/cm2) are shown in Figure 7.   
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Figure 7. Cumulative amount of vapreotide present 

in the receptor compartment after 4, 6, and 8 hours 

of iontophoretic delivery at 0.15 mA/cm2 across 

porcine epidermis.  

 

 

 

These cumulative quantities were used to estimate the vapreotide flux at 7 hours (1.7 

µg/cm2/h).  Since the experimental conditions chosen for the in vitro study were similar to those used 

by Lau et al. for the iontophoretic delivery of octreotide acetate in the rabbit, a comparison of the 

transport of these two somatostatin analogues is feasible.  After 8 hours of iontophoresis at 0.15 

mA/cm2, the plasma concentrations of octreotide were 0.85 and 1.7 ng/mL with donor concentrations 

of 2.5 and 5 mg/mL, respectively [13].  Based on our vapreotide data (donor concentration of 3 mM ≅ 

3.9 mg/mL) and the relationship equating flux to plasma concentration (Steady state flux · Area = 

Clearance · [plasma]), it is possible to estimate the plasma concentration of vapreotide if it were 

delivered to the rabbit under similar conditions (assuming the same clearance of 2.3 L/h); the 

estimated value is 0.7 ng/mL, suggesting a slightly lower transport for vapreotide than for octreotide.  

Aside from the subtle differences in amino acid sequence, this might be due in part to (i) the different 

skin models used in the two studies (rabbit skin is recognised as being more permeable than porcine 

skin) and (ii) the above-mentioned differences in metabolic activities (both inter-species and in vitro/in 

vivo).   

Given a total vapreotide clearance of 16.7 L/h in humans (personal communication), an input 

rate of ~25 µg/h must be achieved in order to maintain a therapeutic level of 1.5 ng/mL.  In view of the 

experimental in vitro flux (1.7 µg/cm2/h), it follows that a patch of ~15 cm2 could achieve the desired 

delivery kinetics.  Moreover, given the modest experimental conditions used in this preliminary study, 

the enhancement of vapreotide delivery by further fine-tuning of the formulation and current profile is a 

realizable goal.  For example, the results obtained with a salt bridge system clearly demonstrate that 

vapreotide transport can be enhanced by reducing the number of extraneous ions.  Hence, based on 

the data presented here, the transdermal iontophoretic delivery of therapeutic amounts of vapreotide 

certainly appears to be feasible. 

CONCLUSIONS 

As with the LHRH analogues, nafarelin and leuprolide, and other non-peptidic compounds that 

possess a structural motif characterized by the close proximity of charge and lipophilicity (e.g., 

propranolol and quinine), vapreotide has been shown to interact with the skin membrane.  The degree 
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of electroosmotic inhibition increased with increasing current density.  As a consequence of this 

interaction, and perhaps the aggregation of the peptide, large quantities of vapreotide were found in 

the skin.  The pre-treatment strategies to saturate the skin binding sites and the post-treatment 

methods to displace bound vapreotide proved ineffective.  It was also shown that significantly greater 

amounts of peptide were transported across heat-separated epidermis than across dermatomed skin.  

Vapreotide was susceptible to a significant degree of metabolism (~60-70%) when placed in contact 

with the interior surface of heat-separated epidermis or dermatomed skin.  Given its susceptibility to 

enzymatic degradation, and its capacity to shut down electroosmotic solvent flow, vapreotide may not 

appear as an ideal candidate for transdermal iontophoresis.  Nevertheless, analysis of the cumulative 

amounts permeated across the epidermis and the human pharmacokinetics, suggests that 

iontophoretic delivery might be an effective alternative to the conventional parenteral administration of 

vapreotide. 
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Résumé 

La faisabilité de l’administration transdermique de la triptoréline ([D-Trp6]LHRH) par 

ionophorèse a été évaluée in vitro.  Le transport du peptide a été mesuré à travers la peau d’oreille de 

porc avec différentes concentrations du compartiment donneur, à différentes densités de courant.  

L’administration concomitante d’un marqueur de l’électroosmose a permis de déterminer les 

contributions respectives de l’électromigration et de l’électroosmose au transport ionophorétique.  A 

une concentration donnée (3mM), une augmentation de la densité de courant d’un facteur de trois 

produit une augmentation correspondante de la quantité de peptide présente dans le compartiment 

récepteur.  Inversement, le doublement de la concentration à 6 mM produit une réduction de la 

quantité de peptide administré, en partie en raison d’une inhibition concentration - dépendante de 

l’électroosmose.  L’électromigration se révéla être le mécanisme de transport prédominant, comptant 

pour 80% de l’administration totale.  Finalement, en dépit de l’inhibition de l’électroosmose, les 

résultats indiquent que l’application d’un courant ionophorétique de 0.8 mA sur une surface 

relativement petite (4 cm2) permettrait d’atteindre un taux d’administration excédant 35 µg/h, 

largement supérieur aux exigences thérapeutiques. 
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Abstract 

The feasibility of delivering triptorelin ([D-Trp6]LHRH) by transdermal iontophoresis was 

evaluated in vitro.  Peptide electrotransport at different current densities and donor concentrations was 

measured across porcine ear skin.  The concomitant delivery of an electroosmotic marker enabled 

calculation of the respective contributions of electromigration and electroosmosis to iontophoretic 

delivery.  At a given concentration (3 mM), a three-fold increase in current density produced a 

corresponding increase in the cumulative amount of peptide present in the receptor compartment.  

Conversely, doubling the concentration to 6 mM produced a two-fold reduction in the amount of 

peptide delivered, partly due to a concentration-dependent inhibition of electroosmosis.  

Electromigration was revealed to be the predominant transport mechanism, accounting for 80% of 

overall delivery.  Finally, despite the inhibition of electroosmosis, the results indicate that application of 

an iontophoretic current of 0.8 mA over a relatively small contact area (4 cm2) would provide a delivery 

rate exceeding 35 µg/h, largely sufficient for therapeutic requirements. 

Keywords:  transdermal iontophoresis, triptorelin, electroosmosis 
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INTRODUCTION 

Transdermal delivery has been proposed as a route for administering peptide and protein 

therapeutics on the grounds that it offers a viable alternative to the conventional, and inconvenient, 

administration by parenteral injection.  However, given that peptides are often charged and of high 

molecular weight, their passive transdermal delivery is not feasible.  Hence, different strategies have 

been developed to overcome the skin’s excellent barrier properties in a transient and reversible 

fashion [1;2].  Iontophoresis offers the advantage of providing a controlled and non-invasive delivery 

method that has been extensively investigated [3].  The two main transport mechanisms during 

iontophoresis are electromigration (EM; direct effect of the applied electric field on the charged 

species) and electroosmosis (EO; convective solvent flow in the anode-to-cathode direction, as a 

consequence of the skin’s net negative charge at physiological pH).   

A distinguishing feature of iontophoresis is that, in contrast to other enhancement technologies, 

it acts primarily on the molecule itself.  That is, enhanced delivery is not due to increased passive drug 

transport subsequent to barrier disruption: the driving force is supplied by the applied electric field.  

Furthermore, iontophoresis enables customized therapy: the drug input rate can be adapted to the 

individual needs of each patient, or to the phase of treatment in response to disease progression, by 

modulating the intensity of the applied current.  In addition, different permutations of the current profile 

enable continuous or pulsatile delivery and other more complex drug input profiles, e.g., drug input at 

a basal rate followed by an “on-demand” bolus as in patient-controlled analgesia.   

Control over the input profile is particularly valuable for drugs that have different 

pharmacological effects depending on their input rate, such as luteinising hormone-releasing hormone 

(LHRH) and human parathyroid hormone (PTH).  For example, pulsatile administration of LHRH, 

every 60-90 minutes, is used in the treatment of female infertility due to hypothalamic hypogonadism 

[4], in order to stimulate gonadotrophin release.  In contrast, prolonged continuous application of 

LHRH, and its analogues, suppresses gonadotrophin secretion and is the underlying mechanism in 

the therapy of hormone-dependent cancers [5]. 

Several studies investigating the iontophoretic transdermal transport of LHRH and its more 

potent and longer-acting analogues have been conducted [6-11].  Some of the most relevant results 

were obtained with [D-Leu6,Pro9-NHET]LHRH (leuprolide, Lupron), which was successfully delivered 

in vivo in humans: a peak LH response similar to that obtained with subcutaneous injection was 

measured after iontophoretic delivery of leuprolide [12].  Interestingly, these results were accompanied 

by some unexpected behaviour, not consistent with theory: namely, that increasing the dose did not 

result in enhanced delivery [8;13].  Similar findings have been described for other LHRH analogues 

and have been attributed to the association of the lipophilic cations with the membrane, neutralizing 

the intrinsic negative charge of the skin and leading to a significant reduction in the electroosmotic 

transport of the peptide [10;14]. 

The aim of this study was to evaluate the feasibility of delivering triptorelin ([D-Trp6]LHRH, 

Decapeptyl) by transdermal iontophoresis and to investigate the transport mechanisms involved.  Co-

iontophoresis of acetaminophen was used to deconvolve the contributions of EO and EM and to report 

on the impact of triptorelin iontophoresis on skin permselectivity.  The effect of current density and 
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peptide donor concentration on delivery was assessed.  Triptorelin transport was also compared to 

that of a tripeptide (Ac-D-Trp-Leu-Arg-NH2) corresponding to its sequence at positions 6-8. 

MATERIALS AND METHODS 

Chemicals 

Triptorelin (MW = 1311.5) pGlu-His-Trp-Ser-Tyr-D-Trp-Leu-Arg-Pro-Gly-NH2, in the form of the 

acetate salt was a generous gift (Debiopharm Galenic Unit, Switzerland). Ac-Tyr-(D-Trp)-Lys-NH2 and 

Ac-(D-Trp)-Leu-Arg-NH2 were custom-synthesised (NeoMPS SA, France).  De-ionized water 

(resistivity > 18 MOhm/cm2) was used to prepare all solutions. 

Analytical procedures 

Triptorelin was quantified by high-performance liquid chromatography.  The HPLC system 

comprised a pump (Waters 600E System Controller, Waters Corporation, MA), dual wavelength UV 

detector (Waters 2487 Dual λ Absorbance Detector), autoinjector (Waters 717plus Autosampler) and 

was equipped with a C18 PartiSphere column (4.6 mm i.d., 12.5 cm long, 5 µm particle size) 

(Whatman Inc., NJ) maintained at 40°C.  The mobile phase (25% acetonitrile and 75% 

triethylaminephosphate buffer solution pH 2.3) delivered at a flow rate of 1 mL/min was degassed in-

line (Waters In-Line Degasser AF).  Triptorelin was detected at 280 nm.  The repeatability was less 

than 1 % and the quantification limit was 130 ng/ml. The tripeptides were analysed using the same 

conditions but with a mobile phase consisting of acetonitrile: triethylaminephosphate buffer, pH 2.3 

(12:88).  The repeatability was less than 1 % and the quantification limit was 55 ng/ml. 

Acetaminophen was assayed by high-performance liquid chromatography using a Hypersil BDS 

C8 column (150 mm x 4.6 mm, Supelco, Sigma-Aldrich Chimie Sarl, France) maintained at 40°C.  

The mobile phase (92% water and 8% acetonitrile adjusted to pH 3.5 with acetic acid) was delivered 

at a flow rate of 1 mL/min.  Acetaminophen was detected by its UV-absorbance at 243 nm.  The 

repeatability was less than 1 % and the quantification limit was 22 ng/ml. 

Skin preparation 

Porcine ears were obtained from the local abattoir shortly after sacrifice.  After cleaning under 

cold running water, the whole skin was removed carefully from the outer region of the ear and 

separated from the underlying cartilage with a scalpel.  Given that epidermis is a well-established 

model for transdermal drug delivery, and that dermatomed skin might act as an artifactual reservoir 

and binding site [15-17], all experiments with triptorelin were performed using heat-separated 

epidermis [18].  Pieces of fresh full-thickness skin were immersed in water at 58°C for 2 minutes after 

which the epidermis was carefully separated from the dermis, wrapped in Parafilm and maintained at 

–20°C for no longer than a period of 2 months before use.  
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Stability experiments 

The susceptibility of triptorelin to degradation by porcine skin enzymes was assessed in the 

following manner.  Epidermal sections were mounted in diffusion cells and the receptor compartment 

was filled with a 5 µM triptorelin solution, in 25 mM Tris/Trizma HCl-buffered (pH 7.4) normal saline; 

both the anodal and cathodal compartments were filled with 1 mL of 25 mM Tris/Trizma HCl-buffered 

(pH 7.4) normal saline.  The concentration of intact triptorelin in the receptor compartment was 

determined after application of a 0.15 mA/cm2 current for eight hours. 

Iontophoresis 

The skin was mounted in three-compartment vertical diffusion cells (area: 0.73 cm2), the design 

of which has been described in detail elsewhere [19].  Except in the case of the stability experiments, 

the anode was isolated from the donor solution via a salt bridge (100 mM Tris/Trizma HCl in 3% 

agarose) to minimize competition between the peptide and the electrolytes necessary for the anodal 

reaction.  Anodal, cathodal and receptor compartments contained a solution of 25 mM Tris/Trizma 

HCl normal saline buffered to pH 7.4.  Triptorelin (3 mM unless otherwise stated) was solubilized in 20 

mM Tris/Trizma HCl  (pH 7.4).  In addition to the peptide, the donor compartment (1 mL) always 

contained 15 mM acetaminophen. 

Constant current iontophoresis was used in all the experiments.  The current, ranging from 0.15 

to 0.5 mA/cm2 was applied for 4 to 8 hours via Ag/AgCl electrodes connected to a power supply 

(Kepco, NJ). 

Quantification of electroosmotic solvent flow  

Acetaminophen is a neutral hydrophilic compound, which is primarily transported through the 

skin by electroosmosis.  It was therefore included in the donor compartment formulation (15 mM) as a 

marker for the magnitude of convective flow (15 mM).  For each experiment, an Inhibition Factor (IF) 

was calculated according to the following equation: 

IF = [QA-8h,control] / [QA-8h,peptide] (1) 

where QA-8h,control is the amount of acetominaphen transported into the receptor phase during 8 hours 

of iontophoresis when no peptide was present in the donor solution, and QA-8h,peptide is the 

corresponding quantity when triptorelin was iontophoresed.. 

Effect of current density and triptorelin concentration 

To evaluate the effect of current density on both triptorelin transport and inhibition of 

electroosmosis, current densities of 0.15, 0.3 and 0.5 mA/cm2 were applied for 8 hours using a donor 

peptide concentration of 3 mM. 
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The iontophoretic delivery of a higher concentration (6 mM) at 0.5 mA/cm2 for 8 hours was also 

investigated to determine the impact of the donor concentration on the electroosmotic flow and overall 

peptide transport. 

Data treatment 

All measurements were performed in at least triplicate, using skin samples originating from 

different pig ears.  Outliers, determined using the Grubbs test, were discarded. 

RESULTS AND DISCUSSION 

Triptorelin stability in the presence of skin 

Investigation of the in vitro stability of triptorelin in the presence of epidermis revealed a 

degradation of 9 ± 2% after 8 hours, suggesting that it was quite resistant to proteolysis.  Peptide 

susceptibility to enzymatic degradation is obviously dependent on the amino acid sequence: under the 

same conditions, again using porcine epidermis, the somatostatin analogue, vapreotide, suffered 

significantly greater metabolism (68 ± 11%) [17].  Amidation of the C-termini ensures that both 

peptides are protected against carboxypeptidases.  The cyclic pGlu and D-Phe residues at the N-

termini protect triptorelin and vapreotide, respectively, against aminopeptidase activity.  Thus, 

endopeptidases or reductases targeting the disulphide bridge, present in vapreotide, but not in 

triptorelin, might also be active in the skin. 

Triptorelin delivery and the effect of current density  

The quantities of triptorelin transported across porcine epidermis from a 3 mM donor solution 

after 4, 6 and 8 hours of iontophoresis (at a current density of 0.5 mA/cm2) are depicted in Figure 1.   

Figure 1. Cumulative transport of triptorelin across 
porcine skin in vitro following iontophoretic current 
application at 0.5 mA/cm2 for 4, 6 and 8 hours, 
respectively.  The formulation in the donor compartment 
comprised 3 mM triptorelin in 20 mM Tris/Trizma at pH 
7.4. 
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After 8 hours of iontophoresis, 120 ± 30 µg/cm2 of triptorelin was detected in the receptor 
compartment, with an estimated flux of 22 µg/cm2/hr at 7 hours.  The iontophoretic transport rate of [D-
Trp6,Pro9-NHET]LHRH, which has almost complete sequence homology with triptorelin ([D-
Trp6]LHRH), across hairless mouse skin in vitro was very similar (17 µg/cm2/hr) at the same current 
density (0.5 mA/cm2) and donor concentration (3 mM) [7].  Although iontophoretic delivery of triptorelin 
across human and rabbit skins has been reported [11], quantitative comparison is rendered difficult by 
the differences in experimental conditions and the variability of the data. 

The iontophoretic flux (J) of a charged species is the sum of two transport mechanisms - 

electromigration (JEM) and electroosmosis (JEO), assuming that passive diffusion is negligible: 

EOEM JJJ +=  (2) 
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According to Faraday’s law, JEM is related to the applied current density (I), to the transport number 

(t#), electrical mobility (u), charge (Z), and concentration (c) of the drug, and to the concentrations, 

mobilities and charges of the other ions present in the system (ci, ui, zi).  Since the electroosmotic flow, 

from anode-to-cathode under physiological conditions, increases with applied current density [20], 

both transport mechanisms, and hence the total iontophoretic flux, are related to the applied current.  

This is illustrated by the data in Table 1 which show that a three-fold increase in current density (0.15 

to 0.5 mA/cm2) resulted in a corresponding increase in the cumulative amount of triptorelin in the 

receiver compartment (35 ± 9 to 120 ± 30 µg/cm2).   

Table 1. Effect of current density on the iontophoretic transport and electroosmosis inhibition of triptorelin (3 mM). 

Current density 
[mA/cm2] 

Triptorelin transport 
[µg/cm2] 

Inhibition 
factor 

 0.15            35 ± 9 1.0 ± 0.8 
0.3  60 ± 30 3.6 ± 1.8 
0.5          120 ± 30 6 ± 3 

 

In contrast, the increase in current produced a sharp decrease in acetaminophen transport; a six-fold 

reduction was observed at 0.5 mA/cm2, indicative of considerable EO inhibition. 

Linear correlations between flux and current density have been reported for non-peptidic 

compounds as well as for small peptides (e.g., TRH [21] and Threo-Lys-Pro [22]).  For larger peptides, 

although an increased current density usually results in increased permeation, straightforward linear 

correlations are not always observed.  For example, a poor correlation was observed between DGAVP 

(9-desglycinamide, 8-arginine-vasopressin) flux and applied current; a more than six-fold increment in 

current density did not even double the flux [23].  However, it was shown that increasing the applied 

current density from 0.1 to 0.5 mA/cm2 produced an almost 3-fold increase in the flux of the 

structurally-related peptide [D-Trp6,Pro9-NHET]LHRH [7]. 
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Contributions of electromigration and electroosmosis to triptorelin transport 

Since acetaminophen is a neutral hydrophilic molecule with negligible passive skin permeability, 

its iontophoretic transport is almost exclusively due to electrically-induced convective solvent flow and, 

as such, its transport can be used to report on electroosmosis. During iontophoresis, the velocity (Vw) 

of the current-induced water flow (units of cm/h, equivalent to a permeability coefficient) across the 

skin can be estimated using equation 4 [24]:  

Vw  =  Jace/Cace    (4) 

where Jace and Cace are the flux and donor concentration of acetaminophen, respectively.  It follows 

that a measurement of Jace at known Cace allows Vw to be determined.  It is then possible to calculate 

the EO contribution to the flux of the peptide by multiplying Vw by its concentration in the donor 

solution (Cpeptide) [25]: 

JEO  =  Vw∙Cpeptide (5) 

Two assumptions are implicit in this analysis: (a) that drug and acetaminophen are transported 

in a similar fashion by convective solvent flow, and (b) that electroosmotic transport of the marker 

molecule is proportional to its concentration in the solvent.   

Co-iontophoresis of acetaminophen (15 mM) with triptorelin (3 mM) at 0.5 mA/cm2, for 8 hours, 

resulted in an acetaminophen flux of 18 nmol/cm2/h; this was used to calculate Vw using Equation 4.  

The quantity of triptorelin transported by electroosmosis could then be estimated by substitution of Vw 

(1.2x10-3 cm/h) into Equation 5.  Given the measured total flux of triptorelin under the same conditions 

(17 nmol/cm2/h), Equation 2 allows assignment of the relative contributions of EO and EM to the total 

iontophoretic flux.  The analysis reveals that EM is the dominant transport mechanism for triptorelin, 

accounting for ~ 80% of overall transport (JEO = 3.6 nmol/cm2/h; JEM = 13.4 nmol/cm2/h).  It is worth 

noting that in the absence of any inhibition, the maximum theoretical EO contribution (JEO,max, that is, 

assuming Vw ~ 4.8x10-3 cm/h) to the iontophoretic delivery of triptorelin (3mM at 0.5 mA/cm2) would 

only be ~14 nmol/cm2/h; implying that for this decapeptide (MW ~1311), EM would still account for 

~50% of iontophoretic transport. 

Acetaminophen transport in the presence of triptorelin clearly demonstrated that the latter 

inhibited EO (IF of 6 ± 3), albeit to a much lesser extent than certain other peptides.  For example, 

vapreotide iontophoresis under equivalent conditions resulted in an IF of 50 ± 30 [17].  Vapreotide is 

doubly charged (due to the lysine side chain and the free N-terminal) and this probably favours the 

interaction with negatively charged sites in the skin and accounts for its greater propensity to inhibit 

EO.  Furthermore, the presence of a disulphide bridge in vapreotide probably contributes to a more 

compact three-dimensional structure than triptorelin; the preferred conformations may orient the key 

moieties so as to favour interaction with the skin’s binding sites, and hence facilitate EO inhibition.   

Are peptide fragments useful predictors of transport ? 

Nafarelin ([D-Nal(2)6]LHRH) and the tripeptide (D-Nal(2))-Leu-Arg (representing the amino acids at 

positions 6 to 8) were demonstrated to be equipotent EO inhibitors [14].  In contrast, while triptorelin 
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caused EO inhibition (IF = 6 ± 3), co-iontophoresis of its “peptide motif” Ac-(D-Trp)-Leu-Arg-NH2 with 

acetaminophen failed to result in a corresponding effect (IF = 1.1 ± 0.2) (Figure 2). 

 
Figure 2. Inhibition factors of triptorelin, vapreotide and their constituent tripeptides after iontophoretic current 
application at 0.5 mA/cm2 for 8 hours.  The formulation in the donor compartment comprised 3 mM peptide in 20 
mM Tris/Trizma at pH 7.4. 

 

Iontophoresis of the tripeptide Ac-Tyr-(D-Trp)-Lys-NH2, derived from the residues at positions 3 to 

5 in vapreotide, under the same experimental conditions, also produced almost no inhibition of EO (IF 

= 1.5 ± 0.5) compared to the parent peptide (IF = 50 ± 30) [17].  Hence, the occurrence and extent of 

this phenomenon cannot, as a rule, be accurately predicted from the behaviour of the structural motif 

presumed responsible for the skin interaction.  It should be noted that interspecies differences (the 

triptorelin and vapreotide studies were conducted with porcine skin whereas nafarelin and (D-Nal(2))-

Leu-Arg data were obtained using hairless mouse skin) may also play a role in the interpretation of 

mechanistic data.  This is further illustrated by the observation that the dependence of iontophoretic 

propranolol delivery on donor concentration (in the presence of competing ions), across these two 

membranes, is different [25]. 

Effect of increasing triptorelin concentration on peptide transport and electroosmosis 

The impact of drug concentration on iontophoretic flux is a commonly studied experimental 

parameter.  According to Equation 3, an increase in the formulation’s drug-load should result in an 

increase in the EM component and hence in the total drug flux (with the assumption that the 

formulation concentration is equivalent to that present in the supposed aqueous transport pathways 

within the membrane).  Indeed, when the donor formulation contains background electrolyte, a source 

of competing ions, the initial linear dependence that is observed between flux and drug concentration 

dwindles as concentration increases: once the product of the drug concentration and mobility (see 

Equation 3) is in sufficient excess of the corresponding values for the competing ions, the flux 

becomes independent of drug concentration.  Triptorelin contains the (D-Trp-Leu-Arg) sequence at 

positions 6 to 8 in its primary structure; this sequence corresponds to the oligopeptide motif 

(hydrophobe-hydrophobe-cation) hypothesized to be responsible for the “anomalous” iontophoretic 

behaviour observed with nafarelin, leuprolide and octreotide upon increasing the donor concentration.  

In a second series of transport experiments with twice the triptorelin concentration (6 mM) in the donor 

compartment, only 60 ± 40 µg/cm2 of triptorelin was measured in the receptor compartment, compared 

to 120 ± 30 µg/cm2 with the lower donor concentration (3 mM); a two-fold increase of peptide in the 

formulation produced a two-fold decrease in delivery.  The simultaneous administration of 

acetaminophen as an electroosmotic marker, allowed the inhibition factor to be calculated.  The IF 

Triptorelin p Glu His Trp Ser Tyr D -Trp Leu Arg Pro Gly NH2   6 +/- 3
Ac- D -Trp Leu Arg NH2   1.1 +/- 0.2

Vapreotide D -Phe Cys Tyr D -Trp Lys Val Cys Trp NH2 50 +/- 30
Ac- Tyr D -Trp Lys NH2   1.5 +/-   0.5

Inhibition factor
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values at 3 and 6 mM triptorelin concentrations were 6 ± 3 and 10 ± 5, respectively, substantiating the 

inhibitory effect of this peptide on the convective solvent flow.  However, given that EO accounted for 

only ~20% of iontophoretic transport at a donor concentration of 3 mM, the increased EO inhibition 

cannot alone explain the two-fold reduction in the cumulative amount delivered: the increase in donor 

concentration must also impact on EM.  Hence, it seems likely that other interactions, perhaps 

involving the formation of triptorelin aggregates, which would hinder peptide delivery, must occur 

within the transport pathways. 

The separate effects of aggregation and inhibition could be represented by modification of 

Equation 2: 

( ) INHIBNO
EO

PRED
EM

EXP
T JJJ  )1(1 βα −+−=  (6) 

where α and β represent the degree of aggregation and EO inhibition, respectively.  

Increasing aggregation would reduce drug mobility and predominantly affect EM; β, which is 

proportional to IF, would negatively impact upon convective solvent flow.  Thus, peptide accumulation 

could occur without affecting EO.  At the same time, peptides could strongly inhibit EO and still have 

that as the major transport mechanism, if they also exhibit a high degree of aggregation. 

Can therapeutic amounts of triptorelin be delivered by transdermal iontophoresis? 

The “bottom line” of any feasibility study with a therapeutic molecule is to determine whether 

sufficient drug can be delivered to achieve the desired pharmacological effect.  For triptorelin, the 

plasma concentration required for biochemical castration is ~1.7 nmol/L (equivalent to ~2.2 ng/mL) 

[26].  Given that the total body clearance in healthy individuals is ~200 mL/min [27], the target input 

rate that must be achieved to maintain the steady state triptorelin concentration necessary for durable 

biochemical castration is ~26 µg/h.  The measured triptorelin flux of 22 µg/cm2/h (at 7 hrs) signifies 

that, at the current density used in these experiments (0.5 mA/cm2), it would be entirely feasible to 

deliver therapeutic levels of triptorelin with a patch application area of less than 2 cm2.  As reported 

above, triptorelin delivery increases essentially linearly with current; hence, the measured peptide flux 

can be normalized by the applied current density to obtain a measure of mass transport per unit 

current per unit time; the “current-normalized” flux for triptorelin is 45 µg/mA/h.  A current density of 0.5 

mA/cm2 is at the upper limit of the range generally considered acceptable for human use, and is 

probably unsuitable for prolonged application.  The “current-normalized” flux can be used to calculate 

the application area necessary to deliver therapeutic amounts of triptorelin at lower, and better 

tolerated, iontophoretic current densities.  For example, the application of a 0.8 mA iontophoretic 

current over a 4 cm2 contact area, equivalent to a far more acceptable current density of 0.2 mA/cm2, 

would be sufficient to provide a delivery rate exceeding 35 µg/h.  
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CONCLUSIONS 

These preliminary in vitro studies illustrate the contrasting effects of current density and 

triptorelin concentration on delivery.  At a given concentration (3 mM), a three-fold increase in current 

density produced a corresponding increasing in the cumulative amount of peptide transported across 

porcine epidermis.  Conversely, doubling the concentration to 6 mM produced a two-fold reduction in 

the amount of peptide delivered following iontophoresis for 8 hours at 0.5 mA/cm2.  Although theory 

would suggest equivalent effects upon increasing current or concentration, the experimental results 

reveal that this is not always the case.  Thus, formulation parameters must be carefully selected to 

optimize the delivery of complex molecules.  Quantification of acetaminophen transport in the 

presence of triptorelin revealed that EM was the predominant transport mechanism, accounting for 

~80% of overall delivery.  The acetaminophen data also revealed that triptorelin was capable of a 

concentration-dependent EO inhibition.  Nevertheless, the degree of inhibition was insufficient to 

explain the inverse dependence of transport on peptide concentration, suggesting the involvement of 

peptide aggregation.  Despite the EO inhibition and putative aggregation phenomena, the cumulative 

amount of triptorelin delivered and the estimated iontophoretic flux suggest that drug input rates 

sufficient to achieve plasma levels capable of ensuring prolonged biochemical castration may be 

attainable using transdermal iontophoresis. 

REFERENCES 

1.  Ting,W.W., Vest,C.D., and Sontheimer,R.D. (2004): Review of traditional and novel modalities that 
enhance the permeability of local therapeutics across the stratum corneum.  Int.J.Dermatol. 
43:538-547. 

2.  Cross,S.E. and Roberts,M.S. (2004): Physical enhancement of transdermal drug application: is 
delivery technology keeping up with pharmaceutical development?  Curr.Drug Delivery 1:81-92. 

3.  Kalia,Y.N., Naik,A., Garrison,J., et al (2004): Iontophoretic drug delivery.  Adv.Drug Deliv.Rev. 
56:619-658. 

4.  Filicori,M., Flamigni,C., Dellai,P., et al (1994): Treatment of anovulation with pulsatile 
gonadotropin-releasing hormone: prognostic factors and clinical results in 600 cycles.  
J.Clin.Endocrinol.Metab. 79:1215-1220. 

5.  Schally,A.V. (1999): Luteininzing hormone-releasing hormone analogs: their impact on the control 
of tumorigenesis.  Peptides 20:1247-1262. 

6.  Heit,M.C., Monteiro-Riviere,N.A., Jayes,F.L., et al (1994): Transdermal Iontophoretic Delivery of 
Luteinzing Hormone Releasing Hormone (LHRH): Effet of Repeated Administration.  Pharm.Res. 
11:1000-1003. 

7.  Miller,L.L., Kolaskie,C.J., Smith,G.A., et al (1990): Transdermal Iontophoresis of Gonadotropin 
Releasing Hormone (LHRH) and Two Analogues.  J.Pharm.Sci. 79:490-493. 

8.  Lu,M.F., Lee,D., Carlson,R., et al (1993): The effects of formulation variables on iontophoretic 
transdermal delivery of leuprolide to humans.  Drug Dev.Ind.Pharm. 19:1557-1571. 

9.  Delgado-Charro,M.B. and Guy,R.H. (1995): Iontophoretic delivery of nafarelin across the skin.  
Int.J.Pharm. 117:165-172. 



Chapitre 5  92 
 
 

10.  Rodriguez Bayon,A.M. and Guy,R.H. (1996): Iontophoresis of Nafarelin Across Human Skin in 
Vitro.  Pharm.Res. 13:798-800. 

11.  Nicoli,S., Rimondi,S., Colombo,P., et al (2001): Physical and Chemical Enhancement of 
Transdermal Delivery of Triptorelin.  Pharm.Res. 18:1634-1637. 

12.  Roberts,M.S., Kreis,W., Eschbache,J., et al (1990): Transdermal versus subcutaneous leuprolide: 
A comparison of acute pharmacodynamic effect.  Clin.Pharmacol.Ther. 48:340-345. 

13.  Delgado-Charro,M.B., Rodriguez Bayon,A.M., and Guy,R.H. (1995): Iontophoresis of nafarelin: 
effects of current density and concentration on electrotransport in vitro.  J.Control.Release 35:35-
40. 

14.  Hirvonen,J., Kalia,Y.N., and Guy,R.H. (1996): Transdermal delivery of peptides by iontophoresis.  
Nat.Biotechnol. 14:1710-1713. 

15.  Schaefer,H. and Redelmeier,T.E. (1996): Prediction and Measurement of Percutaneous 
Absorption. In: Skin Barrier, edited by H.Schaefer, et al, Karger, Basel, pp. 118-152.  

16.  Bronaugh,R.L. and Collier,S.W. (1991): Preparation of human and animal skin. In: In Vitro 
Percutaneous Absorption: Principles, Fundamentals, and Applications, edited by R.L.Bronaugh, et 
al, CRC Press, Boca Raton, pp. 1-6.  

17.  Schuetz,Y.B., Naik,A., Guy,R.H., et al (2005): Transdermal iontophoretic delivery of Vapreotide 
Acetate.  Pharm.Res. , in press. 

18.  Santoyo,S., Arellano,A., Ygartua,P., et al (1995): Penetration enhancer effects on the in vitro 
percutaneous absorption of piroxicam through rat skin.  Int.J.Pharm. 117:219-224. 

19.  Glikfeld,P., Cullander,C., Hinz,R.S., et al (1988): A New System for In Vitro Sudies of 
Iontophoresis.  Pharm.Res. 5:443-446. 

20.  Delgado-Charro,M.B. and Guy,R.H. (1994): Characterisation of Convective Solvent Flow During 
Iontophoresis.  Pharm.Res. 11:929-935. 

21.  Burnette,R.R. and Marrero,D. (1986): Comparison Between the Iontophoretic and Passive 
Transport of Thyrotropin Releasing Hormone Across Excised Nude Mouse Skin.  J.Pharm.Sci. 
75:738-743. 

22.  Green,P.G., Shroot,B., Bernerd,F., et al (1992): In vitro and in vivo iontophoresis of a tripeptide 
across nude rat skin.  J.Control.Release 20:209-218. 

23.  Craan-van Hinsberg,W.H.M., Bax,L., Flinterman,N.H.M., et al (1994): Iontophoresis of a Model 
Peptide Across Human Skin in Vitro: Effects of Iontophoresis Protocol, pH, and Ionic Strength on 
Peptide Flux and Skin Impedance.  Pharm.Res. 11:1296-1300. 

24.  Pikal,M.J. (2001): The role of electroosmotic flow in transdermal iontophoresis.  Adv.Drug 
Deliv.Rev. 46:281-305. 

25.  Marro,D., Kalia,Y.N., Delgado-Charro,M.B., et al (2001): Contributions of Electromigration and 
Electroosmosis to Iontophoretic Drug Delivery.  Pharm.Res. 18:1701-1708. 

26.  Bouchot,O., Soret,J.Y., Jacqmin,D., et al (1998): Three-month sustained-release form of triptorelin 
in patients with advanced prostatic adenocarcinoma: results of an open pharmacodynamic and 
pharmacokinetic multicenter study.  Horm.Res. 50:89-93. 

27.  Muller,F.O., Terblanche,J., Schall,R., et al (1997): Pharmacokinetics of triptorelin after intravenous 
bolus administration in healthy males and in males with renal or hepatic insufficiency.  
Br.J.Clin.Pharmacol. 44:335-341. 

 



Conclusions et perspectives  93 
 
 

 

CONCLUSIONS ET PERSPECTIVES 

 

L’étude portant sur l’administration du vapréotide illustre la fonction barrière métabolique 

qu’exerce la peau en plus de sa fonction barrière physique plus évidente.  La forte susceptibilité de cet 

analogue de la somatostatine vis-à-vis de la dégradation enzymatique ainsi que son importante 

capacité à inhiber l’électroosmose, et par là même son propre transport, font de ce peptide un 

candidat non idéal à l’administration transdermique par ionophorèse.  Si les résultats obtenus 

indiquent qu’un patch de 15 cm2 pourrait tout de même permettre d’atteindre des concentrations 

thérapeutiques, les flux mesurés pour la triptoréline sont nettement plus importants, notamment en 

raison de sa faible dégradation enzymatique.  Cet analogue de la LHRH s’avère donc être un bien 

meilleur candidat et son administration par ionophorèse semble à même d’offrir une alternative aux 

formes médicamenteuses actuellement disponibles.  Des expériences conduites in vivo avec ces deux 

peptides fourniraient des informations supplémentaires permettant de mieux anticiper les corrélations 

in vitro - in vivo dans le cas de molécules comme celles-ci, notamment en termes de dégradation 

enzymatique.  Elles pourraient valider les flux estimés et ainsi constituer un pas décisif vers 

l’administration transdermique de peptides thérapeutiques par ionophorèse. 

Alors que ces deux peptides ont montré leur capacité à inhiber l’électroosmose (inhibition 

suspectée par leur structure présentant un acide aminé chargé près d’un groupement lipophile), 

l’étude du comportement ionophorétique des tripeptides correspondant à cette séquence clé révéla 

que l’inhibition induite par un peptide ne peut être prédite sur la base de l’inhibition exercée par le 

tripeptide présentant la juxtaposition « charge et lipophilie ».  Ceci démontre bien la complexité de 

l’interaction avec la membrane et met en évidence le manque de connaissance actuel sur les 

éléments structuraux influençant les mécanismes de transport en ionophorèse.  

L’étude systématique menée sur une série de tripeptides dont la séquence est dérivée de 

celle des analogues de la LHRH et de la somatostatine, a permis de mettre en évidence des 

propriétés moléculaires-clé intervenant dans le passage transdermique de ces composés par 

ionophorèse.  L’hydrophobie est apparue comme paramètre déterminant, s’opposant au passage des 

peptides.  Si il a été montré qu’elle favorise l’inhibition de l’électroosmose, elle semble impliquée dans 

d’autres interactions ayant pour conséquence de restreindre le transport.  En montrant que non 

seulement le volume des régions hydrophobes mais également leur distribution au sein de la molécule 

ont un impact sur le transport, cette approche computationnelle a démontré qu’il est essentiel de 

prendre en considération l’environnement tridimensionnel des composés.  Elle a ainsi permis de 

mettre en évidence la différence de lipophilie pouvant exister entre deux tripeptides constitués des 

mêmes acides aminés mais arrangés selon un autre ordre, différence qui s’est manifestée au niveau 

de leur transport ionophorétique.  Des interactions telles que celles existant entre les chaînes latérales 
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des acides aminés sont susceptibles d’influencer la conformation tridimensionnelle, modulant ainsi la 

lipophilie du peptide, ce qui ne peut être détecté par une méthode fragmentale bi-dimensionnelle telle 

que le ClogP.  Cet effet de la séquence en acides aminés sur le transport ionophorétique mérite d’être 

plus amplement étudié.  La ionophorèse de peptides supplémentaires ainsi que la mise en évidence 

expérimentale de cette différence de lipophilie par des mesures de voltamétrie cyclique peut en effet 

être envisagée.  Il serait par ailleurs intéressant de confirmer l’effet du type de charge observé lors de 

la comparaison du transport des peptides contenant la lysine à ceux dont la charge est fournie par 

l’arginine. 

Enfin, il serait particulièrement profitable d’étayer le modèle établi puis de l’élargir à d’autres 

molécules, ce qui permettrait notamment d’approfondir les connaissances actuelles des mécanismes 

de transport impliqués dans l’administration transdermique par ionophorèse.  Aussi, on pourrait 

imaginer qu’une telle approche permette un jour d’évaluer la faisabilité de l’administration d’un 

candidat médicament par cette technologie, sans expérimentation in vitro, voire même avant la 

synthèse du composé.  
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