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1 Motivation and overview

Almeida, Ardison, Garcia and Vicente (2016) suggest to use the excess expected shortfall as a

tail risk measure:

TRi,t,h = EQ [(Ri,t,h − zi,h,α) |Ri,t ≤ zi,h,α] , (1)

where Ri,t,h is the spot (or forward) return of asset i at date t for the horizon h, zi,h,α is the

α-quantile of the return distribution, and Q is a risk neutral (or forward neutral) probability.

In the Basel terminology, −zi,h,α is called the Value-at-Risk at Q−probability level α and for

horizon h, so that losses receive a positive sign, and we can interpret the risk measure as a capital

buffer. Typical h are one-day, ten-day, or one-month horizons. If log-returns are Gaussian with

volatility parameter σi, it follows (see e.g., Scaillet (2004), Fermanian and Scaillet (2005)):

TRi,t,h = σi
√
h

(
ϕ(zα)

α
− zα

)
, (2)
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where ϕ(z) is the density of a standard normal distribution at point z and zα the α−quantile

of this distribution. As TRi,t,h is proportional to the integrated implied volatility in such a

setting, these two measures of risk are perfectly correlated whenever log-returns are Gaussian

under the pricing measure. In contrast, in presence of departures from log-normality, TRi,t,h

incorporates information about Q which is distinct from the one generated by model-based

or model-free measures of implied stock volatility like, e.g., V IXi,t; see Schneider and Trojani

(2014, 2015), among others.

Almeida et al. (2016) obtain a measure of aggregate tail risk by averaging tail risk measure

(1) across a set of benchmark returns. As their estimation approach relies on the nonparametric

estimation of a pricing probability consistent with the joint distribution of benchmark returns,

they propose for parsimony to summarize the information in the cross-section of individual stock

returns using five principal components of size and book-to-market returns. Their measure or

aggregate tail risk is the average expected shortfall of the first five principal components of size

and book-to-market returns:

TRM t,h :=
1

5

5∑
k=1

TRpck,t,h, (3)

where TRpck,t,h is tail measure (1) for principal component return Rpck,t,h.

Almeida et al. (2016) apply predictive regression methods based on standard asymptotics

and find that TRM t,h is a powerful predictor for market returns and a set of important macro

variables. The tail risk proxy (3) is different from the aggregate market excess expected short-

fall:

TRm,t,h = EQ [(Rm,t,h − zm,h,α) |Rm,t ≤ zm,h,α] , (4)

and similar measures of implied market tail risk (e.g., Bollerslev et al. 2015), as well as

from model-free proxies of implied market volatility, such as V IXm,t. Therefore, we expect

an imperfect empirical comovement of TRM t,h, TRMm,t,h, and V IXm,t, e.g., in presence of
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stochastic return correlations or a time-varying conditional return nonnormality.1 While we

can directly extract empirical proxies for tail risk measure (1) from the prices of individual

stock options, a key insight of Almeida et al. (2016) is to avoid the use of options in order to

obtain a longer time series of implied tail risk measures. They attain this goal by estimating

risk measure (3) nonparametrically for an horizon of h = 1 days, based on a monthly window

of n past daily principal component returns.

Let for brevity Rk,s := Rpck,s−1,1 be the daily (forward) return of principal component

k = 1, . . . , 5 in day s and denote by {Rk,s : k = 1, . . . , 5, s = t − n + 1, . . . , t} the sample of

observed daily returns in the monthly window before time t. We denote by En[·] expectations

under the joint empirical distribution Pn of past principal component forward returns and

define the empirical forward-neutral measure Qn(A) := En[Mn1A] for any measurable event A,

where Mn is a normalized empirical pricing kernel that prices the risk-free return R0 := 1 and

the principal component returns:

En[MnRk] = 1, k = 0, . . . , 5. (5)

Given the inherent market incompleteness, Almeida et al. (2016) select the empirical forward-

neutral measure that corresponds to a particular empirical minimum power divergence pricing

kernel. Precisely, they solve for p = 1/2 the minimization problem:

M?
n(p) := arg min

Mn

En

[
Mp

n − 1

p(p− 1)

]
, (6)

s.t. (5) and positivity constraints. We can motivate the choice of power parameter p =

1/2 (Hellinger divergence) by the convenient robustness properties of the minimum Hellinger

divergence pricing kernel M?
n := M?

n(1/2); see, e.g., Kitamura, Otsu and Evdokimov (2013).

Using the empirical forward neutral measure Q?
n(·) := En[M?

n·], they compute an estimate of

1See Buraschi, Trojani and Vedolin (2014) for a related theoretical evidence in a general equilibrium model
with heterogenous beliefs and Schneider and Trojani (2014) for corresponding empirical evidence based on
tradable variance and skew swaps.
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TRMt,1 for a one-day horizon h = 1 as:

T̂RM t,1 :=
1

5

5∑
k=1

T̂Rpck,t,1 :=
1

5

5∑
k=1

EQ?
n [(Rk − ẑk,1,α)|Rk ≤ ẑk,1,α]. (7)

Empirically, this proxy has an imperfect correlation with V IXm,t, which is an indication that

it contains non redundant information. We can explain this non redundancy by several fea-

tures, including time-varying correlations among stock returns, time-varying conditional higher

moment in market or individual stock returns, the conceptually different construction of these

risk proxies and the different implicit horizons h, as well as the different information set and

estimation risk implied by the computation of V IXm,t and T̂RM t,h.

Remark 1 We can use the Almeida et al. (2016) approach to compute additional interest-

ing model-free proxies of implied aggregate tail risk in periods where no option information is

available. For instance, if Pn is the empirical distribution of daily market returns {Rm,s : s =

t−n+ 1, . . . , t} and M?
n the solution of problem (6) under the pricing constraints En[MnR0] =

En[MnRm] = 1, we can compute an estimate of a daily V IX2
m,t as twice the estimated forward

neutral entropy of daily market returns:

V̂ IX
2

m,t = −2EQ?
n [lnRm], (8)

see also Schneider and Trojani (2015). Similarly, a model-free estimate of the daily implied

market excess expected shortfall is obtained as:

T̂Rm,t,1 = EQ?
n [(Rm − ẑm,1,α) |Rm ≤ ẑm,1,α] . (9)

2 Why robust methods for predictive regression?

Using standard predictive regressions, Almeida et al. (2016) address the predictive properties of

tail measure (7) for market returns and a number of important economic variables. We revisit

their findings using robust resampling tests of predictive ability, developed in Camponovo,
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Scaillet and Trojani (2015).

The motivation for our robust testing approach lies in that most approaches to test pre-

dictability hypotheses are based on procedures that can heavily depend on a small fraction of

influential observations in the data. For standard asymptotic t−tests based on OLS or similar

estimators, this problem is well-known since a long time; see, e.g., Huber (1981) for a review.

Recent research has also shown that a small fraction of influential observations in the data

may even more easily inflate inference based on bootstrap and subsampling tests. This fea-

ture is important for testing predictability hypotheses as well, because resampling methods are

natural tools for producing tests with more reliable finite-sample accuracy in predictive regres-

sion settings with correlated innovations of endogenous and predictive variables and possibly

persistent predictors.

Intuitively, the non robustness of standard resampling methods arises from the too high

fraction of influential data points that is often simulated by standard bootstrap and subsam-

pling procedures, when compared to the actual fraction of outliers in the original data. As

it is not possible to fully mitigate this problem simply by applying conventional bootstrap or

subsampling methods to more robust estimators or test statistics,2 Camponovo, Scaillet and

Trojani (2015) develop a general robust resampling methodology for time series, which allows

us to obtain more robust tests of predictability hypotheses for predictive regression settings.

This approach relies on robust weighted least-squares and resampling procedures that are fully

data-driven and easily manageable, based on robust versions of fast bootstrap and subsampling

methods; see e.g., Goncalves and White (2004) and Hong and Scaillet (2006).

Intuitively, robust predictive regression methods are likely even more important in settings

where endogenous or predictive variables can feature a complex, potentially time-varying, tail

behavior and observed data can include rare influential observations. Such infuential points

may arise, for instance, in settings where some of these variables may actually be obtained

from point estimates of corresponding measures of tail risk. Figure 1 illustrates the time series

of estimated tail risk proxy (7) in the sample period from January 1926 to December 2014,

2Contrary to what is often thought, resampling trimmed or winsorized estimators does not yield a robust
resampling method; see, e.g., Camponovo, Scaillet and Trojani (2012) for detailed examples.

5



where computations are based on CRSP data. It highlights rare large observations that may

reflect both a sudden change in the underlying measure of tail risk or a large variation of

the estimator precision over time. Given this evidence, robust predictive regression methods

seem particularly appropriate for this kind of data. We can also motivate economically our

robust testing approach by the fact that ambiguous time-varying predictive relations can be

consistently addressed by ambiguity averse investors only using robust estimators that bound

the effects of influential data points. Wrampelmeyer, Wiehenkamp and Trojani (2015) show

that different specifications of aversion to ambiguity in the literature imply robust optimal

estimator choices related to robust weighted least-squares. In this sense, a robust predictive

regression testing approach is consistent with the preferences of investors that dislike a time-

varying ambiguity in the data-generating processes.

The data-driven weights in our robust procedure dampen, where necessary, the few data

points that are estimated as influential with respect to the estimated predictive link. This

feature automatically avoids arguing ex ante that, e.g., a large value of the predicted or the

predictive variables is per se an anomalous observation, which is not the case in general. In-

deed, large values of both the predictive and the predicted variables might obviously also be

very informative about a potential predictability structure, and discarding them in an ad hoc

way might bias the inference. In a truly multivariate predictive regression settings, it is even

more difficult to precisely determine with an informal approach which subset of observations is

potentially influential, for example by eyeballing the data. A useful property of our methodol-

ogy it that it embeds a formal data-driven identification of observations that can be excessively

influential for the resulting inference on predictive relations.

3 Empirical results

We revisit the predictive ability of aggregate tail risk proxy (7) for US stock market returns.

Using our robust approach, we identify two most influential observations in October 1987 and

November 1987, in concomitance and immediately after the Black Monday of October 19 1987.

Additionally, we identify two clusters of infrequent influential data in the subperiods 1998-2000
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and 2008-2010, which correspond to well-known hystorical periods of pronounced financial

market turbulence and distress. Such influencial observations are reflected also in some of the

particularly large values of tail proxy (7) in October-November 1987 and in the subperiods

1998-2000 and 2008-2010; see again Figure 1.

We study the predictive ability of lagged tail risk measure (7) for future monthly S&P 500

index returns, both in a single-predictor setting and in a two-predictor setting that additionally

includes the dividend yield as a predictive variable.

Single-predictor model

We consider monthly S&P 500 index returns from Shiller (2000), Rt = (Pt+dt)/Pt−1, where Pt

is the end of month real stock price and dt the real dividend paid during month t. We estimate

the predictive regression model

ln(Rt) = α + β · T̂RM t−1,1 + εt, t = 1, . . . , T, (10)

where T̂RM t−1,1 is tail risk measure (7) in month t− 1 for a one-day horizon h = 1, and test

the null hypothesis of no predictability, H0 : β0 = 0, where β0 is the true value of the unknown

parameter β. We collect monthly observations in the sample period 1980-2010 and estimate

the predictive regression model using rolling windows of 180 monthly observations.

We first estimate the unknown parameter of interest using a least-squares estimator, and

construct 90%-confidence intervals with the conventional subsampling and block bootstrap.

Figure 2 reports the empirical results. Interestingly, we find that while in subperiod 1995-2005

both resampling approaches reject the null hypothesis of no predictability, in subperiod 2005-

2010 the testing procedures do not detect predictability structures.3 In a second step, we test

the null hypothesis of no predictability H0 : β0 = 0 using our robust fast resampling tests. We

estimate the unknown parameter of interest using the robust Huber estimator instead of the

least-squares estimator and construct 90%-confidence intervals with the robust fast subsampling

3Similar findings arise when computing confidence intervals with standard asymptotic theory, as in Almeida
et al. (2016).
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and robust fast bootstrap proposed in Camponovo, Scaillet and Trojani (2015). Figure 3 reports

the empirical results. In this case, we always reject the null hypothesis of no predictability for

the whole period under investigation.4

It is interesting to study to which extent influential observations might have caused the

diverging conclusions of robust and conventional tests. We exploit the properties of our robust

testing methods to identify such data points. Figure 4 plots the time series of Huber weights

estimated by the robust Huber estimator. We find that subperiod 1998-2002 is characterized by

a cluster of infrequent anomalous observations, which are likely related to the abnormal stock

market performance during the NASDAQ bubble in the second half of the 1990s. Similarly,

we find a second cluster of anomalous observations in subperiod 2008-2010, which is linked to

the extraordinary events of the recent financial crisis. Finally, the most influential observation

is November 1987, following the Black Monday on October 19 1987. Importantly, the total

fraction of such influential observations is small and less than 3.3%.

To further illustrate the consequences of influential observations, we report in Figure 5 a

scatter plot of tail risk measures (7) and returns. We find that the most influential observations

correspond to tail risk proxies larger than 7.5 in October and November 1987. Since our

testing results above are based on moving windows of 180 monthly data points, these influential

observations have no impact on the confidence intervals computed in subperiod 2003-2010. This

feature my explain the rejection (non-rejection) of the null hypothesis in subperiod 1995-2005

(2005-2010) using conventional tests.

4Somehow surprisingly, we obtain a weaker predictive evidence, both with conventional and robust methods,
using the tail risk measure introduced in Kelly and Jiang (2014).
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Two-predictor model

In this section, we study the joint predictive ability of tail risk measure (7) and the dividend

yield for future monthly S&P 500 index returns, using the two-predictor regression model:5

ln(Rt) = α + β1 · T̂RM t−1,1 + β2 · ln
(
Dt−1

Pt−1

)
+ εt, t = 1, . . . , T. (11)

Let β01 and β02 denote the true values of parameters β1 and β2, respectively. Using conven-

tional and robust bootstrap and subsampling tests, we first test the null hypothesis of no return

predictability by tail risk measure (7), H01 : β01 = 0. Figure 6 reports the 90%-confidence inter-

vals for parameter β1, based on rolling windows of 180 monthly observations in sample period

1980-2010. We find again that the robust tests always clearly reject the null of no predictabil-

ity. In contrast, the conventional bootstrap and subsampling tests do not detect predictability

structures for the subperiod 2003-2010. We also test the hypothesis of no predictability by

the dividend yield, H02 : β02 = 0. Figure 7 reports the resulting confidence intervals for pa-

rameter β02. Also in this case and in line with the empirical evidence in Camponovo, Scaillet

and Trojani (2015), the robust procedures always reject the hypothesis of no predictability. In

contrast, the conventional bootstrap and subsampling tests produce a weaker and more am-

biguous predictability evidence. By inspecting the Huber weights in Figure 8, implied by the

robust estimation of the predictive regression model (11), we find again a cluster of infrequent

anomalous observations, during the Black Monday on October 1987, the NASDAQ bubble, and

the recent financial crisis.

Time-varying predictability?

The evidence of influential observations in the previous section might suggest a broader misspec-

ification of predictive relations for market returns, which might be captured by time-varying

5Consistent with the literature, the annualized dividend series Dt is defined as

Dt = dt + (1 + rt)dt−1 + (1 + rt)(1 + rt−1)dt−2 + · · ·+ (1 + rt) . . . (1 + rt−10)dt−11,

where rt is the one-month maturity Treasury-bill rate.
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parameters. We test for the presence of time-varying parameters in predictive regression model

(11), using the standard Wald statistic for endogenous breaks in Andrews (1993) and its robust

version introduced in Gagliardini, Trojani and Urga (2005). Using both statistics, we never

reject the null hypothesis of no structural break at the 10% significance level in our sample

period. Therefore, we cannot explain the lack of predictability produced by classical tests in

some cases by a structural break in a significant subset of the data. We conclude that the pres-

ence of a small fraction of influential observations is a plausible explanation for the diverging

conclusions of standard and robust predictive regression methods.

Out-of-sample predictability?

We close our analysis, by quantifying the out-of-sample predictive accuracy of the predictive

regression model (10) estimated by our robust approach. We follow Goyal and Welsh (2003)

and Campbell and Thompson (2008), and consider the out-of-sample R2
OS,ROB statistic:

R2
OS,ROB = 1−

∑t2
t=t1+1(yt − ŷt,ROB)2∑t2

t=t1+1(yt − ȳt)2
, (12)

where ŷt,ROB is the fitted value from a predictive regression estimated with data up to time t

for the out-of-sample forecast period t+1, using the robust Huber estimator, ȳt is the historical

average return estimated through period up to time t, t1 = 1980, and t2 = 2010. Whenever

statistic R2
OS,ROB is positive, the robust estimation of predictive regression model (10) provides

more accurate out-of-sample predictions than simple forecasts based on the sample mean of

market returns. For the period under investigation 1980-2010, we obtain R2
OS,ROB = 0.90%.

Similar empirical findings also arise by estimating the predictive regression model using the

nonrobust least-squares estimator. Therefore, in our data, nonrobust and robust methods

provide more accurate out-of-sample predictions than simple forecast based on the sample

mean of market returns.
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Figure 1: Tail risk measure. We plot the tail risk measure (7) for the period from 1926 to 2014.

1995 2000 2005 2010
0.03

0.02

0.01

0

0.01

0.02

0.03

Year

C
on

fid
en

ce
 In

te
rv

al
 B

ou
nd

s

1995 2000 2005 2010
0.03

0.02

0.01

0

0.01

0.02

0.03

Year

C
on

fid
en

ce
 In

te
rv

al
 B

ou
nd

s

Figure 2: Upper and lower bounds of the confidence intervals. We plot the upper and lower bound of
the 90% confidence intervals for the parameter β0 in the predictive regression model (10). We consider rolling
windows of 180 observations for the period 1980-2010. We present the conventional subsampling (left panel)
and block bootstrap (right panel).
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Figure 3: Upper and lower bounds of the confidence intervals. We plot the upper and lower bound of
the 90% confidence intervals for the parameter β0 in the predictive regression model (10). We consider rolling
windows of 180 observations for the period 1980-2010. We present the robust fast subsampling (left panel) and
robust fast bootstrap (right panel).
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Figure 4: Huber weights under the predictive regression model (10). We plot the Huber weights
for the predictive regression model (10) in the period 1980-2010.
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Figure 5: Scatter Plot. On the x-axis and y-axis are represented the tail risk measure and returns,
respectively. The solid line is the robust linear regression computed with the Huber estimator, while the dashed
line is the conventional linear regression computed with the least-squares estimator.
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Figure 6: Upper and lower bounds of the confidence intervals. We plot the upper and lower bound of
the 90% confidence intervals for the parameter β1 in the predictive regression model (11). We consider rolling
windows of 180 observations for the period 1980-2010. In the top line, we present the conventional subsampling
(left panel) and block bootstrap (right panel), while in the bottom line we consider the robust fast subsampling
(left panel) and robust fast bootstrap (right panel).
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Figure 7: Upper and lower bounds of the confidence intervals. We plot the upper and lower bound of
the 90% confidence intervals for the parameter β2 in the predictive regression model (11). We consider rolling
windows of 180 observations for the period 1980-2010. In the top line, we present the conventional subsampling
(left panel) and block bootstrap (right panel), while in the bottom line we consider the robust fast subsampling
(left panel) and robust fast bootstrap (right panel).
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Figure 8: Huber weights under the predictive regression model (11). We plot the Huber weights
for the predictive regression model (11) in the period 1980-2010.
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