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Abstract
Wepresent a hydrodynamic theory to describe shearflows in developing epithelial tissues.We
introduce hydrodynamic fields corresponding to state properties of constituent cells as well as a
contribution to overall tissue shear flowdue to rearrangements in cell network topology.We then
construct a generic linear constitutive equation for the shear rate due to topological rearrangements
andwe investigate a novel rheological behaviour resulting frommemory effects in the tissue.We
identify two distinct active cellular processes: generation of active stress in the tissue, and actively
driven topological rearrangements.We find that these two active processes can produce distinct
cellular and tissue shape changes, depending on boundary conditions applied on the tissue. Our
findings have consequences for the understanding of tissuemorphogenesis during development.

1. Introduction

Duringmorphogenesis, epithelial tissues grow and reshape to formdifferent organs in the adult animal. These
tissue shape changes result from external stresses acting on the tissue aswell as from autonomous force
generation by cells [1–3]. Cellular forces induce cell deformations and topological rearrangements of the
network of bonds joining the cells. Topological rearrangements occurring in tissuemorphogenesis include
neighbour exchanges throughT1 transitions, cell divisions and cell extrusions. DuringT1 transitions, an edge
joining two cells shrinks and twoneighbours loose their contacts, resulting in a 4-fold vertex (figure 1(A)). A new
bond can then form, establishing a contact between two cells whichwere not neighbours before. During cell
divisions, a new bond is formed between the two daughter cells, and during cell extrusion, an entire cell leaves
the tissue (figure 1(A)). Topological rearrangements fluidify the epithelium through neighbour exchanges
events, as has been observed in cell aggregates under compression [4], or through cell divisions and extrusion [5].
In passive systems such as foams, topological rearrangements occur as a response to an external force deforming
the system [6, 7]. In biological tissues, whichwork out-of-equilibrium, topological rearrangements can however
be internally driven by the system to generate deformation. In germ-band elongation ofDrosophila embryos for
instance,T1 transitions are preferentially oriented, with cell bonds removed along the dorso-ventral axis of the
tissue and added along the antero-posterior axis, and are actively driven by the cells [8, 9], leading to tissue-scale
reorganisation andflows. Similar actively driven oriented cell neighbour exchanges contribute to so called
convergent extension processes that elongate the embryo along the body axis during development inmany
animals [10, 11].

During tissuemorphogenesis, tissue deformation can either arise fromdeformation of individual cells of the
tissue, or from topological rearrangements of the tissue: for instance, cellular neighbour exchange can result in
shear by rearranging the cell positions, without overall cell deformation (figure 1(B)). The contribution of
topological rearrangements to tissueflows has beenmeasured to be a significant component of total tissue
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deformation in somemorphogenetic processes inDrosophila [12–15]. Similar decomposition approaches of the
large scalematerial deformationswere also used to studyflows in foams [16–18]. It is however unclear how cell
deformation, topological rearrangements and the overall tissueflow are physically coupled to each other.

The collective behaviour of cells in epithelia based onmechanics of single cells can be captured by different
models [19–22]. Vertex-model numerical simulations for instance attempt to capture themechanics of
epithelial tissues by representing the tissue by a network of bonds [22]. The vertices are then subjected to forces
derived from an effectivemechanical energy, taking into account line tensions acting on the edges of the
networks and an area elasticity. Cell-based simulations of tissues however requiremaking specific hypotheses on
cellmechanics. Alternatively, continuum theories have been proposed to describe tissue growth and
deformation due to cell proliferation [5, 23–26], cell neighbour exchanges [4] or both [13, 27]. Collective
migrations in cellmonolayers have been studied using continuummodels that couple the tissuemechanics with
the tissue polarisation and to the concentration of a chemical activator [28–31].

Figure 1. (A)Cellular processes contributing to tissue deformation. Cell elongation: deforming cells reshape tissue proportionally to
cell area and elongation change.T1 transition: during aT1 transition two cells lose a bond they share (red bond) and after passing
through 4-fold vertex configuration (middle) a new bond (green) is created between the other two cells taking part inT1 transition.
Cell division: cell division produces two newdaugher cells from amother cells. Cell extrusion: during a cell extrusion a single cell (red)
is removed from the tissue. (B)Tissue deformation can arise from changes in cell elongation (top) and from topological
rearrangements (bottom). Note that in thefigure topological rearrangements were represented byT1 transitions but in general they
can include both cell divisions and cell extrusions. (C)Cell state properties: cell area, cell elongation and structural anisotropy of cells
are represented by hydrodynamicfields. (D)Active anisotropic processes in a tissue can result in anisotropic active stress (top), or
drive actively oriented topological rearrangements (bottom). Active stress and shear due to active topological rearrangements produce
different cell and tissue behaviour (see section 4.4).
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Wehave recently studied the cell deformations and tissueflows occurring duringmorphogenesis of the
Drosophila pupal wing [13].We found that topological rearrangements are oriented relative to the tissue axis and
their preferred orientation exhibits a complex dynamics. The orientation of topological rearrangements has an
intrinsic bias and responds to cell shape changes with a delay.Motivated by these observations, we developed a
continuummodel that describes the rate of shear due to topological rearrangements by a linear constitutive
equation that captures its behaviour.

In this work, we study the dynamical properties of this continuummodel, including a response with
memory of topological rearrangements to cell shape, as well as active contributions to stress and shear due to
topological rearrangements.

In section 2, we present a generic hydrodynamic theory offlowing tissues withmemory.We introduce
hydrodynamic fields corresponding to the observable cell properties (figure 1(C)). Note thatwe use theword
hydrodynamic here to denote afield relaxing slowly on large spatial scales.

In section 3we construct generic linear constitutive equations for a polar tissue, characterising the tissue
stress as well as the shear created by topological rearrangements. A set of phenomenological coefficients is
introduced in these equations, characterising the response of the tissue. These coefficients are emerging
properties of a tissue and can be experimentallymeasured. Similar to active gels [32, 33], an active stress can exist
in the system from the forces generated inside cells by the cytoskeleton. In addition, we introduce an additional
active term, distinct from an active stress, which describes active anisotropic topological rearrangements
internally driven by the system.

In section 4we consider an exponentially decayingmemory kernel in the constitutive equation for shear,
whichwas found to account for the behaviour of the shear due to topological rearrangements in theDrosophila
wingmorphogenesis [13].We explore the physics predicted by thismodel. In sections 4.1 and 4.2we study the
influence ofmemory effects on the tissue rheology. Thesememory effects can lead to oscillations in the tissue.
We then show that thememory effects give rise to an effective inertia which is not related to the physicalmass of
the tissue. In section 4.3we discuss the relation between the tissuemodel proposed here and the behaviour of an
active viscoelastic nematic gel close to equilibrium. In section 4.4we discuss the dynamics of the tissue and cell
deformation in a rectangular homogeneous tissue, andwe find qualitative differences between tissues driven by
the active stress and flows driven by active topological rearrangements, depending on boundary conditions.
Finally, in section 4.5we discuss active tissueCouetteflowwhere a stall force has to be applied to stop tissue from
flowing spontaneously.

2.Hydrodynamic description of aflowing tissue

2.1. Cell density balance
Weconsider a tissue consisting of cells with local cell number density n. The cell number can change through
cellular events such as division and extrusion. Denoting the rates of cell division and extrusion per cell kd and ke,
respectively, the balance of cell number can be expressed as

¶ + ¶ = -n nv n k k , 1t k k d e( ) ( ) ( )

wherewe have introduced the cell velocity field vi.

2.2. Velocity gradient
Deformations of the tissue result from spatial inhomogeneities of cell velocity vi, described by the velocity
gradient tensor

= ¶v v . 2ij i j ( )

The velocity gradientmatrix can be uniquely decomposed into a sumof isotropic, traceless symmetric and
antisymmetric terms

d w= + +v
d

v v
1

, 3ij kk ij ij ij˜ ( )

where d is the number of dimensions. In the followingwewill discuss two-dimensional tissues, but extension to
the d=3 case is straightforward. The trace of the velocity gradient vkk describes local changes in tissue area, the
traceless symmetric part d= + -v v v v d2ij ij ji ij kk˜ ( ) is the pure shear rate and the antisymmetric part
w = -v v 2ij ij ji( ) corresponds to local rotation of the tissue.

2.3. Cell properties
Wepropose a description of tissueflows at the scale larger than the typical cell size, butwe retain information on
the properties of cell shapes. The cell shape is characterised by the average cell area a and the cell elongation
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nematic tensorQij (figure 1(C)) describing the cell shape anisotropy. The average cell area of a cellular patch can
be defined as =a n1 , where n is the cell number density. The cell elongation nematic has amagnitudeQ
characterising the strength of cell elongation, and an anglej characterising the orientation of the elongation axis
(see appendix A). Different definitions of cell elongation based on cell outlines have been proposed
[13, 15, 34, 35]. In the framework of the hydrodynamic theory we propose, we expect these various definitions to
modify phenomenological coefficients but to leave the hydrodynamic equations unchanged.However, we
impose that the definition of tensorQij should be such that homogeneous tissue deformation in the absence of
topological rearrangements gives rise to the cell elongation change

=
Q

t
v

D

D
, 4

ij
ij˜ ( )

where tD D is a corotational convected derivative (see appendix B.1).
In addition, intracellular components can be distributed anisotropically inside the cell. Proteins of the planar

cell polarity pathways, for instance, are known to be distributed across opposite cell edges [36]. Herewe take into
account the cell polarisation by introducing a nematic tensorfield qij that describes the orientation of anisotropic
structures in cells (figure 1(C)). If the average cell polarity is characterised by a vector field p, the corresponding
nematic tensor is obtained from

d= -q p p p
1

2
. 5ij i j ij

2 ( )

Cell polarity vectors and nematic tensors can be experimentallymeasured, for instance from the distribution of
polarity proteins on cellular junctions [35, 37]. As for the cell elongation tensor, a particular choice of polarity
definitionwill affect the phenomenological coefficients of linear hydrodynamic equations but not their
general form.

2.4. Cellular contributions to tissueflows
Isotropic and shear tissueflows can be decomposed in contributions reflecting changes of cellular properties.
First, we note that equation (1) can be rewritten as an equation for the isotropic flow in terms of the average cell
area a and cell division and extrusion rates

= + -v
a

a

t
k k

1 d

d
, 6kk d e ( )

where td d is the convected derivative (see appendix B.1). Therefore, the relative change in tissue area is equal to
the relative cell area change plus the relative change in cell number. Anisotropic tissue deformation stems from
two sources, (1) cellular deformationswhich can be captured by a change of cell elongationQij, and (2)
topological rearrangements which includeT1 transitions, cell divisions and cell extrusions (see figure 1(B)).
Therefore, the tissue shearflow rate vij˜ can be decomposed according to the following equation

= +v
Q

t
R

D

D
, 7ij

ij
ij˜ ( )

whereRij is a shear rate due to topological rearrangements. Note that collective correlatedmovements of cells
can also contribute toRijwhen spatial fluctuations of rotation and growth are correlated with cell elongation
fluctuations [13, 34]. Herewewill consider an effective constitutive equation forRij that does not distinguish the
different contributions arising from topological rearrangements or correlation contributions arising from
coarse-graining.

2.5. Force balance
Viscous forces typically dominate over inertial contributions at the scale of cells and tissues.We therefore write
force balance in the lowReynolds number limit

s¶ + =f 0. 8j ij i
ext ( )

Here, sij is the tissue stress, and f ext is an external force density acting on the tissue.

3. Constitutive relations

In equations (7) and (8)wehave introduced the tensorial quantitiesRij and sij, which are determined by tissue
properties.We nowpropose constitutive relations for these quantities, using general assumptions about physical
processes acting in the tissue.We distinguish in the constitutive equations ‘passive’ terms, which tend to relax
cell elongation, and ‘active’ terms, which act as forcing terms driving cellular flow and deformation. Note that
tissues function out of equilibrium and active processes in the cell can also in general contribute to passive terms:
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for instance, the effective cellular elasticity can depend on the activity ofmolecularmotors in the cell. If cells are
polarised, cell force generation can be anisotropic, giving rise to anisotropic active stress and anisotropic active
topological rearrangements. Both effects are taken into account in our constitutive relations through the cell
nematic polarity tensor qij introduced in section 2.3.

3.1. Tissue stress
The total two-dimensional tissue stress can be decomposed in a pressure P and shear stress sij˜

s d s= - +P . 9ij ij ij˜ ( )

The anisotropic stress in the tissue depends on the cell elongationQij and cell polarity qij.We consider a linear
elastic response of the tissue stress to tissue elongation described byQij. In additionwe introduce an active
anisotropic stress capturing anisotropic force generation in the cell

ò òs f f= - ¢ ¢ ¢ + - ¢ ¢ ¢z
-¥ -¥

t t t Q t t t t q t td d . 10ij

t

K ij

t

ij˜ ( ) ( ) ( ) ( ) ( ) ( )

Here thememory kernels fK and fz have units of a two-dimensional elasticmodulus divided by time. They
characterise the response of anisotropic tissue stress to cell elongationQij and cell nematic polarity qij
(figure 1(D)—top), respectively. In general, thememory kernels are fourth order tensors, however, here we
consider the casewhere all anisotropies have been accounted for byQij and qij and thus thememory kernels are
isotropic.

For completeness, we express the isotropic stress in the tissue as a linear response to the natural strain
a aln 0( ) of cell area a

⎛
⎝⎜

⎞
⎠⎟= -P K

a

a
ln , 11

0

( )

where K is the isotropic elasticmodulus and a0 is the cell area in a pressure-free tissue. Inwhat follows, we focus
on the role of anisotropic stress and cell elongation.

3.2. Shear rate due to topological rearrangements
Tissue rheology is governed by cell rearrangements described by the tensorRij. In the spirit of linear response
theory, we expressRij in terms of other relevant nematic quantities, the average cell elongationQij and the
internal cell anisotropy qij. Taking into accountmemory effects, wewrite to linear order

ò òf f= - ¢ ¢ ¢ + - ¢ ¢ ¢t l
-¥ -¥

R t t t Q t t t t q t td d . 12ij

t

ij

t

ij( ) ( ) ( ) ( ) ( ) ( )

Thememory kernels ft t( ) and fl t( ) have units of inverse squared time and characterise the response of shear
produced by topological rearrangements to cell elongation and active cellular processes, respectively (figure 1(D)
—bottom). Equation (12) corresponds to the underlying assumption that oriented, anisotropic topological
rearrangements depend on the average cell elongation and the orientation of planar cell polarity. Note that
similarly to the constitutive equation for the tissue stress equations (10) and (11), the constitutive equation (12)
and thememory kernels ft and fl depend on thematerial or tissue considered.We expect that passive, apolar
foams can be characterised by the function ft , which describes howbubbles in the foam rearrange as a response
to shear stress applied to the foam. In a biological process driven by anisotropic force generation on cell bonds,
such as germband elongation [8, 9], we expect the function fl to contain information characterising how
internal tissue anisotropy results in oriented topological rearrangements. The functions ft and fl therefore
carry key information about cellular processes in the tissue, and can bemeasured experimentally in different
morphogenetic tissues, in the sameway that a tissue elasticmodulus or viscosity can bemeasured in a rheological
experiment.

4. Shearflows

Equations (6)–(12) constitute a systemof equations which can be solved for the velocity field of the tissue v , the
average cell area a and the average cell elongationfieldQij, once the rates of cell division and extrusion kd and ke,
the cell nematic polarity tensor qij, the phenomenological coefficients andmemory kernels, and boundary
conditions are specified. In the next section, we discuss simple limits of the hydrodynamic theory of tissueflows
we propose here.

4.1. Tissue shear rheology
Wefirst discuss the rheology of a homogeneous passive tissue subjected to external forces driving its
deformation in the absence of active anisotropic cellular processes =q 0ij .Moreover, we consider the case
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where thememory in the response of topological rearrangements to cell deformation arises fromone
dominating underlying relaxation process: in that case the long time behaviour ofmemory kernel ft ,
introduced in equation (12), is dominated by the largest timescale td

òt t
= ¢ ¢

-¥

- t
- ¢

R t Q t t
1 1

e d . 13ij

t

d
ij

t t
d( ) ( ) ( )

which can also bewritten in a differential form

t
t

+ ¶ =R Q1
1

. 14d t ij ij( ) ( )

This equation, togetherwith the shearflowdecomposition equation (7), describes the coupled dynamics of cell
elongation and topological rearrangements, schematically represented infigure 2(A). Here, td is the delay
timescale over which cells integrate changes in cell elongation, such that changes inRij are delayed by a time td

relative to changes in cell elongationQij. τ is a characteristic timescale of topological rearrangements,
corresponding to the sensitivity of topological rearrangements to cell elongation (figure 2(B)). This formof
response functionwas found to describe topological rearrangements during themorphogenesis of the
Drosophila pupal wing [13]. In the limit t  0d , the tensor of topological rearrangements is simply proportional
to the tensor of cell elongation t=R Qij ij .

Similarily, we discuss here a particular choice of shear stress constitutive relation in equation (10)where
memory effects relax on a timescalemuch shorter than other relevant timescales. Therefore

s = KQ2 , 15ij ij˜ ( )

whereK is the anisotropic elasticmodulus.
Assuming that topological rearrangements are described by equation (14), a relationship between shear

stress and shearflow can be derived by combining the shearflowdecomposition equation (7), the constitutive
relation describing shear due to topological rearrangements equation (13) and the shear stress constitutive
relation equation (15)

⎛
⎝⎜

⎞
⎠⎟òs

t t
s= ¶ + ¢ ¢t

-¥

- - ¢v t
K

t t
1

2

1 1
e d . 16ij t ij

t

d

t t
ij

d˜ ( ) ˜ ˜ ( ) ( )( )

Figure 2. (A) Schematics of the relation between cell elongation and topological rearrangements (equations (7) and (12)). Shear due
to topological rearrangements inhibits itself and cell elongation, which in turn induces shear due to topological rearrangements,
forming a feedback loopwith damping. Tissue shear flow can alsomodify cell elongation. (B) Schematics of the tissue response to a
sudden change in cell elongation. The onset of cell elongation triggers topological rearrangements after a delay timescale td , which
relax cell elongation over a timescale τ. (C) Shear stress response of amaterial subjected to a step in shear rate vij˜ (equation (19)). Blue
line: for b = - <0.2 02 the shear stress relaxes exponentially to a steady state value. Green line: for b = >3 02 , the shear stress
exhibits damped oscillations relaxing to the steady state value. Red line: case t = 0d , b = -12 , corresponding to a viscoelastic
Maxwellmaterial. (D)Mechanical response function c w( ) for the three cases in (C)with corresponding line colours. (E)Anetwork
containing a spring in series with a parallel connection of an inerter and a dashpot has equivalent rheology to a tissue with delayed
topological rearrangements.
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For simplicity we ignore here corotational terms. Equation (16) can be rewritten in the frequency domain as

s w c w w= v , 17ij ij˜ ( ) ( ) ˜ ( ) ( )

c w h
t w

wt t w
=

+
+ +

2
1 i

i 1 i 1
, 18d

d

( )
( )

( )

where h t= K is a viscosity and wvij˜ ( ) and s wij˜ ( ) are Fourier transforms of v tij˜ ( ) and s tij˜ ( ), respectively (see
appendix B.2). In equation (17)wehave introduced the frequency dependentmechanical response function
c w( ), which characterises the rheology of the tissue. The function c w( ) is plotted onfigure 2(D). The poles of
c w( ) are in the upper half of complex plane, as required by causality.We nowdiscuss the formof the response
function.

For zero delay timescale, t = 0d , the response function reduces to c w h wt= +2 1 i( ) ( ), corresponding to
a viscoelasticMaxwellmaterial with relaxation time τ and long-time viscosity η. The viscoelastic behaviour can
be understood as follows: on short timescale, tissue deformation results in cell elongation, and the emergence of
an elastic stress in the tissue. On a timescale larger than τ, cell elongation is relaxed by topological
rearrangements, resulting in the relaxation of elastic stress and afluid behaviour of the tissue.

For t t< 4d , the poles have vanishing real parts and the system response is an exponential relaxation,
similar to the case with zero delay timescale.

For large enough delay time, t t> 4d , an original, oscillatory rheological behaviour arises. In that limit, the
poles of the response functionχΩhave non-zero real parts and the system exhibits damped oscillations. As a
result, the coupled dynamics between cell elongation and topological rearrangements (figure 2(A)) results in an
oscillatory response of the tissue. To demonstrate this, we consider the stress response s tij˜ ( ) to a step function in
imposed shear = Qv t v tij ij

0˜ ( ) ˜ ( ), withQ t( ) theHeaviside step function. The resulting stress response s tij˜ ( ) reads
for >t 0

⎡
⎣
⎢⎢

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎤
⎦
⎥⎥s h

b
b t

b
t
b= -

-
+t-t v

t t
2 1 e

1

2
sin

2
cos

2
, 19ij ij

t

d d

0 2
2

d˜ ( ) ˜ ( )( )

wherewe have introduced b t t= -4 1d . For b < 02 the stress relaxes exponentially, while for b > 02 it
exhibits damped oscillations (figure 2(C)). Therefore, an experiment where a constant shear rate is imposed in
the tissue should result in a transient oscillatory force response when the delay td is sufficiently large.

4.2. Representation by a simplemechanical network
Wenowdiscusswhether the rheological properties of thematerial described by the response function c w( ) can
bemapped to a simple rheological behaviour.Wefirst note that the response function in equation (18) cannot be
realised by anyfinite network of parallel and serial connections of springs and dashpots. This can be shownby
inspecting the real and imaginary parts of c w( )

c w
h

t w tt w
=

+ -
Re

2

1
, 20

d
2 2 2 2

( )
( )

( )

c w hw
t t tt w

t w tt w
= -

- +
+ -

Im 2
1

. 21d d

d

2 2

2 2 2 2
( )

( )
( )

Wenote that the imaginary part of the response function can become positive when t t>d . Aswe now explain,
a network of springs and dashposts in series and in parallel can only have a non-negative real part and a non-
positive imaginary part of the response function. Let us consider two elements in series or in parallel in a
rheological network, and assume that these two elements have the same sign of real and imaginary part of the
response function at given frequency. One can verify then that the response function of the combined elements
has the same sign of real and imaginary parts than the individual elements (appendix C.1). The response function
of a springwith elastic constant k is c w= - kispring , and the response function of a dashpotwith viscosity h is
c h=dashpot . As a result, any combination of spring and dashpot elements in series and in parallel has a positive
real part and a negative imaginary part.

However, it is easy to verify that the Laplace transformof the response function c t( )

c h
t

t t
=

+
+ +

 s
s

s s
2

1

1 1
22d

d

( )
( )

( )

is a positive real function. A positive real function is a rational complex functionwhich is real for real values of s
and has a positive real part for >sRe 0. The Bott andDuffin synthesis theorem [38] for electrical circuits
guarantees that a positive real response function can be reproduced by a network of resistors, capacitors and
inductors. By drawing amechanical analogy to electrical networks, one can verify that similarly, any rheological
networkwith a positive real Laplace transformof the response function can be represented by a network of
spring, dashpots, and inerters. An inerter is an additionalmechanical element corresponding to a capacitor in
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electrical networks, in the analogywhere electrical current corresponds to stress and electric potential to shear
rate [39]. The response function of an inerter is c w= miinerter wherem is called inertance of the inerter and has
units ofmass for a two-dimensional system.

Interestingly, inerters are generally omitted from rheological schemes aimed at describing tissue rheology.
Indeed, because biological tissues operate at lowReynolds numbers, inertial terms associated to themass density
of the tissue can be ignoredwhen compared to viscous forces.Wefind here however that a delay in topological
rearrangements introduces an effective inertial term,which does not come fromphysicalmasses in the system.
Wefind that the response function of a tissuewith delayed topological rearrangements is equivalent to a circuit
made of a spring connected in series with a circuit of an inerter and dashpot connected in parallel (figure 2(E),
appendix C.2). The inertance of the inerter is given by tt=m K2 d, the effective elastic constant of the spring is
=k K2 and the dashpot viscosity h h t= = K2 2 . In [13], we found that equation (14) accounted for

experimental observations with t  h2 and t  h4d . Assuming a typical tissue three-dimensional elastic
modulus K 10 Pa3D and characteristic cellular length-scale ml 10 m, this corresponds to an inertance of

tt= ´m lK2 2 10 kgd3D
4 . This inertance is very large compared to the actual physicalmass of the system

and arises frommemory effects in the system.

4.3. Viscoelastic nematic gel close to equilibrium
We show in appendixD that the shear decomposition equation (7) also applies to nematic viscoelastic gels. In a
gel, the cell elongation tensorQij corresponds to the local elastic shear strain. In appendixD,we derive for
comparison constitutive equations for an active viscoelastic nematic gel close to equilibrium, whereOnsager
symmetry relations impose relations between the phenomenological coefficients relating fields and their
conjugated thermodynamic forces [40]. Taking into account the internal dynamics of the nematic field in the
gel, wefind an effective constitutive equation for the tensorRij, which respondswith a delay to changes in the
local elastic shear strain, and contains an additional term involving a time derivative of elastic shear strainQij

compared to equation (14)

⎜ ⎟⎛
⎝

⎞
⎠t

t
a+ = +

t
R Q

Q

t
1

D

D

1 D

D
. 23d ij ij

ij ( )

Here, advective and corotational non-linearities, whichwere ignored for simplicity in equation (14), have been
included. In this work, we consider the simple casewhere a = 0.We discuss in appendixD parameter regimes
of the viscoelastic nematic gel theorywhereα is negligible.

4.4. Activity-induced shearflows
Wenowdiscuss the effects of the two distinct active processes introduced in equations (10) and (12).We start
from the constitutive equation for the tensor of topological rearrangements, equation (12), and assume that the
twomemory kernelsf and fl are exponential with the same relaxation timescale td. This leads to a differential
equation forRij

t
t

l+ ¶ = +R Q q1
1

, 24d t ij ij ij( ) ( )

whereλ characterises themagnitude of shearflowdue to active topological rearrangements.Moreover, we
assume that the response of tissue shear stress to tissue polarity is instantaneous and hasmagnitude ζ

s z= +KQ q2 . 25ij ij ij˜ ( )

Let usfirst discuss a simple but instructive case of a convergent extension process in a stress free,
homogeneous, polarised tissue. Two distinct active processes can drive tissue and cell deformation: active
topological rearrangements, characterised by the coefficientλ in equation (24), and active stress generation,
characterised by the coefficient ζ in equation (25). At steady state, using equations (7), (24) and (25), one finds
that as a result of these active processes in the tissue, the tissue deformswith the shear rate

⎜ ⎟⎛
⎝

⎞
⎠

z
t

l= - +v
K

q
2

. 26ij ij˜ ( )

From equation (26), onefinds that at long timescales, the tissue is constantly deforming, with a steady-state shear
flow controlled by the active shear coefficient g z t l= - +2( ) . Therefore for g ¹ 0, non-zeroflows are
present in the steady state. Note that the contributions of the two active processes cannot be distinguished by
observing only the tissueflow for a stress free tissue.However, observing the cell elongation together with the
flow allows to identify the active shear stress z = -q KQ2ij ij and thus to distinguish the two active processes.

We nowdiscuss the behaviour of ourmodel in a tissue subjected to different combinations of active
processes and boundary conditions.We consider a rectangular shaped, homogeneous tissue, oriented such that
polarity axis is along the x axis: = =q q1, 0xx xy (see figure 3(A)). The tissue is constrained in space by an elastic
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material connected to a solid frame. The elasticmaterial provides resistance to changes in tissue length and
width.We define the natural strain variables =L l lln 0( ) and =H h hln 0( ), where l, h are tissue length and
tissuewidth. Introducing the elasticmoduli of the surroundingmaterial kx and ky, the external stress acting on
the tissue can bewritten

Figure 3. (A)A rectangular, homogeneous tissue, is attached to an external solid frame by springs. Active processes drive internal
anisotropic tension and oriented topological rearrangements in the tissue. (B)Time evolution of the shear and cell elongation of a
rectangular tissue, subjected either to active stress (z ¹ 0 and l = 0, top row), or to active shear due to topological rearrangements
(z = 0 and l ¹ 0, bottom row), under different boundary conditions. The active stress and active shear due to topological
rearrangements give rise to different behaviour of cell elongation and tissue flow. The active shear coefficient γ is set to be the same in
all cases: gt z lt= - + = -K2 0.2( ) . Other parameters: t t = 2d and in the third column, the spring constants are

= =k K k K 1x y . Note that aDirac delta peak at t=0 in vxx(t) is not plotted. (C)Active Couetteflow, reminiscent of tissue flow in
developingDrosophila genital imaginal disc [41]. The tissue is constrained to havewidth h and the bottomof the tissue isfixed

=v 0 0x ( ) while the top tissuemargin is free to slide s =h 0xy ( ) . (D)Relation between the velocity of the upper interface and the shear
stress applied. The tissue has a spontaneous flowing velocity vspont and a stalling stress sstall.
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s
s

=-
=-

k L
k H

,
. 27

xx x

yy y ( )

Weassume that for <t 0, the tissue is at rest, not subjected to active anisotropic processes, that cells are isotropic
and that there is no stress in the elasticmaterial surrounding the tissue.We then assume that active anisotropic
processes are turned on at t=0 and are constant for >t 0.We solve for the tissue shape and cell elongation
using equations (6), (7), (11), (24) and (25). For simplicity, we discuss here only the case = =k k kx y . In this
case, the tissue area = +A A H t L texp0 ( ( ) ( )) is conserved. The general solution is given in appendix E.We
find for t 0;
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and the corresponding dynamics of the shear rate vxx and cell elongationQxx are plotted onfigure 3(B) for a few
parameter values.We distinguish an oscillatory solutionwhen >s 02 corresponding to high values of td and
non-oscillatory dynamics when <s 02 corresponding to low values of td. Note that for <s 02 , equation (28)
can bewritten in terms of hyperbolic functions.When boundary conditions are stress free, n m = 0, = -s 12

and the solution cannot be oscillatory.When the rigid boundary conditions are imposed, n m = 1and the
parameter s is equal to the parameterβ in equation (19). In general these two coefficients are related by

m n b+ = +s 1 12 2( ) . The factor n m is related to boundary conditions; by imposing firmer boundary
conditions, this factor is increased. Therefore, the oscillatory behaviour disappears for decreased rigidity of the
boundary springs. However, oscillatory flowdoes not necessarily appear at high external rigidity, due to the
constraint n m < 1.

Using the solution in equations (28) and (31), we nowdiscuss the cases of free, rigid, and intermediate
boundary conditions, and consider the difference betweenflows and cell elongation induced by the anisotropic
active stress zqij and anisotropic topological rearrangements lqij (figure 3(A)).We take here l < 0 and z > 0,
such that the active stress is larger along the x direction and horizontal bonds are actively removed. Tissueflow
and cell elongation depend crucially on boundary conditions (figure 3(B)).

For rigid boundary conditions, the tissue can not deform and the active anisotropic stress has no effect.
Active topological rearrangements however drive cell elongation along the x direction. The process reaches
steady-state when topological rearrangements driven by cell elongation are balanced by active topological
rearrangements, and afinal cell elongation lt= -Qxx is reached.

For free boundary conditions, active anisotropic stresses result in cell elongation along the y direction and
tissueflow. In the steady state limit, the cell elongation reaches the value z= -Q K2xx ( ). Active topological
rearrangements do not result in cell deformation, but generate tissue shear.

For intermediate values of boundary spring elasticity, the tissueflows until the boundary springs deform
sufficiently to balance stresses in the tissue.When the tissue shape reaches steady state, flows vanish and the
average cell elongation reaches the same value as in the case of rigid boundary conditions, lt= -Qxx .

In the cases described above, when boundary conditions are such that the tissue eventually stops flowing, a
steady state is reachedwhen the shear created by topological rearrangements also vanishes. This occurs when
topological rearrangements induced by cell elongation and spontaneous, active topological rearrangements
balance each other. This process selects a value of the cell elongation tensor, lt= -Q qij ij (see equation (24)).
Therefore, by controlling active topological rearrangements, a tissue should be able to establish a fixed value of
cell elongation at steady-state.

In addition, we note that although both active shear stress and active topological rearrangements can induce
tissueflows (figure 3(B)), these two processes affect cell shape differently. This suggests that the relative
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contribution in tissuemorphogenesis of these two active processes can be distinguished by observing both cell
and tissue shape changes.

4.5. Active tissueCouetteflow
Wenowdiscuss theCouetteflowof a tissue confined between two parallel plates.We consider a two-
dimensional tissuewhich is constrained in the direction y to havefixedwidth h, it is translationally invariant in
the other direction and isfirmlyfixed at the bottom side of tissue y=0 (see figure 3(C)). Cell polarity is assumed
to be homogeneous in space.We assume for simplicity that the tissue is incompressible, vy= 0, so that the only
non-vanishing component of the shearflow is = ¶v v 2xy y x˜ . On the top side, afixed external shear stress
s s= =y hxy e( ) is imposed on the tissue. The tissue is immobile for <t 0, and active processes are turned on at
t=0 and are then constant in time. The general solution is given in appendix F.

Wefirst consider the case where the top side of the tissue y=h is free to slide, s = 0e . TheCouetteflow
velocity increases and reaches a steady-state over the timescale td

⎜ ⎟⎛
⎝

⎞
⎠l

z
t

¶ = - - -tv t
K

q2
2

1 e . 35y x xy
t
d( ) ( ) ( )

Similar to earlier examples, this flow can be produced by either active stress and active shear due to topological
rearrangements.Measuring the cell elongation component in the steady state z= -Q K q2xy xy( ) allows to
determine howmuch each of the two active processes contributes to the tissueflow. If the component qxx of the
cell polarity is present it does not contribute to the tissueflows but determines the steady state value of cell
elongation component tl= -Q qxx xx since the boundary conditions in this direction are rigid. This situation is
reminiscent offlows observed in theDrosophila genitalia rotation and vertexmodel simulations intended to
reproduce this process [41, 42].

Finally, we obtain for arbitrary external shear stress se at steady-state

⎜ ⎟⎛
⎝

⎞
⎠t

s l
z
t

= + -v h
h

K
h

K
q2

2
, 36x e xy( ) ( )

which is a relation between the velocity of the upper interface, the external shear applied to the tissue and the
spontaneousflowing velocity of the tissue l z t= -v h K q2 2 xy

spont ( ( )) . The effective friction coefficient of

the tissue layer is tK h, while a stalling stress s s z tl= = - K q2e xy
stall ( ) must be applied to stop the tissue

from spontaneously flowing (figure 3(D)). It would be interesting to see if rheological experiments can allow to
measure these quantities.

5.Discussion

Wehave presented a hydrodynamic theory of tissue shearflowswhich explicitly accounts for topological
rearrangements at the cellular scale.We have introduced active terms influencing the shear stress as well as
oriented topological rearrangements of cells, coupled to the nematicfield qij. The theory applies to both
effectively two-dimensional epithelia, which have beenmostwidely studied [1–3], and to three-dimensional
tissues, which can also undergo topological rearrangements [43, 44].We have introduced phenomenological
parameters characterising the response of shear stress to cell shape anisotropy and cell polarisation (fK and fz in
equation (10)) and shear due to topological rearrangements (ft and fl in equation (12)). These parameters can
be experimentallymeasured, similarly to an elasticmodulus or a viscosity, andwe expect that future analysis of
morphogenetic processes will involve the quantification of their values.

Wefind that the dependency of topological rearrangements on cell shape generically leads to tissue
fluidification. The long timescale tissue viscosity depends on cellular elasticity and a characteristic timescale of
topological rearrangements (equation (18)) .

We have also introduced a delay in the response of topological rearrangements to cell shape change
(equation (13)) through an exponentialmemory kernel,motivated by experimental observations in the
Drosophilawing epitheliumduring pupalmorphogenesis [13]. For delay timescale sufficiently smaller than the
characteristic timescale of topological rearrangements, t t< 4d , the qualitative behaviour of the tissue is not
different from the onewithout delay in the response. However, sufficiently large delay timescale t t> 4d leads
to a novel rheological behaviour, with an oscillatory response of the tissue to the imposed shear. The response of
the tissue can be described by a simple rheological scheme, involving a spring, a dashpot, and an effective inertial
element (figure 2(E)). Such an effective inertial response is not generally taken into account as tissues operate at
lowReynolds number, butwe show that complex tissue time-dependent behaviour can indeed show an effective
inertial behaviour, unrelated to the tissue’s realmass. Recent works have proposed alternativemechanisms
giving rise to effective inertial behaviour, possibly arising from the dynamics of cell self-propelling forces [28] or
concentration and polarity fields coupled to tissueflow and internal stresses [30, 31].
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The theory we propose here also accounts for autonomously produced stress and oriented topological
rearrangements that are a consequence of active processes in the tissue. They drive tissue flows and cell
elongation changes on long timescales even in the absence of external forces. In general, active stress and
active topological rearrangementsmay occur together in tissuemorphogenesis, and both drive tissue and
cell shape changes. Quantificationmethodsmust be developed to characterise the effects of these active
processes [13].

Our theorymakes a number of experimentaly testable predictions. Most notably, perturbing boundary
conditions around a developing homogeneous tissue affects significantly the dynamics of both tissue flow
and cell elongation.We predict that the topological rearrangements will drive flowwhen the tissue is free to
deform, but will drive instead cell elongation changes in the direction perpendicular to the original shear
flowwhen the tissue is prevented from deforming. Intuitively, active topological rearrangement force cells
to change their neighbour relationships, driving cell elongation; when the tissue is free, cell elongation can
relax, driving tissue deformation; while when tissue deformation is prevented, cell elongation is
maintained. In contrast, active stress can also generate a flow in a free tissue but will not drive cell elongation
changes when tissue deformation is stopped. Possibly, experiments aiming at preventing tissue flow could
allow to distinguish between these contributions.

We have focused here on anisotropic flows.We expect that future work combining a description of
isotropic and anisotropic flows in tissues, incorporating the effect of cell division and cell extrusion, will allow
a full picture of tissuemorphogenesis to be obtained.

Finally, we have described here the case of a flat tissue. It would be interesting to explore how the theory
proposed here extends to themore general case of a curved tissue.
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AppendixA.Nematic tensors in 2D

The nematic tensorQij can be expressed by its cartesian components in two-dimensions

⎛
⎝⎜

⎞
⎠⎟-

Q Q

Q Q
, A.1

xx xy

xy xx
( )

It can also be rewritten using polar components

⎛
⎝⎜

⎞
⎠⎟

j j
j j-

Q Q

Q Q

cos 2 sin 2

sin 2 cos 2
, A.2( )

whereQ andj are respectively themagnitude and angle of the nematic relative to the x axis.

Appendix B. Conventions

B.1. Convected and corotational derivatives
The convected derivative of a scalar field S is defined as

=
¶
¶

+ ¶
S

t

S

t
v S

d

d
. B.1k k ( )

The convected corotational derivative of a vector fieldUi is defined as
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¶
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+ ¶ +
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t
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D
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and for a tensor fieldVij

w w=
¶

¶
+ ¶ + +
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t
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t
v V V V
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D
. B.3

ij ij
k k ij ik kj jk ik ( )

B.2. Fourier transform
The following convention for Fourier transform is used:

òw = w

-¥

¥
-f f t te d , B.4ti( ) ( ) ( )

òp
w w= w

-¥

¥
f t f

1

2
e d . B.5ti( ) ( ) ( )

Here wf ( ) is the Fourier transformof the function f (t).

AppendixC. Rheological networks

C.1. Real and imaginary parts of a rheological network response function
Wediscuss here some properties of the response function c w( ) of the serial and parallel connections of two
mechanical elements with response functions c w1( ) and c w2 ( ). Themechanical response function of a parallel
connection of these elements is

c c c= + C.1parallel 1 2 ( )

so that

c c c= +Re Re Re , C.2parallel 1 2 ( )

c c c= +Im Im Im . C.3parallel 1 2 ( )

The response function of a serial connection is

c
c c

c c
=

+
, C.4serial

1 2

1 2

( )

which can bewritten in terms of real and imaginary parts

c
c c c c c c c c

c c c c
=

+ + +
+ + +

Re
Re Re Re Re Re Im Re Im

Re Re Im Im
, C.5serial

1 2 1 2 1 2
2

2 1
2

1 2
2

1 2
2

( ) [ ] [ ]
( ) ( )

( )

c
c c c c c c c c

c c c c
=

+ + +
+ + +

Im
Im Im Im Im Im Re Im Re

Re Re Im Im
. C.6serial

1 2 1 2 1 2
2

2 1
2

1 2
2

1 2
2

( ) [ ] [ ]
( ) ( )

( )

By inspecting equations (C.2) and (C.5)we conclude that if the real parts of the response functions of two
elements in a serial or parallel connection have the same sign, this sign is preserved in the real part of the response
function of the connection. The same is true for the imaginary parts (equations (C.3) and (C.6)).

C.2. Response function of a rheological networkwith a spring in series with a parallel connection of an
inerter and a dashpot
Wecalculate here the response function of themechanical network shown infigure 2(E). Using equation (C.1)
wefind that the response function of a parallel connection of an inerter with inertancem and dashpotwith
viscosity h reads

c w h= +h mi . C.7m, ( )

The full response function is found using equation (C.4) for a serial connection of a springwith elastic constant k
and parallel connection of an inerter and dashpot

c
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Comparingwith the equation (18)we can identify h t= K2 , =k K2 and tt=m K2 d.
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AppendixD. Viscoelastic nematic gel close to equilibrium

Herewe derive hydrodynamic equations for a viscoelastic nematic gel close to equilibrium andwe discuss
parameter regimeswhich reproduce equation (14). Our derivation is similar to the one given in the [33], but for a
one-component, nematic gel.We start bywriting conservation equations for density andmomentum

r r¶ + ¶ =v 0, D.1t i i( ) ( )

s¶ - ¶ =g 0, D.2t i j ij
tot ( )

where r=g vi i and sij
tot is the total two-dimensional stress.We treat the local elastic shear strainQij as a

thermodynamic state variable.We also include in our description a nematic order parameter qij describing other
internal anisotropies,motivated by the cell polarity in tissues.Here wewill discuss the case when qij is not
spontaneously generated in equilibrium. Assuming that the dynamics of elastic shear strainQij and nematic
order parameter qij are sufficiently slow, we introduce the free energy density of the gel as rf Q q, ,ij ij( ).

We define the elastic shear stress as the thermodynamic conjugate quantity to the elastic shear strainQij

s
d
d

=
f

Q
. D.3ij

ij

el ( )

Wealso allow for ATPdriven active processes described by the chemical reaction rate r and the chemical
potential difference betweenATPmolecule and hydrolysis products mD .

Using the free energydensity rf Q q, ,ij ij( ), wefind the expression for the density of entropy production rate ṡ
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Here s s r d= + +v v Pij ij i j ij
tot , = ¶ + ¶v v v1 2ij i j j i( ) is the symmetric part of velocity gradient tensor andHij is

the nematicmolecular field conjugate to qij defined as
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q
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ij
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For simplicity, we ignored here terms associated to the gradients of chemical potential and elastic shear
strain, andwe discuss traceless symmetric components. Identifying the thermodynamic fluxes sij˜ , Q tD Dij ,

q tD Dij and r, and the corresponding forces vij˜ , s- ij
el,Hij and mD , wewrite the phenomenological equations
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whereOnsager symmetry relations have been taken into account.We have includedATP consumption terms
that are coupled tofluxes of different tensorial order throughOnsager coefficients proportional to the elastic
shear strainQij and nematic order parameter qij. Note that since elastic shear strain is conjugate to the elastic
shear stress, theOnsager coefficient relating vij˜ to the change of shear strainQij can be set to 1without loss of
generality, see [33].

One can already note that equation (D.7) is in the form of equation (7) if we identify
s b y m y m= G - - D - DR H q Qij ij ij ij ij

el
2 . We now show that this general description can result in the

delayed response ofRij discussed in themain text, produced by the relaxation dynamics of qij. In the
remaining part of this appendix, we consider the following simple choice for the elastic stress andmolecular
field

s
k

=
= -

KQ

H q
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.
ij ij

ij ij

el
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D.1. Passive gel
Let usfirst consider the case of a passive gel whichwould not consumeATP.Using equations (D.7) and (D.8), the
tensorRij can be expressed as a function of the shear strainQij
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Wefind that the choice t gk b gb= -1 1d 1 2[ ( ( ))] and t b gb b g= - G -K1 2 11 2 2
2[ ( )] [ ( ( ))]allows

to identify equation (D.10)with (14). The last termon the right-hand side of equation (D.10), involving the
derivative ofQij, is not present in equation (14). The dimensionless prefactor in front of this term,
a kb b gk b gb= G + -K2 11 2 1 2[ ] [ ( ( ))], can be set to 0 if b b k= - GK21 2 . This choice implies the
following relations
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wherewe have used g k GK, , , 0 and gbG - 1 02
2( ) . Therefore, if the parameter b1 is chosen such thatα

is negligible, the gel can never be in the oscillatory regime t t> 4d described in section 4.1.
Afinite value of b1 implies a dependence of the shear stress on themolecular fieldHij. If we assume that the

main contribution to the shear stress comes from the viscous and elastic stresses and other contributions are
negligible, onewould set b = 01 . In this case it is no longer possible forα to be arbirtrarily small. Indeed, due to
the positive semi-definiteness ofOnsager coefficientmatrix gbG - 1 02

2( ) , the coefficientΓ cannot be
arbitrarily small, for given values of γ and b2. For gbG < 1 2

2( ) the timescale τwould become negative and the
thermodynamic equilibrium state would become unstable.Moreover, a lower limit to the prefactorα is given by

a
t
t

> . D.12d ( )

Other possible choices of parameters whichwould allowneglecting the term involving the shear strain are
K 0 and gk  ¥. However, both choices inevitably remove a term in equation (D.10), in such away that

the formof equation (14) can not be reproduced. Therefore, a passive gel with only viscous and elastic stresses
can reproduce equation (14) onlywith an additional term involving time derivative of the tensorQij.

D.2. Active gel
If the system is providedwith a reservoir of ATPmolecules to keep it out of equilibrium, such that the difference
of chemical potential mD is not 0, the equation forRij in the case b = 01 reads
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andwe identify
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- D
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. D.15
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2

2( )( )
( )

In this case, the term involving the derivative of shear strainQij becomes small when
y m gk q mG - D - D K2 1∣( ) ( )∣ . The stability in this limit can still bemaintained if the factor

b q m k b y m- D - DK2 2 2( )( ) is negative. This is possible because the signs of the active terms y mD and
q mD are not constrained. Thus, an active nematic gel close to equilibrium can be described by equation (14),
evenwithout a specific coupling ofmolecular field to the shear stress.

Appendix E. Autonomous convergent extension

Herewe solve in detail the example from the section 4.4.We consider a rectangular homogeneous tissuewith
length l andwidth h. The cell polarity nematic qij is constant and oriented along x-axis such that

= =q q1, 0xx xy .We assume that for <t 0, the tissue is at rest, not subjected to active anisotropic processes,
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that cells are isotropic and that there is no stress in the elasticmaterial surrounding the tissue. At t=0, active
anisotropic processes are turned on and remain constant for >t 0. The tissue is constrained in space by
surrounding elasticmaterial which provides resistance to the changes in tissue length andwidth.We describe the
external elastic response to the tissue deformations by aHooke’s law

s
s

=-
=-

k L
k H

,
, E.1

xx x

yy y ( )

where =L l lln 0( ) and =H h hln 0( ) are natural strain variables of the tissue and l0, h0 are tissue length and
width at zero stress. For negative times, the tissue is stress free and thus < = < =L t H t0 0 0( ) ( ) .

Since the shape of the tissue is constrained to be a rectangle, the velocity gradient tensor has only diagonal
components:

= ¶
= ¶

v L
v H

,
. E.2

xx t

yy t ( )

Combining these relationswith the constitutive relation for the isotropic stress in equation (11), we obtain a
relation between L andH from the isotropic flow component
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wherewe have used the fact that in the absence of cell division and extrusion, =a t a A t Ad d d d( ) ( ) withA
being the area of the tissue. Using the constitutive relation for the shear stress equation (25), the constitutive
equation for the shear due to topological rearrangements equation (24), and the shear decomposition
equation (7), we obtain a second relation between L andH:
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where g z h l= - +2( ) . Integrating equation (E.3) from an arbitrary lower bound <t 0 yields
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Wenow expressH in terms of L in equation (E.4) andwe obtain the second order equation

t
n
tm

g
m

¶ + ¶ + =L L L
2

, E.6d t t
2 ( )

where

⎛
⎝⎜

⎞
⎠⎟m = + + +

+

+

k

K

k

K
1

2
1

2

1

1
, E.7x y

k

K
k

K

2

2

x

y
( )

n = +
+

+

k

K

k

K2 2

1

1
. E.8x y

k

K
k

K

2

2

x

y
( )

This can be solved for
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where L(0) and ¶ L 0t ( ) are initial conditions, and
t n
tm

= -s
4

1. E.10d2 ( )

The parameter s2 is positive only for high enough values of thememory timescale td.When s2 becomes negative,
the solution is equivalent in form to equation (E.9), with trigonometric functions replaced by their hyperbolic
counterparts and s2 replacedwith-s2.

We nowdetermine the initial conditions for an experimental setting inwhich the tissue is initially at rest,
cells in the tissue are not elongated, external elastic connections are not under tension, and there is no tissue
polarity. At t=0 the polarity is activated on a timescalemuch shorter than τ and td, so that we can treat the
activation as instantaneous. First, considering equation (24)we can conclude that =+R 0 0xx ( ) . Then, using
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equations (E.1)–(E.3), (7) and (25)we can show that for  +t 0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

z

+
+

+
¶ = ¶

=- +
+

+
¶ - ¶

L t Q t

k

K

k

K
L t

K
q t

1

2
1

1

1

1

2 2 2

1

1 2
. E.11

k

K
k

K

t t xx

x y
k

K
k

K

t t xx

2

2

2

2

x

y

x

y

( ) ( )

( ) ( ) ( )

Then, using d¶ =q tt xx ( ) and integrating over a smallfinite time interval around t=0, we obtain the initial
conditions
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When the elastic connections around the tissue are isotropic (kx= ky), one obtains from equations (E.5),
(E.7) and (E.8):

= -H t L t , E.13( ) ( ) ( )
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Since + =L t H t 0( ) ( ) , the tissue area is constant. Therefore, area changes arise only when the surrounding
material is anisotropic. Using these relations, the initial conditions discussed above and equation (E.9), we
obtain equation (28) in themain text.

Finally, we note that in the limit t  0d , equation (E.9) describes a simple exponential relaxation of the
tissue length:
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with a characteristic relaxation timescale equal to /t + K k1 2( ) for isotropic external springs. It differs from the
Maxwell timescale of the tissue τ by a factor describing a competition of internal and external elasticities.

Appendix F. Couetteflow in active tissue

Herewe consider a two-dimensional tissue, which is constrained on two sides by straight boundaries, setting the
tissuewidth to a fixed value h. The tissue is fixed on its lower side and it is translationally invariant along the
boundaries:

=v 0 0, F.1x ( ) ( )

=v 0 0, F.2y ( ) ( )

=v h 0, F.3y ( ) ( )

¶ =F 0 F.4x ( )

for any quantity F. For simplicity we assume that the tissue is incompressible

¶ + ¶ =v v 0, F.5x x y y ( )

sowe can conclude that vy= 0. Force balance in this system reads in the absence of external force

s¶ = 0, F.6y xy ( )
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From equations (7) and (24)wefind in the frequency domain
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where for simplicity we have neglected nonlinear terms coming from corotational derivatives. Combining
equations (25), (F.6) and (F.8)we obtain the equation for vx
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Weconsider the casewhen active terms lqxy and zqxy are homogeneous is space so that the right-hand side of
equation (F.9) vanishes. The solution of equation (F.9) is then

w w=v y v h
y

h
, , , F.10x x( ) ( ) ( )

and the stress sxy, which is constant in space, can be evaluated at y=h to be
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Here, the response function
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is proportional to the response function in equation (17), and the spontaneous velocity is given by
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If the top tissue boundary at y=h is free to slide, s =h 0xy ( ) and w w=v h V,x q( ) ( ). In that case we find the
following expression of the tissue velocity as a response to the cell polarity:
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For an immobile tissue startingwith zero values of lqxy and zqxy for <t 0 and constant values for >t 0we
obtain equation (35), where a delta function has been omitted.
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