
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Thèse 2001 Open Access

This version of the publication is provided by the author(s) and made available in accordance with the

copyright holder(s).

A new approach to meeting scheduling based on mobile code

Queloz, Pierre-Antoine

How to cite

QUELOZ, Pierre-Antoine. A new approach to meeting scheduling based on mobile code. Doctoral

Thesis, 2001. doi: 10.13097/archive-ouverte/unige:119

This publication URL: https://archive-ouverte.unige.ch/unige:119

Publication DOI: 10.13097/archive-ouverte/unige:119

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:119
https://doi.org/10.13097/archive-ouverte/unige:119

UNIVERSIT�E DE GEN�EVE FACULT�E DES SCIENCES

D�epartement d�informatique Professeur Christian Pellegrini

A New Approach to Meeting Scheduling

Based on Mobile Code

TH�ESE

pr�esent�ee �a la Facult�e des sciences de l�Universit�e de Gen�eve
pour obtenir le grade de Docteur �es sciences� mention informatique

par

Pierre�Antoine QUELOZ

St�Brais �JU�

Th�ese No ���	

GEN�EVE
Atelier de reproduction de la Section de Physique

�

�

La Facult�e des sciences� sur le pr�eavis de Messieurs C� PELLEGRINI�
professeur ordinaire et directeur de th�ese
D�epartement d�informatique��
C� TSCHUDIN� professeur
Uppsala University� Department of Computer
Systems � Sweden� et B� LEVRAT� professeur ordinaire
D�epartement
d�informatique�� autorise l�impression de la pr�esente th�ese� sans exprimer
d�opinion sur les propositions qui y sont �enonc�ees�

Gen�eve� le �� ao�ut �

�

Th�ese ������

Le Doyen� Jacques WEBER

To my wonderful wife Sandra and my lovely daughter Soline�

Contents

I Composition of services with mobile code ��

� The thesis and its context ��
��� Main statement and situation ��
��� Large�scale systems and DEDIS � � � � � � � � � � � � � � � � � � ��
��� Dynamicity ��
��	 Evolution ��
��� Distribution ��

����� Administrative distribution � � � � � � � � � � � � � � � � ��
����� Physical distribution ��

��� Messengers and mobile code ��

� The aspects of software design ��
��� Motivation ��
��� Functional and non�functional aspects � � � � � � � � � � � � � � ��
��� Design goals and quality factors � � � � � � � � � � � � � � � � � � ��
��	 Cross�cutting ��
��� Catalog of non�functional aspects � � � � � � � � � � � � � � � � � ��

� Service architecture ��
��� From applications to services ��
��� Composition of services with mobile code � � � � � � � � � � � � ��
��� Protocol encapsulation with a mobile object � � � � � � � � � � � ��
��	 An architecture for services ��

��	�� Database ��
��	�� Managers ��
��	�� Entities ��
��	�	 Contact ��
��	�� Web interface ��
��	�� Mobile extensions ��

��� Features of an execution environment � � � � � � � � � � � � � � ��

�

CONTENTS �

����� Messengers are executed as anonymous threads � � � � � ��
����� Shared memory enables local interactions � � � � � � � � ��
����� Queues enable coordination � � � � � � � � � � � � � � � � �

����	 Local mechanisms enable security � � � � � � � � � � � � � �

����� Market�based resource control � � � � � � � � � � � � � � � ��
����� Other useful operators ��

� Related work � state of the art ��
	�� StormCast ��
	�� TabiCan and e�Marketplace ��
	�� eAuctionHouse and Nomad ��
	�	 Roaming agent illusion ��
	�� Distributed objects in Java ��
	�� Distributed objects in CORBA � � � � � � � � � � � � � � � � � � ��
	�� Web technologies ��

II Case study �	

� Meeting scheduling problem 	�
��� De�nition of the problem ��
��� Example ��
��� Partial automation �	
��	 Problem characteristics ��

 Meety use�cases 		
��� Obtain password ��
��� Manage meeting list �
�
��� Create meeting �
�
��	 Answer to invitation �
	
��� Update constraints �
�
��� Choose time �
�
��� Change password �
�
��� Merge accounts �
�
��� Manage address book �
�

� Software for meeting scheduling ���
��� Commercial desktop products ���

����� Sun Calendar Manager ���
����� Microsoft Outlook ���
����� Lotus Notes ���
����	 Meeting Maker ���

	 CONTENTS

����� O�ce Tracker Scheduler � � � � � � � � � � � � � � � � � � ���
����� Other information managers � � � � � � � � � � � � � � � � ���

��� Discussion of these products ���
����� Lack of inter�operability � � � � � � � � � � � � � � � � � � ���
����� Reliance on public calendars � � � � � � � � � � � � � � � ���

��� Web services ��

����� Online calendars ��

����� Meeting scheduling services � � � � � � � � � � � � � � � � ���

��	 Research in distributed constraint satisfaction � � � � � � � � � � ���
��	�� Constraint satisfaction ���
��	�� Distributed constraint satisfaction � � � � � � � � � � � � ���
��	�� Dynamicity ���
��	�	 Evolution and agent parameterization � � � � � � � � � � ���

� Meety implementation ���
��� Overview ���
��� Calendaring �	�

����� TemporalInterval �		
����� TemporalDomain �	�
����� TemporalAdder ��

����	 Day ��	
����� DayList ���
����� Month ���
����� MonthList ���
����� Interface and control classes � � � � � � � � � � � � � � � � ��

��� Package �meety�service� ���
��	 Package �meety�core� ���

	 Extensions �

��� Extensions as Voyager mobile agents � � � � � � � � � � � � � � � ���
��� Interacting with an extension ���
��� Service shutdowns ��

��	 Exceptions and debugging ���
��� Working periodically ���
��� A real extension� sending reminders � � � � � � � � � � � � � � � ���

�� Results and lessons �	�
�
�� Treatment of non�functional aspects � � � � � � � � � � � � � � � ���

�
���� Delegation to the Client � � � � � � � � � � � � � � � � � � ���
�
���� Bene�t from Locality ���
�
���� Execution Environment � � � � � � � � � � � � � � � � � � ��	
�
���	 Remaining aspects ���

CONTENTS �

�
���� Discussion ���
�
�� Concrete usage of Meety ���

III Perspectives and conclusions 	��

�� Future work ���
���� References between services �

���� Decorators for customized behavior � � � � � � � � � � � � � � � � �
�
���� Extension repository �
�
���	 Mobile code and non�functional aspects � � � � � � � � � � � � � �
	

���	�� Caching �
	
���	�� Coordination �
	
���	�� Exception handling �
�

�� Summary of contributions ��

Preface

First of all� I would like to thank my advisor� Prof� Christian Pellegrini�
who guided this research� during the �ve years I could spend in his group� His
support� his precious advice and his encouragement made this period of my live
an extremely fruitful and interesting one� Next I would like to thank Dr� Lamia
Friha� who initiated the ISACOM project and accompanied me during the �rst
half of this research� She guided my discovery of the scheduling domain and of
the world of multi�agent systems� proposed interesting problems to think about
and I had much pleasure working with her� I have also learned a lot from Prof�
Christian Tschudin� who de�ned the ISACOM project as well� His approach
of mobile code has been a solid starting point for all my experiments� I also
thank him to participate in my thesis jury� I am grateful to Prof� Bernard
Levrat� who in�uenced the course of my professional path several times� Being
his assistant for the sofware engineering course was a very good experience and
had a signi�cant positive impact on the developpment of the ideas presented
in this thesis� His interest for this work and his participation in the jury are a
pleasure and a reward for me� Thank you Alex Villaz�on� for the inspiring work
we did together� the good time we had and the possibility to share all kinds
of concerns� Thank you also to Dr� Danuta Sosnowska� and Dr� Jan Vitek�
Although we were working on di�erent projects� we had a couple of occasions
to compare them and it allowed me to expand the horizon of my own work�
Special thanks to Dr� Jarle Hulaas and Dr� Ciar�an Bryce� for their comments
on the early versions of this dissertation� They helped me a lot to pinpoint the
major ideas and hopefully to express them more clearly� Last I would like to
thank all the colleagues of �Caf�e ���� who became excellent friends and made
all this time spent at the University exciting and enjoyable�

Note� The pronoun he and the possessive form his are used in places
throughout the book� They are used in the general sense of anyone and connote
no gender�

�

R�esum�e

La th�ese et son contexte

Le but principal de ce m�emoire est de montrer comment de nouvelles ap�
plications informatiques� facilement accessibles par l�interm�ediaire de la toile

World Wide Web�� peuvent �etre construites sur la base d�un environnement
d�ex�ecution pour code mobile� La possibilit�e de d�eplacer des programmes�
et de choisir lors de l�ex�ecution sur quel ordinateur d�un r�eseau une certaine
op�eration va �etre e�ectu�ee� o�re de nouvelles possibilit�es aux concepteurs de
logiciels� Nous voulons comprendre dans quel contexte pratique cette �exibil�
it�e suppl�ementaire peut �etre exploit�ee� comment elle in�uence notre mani�ere
de concevoir l�architecture de ces logiciels� et quels avantages peuvent �etre
attendus de la mise en oeuvre de cette nouvelle technique�

Nous d�e�nissons un code mobile comme un programme qui est transf�er�e
d�un ordinateur �a un autre� qui est ex�ecut�e �a sa destination� d�o�u il est capa�
ble d�e�ectuer d�autres transferts et de lancer de nouvelle ex�ecutions� Cette
d�e�nition englobe les concepts plus sp�eci�ques de messagers
un fragment
de code envoy�e avec un paquet de donn�ees sur une plate�forme d�ex�ecution
distante�� d�objet mobile
une instance d�une classe qui se d�eplace avec son
�etat� et si n�ecessaire son code� et d�agent mobile
un objet mobile avec son
propre thread d�ex�ecution��

Selons nous� la caract�eristique la plus int�eressante de la technique du code
mobile est qu�elle permet l�encapsulation de protocoles� En e�et� l��echange
de code mobile permet de r�ealiser les m�emes protocoles de communication
que l��echange de messages� avec l�avantage de pouvoir transmettre le code im�
pl�ementant de nouveaux protocoles en temps voulu� Nous pensons que cet
avantage peut �etre extr�emement pro�table� lorsqu�il permet d��eviter la d�ef�
inition de standards et de minimiser le nombre de conventions pr�e��etablies
dans la communication entre logiciels� Il est en e�et tr�es di�cile de d�e�nir de
bons standards pour la communication et l�inter�op�eration de logiciels� Im�
pl�ementer ces standards pose �egalement de gros probl�emes� et les r�esultats en

�

� R�ESUM�E

terme de compatibilit�e laissent souvent �a d�esirer� Standards et protocoles sont
�egalement quasi impossibles �a changer� une fois qu�ils sont adopt�es �a plusieurs
endroits et toute modi�cation risque de compromettre la compatibilit�e de ce
qui fonctionne d�ej�a� Ces di�cult�es ne peuvent �etre ignor�ees dans le contexte
actuel de l�informatique et des t�el�ecommunications� o�u l�innovation est perma�
nente et les progr�es fulgurants�

Nous montrons comment utiliser le code mobile de mani�ere judicieuse� de
sorte que des questions d�impl�ementation importantes puissent �etre laiss�ees
ouvertes� et les fonctionnalit�es correspondantes fournies par des programme
ext�erieurs� d�evelopp�es par d�autres personnes� Ainsi� si un logiciel est con�cu
d�es le d�epart pour �etre �etendu� il n�y a pas besoin de pr�evoir tous les cas
d�utilisation� mais seulement une petite fraction qui repr�esente les situations
les plus courantes� On �evite ainsi d�encombrer le programme avec des fonction�
nalit�es inutilis�ees� et on r�eduit les probl�emes de collaboration qui peuvent se
poser lors de la conception� Au lieu de construire des logiciels qui ne r�esoudent
pas le bon probl�eme �a cause du manque de renseignements� on laisse venir de
l�ext�erieur
l�a o�u les besoins sont mieux compris� les programmes adapt�es aux
contextes et utilisations particuliers qui peuvent se pr�esenter�

Syst�emes d�information distribu�es

Parmi les quelques domaines d�applications dans lesquels le code mobile est
consid�er�e comme potentiellement int�eressant
p� ex� recherche d�informations�
gestion de r�eseaux� calcul parall�ele� Applets� ce travail se concentre sur celui
des syst�emes d�information distribu�es� Nous commen�cons par d�ecrire pourquoi
ces syst�emes sont g�en�eralement di�ciles �a concevoir et �a faire fonctionner de
mani�ere �able�

Tous les syst�emes informatiques sont menac�es par les changements tr�es
rapides qui se produisent autour d�eux� Ce sont tout d�abord les change�
ments du monde lui�m�eme � les personnes se d�eplacent� des objets sont cr�e�es�
�echang�es� d�etruits� des �ev�enements se produisent� les mod�eles scienti�ques sont
ra�n�es� etc� Pour �etre utiles� la plupart des syst�emes doivent prendre en
compte cette dynamicit
e et la re��eter dans l�information qu�ils contiennent
et qu�ils o�rent� Nous pouvons souvent anticiper ces changements en e�ectu�
ant une bonne mod�elisation de la partie du monde sur laquelle notre syst�eme
est bas�e� Il faut encore que lorsqu�un �ev�enement se produit le syst�eme en soit
inform�e et qu�il soit mis �a jour� ce qui demande souvent une intervention hu�
maine mais devrait tant que possible �etre fait automatiquement� soit pour des
raisons de co�ut� soit simplement pour �eviter des erreurs�

Il est beaucoup plus di�cile d�anticiper de quelle mani�ere l�utilisation d�un
syst�eme va �evoluer� mais il est notoire que les utilisateurs inventent toujours de
nouvelles mani�eres d�exploiter l�information et que l�environnement technique

R�ESUM�E �

est en perp�etuelle mutation� Cela a pour e�et de pousser les syst�emes au
del�a de leurs limites� L�exp�erience montre qu�un syst�eme qui n�est pas con�cu
pour
evoluer et prendre en compte ces besoins impr�evisibles au moment de
sa conception �nit par �etre inutilisable� �A l�int�erieur d�une entreprise cela
repr�esentera de gros frais pour d�evelopper un nouveau syst�eme� Dans un
contexte commercial� cela peut r�esulter dans l�abandon du syst�eme au pro�t
de concurrents mieux adapt�es�
Tout se complique encore quand un syst�eme est distribu
e� Il faut alors

faire face �a des probl�emes nombreux et vari�es� Mentionnons par exemple les
probl�emes de compatibilit�e� au niveau du mat�eriel� des syst�emes d�exploitation
ou des langages de programmation� De nouveaux probl�emes apparaissent
�egalement pour e�ectuer des mises �a jour de logicel� Le syst�eme peut aussi
�etre victime de pannes partielles� de coupures de r�eseau� de temps de latence
impr�evisibles� etc� On peut aussi se trouver confront�e �a des probl�emes de col�
laboration entre ceux qui o�rent un service et ceux qui l�utilisent soit parce
que le syst�eme s��etend au�del�a des limites d�une organisation
buts di��erents��
soit parce que les utilisateurs sont trop loin des d�eveloppeurs
dans l�espace
ou pire � dans le temps�� soit encore parce que les utilisateurs sont nombreux
et ont des besoins contradictoires�
Nous pensons donc que ces trois caract�eristiques� dynamicit�e� �evolution et

distribution sont la cause de nombreux probl�emes� Nous utiliserons l�acronyme
DEDIS
Dynamic Evolving Distributed Information Systems� pour d�esigner les
syst�emes d�information pr�esentant ces caract�eristiques� et pour lesquels l�uti�
lisation de code mobile semble particuli�erement judicieuse�

Aspects techniques du logiciel

D�un point de vue plus th�eorique nous pouvons expliquer pourquoi les
DEDIS sont si di�ciles �a construire par le grand nombre d�aspects techniques
di��erents qu�il faut prendre en compte dans leur d�eveloppement� Non seule�
ment chacun de ces aspects requiert un traitement particulier dans le pro�
gramme� mais il existe de nombreuses d�ependances entre aspects� Ces d�epen�
dances nous emp�echent de traiter les aspects ind�ependamment les uns des
autres et sont �a la source du ph�enom�ene de cross�cutting� Ce terme d�esigne
le fait qu�il est quasi impossible de d�ecomposer le programme en modules qui
traitent les aspects s�epar�ement� et d��eviter que le code qui traite un aspect ne
se r�epande dans les modules �ecrits pour traiter les autres aspects�
Bien que la di�cult�e de traiter un grand nombre d�aspects soit connue

depuis longtemps� et que des techniques pour �eviter le probl�eme de cross�
cutting soient en cours de d�eveloppement� nous n�avons pas pu trouver d�inven�
taire complet des aspects� Nous avons donc e�ectu�e un travail de catalogage et
de description des aspects et de leurs relations qui est r�esum�e dans la Fig�
���
p� �
�

�
 R�ESUM�E

Historic

Activation

Buffering

Caching

Indexing

Memory management

Persistence

Storage layout

Authentication

Encryption

Exception handling

Replication

Access controlAccounting

Auditing

Deployment

Infrastructure dynamicity

Parameterization

Platform adjustment

Payment

Versioning

Administration aspects Dependability aspects

Accuracy Maintenance

User interface look and feel

Scripting

Media synchronization

Internationalization

Input media selection

Human-Computer Interaction
aspects

Computation

Storage

Communication

Primary functional aspects

Load balancing

Parallelism

Prioritization

Bandwidth management

Bidding

Event notification

Flow control

Protocol negotiation

Serialization

Coordination

Secondary computation aspects Secondary storage aspects

Real-time constraints

Secondary communication aspects

All programming concerns

Figure
��� Une tentative de classi�cation des aspects� Noter cependant que
plusieurs aspects pourraient trouver leur place dans plus d�une cat�egorie�

R�ESUM�E ��

Notre catalogue recense 	� aspects au total� dont trois aspects particuliers
dits �fonctionnels� et �� aspects non�fonctionnels� Les trois aspects fonction�
nels sont les trois op�erations fondamentales de l�architecture de von Neumann�
et de la machine de Turing� son �equivalent th�eorique� calcul� m�emorisation�
communication� Cette d�e�nition correspond �egalement �a l�id�ee de program�
mation fonctionnelle� dans laquelle les autres aspects sont consid�er�es comme
des questions secondaires d�impl�ementation� et g�en�eralement ignor�es�

Lorsqu�un programme s�ex�ecute� il doit prendre en compte tous les aspects
fonctionnels et non�fonctionnels� il faut donc pr�ealablement impl�ementer les
sp�eci�cations non�fonctionnelles �a l�aide des trois op�erations fonctionnelles de
base� Ce travail de traduction est g�en�eralement fait par un programmeur� mais
peut �egalement parfois �etre fait par un compilateur
aspect weaving��

Notre principale hypoth�ese est que dans un environnement d�ex�ecution de
code mobile� une majorit�e des aspects sont plus faciles �a traiter� et n�interf�erent
pas de mani�ere aussi d�elicate� parce qu�une nouvelle r�epartion des responsabil�
it�es est possible� Habituellement� celui qui o�re un service doit impl�ementer
la totalit�e des fonctionnalit�es requises par di��erents types d�utilisateurs et
d�applications� ainsi que par divers environnements mat�eriels� Avec le code mo�
bile� il devient possible de d�el�eguer certaines responsabilit�es �a ceux qui savent
exactement quelle fonctionnalit�e est n�ecessaire� Par exemple aux d�eveloppeurs
d�une application avec laquelle le syst�eme doit interagir� ou avec des �d�evelop�
peurs d�extensions� mandat�es par les utilisateurs� Les applications qui en
r�esultent sont potentiellement moins co�uteuses �a d�evelopper et plus faciles
�a maintenir� De plus� elles sont moins sujettes aux con�its habituels entre
g�en�eralit�e et bonnes performances� qui sont deux qualit�es contradictoires� donc
di�ciles �a obtenir en m�eme temps�

A�n de v�eri�er cette hypoth�ese� nous avons d�une part r�eexamin�e les avan�
tages du code mobile d�ej�a d�ecrits dans la litt�erature �a la lumi�ere de notre
nouvel inventaire des aspects� D�autre part� nous avons impl�ement�e un nou�
veau service� enti�erement utilisable� en exploitant l�un des nombreux envi�
ronnements pour code mobile existants� On recense actuellement �
 telles
plate�formes d�ex�ecution
plus ou moins utilisables�� dans lesquelles la la pos�
sibilit�e de d�eplacer des programmes est pr�evue� en plus des moyens standards
de communication par �echanges de messages� La plupart de ces plate�formes
sont bas�ees sur le langage Java et sur le paradigme de programmation orient�ee�
objets� Pour notre travail� nous avons suivi cette tendance et la majorit�e des
r�esultats pr�esent�es adoptent cette technologie� Cependant l�id�ee de code mo�
bile peut �egalement �etre exploit�ee ind�ependamment de l�orientation�objets�

Cette �etude a r�ev�el�e des simpli�cations diverses pour deux tiers des aspects�
lorsque le code mobile est utilis�e pour assembler des parties immobiles d�un
syst�eme distribu�e� comme sch�ematis�e par la Fig�
��� p� ���

�� R�ESUM�E

EE1

EE3

EE2

EE4

Figure
��� Deux services
les �machines� grises arrondies munies de boutons
et de cadrans� qui interagissent au moyen de code mobile� et qui sont install�ees
dans un r�eseau de quatre plate�formes interconnect�ees
bo��tes blanches��

Les simpli�cations que nous avons observ�ees peuvent �etre regroup�ees en
trois grandes cat�egories�
�� les aspects qui peuvent �etre d�el�egu�es aux clients
selon la nouvelle r�epartition de responsabilit�es que nous avons d�ej�a pr�esen�
t�ee �
�� les aspects pour lesquels le client b�en�e�cie de la proximit�e� parce
que les composants mobiles peuvent interagir directement avec le service� sans
que le r�eseau n�interf�ere �
�� les aspects qui sont mieux support�es par cer�
taines plate�formes d�ex�ecution de code mobile existantes que par les syst�emes
d�exploitation habituels�
La somme de ces petits b�en�e�ces repr�esente une tr�es forte motivation d�ex�

ploiter le code mobile dans le contexte des DEDIS� m�eme si nous ne pouvons
pas trouver une application embl�ematique� qui ne serait possible qu�avec le
code mobile� �A la lumi�ere de nos r�esultats� cela semble m�eme improbable
qu�une telle application existe� puisque les b�en�e�ces du code mobile sont rat�
tach�es aux aspects non�fonctionnels� Il n�y a donc pas �a proprement parler de
nouvelle fonctionnalit�e qui ne pourrait pas �etre impl�ement�ee avec des mod�eles
de programmation classiques et des communications par �echange de messages�
seulement des environnements et des m�ecanismes qui facilitent la conception
du syst�eme�

S�election de dates

Pour notre �etude pratique� nous avons choisi de travailler sur le probl�eme
de la s�election de dates� Nous pouvons �enoncer ce probl�eme de la mani�ere
suivante �

Permettre �a un groupe de personnes de collaborer pour d�eter�
miner un intervalle de temps pendant lequel une activit�e pr�evue
doit avoir lieu�

Notons que les personnes impliqu�ees dans la d�ecision ne participent pas for�
c�ement �a l�activit�e� il ne s�agit donc pas seulement de trouver un moment o�u
les personnes n�ont pas d�autre rendez�vous� D�autre part� notre �enonc�e ne

R�ESUM�E ��

fait aucune supposition quant aux raisons qui peuvent les inciter �a choisir un
intervalle plut�ot qu�un autre� Elles pr�ef�erereont peut��etre certains moments
de la journ�ee� ou bien cela d�ependra de ce qu�elles ont pr�evu de faire avant ou
apr�es� de ce qu�elles doivent pr�eparer� etc�

Nous avons envisag�e ce probl�eme comme un probl�eme de d�ecision� dans
lequel l�informatique facilite la communication et la repr�esentation des con�
traintes� mais o�u le choix �nal sera toujours laiss�e �a l�utilisateur� Il n�est
pas question ici d�automatiser compl�etement la r�esolution du probl�eme car il
est trop complexe� mais de proposer un service� qui assiste l�utilisateur et lui
permet de gagner du temps�

D�autres chercheurs ont essay�e d�automatiser la r�esolution par des m�ecan�
ismes de n�egociation� Il faut alors beaucoup d�ing�eniosit�e pour repr�esenter
les multiples facteurs
entre autres sociaux� qui peuvent entrer en jeu dans
une telle op�eration et arriver �a un comportement qui satisfait l�utilisateur�
Ce dernier doit de plus faire de gros e�orts pour con�gurer su�samment le
logiciel�

Caract�eristiques de ce probl�eme

Les trois caract�eristiques des DEDIS
dynamicit�e� �evolution� distribution�
sont pr�esentes dans le probl�eme que nous voulons r�esoudre�

La facette de distribution est la plus �evidente � chaque personne a des
pr�eoccupations di��erentes et elle g�ere son emploi du temps de la mani�ere qu�elle
pr�ef�ere� Elle utilise peut��etre un ordinateur ou un agenda �electronique pour
g�erer son calendrier� mais pas forc�ement� Un syst�eme r�esolvant ce probl�eme
doit donc avant tout aider les personnes �a communiquer et �etre capable de
prendre en compte l�h�et�erog�en�eit�e des moyens utilis�es�

La dynamicit
e est �egalement tr�es pr�esente � les activit�es de chacun se
modi�ent constamment� tout en in�uen�cant les possibilit�es futures� Ainsi
nous n�aurons jamais une solution d�e�nitive� mais il faudra en permanence
tenir compte de l��evolution de la situation et v�eri�er que les nouvelles con�
traintes ou d�ecisions n�entrent pas en con�it avec des choix ant�erieurs� Deux
di�cult�e peuvent survenir � collision entre deux activit�es� due au temps qu�il
faut pour trouver une solution � impossibilit�e de trouver une date� qui exige de
d�ecommander une activit�e� Nous avons r�e��echi �a ces probl�emes et expliquons
comment nous pouvons les traiter�

Finalement l�
evolution se manifeste par la n�ecessit�e de faire fonctionner
le service avec les futures technologies de communication� Nous voulons �egale�
ment �etre capables de l�associer �a de nouvelles applications� par exemple �a
un syst�eme faisant des r�eservations de salles� ou aux multiples syst�emes de
calendrier personnels disponibles actuellement� En�n nous permettons aux
utilisateurs d�automatiser certaines t�aches� par exemple placer des r�eponses

�	 R�ESUM�E

automatiques lorsqu�ils sont en vacances�

Notre solution

Notre solution suppose que l�organisateur et les participants disposent tous
d�un acc�es �a la toile et �a la messagerie �electronique de l�internet� Nous sup�
posons �egalement qu�ils lisent r�eguli�erement leurs messages� Cela a une cer�
taine importance car c�est par ce moyen qu�ils communiquent� L�organisation
d�une r�eunion peut �etre r�esum�ee en 	 �etapes principales �

�� l�organisateur de la r�eunion se connecte �a notre site� il cr�ee une nou�
velle r�eunion� donne une description et une liste d�adresses
celles des
participants� � il propose un ensemble de dates et d�heures qui lui sem�
blent possibles pour cette r�eunion � il demande au syst�eme d�envoyer des
invitations aux participants �

�� lorsqu�ils re�coivent le message d�invitation� les participants se rendent
�egalement sur le site� o�u une page sp�eci�que �a la r�eunion
et �a chaque
participant� permet de r�epondre �a l�invitation � pour chacune des dates
et heures propos�ees par l�organisateur� le participant indique si elle lui
convient ou pas� en fonction de ses pr�ef�erences et de son propre emploi
du temps �

�� l�organisateur revient sur notre site pour choisir une date � le syst�eme
l�aide �a visualiser les contraintes introduites par les participants et �a
prendre sa d�ecision �

	� les participants re�coivent un message de con�rmation lorsque la date est
d�etermin�ee�

Nous proposons donc une solution informatique �a ce probl�eme� qui est bas�ee
sur la toile et le courrier �electronique� Par rapport aux moyens tradition�
nels
t�el�ephone� fax� courrier� les avantages pour les personnes organisant la
r�eunion sont multiples � les moyens de communication sont rapides et bon
march�e� l�expression des contraintes est facilit�ee par l�utilisation de formu�
laires� la recherche de la solution est facilit�ee par une visualisation claire des
possibilit�es� la recherche de con�its est facilit�ee par une recherche rapide des
intersections�
Par rapport aux autres logiciels existants pour r�esoudre ce probl�eme de

choix de dates� notre approche a les sp�eci�cit�es suivantes � elle permet �a chaque
utilisateur d�utiliser n�importe quel type d�agenda� alors que certaines solutions
lui imposent de r�epertorier toutes ses activit�es sous format �electronique � elle
garantit la con�dentialit�e puisque les raisons d�accepter ou de refuser une date
ne sont pas communiqu�ees � elle facilite la communication et aide l�organisateur
�a choisir mais ne prend aucune d�ecision de mani�ere autonome � elle donne

R�ESUM�E ��

acc�es �a l�information depuis n�importe quel ordinateur reli�e �a l�internet � elle
est extensible par du code mobile a�n de faciliter l�int�egration future avec
d�autres syst�emes et le maintien de la coh�erence de l�information �a l�int�erieur
du service� ainsi que des informations externes qui en d�ependent�

Architecture

Dans la Fig�
��� p� �� nous avons utilis�e le terme �service� pour d�esigner
les composantes immobiles� Nous voulons par l�a marquer la di��erence par
rapport aux applications habituelles� qui sont moins accessibles et plus di�ciles
�a int�egrer dans de nouveaux syst�emes� La majorit�e des programmes sont
di�ciles �a d�eplacer� parce qu�ils ne peuvent bien fonctionner que dans un
contexte particulier� ou sont rattach�es �a d�autres programmes ou �a de grandes
quantit�es de donn�ees�penser �a un syst�eme qui sert une fonction bien pr�ecise
dans une grande entreprise� On ne peut donc pas simplement les prendre et
les installer partout o�u leurs fonctonnalit�es sont n�ecessaires
par exemple dans
un autre grand syst�eme qui est lui�aussi di�cile �a d�eplacer�� Mais d�es que ces
programmes sont facilement accessibles� par exemple avec du code mobile� ils
deviennent des composants r�eutilisables pour des syst�emes �a grande �echelle�
Dans notre approche� les informations et les fonctionnalit�es des services

sont acc�ed�ees par des composants mobiles et de petite taille� qui sont au�
toris�es �a s�ex�ecuter sur les m�emes machines que les services� Pour le transfert
d�informations et d��ev�enements entre services et extensions� nous n�avons pas
eu besoin de protocoles ou d�ontologies plus complexes que le mod�ele de pro�
grammation orient�ee�objets� l�information est encapsul�ee dans des objets� qui
peuvent �etre r�ef�erenc�es� et dont les m�ethodes� qui ont des noms bien d�e�nis�
peuvent�
�� �etre appel�ees� avec des param�etres�
�� retourner des r�esultats�

�� lancer des exceptions�

Une partie cons�equente du m�emoire d�ecrit l�architecture de tels services�
ainsi que les m�ecanismes que l�environnement d�ex�ecution doit o�rir� a�n
que l�approche soit possible en pratique� Cette architecture se base sur les
techniques r�ecentes de conception orient�ee�objets� qui doivent toutefois �etre
quelque peu adapt�ees �a la nouvelle situation� La Fig�
��� p� �� sch�ematise
cette architecture� qui est �egalement celle que nous avons choisie pour impl�e�
menter le service de choix de dates�

� La base de donn�ees peut �etre tr�es grande� Il est donc exclu de l�avoir
enti�erement en m�emoire vive� Les classes du package �Managers� encap�
sulent l�acc�es �a la base�

� Les classes du package �Service interface� contiennent la logique du ser�
vice� Ce sont elles qui donnent un sens �a la base de donn�ees et qui o�rent
une interface pour les composants mobiles� La di�cult�e consiste �a o�rir

�� R�ESUM�E

Mobile code execution environmentDatabase

Internet

Service host

Web clients Other clients

Web server

Managers

Entities

Web interface

Mobile extensions

Service interface

Contact

Figure
��� Architecture g�en�erale pour un service fonctionnant �a l�int�erieur
d�une plate�forme pour code mobile� Les �dossiers� repr�esentent des pack�
ages de composants� Les ��eches repr�esentent les d�ependances et interactions
possibles entre ces composants�

R�ESUM�E ��

un acc�es qui soit facile �a comprendre� et qui ne cache pas les informations
importantes et les �ev�enements int�eressants du service�

� Du moment que le service est impl�ement�e dans un environnement de code
mobile� des composants de provenances diverses peuvent venir s�ex�ecuter
sur la m�eme machine� Les m�ecanismes n�ecessaires sont peu nombreux �
un contr�ole des droits d�acc�es qui pr�eserve la con�dentialit�e� un con�
tr�ole de l�utilisation de ressources qui emp�eche la sur�consommation� des
m�ecanismes de not�cation pour les �ev�enements internes au service� et
pour informer les composants ��etrangers� lorsque le service va cesser de
fonctionner� Nous montrons que cela repr�esente peu d�e�orts suppl�e�
mentaires pour le cr�eateur du service et su�t pour le rendre tout �a fait
extensible�

� Un autre grand avantage de la toile que nous tenons absolument �a
exploiter est la quasi universalit�e de l�interface utilisateur� �A l�heure
actuelle� un document HTML peut �etre a�ch�e par tout ordinateur reli�e
�a l�internet� sans qu�il soit n�ecessaire d�y installer de nouveau logiciel�
Certaines optimisations sont possibles en utilisant des Applets ou des
scripts qui s�ex�ecutent sur le �client� mais nous �eviterons de le faire car
cela pose souvent des probl�emes de compatibilit�e� L�interaction avec
l�utilisateur sera donc g�er�ee par les classes du package �Web interface��

R�esum�e des contributions

Les contributions originales de cette th�ese sont les suivantes�

�� Description des aspects techniques du logiciel et construction d�un pre�
mier catalogue� aussi complet que possible� A notre connaissance� un tel
travail n�avait jamais �et�e r�ealis�e et de nombreuses notions relatives aux
aspects �etaient utilis�ees sans v�eritables d�e�nitions�

�� Description de l�encapsulation de protocoles par le code mobile� et illus�
tration par de nombreux exemples� Cette notion n�est pas nouvelle� mais
peu d�autres travaux lui ont accord�e l�attention qu�elle m�erite�

�� Description d�un domaine d�application dans lequel le code mobile est
particuli�erement int�eressant
DEDIS�� des probl�emes que cela permet
de r�esoudre
int�egration� qualit�e de l�information� et justi�cation par
le grand nombre d�aspects pris en compte par cette technique� L�id�ee
d�utiliser le code mobile dans le domaine des syst�emes distribu�es n�est pas
nouvelle� mais l�approche �par les aspects� donne de nouveaux crit�eres
pour �evaluer l�impact du code mobile�

�� R�ESUM�E

	� Architecture pour des services ouverts et extensibles� La plupart des
travaux sur le code mobile s�int�eressaient �a ce qui bouge� nous proposons
un mod�ele plus d�etaill�e de la partie immobile et �etudions les m�ecanismes
qui lui permettent d�interagir avec des extensions mobiles� et de g�erer au
mieux le grand nombre d�aspects qu�on trouve dans les DEDIS�

�� Pour notre �etude de cas nous avons impl�ement�e un nouveau service pour
choisir une date de mani�ere collaborative� C�est un outil utile� mis �a
disposition gratuitement pour tous les utilisateurs de l�internet�

�� Pour impl�ementer notre service en Java� nous avons d�u d�evelopper une
nouvelle librairie de classes pour la gestion de calendriers� d�intervalles
et de domaines temporels� Cette librairie est d�ecrite en d�etail et pourra
�etre r�eutilis�ee�

�� Pr�esentation d�etaill�ee de plusieurs extensions concr�etes de notre service

agents mobiles dans l�environnement �Voyager��� Qui illustrent bien
l�int�er�et de l�encapsulation de protocoles� et montrent quelles conventions
sont n�ecessaires entre le fournisseur du service� et ceux qui programment
les extensions� toujours dans la perspective de g�erer aux mieux les dif�
f�erents aspects techniques�

Abstract

The main goal of this dissertation is to show how useful real�world applications�
easily accessible from the Web� can be built on top of mobile code platforms�
Being able to move programs� and to choose at run time on which network
host a given computation will take place� provides a new degree of freedom
to software designers� We want to understand in which practical context this
additional �exibility can be exploited� what could be a good design based on
this new technology� and what bene�ts should be expected from its adoption�

Our work emphasizes the idea that the essential interest of mobile code is
the ability to encapsulate protocols� and that one of the most pro�table usage
is to reduce the need for standards and pre�established conventions� Stan�
dards for networking or application inter�operability are notoriously hard to
concieve� their implementation often requires a lot of work� and the resulting
inter�operation is seldom satisfactory� Moreover� such protocols are extremely
di�cult to change without compromising compatibility once they are deployed�
a signi�cant problem� given the amazing rate of innovation and unpredictabil�
ity of the user needs in the �eld of computer technology� With appropriate use
of mobile code� we can delay some important decisions� and implement in our
software support for only a small fraction of the potentially in�nite number of
situations in which it will be used� and let others provide additional function�
ality� that perfectly matches their speci�c requirements� Not only� we avoid to
clutter our programs with unnecessary features� but we also reduce the needs
for collaboration� and avoid to end up with unsatisfactory solutions because
of lack of information�

Among the few application domains in which mobile code technology could
be harnessed
e�g� information retrieval� network management� parallel pro�
cessing� Applets� this work will concentrate on large�scale distributed infor�
mation systems� We �rst study the characteristics of these systems that make
them di�cult to develop and to operate�
�� the dynamicity of the environment
and of the computing infrastructure compromise integrity and availability of
information�
�� constant evolution of the systems� �exibility and easy inte�

��

�
 ABSTRACT

gration are all required to follow the frequent changes in the user�s needs and
technical context�
�� administrative distribution makes collaboration di�cult
and fosters con�icting objectives�
	� physical distribution has inherent tech�
nical traps� We use the acronym DEDIS to de�ne these Dynamic� Evolving�
Distributed Information Systems� for which mobile code seems to be perticu�
larly well suited�

From a more theoretical perspective� we explain these di�culties by the
large number of di�erent technical aspects that must be taken into account
in this kind of software� Having established an extensive inventory of these
aspects� and of their dense graph of dependencies� we are able to explain why
developing large�scale systems is so challenging� because there is a far greater
number of aspects that must be taken into account and �woven� together in
the resulting software than in desktop applications�

Our main hypothesis is that within a mobile code environment� a large
fraction of aspects are easier to take into account� and don�t interfere in the
same way� because a new repartition of the responsibilities is possible� Usually�
a service provider must implement all the functionality required by di�erent
kinds of users� external applications� and physical environments� With mo�
bile code� it becomes possible to shift responsibilities towards those who know
what functionality is really needed� for instance developpers of related applica�
tions� or extension programmers working on behalf of end users� The resulting
applications are potentially less expensive to develop� easier to maintain� and
additionally� they don�t su�er from the common problem that generality and
good performances are di�cult to achieve at the same time�

In order to check this hypothesis� we have on one hand categorized bene�ts
described in the mobile code literature according to our new inventory of
aspects� on the other hand� we have implemented a new fully�functional service
within one of the numerous existing mobile code execution environment� This
study has revealed various levels of simpli�cations for two thirds of the aspects�
when mobile code is used to �glue� together immobile parts of a distributed
system� The simpli�cations we have observed can be grouped in three broad
categories�
�� aspects that can be delegated to the client� thanks to the
shift of responsibility that we have already discussed�
�� aspects where the
clients bene�ts from locality� because mobile components can interact with
the service without interference from the network inbetween�
�� aspects that
are better supported by existing mobile code execution environments than by
usual operating systems�

The sum of these little bene�ts represents a very strong incentive to use
mobile code in the context of DEDIS� even if we cannot exhibit a �killer ap�
plication� that would be possible only with mobile code� In the light of our
results� it even seems improbable that such an application exists� since the

ABSTRACT ��

bene�ts of mobile code are related to the non�functional aspects
often con�
sidered as secondary �quality of service� issues�� and not directly enabling a
new kind of function that cannot be implemented with classical programming
models and communication by message passing�
For our case study� we have chosen to work on the meeting scheduling

problem� which is a good candidate for the study of DEDIS� Our system lets a
group of people collaborate in order to determine at what time a forthcoming
activity will take place� This requires communications� computations� taking
into account a variety of calendaring hardware and software� being able to
dynamically take into account new constraints� and being able to adapt to
new technical requirements� and new habits of the end users�
A detailed study of the state of the art in scheduling and constraint sat�

isfaction reveals that our solution has several advantages in comparison with
other approaches for date selection� It makes this complex decision processes
very easy but� and at the same time doesn�t require users to change their cal�
endaring habits� nor to behave in a very disciplined way� Moreover� there is
no risk to be stuck with a product that doesn�t evolve in the right direction
since it o�ers only a well delimited functionality and can easily be integrated
with future technologies or applications�
We name our software a �service� in order to emphasize the di�erence with

conventional applications that are less accessible and harder to integrate in a
larger system� It is implemented as an immobile component within a mobile
code environment environment� Its informations and functionalities can be
accessed by mobile components that are allowed to run on the same com�
puter� The transfer of informations and events between service and extensions
doesn�t require more complex protocols or ontologies than the object�oriented
programming model� data is encapsulated within objects� that can be refer�
enced and whose methods� which have well de�ned names� can be called with
parameters� return values and throw exceptions�
An important part of the dissertation describes this new approach� the

mechanisms that the execution environment must provide in order to make
it practically feasible� and how the service itself must be structured� The
architecture of the service is based on recent object�oriented techniques� which
must somewhat be adapted to the new situation of having foreign processes�
with their own state and programs� running on the same host as the service�
and needing to interact with it in order to satisfy the needs of many unknown
users� without requiring collaboration with the service provider�

�� ABSTRACT

Part I

Composition of services

with mobile code

In this �rst part of the thesis we describe some shortcomings in today�s
technology for distributed information systems and we propose an approach
based on mobile code that has the potential to overcome some of these short�
comings� We describe an architecture for open services that will be illustrated
by the case study of the second part�

Chapter �

The thesis and its context

Chapter highlights

� The essential topic of this research� building software applications on
top of mobile code platforms�

� The new perspective that justi�es the study� no �killer application�
has been found for mobile code because the biggest potential of this
approach lies in the treatment of non�functional requirements� which
are usually considered as secondary� or ignored� in small scale� proof�of�
concept experiments�

� The potential impact of the research� improve the quality of large�scale
software systems� thanks to a better understanding and new techniques�
especially in the treatment of non�functional aspects�

� The characteristics that make large�scale systems di�cult to build� the
dynamicity of the environment and of the computing infrastructure com�
promise integrity and availability of information� constant evolution of
the systems� �exibility and easy integration are required to follow the fre�
quent changes in the user�s needs and technical context� administrative
distribution makes collaboration di�cult and fosters con�icting objec�
tives� physical distribution cannot be ignored because of its inherent
technical traps�

� The promise of the messenger paradigm� communication by exchange
of programs instead of messages o�ers the huge bene�t of reducing the
number of necessary conventions� and allows the encapsulation of non�

�	

���� MAIN STATEMENT AND SITUATION ��

functional aspects� in order to decouple components from the context in
which they are used�

� The need to learn building large�scale systems with mobile code� it is
not a recent idea but it has not yet been studied thoroughly because re�
searchers concentrated on the implementation of platforms and on solv�
ing the intrinsic pitfalls of the new technology�

��� Main statement and situation

Useful real�world applications� easily accessible from the Web� can be built
on top of mobile code platforms and the �exibility thus obtained allows the
satisfaction of several important needs that are di�cult to handle otherwise�

Mobile code and related technologies have been the subject of much re�
search and industrial interest for at least one decade but only a handful of
real�world applications have been described� and widespread use has yet to
occur� The goal of this dissertation is to show that there are indeed many im�
portant applications that can greatly bene�t from the ability of mobile code
to choose� at run time� on which network host a given computation must take
place�

We explain the lack of �killer application� for mobile code by the fact
that the interesting aspects where mobile code has the biggest impact are
not the primary functional aspects of software design� but are rather seen as
quality of service aspects� This means that alternative solutions often seem
more straightforward� And that for almost all software developments� in which
these aspects are either played down or absent� the need to use mobile code
has not been felt as strongly as it could be�

However� looking at the current state of the software world reveals big
imperfections like lack of robustness� high maintenance costs� etc� Our hy�
pothesis is that these imperfections and problems may result from insu�cient
attention given to some of the non�functional aspects that mobile code could
precisely handle�

Throughout the dissertation� we will mainly use the general concept of
mobile code� which encompasses a few more speci�c notions like�

� messenger a code fragment shipped with a piece of data to a remote
execution platform
x ������ p� ����

� mobile object an instance of a class that moves with its state� and if
required its code
x ���� p� ����

� mobile agent a mobile object with its own thread of execution
p� ����

�� CHAPTER �� THE THESIS AND ITS CONTEXT

In this chapter we will de�ne the context of our research� and try to identify
the characteristics of these applications that could potentially bene�t from new
architectures based on mobile code�

��� Large�scale systems and DEDIS

In
Committee on Information Technology Research in a Competitive World�
�

�� a recent report published by the US National Academy Press
NAP�
that tries to de�ne important directions for the research in computer science
and information technology
IT�� a large group of experts has identi�ed the
inability to build large�scale systems as one of the most urgent challenges�
Their de�nition of a large�scale system is the following�

Large�scale systems are IT systems that contain many �thou�
sands� millions� billions� or trillions or more� interacting hard�
ware and software components� They tend to be heterogeneous	in
that they are composed of many di
erent types of components	and
highly complex because the interactions among the components are
numerous� varied� and complicated� They also tend to span multi�
ple organizations �or elements of organizations� and have changing
con�gurations� Over time� the largest IT systems have become ever
larger and more complex� and� at any given point in time� systems
of a certain scale and complexity are not feasible or economical to
design with existing methodologies�

Committee on Information Technology
Research in a Competitive World� �

�

The keywords of this de�nition� which can be viewed as the characteristics
that make this kind of systems extremely hard to design and operate are scale�
physical distribution� heterogeneity� administrative distribution and
dynamicity� In
Queloz and Pellegrini� ����� we stated that a favourable con�
text for the application of mobile code is dynamic� evolving� distributed
information systems� and we proposed the acronym DEDIS to name such sys�
tems� In the light of the NAP report we realize that our objectives were very
ambitious� but aimed in the right direction�

��� Dynamicity

In order to build a system that will work for a long period of time we must be
able to anticipate what is going to happen around it� The �rst kind of dy�
namism we have to deal with is the dynamicity of the world itself� people are

���� EVOLUTION ��

moving� objects are created� exchanged� destroyed� new books are published�
scienti�c research re�nes its models� etc� To be useful most systems must take
these changes into account and re�ect them in the information they contain
and o�er� We can anticipate some of these changes if we build a good model of
the world on which we base our system� Yet� when an event occurs� the system
must be informed and its state must be updated� Too often human interven�
tion is required� although it could be better to update relevant documents or
databases automatically� either for cost reasons or to prevent oversight�
Broadly speaking most systems that handle events and world dynamicity

cope by applying the principle of publish and subscribe� This principle of
publish and subscribe for event noti�cation is so general that it was already in
use long before computers existed� It is the natural way to pass information to
interested parties and there is no wonder that it is present in so many di�erent
contexts in today�s information systems� from electronic mailing lists to �push
channels� and inside object�oriented applications underlying the �Observable�
Observer� Design Pattern�
We call accuracy maintenance this �rst aspect of dynamicity� Failing to

handle this technical aspect properly leads to invalid information and a system
that provides misleading results which may incur cost and frustration for the
users�
The second related aspect is infrastructure dynamicity� the fact that

components and devices are added to or removed from the system�s environ�
ment� In a large�scale system� sub�systems cannot expect to have permanently
established connections with all others� It is a consequence of failures� upgrades
and transformations� Furthermore� end users are not permanently running all
their applications and leaving all their devices switched on� Failing to address
the resulting disconnections or the appeareance of new hardware and software
components may lead to loss of functionality� poor resource usage� or to fail�
ures when changes are not taken into account and the environment responds
in an unexpected way�

��� Evolution

It is extremely di�cult to anticipate how people are going to use a successful
information system� If the system has enough users� it is almost certain that
they will invent new ways of using it and discover new requirements that were
completely unpredictable� To satisfy these new needs� the system must be able
to evolve� Experience shows that systems that cannot evolve and take into
account these unforseeable needs quickly become obsolete� Inside a company�
developing a new system certainly induces unwanted costs� The situation can
be even worse in a commercial and competitive context� where this may result

�� CHAPTER �� THE THESIS AND ITS CONTEXT

in customers abandoning the system and replacing it with a competitor that
is better adapted�
It is disappointing to see that such a valuable principle as publish and sub�

scribe does not help much to accommodate the potential needs of users� It
is a fact that if the designer of a system has not provided the right interface�
it will not be possible to access the information needed� even if it is buried
somewhere in the system� It will also not be possible to get event noti�ca�
tions� unless some kind of subscription is available in the interface� For this
purpose� the designer will have to choose which information is observable and
when and how noti�cations will be propagated to users� With this scheme
some extensions are possible� but sooner or later limitations will appear for
instance because interesting events are not propagated or because the propa�
gation scheme is di�cult to use� or ine�cient�
Some widely used systems have even been �victims of their own success��

because lots of users with con�icting needs were using them� they could not
be further upgraded without �forking� into incompatible products� It is the
same phenomenon that occurs with successful protocols like IP� HTTP or
HTML� they are installed on millions of hosts� they quickly generate new needs
for which new solutions exist but are almost impossible to adopt because of
the costs of upgrading every interconnected host and because of the risk to
introduce incompatibilities�
In the NAP report� eleven reasons why large�scale information systems are

so di�cult to design� build and operate have been identi�ed and described�
One of these reasons matches remarkably well our de�nition of evolution� thus�
even if it wasn�t listed in the keywords de�ning a large�scale system� it is
undoubtedly an important characteristic�

Constantly changing needs of the users	Many large systems
are long�lived� meaning they must be modi�ed while preserving some
of their own capabilities and within the constraints of the perfor�
mance of individual components� Development cycles can be so
long that requirements change before systems are even deployed�
Research is needed to develop ways of building extendable systems
that can accommodate change�

Committee on Information Technology
Research in a Competitive World� �

�

��� Distribution

Distribution aggravates the situation in several ways� We can distinguish
administrative distribution and physical distribution� because both are

���� DISTRIBUTION ��

present in large�scale IT systems and they introduce di�erent technical as�
pects�

	
�
	 Administrative distribution

Administrative distribution re�ects the fact that large distributed systems
belong to di�erent entities
people� organizations�� For each information or
functionality� some of these entities can be seen as providers� while others are
rather users or consumers� Ideally� a provider must be able to satisfy the ever
changing� sometimes contradictory� requirements of its users� This implies
good communication and collaboration� as well as compatible objectives�

Collaboration problems may occur in many cases� for instance when there
are so many users that the provider is unable to manage all their requests� or
when users are too far� or when upgrading the service is too expensive or when
all its developers are gone� In all these cases� collaboration between providers
and users is di�cult� and integration becomes problematic� hence�

System integration and the establishment of information sys�
tems that provide an open environment built for change and evolu�
tion have become the critical elements of modern information sys�
tem development�

Mowbray and Ruh� ����� p� ����

To achieve very large networks of inter�dependent sub�systems� we need to �nd
solutions to keep them working in useful ways without the need for too much
collaboration�

Another consequence of administrative distribution is that the owners of
the di�erent parts may have con�icting objectives or incompatible cultures�
even if they are willing and able to collaborate� A striking example is provided
in the context of CERN high�energy physics accelerators� where there is at least
a dozen of groups involved in the engineering and operation of a single particle
detector� Each group is highly specialized in one domain
construction� design�
calibration� simulation���� and works with its own applications� database mod�
els and software� query dialects� etc� Although their ability to integrate their
sub�systems is essential for the overall enterprise� each domain requires very
speci�c features and uni�cation of the models or applications is unthinkable
because each of them is highly optimized for its own task� It is recognized that
the ine�ciencies that would result from an attempt to generalize the tools or
models used could prevent the groups to accomplish their primary task�
A less dramatic example� that shows equally well the problems when sub�

systems belong to di�erent organizational entities� is provided by hyperlinks

�
 CHAPTER �� THE THESIS AND ITS CONTEXT

between two Web sites� Very often� such links embedded in Web pages are
broken and information becomes unreachable� just because of a simple rear�
rangement of the information at the target site� Such rearrangements are
unfortunately required rather frequently� either because of aesthetic motiva�
tions� or for changes in the contents� or by the choice of a new underlying
technology�

So we see that it is technically possible to establish �bridges� between
independent domains
in the form of wrappers or hyperlinks� but that such
dependencies are very brittle� and that each modi�cation on one side poten�
tially induces changes on the other side� The amount of work required to
perform these changes can become prohibitive� especially for sub�systems that
depend on many external sources� For instance the owner of a Web site with
hyperlinks to �
 other sites that get reorganized every � months has already
	
 updates to perform each year! Even if he can easily edit the contents of
his own pages
no compilation or lengthy transfer� it still takes some time
to understand the new organization of the information providing site and to
locate the target page�

To avoid this tedious work� the only solution is to have an interface for each
sub�system that is as stable as possible� Unfortunately� across organizations�
the reasons to change a sub�system in incompatible ways may be much stronger
than the willingness to preserve a stable interface� Another factor is that
across organization it is often neither possible to know how the interface is
actually used� nor to estimate the magnitude of the consequences of changes�
The sad e�ects are seen much too often� unexpected loss of functionality� and
inacessible or wrong information�

The bad e�ects of administrative distribution on the reliability of large
systems is also mentioned in the NAP report�

Large numbers of individuals involved in design and operation	
When browsing the Internet� a user may interact with thousands
of computers and hundreds of di
erent software components� all
designed by independent teams of designers� For that browsing to
work� all of these designs must work su�ciently well without any�
one doing the integrating or anyone handling complaints if they fail
to work as a whole� Research is needed on ways to prevent failures
in one part of a system from a
ecting the system as a whole in
ways evident to a user�

Committee on Information Technology
Research in a Competitive World� �

�

���� DISTRIBUTION ��

	
�
� Physical distribution

Physical distribution is another complicating factor whose technical implica�
tions on software development are well known
Waldo et al�� ���	��

�� Latency� operations that involve the network are 	 to � orders of mag�
nitude slower than local interactions� Ignoring this issue can lead to
an application with extremely poor overall performances and response
times�

�� Memory access� it is not possible to use pointers when objects are
physically distributed� thus programming a distributed application either
requires to distinguish local and remote objects� or to suppress pointers
altogether
as in the Java language��

�� Partial failure is a tricky problem� emblematic of physical distribution�
because some devices may crash while other continue running and there
is no global state that can be examined to determine exactly what has
occurred� building robust applications in this context requires astute
techniques for exception handling�

	� Concurrency� having several devices that run in parallel introduces
true concurrency and asynchrony� and unlike in the pseudo�parallel or
multi�threaded context� it is not possible to rely on the deterministic
behavior of a single operating system�

In their argument against location transparency� and against the idea to
make local and remote objects undistinguishable for the programmer� Waldo
et al give two very convincing examples that the non�functional aspects like
coordination or exception handling are intricately linked with functional
aspects producing the expected result and that they cannot be treated in�
dependently� They also warn the designers of distributed systems that the
non�functional aspects may seem secondary when the size of the system is
small but that they become essential when the load and the size of the system
increase� and that handling them at this time requires major changes to the
application�

Physical distribution is also likely to introduce paradoxical e�ects� Even
if the interfaces of the components remain unchanged� there is a bigger risk that
minor changes modify non�functional aspects
quality of service� in unexpected
ways� For instance performing a linear search may give excellent response times
for a small data structure� but it becomes unacceptable when more memory
is added to a server and the data structure is able to grow� In this case an
improvement
adding memory� results in degradation of service quality�

�� CHAPTER �� THE THESIS AND ITS CONTEXT

��	 Messengers and mobile code

The messenger paradigm
Tschudin� ������ on which most of our work is
grounded� was introduced to suppress the need for pre�installed protocols in
computer communications� by letting one of the communicating entities start
a communication and give the description of the protocol to be used by the
other party� Instead of exchanging messages� distant processes interact by
sending programs
messengers� across the network� This is similar to the
idea of �protocol components� that is used in active networking
Tennenhouse
et al�� ������ in contrast to �protocol stacks� used by standard communication
systems� This paradigm of messengers or mobile code is characterized by�

The ability to send a program to a remote host� to have it
executed there in a new thread of control� which is able to initi�
ate further code transfers and thread executions from its remote
location�

The exchange of mobile code allows the implementation of the same protocols
as the classical message exchange� with the signi�cant advantage that the code
implementing new protocols can also be transmitted if necessary�
The result is that less conventions are needed in messenger exchange than

in message exchange� Processes still have to agree on high�level encoding and
synchronization primitives� but these agreements are only a fraction of what is
necessary to communicate� We will show that many context�dependent aspects
can be encapsulated inside mobile code and changed when the context changes�
Encapsulation has the same bene�ts here as in other software engineering
domains� it reduces the dependency between components� thus it reduces the
number of modi�cations that we must make to our software in order to adapt
it to new requirements� This crucial fact gives us new perspectives for the
structuring of computer communications� and of distributed applications�
Code mobility has enjoyed a lot of popularity during the last decade� In

an early paper
Harrison et al�� ����� the advantages of code mobility had
already been described� and the fact that there are very few cases where a
problem cannot be solved without mobile code was recognized� Afterwards�
most of research on the topic attempted to build mobile code platforms� which
requires a lot of e�orts and advanced techniques to provide an acceptable level
of security� A few interesting studies showed signi�cant reduction of latency
and consumption of network bandwidth� but the number of large applications
described in the literature that could help someone build his own distributed
application with mobile code is very limited�
Because deciding to use mobile code is not su�cient to successfully build a

large distributed application� this dissertation describes the architectural prin�
ciples that we applied to build a real�world service� It also tries to summarize

���� MESSENGERS AND MOBILE CODE ��

our experience of applying mobile code to cope with some of the non�functional
aspects that are typically found in DEDIS� Hopefully� dealing with these as�
pects can lead to more robustness� more �exibility� better accessibility and
fewer discrepancies in these systems�
One last quote from the NAP report� that has already been cited several

times in this introduction� indicates that our hope to improve the design of IT
systems using code mobility is also shared by some of its authors�

Existing approaches to large�scale system design� including some
that are in commercial practice� show promise for facilitating the
development of large�scale systems and could bene�t from greater
attention from the research community� Two approaches worth
mentioning are methodologies based on component software and
mobile code�

Committee on Information Technology
Research in a Competitive World� �

�

Chapter �

The aspects of software

design

Chapter highlights

� The motivation to build a catalog of aspects� as a theoretical tool to
explain the di�culty of DEDIS and the impact of mobile code� and as a
practical �checklist� for software designers�

� The de�nition of functional aspects� compute� store� communicate� the
three basic operations that a Turing machine is able to perform�

� The notion of non�functional aspects� all other aspects that must be
considered to obtain programs that ful�ll their task in their environment�

� The implementation of non�functional aspects� even if they can be de�
scribed in abstract terms and modularized� they necessarily result in
more computations� storage and communications in the executable code�

� The complexity of aspect dependencies� because they are similar and
tend to be solved by the same mechanisms� or because a given aspect
introduces its own accompanying aspects� they are all interconnected in
a very dense and complex graph of dependencies that make the design
of software a challenging task�

� The distinction between aspects and quality factors� aspects are concrete
technical concerns� and not desirable properties of the software�

�	

���� MOTIVATION ��

� The problem of cross�cutting� it is almost impossible to cleanly mod�
ularize all aspects at the same time� and to avoid that code written to
accomodate one aspect spreads within modules written for other aspects�

� The inventory of �� non�functional aspects� attempts to de�ne all of
them and spans many �elds of computer science�

��� Motivation

Designing useful software implies taking into account a large number of very
concrete technical concerns� also named aspects� The goal of the present chap�
ter is to provide a comprehensive overview of these technical aspects� in order
to have a clear de�nition for each of them� and to know exactly which ones
are taken into account in our architecture based on mobile code�

There is already an abundant literature documenting the particularities of
each aspect� or of a few related aspects� and the best techniques or algorithms
to take them into account in software� Surprisingly� we could not �nd any
publication that tries to build an extensive catalog of all the non�functional
aspects� Our motivation to provide such a document is twofold�

�� With it we can represent� and somehow understand� the enormous com�
plexity of DEDIS� in which most of the non�functional aspects must be
considered� For software designers� this makes a big di�erence with other
kinds of applications
word processors� compilers����� where only a small
number of non�functional aspects are present and where the functional
side predominates�

�� It could also provide useful guidance to software designers� by ensuring
that they are aware of all the aspects that are relevant to their problem�
and to remind them of the complex dependencies between them�

��� Functional and non�functional aspects

As functional aspects� and because their behavior can be compared with
mathematical functions� we designate processing� storing and communi�
cating information� the three fundamental tasks accomplished by all comput�
ers according to von Neumann�s architecture� These are also the operations
of the the underlying theoretical Turing machine
an abstraction that is very
close to a mathematical function�� of �functional� programming� and of some
formalisms that allow the mapping of programming constructs with predicates�
in order to verify their correctness
Dijkstra and Scholten� ���
��

�� CHAPTER �� THE ASPECTS OF SOFTWARE DESIGN

So� when we describe a system�s function� we are describing its behavior
along these three axes� and we�re viewing it as a component that has a state

information stored in its memory�� and that is able to communicate with the
world using input and output channels� The operations that read the input and
compute the output may take the state into account and modify it� Ensuring
that a system�s function meets expected requirements is a very di�cult task
and has been the subject of numerous formal methods� e�g� Z
Spivey� �����
or CO�OPN"�
Biberstein� ������
Non�functional aspects on the other hand are additional requirements that

must be taken into account in some cases� Thus it is possible to design
software with the right functional behavior but that is not correct because it
fails to address these needs� For instance a program that always computes
the right result but sometimes takes too long doesn�t satisfy the aspect of
real�time constraints� Another easy example is memory management�
a program may require more memory than available in the host it�s running
on� If the program�s designer has not taken the aspect into account it will fail
even if the algorithm is perfectly correct�
Even if such problems may seem secondary� and have sometimes been de�

scribed as �quality of service� or �implementation issues�� they do have a
heavy impact on the actual programs written to provide the desired func�
tion in a given context� Indeed� handling the speci�c problems introduced by
the non�functional aspects often requires to incorporate more software in the
system� and may also constrain the applicable algorithms or their implemen�
tations�
Many of the aspects presented have the characteristic of requiring compu�

tations� storage and communication for their own purposes� or to introduce
additional aspects in a kind of cascading phenomenon� For instance� the aspect
of load balancing between several processing nodes requires rather frequent
communications between the nodes to gather load statistics� it also requires
some memory to store this information� and it requires computations to deter�
mine where the processes should execute� It is unlikely that separate proces�
sors� memory and network connections will be available to perform this task�
thus load balancing consumes resources and is very likely to interfere with the
primary function of the system�
Such examples illustrate the fact that the three fundamental aspects and

what we conveniently call non�functional aspects are never very far from each
other� Thus� we will cautiously avoid the notion of orthogonality� that has
sometimes been introduced in this context� On the contrary� we observe that
there is a very complex network of dependencies between aspects� either be�
cause they are similar and tend to be solved by the same mechanisms� or
because a given aspect introduces its own accompanying aspects� Fig� ����
p� �� depicts this network of dependencies�

���� DESIGN GOALS AND QUALITY FACTORS ��

Figure ���� Dependencies between non�functional aspects that have been iden�
ti�ed and described in section ����

��� Design goals and quality factors

It is important to notice the di�erence between technical aspects and more ab�
stract goals and quality factors such as� reliability� robustness� maintainability�
modularity� scalability� adaptability� portability� autonomy� data accessibility�
inter�operability� appliance connectivity� transparency� security���
Tiemann
et al�� ������ Although such goals may have a big in�uence on the choice of a
technology� or on the strategy of an IT department� they are not technical� in
the sense that it�s much less clear how to solve them programmatically� These
quality factors may or may not be present in the software� depending on how
well the technical aspects were handled and integrated in the design� but they
don�t have the same kind of direct impact on the software written�

�� CHAPTER �� THE ASPECTS OF SOFTWARE DESIGN

��� Cross�cutting

Several authors
Lea� ����� Kiczales et al�� ����� have pointed out that most
di�culties in programming arise from the complex inter�relations between
these aspects� These complex inter�relations engender the problem of cross�
cutting� which compromises our ability to design independent modules or com�
ponents� While modular decomposition has a crucial impact on reuse� ease of
design and maintenance of software� it is often not possible to �nd a decom�
position that accomodates all aspects at the same time� In other words� when
one modular decomposition is chosen� it is di�cult to keep the code written
to accomodate other aspects in one single place� without having to spread it
over all modules�

Fortunately� there are some techniques� like aspect oriented programming

Kiczales et al�� ������ design patterns
Gamma et al�� ����� or �service en�
capsulation�
Lea� ����� that can help the software designer coping with this
cross�cutting problem�

��� Catalog of non�functional aspects

For this inventory� we chose to list all aspects in alphabetical order� This pre�
sentation allows a given aspect to be quickly located� but somehow also re�ects
our current incapacity to �nd a better classifying criteria� In Fig� ���� p� ���
we propose an overview of all aspects� roughly structured in seven categories�

It was easier to structure the presentation of each aspect� Thus� all aspects
descriptions follow the same model� made of four distinct parts�

�� When part� indicates in which circumstances the aspect is likely to be
found�

�� Consider part� describes the main technical issues raised by the aspect�

�� Techniques part� references well�know techniques used to implement
the given aspect�

	� Related to part� lists all related aspects and describes the relationships
between them� The relationships presented correspond to the links in
Fig� ���� p� ���

���� CATALOG OF NON	FUNCTIONAL ASPECTS ��

Historic

Activation

Buffering

Caching

Indexing

Memory management

Persistence

Storage layout

Authentication

Encryption

Exception handling

Replication

Access controlAccounting

Auditing

Deployment

Infrastructure dynamicity

Parameterization

Platform adjustment

Payment

Versioning

Administration aspects Dependability aspects

Accuracy Maintenance

User interface look and feel

Scripting

Media synchronization

Internationalization

Input media selection

Human-Computer Interaction
aspects

Computation

Storage

Communication

Primary functional aspects

Load balancing

Parallelism

Prioritization

Bandwidth management

Bidding

Event notification

Flow control

Protocol negotiation

Serialization

Coordination

Secondary computation aspects Secondary storage aspects

Real-time constraints

Secondary communication aspects

All programming concerns

Figure ���� An attempt to categorize aspects� Unfortunately� most aspects do
not �t well in a single category� The di�culty to determine clear categories can
also be perceived in the very dense network of dependencies visible in Fig� ����
p� ���

	
 CHAPTER �� THE ASPECTS OF SOFTWARE DESIGN

��

access control
When some data or operations should not be available to all actors

interacting with the system� for safety or privacy reasons

Consider de�ning a reference monitor that controls attempts made by
subjects �principals� to access objects �data� operations�

Techniques access control lists� capabilities

Related to auditing to detect attacks and violations� authentication to
identify subjects� encryption to hide objects� parameteriza�

tion to let administrators con�gure the reference monitor

��

accounting
When the consumption of resources �CPU time� bandwidth� volatile

and persistent memory� software components� must be known

Consider tracking the principals owning threads� needing memory or using
the network infrastructure

Techniques run time monitoring at low level

Related to auditing to report actual usage� authentication to iden�
tify principals� bandwidth management requires accounting�
memory management requires accounting� payment can be
based on resource usages� prioritization requires accounting

��

accuracy maintenance
When the system�s state is related to a dynamic environment where

various kinds of events can occur

Consider how to update the system�s internal state such that it continu�
ously represents the environment in an accurate way

Techniques human intervention� sensors� polling

Related to caching and replication require to maintain coherence be�
tween the original and the replica� event noti�cation is nec�
essary to maintain accuracy in external components� scripting
is useful to propagate changes automatically� persistence re�
quires that stored data is maintained up to date

	�

activation
When stopping and restarting the system may cause a loss of state

information or has an undesirable impact on some operations
�changing their behavior while it should remain the same� or
the opposite�

Consider how to preserve the state and the right behavior� when the sys�
tem is restarted� when an operation is invoked for the �rst time�
when a user reconnects� etc	

Techniques object�oriented activation frameworks� transfer of state to an�
other host that won�t be stopped

Related to infrastructure dynamicity �e	g	 crashes� causes systems to
stop and restart� persistence of entity �database� and ses�
sion objects is necessary� versioning may require stopping and
restarting systems

���� CATALOG OF NON	FUNCTIONAL ASPECTS 	�

��

auditing
When the system�s behavior is expected to meet some well�de�ned ob�

jectives

Consider which observations are necessary to determine that the objec�
tives are met

Techniques methodical examination of the execution� logs

Related to accounting requires observations� access control should be
veri�ed� exception handling must report problems� historic
records changing values over time

��

authentication
When the identity of some principals must be determined

Consider how this data will be inserted� stored� checked� used� and deleted

Techniques passwords� cryptography� biometry

Related to access control requires identi�cation of principals� account�
ing may require indenti�cation of components

��

bandwidth management
When several applications compete for bounded network resources

Consider that
worst�case� static allocation will waste resources when
some applications are idle� better resource utilization can be
achieved by
over�booking� and designing applications that are
still able to work under non�optimal conditions

Techniques
best e�ort�� schedules� multi�level encoding

Related to accounting of bandwidth usage is required for good manage�
ment� coordination of communications to avoid demand peaks
helps achieving good bandwidth usage� protocol negotiation
may favour approaches consuming less bandwidth

��

bidding
When choosing between several options is a matter of trade�o� �e	g	

which resource should perform a given task�

Consider that an overall good behavior can be achieved by letting each
component behave rationally� trying to maximize a given utility
function

Techniques contract�net protocol� auctions� leveled commitment

Related to infrastructure dynamicity and load balancing require
choices at run time� payment can be related to the bids� co�
ordination of tasks may result in better resource usage when
needs are known in advance

	� CHAPTER �� THE ASPECTS OF SOFTWARE DESIGN

��

bu�ering
When input data arrives in bursts� or synchronous communication is

not convenient� or performance su�ers from disparities in the
size of data handled at both ends of a communication channel

Consider storing data such that the receiver can handle it asynchronously
and at its own tempo

Techniques temporary storage� queues

Related to caching is closely related but is more an issue of performance�
�ow control becomes necessary when bu�ers are not su
�
cient� memory management becomes an issue when bu�ers
are used� real�time constraints can motivate the use of bu�ers

�
�

caching
When a relatively large amount of time is needed to obtain or save the

result of an operation �computation or communication�

Consider storing a copy of this result in a quickly accessible memory

Techniques ensure that changes are propagated in time

Related to accuracy maintenance becomes important when data is repli�
cated� bu�ering is closely related but is more an issue of
synchronicity� memory management becomes an issue when
caches are created� real�time constraints can motivate the use
of caches

���

coordination
When there are dependencies beteween several activities� like prece�

dence constraints or con�icts through shared resources �concur�
rency�

Consider the nature of these dependencies and how to manage them� the
fact that deadlocks may occur when tasks require more than one
critical resource non atomically or in changing order

Techniques clock synchronisation� scheduling and constraint satisfaction
when the activities must be accomplished within known time
bounds� or in a given order� data driven �focus on interactions�
and control driven �focus on system con�guration� coordination
languages� concurrency control with semaphores� deadlock pre�
vention algorithms� timeouts

Related to event noti�cation is a way to deal with
prerequisite� depen�
dencies� load balancing and bidding try to deal with irreg�
ularities when there are dependencies through shared resources
and demand is not know in advance� bandwidth management

can be made easier by coordinating the needs� if they are known
in advance� parallelism introduces concurrency problems

���� CATALOG OF NON	FUNCTIONAL ASPECTS 	�

���

deployment
When the software is not running at a single location

Consider where it will be installed� how and by whom

Techniques desktop application� applet� client�server� embarked

Related to encryption can be necessary to protect the software during
deployment� infrastructure dynamicity requires deployment
when new devices become available� versioning must be con�
sidered when deployment occurs several times� parallelism and
replication may require deployment if there is no shared stor�
age parameterization of software running at several locations
must be considered from a global perspective� payment of de�
ployed software can be required� platform adjustment is nec�
essary when the devices or environments are not homogeneous

���

encryption
When security sensitive data must be hidden

Consider why and how it will be encrypted� who �which
principal�� will
receive the keys to access it� when� how and for how long

Techniques cryptographic algorithms� keystores� certi�cate authorities

Related to access control requires data to be hidden� deployment may
require encrypted software

�	�

event noti�cation
When events occuring in one component must be observed by other

components

Consider which are these events� how can they be propagated in a safe
and e
cient way

Techniques publish and subscribe� event queues

Related to accuracy maintenance requires that events are visible outside
of the components� coordination of two activities linked by a

prerequisite� constraint needs an event noti�cation when the
�rst activity terminates

���

exception handling
When a component behaves in an unexpected way

Consider how the failure can be contained such that it does not spread to
other components and
contaminates� the whole system

Techniques
ACID� transactions to clean up state after failures �checkpoint�
ing�� dump and halt

Related to auditing is necessary to understand exceptions and correct
faults� replication increases system availability in presence of
exceptions

		 CHAPTER �� THE ASPECTS OF SOFTWARE DESIGN

���

�ow control
When a data source works at a much higer byte rate than a data con�

sumer

Consider how to adapt the source�s output rate to the consumer�s ability

Techniques in�band�out�of�band signals� request�reply� sliding window

Related to bu�ering can be a way to avoid complex �ow control

���

historic
When it is necessary to remember the values of objects at the time a

business transaction took place

Consider which values may change over time� how often they change� and
if it is useful to be able to do an analysis of the change over time

Techniques snapshot values in the transactions if there are not many trans�
actions between value changes �too many duplications� and if
doing an analysis is not required �bad sampling�� add classes to
record changes and return the value at a given time� behind the
objects that must be recorded

Related to versioning is more about the successive versions of the pro�
grams� but it may constitute important historic data too� per�
sistence of the values is necessary� auditing also requires logs
and historic data but for administrative purposes

���

indexing
When the system handles a large amount of data

Consider providing e
cient means to locate this data

Techniques database keys� search based on content or properties� batch or
immediate index updating

Related to memory management can be an issue for very large indexes�
persistence of lots of data may require indexing� real�time

constraints motivate the creation of indexes� storage layout

must be taken into account� both for the indexes and for the
data being indexed

���

infrastructure dynamicity
When components or devices may be added to� removed from� or

moved in the system at any time

Consider how other entities in the system can discover their addresses and
characteristics in order to establish a communication and collab�
orate with them� how this communication can be suspended and
re�established� where data and computations must be located to
deliver expected results

Techniques name servers� directories� broadcast� lookup service� routing ta�
bles� discovery

Related to activation becomes important in a dynamic environment� bid�
ding and load balancing techniques can be applied to cope
with dynamicity� deployment of components cannot be static�
input media selection may be restrained in very dynamic
settings

���� CATALOG OF NON	FUNCTIONAL ASPECTS 	�

�
�

input media selection
When the system�s input may be provided in several ways

Consider data quality� ease of use� consistence within the system and with
the environment� reliability

Techniques keystroke data entry� automatic scanning� voice entry systems�
touch tone� bar code

Related to infrastructure dynamicity �e	g	 frequent disconnections� or
real�time constraints can dictate the best choice�media syn�

chronization issues can arise� user interface look and feel

is more about presentation

���

internationalization
When the system is meant to be used by people speaking di�erent

languages

Consider providing interfaces in their native language� and adapt to the
internationalized version of the OS

Techniques manual�automatic widget relabeling� resource database

Related to parameterization is one way to tackle language issues� user
interface look and feel can be in�uenced by the language or
culture� versioning is another way to tackle language issues

���

load balancing
When using several processors in parallel will not yield the expected

speedup because the problem is irregular and some processors
take much longer than others to complete their part of the work

Consider adapting the task of each processor frequently� to obtain even
processing times

Techniques task pooling� domain adjustment

Related to bidding can be used to adjust loads� infrastructure dynam�

icity can cause loss of performance or new opportunities� paral�
lelism is the context in which load balancing becomes necessary�
real�time constraintsmay require a high level of performance�
coordination of the activities may solve the same problems
when the capacities and loads are known in advance

���

media synchronization
When information is conveyed by di�erent media strands

Consider that these di�erent media must be synchronized at the receiver�
e	g	 that lips in video move with speech output

Techniques timestamps� common clocks

Related to input media selection is more a matter of ergonomics but
can be constrained by synchronization aspects� real�time con�

straints are introduced by this aspect

	� CHAPTER �� THE ASPECTS OF SOFTWARE DESIGN

�	�

memory management
When the system�s needs may exceed available memory

Consider how much memory is available� how much will be needed to rep�
resent the system�s state and to perform the various operations�
when data may be removed from an overloaded memory

Techniques compression� swapping to secondary storage �virtual memory��
garbage collection� leases

Related to accounting of memory usage is required for good management�
bu�ering� caching and indexing must achieve a good trade�
o� between performance and memory usage� persistence uses
secondary storage that must be managed� storage layout may
impact the amount of memory needed

���

parallelism
When a single processor is not able to achieve su
cient performance�

e	g	 to handle a very high number of requests or to carry a
complex computation within narrow time bounds

Consider using several processors running in parallel

Techniques shared memory� cluster of workstations

Related to coordination may become necessary when several processors
work in parallel� deployment of software on several nodes may
require more e�ort� load balancing may be needed to achieve
good performance� real�time constraints motivate the use of
parallel processors� replication of hardware is similar to par�
allelism� but for the purpose of fault�tolerance� thus replicated
devices perform the same task

���

parameterization
When the system�s behavior can be modi�ed by an administrator or

end user

Consider the scope of the modi�cation� how it will a�ect the system�s
behavior for other users� how the change can
propagate� to
other computers used by the same person

Techniques property �les� user pro�les

Related to access control must be parameterized� deployment of soft�
ware at several locations may require global parameterization�
user interface look and feel and internationalization of�
ten require parameterization� persistence of parameters must
be considered� versioning should take into account existing pa�
rameters

���

payment
When the system is not completely available for free

Consider who will pay� how much� for what� by which means� and how to
design the system in order to prevent abuse

Techniques payment in real or �ctitious money when downloading or in�
stalling software� accessing a service� consuming resources

Related to accounting in a
pay per use� setting� bidding when the trans�
actions have a mapping to real money� deployment when hav�
ing the software on one�s computer requires paying a fee

���� CATALOG OF NON	FUNCTIONAL ASPECTS 	�

���

persistence
When part of the system�s state must be preserved after it is stopped

Consider when and how this data is created� destroyed� updated and re�
called

Techniques non�volatile storage� databases

Related to accuracy maintenance is necessary when data is stored on
a persistent medium� activation� historic require persistence�
indexing can be useful with lots of data� memory manage�

ment is required also with persistent media� parameteriza�

tion requires to store parameters� storage layout is more
about the structuration of stored data

���

platform adjustment
When software is meant to run on several platforms

Consider what the relevant di�erences will be regarding the operating sys�
tem �disk� graphics� security�� hardware compatibility� resources
�memory�� performance

Techniques virtual machine� least common denominator� platform�speci�c
code

Related to deployment in an heterogeneous environment

�
�

prioritization
When some tasks require more processing than others� in order to be

completed in time

Consider assigning a higher priority to these tasks and biasing the selec�
tion process towards higher priorities� ensuring fair sharing and
avoiding livelock may be di
cult

Techniques scheduling policies �static�dynamic priority� �xed�dynamic time
slices� lottery scheduling� sporadic server execution�

Related to accounting of actual resource usage is necessary� real�time

constraints induce this aspect

���

protocol negotiation
When several protocols� or protocol parameters are possible for a given

communication� with various resource requirements� and di�er�
ent safety or privacy properties

Consider which protocol is the best one for the given situation and how
communicating parties will come to an agreement on these at�
tributes before the conversation begins� to guarantee its sound�
ness

Techniques phases or levels in communication

Related to bandwidth management is about available network re�
sources� real�time constraints may in�uence the choice of a
protocol

	� CHAPTER �� THE ASPECTS OF SOFTWARE DESIGN

���

real�time constraints
When the correctness of the operations depends upon the time at which

the result is produced� or the amount of resources consumed

Consider counting or measuring the resources they need and ensuring that
their execution is not delayed by other operations or blocked
because a resource is not available

Techniques schedulability analysis� Rate�Monotonic Analysis

Related to many aspects that impact performance� bu�ering� caching�
indexing� load balancing� parallelism�prioritization� pro�
tocol negotiation� on the other hand� several aspects which
introduce new real�time constraints� input media selection�
media synchronization� user interface look and feel

���

replication
When failures that may cause loss of data or service interruption are

not acceptable

Consider duplicating capabilities or components that may fail �disks� com�
puters� network� for backup or continuity of operations� this will
also incur costs and new consistency maintenance problems

Techniques duplication of storage and communications devices

Related to accuracy maintenance becomes more complex when redun�
dancy is added� deployment on replicas must be considered
if there is no shared storage� exception handling also tries
to deal with failures� parallelism replicates devices to improve
performance but lets them perform di�erent tasks

�	�

scripting
When the system is used for routine work

Consider alleviating the user�s work or avoiding mistakes in repetitive
tasks with recorded scripts

Techniques macro recording� tool command languages

Related to accuracy maintenancemay need scripts to update data� ver�
sioning must preserve existing scripts

���

serialization
When data is transported or made persistent

Consider how this data will be represented for transport and storage� such
that the nature of this data �type� version� is preserved� as well
as the structure and the relationships with other data �objects�
object graphs�

Techniques TLV� ASN	�� XML

Related to storage layout implies transformation of data� versioning

must take into account existing serialized data

���� CATALOG OF NON	FUNCTIONAL ASPECTS 	�

���

storage layout
When the system stores complex data

Consider the logical structure of this data� de�ne a place for each piece of
data

Techniques objects� arrays� records� �les� relational tables� XML pages

Related to indexing can be used for better performance but is depends on
the layout� memory management may constrain the choice
of a layout� persistence is about choosing which data must be
stored� serialization is about representations� not necessarily
for storage

���

user interface look and feel
When an interactive system has a complex user interface �possibly

graphical�

Consider identifying user categories� following good human factors en�
gineering guidelines� identifying a set of allowable widgets and
combinations of widgets� providing a consistent look and feel for
the project

Techniques dialogs� wizards� online help� Web pages

Related to input media selection also has an impact on ergonomics� in�
ternationalization makes this aspect more complex� param�

eterization can improve comfort of the user� real�time con�

straints express the need for short response times

���

versioning
When new versions of the system with additional features or correc�

tions are deployed

Consider preserving user�s data� remaining compatible with previous ver�
sions� preserving user�s working habits� for centralized services
downtime must be minimized and session�transaction semantic
must be preserved

Techniques data conversion� adapters� service replication

Related to activation can be required when the system has to be restarted
to take corrections into account� deployment may require to
maintain several versions or to propagate updates to several
locations� internationalization may require several versions�
parameterization� scripting and serialization are related
because serialized information� scripts and parameters must re�
main valid with new versions� historic records changing values
over time� version changes sometimes need to be recorded

Chapter summary

At the time of this writing� this list seems to be the �rst attempt to describe
all technical aspects of software and their relationships� Although most of
them have been studied for a long time� the need to understand how these
concerns interact and how they can be handled separately in software has
been recognized only recently�

Chapter �

Service architecture

Chapter highlights

� The shift from application to services� because computers handle an in�
creasing part of information and processes� and because network connec�
tions are generally available� being able to integrate and adapt software
has become a crucial economical necessity� Instead of stand�alone appli�
cations� software should be designed as services� modularized parts of
large distributed systems� that can easily be integrated into new soft�
ware�

� The shortcomings of current techniques� various approaches hope to en�
able the construction and integration of services� but they are limited be�
cause they don�t recognize the importance of dealing with non�functional
aspects� or because they rely on too many rigid conventions�

� The approach we recommend� using mobile code for the integration of
immobile services� It o�ers
�� simpler service design�
�� easier integra�
tion and adaptability to new functional and non�functional requirements�
without requiring collaboration between service providers and clients�

� The other standpoints on mobile code� it has some quantitative advan�
tages� but also some dark areas that may have hindered adoption until
now�

� The illustration of protocol encapsulation� what is this fundamental dif�
ference between message exchange and program exchange� and how it
will help us manage change by reducing the number of necessary con�
ventions and standards�

�

���� FROM APPLICATIONS TO SERVICES ��

� The architecture of services� the main components of a service that
runs within an execution environment� the roles of these components
with respect to the functional and non�functional aspects� and detailed
technical descriptions of these components to help service designers that
would like to follow our approach�

� The required features of the execution environment� what support the
architecture expects from the environment� in addition to the ability to
move programs�

��� From applications to services

We have seen that in the recent years the nature of information technology
has changed and that the number of systems that show a pressing need for
�exibility and easy integration has become signi�cant� This is not surprising
since in our society the computer is replacing ink and paper for the storage
and the di�usion of an increasing part of knowledge� tasks� and transactions�
Once data and processes are managed by computers� and networking these
computers is feasible� there can be very strong incentives to access and use
these assets from outside of the original system�
In the context of DEDIS� the potential ways to use an information system

or business application are completely di�erent from what had been made
in the previous decades
stand�alone applications on personal computers or
departmental applications on mainframes�� Technical limitations like network
bandwidth� processing power or storage are vanishing� at the same time the
cost of computers and appliances is falling� Today� in Switzerland� WAP�
enabled mobile phones are distributed for free to people signing for a �� month
subscription���
Nowadays� when building a new information system� it is not wise to aim

only at ful�lling a single business need� Even if the goal and purpose of the
system are well de�ned� and the economic motivations to develop it are clear

reducing operation costs� enabling a new business� etc��� there may be other
advantages well beyond the initial problem solving goal� and it could be very
regrettable not to exploit them� There is a clear necessity to adopt a di�erent
point of view and to consider systems not as closed� single purpose applications�
but as services which are not only developed for a few people in a department
but that may be o�ered to a wider audience� This is clearly re�ected in the cur�
rent tendency to promote �business�to�business� and �business�to�consumer�
computerized relationships�
This shift from applications to services is required by the impossibility to

know all possible uses in advances� For this purpose� the notion of service

�� CHAPTER �� SERVICE ARCHITECTURE

comes as a natural extension of the notion of server� The term server is rather
used to describe a process running on a de�ned host and providing informa�
tion to its clients
e�g� a Web server�� Usually client and server communicate
by exchanging messages according to a prede�ned protocol
e�g� HTTP�� The
notion of service is more abstract� it encompasses the notion of server� as
well as other software entities that are not necessarily running on a well de�
�ned host and that are not interacting with their environment with a limited
request"reply scheme
e�g� Web service� encryption service� naming service�
routing service� etc��� It is a powerful notion because it allows the decomposi�
tion of large distributed applications into smaller elements that are easier to
understand and reuse�
To understand the need for this shift from applications to services is a �rst

step� but it is not su�cient to achieve reliable integration on a large scale and
in a dynamic context�

While system software manufacturers have long recognized the
need for tools that support system integration� many have fallen
short of satisfying the needs of the system implementors� The
tools that do exist consist primarily of scripting languages� code
libraries and clipboard functions� Most of these provide only low�
level communications�oriented functions� such as sockets and re�
mote procedure calls� Rarely do these tools support integration
across heterogeneous operating system platforms�

Mowbray and Ruh� ����� p� ��

The authors of the previous quote tell us that the integration problems are
not yet solved in a satisfactory way� and that it is necessary to �nd better ways
to perform service integration� To support CORBA� their integration technol�
ogy
x 	��� p� ���� they claim that the abstraction level in other technologies
is not su�cient and that the job of the programmer can be made easier by an
additional layer of abstraction that hides distribution�
To balance this optimism we must also take into account the controversial

paper of Waldo et al which is against this kind of abstraction� For them�
transparency is not the right way to improve the quality of information and
the robustness of DEDIS� These authors convincingly argue that the problems
don�t result from di�culties in communication� but from the interference of
what we call non�functional aspects� It is rather because of the high number
of non�functional requirements� and the complex dependencies between them
that DEDIS are di�cult to build and not because existing tools are not making
communication easy enough� Thus� tools that make communication even easier
without improving the management of other aspects are likely to be useful only

���� COMPOSITION OF SERVICES WITH MOBILE CODE ��

for small�scale projects�

The hard problems in distributed computing are not the prob�
lems of how to get things on and o
 the wire� The hard prob�
lems in distributed computing concern dealing with partial failure
and the lack of a central resource manager� The hard problems in
distributed computing concern insuring adequate performance and
dealing with problems of concurrency� The hard problems have to
do with di
erences in memory access paradigms between local and
distributed entities� People attempting to write distributed applica�
tions quickly discover that they are spending all of their e
orts in
these areas and not on the communications protocol programming
interface�

Waldo et al�� ���	� p� ��

This rejection of transparency is also present in
Tschudin� ����� p� ����
because all communication networks actually have an internal structure which
is almost impossible to hide completely� Again� the functional aspect may
be well handled� but quality of service issues are out of control� Thus� any
large enough distributed application will be disrupted by the network�s in�
ternal nodes� their resource limitations� and other applications that compete
for these resources� In this context� making the network�s behavior palpa�
ble or even programmable is a great argument in favour of messenger based
communications�
In any case� the fact that reputable authors can have such contradictory

points of view is revelatory of a domain where certainties are extremely di�cult
to achieve� and in which the study of new approaches is necessary�

��� Composition of services with mobile code

A few studies have shown quantitative advantages of using mobile code in�
stead of other approaches� for instance in the domains of document �ltering

Johansen� ������ of network management
Baldi and Picco� ������ or in the
domain of indexing
Brewington et al�� ������ In all these cases� moving code
to perform computations where data is located allows better performances

shorter response times or lower bandwidth usage� than approaches based on
message passing� even if the improvements can be observed only when the ratio
between the size of data and the size of the code is above a certain threshold�
Clearly� these quantitative bene�ts are not su�cient to trigger a large adoption
of the new paradigm� In
Milojicic� ����� at least �ve issues that may have
hindered adoption are invoked�

�	 CHAPTER �� SERVICE ARCHITECTURE

� security� protecting a server from malicious agents and an agent from
malicious servers are both hard problems�

� programmability� mobile agents are too di�cult to program for end
users� and even trained programmers may be scared o� by new concepts
or programming environments�

� scalability� no one has attempted to operate a network with millions
of mobile agent platforms�

� lack of killer application� only a few applications have been described�
and admittedly� they could have been programmed without mobile code
technology�

� lack of programming model� the development of applications with
mobile agents requires guidelines or a methodology that has not been
described yet�

It is essentially on the last point that we want to elaborate� Clearly� some
software components are too complex or too large to be moved
e�g� a large
database�� and some are physically bound to resources that have a de�nite
location like screens or hard disks� But there are some cases where the con�
straints are not so clear and where it is more di�cult to dismiss mobile code�
or to make proper use of it�
We advocate the use of mobile code as a �exible solution for the integra�

tion of immobile services� The main reasons to use mobile code this way are
practical and qualitative� as opposed to the quantitative studies on network
bandwidth and latency mentioned above�

�� When a service is running within a mobile code environment� a few non�
functional aspects can be Delegated to the Client� This shift of
responsibility is made possible by mobile code� that brings the exact
functionality needed by the client on the server host� Since he doesn�t
need to consider these aspects� the designer of the service can concentrate
on its main features� In addition to simplify service design� this delega�
tion o�ers adaptability of the service to the speci�c needs of clients� and
guarantees integration with future applications� communication proto�
cols and devices�

Being able to delegate some aspects to the client doesn�t mean that
the service providers will necessarily do it and that customers will have
to implement their own access routines� We can expect that service
providers supports a standard set of clients� with a basic set of features�
at least in order to test their programs� What really matter is that
they don�t have to take all possible cases into account� and that their
systems will not be threatened by new market tendencies� user needs or
technologies�

���� COMPOSITION OF SERVICES WITH MOBILE CODE ��

EE1

EE3

EE2

EE4

Figure ���� Two services
rounded gray machines with dials and buttons�
interacting by means of mobile code and installed in a network of four inter�
connected execution environments
white boxes��

�� For several aspects� being able to execute code directly on the machine
where the service is running o�ers a much better control than interacting
with a remote host� In this case� the client Bene�ts from Locality�
he is able to implement his own strategies� for instance to optimize re�
source usage� or to handle event at the source� even in disconnected and
asynchronous conditions�

These are not the same aspects� nor the same bene�ts that are visible
from the provider�s perspective� But it is important to note that clients
also have additional possibilities� and that they have their own interest
to work with a service that runs within a mobile code execution environ�
ment�

�� For another set of aspects� the mobile code Execution Environment
provides adequate support� on which the service provider can rely� These
are aspects which are sometimes not well supported by plain operating
systems� and hence� the design of applications in the new context will be
simpler even if mobility of code is not directly involved�

A detailed description of these three categories of bene�ts� based on the
case study of Part II� will be presented in x �
��� p� ����

Hence� running services inside mobile code execution environments and
using mobile code to perform the communications between them can have an
extremely positive impact on their integration� and on the underlying quality
factors like accessibility� reliability� etc� Fig� ���� p� �� is a highly schematic
depiction of this idea�

Let S� designate the service installed on execution environment EE� and
S� the service in EE�� In most classical distributed systems� which are based
on message exchange� S� is able to interact with S� by sending requests and

�� CHAPTER �� SERVICE ARCHITECTURE

receiving replies according to a prede�ned protocol� The messages exchanged
are named protocol data units
PDUs�� and both S� and S� must be equipped
with compatible software that is able to listen for incoming PDUs� decode
them� then reencode and send the appropriate answer� PDU based communi�
cation� which has also been named client"server architecture or request"reply
schemes exists in many variants and at many abstraction levels� Some well
known examples are the Hypertext Transfer Protocol
HTTP� which is used
by Web clients to request pages from Web servers� the Structured Query Lan�
guage
SQL� which can be used to query and modify information in databases�
or Remote Procedure Calls
RPC� for interaction between objects located in
di�erent execution environments�
The key additional elements in mobile�code based technologies are that one

of the communicating components
e�g� S�� may

� install new programs on the other platform
EE��� in order to add func�
tionality�

� spawn new threads of control on EE��
� instantiate new objects
data structures� on EE� in order to store in�
formations that have been brought from EE�� or the results of local
computations�

� invoke the methods of S��s API locally� from inside EE�� without crossing
the network� and thus without su�ering from possible latencies� discon�
nections or other non�functional aspects�

More detailed characteristics of mobile code execution environments� like
the deployment of distributed applications� the means to obtain references to
components� to coordinate tasks� to manage resources� to secure informations�
etc� will be discussed in x ���� p� ���

In summary� the essence our approach is that it tries to exploit the ability
of mobile code to encapsulate protocols� This is motivated by the observation
that DEDIS must be built with technologies that require as little collaboration
as possible between service providers and users� and that provide as many
opportunities as possible to evolve and to adapt to the dynamic nature of the
networked infrastructure�

��� Protocol encapsulation with a mobile ob�

ject

Protocol encapsulation is possible when a communicating entity
client or ser�
vice provider� can provide some pieces of code to its interlocutor� to instruct
it how to communicate�

���� PROTOCOL ENCAPSULATION WITH A MOBILE OBJECT ��

+ getInterface()
- privateAction()

ServiceClient

performService() {
 ...

 ...
}

 s.privateAction();
+ performService()

Interface

1.1:<<become>>

s:Service:Client

:Interface

2:performService()

:Interface

1:getInterface()

{location = client host }

{location = srv. host }

{location = srv. host }

2.1:privateAction()

{location = client host }

UML Class Diagram

UML Collaboration Diagram

Figure ���� UML diagrams for protocol encapsulation�

Using UML object�oriented notation
Booch et al�� ������ we can illustrate
this singular ability of messengers and other forms of code mobility
Fig� ����
p� ���� In this case� the mobile object goes from service to client
and encap�
sulates the protocol of the service� but the opposite is valid and useful as well�
Notice that we have not represented some details pertaining to the language
and model of code mobility
class loading� remote method invocation� type
checking��

This example assumes that the service provider has a proprietary protocol
for accessing his service� He must instruct each client how to communicate
with it� Furthermore he wishes to hide the protocol in order to protect it or
to be able to change it without informing the client�

Mobility provides an elegant solution to this problem� Only two conven�
tions must be pre�established�
�� how the client retrieves the service interface

e�g� by calling the public method getInterface�� and
�� which method of
the interface the client must call to access the service
e�g� performService��
It is important to notice that the code of the interface is not available on the

�� CHAPTER �� SERVICE ARCHITECTURE

client side before it has been requested and moved by the service
��become��
stereotyped message� and that it is inside this code only that the service
provider describes the private protocol
the privateAction method��
If we consider that no code mobility is used� all this example is similar to

the
remote� proxy design pattern
Gamma et al�� ������ which also allows the
protocol of an object to be hidden� We must not be mislead by the apparent
simplicity of this proxy mechanism� It can be extremely cost�e�ective if the
service is used by thousands of clients which do not need to preinstall anything
else than a standard execution environment� In addition to being able to up�
date his private protocol without disturbing a single client� the service provider
is also able to di�erentiate clients� namely to provide di�erent interfaces ac�
cording to the needs of the clients� without changing his private protocol� It is
this ability to customize protocols that makes mobile code an excellent tool to
take into account the nonuniform and rapidly changing non�functional aspects
related to communication and physical distribution�
De�ning protocols is a tedious task and implementing them can be even

worse� Thus every time that an organization is able to update software uni�
laterally� without collaboration� there is an interest in using mobile code� and
DEDIS seem to provide numerous such occasions� We can illustrate this dif�
�culty to achieve interworking� or to change a protocol once it is widely de�
ployed with numerous examples� from di�erent standards for electric plugs to
the painful transition from IPv	 to IPv�� Here I want to report a simple but
signi�cant recent personal experience�

�� I receive an email with two PDF
Portable Document Format� �les at�
tached� Using Netscape on my Solaris workstation I read the message�
Then I open the �rst attachment with Acrobat Reader
a free program
for displaying and printing PDF documents�� There is an error on page
	 and it is neither possible to view it nor to print it� The �� other pages
are intact and it is possible to view them and to print them�

�� Accustomed to this kind of problems� I try to open the attached �le with
another implementation of Acrobat Reader� on a Windows PC� The same
problem occurs� page 	 cannot be displayed� nor printed with this second
tool� So the �le must really be corrupted� and the fault is probably not
in Acrobat� I continue my investigation with the next suspect� Netscape�

�� My �rst try to avoid Netscape is a short but unsucessful attempt to
extract the �les from the email using munpack� a tool to unpack messages
in MIME
Multipurpose Internet Mail Extensions� format on Solaris�

	� Finally I decide to try another implementation of Netscape that�s run�
ning on the Windows PC� This requires to forward the message to myself
and to get it on the PC directly from the server� This time the PDF
�le is extracted properly from the message and both implementations of
Acrobat Reader are able to display and print page 	�

���� AN ARCHITECTURE FOR SERVICES ��

It is not easy to impute a responsibility for this accident� The software
used to send the message may have encoded the �le incorrectly� or the imple�
mentation of Netscape on Solaris may by faulty� It is also possible that the
MIME protocol that speci�es how attachments must be embedded in email
messages contains an ambiguity and that both implementations are correct al�
though their interpretation of the protocol di�er slightly� Although the MIME
protocol is not an extremely complex one
it�s just saying how to encode and
concatenate several �les in a single message�� implementing it is already a
considerable e�ort� an open source library� for parsing� creating� and editing
messages in MIME format contains nearly ��

 lines of C## source code!
This is more than enough to let a few non�trivial faults and misunderstandings
occur� especially when two separate organizations must implement it indepen�
dently�
What could we expect from mobile code in this situation$ If the sender

of the message and myself had been running mobile code execution environ�
ments on our respective computers� he would have been able to choose how
to encode the two �les in the message� and to send me the program capable
of displaying the text and extracting the attachments� It is not exactly the
same program that encodes and decodes the message� but since they both
have the same origin� we can expect that the decoding function is compatible
with the encoding one� or at least that faults can be detected and corrected
much easier� Furthermore� the program could have asked me to read� print or
store the attachments on disk� and return to the sender in order to con�rm
the operation�
Without making wild speculations� we are already mentioning function�

alities that standard�based systems have failed to provide for years��� Such
examples convince us that even if there are still problems to solve in current
execution environments� and no real killer applications for mobile code� the
approach is worth trying�

��� An architecture for services

A de�nition of architecture that is generally accepted in the software �eld is

��� policy and rules stating how to de�ne reusable software com�
ponents� the structure that interconnects them� and the rules by
which they interact and integrate�

Mowbray and Ruh� ����� p� ����

�http���www	hunnysoft	com�mimepp�

�
 CHAPTER �� SERVICE ARCHITECTURE

Mobile code execution environmentDatabase

Internet

Service host

Web clients Other clients

Web server

Managers

Entities

Web interface

Mobile extensions

Service interface

Contact

Figure ���� General architecture of a service within a mobile code execution
environment� A �folder� represents a set of components
e�g� classes� of the
same kind� Arrows represent the allowed dependences between components�
For instance the database can be accessed only by �Manager� components
which have the necessary information to make queries� and the database stands
on its own� without relying on or �knowing about� other components�

���� AN ARCHITECTURE FOR SERVICES ��

Fig� ���� p� �
 shows with a high level of abstraction our architecture for a
service that communicates using mobile code� The di�erent parts are discussed
in detail in the following paragraphs�

�
�
	 Database

A fundamental need of almost all information systems is a large and persis�
tent storage for their data� They usually must store documents� information
stored by users in the system� preferences or pro�les of the users� as well as
management information
authorizations� parameters� historic�����

Most databases at the time of this writing follow the relational model�
where information is stored in tables� notably because of its good perfor�
mances� and ease of administration� It is also possible to store data directly
in �les� For very simple data structures it could require less work� but it
is often less convenient� simply because database management systems o�er
advanced facilities like atomicity or timestamps on entities� that would have
to be programmed explicitly with standard �le systems� Another approach is
taken by object�oriented databases� where objects and graphs of objects can be
stored directly in the database� without mapping their �elds to tables� Using
this model frees the developer from taking the aspect of storage layout into
account and should also be possible with our architecture� Knowing which
kind of database model is best suited to DEDIS goes beyond the scope of this
dissertation�

�
�
� Managers

The folder labeled �Managers� represents a set of software components
e�g�
classes� that control access to the database�

Their primary responsibility is to carry conversions between the informa�
tion that is stored in the database and the data structures of the execution
environment� For instance� if the execution environment is a Java Virtual Ma�
chine
JVM� the managers convert rows in the database tables into instances of
corresponding classes� These instances can then be handled by Java programs
that implement the service or by mobile components�

The operations o�ered by managers are typically the three operations that
alter the contents of the database� to create� delete and update entities� plus
search operations that instantiate and return entities matching some crite�
ria� The managers are also well suited to avoid unnecessary requests to the
database using caching mechanisms� since they control how the database is
accessed� they are able to know when the cache must be invalidated because
of a change or deletion of information�

�� CHAPTER �� SERVICE ARCHITECTURE

In addition to handle entities� the managers are also useful to handle the
persistent relationships between entities� sometimes using additional tables�
They are also well suited to enforce some integrity rules that can be pro�
grammed within the operations o�ered by the managers� but that would be
di�cult to handle at other places because they involve several entities or sev�
eral tables�

At last� the managers may contain some active threads that periodically
check the contents of the database� and generate events when incorrect or
outdated information is found in the tables�

�
�
� Entities

The entities represent the informations of the domain in a structured way
e�g�
classes�� Persistent entities are stored in the database� instantiated by the
managers� and o�ered by the service to its clients� They may also be created
by the clients and passed to the service which stores them in the database
using the corresponding managers�

Unlike the managers� some entities may be accessed by programs outside
the service� and as such� they belong to the service interface
hence the larger
folder that contains the one labeled �Entities��� With them� clients must be
able to retrieve� create� delete and update information in a structured way
and to perform computations on this information
the functional aspects of
the service��

The goal of entities is to store and present information in a simple� prac�
tical format� as close as possible to the data structures of the language
e�g�
objects�� This means for instance that presentation issues should be delegated
to additional �interface� components� and not dealt with at the level of en�
tities� This separation allows that several clients with di�erent presentation
needs and user interface models interact with the same entities� Separating
data from presentation is also a much easier way to deal with the aspect of
internationalization� It is also prevents costly conversions that inevitably
occur if the entities return informations encoded in HTML or XML within text
Strings� Moreover� relying on typed data structures gives the execution envi�
ronment the possibility to perform useful semantic checks and to detect some
programming errors� This is a standard recommendation in object�oriented
software design
Jacobson et al�� ����� x �������

Persistent relationships between entities should be handled by tables and
managers� using �keys� like long integers� and not by associations
pointers�
between objects� The obvious reason is distribution� a pointer is meaningless
outside of a single address space� There are other reasons like access control�
a client may access an entity but not those which are referenced� thus it is un�

���� AN ARCHITECTURE FOR SERVICES ��

wise to have a reference within the entity object and methods that use this
reference� even if they do not expose it directly to the client� It is much eas�
ier to perform access control if the client obtains a key and performs another
request to reach the associated object� Other aspects that may be disrupted
by references between objects are caching and memory management� In�
consitencies may appear if entities are inadvertently duplicated because the
managers don�t �nd the instance in their cache� or re�instantiate an entity
that they had previously stored on disk to recover central memory� A useful
rule of thumb is thus to avoid keeping reference to entity objects� unless the
goal is precisely to create copies that can be changed temporarily� without
a�ecting the database� A useful exception to this rule is when lists of entities
are built by a manager� In this case it is too ine�cient to query the database
once for obtaining the keys and once for each entity� hence the list may store
references to entities� but then� the whole list should be referenced only for a
short period�

Entity objects are also useful to enforce some integrity rules that constrain
the state of one entity� and ensure that the operations attempted by the clients
are not violating these constraints�

�
�
� Contact

This second folder inside the service�s �software interface� contains the com�
ponents that provide a contact point for clients and also the components that
grant authorizations and that perform access control� Publishing a single con�
tact point for clients�
e�g� an instance of a well�de�ned Facade class whose
address can easily be found� as a means to interact with the service� is conve�
nient both for the service provider and for the client� For the latter� this means
that the service is easy to �nd and to access� and for the service provider� this
is a way for example to hide a single instance of each manager� which can then
be used in a controlled way to retrieve informations� update internal state� etc�

This level of indirection allows controlling access to the service in a central�
ized manner� and hides the managers� which is also a good thing because they
can be changed if the database needs to be restructured� hopefully without
changing the Facade�

There are many ways to perform access control� from simple schemes based
on user names and passwords� to sophisticated mechanisms involving cryptog�
raphy and certi�cation authorities� It is more a matter of the level of secu�
rity that needs to be achieved and of the support provided by the execution
environment and can be chosen without fundamentally altering the architec�
ture
which doesn�t mean that individual components are not programmed
di�erently� because of cross�cutting�� In our case�study programmed in Java

�	 CHAPTER �� SERVICE ARCHITECTURE

Part II� we have attempted to provide an acceptable level of privacy by hav�
ing a method in the Facade that returns an Authorization when presented
a username with the matching password� Other methods of the Facade that
may return or modify a private information require the Authorization� can
check which user is calling the method and reject the call if the user hasn�t
got su�cient privileges�

Information returned by the Facade is structured with the entities that
were described in the previous section� For this reason we have enclosed both
folders in the �Service interface�� because entities returned by the Facade be�
long to this interface just like the Facade itself� This decision has implications
from the point of view of security� the entities should not permit the client
to perform operations that require privileges it doesn�t have� To solve this
problem� we decided that all operations requiring access control would be pro�
vided only by the Facade� It is certainly also possible to let entities perform
this kind of security checks� In some cases� this required programming several
versions of the entities� with di�erent levels of detail and giving the detailed
version only to the owner of the entity� Anyway� security is not the topic of
this dissertation and many other ways to parameterize and enforce these se�
curity aspects are described in the literature� certainly with better protection
and greater scalability�

Another essential responsibility of the components is to inform the clients
when events occur inside the service� Thus it should o�er some mechanism�
that will typically based on the concept of �publish and subscribe�� that pro�
vides clients the possibility to register when they are interested in an event� and
to notify those clients when the event occurs� Otherwise� the clients necessar�
ily have to query the service at regular intervals in order to know if something
has changed� This active �polling� not only wastes computational resources
but also introduces a lag between the occurrence of event and its detection
that may cause many problems�

Because the event handler installed by the client doesn�t belong to the
service� some precautions are necessary to avoid that the execution threads
of the service stay trapped inside faulty or malicious event handlers� In our
case study� we used �one�way� method invocation� which is a way to execute
the methods of an object asynchronously and concurrently� Another thread of
execution is created to execute the method and the caller is not suspended but
it can continue its own computations safely
see an example in x ���� p� ��
��

Publishing many events requires a lot of work� but it is very important
that the service publishes most internal events that may be interesting for the
clients� Such events may be all creations� deletions� modi�cations of entities
by the managers� The service may of course require that clients registering for
an event noti�cation possess su�cient access rights�

���� AN ARCHITECTURE FOR SERVICES ��

�
�
� Web interface

In addition to its �software interface�
entities and contact point�� the service
needs a user interface
UI� that presents information in a human�readable form
and lets the user accomplish his task in a convenient way� This second interface
is managed by the components grouped in the �Web interface� folder� Using
the standard Web protocols HTTP and HTML� these components are able
to connect the client�s Web browser to the service�s software interface� When
the client requests information� they transmit the request to the service� then
they encode the result and send it back to the client� When they receive inputs
from the user�s keyboard and mouse they also interact with the service and
return new �pages� that allow the user to continue its interaction�
To base the UI on Web protocols is very convenient because the interface

becomes universal� in the sense that it can be displayed from any computer
which is connected to the Internet and equipped with a standard Web browser�
Thus the user is able to interact with the service from anywhere� without in�
stalling any additional software and without needing to con�gure the local
system� since everything is handled by the service� This strategy is usually
named thin client computing� because of the ability to use generic software
that has a very limited responsibility of arranging visual elements on the dis�
play� while the computations that produce the contents and its logical layout
are performed by the service�
Another advantage of Web�based UIs is that the pages shown to the user

can contain a mix of data� images� text� and references to other relevant pages
or documents� These other documents
help �les� discussion forums� product
comparisons� may even be located on other servers� and they may considerably
enrich the value of information returned by the service� Conventional graphical
user interfacess
GUIs� are usually much soberer with respect to textual� or
contextual information� When such information is provided� it usually requires
selecting a button or menu item� and another window pops up to display the
relevant explanations� When everything occurs within the Web browser� the
user can be conducted smoothly from one information to another� and even
from one service to another�
The folder �Web interface� is not located in the execution environment

but on a Web server for practical reasons� the latter is obviously much more
capable to interact with the browsers than the mobile code platform� Never�
theless� components in this folder are strongly coupled to those of the service�s
software interface� In addition to presenting the information in a convenient
way� they have the responsibility to control the sequence of interactions be�
tween the service and the user� and to manage sessions� Sessions typically start
with user authentication and �nish with some signing�o� step� Inbetween� it
is convenient to retain some state about the current session in Web interface

�� CHAPTER �� SERVICE ARCHITECTURE

components� to avoid transferring it with each PDU�

Web interface components are coupled to those in the service interface�
hence the arrows linking their folder with Contact and Entities folders� How�
ever� the arrows are not bidirectional and components in Contact and Entities
folders must be independent from UI components� The �rst reason is that
Web technology changes extremely quickly� thus the service provider must be
free to change the Web interface at any time� in order to adopt the technology
that delivers the best functionality at the lowest cost� It is clear to me that
I would have used Perl to write the UI components of a service created �ve
years ago� afterwards I would have chosen Java Servlets� and now I would be
very tempted to adopt XML�based tools� or something that integrates with
the Web �portals� that may soon be adopted by institutions to deliver person�
alized content to their employees� During all this time� I could have kept the
same service components untouched� thanks to the encapsulation provided by
mobile code�

The second reason to have a service that is independent from its Web
interface is even more important than the �rst one� Implementing the Web
interface on top of the software interface is some kind of way to check that all
the necessary operations for third parties that want to integrate the service
with their own software are present�

One disadvantage of thin client strategies is that they are not well suited
to display complex data� They also require many interactions between the
browser and the Web server� Over slow connection lines� this may result in
poor responsiveness� It is however possible to reduce the number of interactions
or to render richer data representations by moving part of the computations
from the server to the client host� Commonly used solutions are scripts which
have a low overhead and the advantage that they do not disrupt the users�
habit to browse �pages�� Another solution is Java Applets� which have a
slightly higher overhead� and are not so well melted into pages� The highest
performance may be achieved by having a platform�dependent client� compiled
for the user�s operating system� but this has the highest installation overhead�
The big drawback in all these strategies is that they are sensitive to di�erences
in the execution context and are much less universal than HTML� However�
the architecture guarantees that they can all be tried without having to change
the core of the service�

�
�
� Mobile extensions

The folder �Mobile extensions� represents all foreign software entities
pro�
grams with their own state and threads� that may come an go in the execu�
tion environment and run close to the service� They interact with the service

���� AN ARCHITECTURE FOR SERVICES ��

through its software interface� using exactly the same components and func�
tions as the Web interface�

Instead of choosing a high�level communication standard like Java RMI

x 	��� p� ��� or CORBA
x 	��� p� ���� the service provider assumes compat�
ibility only at the most common level� for instance TCP"IP� It also assumes
that third�parties are able to write and send programs in the language that
the execution environment is able to interpret
e�g� Java bytecodes�� For all
higher�level needs� he lets clients choose their own interaction protocols and
encapsulate them in mobile code� Like the aforementioned standards� this
provides openness� but without committing to one standard� which may not
remain a standard eternally� may contain ambiguities or may be implemented
in several incompatible ways
see the MIME example in x ���� p� ���� Further�
more� it doesn�t impose a standard to clients which may not want or may not
be able to follow it�

Obviously� it is not possible to avoid that several kinds of incompatible
execution environments become used� It is not a big problem with our scheme
since� unlike other authors� we don�t expect that mobile components visit many
hosts during their lifetime
x 	�	� p� ���� What matters here� is that as long
the service is available on the same platform� interacting with it will remain
possible� even if there are big changes in communication technologies� or in
the non�functional aspects that indirectly re�ect the features of a completely
new environment� The only requirement is that it remains possible to send a
new program to the platform� which is suited to the new environment� For
instance this would require that a suitable version of the Java compiler and a
TCP connection remain available�

For the developpers of third�party services� being able to install and ex�
ecute programs at any time� on the service�s platform� o�ers the possibility
of interacting with e�cient local mechanisms� which are not subject to the
problems of physical distribution�

Extensions are also especially useful for users that do not maintain a perma�
nent physical connection with the service� for instance because their computer
is turned o� most of the time� An extension is a means to achieve a perma�
nent virtual presence� in order to respond to events with exactly the behavior
required by the user� without any collaboration with the service provider�

Depending on the facilities o�ered by the execution environment� support�
ing extensions may require some speci�c mechanims in the service�s software
interface
Contact folder�� for instance to preserve extensions when the exe�
cution needs to be restarted� In Chap� � we present concrete extensions and
such useful mechanisms� that let extensions inform the service that they are
present� without revealing their address to all other extensions� which may not
be trusted�

�� CHAPTER �� SERVICE ARCHITECTURE

This architecture is strongly open� users that are not satis�ed by the Web
interface� as well as other services that require better control� have the per�
mission to run their extensions on the service host� inside the execution en�
vironment� Given the quick changes in technology and needs� this is a real
advantage for the service provider since little collaboration is required� It is
also interesting for people used to the system� that have already stored infor�
mation in it� because it reduces the risk that they have to switch to another
service because of limited behavior and functionality� or diverging technologies
or protocols�

��� Features of an execution environment

Many mobile agent platforms have been developed in the recent years
��
available entries in the Mobile Agent List� in December �

�� Although they
all share the common goal of running programs that move from computer
to computer� there are such great variations in the features and mechanisms
o�ered that it is very di�cult to distinguish the essential ones from those
which could be useful� and from the super�uous ones� One such hotly debated
feature is the so called �strong mobility�� the ability to move a running thread
from one host to another� with its full state� including the program counter
and stack of �frames�
parameters and local variables of currently invoked
methods�� Some authors think it is a valuable feature and are working hard to
incorporate it in their software� others argue that there are only a few points
where threads are actually ready to migrate and that it is su�cient to restart
them from there� and to let them choose explicitly which part of the state
must be preserved�

To present the main features of an execution environment� without getting
lost in details� we base this section on the M�Messenger platform and language

Tschudin� ���	� Tschudin� ����a�� For our purposes� it has the advantage
that minimality was constantly sought in its design� Thus� it implements
the Messenger paradigm� and supports code mobility with a set of features
that is reduced to the essential� The second force that has strongly in�uenced
the design of M� is scalability� thus all the available mechanisms should still
function when millions of platforms are interconnected� Features that could be
useful when only a few platforms are involved but that cannot be managed at
Internet scale are carefully avoided� For this reason� all facilities o�ered by the
platform must be local and work without any kind of centralized control� and
everything that involves more than one platform must be built using mobile
code�

�http���mole	informatik	uni�stuttgart	de�mal�mal	html

���� FEATURES OF AN EXECUTION ENVIRONMENT ��

�
�
	 Messengers are executed as anonymous threads

When a M� platform is running on a given host� it listens for incoming messen�
gers on a prede�ned set of channels
e�g� UDP ports�� Well�formed messengers
that arrive on these ports are executed in concurrent threads� These threads
are anonymous� there are no �handles� or thread identi�ers that could be used
to address or act on a thread� Anonymous threads are also more di�cult to
attack� and thus they are justi�ed from the point of view of security� The
problem of assigning unique names is also avoided�

A well�formed messenger is made of a key that identi�es the queue in
which the resulting thread must be inserted
see below�� of the code of the
messenger
a string of M� instructions� and of an optional data �eld� The
M� language contains an operator to create well�formed messengers� and an
operator to submit new threads� either on the local platform� or on another
platform that can be reached across the network� There are other operators
that a thread can use to determine where it comes from� or to manipulate the
code �eld� the data �eld� and the whole messenger as strings�

�
�
� Shared memory enables local interactions

Threads that need to interact can exchange informations using the platform�s
global dictionary� a shared�memory area that can be used in a standard way on
every M� platform� There is no way to exchange messages between two threads
that are not co�located� Thus� if an information must be communicated across
the network� it must be serialized in the data �eld of a messenger that travels
to the remote location� deserializes it� and makes it available in the global
dictionary of the remote platform�

Dictionaries are data structures that map keys to values� The operations
associated with dictionaries are�
�� inserting a new hkey� valuei pair into a
dictionary�
�� retrieving the value associated with a key�
�� removing a hkey�
valuei pair�
	� checking whether a key is present�
�� retrieving all pairs in
the dictionary�

Apart from dictionaries� M� o�ers several data types� such as integers�
strings� arrays� as well as names
arbitrary sequences of characters� and secret
keys
sequences of � bytes�� Operators can check the types of their operands�
However� there are no pointers in the language� to avoid that threads access
memory that is not within their local memory area� or that has not been ex�
plicitly shared through the global dictionary� There is also no notion of class
or object in the language�

�
 CHAPTER �� SERVICE ARCHITECTURE

�
�
� Queues enable coordination

To coordinate their activities� threads can use the powerful mechanism of
queues o�ered by the platform� The principle is that at any time� a thread
can be in at most one queue� and that a queue can be either in the stopped
state or not� Threads that are not in a queue are always ready to run� When
several threads are in the same queue� only the front�most is authorized to
run� When this thread leaves the queue or terminates� the state of the queue
determines whether the next one may proceed or not� If the queue is in the
stopped state� the thread stays blocked� otherwise it is authorized to proceed�
and even if the queue is subsequently stopped� the thread will continue to
execute�
With the provided operations� a thread can
�� enter a queue� identi�ed by

a key�
�� leave the current queue and execute outside of any queue or enter
another queue�
�� change the state of a queue�
	� obtain the key that iden�
ti�es their current queue� When a thread enters a queue� it could optionally
specify a timeout value� If the thread has not been permitted to run when the
timeout expires� the thread is automatically removed from the queue� receives
a noti�cation and may continue�
Queues are a simple yet powerful mechanism to synchronize threads� they

are provably equivalent to other well�known coordination mechanisms like
semaphores
Tschudin� ������

�
�
� Local mechanisms enable security

Instead of trying to authenticate the source of an incoming messenger� and
rejecting untrusted ones� M� platforms unconditionally execute all incoming
well�formed messengers� The reason is that authentication schemes require
protocols and agreements between the people who operate the platforms� those
who provide services and those who send the messengers and hence are out of
the scope of the messengers� Like for other problems that cannot be handled in
a local and scalable way by the platforms� the approach of M� is to provide low�
level mechanisms only and to let messengers protect themselves and implement
the di�erent security policies that are required at the application level�
These mechanisms include�
�� using random keys that are very hard to

guess
� bytes� to identify queues and dictionary entries� which are also a
means to avoid name clashes�
�� �ne grained access rights for every reference
on global data� read� write� and execute attributes with operations to remove
and check them�
�� no possibility to browse the global dictionary� thus two
threads can exchange data using a secret key and no other thread can �nd it�

	� operators for DES cryptography and MD� secure hash�
�� use of assymet�
ric cryptography such that only one platform can execute a given messenger�

���� FEATURES OF AN EXECUTION ENVIRONMENT ��

the messenger is encrypted with the platform�s public key and submitted in
the encrypted form� such that the private key is necessary to decode it�
�� se�
cret de�ne operation to add a pair to an unprotected dictionary in such a way
that it can be removed only by threads sharing a related secret key�

�
�
� Market�based resource control

The mechanisms above allow the implementation of some form of access con�
trol� but they do not protect the platform or services from a whole category
of security attacks� the so�called �denial of service� attacks� Such attacks
are based on the fact that even if a service protects its data and functionality
from illicit access� it can easily be made unusable by overloading it with a huge
number of irrelevant requests� When all of its computing or network resources
are consumed by fake requests� the service is no longer able to carry its normal
task� Such attacks are reported from time to time� causing a lot of �urry when
they are aimed at big commercial Web sites such as Amazon or Yahoo� and
potentially cause huge �nancial losses�

It is easy to see that executing untrusted foreign code represents a increased
potential for such attacks� A malicious extension may for instance consume all
available memory or spawn so many threads that all other activities are intol�
erably slowed down� Hence� platforms need reliable mechanisms for resource
accounting and control�

In M�� the consumption of all resources is billed� using a �ctitious cur�
rency� which has a value only inside one platform that is also able to create
it
Tschudin� ����b�� When a messenger enters the platform� it receives an
initial credit� available on its default account� The computations performed by
the thread or its descendants� the memory they use� and the packets they send
on the network all decrease the amount available on the account� Once the
account is empty� the platform kills the threads that depend on it and recovers
the memory� Each platform adapts the prices of resources as if they were goods
on a market� as long as the demand is low� the prices are low� and when the
demand increases� the prices get higher and the processes must adapt� either
by reducing their consumption or by moving to cheaper platforms� The goals
are of course to achieve a good load balancing among available platforms� but
also that messengers providing useful services� which they can o�er to others
in exchange for some currency� have an additional source of revenue and can
a�ord more resources than those which are not providing any useful services�

There are operators in M� to create an empty account� to draw a cheque
from a non�empty account� to deposit a cheque on an account� to �nd or set
a thread�s default account� and to add or remove a sponsoring account to an
item in the shared memory
since it is shared� it is potentially interesting for

�� CHAPTER �� SERVICE ARCHITECTURE

several threads� and if one of them disappears� others can continue sponsoring
the item��
Another possibility would be to link the �ctious currency to actual money�

and thus to integrate the non�functional aspect of payment� Unlike all the
previous mechanisms that have actually been implemented� this is just a sce�
nario� The platform could for instance periodically allocate a certain amount
of its �ctious currency on a prede�ned account against payment of a small
amount of real money� Thus� only messengers that are actually sponsored by
their owners would be able to use the platform�s computational resources� In
this context� denial of service attacks become much less likely and somehow
more acceptable� since they cost real money to their authors� and represent a
tangible income for the �victim�� The new forms of electronic payment with
very low transaction costs and the ability to handle very small amounts of
money
e�g� PayPal�� make such payment schemes feasible�
With or without bindings to real money� this market�based mechanism is

de�nitely a powerful one to recover unused resources� as soon as a distributed
application stops feeding its components
threads� memory�� the platforms
know that they can delete them� and reallocate the corresponding resources to
other processes� From a practical point of view� this represents an interesting
alternative to the distributed garbage collection algorithms found in other
systems�

�
�
� Other useful operators

M� provides a few other useful facilities that should be available in all execution
environments� These operators are a means to retrieve the current system
time
UTC to avoid problems with platforms located in di�erent time zones�
and to perform some arithmetic operations on this particular type� Messengers
may also obtain the id of the current host and of the current platform
there
can be several platforms running on the same host�� Last there are minimal
facilities for logging and error handling
threads that contain programming
errors and do not handle them get killed without notice�� All other elements in
M� are traditional imperative programming constructs like loops� procedures�
etc�

Chapter summary

In this chapter� we described our approach that exploits mobile code for the
design of extensible services� In the next chapter we will compare our propo�
sition with existing solutions to show
�� that our architecture contributes to

�http���www	x	com�

���� FEATURES OF AN EXECUTION ENVIRONMENT ��

a better understanding of how large�scale distributed applications should be
designed� notably at the level of services� and
�� that using mobile code in
this context is fully justi�ed� given the large number of aspects that it allows
to handle� with a minimal number of conventions� The case study of Part II
will also give further support to these claims�

Chapter �

Related work � state of

the art

Chapter highlights

� The alternate architectures� actual systems and services that have been
built around architectural principles similar to those of the previous
chapter
StormCast� Tabican and eAuctionHouse��

� Why there are no mobile agents roaming the Web� still too many prob�
lems with trust and ontologies�

� The alternate integration technologies� technologies that share similar
goals of making the development and integration of services in a dis�
tributed and dynamic context easier� but that don�t give the same im�
portance to mobile code
Java� CORBA� XML��

Note� In order to keep the length of this chapter whithin reasonable
bounds� we are not going to describe or compare the many existing mobile
code execution environments because several very good surveys on the topic
have been published recently and are easy to obtain on the Web
Papaioannou�
�

� Lugmayr� ������

�	

���� STORMCAST ��

��� StormCast

StormCast� is an existing system proposed by the TACOMA research team of
Troms% and Cornell Universities
Johansen� ������ The goal of StormCast is
to provide weather information and forecasts� What di�erentiates StormCast
from other weather information sources is that the service provider has pro�
grammed a set of agents for their customers who can choose parameters and
activate agents according to their own needs� These agents are equivalent to
our extensions� They can interact locally with the main service� even when
the customer is not connected to the network� The parameters of the agents
allow that each customer chooses which weather situation is relevant for him�
a yachtman could decide that a well established wind and no rain is the per�
fect weather for a day o�� while �shermen and windsurfers each will have thier
own sensibilities to wind and rain conditions� The customer can also choose
by which media the system is going to inform him when a relevant situation
is likely to occur� email� pager� fax��� Once the user has activated an agent�
the server periodically runs it to check the actual information and to send a
message to the customer if necessary�

According to
Johansen� ����� the need to build extensible servers for
StormCast was a strong motivation to investigate mobile code and to de�
velop TACOMA� The same paper reports some interesting performance esti�
mations� it takes approximately ��� second to install an agent from a Web
browser� through CGI scripts� and �

 agents performing a simple computa�
tion
checking a temperature and comparing it with a threshold value� can be
executed in about � seconds on today�s desktop PC�s
�

MHz Pentium Pro
with ���MB RAM��

The architecture of StormCast is described in a recent technical report
Jo�
hansen et al�� �

�� The essential di�erence between their architecture called
ACE
Agent Computing Environment� and ours is that TACOMA supports
program mobility but doesn�t require that agents run inside an execution en�
vironment� The agents may run directly in standard operating systems
e�g�
Unix� and they can be written in any language supported by a compiler or
interpreter for this operating system� This language independence can be ex�
ploited for writing di�erent parts of the system with the most appropriate
language� On the other hand� allowing that unrestricted programs access all
the functions of the operating system implies that these programs are trusted�
they don�t try to steal information� and they are willing to share system re�
sources� In our architecture� the execution environment is able to enforce
resource control at a low level� but no such mechanism is available in most
operating systems� Thus� applications built according to their ACE should

�http���www	cs	uit	no�forskning�DOS�StormCast�

�� CHAPTER �� RELATED WORK
 STATE OF THE ART

contain a layer for accounting
L� Extension Layer� and another one for
load balancing and scheduling
L� Mediator Layer��
Another di�erence between the ACE architecture and ours are the higher�

level layers that provide the possibility of assembling components in order to
create agents� to customers who are not trained programmers
L� Compose
layer�� and a layer that enables the deployment and control of agents through
a GUI� by the customer
L� User layer�� On the other hand� contrary to
ours� their architecture doesn�t describe how the servers can be designed� It
just suggests that there is a Server Layer
L�� where standard message passing
is used to interact with an open application�
An older technical report
Hartvigsen et al�� ���	� describes an architecture

for StormCast that is much more similar to ours� especially with its separa�
tion of �data storage�� �information� and �user interface� layers which roughly
correspond to our database� entities and Web interface folders� On the other
hand� we see that in this precursor of the actual StormCast service� the po�
tential of mobile agents had not yet been discovered� even if the necessity
to extend the service had been integrated in the architecture by means of a
�utility� layer where several �tools� could be started� stopped and queried�
Interestingly� there are two additional layers at the bottom of their ar�

chitecture that result naturally from their weather forecast application� they
need software for monitoring information sources and collecting relevant infor�
mation that gets fed into the data storage layer� In our architecture� we have
not particularly studied this kind of function� but we can imagine information
that is collected and bu�ered on another host and enters the service through
its software interface� This ensures that monitoring and collecting functions
are not in�uenced by the load of the service�s host� and thus to cope with
the non�functional aspect of real�time constraints� This also keeps the �man�
agers� simple and avoids that small changes in the information sources require
signi�cant changes in the service internals�

��� TabiCan and e�Marketplace

TabiCan� is a real commercial service in the domain of travel� developed by
researchers of IBM Tokyo laboratory
Yamamoto and Nakamura� ������ It
relies on Aglets�� a Java�based mobile agent platform� The TabiCan server
allows the interaction of the independently�written agents of customers and
shops�

�http���www	tabican	ne	jp�� japanese only�
�IBM has released the Java source code of Aglets which is available either on

http���www	aglets	org� or on http���sourceforge	net�projects�aglets�	 The system is de�
scribed in �Lange and Oshima� �����	

���� TABICAN AND E	MARKETPLACE ��

Customers� which use their Web browser to �nd airline tickets and package
tours� can obtain information from the shops of several travel agents in a single
search action� Just like in the case of StormCast� the customer�s action allows
the instantiation and parameterization of a Customer agent that subsequently
works on the TabiCan server� Since searching the best deal from many shops
potentially takes a long time� search in TabiCan is asynchronous� Customer
agents live during two days and can be accessed several times� as long as they
are alive� even if the user has switched his computer o� inbetween� The user
can either browse the results after some time� or be noti�ed by email when the
results are available�

The authors of TabiCan do not expect that all travel shops can or want to
install their Shop agents on a single server� Thus� their system accommodates
several similar servers� that can be visited by mobile agents during the search�
The Customer agents themselves are not mobile because they must be easy to
reach and respond when their owners want to know the status of their requests�
But they can send �slaves� to di�erent servers and thus communicate their
owner�s requests to all a�liated shops� Having several servers with a limited
number of Shop agents on each one is a good way to balance the overall load�
because there are potentially thousands of Customer agents and hundreds of
Shop agents that want to interact�

In
Yamamoto and Nakamura� ����� the only description of TabiCan that
we were able to obtain neither the Customer agents� nor the Store agents are
described in great detail� But the paper contains some interesting descriptions
of the environment in which these agents execute� and how they communicate�
Like TACOMA� the Aglets system does not take the aspects of accounting and
resource control into account� Thus� some components in the architecture are
responsible to ensure that agents get fair opportunities to execute and that
the server hosting them is not overloaded� This would easily be the case if
�

 Consumer agents requiring �
 kbyte for their code and state� and one or
several execution threads each� would be active at the same time�

This solution is implemented in a library called e�Marketplace� which is
built on top of Aglets and controls the use of memory and CPU� It supposes
that agents interact only by message passing� through the library� and ac�
cording to a protocol chosen by TabiCan developers� The types and order
of messages exchanged between Consumer and Shop agents are �xed� This
enables that the two main components of e�Marketplace control which agents
must be active
others can be swapped to secondary storage�� and also sched�
ule their execution� Processing one request from a message queue is the basic
�unit� of execution for an agent� The library is also able to manage a �xed�size
�pool� of execution threads� which iteratively select an agent and process one
message�

�� CHAPTER �� RELATED WORK
 STATE OF THE ART

This study clearly demonstrates that e�cient mechanisms to control server
resources are indispensable when large numbers of agents are involved� How�
ever� implementing these mechanisms at the application level� or with an addi�
tional library as in TabiCan� strongly limits the computations that agents may
perform� or the ways in which agents interact� Furthermore� the mechanism
could be unable to e�ectively prevent excessive resource consumption� when
foreign� untrusted agents are involved� Hence our choice to rely on resource
control mechanisms within the platform� and not at service level�

��� eAuctionHouse and Nomad

eAuctionHouse� is an auction server where users across the Internet can buy
and sell goods� and set up markets
Huai and Sandholm� �

�� Nomad is
the mobile agent system integrated with eAuctionHouse� and is itself based
on Concordia�� Like Aglets� Concordia is a Java�based mobile agent platform�
eAuctionHouse is a free�to�use third party auction site which provides a wide
range of customizable auction types�
Using their Web browsers� users can buy and sell items� and set up markets�

eAuctionHouse implements some features which are not found in any other
electronic auction site on the Internet� like bidding on combinations of items
or bidding with price�quantity graphs� Users can create or close auctions�
submit bids or manage agents that participate in auctions on their behalf�
These agents are able to collect information� to send this information by email�
to learn price distributions� to bid� or even to set up auctions� They can
represent the user inside the eAuctionHouse� even when he is not connected to
the network� and free him from actively watching his auctions� They can also
implement his personal bidding strategies and since they are permanently on
the server� they can act on his behalf without the delays that could result in
missed opportunities�
Agents can be written directly in Java� or chosen from Nomad�s template

library� Web forms o�er the choice among � existing templates� then are
used to parameterize and start the agent� Templates implement well known
strategies and help novice bidders compete with experts�
The architecture of eAuctionHouse is similar to ours� it combines an �Auc�

tion database�� an �Auction engine� that corresponds to our service entities� as
well as a Web interface� There are a couple of additional components
�Agent
generator�� �Agent manager�� for the management of agent templates� and

�http���ecommerce	cs	wustl	edu�eAuctionHouse�
�A free evaluation kit� without source code� is distributed by Mitsubishi at

http���www	meitca	com�HSL�Projects�Concordia�� a commercial version with additional
reliability� security and administration components is also available	

���� ROAMING AGENT ILLUSION ��

that let the user interact with his agents through the Web� Our architecture
doesn�t o�er such facilities to communicate with the extensions� nor a repos�
itory for agent templates� Although these functionalities are important� we
don�t think that they need to be implemented by each service and we rather
see them as useful add�ons that could be made available by third parties and
reused by several services�
Another similarity with our architecture is the �Agent dock� that must

be used by agents to inform the service that they are present� We have also
observed that the service needs to know which extensions are currently work�
ing on the local platform� especially to avoid losing them if the platform must
be stopped and restarted
x ���� p� ��
�� However� our architecture doesn�t
require an �Agent database� where agents are persistently stored with related
information
owners� event noti�cations that they want to receive� etc�� be�
cause we exploit mobility to save agents during shutdowns�
The authors of eAuctionHouse also envision that not only one� but many

eAuctionHouse servers will be deployed� and that agents will be able to relo�
cate themselves in order to balance the processing load� and minimize network
tra�c and delays� However� moving will not be compulsory because the eAuc�
tionHouse servers also accept bids and transactions as messages formatted
according to a prede�ned protocol and received on a TCP"IP port�
To interpret such messages� a �Connection manager� component is inserted

between the Auction engine and other entities like the Web interface� the
agents� or the external processes communicating through the TCP"IP port�
Without a better description of this Connection manager and of the protocol
that de�nes its behavior� it is hard to guess how complex it is and what it
does exactly� Anyway� our architecture discourages the service provider to
de�ne such a protocol to interact with the service because it is practically
impossible to de�ne a protocol that satis�es all clients� It also avoids that
such a static protocol component is embedded inside the service because a
huge e�ort is needed to implement it
Queloz and Villaz�on� ����� x	��� and
because of the di�culty to change it if necessary� We believe that it�s much
more fruitful to de�ne a good and stable Service interface that can be accessed
at a �procedural� level� and to let each client encapsulate his favorite protocol
with a mobile extension� even if the extensions are developed by the service
provider himself for practical reasons�

��� Roaming agent illusion

An idea that has been greatly oversold in the last years is that mobile agents
would be able to roam the Web and look for information on behalf of an end�
user� Such agents were supposed to perform �ltering tasks� or to visit several

�
 CHAPTER �� RELATED WORK
 STATE OF THE ART

sites� looking for the best o�ers for a good that their owner wants to purchase�
They should have transported credit card numbers and performed the whole
transactions while the user could be able to relax or perform more important
tasks� Someone else would have programmed the agent� and it would have
been able to learn about user preferences thanks to close interaction during a
long period of time� Hence� the users would save a lot of time otherwise spent
sur�ng to �nd the best o�ers�
Although some interesting solutions have been proposed to enable agents

visiting Web sites in a secure way
F&unfrocken� ������ we have seen no evidence
that such solutions have been implemented and actually deployed� There are
of course many �bots�� performing all kinds of useful work� indexing Web
pages� comparing prices of online shops� etc� but they are not mobile� They
access information located on remote sites using the usual HTTP protocol and
they process it at their �home� site� This implies moving lots of data� and
although convincing studies have shown that using mobility in this context is
a means to save bandwidth and improve overall processing time� it cannot be
done� simply because there are no mobile agent platforms on the Web servers!
The reasons why there are no mobile code platforms on Web servers are�

�� people writing the software for Web servers and people operating them have
not yet perceived that the main bene�ts of mobile code are better integration
and extensibility�
�� the problems of security and resource control are not
yet solved in a satisfactory way� For the administrator of a busy Web site�
that may already have trouble ensuring short response times� mobile agents
must resemble a �bunch of viruses� and it is certainly unthinkable to let them
consume precious resources for their mysterious computations� Actually� none
of the systems that we have reviewed in the preceding sections and ours
makes no exception tells how to run foreign agents on their sites� even if the
possibility exists and the owners of the sites do use mobile agents for their own
experiences� The reason is that with current mobile code platforms� resource
control is insu�cient� hence only trusted foreign code is acceptable� Better
accounting and resource control mechanisms are de�nitely required
x ������
p� ����
Another problem that will probably hinder �roaming shopping agents� for

an even longer time is the lack of ontologies� It is probably neither feasible nor
desirable to standardize at Web scale the description of all products and of
their attributes� selling prices� etc� Shopping bots may be able to uniformize
the informations from tens of shops in order to allow product comparison� but
this requires a lot of dedicated and hand�crafted software� This software must
be updated frequently and is probably too large to be transported with the
agent� Last� there are probably details in the attributes of some products� or

�http���www	botspot	com�

���� DISTRIBUTED OBJECTS IN JAVA ��

in the sale conditions of some merchants that the agents would not be able to
grasp and that will always require careful examination by the customer�

��� Distributed objects in Java

With its Java language� virtual machine and extremely rich set of standard
libraries� Sun Microsystems� Inc�� has created a technology that nearly ful�lls�
and sometimes exceeds� all the requirements we have expressed for an execution
environment� More remarkably� the technology has been adopted by a very
large number of developers and organizations across the world� far more than
any other platform� either academic or industrial� that would have o�ered
similar features� However� it is not the ability to extend services with mobile
code that has prompted this wide adoption but more simple features of Java
like�

� the fact that Java programs are easily portable across di�erent operating
systems� thanks to the wide availability of standard virtual machines and
a rich set of standard libraries�

� its simplicity� due to its object�oriented nature and the fact that error�
prone features like pointers have been avoided�

� dynamic class�loading to incorporate the code of new classes into a run�
ning application whenever they are needed� possibly from a remote lo�
cation�

� sandboxing mechanisms that attempt to ensure that untrusted code has
access only to benign operations�

� etc�

Furthermore� Sun has been able to understand the importance of networking�
and to incorporate several useful features for distributed programming directly
in the language
e�g� threads to deal with asynchronous events� and in the
standard libraries� Thus� with Java� the designer of a service is free to choose
among several communication models and techniques�

�� PDU�based communication

Classes in the �java�net� standard library o�er a good assistance for the
exchange of messages on top of IP protocols� Low level protocols such
as UDP
connectionless� and TCP
connection�oriented� are well sup�
ported� making it easy for an application to listen for messages coming
on sockets or to send back answers� The library also contain classes able
to communicate with a Web server using URLs and the HTTP protocol�
and thus making it easy to read a Web �page� inside a Java program�

�� CHAPTER �� RELATED WORK
 STATE OF THE ART

Of course� it is up to each communicating party to interpret the meaning
of the messages exchanged according to a prede�ned protocol� As we
already mentioned several times� the drawback of this apporach is the
large amount of work required to de�ne protocols� write the message
interpreters� and coordinate the updates that are necessary to remove
faults� or incorporate new features�

�� Remote Method Invocation

When Java objects are present on both ends of the communication chan�
nel� the designer can choose to let them interact using Java RMI mecha�
nism� The principle is that instances of classes following a certain number
of simple conventions can be exported by a server written in Java� This
requires running a standard �rmiregistry� daemon on the same host�
Exported instances are bound to a prede�ned name within the registry�
Afterwards� clients running on remote JVMs can lookup registered in�
stances by providing the prede�ned name� and invoke their methods re�
motely� The proxy obtained by the instance is called a �stub�� and there
is a corresponding �skeleton� on the server side� Stubs and skeletons
are generated from the source code of the remote�enabled class using a
standard �rmic� tool� When the client invokes a method on a stub� the
arguments are automatically serialized� and the call is forwarded to the
server�side skeleton� which in turn deserializes parameters and forwards
the call to the actual remote instance� The client�s thread is suspended
until the call on the remote instance terminates and a potential return
value has traveled along the opposite path�

Thus RMI o�ers a procedural mechanism� that hides the underlying net�
work and is not too complicated to use� It spares the implementation
of message interpreters� which can quiclky become complicated� for in�
stance when a client must interact with several objects of the service at
the same time� It also relieves the programmers to encode parameters
and return values since there is a built�in serialization mechanism that
can cope with complex graphs of interdependent objects� Last� some
simple coordination is provided by the system� since remote calls are
blocking it is not necessary to suspend the threads waiting for an an�
wser�

Java�s remote classloading mechanism is used at two places in the RMI
scenario�
�� the stub that the client obtains is dynamically loaded and
can be obtained from a location that is under control of the service
provider� thus di�erent services that implement the same interface may
well have di�erent code for their proxy�
�� the parameters and return
values of the methods� which must be serializable and are passed by

���� DISTRIBUTED OBJECTS IN JAVA ��

value� may also be instances of classes that are not available on the re�
mote platform� in this case the code of these classes can be downloaded
from a remote location� For application programmers� the second case
is interesting because clients can pass to the server a speci�c implemen�
tation of a prede�ned generic behavior which is speci�ed by a common
interface� This simple form of code mobility provides a way for the client
to instruct the server how to perform some special tasks� or reciprocally�

Note that this ability is not speci�c to RMI and that the remote class�
loading can also be programmed explicitly� In
Queloz and Villaz�on�
����� we describe how we exploited this feature to program a generic
server that can be instructed by its clients how they want it to encode
the results of their requests�

�� Runnable mobile objects

The mobile objects described so far are passive� they are passed around in
order to satisfy the communication needs of clients and servers� However�
they are already very close to the messengers that have the ability to start
their own threads on available platforms for their own purposes� Since
the state and the code of mobile objects is moved from one platform to
the other� it is su�cient to spawn a new thread from one of the mobile
object�s methods to achieve the same e�ect�

This is the reason why so many mobile �agent� systems are based on
Java� with the available mechanisms� only a minimal set of additional
conventions and programs are necessary to implement the abstraction of
active objects� autonomously moving between platforms to achieve their
tasks� The main bene�t in using these systems is that they allow to work
with abstractions of a higher level� succeeding to hide the details of the
underlying Java mechanisms with various degrees� and that they provide
additional facilities like asynchronous messaging� group communications�
or agent tracking� Voyager� the platform that we have used for our case
study belongs to this category�

	� Jini infrastructure

Another part of Java that has been much publicized is Jini
Sun Mi�
crosystems Inc�� ������ The problems solved by Jini occur in very dy�
namic and heterogeneous environments where devices that communicate
with di�erent protocols and that have never been parameterized to work
together must be able to cooperate� This is typically the case with mo�
bile devices that are carried around and that must interact with whatever
other hardware is available in the surroundings� e�g� a visitor�s laptop
that must send a document to a locally available printer� In the RMI

�	 CHAPTER �� RELATED WORK
 STATE OF THE ART

scenario� the client is able to download the stub that can be used to
invoke one of the service�s method in order to print the document� Un�
fortunately� this supposes that the client knows
�� the network address
of the RMI registry�
�� the name that has been used to export the in�
stance that performs the print operation� The purpose of Jini is precisely
to solve these two problems without having to parameterize the client
with this information�

Jini speci�es�

� how services and clients can �nd a lookup service without know�
ing anything about the network by broadcasting a discovery mes�
sage to a standard port�

� how services can register with the lookup service� in order to de�
scribe their attributes� and to provide a service object� which
knows how to interact with the service
playing the same role as
the �Interface� instance in Fig� ���� p� ����

� how clients can retrieve service objects matching their needs by
querying the lookup service�

Thus� the Jini framework uses protocols to connect clients to servers and
Java mobile code facilities in order to allow that services specify how
clients shall interact with them� Service providers are able to encapsulate
proprietary protocols between the service object and the corresponding
device� Communications take place in the client�s address space through
calls to the methods of a well known procedural interface� This is cer�
tainly a legitimate use of mobile code� since it is a way for competing
vendors of devices to keep their trade secrets� while providing a uniform
and parameterless access to devices of various provenance�

From the above description of Java�s strenghts� it could seem that it is
the perfect platform for building distributed applications� However� there is
one big shortcoming in the current implementations that still prevents a wider
adoption of mobile code� Java has no mechanism for accounting and control of
resources� There are elaborate security facilities ranging from authentication
and access control
Lai et al�� ������ to the management of security policies
that limit the operations performed by untrusted or partially�trusted code�
but they are not su�cient� For instance an untrusted Applet may not access
the �le system� but nothing prevents it from creating thousands of threads� or
from requesting megabytes of memory� thus blocking all other activities in the
virtual machine�

���� DISTRIBUTED OBJECTS IN CORBA ��

RMI and Jini have also adopted a �leasing� mechanism� that grants objects
for a de�nite period of time after which they are cleared if they have not
been �renewed�� It has some similarities with the market�based mechanism of
x ������ p� ��� but it doesn�t prevent denial of service attacks� Better accounting
and resource control are de�nitely needed� and are currently the subject of
much ongoing research
Suri et al�� �

� Binder et al�� �

�� as is the whole
topic of market�based resource control�

��	 Distributed objects in CORBA

A serious alternative to Java for the construction of distributed systems is
CORBA
Mowbray and Ruh� ������ It is a large set of standards and speci��
cations resulting from the e�orts of many players in the software industry
the
Object Management Group� or OMG�� The two main goals of CORBA are�

�� inter�operability between programs running on di�erent operating systems
and written in di�erent languages�
�� reducing the costs of developpment and
integration in large scale distributed systems by enabling a marketplace for
reusable components that handle functional aspects in speci�c domains
e�g�
�nance� healthcare� transportation� as well as non�functional aspects
naming�
security� concurrency� etc���
An impressive list of Formal
Finalized� Speci�cations is available on OMG�s

Web site�
December �

��

� CORBA"IIOP ��	 Speci�cation
de�nes the object model� the structure of an Object Request Broker �ORB��
the structure of a client� the syntax and semantics of the Interface De��
nition Language �IDL�� the interactions with an ORB� the operations on
object references� context objects	� policy objects� standard exceptions�
interface repositories� the General Inter�ORB Protocol� interceptors
�
asynchronous messaging� Real�Time ORB� etc�

� OMG Modeling Speci�cations

�� Uni�ed Modeling Language
UML�

�� Meta�Object Facility
MOF�
�� XML Metadata Interchange
XMI�

� CORBA Language Mapping Speci�cations

�� Ada Language Mapping

�http���www	omg	org�technology�documents�formal�
�Context objects represent information about the client� environment� or circumstances

of a request that are inconvenient to pass as parameters	
	Interceptors can be interposed on the invocation �and response� path�s� between a client

and a target object	

�� CHAPTER �� RELATED WORK
 STATE OF THE ART

�� C Language Mapping
�� C## Language Mapping

	� COBOL Language Mapping
�� IDL to Java Language Mapping
�� Java to IDL Language Mapping
�� Lisp Language Mapping
�� Smalltalk Language Mapping

� CORBA Services Speci�cations

Name Goals
Collection Service provides a standard library to handle collec�

tions of objects
Concurrency Service provides locks to handle the coordination as�

pect
Event Service provides multicast and a general mechanism

to bind event sources to event listeners
Externalization Service provides support for the serialization aspect�

but cannot provide the nice integration with
code mobility present in Java RMI because
of language and platform independence

Inter�operable Naming
Service

provides
yellow pages� to locate services

Licensing Service attemps to enable the aspect of payment and
enforce access policies in other people�s en�
terprises� without a direct presence

Life Cycle Service de�nes how factories could be used in order
to take distribution� transparency� and lan�
guage incompatibilities into account� and to
allow the creation� moving� and destruction
of instaces in an application�controlled way

Noti�cation Service extends the Event Service
Persistent State Service provides object persistence
Property Service provides support related to the parameteri�

zation aspect
Query Service de�nes how applications can query

databases
Relationship Service for the management of references between

entities
continued on next page

���� DISTRIBUTED OBJECTS IN CORBA ��

continued from previous page

Name Goals
Security Service o
ers support for access control� auditing�

authentication and policy implementation�
in order to achieve con�dentiality� integrity�
accountability� availability and nonrepudia�
tion

Time Service provide current time together with an
error estimate� ascertain the order in
which
event� occurred� generate time�
based events based on timers and alarms�
compute the interval between two events

Trading Object Service like naming service� helps client �nding the
right service object

Transaction Service for handling exceptions and recovering a
consistent state

� CORBA Facilities Speci�cations

Name Goals
Internationalization and
Time

to help developers make their software in�
dependent of languages and time zones� by
means of localized formatters� sorters and
pattern matching methods

Mobile Agent Facility to achieve a certain degree of inter�
operability between mobile agent platforms
of di
erent manufacturers

� CORBA Business Speci�cations

�� Task and Session
�� Work�ow Management

� CORBA Finance Speci�cations

�� Currency

� CORBA Manufacturing Speci�cations

�� Distributed Simulation Systems Speci�cation
�� Product Data Management Enablers Speci�cation

� CORBA Medical
CORBAmed� Speci�cations

�� Person Identi�cation Service Speci�cation
�� Lexicon Query Service Speci�cation

�� CHAPTER �� RELATED WORK
 STATE OF THE ART

� CORBA Telecoms Speci�cations

�� Audio"Video Streams
�� CORBA"TMN Interworking

�� Noti�cation Service
	� Telecoms Log Service

� CORBA Transportation Speci�cations

�� Air Tra�c Control

Libraries implemented according to these standards can be linked to ap�
plications and accessed either by remote method invocation� or by messaging�
By reusing the objects that implement the various aspects� the development
of distributed applications becomes much easier than working at the level of
sockets and messages� The number of aspects covered by these speci�cations
is remarkable� and since CORBA has been around since about �
 years� there
are already many implementations of some of the speci�cations� They are
provided both by commercial and by open�source organizations� this could
guarantee long�term availability and robust systems�

The main risk of this approach is of course that the protocols are not
suitable to some situations� or that the di�erent implementations are not im�
plemented in a perfectly compatible way� Since ORBs try to hide the network
and to make programming easier by letting remotely located objects interact as
if they were on the same host� there is also a risk that the underlying network
disturbs the communication in some situations
x ������ p� ���� Thus our archi�
tecture based on mobile code o�ers probably a better control on distribution
and some optimizations�

Another problem that is sometimes mentioned is that the ORB is a big
piece of software that is not able to run on devices with limited memory� To
accomodate such appliances� it is necessary to write additional �gateways� that
run in the service provider�s environment� This requires collaboration between
the service provider and customers� while the mobile code architectures avoid
such collaborations�

The last shortcoming� that makes CORBA suitable for closed environ�
ments like an enterprise�s intranet� but not for the open Internet is that it has
no resource control or protection against denial of service attacks� like Java�
The Security Service is probably quite e�cient for authentication and access
control� but it is improbable that CORBA will be enhanced with convenient
resource control mechanisms� since it has to cope with programs written in
di�erent languages and running on di�erent operating systems and hardware
architectures�

���� WEB TECHNOLOGIES ��

��
 Web technologies

There is currently an enormous amount of activity in the domain of Web�
based technologies� principally XML� with new protocols being de�ned at an
amazing rate� This domain has been fueled by the initial successes of the
Web as a way to share documents and information and the extremely high
commercial pressure to build distributed systems quickly and cheaply� Clearly�
this development is impressive� and some people who have been working in the
domain of distributed and open systems for a long time even fear that it may
prevent the deployment of more mature agent technologies� which result from
many years of research
Milojicic� ������
The basic assumption in this domain is that every site o�ering services

to the Web can implement them� internally� using XML�� interfaces� When a
client that requests this information is a browser� the XML can be rendered into
HTML� using style sheets or XSL�� transformations� And when the client is a
program� the XML can be delivered directly to that program for further pro�
cessing� Of course� distributed programming should not be more complicated
than that� and there are some spectaculary examples that these technologies
can sometimes work as advertised� However� we have already explained in
some detail why distributed programming is not that easy� and our daily ex�
perience with the Web rather shows us an abundance of invalid information�
broken links and unreachable sites� So we should rather be cautious with this
technology that mainly progresses by trying to �x the inherent �aws of existing
systems HTML mixes content and presentation� let�s try XML! rather than
carefully building on decades of experience with distributed systems� We do
agree that XML parsers� and the possibility for a human to read XML �les can
be useful� However� we�re not at all certain that distributed systems should
be build with this technology for several reasons�

�� Even if information encoded in an XML message can easily be veri�ed
using a DTD��� and that the availability of the DTD enables automatic
tools for visualizing or processing the corresponding syntactic tree� such
messages still belong to the world of PDU based communication� Hence�
dealing with the �ow of information requires sophisticated programming�

�� Huge e�orts are necessary to de�ne good protocols
DTDs�� to make
them adopted and to avoid that they become obsolete� With our ap�

�
eXtensible Markup Language� a format for the representation of complex data and
document as text �les	

��eXtensible Stylesheet Language� a language to encode transformation rules and format�
ting rules for XML documents	

��Document Type De�nition� describes the permitted structure for a given type of XML
document	

�
 CHAPTER �� RELATED WORK
 STATE OF THE ART

proach based on objects� there are also protocols� but in addition� there
is encapsulation and it is possible to change completely the internals
of an object� but to continue o�ering the same set of public methods�
Because these methods can perform the necessary conversions they al�
low that a new version of the object remains compatible with existing
clients� In the case of XML� when a client expects information formatted
according to a given DTD� it is not possible to change it to DTD� and
to format new information according to DTD� because all the old clients
cannot read the new information� It is possible to have an XSL conver�
sion for adapting new information to the original DTD� but the server
probably doesn�t know when to perform the conversion� The �mobile
code� approach would be to give the XSL to the client and let it apply
the transformation when needed�

�� XML technology applied naively as a successor of HTML tends to mix the
aspects of persistence
how the documents are stored�� communication
and processing� Furthermore� they are based on unrealistic expectations
of a reliable and performant network� They are also not encouraging a
good control of events and system dynamicity� they rather rely on polling
to know when something has changed or disappeared� this technique is
not su�cient to retrieve information that has moved during reorganiza�
tions and is sensitive to delays�

	� Unlike an object� a document that gets transferred between two hosts is
not able to open a socket back to the server� to process information� or
to wait for events� Mobile objects are fundamentally more powerful�

Our architecture relies on Web technologies� but is not based upon them�
They are convenient ways to communicate with the user using only a thin
client� and we can use them when information must be �externalized� in a
readable format� However� traditional entity�relation models� implemented
either with objects� relational databases or both� remain at the core of our
architecture� because they do have advantages�
In the end� the choice of a technology should always be made according to

the needs which must be satis�ed� Web technologies are probably cheaper and
may require less e�orts but they imply higher risks of failures since they don�t
handle all non�functional aspects perfectly� choosing a more complex technol�
ogy certainly involves a bigger e�ort an may cost more time or money� but
guarantees that a wider range of functional and non�functional requirements
can be taken into account�

Part II

Case study

In this second part of the thesis we illustrate and justify the architectural
principles of the �rst part� We conduct an extensive study of the �meeting
scheduling� problem� We provide a new computerized solution of this con�
crete decision problem� Then� we proceed with a detailed presentation of the
implementation�

Chapter �

Meeting scheduling

problem

Chapter highlights

� The concrete motivation to tackle this problem� meeting scheduling is
time consuming and there were no Web based tools when the case study
was started
summer ������

� De�nition and example of the problem� a decision process� that must
take constraints into account� and that requires communication and stor�
age of information�

� Two fundamental assumptions in our approach�
�� full automation is
too di�cult to achieve and not required�
�� end users already have
agendas and don�t want to store their schedules on the system�

� The problem is a DEDIS� hence not too simple for a case study� dis�
tribution and heterogeneity result from the habits of users and the
distances between them� non�trivial computations are required to take
into account new activities� we must deal with change in the constraints
and potential con�icts
dynamicity�� evolution is desirable because
people�s personal and professional environments change during time� as
well as the software and hardware they use�

��

���� DEFINITION OF THE PROBLEM ��

��� De�nition of the problem

For our case study� we have chosen the problem of meeting scheduling� We
provide a new computerized service that lets a group of people collaborate in
order to determine the temporal interval during which a forthcoming activity
will take place�
Without appropriate tools� this is usually a time consuming task� due to the

delays in communication and di�culties of collaboration� as stated in
Cesta
et al�� ������

Scheduling meetings for a group of users involves a high num�
ber of actors and requires a massive organizational e
ort� complex
negotiation strategies and a huge number of communication acts�
e�g�� email messages� phone calls� faxes� etc� Moreover it is also
necessary to �nd a compromise among the di
erent users� con�
straints� the availability of the resources and the need of satisfying
the highest number of people�

Our tool named Meety�� which lets each user keep his favourite agenda�
exploits Web and email technologies� in order to reduce the organizational
e�ort and time spent to schedule meetings�
Before we describe the characteristics of the meeting scheduling problem�

the existing solutions� and the bene�ts of our new approach� let us de�ne it
more precisely� First of all� scheduling an event
a meeting or an activity�
implies a decision process in which it is necessary to determine when the
event should take place� In many cases� it is not possible to decide blindly as
a set of constraints must be taken into account� In addition� this decision
must not be forgotten but it must be recorded and communicated by ap�
propriate means to all concerned parties� Our work is focused on this decision
process and it will be our de�nition of the meeting scheduling problem� even
if scheduling a meeting actually involves many other decisions about people�
activities and facilities�

��� Example

We can illustrate this decision process with the example of a quartet of musi�
cians who don�t gather on a regular basis but want to attempt to play together�
In this particular case� the scheduling problem is to decide when the session
will take place�
Even in this simple case� the constraints that must be taken into account

are quite complex� Presumably� the four players already have a lot of other

�http���meety	unige	ch�

�	 CHAPTER �� MEETING SCHEDULING PROBLEM

scheduled activities that reduce their availability� In scheduling terms� these
other activities are constraints that eliminate many dates and times
when
the activity cannot be shifted or cancelled�� or make some solutions more
desirable than others
it would be possible to schedule the session just before
a performance� but it�s probably not the best time�� Our four musicians must
also consider the location� availability of rooms� times to travel to this location�
etc� This is a second set of constraints that may impact on the decision in
subtle ways� Additional constraints may be expected� the duration of the
session� the time necessary to obtain an uncommon score� etc�
The decision itself can be made in several ways� A single person may collect

all necessary informations and make the decision alone� then communicate it
to others� The decision can also be a consensus� emerging from a collective
process between several people� It may also be the result of an elaborate
computation�
In all cases� the four participants must be informed of the decision� and

remember it� otherwise the event cannot occur� We can expect that each of
them uses an agenda to record these informations
but we cannot assume that
it is an electronic device�� It is also necessary to ensure that all resources
needed for the session
e�g� the room� instruments� seats� will be available�
This resource reservation� or resource allocation process frequently accompa�
nies scheduling problems� In this case� its solution can also be based on some
kind of agenda�

��� Partial automation

The goal of the Meety system the Web service developed for our case study
is to support decision processes similar to the one described in the previous
section� where a complex set of constraints must be taken into account� It per�
forms a partial treatment of the meeting scheduling problem� where communi�
cations and the representation of constraints are made easier by the computer�
but where the �nal decision is left to the people using it�
For this case study� it was not conceivable to fully automate the resolution

of the problem� which is far too complex in an unrestricted setting� Our
intent was rather to provide a service that would be simple to understand and
easy to use� in order to assist a large number of people and provide them an
opportunity of saving time�
Other researchers
Cesta et al�� ����� Sen and Durfee� ����� have tried to

fully automate the decision process� They have developed sophisticated pro�
grams that they call agents which are able to make the decisions on behalf
of a user� These agents negotiate with other agents� or other people� follow�
ing elaborate protocols� in order to manage agendas without intervention of

���� PROBLEM CHARACTERISTICS ��

their owners
x ��	��� p� ��� and next ones�� It requires lots of e�orts and
of patience to represent the subtle factors
among other the social ones� that
may be relevant in this process� Without a very cautious programming and
an extensive knowledge of the user�s context and habits� such agents are not
able to take the right decisions� and their behavior cannot satisfy the user� We
supposed that people using our system to schedule meetings would be reluc�
tant to spend time con�guring their agent and we preferred to skip this part
of the automation� However� it is not unthinkable to add it later� since the
system is structured according to the architecture presented in Chap� � and
thus easily extensible using mobile code�
Another particularity of our approach to the meeting scheduling problem

is that it is only loosely connected to the agendas of the users� which are not
part of Meety� In the general case� people involved in the decision process do
not necessarily attend the event� Thus the meeting scheduling problem cannot
be reduced to �nding a �free� interval in these peoples� agendas� On the other
hand it was very unlikely that everyone would agree to store his calendar in
our system� thus we abandoned this idea� One benign consequence is that the
users may end up repeating some operations several times
rejecting a busy
time for several meetings��

��� Problem characteristics

The three characteristics of DEDIS
dynamicity� evolution� distribution� are
well represented in the meeting scheduling problem� making it an interesting
candidate for our case study�
The most obvious one is distribution� we all have our own occupations�

which are very di�erent from those of our colleagues and close relatives� and
the way we manage our time is something very personal� Some of us use a
pesonal computer to manage our agenda� or a portable electronic device� some
prefer to have it written on paper or on a wall calendar� or even to rely on
their good memory� Consequently� it is very important that systems which
try to solve this problem are able to take into account this heterogeneity of
means� which has been reported by
Coleman� �������

Interestingly� in a recent survey of ��� Internet users who use
a calendar� ��� were still using paper calendars� The other ���
break out into a variety of di
erent schedulers and PIMs �Personal
Information Managers� detailed in the �gure� Internet calendars
have not yet caught on� Of the �� heavy schedulers surveyed� ���
had never heard or tried them� Of the ��� that did most of those

�The original �gure is reproduced as Fig	 �	�� p	 ��	

�� CHAPTER �� MEETING SCHEDULING PROBLEM

Figure ���� Calendar choices of Web users
Coleman� ������ N'���� data
gathered in April ����� compiled by NFO interactive� See x ���� p� ��� for an
overview of these products�

felt that they did not meet their needs� A few percent use Internet
calendars to track birthdays� but none surveyed used it to share
data with others�

The second facet of distribution is that everyone is frequently changing lo�
cation and doesn�t meet other people everyday� Thus the second requirement
is that the system facilitates collecting the information required for a good de�
cision� It should essentially reduce communication lags and avoid ambiguities�
The dynamicity characteristic is also very present� People are frequently

adding new activities to their schedules� and each new activity reduces the
possibilities for the other ones� since it is usually not possible to do two things
at the same time� For the meeting scheduling system� this means that there
will never be a de�nitive solution� but that changes must be continuously
taken into account� It is necessary to re�ect new constraints or decisions in
the system�s state� and to check that these new elements don�t con�ict with
earlier choices�
Having an activity that prevents another one to take place during a certain

period does not mean that a con�ict happens� The necessity to explore a
potentially large space� searching for a good solution� is in the nature of the
meeting scheduling problem� Constraints between activities just mean that
some parts of this space contain no solution� However� this can degenerate in
two embarassing cases�

� When it is not possible to allocate a time stretch to an activity because

���� PROBLEM CHARACTERISTICS ��

there are too many constraints
e�g� the meeting participants are too
busy�� In this case� it is necessary to relax some of these constraints�
for instance by postponing the activity� or by cancelling another one
to create an opportunity� This situation can be tricky� but unlike the
second case� there is no risk to bring the system into an incoherent state
as long as the activity doesn�t receive an interval that overlaps with other
activities�

� The �con�icts through shared resources�
Sen and Durfee� ����� p� �
�
occur when a single resource
or person� is required by two actvities that
could potentially take place in overlapping time intervals� If these two
activities are scheduled concurrently� the two decision processes may re�
sult in assigning colliding time windows to the two activities� In this
case� the system state would be inconsistent� A simple illustrative in�
stance is when you need to meet two people separately during the next
day� and both tell you that they have set up everything to meet you from
���

 to ���

�

These con�icts are inherent to the meeting scheduling problem and contribute
to its di�culty� Several techniques can be applied to solve them� that we will
present in x ��	��� p� ����
The evolution characteristic is present as well� We think that it is of

utmost importance for meeting scheduling software to be able to evolve with
communication technologies� like the currently exploding market of mobile
devices� or future versions of the Internet protocols� It is also essential that
such systems can be easily associated with new applications� for instance a
system for room reservations� or new personal calendaring services� In
Grudin
and Palen� ����� this need to integrate various tasks is illustrated by�

Conference room availability was sometimes described as the
most critical aspect of scheduling a meeting� so the ability to sched�
ule rooms or equipment through the system is another example of
a feature that promotes use�

Additionally� meeting scheduling is a typical application where the needs of
the users are very di�cult to foresee� since the management of one�s time is so
personal� and the dependence on the context is so strong� For this reason� we
can expect that each user will have his own requirements� rules and preferences
and that they will change along with his environment
e�g� working or familial
situation�� Thus it is critical to be prepared to satisfy these requirements� even
if they are completely unexpected or con�ict with other ways of working or of
thinking�

�� CHAPTER �� MEETING SCHEDULING PROBLEM

One of the goals of this thesis is to show that using mobile code provides
a smooth evolution path for services with such requirements� We believe that
our architecture� where new rules and behaviors can be added to the service
at any time by independent �extension programmers�� o�ers the necessary
adaptability� We do not expect each user to write his own extensions� but it
is thinkable to have a public repository where these extensions can be stored�
retreived and activated on demand� Some useful rules or automations are
those which increase the coherence of information� propagate changes to other
systems� or prevent errors and forgetfulness� Interesting examples could be�
additional noti�cations for the people involved in the organization of an event�
automatic creation of a new meeting for recurrent events� automatic answer
for some speci�c periods� etc� A whole chapter is devoted to these extensions

Chap� ���

Chapter �

Meety use�cases

Chapter highlights

� A comprehensive overview of Meety�s features� for readers who have
never seen the service� the use�case diagram of Fig� ���� p� �

 graphically
depicts the main interactions occuring between the service and its users�

� Detailed scenarios� use�cases and screen captures describe the intended
function of the service and possible interaction�

� The limitations of the service� because we knew that a fully automatic
tool would be too di�cult to develop� and probably not suited to a large
number of users� and also because of our preference for small services
that can be easily extended or integrated
Chap� ��� the functionality of
Meety is intentionally limited to the communication of constraints� and
the persistent storage of meeting informations�

� A truthful description� all what is described here is currently imple�
mented and can be used by anyone who needs a good tool for date
selection!

	�� Obtain password

Intent� This step is the basis of our authentication and access control policy

x ��	�	� p� ���� Since it interacts only with registered users� the system
can�

��

�

 CHAPTER �� MEETY USE	CASES

Organizer

Participant

Registered
user

Internet user

Obtain
password

Change
password

Manage
meeting list

Manage
address book

Merge
accounts

Create
meeting

Answer to
invitation

Update
constraints

Choose time

Figure ���� Overview of the main operations o�ered by the service� The stick
�gures represent actors
di�erent roles played by people or software agents
when they interact with the system�� Each use�case is rendered as an ellipse�
An Organizer must be a Registered user
possess a password�� A Participant
may interact with the system without providing a password�

�� prevent disclosure of meeting informations to people who are not ex�
plicitly invited in the scheduling process� and prevent modi�cation
of meeting data and of answers by unauthorized users�

�� ensure that people are not using fake email addresses� this is im�
portant� since emails are sent on their behalf in the scheduling pro�
cess� and without authentication� it would be easy to pretend being
someone else� for instance� anybody in a department could use the
director�s email address to summon a meeting� or illegitimately an�
swer instead of him�

It is also important from a legal point of view� since people must accept
the terms of service before using Meety�

Main �ow of events�
�� The Internet user requests the �home� page of the
service
Fig� ���� p� �
���
�� The Internet user requests the �registra�
tion� page�
�� The Internet user enters his email address and clicks on
�submit��
	� The system displays the terms of service�
�� The Internet
user clicks on button (accept)�
�� The system generates a random pass�

���� OBTAIN PASSWORD �
�

Figure ���� The �home� page of the service�

word and sends it inside an email message to the address provided by
the user�
�� The system displays a welcome page�
�� The Internet user
receives the message containing the password and becomes a registered
user�

Exceptional �ow of events� The Internet user does not accept our terms
of service at
��� The system doesn�t generate a password and displays
an informative page�

Exceptional �ow of events� The address provided by the Internet user at
step
�� is not correct� The message is lost or reaches the real owner of
the email address and the Internet user doesn�t know the password� In
this last case� this unexpected message may cause some surprise but no
prejudice�

Exceptional �ow of events� The address provided by the Internet user at
step
�� is already associated to a password� The system doesn�t display
the terms of service� it displays an informative page and sends an email
message containing the current password to the given address�

We found that this simple authentication strategy is e�cient and simple
to understand� It doesn�t take more than a couple of minutes to accomplish

�
� CHAPTER �� MEETY USE	CASES

Figure ���� The �main� page of the service� displayed when the user has logged
in� It shows the current list of meetings for this user� and provides links to
the main actions� Colors are used to indicate the status of meetings� and the
list can be sorted according to di�erent keys� by clicking on the column titles�
The details of meetings are displayed when the user clicks on titles�

this �rst step� which also includes accepting our terms of service� and we had
no complaints from our users�

	�� Manage meeting list

Intent� Let the user visualize and manage his meeting list�

Main �ow of events�
�� The Registered user requests the �home� page of
the service�
�� The Registered user enters his email address and his
current password�
�� The system checks the validity of this password�

	� The system displays the �main� page of the service
Fig� ���� p� �
���
Meeting titles and attributes are displayed in a table� Controls are pro�
vided to sort the list according to several criteria� to delete meetings� to
create meetings� and to access other functions
other use�cases��
�� The
user follows the �Logout� link to terminate the session�

���� CREATE MEETING �
�

Figure ��	� Page �lled by Organizer to announce a new meeting�

Exceptional �ow of events� If the user is not able to provide the right pass�
word at
��� the use�case is aborted� The system displays an appropriate
result page�

Exceptional �ow of events� If the user does not terminate the session at
��
the system automatically closes it after �
 minutes of inactivity�

	�� Create meeting

Intent� De�ne the attributes of a new meeting
title� description� possible
dates� and send an invitation to participants�

Main �ow of events�
�� The Organizer requests the �home� page of the
service�
�� The Organizer enters his email address and his current pass�
word�
�� The system checks the validity of this password�
	� The
system displays the �main� page of the service�
�� The Organizer clicks

�
	 CHAPTER �� MEETY USE	CASES

on button (Create meeting)�
�� The system adds a new meeting to the
list�
�� The Organizer clicks on the title of the new meeting�
�� The
systems displays the details of the new meeting
Fig� ��	� p� �
���
�� The
Organizer edits the title of the meeting� This title is displayed as the
subject of the related email messages and in the meeting list of the main
page�
�
� The Organizer edits the description of the meeting� This
description is copied in the body of email messages sent to participants�

��� The Organizer clicks on button (Save title and descr)�
��� The sys�
tem stores the new title and description�
��� The Organizer clicks on
button (Edit list) to select the meeting participants
that will receive
the announcement��
�	� The Organizer clicks on button (Edit dates)

not visible on Fig� ��	� p� �
�� to select an initial set of days� and op�
tionally hours� He must check his own agenda� or any other calendar
relevant to the event� in order to provide a consistent set of time in�
tervals�
��� The Organizer can select for which events he wants to be
noti�ed
not visible on Fig� ��	� p� �
���
��� The Organizer clicks on
button (Announce meeting)�
��� The system checks that there is at least
one participant in the list that has not yet received an announce for this
meeting
no duplicates are sent��
��� The system checks that at least
one date is proposed�
��� The system sends an email message to all
participants� This message contains the meeting title and description�
It invites the participant to follow a hyperlink that leads to a page where
the participant can give his answer�

Exceptional �ow of events� If the sequence is interrupted before
��� the
title and description will not be saved� but the meeting will remain in
the Organizer�s meeting list�

Exceptional �ow of events� If the sequence is interrupted after
��� the
state of all attributes of the meeting will be kept in the system� and the
meeting will remain in the meeting list�

Exceptional �ow of events� Events
���
��� are optional and can occur in
a di�erent order� The only limitation is that changes in the title and
description are not stored if
��� is omitted� and that the invitations will
not be sent if
��� or
��� fails�

	�� Answer to invitation

Intent� Gather constraints from the participants for a given meeting� The
participants can indicate when the meeting should take place� accord�

���� ANSWER TO INVITATION �
�

Figure ���� Page displayed to gather answers from participants� Checkboxes
are used to deselect dates where the meeting should not be scheduled�

ing to their availabilities and preferences� but without revealing private
informations�

Main �ow of events�
�� The Participant receives the invitation by email�

�� The Participant sends an HTTP request to the server� using his
browser and the URL included in the invitation�
�� The system checks
that the URL is valid� no password is necessary to provide an answer�

	� The system generates a formular for the answer
Fig� ���� p� �
���

�� The Participant checks his availability in his personal agenda� or
others calendars that may contain information relevant to the event�
and deselects dates or times where the meeting should not be scheduled�

�� The Participant types a comment in the text area
not visible in the
�gure��
�� The Participant clicks on button (Send answer)�
�� The sys�
tem stores the answer and the comment� then it displays an informative
page�

Exceptional �ow of events� Instead of
���
�� the Participant sees a new
meeting in his meeting list� If he clicks on the meeting title� he can
provide an answer according to the sequence of events
	��
���

Exceptional �ow of events� Events
�� and
�� are optional and their rel�
ative order is not important� But they must occur before
���

�
� CHAPTER �� MEETY USE	CASES

Figure ���� This small form is displayed when a Registered user clicks on
�Check Interval��

	�� Update constraints

Intent� Make the detection of potential con�icts and the modi�cation of con�
straints easier� This use�case typically starts when the user reserves a
new time stretch in his agenda and suspects that this new reservation
overlaps the domains of other meetings�

Main �ow of events�
�� The Registered user requests the �home� page of
the service�
�� The Registered user enters his email address and his
current password�
�� The system checks the validity of this password�

	� The system displays the �main� page of the service�
�� The Regis�
tered user clicks on button (Check Interval)�
�� The system displays a
form for the selection of a temporal interval
Fig� ���� p� �
���
�� The
Registered user selects the start time and the duration of the interval
and clicks on button (Update list)�
�� The system displays a subset of

Figure ���� A subset of meetings is displayed when the Registered user has
speci�ed a temporal interval� Only those meetings that have possible dates
intersecting the interval are displayed�

���� CHOOSE TIME �
�

Figure ���� Page used by the Organizer to schedule the meeting according to
participants� answers�

meetings for this user that intersect the given interval
Fig� ���� p� �
���

�� The user clicks on the meeting titles to check that there is no con�ict
in his propositions or answers�
�
� The user modi�es his propositions
or answers if necessary�

Alternate �ow of events� A Participant that has not obtained a password
is not able to use this feature� but he is able to visit the URL provided
by the system more than once� in order to update his answer�

	�	 Choose time

Intent� Provide an understandable view of all the constraints given by par�
ticipants� let the Organizer schedule the meeting and send con�rmations
to participants�

Main �ow of events�
�� The Organizer requests the �home� page of the
service�
�� The Organizer enters his email address and his current pass�

�
� CHAPTER �� MEETY USE	CASES

word�
�� The system checks the validity of this password�
	� The sys�
tem displays the �main� page of the service�
�� The Organizer clicks on
a meeting�s title�
�� The system displays the meeting�s details�
�� The
Organizer clicks on button (Choose now) in the section �Elected dates��

�� The system displays the proposed dates and the answers of partici�
pants
Fig� ���� p� �
��� Dates that have been rejected by participants
have a red background� dates that have not been rejected have a green
background�
�� The Organizer selects the best time for the meeting�
according to the given constraints and comments�
�
� The Organizer
enters a comment in the corresponding text area�
��� The Organizer
clicks on the button (Save) button�
��� The system stores the choice of
the organizer� then it sends an con�rmation message to all participants�
The comment of
�
� is inserted into the body of the message� as well as
the chosen date�

Exceptional �ow of events� Event
�
� is optional�

If all dates have been rejected by at least one participant� the problem
is over�constrained� While this situation would be very tricky for a fully�
automated scheduling system� the Organizer still has several possibilities�
sending a new invitation with new dates� overlooking the preferences of some
participants� calling some participants to negotiate with them� etc� Our opin�
ion is that the �nal decision is so much dependent on a large and complex
context and on social factors that it�s not reasonable to try to automate it�
Nevertheless� the second column of the �Dates� table
cumulated rejects� gives
a very good indication of where an imperfect solution should be looked for�
When participants receive the con�rmation� they can update their personal

agendas accordingly� At this stage� it may be necessary to update the con�
straints of other meetings
x ���� p� �
�� in order to avoid con�icts through
shared resources�

	�
 Change password

Intent� A Registered user chooses a password that is easier to remember than
the long random password provided by the system�

Main �ow of events�
�� The Registered user requests the �home� page of
the service�
�� The Registered user enters his email address and his
current password�
�� The system checks the validity of this password
and displays the �main� page�
	� The Registered user requests the
�change password� page�
�� The Registered user provides his current
password and the new password�
�� The system checks that the �rst

���� MERGE ACCOUNTS �
�

password is correct and that the new password is acceptable�
�� The
system stores the new password�
�� The system displays a result page�

Exceptional �ow of events� If one of the passwords is not acceptable at
���
the system displays an appropriate error message and asks the user to
retry point
���

The current password is necessary at point
�� to avoid that someone else
changes the password when the user leaves the terminal without ending the
session�

	�� Merge accounts

Intent� Transfer meetings from one account to another account� This is nec�
essary because email addresses are used to identify accounts and people
can have more than one address�

Main �ow of events�
�� The Registered user requests the �home� page of
the service�
�� The Registered user enters the email address he wants to
keep and the corresponding password�
�� The system checks the validity
of this password and displays the �main� page�
	� The Registered user
requests the �merge accounts� page�
�� The Registered user provides
his current password� the address he wants to erase and the correspond�
ing password�
�� The system checks that both passwords are correct�

�� The system transfers all meetings from the second account to the
current one�
�� The system displays a result page�

Exceptional �ow of events� If one of the passwords is not acceptable at
���
the system displays an appropriate error message and asks the user to
retry point
���

	�
 Manage address book

Intent� Let each user store and manage an address book in the service� The
addresses of meeting participants are selected in the address book� Each
address book entry has four �elds� nickname� �rst name� last name and
email address�

Main �ow of events�
�� The Registered user requests the �home� page of
the service�
�� The Registered user enters his email address and his
current password�
�� The system checks the validity of this password
and displays the �main� page�
	� The Registered user requests the

��
 CHAPTER �� MEETY USE	CASES

�Manage Addresses� page�
�� The system displays the user�s address
book in a table and provides usual management functions� sorting the
list alphabetically according to one of the �elds� creating� deleting� or
modifying an entry� importing an existing list
from Netscape� Hotmail�
etc��� exporting the list in a standard format�

To a large extent� the address book functionalities are independent from
the meeting scheduling application and could be reused for other Web services�
A detailed description can be found in
Greppin� �

��

Chapter summary

This chapter gives a detailed description of the system and should have con�
vinced the reader that the system has all the required functionalities for the
quick organization of meetings involving a large number of participants� In
the next chapter� we compare our solution with other systems that allow to
perform similar tasks�

Chapter �

Software for meeting

scheduling

Chapter highlights

� What distinguishes Meety from commercial desktop products� we review
several such products and describe their main shortcomings
�� lack of
inter�operability even if standardization e�orts are underway�
�� re�
liance on shared calendars requires a high commitment from all users�

� What distinguishes Meety from other Web services for scheduling� we
review several such services and compare their features with those of
Meety� The main di�erences found are
�� the appearance Meety is
much more sober�
�� the width of application Meety is focused on date
selection�
�� the ease of use Meety has some features that others are
lacking�
	� the technology Meety is the only one that can be extended
with mobile code�

� Research in distributed constraint satisfaction� we provide a detailed
survey of theoretical work related to our case study� such that the reader
can grasp our approach and our implementation�

� Scheduling can be formalized as a constraint satisfaction problem� there
are several approaches to search solutions� characterized by the expo�
nential growth of the search space when variables are added and the
di�culty to avoid local optima when some solutions are more desirable
than others�

���

��� CHAPTER �� SOFTWARE FOR MEETING SCHEDULING

� Other methods are required when the problem is distributed� when vari�
ables and constraints cannot be grouped on a single host� new approaches
involving negotiation are required�

� Dynamicity and concurrency make the problem more di�cult� dynam�
icity results in new variables and constraints that must be taken into
account� concurrency can bring the system in an inconsistent state if
resources are not reserved carefully�

� Full automation of the decision process is very di�cult� some researchers
have shown that it is possible to capture user requirements using knowl�
edge management or machine learning techniques� in order to param�
eterize a personal agent that schedules events automatically� but they
would have been impossible to apply in our case�

�� Commercial desktop products

Many desktop products for time�management are available on the market�
This section reviews some of them� from the perspective of our meeting schedul�
ing problem� We have intentionally left out three categories of products�

�� those which o�er calendaring for a single user but do not support group
calendaring� like Maximizer� or Sharkware�

�� those where users share calendars for the purpose of distributing or del�
egating tasks� like Task Plus Professional�

�� those which support sta� scheduling and resource allocation on a large
scale and in a complex setting� e�g� for a whole department� but are not
convenient for a group of people that must decide when a speci�c event
must take place� for instance WallCHART Resource Scheduling System��
FlexTime�� Scheduler Plus �

��

	
	 Sun Calendar Manager

This tool runs under OpenWindows and CDE on SparcStations� it can be used
by each user in order to store appointments on his host machine� The current
date is displayed when it is iconized
Fig� ���� p� �����

�http���www	maximizer	com�
�http���www	sharkware	com�
�http���members	aol	com�contplus��taskpro�index	htm
�http���www	wallchart	com�
�http���www	sta��scheduling	com�
�http���www	ceosoft	com�schedulerplus�����index	htm

���� COMMERCIAL DESKTOP PRODUCTS ���

Figure ���� The icon of Calendar Manager�

Accessing the calendar of another user is possible when the corresponding
host machine is known and reachable� and if the owner has granted access
permissions� As it can be seen on Fig� ���� p� ��	� privacy of informations
is controlled by assigning to each appointment one of the three values �Show
Time and Text�� �Show Time Only�� �Show Nothing�� The user can also
grant privileges to his co�workers
browse� insert� delete��

To schedule a meeting with other Calendar Manager users� it is possible to
browse multiple calendars simultaneously� The calendars are �overlaid� and
the more people have an appointment at a given point� the darker the shading
of the corresponding area� It makes it possible to �nd one or more suitable
time windows and to send an email to invite people� When the message is sent
directly from Calendar manager� people using Sun�s Mail Tool are then able
to drag the appointment directly into their calendars�

	
� Microsoft Outlook

Informations and images in this section were taken from Microsoft Web site��
This software is the successor of another widely adopted Microsoft product�
Schedule#� Together� they were adopted by about �
* of the ��� users sur�
veyed in ����
Fig� ���� p� ���� Among many other features� the user can
use it in order to manage his personal calendar on his PC� Calendar infor�
mation can be periodically stored on a server� from there it can be replicated

synchronized� on other computers used by the same person� or shared with
other Outlook users� It is also possible to publish one�s calendar as Web pages

Fig� ���� p� ��	��

To schedule meetings� Outlook users can visualize the free and busy times
of all meeting participants �overlaid� together� or they can see an expanded
list of free and busy times� They can also enter a list of meeting invitees�
and click AutoPick to automatically identify the next time everyone is free

Fig� ��	� p� ����� With this feature� it is also possible to designate a set of
suitable rooms and let Outlook select one of them for the corresponding stretch
of time� according to the availabilities of the rooms themselves�

�http���www	microsoft	com�o
ce�outlook�

��	 CHAPTER �� SOFTWARE FOR MEETING SCHEDULING

Figure ���� Left� an appointment in Calendar Manager with the three possible
privacy values� Right� granting privileges to co�workers�

Figure ���� Outlook calendar published on the Web�

���� COMMERCIAL DESKTOP PRODUCTS ���

Figure ��	� Selection of a free interval with Outlook�s AutoPick feature�

When they have determined the best time for the meeting� they send an
invitation message to the participants� who can either accept the invitation�
reject it or indicate that they hesitate� If they accept the invitation� the new
meeting is automatically added to their own calendar�

The cost of Outlook alone is approximately �

+
�

�
������ and even
cheaper when bought with an �o�ce suite�� However� interesting features are
only available with an additional �Exchange Server� which costs around �

+�

	
� Lotus Notes

Informations and images from this section were obtained from
Florio� ������
Lotus Notes was used by approximately �* of the users surveyed in Fig� ����
p� ��� Like Outlook� this product integrates calendaring and messaging and
thus o�ers some support for meeting scheduling� Each user controls which
parts of his agenda are published� and the system is able to check the avail�
ability of designated meeting participants and to suggest meeting times� In

��� CHAPTER �� SOFTWARE FOR MEETING SCHEDULING

addition to the basic �accept� and �decline� operations� delivery options dis�
tinguish required� optional and �for your information� invitations� and allow
counter proposals
a participant proposes another time� and delegation
a par�
ticipant asks someone else to attend the meeting on his behalf��

Figure ���� Selection of a free interval with Lotus Notes�

Lotus Notes sends numerous messages to support the decision process�
and facilitates the transfer of new appointments from email messages into the
user�s calendars� And when a meeting �chair� reschedules or cancels a meeting�
noti�cations are sent automatically�
Lotus Notes can also �nd rooms or resources that are available at the time

of the meeting� and nominate a �resource owner� who handles policies and
reservations for a particular resource�
Lotus Organizer ��

��+ in August �

� is another calendaring tool with

similar meeting scheduling features� Both products allow synchronization with
a Palm Pilot�

	
� Meeting Maker

Meeting Maker	 is a client"server group scheduler for Windows� Macintosh�
and Unix platforms� Users can schedule meetings� keep prioritized to�do lists�
and coordinate schedules with other Meeting Maker users� It o�ers a Java
client and Palm synchronization for mobile users� Calendar information is

�http���www	meetingmaker�	com�

���� DISCUSSION OF THESE PRODUCTS ���

centralized on a server� thus immediately made available for scheduling pur�
poses� without need for users to explicitly publish updates and without the
lag that can occur with email�based systems� It costs � �

+ for �
 clients

�

�
������

	
� O�ce Tracker Scheduler

O�ce Tracker Scheduler
 is also a client"server calendaring tool for Windows
and Macintosh� Calendars of several people and resource can be viewed side
by side� With appropriate privileges� users can schedule for one another and
schedule rooms and resources� One version of the server can be accessed and
administered via the Web� The system is also able to �nd open times for
people� rooms and resources� Prices
�

�
������ Single�User � 	

+� �

clients � �

+�

	
� Other information managers

A few other personal information managers similar to those above were re�
viewed in ���� by PC Magazine�� most of them have evolved since then� They
provide calendaring functionality� and have more or less the same �standard�
workgroup features� sharing of agendas� control of access rights� �overlaying�
of calendars� etc� The names of these products are ACT!� GoldMine� Time
and Chaos� O�ceTalk� DayTimer� Commence� etc�

�� Discussion of these products

The products described in the previous section intend to help users or groups
of users managing their time� Basically� they handle user�s agendas� and pro�
vide meeting organizers a means of locating free time stretches in the sched�
ules of participants� More advanced functionalities like synchronization with
portable devices
Palm� Psion���� and message exchange between participants
are also usually available� Some can even take into account the availability of
rooms and other necessary resources� Some programs also o�er access from a
Web browser� or compatibility between di�erent operating systems
Windows�
Macintosh� Unix��
There are clear indications that in some contexts these tools are very useful�

e�g� Grudin and Palen mention an enquiry conducted with managers and sec�
retaries of a company� �They collected data and found very large time savings
and cost savings due to the online calendar��
Grudin and Palen� �����

	http���www	milum	com�
�
http���www�	zdnet	com�pcmag�features�infomanagers� open	htm

��� CHAPTER �� SOFTWARE FOR MEETING SCHEDULING

However� there are still lots of places where these products are deployed but
not used
e�g� Sun Calendar Manager in our Computer Science Department��
This fact is con�rmed by
Cesta et al�� ������ �Very often in the past attempts
to introduce computerized tools for supporting meeting scheduling failed due to
rejection by the user in work environments�� In the following paragraphs� we�ll
try to understand why these products failed to attract more users�

�
	 Lack of inter�operability

The main shortcoming of these products is that they don�t inter�operate sat�
isfactorily� As a consequence� they can be used to schedule meetings between
people using the same product� for instance inside an organization� but cannot
take into account the schedules of people using di�erent products� This fact
has been reported by many studies� e�g�
Coleman� ������

Heavy schedulers� �those that do a lot of scheduling on a daily
basis� report that they have the most di�culty scheduling a meet�
ing with people from both inside and outside the company� It is
no surprise� that e�mail and voice mail are the dominant ways to
schedule meetings today� However� as we get more sophisticated
with the Web and are able to take advantage of its interactive na�
ture we see some solutions in Web�based scheduling�

This obvious compatibility problem is currently tackled by a working group��

of the IETF
Internet Engineering Task Force� with representatives from the
major software vendors in the �eld
Microsoft� Netscape� Lotus����� Under the
label iCalendar� they are trying to de�ne a set of protocols that would allow
inter�operability between their products� Their work includes the development
of MIME content types to represent common objects needed for calendaring
and group scheduling transactions and access protocols between systems and
between clients and servers�

Core Object Speci�cation �iCalendar� RFC ����� A standard content
type for capturing calendar event and to�do information� The content
type should be suitable as a MIMEmessage entity that can be transferred
over MIME based email systems or the Web�

Calendar Inter�operability Protocol �iTIP� RFC ���
� iMIP� RFC
����� A standard peer�to�peer protocol for common calendaring and
group scheduling transactions� It allows the exchange over the Internet
between di�erent calendaring products of well�de�ned messages such as

��http���www	ietf	org�html	charters�calsch�charter	html

���� DISCUSSION OF THESE PRODUCTS ���

event�requests� replies to event�requests� cancellation notices for event�
requests� free"busy time requests and replies to free"busy time requests�

Calendar Access Protocol �CAP� Internet Draft� A standard access
protocol to allow for the management of calendars� events and to�dos
over the Internet�

But� at the time of this writing
August �

�� these standards are not
�nalized and according to one of the working group chairs� the inter�operability
of some products� tested in April �

� is still severely limited���

�
� Reliance on public calendars

The second disadvantage of these products is that they rely on the publication
of personal calendars for the selection of a date� They have all adopted an
approach in which the meeting organizer looks for a possible date by investi�
gating the agendas of all participants� Thus the selection does not really occur
in a collaborative way� even if some products like Lotus Notes allow some kind
of negotiation
rejecting a proposition� making a counter�proposal�� Several
inconveniences result from this approach�

con�dentiality� even if simple mechanisms are available to protect the pri�
vacy of users� by hiding some calendar entries or by masking details of
some appointments� some people could �nd that it reveals too many pri�
vate informations
Coleman� ������ this can result in �defensive� actions

blocking out large periods� even if they have no particular appointments�
or rejection of the product

completeness� keeping one�s calendar up to date at all times requires a lot of
e�ort and self�discipline� not doing it results in uncertainty and errors�
when someone else uses an incorrect calendar to schedule an event� this
problem is ranked �rst in
Coleman� �����

constraint� the whole systems works only if everyone complies to the rules�
the �rst consequence is that new people joining a workgroup have to use
the same tool� even if they had another personal way to manage their
agenda
Grudin and Palen� ������

How did use become so widespread� When asked directly�
some reported peer pressure to keep calendars on�line� some
admitted exerting such pressure� others said they did not notice
pressure� but might contradict themselves in subtle or not so
subtle ways�

��http���www	imc	org�ietf�calendar�mail�archive�msg�����	html

��
 CHAPTER �� SOFTWARE FOR MEETING SCHEDULING

The second consequence is that the whole group has limited access to
potentially useful innovations

loss of control� a meeting chair may summon someone he doesn�t know� and
modify his agenda without consulting him �rst
Grudin and Palen� ������

This approach� with no informal prior negotiation of time�
can strike outsiders as very blunt when it involves� for example�
initiating a one�on�one meeting with someone one does not
know and who is not expecting the meeting request�

The lack of negotiation can also engender more �con�icts through shared
resources�
x ��	� p� ��� because the owner of the agenda may already be
planning an activity for the same stretch of time� without having entered
it in the system�

limited applicability� since these systems are based on participant availabil�
ity� they do not allow the selection of a date in a collaborative fashion�
for an event that they will not necessarily attend� there are also addi�
tional constraints in meeting scheduling� that are not contained in the
participant�s agendas� but that may have a strong impact on the decision

anterior and posterior events� project deadlines� etc��

�� Web services

Software that has been presented in the �rst category is deployed on the user�s
desktop in the �traditional� way of personal computing� Even if in some cases
the servers are able to publish calendar data on the Web� the software is still
bought� installed on each computer� and parameterized by the customer�
In this second category� the client�side administrative work is minimized�

since calendar information is accessed using a standard Web browser� No
installation� no con�guration� no backups��� The only requirement is to �ll
a Web form with some personal information� and to choose a password that
protects user�s privacy� Another advantage is that the calendar is available
from any host connected to the Internet� Moreover� these services are usually
free of charge� they are o�ered to increase customer �delity by the providers
who make money from targeted advertisement or sale of other goods�

�
	 Online calendars

Netscape
Netcenter� o�ers a simple calendar to registered users� It can be
used to store appointments� and to send a regular email message to a list

���� WEB SERVICES ���

of people that may be interested in the event� This is the simplest form of
calendar services� with no improvement in collaboration� and no support for
date selection�

Yahoo�s service is a little better� since the organizer of a meeting can see
other�s calendars� The basic privacy control that is o�ered by desktop products
is also implemented here� However� the calendars are not overlaid� Another
limitation is that only Yahoo users can view each other�s calendars� thus the
usability is very limited�

Besides� all services of this kind su�er from the problems described in x ������
p� ���� since they rely on calendars� just like the desktop services�

�
� Meeting scheduling services

Products in this category are more interesting than simple online calendars
of the previous section� because they are more oriented towards collaboration�
These services
Evite��� TimeDance�� FireDrop Zaplets��� innovate by o�er�
ing meeting scheduling features� without being calendar oriented� They try to
help users planning their parties or meetings� making the communication and
organization e�orts less time consuming and more pleasant� but they don�t
provide online calendaring� thus they avoid the pitfalls listed in x ������ p� ����
Instead� they o�er some kinds of message boards� oriented towards meeting
plani�cation� that organizers and participants can use in order to collabora�
tively work on the details of the meeting
time� location� attendance� resources�
catering����� by means of email and common Web pages�

These products are similar to Meety
the solution that we propose for our
case study�� and they appeared at the same time� The main di�erences can
be found in the technologies involved� and in the �orientation� of the product�
Given their commercial orientation� the graphical presentation of these services
has received much more attention� For instance� the user can choose a layout
and decorative e�ects for his invitation� Our service is much more sober in
this respect� but o�ers a few additional technical features� among others the
extension with mobile code� The fact that several similar services appeared at
the same time� and their immediate success
TimeDance claimed ��* weekly
growth between December ���� and June �

� show that our case study
corresponds to a real need�

An interesting comparison has been made between the di�usion of these
collaborative services and email viruses� Once someone uses the service to
schedule a meeting� all the participants are incited to use it too� making it

��http���www	evite	com�
��http���www	timedance	com�
��http���www	zaplets	com�

��� CHAPTER �� SOFTWARE FOR MEETING SCHEDULING

known to their own acquaintances� and so on� Thus the number of people
knowing the service� and using it� can grow very fast� This is quite similar
to the behavior of some recent viruses�� which exploited user naivety to send
copies of themselves to all addresses found in the receiver�s address book�
creating millions of duplicates in just a few hours�

The main di�erences between Zaplets and Meety are�
�� Zaplets are not
limited to meeting scheduling but allow invitations without date selection�
sharing of information
picture� documents�� discussions� polls� and collabo�
rative editing of tables� lists� etc�
�� Zaplets use some advanced features
of recent email client programs
Netscape� Outlook�� like their ability to dis�
play HTML and to execute Javascript� such that the invitation message itself
looks like a Web page� which is automatically reloaded every time the mes�
sage is displayed� it is certainly a nice feature for the users of these programs�
but is unacceptable for those who read their messages on text�based clients

�� Zaplets for meeting scheduling are not able to propose more than � dates
and times to the participants� and this information must be entered textu�
ally� whereas Meety doesn�t impose a limitation on the number of propositions
and reads this information more conveniently and unambiguously with mouse
clicks on graphical calendar elements�
	� Zaplets don�t have the feature of
listing meetings that may con�ict with a given time stretch�

The main di�erences between Evite and Meety are�
�� Evite o�ers three
additional services
invitation without collaboration� reminders� polls��
�� E�
vite provides numerous links to �nd or buy goods and resources related to
meetings and entertainment
mostly in the U�S���
�� Evite doesn�t propose
more than � dates and times to the participants� and this information must
be entered textually�
	� Evite doesn�t list meetings that may con�ict with a
given time stretch� although invitations without collaboration can be displayed
on a calendar�

TimeDance was very similar to Meety� more targeted to collaborative
date selection than the two other ones� not limiting the number of proposi�
tions� it allowed the selection of dates without typing� etc� Curiously� it was
discontinued in August �

� after less than one year of operation� Appar�
ently� the service was successful� but its commercial side was not su�ciently
developed to make it pro�table�

��http���www	cnn	com������TECH�computing�������iloveyou	���

���� RESEARCH IN DISTRIBUTED CONSTRAINT SATISFACTION ���

�� Research in distributed constraint satisfac�

tion

This section is about another category of software that also deals with meeting
scheduling but from a less commercial perspective� The work presented here
is more theoretical� formalizing the problem and its resolution� It explores the
consequences of various heuristics that can be applied when several choices are
possible� and of various protocols for the negotiation between the participants
of a meeting� It also tries to determine what is required for a good interaction
between the user and the program� The software developed for these studies
is apparently not publicly available� and neither used nor developed actively�

A general de�nition of scheduling� is provided by
Zweben and Fox� ���	�
p� ���

Scheduling is the process of selecting among alternative plans
and assigning resources and times to the set of activities in the
plan� These assignments must obey a set of rules or constraints
that re�ect the temporal relationships between activities and the
capacity limitations of a set of shared resources� The assignments
also a
ect the optimality of a schedule with respect to criteria such
as cost� tardiness� or throughput� In summary� scheduling is an
optimization process where limited resources are allocated over time
among both parallel and sequential activities�

This de�nition encompasses the meeting scheduling problem� as well as nu�
merous other interesting problems that occur in many di�erent contexts� sta�
scheduling in an organization� machine scheduling in factories
job shop schedul�
ing�� transportation scheduling� etc�

When we try to formalize this problem using mathematical notation� we
�nd that it belongs to the larger class of Constraint Satisfaction Problems

CSP�� After presenting general solutions for CSP� we will present known tech�
niques to cope with the three characteristics of DEDIS� �rst distribution and
dynamicity which have been most studied� then evolution�

�
	 Constraint satisfaction

A Constraint Satisfaction Problem
CSP� is formally de�ned as�

� n decision variables x�� � � � � xn�
for each j � f�� � � � � ng the value assigned to variable xj must belong to
Dj � a given set called the domain of xj

��	 CHAPTER �� SOFTWARE FOR MEETING SCHEDULING

� m constraints c�� � � � � cm which must be satis�ed�
for each k � f�� � � � �mg the constraint ck
x�� � � � � xn� is a mathematical
relation
a subset Sk ofD��� � ��Dn�� ck is satis�ed i�
x�� � � � � xn� � Sk

� an optional objective function f � D� � � � ��Dn � R that provides a
ranking of each solution
x�� � � � � xn�

This de�nition is extremely general� The domain of a decision variable can
be any possible set� for example the integer numbers� the real numbers� or an
enumerated set of colors� of cities� of temporal intervals� etc� The nature of
constraints is very general as well� since there is no restriction on the kind of
relations imposed between the variables� An equivalent representation of the
constraints that is sometimes preferred gives m functions gk � D�� � � ��Dn �
f
� �g where gk is satis�ed i� gk
x�� � � � � xn� ' ��
This generalty of the formalism makes it suitable for modeling a huge

number of di�erent decision problems� job scheduling� timetabling� resource
allocation� transportation� map coloring� layout of shapes or graphs on �D
surfaces� etc�
Kumar� ������ In the case of meeting scheduling� one possible
model has one variable xi for each meeting� the domains Di represent possible
start times
Fig� ���� p� ����� and the constraints represent the periods when
participants are not available
participants can be considered as resources that
cannot be allocated to more than one meeting at any given time�� as well as
other restrictions that organizers want to apply�
Depending on the problem� it may be su�cient to �nd one solution

x�� � � � � xn� such that xj � Dj for each j � f�� � � � � ng and
x�� � � � � xn� �
Sk for each k � f�� � � � �mg� Other cases will require all feasible solutions� or
only the optimal solution� for which the objective function f is maximized or
minimized�
Finding these solutions in the potentially huge search space is usually not

an easy task� Since the search space is the cartesian product of the domains
Di� its size is the product of their cardinalities
assuming they are �nite�� For
instance� a CSP with n ' �
 variables� and all the domains containing � ele�
ments already has ��� elements in its search space� Thus the size of the search
space grows exponentially with n� this is noted O
en�� For many speci�c cases
it has been shown that the problem is NP�complete� which means that it can
be solved in polynomial time by a non�deterministic algorithm� Unfortu�
nately� current computers are deterministic and solving these problems may
require an exploration of the whole search space in the worst case� thus a time
complexity in O
en��
Many algorithms and heuristics have been proposed to solve these prob�

lems� which depend on the nature of the variables
discrete or continuous� and
of the constraints
linear or non�linear�� Some well studied special cases are�

���� RESEARCH IN DISTRIBUTED CONSTRAINT SATISFACTION ���

i possible start Di di solution xi

� ���������� ����������� ���������� ���������� �h ���������� �����
� ���������� ����� ���������� ���� �h ���������� ����
� ���������� ��������� �h ���������� ����
� ���������� ������ ���������� ����� ���������� ����� �h ���������� ����

i is the meeting number� di is its duration

cij �
xi # di � xj� �
xi 	 xj # dj��
i� j � f�� �� �� 	g� i �' j

2000-08-28 2000-08-29 2000-08-30

18:006:00 18:00 6:00 12:00 6:00 12:00 18:0012:00

x� x� x� x�

Figure ���� Example of a CSP model for meeting scheduling and graphical
representation of the solution� Variables represent meetings� domains represent
possible start times� constraints ensure that all pairs of meetings are disjoint

cannot overlap��

linear programming� when the variables are continuous�

xj � R� xj 	

and the objective function is linear�

f
x�� � � � � xn� ' c�x� # � � �# cnxn

and the constraints are linear�

x�� � � � � xn� � Sk i� ak�x� # � � �# aknxn ' bk

the optimum solution can be found using Danzig�s simplex method

Chv�atal� ����� or interior points methods
Hillier and Lieberman�
���
� Nesterov and Nemirovskii� ���	� which have a polynomial time
complexity�

nonlinear programming� when the variables are continuous� but the ob�
jective function or the constraints are not linear� the problem is NP�
complete� but some methods like Numerica can �nd a global optimum
for instances of reasonable size
Van Hentenryck et al�� ������

integer programming� when the variables take integer values

xj � Z

��� CHAPTER �� SOFTWARE FOR MEETING SCHEDULING

the problem is NP�complete and methods for linear programming cannot
be applied� even if the objective function and the constraints are linear�
integer programming is also called combinatorial optimisation indi�
cating that it deals with optimisation problems with an extremely large

combinatorial� increase in the number of possible solutions as the prob�
lem size increases� thus making exhaustive search
generate and test�
completely impractical� The traditional method to solve such problems
is branch and bound
Gar�nkel and Nemhauser� ����� Held and Karp�
���
�� it tries to divide the problem into small sub�problems that can
be solved to obtain bounds� These bounds allow the elimination of those
sub�problems which have no chance to provide a solution� By examining
only a subset of possible solutions� these techniques allow problems of
bigger size to be tackled� The performance of this technique is limited by
our ability to solve sub�problems and to obtain bounds of good quality

which is easier in the special case of linear constraints��

For other CSPs� which do not �t in one of these categories� several other
methods can be applied� These methods can be classi�ed into two categories�
the global methods that provide a global optimum� and the local or im�
provement methods that do not guarantee that the global optimum will be
found� but that can be applied when no global method is able to �nd a so�
lution in a reasonable time� Using local methods is also interesting in many
cases either because �nding the best solution is not essential� or because the
objective function is not clearly de�ned� This can happen when the real�world
problem is di�cult to understand and its subtleties are not easy to capture in
a mathematical model� This is often the case in scheduling where multiple�
con�icting objectives must be achieved� The phenomenon has been described
as scheduling uncertainty
Berry� ����� Burke and Prosser� ���	��

heuristic search and constraint programming� the constraint program�
ming
CP� community has developed global search techniques� and their
own languages speci�cally designed to solve CSPs
Van Hentenryck and
Saraswat� ����� Kumar� ������ There are several tendencies in CP� de�
pending on the underlying theory and the mathematical domains of the
variables used to model the problems� The two dominant classes are
constraint logic programming
CLP� which is a descendant of logic pro�
gramming and concurrent constraint programming
cc� with its foun�
dations in the domain of concurrent systems� For both classes� there
are specializations depending on the domains of variables� real numbers

R�� fractions
Q�� integers and �nite domains
FD�� predicates and �nite
trees
FT� etc�

���� RESEARCH IN DISTRIBUTED CONSTRAINT SATISFACTION ���

One noticeable property of CP systems is that the developer does not
need to program the search procedure himself and can focus on his prob�
lem and on the best model to solve it� Many algorithms and heuristics
to search the solution space e�ciently are already available in the CP
systems themselves� Moreover� this search can be very e�cient because
constraints can be used to guide the search process and prune entire re�
gions that contain no solution� An additional bene�t is that CP systems
provide rich sets of constraints already implemented� With these power�
ful constraints� the models can be more accurate and easier to develop
than with linear or integer programming�

Most of these algorithms perform a depth �rst search� with more or less
the following steps
Nadel� ����� Kumar� ������

�� choose one variable xj that has not yet received a value
�� choose one possible value from the domain of this variable and as�
sign it to xj � all the trouble in solving CSPs is that it is not possible
to compute which value satis�es all constraints and gives an opti�
mal result� it is sometimes possible to make good guesses using
heuristics� but not to make an analytic choice at this stage

�� if it was the last unassigned variable� a solution has been found�
either return this solution� or continue searching for other
better�
solutions

	� if it was not the last unassigned variable� propagate the constraints
by marking as impossible those values in the domains of unassigned
variables that are not consistent with existing assignments

�� if constraint propagation has left no possible value in the domain
of an unassigned variable xk � then one of the previous assignments
was not allowed by the constraints and must be undone before the
search can continue
back tracking�

�� continue search at step �

At each step� heuristics and techniques can be applied to exploit problem
structure and improve search e�ciency
Nadel� ����� Kumar� ������
frequently mentioned are variable ordering heuristics
step ��� value
ordering heuristics
step ��� arc consistency algorithms
step 	�� and
back jumping techniques
step ���

Some authors have also studied techniques for Partial Constraint Sat�
sifaction Problems
Freuder and Wallace� ����� that can be applied
in several di�cult cases� It can happen that the set of constraints is so
complex that it is not easy to design a model that is not over�constrained�
in this case partial constraint satisfaction can �nd a solution that mini�
mizes the number of constraint violations� Sometimes the CSP must be

��� CHAPTER �� SOFTWARE FOR MEETING SCHEDULING

solved under real�time constraints and obtaining a partial solution in a
speci�c amount of time is better than obtaining a full solution too late�

gradient descent� in all improvement methods the search starts with a non�
optimal initial solution and tries to improve it as much as possible� This
requires methods to build the initial solution� and operators that com�
pute the neighbors of the current solution� Improvement methods are
also called local search methods� because the neighbors are found by
changing only small parts of the current solution� Preferably� this does
not require a large amount of computation� In the gradient descent
method� the neighbor that provides the greatest improvement is chosen
at each step� and the search quickly progresses towards better solutions�
The problem with this approach is that the objective function may have
lots of local minima
or maxima�� which are far from being optimal� but
where the gradient descent search remains trapped�

simulated annealing� in this second improvement method
Kirkpatrick et al��
������ the strategy to select the neighbor at each step is di�erent� The
goal is to let the search process escape local minima
we assume that
the goal is to minimize the value of the objective function�� by allowing
some �moves� that don�t improve the current solution� At each step a
neighbor s� of the current solution s is generated randomly� The decision
to accept or reject the move from s to s� depends on the change in the
objective function � ' f
s���f
s�� When the new solution is better than
the current one
� �
�� the move is always accepted� Otherwise� the

move is accepted with probability e�
�

t where t is called the temperature�
During the search� t is slowly decreased
after a certain number of itera�
tions�� thus the probability to accept bad moves becomes smaller and the
process eventually settles in a minimum� The name of this method and
of the temperature parameter come from the analogy with the annealing
process in solid state physics� where a material is cooled down by stages�
such that the resulting solid is as stable as possible�

tabu search� this other improvement method
Glover� ������ also tries to
avoid local minima by keeping a list of the best solutions reached during
the search� among them the local minima� Returning to these solutions
is forbidden� thus the process is able to reach better solutions�

Let s denote an initial solution� and s� the best solution found so far�
which is initially equal to s� The process computes Ns the set of neigh�
bors of s� The best element in Ns� noted s

� is selected� If s� is better than
s�� s� is replaced by s�� The solution s is stored in the list T
the tabu
list�� s� replaces s and the process continues with the generation of Ns� �

���� RESEARCH IN DISTRIBUTED CONSTRAINT SATISFACTION ���

This time� the best element in Ns� � noted s
�� is chosen from
Ns� �T �� If

s�� is better than s� then s� is replaced by s��� The solution s� is stored
in T� s�� replaces s� and a new iteration starts�

Because the current solution s is always replaced by a solution s� �

Ns � T �� which may be worse according to the objective function� the
search is able to escape local minima� Furthermore� it will not return to
an already visited local minimum� as long as it can be stored in the tabu
list�

genetic algorithms� another kind of improvement method� where the search
does not proceed by improving one single solution� but by evolving a large
population of solutions
Holland� ������ This method is inspired from
biological evolution� where individuals with di�erent characteristics are
selected by the environment� and only the �ttest can reproduce� In the
case of CSP� the individuals are solutions� initially scattered at random
in the whole search space� The genetic algorithm tries to �nd an optimal
solution by selecting the best individuals of each generation according to
the value given by the objective function� and creating new individuals
by randomly combining their characteristics�

Whereas the other improvement methods required good techniques to
compute the neighbors of the current solution� the performance of ge�
netic algorithms depends on choosing a good encoding of the variables in
�chromosomes�� and �nding the right operators for the combination of
individuals
cross�over�� such that two individuals with some good and
some bad features can produce an individual with only good features in
the next generation�

�
� Distributed constraint satisfaction

All the methods for solving CSPs that we have presented so far assume that the
search is conducted as a single sequential process� which has at its disposal all
the necessary information
variables� domains� constraints and objective func�
tion�� However� we have seen that meeting scheduling is inherently distributed

x ��	� p� ���� In large organizations� the elements of a CSP are also frequently
scattered between several departments� with the constraints and variables be�
ing controlled in the di�erent units� but with important couplings from the
point of view of global resource management
Burke and Prosser� ���	�� In

Friha� ������ the case of the Geneva University Hospital is mentioned� where
several clinics
Digestive� Cardiology� Urology� Orthopaedics� etc�� must share
the rooms in surgical wings� The clinics are independent to a large extent�
but they need to coordinate their use of these shared resources� It would be

��
 CHAPTER �� SOFTWARE FOR MEETING SCHEDULING

very ine�cient to merge the information systems of all these clinics� just to
solve this CSP in a centralized way� In an industrial and competitive con�
text� we cannot imagine that two companies merge their information systems�
given the large amount of strategic information they contain� However� they
may have compelling economic reasons to co�optimize some inter�dependent
parameters of their production processes� In this case� it would be necessary
to �nd values for these parameters that satisfy the goals of both companies�
even if the objective functions are not exchanged�
Problems of this kind have been described by
Yokoo et al�� ����� Hamadi�

����� under the name of Distributed Constraint Satisfaction Problem

DCSP�� In this context� �mathematical methods� like the Simplex� or Branch
and Bound are not applicable� because they need a full representation of the
problem in a matrix form� Improvement methods are also handicapped by
the di�culty to compute the neighborhoods of a solution when variables and
constraints are unavailable to the search process� and by the lack of global
objective function� The most successful approach seems to be heuristic search�
that can be conducted by several processes asynchronously� communicating to
exchange necessary informations� Each process owns a subset of the variables
and knows the corresponding domain
a �nite set of discrete values� and some
related constraints� During the search� values from the domains are assigned
to the variables and communicated to other processes which have constraints
involving these variables� If an assignment made by process P� to variable x�
contradicts some constraints of process P�� the latter informs P� with a speci�c
message and P� must look for another value in the domain of x�� The main
di�culty in this distributed search is to ensure that it terminates and does not
keep oscillating because of circular dependencies in the constraints� To solve
this issue� a total order relationship must be introduced
Hamadi� ����� p�
����� Each process systematically sends its assignments to its successors and
refers impossibilities to its predecessor and thus the search always terminates�
even if the global set of constraints is inconsistent and no solution can be
found�
Another interesting research corpus� which lies somewhere between the the�

oretical work on DCSP and our meeting scheduling service has been described
in
Sen and Durfee� ������

Having evolved out of a tradition of work in Distribued AI
�DAI�� our approach views meeting scheduling as a distribued task
where a separate calendar management process is associated with
each person in order to increase reliability and exploit inherent par�
allelism� Moreover� giving each person his or her own process en�
hances privacy and permits personal tailoring of preference param�
eters for scheduling meetings� But because the information about

���� RESEARCH IN DISTRIBUTED CONSTRAINT SATISFACTION ���

available times is distributed among processes that wish to mini�
mize how much information they reveal� arriving at meeting times
involves selective� distributed search�

With this approach� the constraint satisfaction part of meeting scheduling

�nding a possible time interval for a new meeting i� is delegated by the host
of the meeting hi to his personal agent� To perform this task� the agent has
access to the agenda of hi� but not to those of people in Ai the set of attendees�
which are kept secret for privacy reasons� An agreement between the agent of
hi and the agents of attendees aik � Ai can be reached following the multistage
negotiation protocol
Conry et al�� ������ The protocol involves the following
steps �

�� on receipt of a meeting to schedule the agent of hi searches its calendar
for n possible intervals

�� then it sends announce messages containing the n possible intervals to
the agents of attendees

�� an attendee� upon receiveing an announce message will return a bid
message containing n� acceptable intervals� these n� intervals may be a
subset of the n proposed intervals� but may also contain new proposals
that may accelerate the search process
Sen and Durfee� �����

	� the host collects and evaluates these bids � if a common possible interval
Ti has been found� it is sent in award messages to all attendees� other�
wise� the bids are rejected and new announce messages containing a new
selection of n intervals are sent

�� when an attendee receives an award message� it checks that its calendar
is still free for the given interval Ti and if it is the case books it for
meeting i� if Ti is not available any more� the attendee sends a reject
message

These steps are repeated until a satisfactory schedule is found� or it is recog�
nized that the meeting cannot be scheduled due to the low availability of hi
or of the attendees in Ai� The user may also specify a deadline di at which
the search process should stop if no solution has been found�

The authors of this work have argued that this negotiation protocol is
not extremely sophisticated but has the advantage of being well�de�ned and
�understandable enough to be embraced by a user�� Additionally� they have
thoroughly studied the impact of several parameters like n the number of pro�
posed intervals� as well as di�erent heuristics for the choice of these intervals�

��� CHAPTER �� SOFTWARE FOR MEETING SCHEDULING

�
� Dynamicity

The other facet of the meeting scheduling problem that is not well treated
by mathematical methods is its dynamicity� If we take the simple model of
Fig� ���� p� ���� where each meeting is a variable whose domain contains
possible start times� then constraints limit the possible assignments by for�
bidding that two meetings overlap if they involve the same resources
people�
rooms����� The addition of a new meeting represents an important modi�cation
of the problem� since a new variable� with related constraints� must be taken
into account� It is very important from a performance point of view that the
existing solution can be preserved when the new meeting is incorporated in
the system�

With the multistage negotiation protocol described in the previous section�
a value for the new variable can usually be found without modifying the exist�
ing schedule� However� it may occur that the participants are so busy that they
cannot agree on a suitable time� In
Sen and Durfee� ����� Sen and Durfee�
����� several heuristics that can be applied during the selection of intervals
have been studied� They compare three search bias
linear early� linear least
dense� hierarchical� according to �ve criteria
communication cost� iterations�
slots searched� meeting hours missed� density pro�le characteristics�� Applying
the bias �linear early� implies favouring dates closer to the current time� and
results in a calendar with lots of meetings scheduled in the close future and
few meetings farther from the current date� With �linear least dense� and �hi�
erarchical� the strategy is to favour the least dense areas in the calendar when
scheduling a new meeting and results in an even distribution� Which heuristic
is the best depends on the kind of meetings in which the user is involved� It is
a common annoyance with CSPs that a heuristic performs very well on some
problem instances and very badly on other instances of the same problem� For
users with long meetings� �linear early� may be more interesting� because it
leaves longer free periods of time after the initial
dense� part of the calendar�
applying other heuristics leads to a calendar which is more fragmented and
where �nding room for a long meeting is more di�cult� For users involved in
high priority� short notice meetings� �linear early� is less interesting� be�
cause it tends to leave very few opportunities in the close future� on the other
hand� �linear least dense�� and �hierarchical� tend to leave more opportunities
for this kind of meeting�

Rescheduling

As long as new meetings can be incorporated in the existing schedule without
cancelling other assignments� the combinatorial explosion that characterizes
NP�complete problems is avoided� It is clear that a system that doesn�t allow

���� RESEARCH IN DISTRIBUTED CONSTRAINT SATISFACTION ���

rescheduling is not optimal� since moving a couple of existing meetings could
make enough room to incorporate a new one� However� in our service� we have
not o�ered this feature� �rst because it is probably not necessary for many
users� second because we think that the consequences of moving an activity
that has already been scheduled are far too complex to be handled automati�
cally without intervention of the meeting chair� What our system does provide
is the possibility for the meeting chair to reschedule or cancel a meeting� after
having evaluated the potential consequences� for instance by direct communi�
cation with the participants� More importantly� the architecture of our system
allows extensions that would perform this task in a speci�c context� and the
propagation of the update where necessary
for instance to the calendars of
participants��
In a di�erent context� it may be interesting to reschedule a couple of meet�

ings� in order to leave a free interval for the new one� The problem is that
shifting a single assignment may not be su�cient� so one is tempted to cancel
another one� etc� The amount of work performed to �nd a solution can be�
come extremely large� and the process may even discover that there is no way
to schedule the new meeting� because the overall capacity of the resources is
exceeded�
The article
Sen and Durfee� ����� presents a way to allow rescheduling�

while controlling the number of meetings displaced� Their solution is based on
the principle that the bene�t of adding the new meeting mi must be greater
than the cost of cancelling and rescheduling a meeting mj � The problem
with this approach is to de�ne appropriate cost functions� They show how
to take into account the priorities assigned by the users to the meetings� the
computational costs� and the probability that mj cannot be rescheduled after
it has been cancelled� The problem is that there are also �external� costs
that occur in the real world for each cancellation� and there is problably no
practical way to take these costs into account�

Concurrency

The second consequence of dynamicity is that an actor
a user or his agent� can
be simultaneously involved in multiple meeting negotiations� with meetings
overlapping on some time windows
Di
 Dj �' ��� This situation� that we
mentioned on p� ��� has been called Con�ict through Shared Resources
in
Sen and Durfee� ������ These con�icts are inherent to dynamic scheduling
and must be taken into account during the negotiation� We can distinguish
several approaches�

no reservation� an actor which has found a free time interval I in his calen�
dar may propose it for meetings j and k if I � Dj
Dk� This strategy

��	 CHAPTER �� SOFTWARE FOR MEETING SCHEDULING

works as long as I is chosen either for meeting j or for meeting k and
not for both� If the two concurrent processes for meetings j and k both
select I � then the actor is in trouble� because he cannot attend both
meetings� The solution in this case is to keep I assigned to one of the
meetings and to start a new negotiation phase for the other one
Sen
and Durfee� ������ Compared to the other approaches� this one is inter�
esting because making no reservations avoids constraining the problem
unnecessarily and because no additional data structures are necessary�
On the other hand� the cost of rescheduling when a collision occurs can
be very high and the request to cancel an assignment makes the protocol
more complex�

With Meety this strategy corresponds to a user that is invited to two
meetings that may occur at any time during the next week� Because
he doesn�t want to constrain the problem unnecessarily� and he hasn�t
got any appointments in his agenda yet� his answers don�t exclude any
time slots� A collision can occur if
�� there are two organizers�
�� the
organizers choose overlapping times for their meetings�
�� the user is
not able to update his answer between the two decisions�

blocking proposed intervals� an actor which has found a free time interval
I � Dj
Dk� and proposes it for meeting j marks it as unavailable and
doesn�t propose it for meeting k
Sen and Durfee� ����� Cesta et al��
������ If the negotiation for meeting j settles on interval I � a con�ict
has been avoided and the calendar can be updated� if the negotiation for
meeting j abandons interval I � the interval becomes available again and
can be proposed for meeting k if no other interval has been found inbe�
tween� This strategy avoids con�icts and cancellations but may result
in sub�optimal schedules and missed solutions
e�g� if j doesn�t use I
and k receives another interval I � that could have been used for another
meeting����� However� it seems applicable in the case of agents apply�
ing the multistage negotiation protocol� where n the number of intervals
proposed at each stage may be small enough that only a small part of a
user�s schedule is blocked at any given time�

For the user of Meety� this strategy corresponds to splitting the next
week in two and requesting that the �rst meeting occurs in the �rst half
and the second meeting in the second half� There are several drawbacks
with this strategy
�� when the user is invited to the �rst meeting� he is
probably not aware that he will get a second invitation with the same
domain� thus he needs to update his �rst answer when the second invita�
tion arrives�
�� the odds that the organizers �nd suitable dates for the
meetings are greatly reduced� especially if there are many other partic�

���� RESEARCH IN DISTRIBUTED CONSTRAINT SATISFACTION ���

ipants�
�� proposing only a small number of intervals for each meeting
to mimic a multistage negotiation results in more messages exchanged
and more work for the participant and the organizer�

We should also note that all attempts to add steps to a protocol without
reservations with the hope to avoid cancellations introduce some kind of
interval blocking and su�er from the same drawbacks�

minimizing delays� since blocking intervals is not very convenient in Meety�
it is better to look for solutions that reduce the risk of collision� This risk
can be reduced by a quick update of participants� other answers� as soon
as an organizer assigns an interval to a meeting� Thus participant P is
involved in meetings j and k� with risks of collisions becauseDj
Dk �' ��
P �s initial answers for j and k both allow interval I because his agenda
contains no other activity at this time
I � APj and I � APk�� When
hj the organizer of j assigns interval I to his meeting� I can be excluded
from P �s answer for the other meeting very quickly
APk � APk � I��
thus the fact that P will attend meeting j during interval I can be taken
into account by hk the organizer of the second meeting�

This operation can be performed by the user himself� or by an automatic
procedure� It is also possible to implement it when someone�s calendar
is stored online� In all cases� the probability of a collision is reduced
but not completely eliminated� It may still occur that both organizers
choose I simultaneously�

With Microsoft Outlook and other calendaring systems that combine the
availabilities of all participants at a given instant� the risk of collisions
is also minimized� since an organizer may detect an interesting interval
and immediately incorporate his meeting into the calendars of all users�
However� collisions may still occur if two organizers schedule meetings in
the same interval simultaneously
within the time to collect and display
all calendars� to make a selection and to update the calendars�� Like in
the other cases� collisions can be avoided completely only with blocking
strategies� for instance by preventing modi�cation of all agendas during
the search process�

�
� Evolution and agent parameterization

In order to let personal agents make decisions on behalf of a user� it is nec�
essary to provide them with a lot of up�to�date informations regarding user
preferences� habits and environment� Such decisions may include rejecting in�
vitations� guessing at which time the user would prefer the meeting to occur�

��� CHAPTER �� SOFTWARE FOR MEETING SCHEDULING

or estimating that the case is too complex and that the user must enter in the
decision process�

Modeling the whole problem as a CSP with constraints and a cost function
is impractical and requires too much work� Even if it is feasible� the dynamicity
of the problem and the frequent changes in the real�world environment com�
promise this approach� Thus� more elaborate knowledge representation
techniques have been applied�

In
Cesta and D�Aloisi� ����� a system is presented that uses rules and facts
to represent three categories of preferences� Temporal preferences are used
to assign a degree of availability
high� medium� low� null� to time intervals�
according to the type of meeting� Contextual preferences are used to determine
the context of a meeting automatically� without intervention of the user� they
are based on categories of people� types of meetings� locations of meetings�
Autonomy preferences represent user�s choices with respect to his privacy and
the operations that the agent may perform autonomously�

The context of each meeting is important� since it may change a user�s
preferences and behavior� It is unlikely that the same time slots are available
for professional and leisure activities� or that a meeting invitation coming from
a director receives the same attention as those of close colleagues� To take into
account changes in context� Cesta et al� propose that the user builds a context
hierarchy� where rules can be inherited and re�ned in each new context
Cesta
et al�� ������

In
Sen et al�� ������ the issue of con�icts in preferences is raised� They
apply techniques from voting theory to reach consensus choices for meeting
times� that take into account the multiple dimensions
times� locations� peo�
ples� topics� etc�� of a meeting� For each dimension
e�g� weekdays� there are
several allowable options
Monday� Tuesday� ���� for which the user can assign
a preference value between
 and �� The user is also responsible to rate each
dimension against each other� Thus their system is able to make a grounded
choice� even if no one choice appears to be a clear winner along all dimensions�

Another approach� described in
Maes� ���	� is based on machine learning
instead of knowledge representation and rules� The advantage of this approach
is that equivalent results may be obtained with less e�orts� by avoiding the
construction of a model using rules and facts� On the other hand� machine
learning needs a large number of examples to acquire the right behaviors�
provides answers that are not easy to interprete� thus cannot be trusted easily�
and has problems adapting to new contexts and preferences�

In all cases� we see that programming agents that are able to behave simi�
larly to their human owners requires a fair amount of sophistication� both from
the programmer and from the end user� Since the goal of Meety was rather
to support a large number of users in di�erent contexts� and o�er time saving

���� RESEARCH IN DISTRIBUTED CONSTRAINT SATISFACTION ���

right from the beginning� we didn�t try to automate the more complex parts of
the decision process� Instead� we chose to design a system whose functionality
would be easy to extend and to adapt to the expectations of the users�

Chapter summary

After this overview of existing software� we can summarize the speci�cities of
the Meety service�

� Each user can keep his favourite agenda� since the service is not a calen�
dar�

� Privacy is guatanteed since there is no shared agenda� the reasons to
accept or refuse a given date are not communicated�

� It facilitates communication and helps the organizer selecting the best
time for his meeting� but doesn�t make a decision autonomously�

� Dependences between meetings are not handled by the system
anteri�
ority constraints� additional resources� because the peolple involved in
the organization of the meeting are more quali�ed to understand all
constraints� but mobile extensions can be used to automate such tasks

Chap� ������

� It doesn�t attempt to cancel and reschedule meetings automatically for
the purpose of incorporating a new meeting� thus doesn�t su�er from
combinatorial explosion�

� It presents all possible solutions but doesn�t look for an optimum� the
approaches based on priorities or preference levels in answers require
more conventions from the users than the current possibility to attach
comments to each answer�

� Meeting informations are accessible from any computer connected to the
Internet with a standard browser and requires no installation of addi�
tional software�

� It can be extended using mobile code� to make the integration with
other systems easier� and maintain the coherence of information inside
the service automatically� as well as external informations that depend
on it�

Chapter 	

Meety implementation

Chapter highlights

� The environment chosen for the implementation� Java is the underlying
technology� Voyager is used as a mobile code execution environment�
Servlets are used for the Web interface� the relational database MySQL
is used for persistence�

� The implementation follows the architecture of Chap� �� the di�erent
components and the di�erent packages that structure the program are
described� Their relationships have been carefully chosen such that han�
dling many functional and non�functional aspects is as easy as can be�

� Detailed description of calendaring classes� on top of the couple of calen�
daring classes present in the Java standard library� we had to implement
a few nontrivial classes for the domain of time management� They are
described in detail� �rst to show what kind of programming the problem
required� second because we couldn�t �nd equivalent classes or algorithms
elsewhere and we think that they could be useful for other projects�

� The conceptual model indicates the size of the project� use�cases guide
a concise description of the conceptual model� with �� tables in the
database
and signi�cantly more Java classes�� the project is large enough
to reveal some real problems� but small enough to be implemented in a
few months by a single person� This indicates that we chose the right
problem for our case study�

���

���� OVERVIEW ���

Web Server

Voyager Mobile Agent Platform

DatabaseMobile
Extensions

Meeting

Core

Web Client

SQL

HTML
HTTP,

Meety

Remote Method Invocation

co
nt

ro
l)

F
ac

ad
e

(a
cc

es
s

Figure ���� The four main components of the architecture and the languages
used to connect them� Each component is an independent process� started
independently and listening on a prede�ned communication port�

��� Overview

Meety� ourWeb service for meeting scheduling has been implemented according
to the architecture presented in Chap� �� It is made of a core� which encap�
sulates a relational database� and of a software interface that can be accessed
either through a Web server� or by mobile programs
Fig� ���� p� �����

We have used the mobile code platform Voyager� available as a set of li�
braries that can be added to the standard Java environment� The main refer�
ence for this software
ObjectSpace� Inc�� ����� can be obtained on the Web�
We do not describe the product in a dedicated section� but we will present the
features that are relevant to our work where necessary� The service is written
as a Java application� and the library is used as a middleware� specialized to
facilitate communications�

Because communications are mostly handled by the library� and because
mobile code guarantees that communication aspects can be treated indepen�
dently� we were able to concentrate on other aspects while designing the service�

Even if we can delay the choice of a communication protocol� it is essential
that the service presents a good interface� that other software components can
access� We have identi�ed the following requirements for this interface�

� enable that other components access important informations
informa�
tions about meetings and times the functional aspect of the service�

�	
 CHAPTER �� MEETY IMPLEMENTATION

::meety.core

::calendar

::meety.servlets ::meety.service

::com.objectspace.voyager

Figure ���� The main Java packages� represented by a �folder�� and their de�
pendencies� On the right� �meety�core� represents the inaccessible part of the
service
database�� The interface of the service is made of �meety�service�
that contains speci�c classes for meeting� and �calendar� that contains more
general purpose classes� In the top left corner� �meety�servlets� contains
classes for the interaction with the user through the Web� Classes in
�com�objectspace�voyager� are used for the communication between the ser�
vice and its �clients�
�meety�servlets� and mobile codes��

� enable that other components be informed when an event occurs
cre�
ation� deletion� modi�cation of an information the event noti�cation
aspect�

� take into account as many other aspects as possible
access control� re�
source control� etc�� such that the interface doesn�t need to be modi�ed�
event if the implementation of the service must change�

An overview of the service�s Java implementation is given in Fig� ���� p� �	
�
The interface is made of classes in the packages �meety�service�� which con�
tains classes that are speci�c to meeting scheduling
Meeting� Participant�
Answer� etc��� and of package �calendar� that contains general classes for time
management
Month� MonthList� DayList� TemporalDomain� etc��� All these
classes and the relevant algorithms are described in detail in the present chap�
ter� It also describes classes in �meety�core�� which do not belong to the
interface� but handle the communication with the database� with the libraries
for sending emails� and with an external address management service� Ta�
ble ���� p� �	� summarizes the amount of Java source code that was written
to implement the four main parts of the service�

���� OVERVIEW �	�

Package Nb� of classes Nb� of lines
�meety�core� �� 	

�meety�service� 	� ��

�calendar� �� 	�

�meety�servlets� �� �

Total ��� ��

Table ���� Amount of Java source code for the implementation of the four
main parts of Meety�

The interaction with an Internet user running his Web client
browser�
is handled by Servlets
Campione et al�� ������ Servlets are Java programs
that we have installed on the Web server� These classes are grouped in package
�meety�servlets�� their responsibility is to produce HTML pages and formulars
displayed by the Web client for the user� and to propagate the actions of the
users back to the core of the service� according to the �thin client� model
presented in x ��	��� p� ���

For each use�case of Chap� � the server executes some speci�c methods
of one or several Servlets� Thus the Servlets play the role of the �interface
objects� according to the nomenclature of
Jacobson et al�� ����� x ������� To
implement Meety�s Web interface� we have tried to have a limited number
of responsibilities in each Servlet� Hence� there are several of them for each
use�case� which roughly correspond to the steps in the use�case or the pages
displayed� Which Servlet is invoked depends on the URL� and it receives the
state of form controls as parameters� The �rst action is thus to analyse these
inputs� and then to invoke methods of other interface objects� These objects
build the answer sent back to the client� which must be a new HTML page�
For instance� classes of package �calendar� are responsible to create the table
displayed as a small calendar in Fig� ���� p� �
��

According to Jacobson�s nomenclature� Servlets also play the role of �con�
trol objects�� however� there can be only one instance of each Servlet on the
Web server� hence� additional objects are necessary to handle the concurrent
interaction with several users� The current state of each concurrent session is
stored partly in server�side �session� objects and partly in the information that
comes back from the client� Thus� with this structure� there are no explicit
�control objects�� the sequence of events for each session is handled jointly by
Servlets and session objects� The �ow of execution is controlled by providing
the right hyperlinks and form actions in the HTML pages sent to the client�
When the user chooses a given link or clicks on a form button� he may interact
with di�erent Servlets and even di�erent services�

�	� CHAPTER �� MEETY IMPLEMENTATION

The Servlets represent a second layer of interface for the service
its Web
interface� while the main interface is provided by classes in �meety�service��
The interaction between Servlets and the main interface is implemented using
well�de�ned instances
e�g� meety�service�Facade� and the remote method
invocation
RMI� mechanism of Java
x 	��� p� ����
Exactly the same set of instances and methods can be accessed by mobile

extensions� in order to carry user�speci�c tasks� In this case� the method
invocations are not performed remotely but locally� since the extensions and
the service interface are instantiated in the same Java virtual machine�

��� Calendaring

Four standard classes allow the manipulation of dates and times in Java�

java�util�Date� This class represents a speci�c instant in time� with mil�
lisecond precision� A long integer
�	 bits� is used to store the value�
thus can represent dates until the end of year ���������� When this
class is instanciated without parameters� the instance is initialized with
the current system time� Instances of this class can be compared with
methods before� after and equals�

java�util�Calendar� The responsibility of this class is to carry conversions
between a Date object and a set of integer �elds such as YEAR� MONTH�
DAY� HOUR� and so on� Each instance of Calendar stores a Date inter�
nally� The conversions take into account the complexities of calendaring�
like leap years� and are parameterized by the time zone� This class is
also able to carry arithmetic operations on the �elds� and to compute
useful values� such as the day of week�

java�util�TimeZone� By choosing between one of the prede�ned time zones�
it is possible to take into account o�sets between GMT and local times�
as well as daylight savings� The Java run�time system provides a default
time zone� which can also be changed programmatically�

java�text�DateFormat� The responsibility of this class is to format and
parse dates or time in a language�dependent manner� and with various
amounts of details�

We have implemented several additional classes to handle abstraction of
the calendaring domain� These classes are grouped in package �calendar��
They are summarized in Fig� ���� p� �	��

���� CALENDARING �	�

::Month

::DayList ::MonthList

::Day

::DayFormatException

::java.lang.Exception

::TemporalInterval

::TemporalIntervalException

::TemporalDomain

::TemporalDomainException

::TemporalAdder

::MonthFormatException

*

vectMonthList

*

vectDayList

* intervals * intervals

Figure ���� UML class diagram representing the main classes in package �cal�
endar�� At the top there are three fundamental abstractions Day� Month and
TemporalInterval� Whole groups of these objects can be handled by the lists
represented at the middle level
DayList� MonthList and TemporalDomain��
At the bottom� there are four new kinds of exceptions that may be thrown
when an operation is unable to produce the expected result� More or less
all these classes use the four standard classes Date� Calendar� TimeZone and
DateFormat� thus we omit them for the sake of clarity� Other very common
classes like java�lang�String or java�util�Vector are also omitted�

�		 CHAPTER �� MEETY IMPLEMENTATION

Package �calendar� contains additional classes for the graphical representa�
tion of calendar elements using HTML or Abstract Windowing Toolkit
AWT�
objects� We will omit the description of these conceptually simple classes�

�
�
	 TemporalInterval

Instances of class TemporalInterval
Fig� ��	� p� �	�� represent a non�empty
time period� It is a fundamental abstraction for the domain of time manage�
ment� The class uses Java�s Date class to represent the two extreme points
�minA� and �maxA� of the interval A� Instances of this class are immutable�
cloneable and serializable�

Two constructors are provided for this class� The �rst one receives the
two instances of Date that represent minA and maxA� It throws a Temporal�
IntervalException if minA 	 maxA� The other constructor takes a String
and parses it� It expects two long integers� separated by a space and sur�
rounded by square brackets� The two integers are converted to instances of
Date� and an exception is thrown if the parsing fails� or if the values are not
ordered as expected�

One important responsibility of this class is to perform comparisons of
intervals� There are thirteen possible temporal relationships between intervals�
that were identi�ed and named in
Allen� ������ We have implemented thirteen
corresponding methods� summarized in Fig� ���� p� �	�� returning a boolean
value� which are very useful for all subsequent operations� For each method�
the answer is obtained with a minimal number of comparisons�

A second version of the contains method takes a Date as parameter and
returns true if the Date is inside the interval
the interval is closed� thus the
answer is �true� for both end points��

We have implemented � additional comparison functions� Although they
are all combinations of the basic �� relationships� they are exploited for the ad�
dition and subtraction of intervals� and can be performed more e�ciently and
with fewer tests than a combination of basic comparisons� Their mathematical
de�nition is given in Fig� ���� p� �	��

Three methods return a new TemporalInterval that can be easily com�
puted from another one� everythingAfter that returns an interval going from
the end of the current one to the highest possible Date� everythingBefore�
that returns an interval going from the earliest possible Date to the beginning
of the current interval� extendedToEndOf that returns a new interval beginning
like the current one and ending like the given one� All these methods throw
a TemporalIntervalException if the extremities of the new interval are not
suitably ordered� We have also implemented a static method everything that
returns the largest possible interval�

���� CALENDARING �	�

::TemporalInterval

begin
end
TemporalInterval(Date, Date)
TemporalInterval(String)
boolean after(TemporalInterval)
boolean before(TemporalInterval)
boolean contains(Date)
boolean contains(TemporalInterval)
boolean containsStartedBy(TemporalInterval)
boolean disjoint(TemporalInterval)
long duration()
boolean during(TemporalInterval)
boolean duringFinishes(TemporalInterval)
boolean equals(Object)
boolean equalsFinishedBy(TemporalInterval)
TemporalInterval everything()
TemporalInterval everythingAfter()
TemporalInterval everythingBefore()
TemporalInterval extendedToEndOf(TemporalInterval)
boolean finishedBy(TemporalInterval)
boolean finishes(TemporalInterval)
Date getBegin()
Date getEnd()
boolean meets(TemporalInterval)
boolean meetsOverlapsStarts(TemporalInterval)
boolean metBy(TemporalInterval)
boolean overlappedBy(TemporalInterval)
boolean overlappedByMetBy(TemporalInterval)
boolean overlaps(TemporalInterval)
boolean shiftedBy(TemporalInterval)
boolean shortenedBy(TemporalInterval)
boolean startedBy(TemporalInterval)
boolean starts(TemporalInterval)
TemporalInterval[] subtractInterval(TemporalInterval)
boolean suppressedBy(TemporalInterval)
String toExtern()
toFirstDay0h(Calendar)
String toISOString(TimeZone)
String toString(DateFormat)

::java.lang.Cloneable

::java.io.Serializable

::TemporalIntervalException

Figure ��	� TemporalInterval� its attributes� methods and main relationships
to other classes�

�	� CHAPTER �� MEETY IMPLEMENTATION

A

B A equals B

A

B A before B B after A

A

B A meets B B metBy A

A

B A overlaps B B overlappedBy A

A

B A during B B contains A

A

B A starts B B startedBy A

A

B A finishes B B finishedBy A

Figure ���� The thirteen relationships between two temporal intervals� The
gray areas represents the intervals� the time runs along the abscissa�

Relationship De�nition

containsStartedBy A contains B � A startedBy B
disjoint A before B � A meets B � A metBy B � A after B

duringFinishes A during B � A finishes B
equalsFinishedBy A equals B � A finishedBy B

meetsOverlapsStarts A meets B � A overlaps B � A starts B
overlappedByMetBy A overlappedBy B � A metBy B

shiftedBy A startedBy B � A overlappedBy B
shortenedBy A overlaps B � A finishedBy B
suppressedBy A starts B � A during B � A finishes B � A equals B

Figure ���� Additional relationships and their de�nitions in terms of basic
relationships�

���� CALENDARING �	�

The method subtractInterval performs the subtraction of another in�
terval B from the current one A� Depending on the case� it may return
�
� or � intervals� It has been implemented by returning a variable�size array
with the right number of instances of TemporalInterval� The method must
distinguish �ve cases�

�� A suppressedBy B� the resulting array has
 element

�� A disjoint B� the resulting array has � element
A�

�� A shortenedBy B� the resulting array has � element
(minA�minB)�

	� A shiftedBy B� the resulting array has � element
(maxB�maxA)�

�� A contains B� the resulting array has � elements
(minA�minB) and
(maxB�maxA)�

We provide four methods to read values related to the interval� getBegin�
getEnd that return a Date� duration that returns a long integer that repre�
sents the duration in milliseconds� toFirstDay�h that takes the beginning of
the interval A� inserts it into the given instance of Calendar and clears the
hour� minute� second and millisecond �elds� such that the Calendar is posi�
tioned at the beginning of the day that contains minA� This last operation is
implicitly dependent of the current time zone of the Calendar�
There are also three methods that return a new String� toExtern returns

the integers corresponding to minA and maxA within square brackets
what
the second constructor expects�� toISOString returns the hours and minutes
of minA and maxA with the separator recommended by the ISO standard

e�g�
��

"���

�� and is parameterized by the time zone� toString applies
the given DateFormat� with its own time zone to both end points and returns
them between square brackets and separated by a comma�

�
�
� TemporalDomain

A temporal domainD can be represented by an ordered list of disjoint temporal
intervals

D '

n�

j��

Ij where Ik before Ik
��
k � f�� � � � � n� �g

In our design� they are represented by instances of TemporalDomain
Fig� ����
p� �	��� These instances are cloneable and serializable� but unlike the instances
of TemporalInterval they can be changed by some methods�

�	� CHAPTER �� MEETY IMPLEMENTATION

::TemporalDomain

TemporalDomain()
TemporalDomain(String)
TemporalDomain add(TemporalDomain)
addInterval(TemporalInterval)
Object clone()
TemporalDomain complement()
concatInterval(TemporalInterval)
boolean contains(Date)
boolean disjoint(TemporalDomain)
TemporalInterval elementAt(int)
TemporalInterval elementAt(Date)
boolean equals(Object)
DayList getDayList(TimeZone)
TemporalInterval[] getIntervalsFor(Day,TimeZone)
String getIntervalsTextual(Day,TimeZone)
TemporalDomain intersect(TemporalDomain)
intersectInterval(TemporalInterval)
boolean isEmpty()
int size()
TemporalDomain subtract(TemporalDomain)
subtractInterval(TemporalInterval)
String toExtern()
String toString(DateFormat)

::java.io.Serializable

::java.lang.Cloneable

::TemporalInterval

::TemporalDomainException

::TemporalAdder

::Day

*

intervals

Figure ���� TemporalDomain� its attributes� methods and main relationships
to other classes�

There are two constructors for this class� one that takes no parameter
and builds an empty temporal domain� and one that takes the description
of a temporal domain encoded in a String� This encoding is made of a
pre�x� of the number of intervals between parentheses� and of the external
representation of the intervals themselves� This constructor may throw a new
TemporalDomainException if the encoding rules are not respected�

The method clone can be called to obtain a copy of a domain� The new
instance contains its own list of intervals� but the intervals themselves don�t
need to be duplicated� since there is no way to modify them�

Four methods modify the contents of the temporal domain D� All mod�
i�cations take a TemporalInterval I as parameter� The simplest one is
concatInterval which appends I at the end of D� without checking that
I
 D ' �� thus this operation must be used with care� or the new state
of D may be inconsistent with our de�nition� The method addInterval

���� CALENDARING �	�

must be used to take into account the possible intersections between D and I �
This rather complex operation is delegated to an instance of TemporalAdder

x ������ p� ��
�� The method subtractInterval is performed by replacing
each Ij of D with I

�

j ' Ij n I � where the subtraction is performed by method
subtractInterval of class TemporalInterval
p� �	��� The temporal com�
plexity of this operation is O
n� where n is the number of intervals in D� The
method intersectInterval is performed by subtracting the two intervals
(���min I) and (max I��) from D�

Four methods build a new temporal domain D� from the current one D�

�� With the method complement�D� ' (����)nD� the new domain contains
all intervals that are not in D� The complement can be computed in a single
�pass� by examining the beginning and the end of each interval in D� thus its
temporal complexity is O
n� where n is the number of intervals in D�
�� With
the method add� which takes an other temporal domain O as parameter� D� '
D � O� This operation is implemented by making a copy of D using the
clone method and calling addInterval for each interval in O� The resulting
temporal complexity is O
n �m� where n is the number of intervals in D and m
is the number of intervals in O�
�� With the method subtract� D� ' D nO�
The implementation of this method is similar to the previous one�
	� With
the method intersect� D� ' D
 O� The result is obtained in two phases�
�rst using complement to compute E ' (����) nO� then using subtract to
compute D� ' D n E� It is certainly possible to optimize add� subtract and
intersect� but we have preferred to rely on our previous implementations of
addInterval and subtractInterval that are already quite elaborate� since
the performances were su�cient for our project�

Four boolean methods check certain conditions� contains returns true if
the given date is within one of the intervals of D� disjoint checks whether
the intersection of two domains is empty� equals veri�es that the intervals in
two domains are the same� isEmpty is true if the domain contains no interval�

The current contents of the domain can also be accessed in several ways�
The number of intervals n is returned by method size� and the ith interval
is returned by method elementAt� A second version of elementAt returns
the interval that contains a given Date� or null if no such interval can be
found� The method getDayList returns the list of days �touched� by the
domain
x ����	� p� ��	�� the temporal complexity of this operation is O
n �
m� where n is the number of intervals in D and m is the number of days�
since subtractInterval is applied for each day found in the domain� With
getIntervalsFor all intervals for a given day are returned� First the interval I
that corresponds to the day is computed
x ����	� p� ��	�� then the intersection
of D and I is computed with intersectInterval� �nally an array with the
remaining intervals is returned� A similar method is getIntervalsTextual�

��
 CHAPTER �� MEETY IMPLEMENTATION

::TemporalAdder

inserted
temporary
newInterval
TemporalAdder(TemporalInterval,Vector)
addInterval(TemporalInterval)
Vector getIntervals()
handleAfter(TemporalInterval)
handleBefore(TemporalInterval)
handleContainsStartedBy(TemporalInterval)
handleDuringFinishes(TemporalInterval)
handleEqualsFinishedBy(TemporalInterval)
handleMeetsOverlapsStarts(TemporalInterval)
handleOverlappedByMetBy(TemporalInterval)

::TemporalInterval*

intervals

Figure ���� TemporalAdder� its attributes� methods and main relationships to
other classes�

which calls getIntervalsFor and then returns a line describing the start and
end times of each interval found�
The two last methods provide a readable representation of the domain�

toExtern provides the representation expected by the second constructor
a
pre�x followed by n between parentheses followed by the intervals Ik�� The
method toString returns the same kind of description but applies the provided
DateFormat to the end points of each interval
instead of the long integers that
are generated by the method toExtern of class TemporalInterval��

�
�
� TemporalAdder

The class TemporalAdder
Fig� ���� p� ��
� is responsible for the addition of a
new interval J to an existing domain D '

Sn

k�� Ik� This addition is not easy
because J may intersect any of the Ik and all intervals must be disjoint and
ordered in the resulting domain D�� On the other hand� knowing that the Ik
are disjoint and sorted makes many other operations easier�
The parameters of the constructor are the TemporalInterval J and a

Vector containing the Ik� This function initializes attributes of the instance
and calls addInterval for each Ik � When the constructor returns� the insertion
is �nished and method getIntervals may be called to retrieve the elements
of D��
For each Ik � addInterval is invoked by the constructor� This method

���� CALENDARING ���

J�

J�

D

I� I� I� I	

J�

J	

J�

J�

J�

J�

J�

Figure ���� Illustration for the insertion of an interval into a domain� The
domain that must be updated is D� The Jk represent di�erent possible con�
�gurations but the algorithm considers only one J at a time�

compares J and Ik and passes Ik to one of the seven handle��� methods�
according to the result of the comparison� The di�erent cases referenced are
illustrated in Fig� ���� p� ���� Before we can explain how the intervals are
handled� we need to describe the attributes of the class more precisely�

� newInterval is a reference to the TemporalInterval J

� intervals is an initially empty list that will be �lled when the Ik in
domain D are examined

� inserted is a boolean value that is initially false and that is set to
true when J is �encountered� by the algorithm� it is used for instance to
handle the special case of J� which is not encountred when the algorithm
loops on the Ik

� temporary is a pointer to a TemporalInterval that cannot be inserted
in intervals because its end is not yet determined� for instance in the
case of J�� it holds (min I��max J�) while the algorithm examinates I�
and I��

��� CHAPTER �� MEETY IMPLEMENTATION

The seven handle��� methods receive the �current� interval Ik�

��

handleBefore is called when Ik before J
for instance I� and
J���

� append Ik to intervals

��

handleAfter is called when Ik after J �

� If inserted is false
for instance I� and J��

� append J to intervals

� append Ik to intervals

� inserted � true

� else
inserted is true�

� If temporary is null
for instance I� and J��

� append Ik to intervals

� else
temporary is not null� for instance I� and J	�

� append temporary to intervals

� append Ik to intervals

� temporary� null

��

handleMeetsOverlapsStarts is called when Ik meets� overlaps
or starts J
for instance I� and J���

� inserted � true

� temporary� (min Ik�max J)

	�

handleDuringFinishes is called when Ik during or finishes
J

� If inserted is false
for instance I� and J��

� inserted � true

� temporary� J

� else
inserted is true� for instance I� and J��

� nothing to do

��

handleEqualsfinishedBy is called when Ik equals or
finishedBy J
for instance I� and J���

� inserted � true

� temporary� Ik

���� CALENDARING ���

��

handleContainsStartedBy is called when Ik contains or
startedBy J
for instance I� and J
��

� inserted � true

� append Ik to intervals

��

handleOverlappedByMetBy is called when Ik overlappedBy or
metBy J

� If inserted is false
for instance I� and J��

� inserted� true

� append (min J�max Ik) to intervals

� else
inserted is true� for instance I� and J��

� append (min temporary�max Ik) to intervals

� temporary� null

After looping on all Ik� D
� is not always fully computed� The last part

of the algorithm ensures that J has actually been encountered and that the
pointer temporary is null�

��

� If inserted is false
for instance J��

� inserted� true

� append J to intervals

� else
inserted is true�

� If temporary is not null

� append temporary to intervals

� temporary� null

� else
temporary is null�

� nothing to do

The following properties must be veri�ed to ensure that our algorithm is
correct�

� The algorithm terminates� Since each Ik in D is examined only once�
the algorithm terminates after n steps� Furthermore� the number of
comparisons and operations for each step can be bounded by a constant
value� thus the temporal complexity of the algorithm is O
n��

� The �� possible cases are handled� The seven handle��� functions
cover all possible relationships between Ik and J � In each case� the func�
tion that must be executed is uniquely determined by the tests carried
in addInterval�

��	 CHAPTER �� MEETY IMPLEMENTATION

� The intervals in D� are disjoint and sorted� This property is guar�
anteed because
a� The intervals in D are disjoint and sorted�
b� The
intervals Ik are visited in sequence�
c� All functions that append an
interval to intervals
�������� either make sure that it is disjoint from
others or perform the necessary combination of intervals�
d� When two
intervals are appended� the order is preserved
���

� J is always present in D�� If J is disjoint from all Ik it is inserted
by the �rst branch of handleAfter
�� or by the �nal step
��� If J
is contained in one of the Ik� it doesn�t need to be inserted
����� If J
intersects one of the Ik� the interval is widened
��	����

� All Ik are always present in D�� In functions
������ Ik is appended
directly� In
	� Ik is contained in J and doesn�t need to be inserted�
In
�� the interval is widened to include Ik� In
���� Ik or a widened
interval containing it is copied to temporary� which is always inserted in
intervals
�������

�
�
� Day

Instances of class Day
Fig� ���
� p� ���� represent one day� Once an instance
is created� its attributes cannot be changed� The class is cloneable� as well as
serializable�

There are three constructors for this class� one that takes three integers
values for year� month and day� with the particularity that the month must
take a value between

January� and ��
December�� The second construc�
tor takes a String� structured according to the ISO standard representation

International Organization for Standardization� ������ A date is represented
by �year�month�day�� where year is unabridged� month is a two digit value
between
�
January� and ��
December�� and day is a two digit value between

� and the number of days in the month� The third constructor of the class is
able to initialize the �elds according to the values in the provided Calendar�
All these constructors pass three integers to initialize� which checks that
the values are within acceptable ranges before storing them in the attributes
of the instance� A DayFormatException is thrown if the instance cannot be
initialized properly�

Important methods are before� after and equals that allow the com�
parison of two instances by comparing their �elds� This e�cient comparison
is made possible by the �normalization� step in method initialize�

Methods dayOfWeek� isBusiness� isWeekend are useful to select certain
days in a set� or to line them in colums on user interfaces� The computations

���� CALENDARING ���

::Day

year
month
day
Day(int,int,int)
Day(String)
Day(java.util.Calendar)
boolean after(Day)
boolean before(Day)
int dayOfWeek()
boolean equals(Object)
int getDay()
int getMonth()
int getYear()
initialize(int,int,int)
into(java.util.Calendar)
boolean isBusiness()
boolean isWeekend()
TemporalInterval toInterval(TimeZone)
String toString()

::java.lang.Cloneable

::java.io.Serializable

::DayFormatException

::TemporalInterval

Figure ���
� Day� its attributes� methods and main relationships to other
classes�

are delegated to instances of Calendar that are created when the methods are
invoked�

The contents of Day instances can be accessed in several ways� getDay�
getMonth� getYear return the corresponding �elds� into writes the �elds into
the provided instance of Calendar� toString represents the day according to
the ISO standard�

The other way to access the contents of a Day is to use method toInterval�
This method returns a new TemporalInterval that represents the day� accord�
ing to the given TimeZone� Fig� ����� p� ��� illustrates why it is necessary to
take the time zone into account�

�
�
� DayList

Instances of class DayList
Fig� ����� p� ���� contain references to an arbitrary
number of days� They can be serialized� cloned and modi�ed during their
existence� The days are stored in chronological order� and the same day can
be referenced several times�

��� CHAPTER �� MEETY IMPLEMENTATION

6:00 18:0012:00 6:00 18:0012:00

6:00 18:0012:00 6:00 18:0012:00

2000-09-112000-09-10

2000-09-11 2000-09-12

LONDON

SHANGHAI

time
CA B D E

Figure ����� At the point in time C� the local time in London is �

�
����
���

 GMT� and the local time in Shanghai
GMT#�� is �

�
���� ���

CTT� This means that the �day �

�
����� has started �� hours earlier for
someone in London
at point B� and it will last for � more hours
to point
E�� But for someone in Shanghai� the same �day �

�
����� has started ��
hours earlier at point A
it was �

�
���
 ���

 GMT� and will last just
one more hour to point D�
it will be �

�
���� ���

 GMT�� This example
illustrates that the temporal interval that corresponds to a day depends on
the time zone�

The class has two constructors� The �rst one initializes an empty list�
The second one receives a String that represents the days of the list in ISO
format� separated by a vertical delimiter
j�� This external representation is
produced by method toString�
New instances can also be produced by the clone method� which builds a

new DayList with its own Vector� The new list can safely refer to the same
instances of Day since these instances cannot be modi�ed�
Two instances can be compared using equals� This method returns true

if all days in both lists are equal�
The basic list manipulation methods are provided� addElement inserts

a Day into the list� according to the chronological order� but without checking
whether it�s already present� size returns the number of elements in the list�
elementAt returns the ith element� contains checks if a Day is present in the
list� remove receives a Day and deletes the �rst corresponding instance from
the list�

Subsets of a DayList L are returned by �ve methods� businessDays re�

���� CALENDARING ���

::DayList

curIndex
elems
DayList()
DayList(String)
addElement(Day)
append(DayList,int)
int append(DayList,int,Day)
DayList between(Day,Day)
DayList businessDays()
Object clone()
boolean contains(Day)
Day elementAt(int)
boolean equals(Object)
merge(DayList)
mergeNonEmpty(DayList)
mergeRemaining()
mergeUpToDate(Day)
remove(Day)
DayList singleDay(int)
int size()
DayList subtract(DayList)
String toString()
DayList weekEndDays()

::Day

::java.io.Serializable

::java.lang.Cloneable

*

vectDayList

Figure ����� DayList� its attributes� methods and main relationships to other
classes�

turns a new DayList that contains only the elements of L that correspond
to Monday� Tuesday� Wednesday� Thursday or Friday in the Gregorian cal�
endar� Similarly� weekEndDays returns a new DayList with only Saturdays
and Sundays� With singleDay� instances corresponding to one single day are
returned�

Another method of this category is between that returns a new DayList

containing only the element of L that are between two given days
inclusively��
Finally� subtract returns a new DayList that contains only the elements of L
that are not present in the provided list� Elements of both lists are examined
only once� thus the temporal complexity of this method is O
n� where n is the
number of elements in L� as for all other methods returning a subset� The two
versions of append are used by subtract to copy elements from a given index

the integer parameter� up to an optional limit
the Day parameter��

��� CHAPTER �� MEETY IMPLEMENTATION

::Month

year
month
Month(int,int)
Month(String)
Month(TimeZone)
boolean after(Month)
boolean equals(Object)
DayList getDays()
int getJDKIndex()
String getName()
int getYear()
String toISOString()
String toString()

::java.io.Serializable

::java.lang.Cloneable

::MonthFormatException

::Day

::DayList

Figure ����� Month� its attributes� methods and main relationships to other
classes�

Inserting the contents of another DayList into an existing one is per�
formed by merge� This method preserves the chronological order and keeps all
elements� even if there are duplicates� By using the helper methods merge���
and the attributes curIndex and elems� this methods is able to merge both
lists in O
n� steps�

�
�
� Month

Instances of class Month
Fig� ����� p� ���� represent a month in a similar
way that instances of Day represent days� These instances are cloneable and
serializable� they cannot be modi�ed after their creation�
Three constructors can be used to create intances� The �rst one takes

a year and a month
between
 and ��� and stores them in the attributes�
If the month is not in the expected range� a new MonthFormatException is
thrown� The second constructor takes an ISO representation of the month
with a fully represented year and two digits for the month� between
� and ���
If the String is not well�formed� a MonthFormatException is thrown� The
third constructor initializes the new instance to the current month� which is
computed using the system time and the given TimeZone�
Months can be compared using methods after and equals�
The contents of an instance can be accessed using methods getYear and

getJDKIndex� The latter returns the integer between
 and �� that represents
the month�

���� CALENDARING ���

::MonthList

MonthList()
MonthList(int,TimeZone)
MonthList(String)
addElement(Month)
addElementSorted(Month)
Object clone()
boolean contains(Month)
Month elementAt(int)
boolean equals(Object)
DayList getDays()
remove(Month)
int size()
String toString()

::java.io.Serializable

::java.lang.Cloneable

::MonthFormatException

::DayList

::Month*

vectMonthList

Figure ���	� MonthList� its attributes� methods and main relationships to
other classes�

A month can be represented in ISO format using toISOString� a textual
form comprising the month name can be obtained with toString� The name
only can also be obtained with getName�
Method getDays creates a new DayList and initializes it with all days of

the month�

�
�

 MonthList

Instances of class MonthList
Fig� ���	� p� ���� represent a list of months� in
a similar way that instances of DayList represent a list of days� Instances of
this class can be serialized� cloned and modi�ed� The months can be stored in
chronological order� and may be present several times in the list�
The �rst constructor takes no parameter and returns an empty list� The

second one receives an integer n and a TimeZone� It initializes the list with n
consecutive months� starting with the current one
for the given time zone��
The third constructor takes a String where months to insert in the list are
represented in ISO format� separated by vertical delimiters
j��
With toString� an external representation can be obtained� This repre�

sentation corresponds to what the third constructor is expecting�
The clone method returns a new copy of the list� with its own Vector

of elements� The instances of Month are not copied� since they cannot be
changed�

��
 CHAPTER �� MEETY IMPLEMENTATION

Figure ����� An HTML form for the selection of days
from a list of months
previously selected in a similiar way��

Usual list manipulation methods are provided� addElement appends a
Month at the end of the list� addElementSorted inserts it in chronological
order� size returns the number of elements in the list� elementAt returns the
ith element� contains checks if a Month is present in the list� remove receives
a Month and deletes the �rst corresponding instance from the list�
Two lists can be compared using method equals which returns true if

both lists contain the same months�
With getDays a new DayList containing all the days in all the months is

computed�

�
�
� Interface and control classes

In addition to the entity classes described in the previous sections� the package
�calendar� contains a few classes that are able to provide visual representa�
tions of calendars� either as HTML tables or with widgets of the standard Java
library
AWT�� Instances of theses classes correspond to di�erent time gran�
ularities
years� months� days� and can be used to store� display and modify
the status
selected or unselected� of the corresponding elements�
An example of such visual representation is visible in Fig� ����� p� ��
�

A DayList is used to store selected dates
those with a checkbox�� Interface

���� PACKAGE
MEETY�SERVICE� ���

::Answer

String comment

::User

::Meeting

boolean announced
Date created
Date modified
String description
String title

::DayList::TemporalDomain

::MonthList

::MeetingList

::ParticipantList

::Password

String password
Date lastLogin

::Notifications

flags

::Announce

Date lastTime

::Shortcut

long shortcutId

::TimeZone

::AddessBook

::ABElement

String label

1

participantId

1

meetingId

1

refusedDays

1

refusedHours

1 creator

1
proposedMonths

1 proposedDays1
electedDays

1

proposedHours

1 electedHours

1

*

1

*

0..1

1

11

1 0..1

1

1

1

11 owner

*

1

Figure ����� UML class diagram representing the main entities at a conceptual
level� While it is quite close to the classes that are actually implemented it
doesn�t represent them exactly� Some of the actual Java classes are missing
and the dependences on this model don�t represent actual dependencies or
associations between instances� The entities in this diagram are closer to the
tables of the database and their relationships� which are stored using long
integers�

classes perform the necessary computations to represent the calendar in HTML
format� with the right set of boxes checked� They also examinate the answer
sent by the client� detect which boxes are still checked and update the DayList
correspondingly�

��� Package �meety�service�

In addition to the calendaring classes above� the �internal� interface of the
service is made up of classes in package �meety�service�� The diagram in
Fig� ����� p� ��� depicts these classes at a conceptual level�

��� CHAPTER �� MEETY IMPLEMENTATION

By following the sequence of the use�cases� we can brie�y describe the
responsibilities of these classes �

Obtain password� The class User is responsible to represent a user� with
a unique user ID� and an email address� The class Password stores a
registered user�s password and remembers the last time the user logged
in� such that unused accounts can be cleared after a few months�

Manage meeting list� For each User� a MeetingList is used to store ref�
erences to the meetings in which the user is involved� either as creator�
or as participant� For each Meeting� a title� a description� a reference
to the creator are stored� as well as the creation and last modi�cation
dates�

Create meeting� For each Meeting� the system maintains a Participant�
List that stores references to invited users� A MonthList is used to
stored proposed months� a DayList stores dates proposed by the orga�
nizer� a TemporalDomain can be used to store possible stretches of time
with a �ner granularity� An instance of Notifications is a means for
the system to know which types of noti�cations are enabled for a given
meeting� Current types of noti�cations are
�� the organizer receives
an email every time a participant answers�
�� the organizer receives an
email when all participants have answered�
�� the organizer receives an
email when all possible dates have been removed by participants�
	� the
system resends invitations to participants that have not answered every
�	 hours� Class Announce is used to determine whether invitations have
already been sent� It remembers at what time the announcement was
made such that the delay of �	 hours between two noti�cations can be
respected�

Answer to invitation� Email messages sent to invite participants contain
an URL that can be used to provide an answer� even for participants
that are not registered users� The URL is di�erent for each participant
and corresponds to a unique Shortcut� Since each shortcut is associated
with one User and one Meeting� the system is able to �gure out which
information must be sent to the client that uses this URL� It is usu�
ally an HTTP form that the participant can use to provide his Answer�
The Answer stores dates and times refused by the user and an optional
comment�

Update constraints� No additional entities� Display all Meetings in the
current user�s MeetingList whose proposed days or times intersect a
given TemporalInterval�

���� PACKAGE
MEETY�CORE� ���

Choose time� First� all the Answers associated to the current Meeting are
summarized� then the organizer schedules the Meeting� he speci�es the
value of �electedDays�
a Daylist� and optionally of �electedHours�
a
TemporalDomain��

Change password� No additional entities� A new Password is associtated
with the current User�

Merge accounts� No additional entities� All the entities formerly associated
with a given User are associated with another one� This requires cautious
handling of some special cases
duplicates in Shortcuts� MeetingList�
etc���

Manage address book� For each User� the system stores an AddressBook

that can be used to retrieve his acquaintances
ABElement� and select
meeting participants among them�

In addition� the system associates a TimeZone with each User in order to
display correct temporal informations� For instance the creation date of a
meeting� that must not be formatted according to the time zone of the server�
but according to the time zone of the user�

Other important classes in package �meety�service� are Facade and Au�

thorization which have already been presented in x ��	�	� p� ��� A single
instance of Facade is instantiated and publised in Voyager�s Namespace� The
Namespace plays an equivalent role to the global dictionary in M�
x ������
p� ���� Examples are provided in Chap� ��

��� Package �meety�core�

This package contains all the classes that must not be accessed directly by
clients� mostly database managers� Our implementation uses MySQL�� an
open source relational database management system� Communication between
Java and the database uses JDBC
Campione et al�� ����� and �MM MySQL�
open source JDBC drivers�� Principles for the implementation of managers
have already been described in x ��	��� p� ���
One peculiarity of our implementation is that address books are not stored

in the same database as other entities but are managed on their own by an
�external� service
Greppin� �

�� Furthermore� this external service is not

�http���www	mysql	com�
�http���mmmysql	sourceforge	net�

��	 CHAPTER �� MEETY IMPLEMENTATION

implemented with Java technology but with PHP Web technology�� There
was absolutely no technical reason to split the service� in fact� it made the
implementation more complicated� but it was interesting to work with two
di�erent technologies in order to compare them� It was also informative to
face the concrete problems of physical distribution� to see how sessions can
be managed when more than one service is involved� etc� Additionally� it
makes sense to isolate address management from the rest of the service because
this part may be reused for other Web services that also require an address
book for each user� The address book service can be accessed by HTTP� A
few conventions enable
�� a session that starts when Meety authenticates a
registered user with his email address and password to be safely �inherited��

�� requests coming from Meety to be authenticated and trusted� knowing that
Meety itself doesn�t reveal con�dential informations to unauthorized users�
Only small modi�cations of the address book service are necessary� in order to
extend these conventions and trust additional third�party services�

Chapter summary

The current implementation of Meety follows the principles of Chap� �� Classes
in the interface provide access to meeting informations and events at a proce�
dural level� Additional classes� isolated in their own package produce HTML
pages and handle user input� Other kind of interfaces� speci�c to some devices
or services can supplement the existing ones� without collaboration between
clients and the service provider� thanks to the ability to move code�

The classes in package �calendar� that have been presented in detail in
this chapter represent a potentially useful addition to standard Java calendar�
ing� These classes are independent from Meety and could be reused by other
applications that must deal with temporal data�

The methods of all classes in the service software interface are public� We
expect to be able to preserve their signatures� even if the internals of the
service must be changed� and the implementation of the methods must be
rewritten accordingly� In an open context� where many clients from unknown
origins may decide to interact with the service� it is extremely important to
ensure this kind of stability� The best way to avoid introducing changes that
break the compatibility with existing clients is to consider interface classes and
method signatures as contracts and to exploit encapsulation to preserve these
contracts� This necessity to o�er a stable interface is an additional motivation
to keep service interfaces very simple� and to let the clients extend them� by
executing their own strategies directly on the server� This is much better that

�http���www	php	net�

���� PACKAGE
MEETY�CORE� ���

cluttering the service with features that are speci�c to one client� that become
obsolete when the client changes or disappears� and that make the service
much more di�cult to maintain and to understand�
From the point of view of constraint satisfaction� meetings can be con�

sidered as variables and their domains are the dates or temporal domains
proposed by the organizer� The answers of participants represent constraints�
that the organizer is able to visualize using our system� We found that no
great sophistication is necessary in order to present constraints in an easy to
understand format� and to let the organizer use his own judgement to select
the best date for the meeting� Since the system doesn�t actually choose the
values assigned to variables� and doesn�t try to reschedule when a meeting is
over�constrained� it avoids the combinatorial complexity that usually strikes
in this kind of programs�
Dependencies between meetings are also out of the scope of the system�

Such dependencies
people attending two meetings� need to �nish one meeting
before the next one starts as in job scheduling problems� etc�� are usually di��
cult to formalize outside of a speci�c organizational context� hence organizers
and participants with their understanding of their speci�c context are much
better positioned to avoid con�icts and ensure consistency�
Unlike previous systems based on mobile code� which tried to exploit mo�

bility and insisted on the mobile parts of their systems� our implementation
has no mobile parts! So far� we have concentrated our e�orts on describing
the architecture of services� and on the mechanisms that are necessary to en�
able mobile entities� but not on the entities themselves� It is only in the next
chapter that this dissertation focuses on mobile extensions�

Chapter

Extensions

Chapter highlights

� A middleware product like Voyager o�ers convenient high�level opera�
tions� we show how easy it is to start a platform within a Java program�
to publish and retrieve Meety�s Facade� and to start an extension on a
remote platform�

� Extensions are mobile objects� they encapsulate protocols chosen unilat�
erally by the extension programmers� however� we also show that there
are a few practical considerations which do require prior conventions
between service providers and extension programmers�

� Interaction with a remote extension� after a disconnection� this doesn�t
require conventions between service provider and extension programmer�
it is su�cient to instruct the extension how to publish itself in the plat�
form�s Namespace�

� Preserving the state of extensions when the service is stopped and
restarted
aspect of infrastructure dynamicity�� this does require a con�
vention of the form �publish and subscribe�� in which extensions inform
the service that they are present�

� Storing exception that occurs on the server side� while the client is dis�
connected� doesn�t require conventions� the extension stores exceptions
chronologically and sends them to the user the next time he reconnects�
according to a protocol chosen unilaterally by the extension programmer�

���

���� EXTENSIONS AS VOYAGER MOBILE AGENTS ���

� Application of all the preceding mechanisms in a real extension that
sends reminders to participants the day before a meeting� shows how
Meety�s Facade can be used to satisfy a new speci�c need�

�� Extensions as Voyager mobile agents

Extensions are additional functionalities that haven�t been implemented by
the service provider� Instead� they are developed to satisfy speci�c needs of
a particular user or of an external application� They are especially useful to
combine new systems with our service� and to maintain the coherence of data
inside it� To obtain such an extensible system� we have exploited the fact that
mobile code enables protocol encapsulation and disconnected operation�
Using Voyager�s support for �mobile autonomous agents�
ObjectSpace�

Inc�� ������ it is not di�cult to implement extensions and to install them
on the running service� The Voyager platform on which Meety is running
can be con�gured to run agents coming from any Internet host that runs its
own Voyager platform� Furthermore� the service publishes a Facade in the
platform�s Namespace�� such that extensions can access important data and
events directly as Java objects
Fig� ���� p� �����
In the following examples� we will assume that the Meety service is run�

ning as a Java application on host cuisun���unige�ch� and that it has started a
Voyager platform that listens on port �

� With just two lines of Java source
code� a client Java application can start its own Voyager platform� and obtain
a remote reference to the Facade�

�� Code executed by a client of Meety to access the service�

�� Start a local platform� that will listen on port �����

Voyager�startup	this�
����
��

�� Obtain a remote reference to Meety facade� at the default location�

IMeetyFacade facade
 	IMeetyFacade� Namespace�lookup	

��cuisun���unige�ch������MeetyFacade
��

This example shows how middleware products like Voyager are able to hide
the complexity of distribution and communication� Once a remote reference
has been obtained� it can be used either to call the methods of the Facade� or
to specify the destination of an agent like in the following code fragment�

�� Code executed by a client of Meety to send an extension�

�� Obtain the agent facet of an existing
extension
 object�

IAgent agt
 Agent�of	extension��

�� Specify where the classes of the extension can be loaded by the service�

�Package
com	objectspace	voyager�	

��� CHAPTER �� EXTENSIONS

URL dir
 new URL	
http���cui�unige�ch��queloz�voyagerlib�
��

agt�setResourceLoader	new URLResourceLoader	dir���

�� Move the extension and execute method
start
 in a remote thread

�� 	
facade
 is the remote reference from the previous code fragment��

agt�moveTo	facade�
start
��

Within the context of Voyager� the designation �mobile autonomous agent�
is in fact just a fancy name for a mobile object with its own thread of control�
There are a few restrictions on the objects that can thus be moved� In this
example� extension must be serializable� the methods of its class must be
synchronized� and all its attributes must be serializable� Transient attributes
are not copied� Attributes that must be kept but are not serializable must be
stored as instances of Proxy�� Mobile objects must be created with Voyager�s
object Factory� and not new� Java�s default instantiation command� When the
object is gone� a proxy stays and transmits next messages� A mobile object is
garbage�collected when there are no more references� The proxy is not counted
as a reference� Moreover� the class may implement interface IMobile� in order
to supply methods that Voyager invokes before and after the object is moved�

When the agent is autonomous it is not garbage�collected even if there are
no more references
local and remote�� This is the default behavior and an
agent that wants to be destroyed must call IAgent�setAutonomous�false	�
The agent itself may call moveTo� but only the attributes are kept� the stack�
local variables and program counter are lost and the agent resumes with the
designed callback� Thus� within an agent� there must be no code after such an
instruction
only exception handling code��

�� Interacting with an extension

Some mobile agent systems� like Hive
Minar et al�� ������ Aglets
Lange and
Oshima� ����� or JumpingBeans
Ad Astra Engineering� Inc�� ����� provide
a GUI to track an agent that is moving around the network� In Voyager�
there is no such facility� interaction with an agent can occur exclusively by
method invocation� However� interacting with the extensions is quite easy�
since Voyager is able to hide the fact that an object is not located on the
same Java virtual machine by wrapping proxies around it� When the objects

agents� move around a network of inter�connected Voyager platforms� the
proxies are able to track their location and to forward method invocations to

�Package
com	objectspace	voyager�	
�Package
com	objectspace	voyager�	
�Package
com	objectspace	voyager	mobility�	

���� INTERACTING WITH AN EXTENSION ���

the right place� This concept is called location transparency and allows the
interaction with an extension even if it has been moved several times�
But the mechanism can work only while the Voyager platforms remain

connected to each other� A platform that is stopped and restarted loses all
its proxies and is not able to send messages to remote agents any more� In
our case� we advocate the use of mobile code for disconnected operation� and
thus we require a mechanism that lets users install an extension� disconnect
their computer from the network and reconnect later to check the status of
the extension or remove it from the system�
One possible way to handle this problem is to let the extension register

itself in the Namespace of the service�s Voyager platform� Thus it can be
retrieved from the client�s platform when it is needed� just like the Facade was
retreived in the �rst code fragment�

�� Code executed by an extension to become accessible from anywhere

�� 	findMe is an attribute of the extension� of type String��

Namespace�bind	findMe� this��

With this instruction� the extension is published in the Namespace and can
be retrieved by the client� even if it was stopped and restarted� The name
that is assigned to the extension can be chosen unilaterally by the client�
without any collaboration with the service� Because the Namespace cannot be
browsed� it is not possible for someone who doesn�t know this name to access
the extension� It may be possible to guess the name of an extension� but a
long String of arbitrary characters can be used to make the probability of a
good guess very low�
When the client has obtained a proxy of the extension� using the method

lookup of Namespace� interaction with the extension can simply occur by
remote method invocation� One additional precaution is necessary to ensure
that the client receives a remote reference to the extension and not a copy�
Indeed� all extensions must be serializable in order to make their �rst �jump� to
the service� and Voyager passes serializable objects by value� not by reference�
But if the extension implements the interface IRemote� Voyager knows that
the extension must not be passed by value� and it is still able to move it when
the Agent facet is used�
This mechanism is illustrated by the three simple Java classes in Fig� ����

p� ����

� IGoOnDemand is an interface that speci�es which methods the extension
is able to respond to� It is important� because the instances returned by
Voyager
local or remote� can be converted to this type� and hence the

�Package
com	objectspace	voyager�	

��
 CHAPTER �� EXTENSIONS

three methods can be called� It requires
�� a method kill to remove the
agent from the remote Namespace�
�� a method start to activate the
agent on the remote platform and to register it in the remote Namespace�

�� a method status to check the status of a remote agent�

� The second class is GoOnDemand� the extension itself� It implements
Serializable� thus Voyager knows that the instances can be moved�
It also implements IRemote� to indicate that it must be returned by
reference and not by value� Last it implements IGoOnDemand� thus the
proxies returned by Voyager are compatible with this interface by default

same name� pre�xed with letter �I��� Since the attribute findMe is not
transient� it keeps its value when the instance is moved�

� The third class is the client� that is able to send the extension to our
service
createAndSend�� to interact with it while it is located close to
the service
queryStatus� and to ask it to unbind from the Namespace
in order to allow its destruction� This is the best way to destroy an
agent� since it may have established connections with many other remote
objects and also because Voyager doesn�t provide an agent destruction
mechanism� unless the client keeps the facet that was used to move the
agent
agt in createAndSend method� which is lost when the client is
stopped��

Although it is very simple� this example also exploits and illustrates the
essential property of mobile code� that the client is able to choose a protocol
unilaterally� according to its needs� despite the extension is actually running
on the server� Here the status and termination operation are very simple� but
it doesn�t require any changes to the service to program much more complex
extensions� and to have for instance an extension that moves back to the
client�s platform when its task is completed or on request�

�� Service shutdowns

It is necessary to handle the case where the service
its Java Virtual Ma�
chine with the Voyager platform� is stopped� because there is additional state
brought by extensions that must not be lost� In
Muhugusa� ����� this is
de�ned as a down event and a set of conventions to handle such events
and
the complementary up events� are described� These conventions allow that
a distributed service preserves or updates its state in case of down events� In
our case� the distributed service corresponds to one client with the extensions
it has installed on the platform to be stopped�

���� SERVICE SHUTDOWNS ���

::IGoOnDemand

kill()
start(Object)
String status()

::Serializable ::IRemote

::GoOnDemand

String findMe
GoOnDemand(String)
finalize()
kill()
start(Object)
String status()

::TestGoOnDemand

String nameSpaceTag
main(String[])
createAndSend()
killExt()
queryStatus()

this.findMe = findMe;

try {
Namespace.unbind(findMe);
} catch (com.objectspace.voyager.NamespaceException ne) {}
Agent.of(this).setAutonomous(false); // allow myself to be gc'ed

try {
Namespace.bind(findMe, this);
} catch (com.objectspace.voyager.NamespaceException ne) {}

return "ok";

TestGoOnDemand instance = new TestGoOnDemand();
try {
Voyager.startup(instance, "8001");
System.out.println("Voyager started. (a) send (b) status (c) kill ?");
int action = System.in.read();
switch (action) {
case 'a' : instance.createAndSend(); break;
case 'b' : instance.queryStatus(); break;
case 'c' : instance.killExt();
}
} catch (Exception e) {
e.printStackTrace();
}
Voyager.shutdown();
System.out.println("Voyager stopped.");

Object[] args = {nameSpaceTag};
IGoOnDemand extension = (IGoOnDemand) Factory.create("extensions.GoOnDemand", args);
IAgent agt = Agent.of(extension);
URL dir = new URL("http://cui.unige.ch/~queloz/voyagerlib/");
agt.setResourceLoader(new URLResourceLoader(dir));
agt.moveTo(Namespace.lookup("//cuisun25.unige.ch:8000/MeetyFacade"), "start");
System.out.println("Exension is on remote host.");

IGoOnDemand extension = (IGoOnDemand) Namespace.lookup("//cuisun25.unige.ch:8000/" + nameSpaceTag);
extension.kill();
try {
Object o = Namespace.lookup("//cuisun25.unige.ch:8000/" + nameSpaceTag);
System.out.println("Extension is still on remote platform.");
} catch (com.objectspace.voyager.NamespaceException ne) {
System.out.println("Extension is killed.");
}

IGoOnDemand remote = (IGoOnDemand)
Namespace.lookup("//cuisun25.unige.ch:8000/" + nameSpaceTag);
System.out.println("Status of remote extension is: " + remote.status());

Figure ���� An accessible extension and a client�

��� CHAPTER �� EXTENSIONS

The main reasons to stop and restart the server are maintenance and fail�
ures� Our hypothesis is that the shutdowns are foreseeable� i�e� that the server
runs for a couple of minutes before it actually terminates� This takes into ac�
count maintenance cases� and interruptions in power supply
assuming the
presence of batteries�� Immediate� unexpected shutdowns are much harder to
handle� require redundant hardware and very complex protocols and were not
considered in our work�
To cope with this part of our system�s infrastructure dynamicity aspect

we must �nd a way to preserve the state of extensions installed on the platform�
This is necessary if we want to alleviate a user�s workload with extensions and
not impose them the additional burden of checking that the extensions are still
installed and con�gured properly� Thus� we have de�ned a way to save the
state of extensions before shutting down the service� and to restore it when
the service is restarted� Even if the client has cut all connections with our
service when the event occurs� we guarantee that informations acquired by the
extension and stored in non�transient attributes will not be lost�
When the extensions are Voyager autonomous agents� it is fairly straight�

forward to capture their attributes� to move them to a �backup� platform
e�g�
in another city where electrical power is still available� and to restart them�
During this operation� only the non�transient attributes of the extension are
preserved� transient attributes� but also the stack� the current execution point
and the local variables are all lost� according to the weak mobility paradigm

Fuggetta et al�� ������ This has three implications for the design of extensions�

�� all the information they want to keep must be stored in non�transient�
serializable attributes

�� their methods should be synchronized to avoid a move while a critical
section is executing

�� their methods must execute quickly to avoid delaying the move opera�
tion��

To know which extensions must be sent to the backup platform� the service
uses a simple mechanism based on the principle of publish and subscribe�
It provides a list where the extensions may register themselves� and when it
knows the time has come to move the extensions� he browses the list and
transfers each �agent� to another Voyager platform� Only the extensions that
have voluntarily subscribed to this state preserving mechanism are moved�
Others are simply destroyed when the Java process terminates�
The list is an instance of AgentList which is wrapped in an instance of

AgentListWeak
Fig� ���� p� ��	�� The AgentListWeak is published in the

�Voyager provides a convenient Timer class that provides a way of waiting for an arbitrary
duration without suspending a thread and staying in a method for too long �ObjectSpace�
Inc	� �����	

���� SERVICE SHUTDOWNS ���

NameSpace with label �MeetyAgentList�
see the constructor of MeetyRedun�
dancy�� The purpose of the wrapper is security� it removes the possibility to
browse the agent list� thus it cannot be used by an hostile program to obtain a
reference to the extensions that have registered� Meanwhile� MeetyRedundancy
is able to browse the �internal� AgentList for its intended purpose� knowing
which extensions want to be preserved
see method canMoveAgents��
The interface IRestartablemust be implemented by extensions that want

to register in the AgentList� Thus the service knows that the extensions
provide at least a method restart
invoked after the agent has moved� and a
method restartFailed
invoked if the agent cannot be moved�� Both these
methods are called in method moveAgent�
When an instance of IRestartable is registered with method addElement�

a new random key
of type Long� is returned� This key can be used later on
to unregister the instance with method remove� The use of a secret key guar�
antees that an extension cannot be unregistered by malevolent third parties�
as long as the key is not revealed�
Since its restart method is called after the move� the extension knows

that something has occurred and it is able to take the appropriate actions� If
it was part of a larger system� it might be useful to inform the remaining parts
that the extension has moved� The extension is also able to check whether
Meety is available at the new location� and may want to register in the local
AgentList in order to be moved when the backup platform is stopped in its
turn�
Removing an object from a platform in such a �brutal� manner may prob�

ably be a bad idea� if the platform didn�t cease to exist shortly thereafter� It
would probably be better to let the extensions tidy up before they leave� But
in this case� since the platform is stopped� we know that all the objects that
aren�t moved will be lost and informing the extensions after they have been
moved seems to be su�cient�
If it is not possible to move the extension before stopping the platform�

restartFailed is invoked to inform the agent that it is going to disappear�
In MeetyRedundancy�moveAgent a �one�way� method invocation is used to
avoid being stuck in the restartFailed method of one of the extensions��
This guarantees that the platform can terminate� The current strategy is to
wait for a few seconds before terminating� thus the extensions have a chance to
move to another platform on their own initiative� to send their state through
a network connection� or to send an email to their owner�
Our scheme doesn�t automatically handle the �up events� that occur when

a platform that was temporarily shut down is running again� This means
that the extensions are not informed when they may come back to the �pri�

�OneWay is another convenient utility class provided by Voyager �ObjectSpace� Inc	� �����	

��	 CHAPTER �� EXTENSIONS

::IAgentList

Long addElement(IRestartable)
boolean remove(Long)

::IRestartable

restart(Object)
restartFailed(RuntimeRemoteException)

::AgentList

AgentList()
Long addElement(IRestartable)
int countAgents()
Enumeration elements()
boolean remove(Long)

::AgentListWeak

AgentListWeak(AgentList)
Long addElement(IRestartable)
boolean remove(Long)

::MeetyRedundancy

String peerAddr
String entryName
MeetyRedundancy(String peerAddr)
boolean canMoveAgents()
moveAgent(IAgentList agtList, IRestartable current)

1

*

1
agents

Debug.notice("Initializing AgentList...");
agents = new AgentList();
Debug.notice("done.");
Debug.notice("Binding MeetyAgentList in Namespace...");
Namespace.bind(entryName, new AgentListWeak(agents));
Debug.notice("done.");

try {
IAgentList agtList = (IAgentList) Namespace.lookup(peerAddr);
Enumeration agtEnum = agents.elements();
while (agtEnum.hasMoreElements()) {
IRestartable current = (IRestartable) agtEnum.nextElement();
moveAgent(agtList, current);
}
return true;
} catch (Exception e) {
Debug.warning(this + ".canMoveAgents():" + e);
return false;
}

IAgent agt = Agent.of(current);
try {
agt.moveTo(agtList, "restart");
} catch (com.objectspace.voyager.mobility.MobilityException e1) {
e1.printStackTrace();
} catch (com.objectspace.voyager.RuntimeRemoteException e) {
// e.g. different serialVersionUID
Debug.warning(this + ".moveAgent():Cannot move agent "
+ current + " because:" + e);
Object[] args = {e};
try {
OneWay.invoke(current, "restartFailed", args);
} catch (java.lang.NoSuchMethodException nsme) {
Debug.error(this + ".moveAgent():" + nsme);
} ...

Figure ���� Classes used by an extension to subscribe to the �state preserving�
mechanism�

���� SERVICE SHUTDOWNS ���

mary� platform that runs the Meety service� However� since the extensions
are active when they are on the backup platform� they are able to check pe�
riodically if the primary platform is running� But we don�t like this solution
that wastes resources and necessitates an additional e�ort from the extension
programmer� Instead� we propose to send the extensions back to the primary
platform once it is running again simply by stopping the backup platform�
This operation is symmetric to the �rst one and can be performed by the
same MeetyRedundancy class� con�gured with a valid address
peerAddr at�
tribute�� Additionally� shutting down the backup platftorm ensures that no
objects are left behind� The resulting sequence of events is the following�

�� The primary platform is running� extensions that want to be preserved
have registered in the AgentList�

�� The backup platform is started� it provides its own AgentList�
�� The primary platform is stopped� before it really terminates� extensions
are moved to the backup platform� where they register in the AgentList�

	� The primary platform is started� it provides MeetyFacade and an Agent�
List�

�� The backup platform is stopped� before it really terminates� extensions
are moved to the primary platform� where they can register in the
AgentList and continue to work with MeetyFacade�

We think this illustrates that object mobility is a very convenient way
to cope with the infrastructure dynamicity aspect� it allows the preservation
of important state and the noti�cation of concerned components during the
necessary shutdowns of the platforms� with only very little e�ort from the
service provider and extensions programmers�
There are however two additional constraints in this approach� The �rst

one is that the Web server which provides the classes required by the extensions
must be responding at steps � and �� otherwise the destination platform is not
able to restart the agent� The second one is also related to class loading� The
extension cannot be moved at step � or � if the classes that were instantiated
when the agent arrived on the platform and the classes returned by the Web
server when it tries to leave are not exactly the same� An exception is thrown
as soon as the classes have di�erent version numbers	�
This versioning problem is related to another typical problem in mobile

code environments� When Voyager loads the bytecode of a new class for the
�rst time� it keeps a copy in a cache� Next time the class must be instantiated�
it is not reloaded but the cached copy is used� Obviously� this improves perfor�
mance� but causes trouble when an extension programmer wants to modify his

�The attribute serialVersionUID is supposed to help the programmer cope with this
issue� but we didn�t manage to obtain compatible versions of the classes in our test environ�
ment� even when the attribute was set in the source code and remained unchanged	

��� CHAPTER �� EXTENSIONS

code and restart the extension� In this case� a mechanism to clear the cache is
needed� but we didn�t manage to �nd it� The only solution was to give di�er�
ent names to new versions of the extension and other modi�ed classes� In the
case of M�� the platform doesn�t perform any caching� The code must be sent
with each messenger� and this versioning problem doesn�t occur� On the other
hand� clients that want to improve performances and avoid resending the code
every time must implement their own caching mechanism� But this is a better
solution since the client actually has the possibility to control which version is
used�
This example reinforces our motivation to give as much control as possible

to the clients� in this case the extension programmers� because an intensive
use will always lead to unexpected cases�

Other approaches

Another way to preserve the state of extensions during shutdowns is to se�
rialize them and to keep them on persistent storage� However� this solution
is more complicated for the service provider� who needs to administer the
database� and explicitly handle some parameters that are handled implicitly
by the agent facet
like the resource loader which needs to be set only once��
For the extension programmer� this is also less comfortable� because the agent
is unreachable and unable to work during an unpredictable period of time�
With our approach� the agent is still �alive� and potentially useful� even if it
is not on the primary platform during this period� Moreover� the extension is
moved by the service� but there is no loss of control from the point of view
of the extension programmer� since the code executed on the remote platform
also belongs to the client�
The conventions presented in the work of Muhugusa
Muhugusa� ����� are

also based on the principle of �publish and subscribe�� instead of actively
polling the platforms until an interesting event occurs even if it is simple
and doesn�t require additional conventions or protocols� it requires too much
resources services that need to be noti�ed inform the platform on which they
reside by implementing a special �down� procedure� Before shutting down�
the platform executes all visible �down� procedures� in which the services
perform the necessary cleanup operations� Thus the platform doesn�t move
the extensions itself� and the �down� procedures are fully responsible to take
appropriate actions� So the work is left to extension programmers or third
party services� This approach also supposes that other platforms are avail�
able� where the extensions can move in order to survive� or that they are part
of a vast �distributed service� which can be contacted when the down event
occurs� Clearly� these two hypotheses are incompatible with our goal to sup�
port disconnected operation� Additionally� executing the �down� procedures

���� EXCEPTIONS AND DEBUGGING ���

provided by the services cannot be done without precautions� there is always
a risk that a thread remains stuck in an improperly programmed procedure�
With our approach� there is automatically one thread for each agent and if an
extension is ill�behaved it cannot prevent the transfer of other extensions or
the termination of the platform�
One last remark is that we have applied our scheme to extensions� because

they don�t have access to persistent storage and need another way to survive
platform shutdowns� But it is by no means restricted to extensions and could
be used to preserve other parts of the service as well� provided that they follow
the same programming conventions�

�� Exceptions and debugging

Exceptions may occur when the extension is located on the server� Extension
programmers need a description that is as accurate as possible to understand
what happened� and to determine if there is a fault in their code and how it
can be corrected� The simplest solution� which may be su�cient in a non�
distributed setting is to send error messages to a console or to a log �le that
the programmer can read� Unfortunately� these channels cannot be used to
watch extensions located on the server�
Voyager messaging abilities� remote method invocation or even a basic com�

munication channel
e�g� socket� could be used by the extension to send error
messages to the programmer� but not in a �disconnected� setting� Note that
the standard Voyager platform doesn�t provide means to send email� but Meety
o�ers this service to extensions that are in possession of a valid password� How�
ever� it is not possible to rely on this because Meety may be unavailable from
time to time� and also because network failures may isolate a platform from
the rest of the Internet completely�
The best solution seems to keep error messages within the agent� and to

send them when the link with the user is re�established� The two classes in
�gure Fig� ���� p� ��� make this very easy� ExceptionTrace is able to store the
description of an exception and the time when it occurred� The responsibility
of ExceptionStore is to keep an ordered list of ExceptionTraces and to
remember when it started building the list�
An agent that needs to keep detailed error messages can do it with a

single non�transient attribute of type ExceptionStore� Since both classes
are serializable� their instances can be transported when the agent moves�
When an exception is caught� it can be recorded with a call to addElement�
With readAndClear� the extension is able to send the whole list of errors to
the user or programmer� using the interaction mechanisms described in x ����
p� ���� We have also found that this approach is very convenient to keep

��� CHAPTER �� EXTENSIONS

::ExceptionTrace

Date timeStamp
String stackTrace
ExceptionTrace(Exception e)
String getStackTrace()
Date getTimeStamp()

::Serializable

::ExceptionStore

Date startDate
ExceptionStore()
addElement(Exception e)
Date getStartDate()
Vector readAndClear()
int size()

*
list

Vector result = (Vector)
list.clone();
list.removeAllElements();
startDate = new Date();
return result;

list.addElement(new ExceptionTrace(e));

timeStamp = new Date();
ByteArrayOutputStream buf = new ByteArrayOutputStream();
PrintWriter out = new PrintWriter(buf);
e.printStackTrace(out);
out.flush();
stackTrace = buf.toString();

Figure ���� Classes used by an extension to keep a description of caught ex�
ceptions�

non�exceptional activity logs� To do this� the agent calls addElement with any
kind of exception instantiated just when a noteworthy event occurs� and both
kinds of messages remain temporally interleaved in the ExceptionStore�
The worst shortcoming of the current implementation is that the amount of

memory to store exception traces is not limited� thus an exception that occurs
very often could lead to huge data structures� Such a big list could not only �ll
the platform�s memory� but may also take too long to transfer� either when the
agent moves� or when the user wants to see error messages� Simple solutions
could be to limit the number of entries in the list� or the total size in bytes�
However neither solution is perfect� because they both result in throwing away
information that is potentially useful� In any case� this shortcoming is not a
security threat in itself� since an agent that wants to �ll the memory may do
so by allocating any kind of object anyway� A much better approach seems to
be resource control at platform level
x ������ p� ����
The �nal word is that this mechanism is worth presenting because it was

���� WORKING PERIODICALLY ���

su�cient to debug extensions in our case� whereas it is almost impossible to
understand why an extension fails without it� And more importantly because
it is another illustration of the �exibility o�ered by mobile code� the exten�
sion programmer himself can choose how he wants to handle exceptions� since
he provides the code executed when the extensions are running on a remote
platform�

�� Working periodically

The way we handle exceptions is well illustrated by one simple extension called
PeriodicTask� This extension is not very useful in itself
it wakes up period�
ically but doesn�t perform any work� but it can be extended by a subclass� as
we will show in section ���� The UML diagram of this extension is given in
Fig� ��	� p� ��
�
The constructor of this extension takes two parameters which are stored in

non�transient attributes� The �rst one is the name that will be used to locate
the extension in the Namespace
just like the findMe attribute of GoOnDemand
in Fig� ���� p� ����� The second parameter is the period in milliseconds�

To interact with this extension� the methods in interface IPeriodicTask
must be used� The method startmust be invoked when the extension is moved
to a remote platform� This method checks that Meety facade is present� If it is
the case� it makes itself visible in the Namespace� then it calls registerWith�
Timer� Finally� it uses its ExceptionStore to keep a trace of the event� The
extension does nothing if Meety facade is not available on the local platform�
and doesn�t register with the state preserving service of section ����
The method registerWithTimer illustrates how a Timer
 can be cre�

ated� and asked to �tick� every period milliseconds� The event noti�ca�
tion follows the standard JavaBeans event noti�cation model
Sun Microsys�
tems� ������ Every time the period is elapsed� the Timer calls the method
timerExpired of all registered TimerListeners� A TimerListener can be
added using the method addTimerListener� Since PeriodicTask implements
TimerListener� it could potentially be noti�ed directly by the Timer� but in
the current implementation an additional TimerListenerThread is used to
decouple the two objects� Wihtout this precaution� the whole management of
timers can be thrown into confusion if timerExpired doesn�t return quickly
enough�

Other important methods in IPeriodicTask are� stop which unregisters
the extension from the platform� setPeriod for changing the rate of activity�
caughtExceptions which returns the contents of the ExceptionStore and

	Package
com	objectspace	lib	timer�	

��
 CHAPTER �� EXTENSIONS

::PeriodicTask

boolean inNameSpace
String nameSpaceTag
long period
PeriodicTask(nameSpaceTag, period)
Vector caughtExceptions()
boolean facadeIsPresent()
finalize()
leaveNamespace()
leaveTimer()
registerInNamespace()
registerWithTimer()
setPeriod(long)
start(Object)
void stop()
storeException(Exception)
timerExpired(TimerEvent)
work()

::IPeriodicTask

Vector caughtExceptions()
setPeriod(long)
start(Object)
stop()
void work()

::TimerListener

timerExpired(TimerEvent)

::Serializable

::IRemote

::Timer

::TimerListenerThread

::ExceptionStore

0..1 myTimer

0..1 myTimerThread

1 exceptions

return exceptions.readAndClear();

myTimer = new Timer();
myTimer.alarmEvery(period);
myTimerThread = new TimerListenerThread(this);
myTimer.addTimerListener(myTimerThread);
storeException(new Exception("Started timer, period=" + period));

period = newValue;
myTimer.alarmEvery(period);

storeException(new Exception("Works"));

work();

if (facadeIsPresent()) {
registerInNamespace();
registerWithTimer();
}
storeException(new Exception("Restarted"));

leaveNamespace();
leaveTimer();
Agent.of(this).setAutonomous(false);
storeException(new Exception("Stopped"));

exceptions.addElement(e);

Figure ��	� An extension that works periodically and stores exceptions�
The main methods� used to control the extension� are those of interface
IPeriodicTask�

���� A REAL EXTENSION� SENDING REMINDERS ���

clears it�

The workmethod� which is normally invoked periodically by timerExpired
can also be invoked �externally� since it is visible in IPeriodicTask� This
possibility was mainly used for testing� where it is not very convenient to
observe a periodic activity�

�	 A real extension� sending reminders

Now that basic mechanisms have been explained� we can describe a real exten�
sion� The responsibility of this extension is to sent reminders the day before a
meeting will take place� The reminders are sent by email to the participants�
The extension works on behalf of one user and can be controlled by a very
simple client program� following the mechanisms of the previous sections�

The UML diagram of this extension is given in Fig� ���� p� ����

In the following presentation� only the methods that are speci�c to the
task are presented� Operations that allow the extension to be contacted by
the client after disconnections� to survive service shutdowns� or to store and
send exceptions to the client are implemented like in the previous sections and
are not repeated�

The constructor DontForget� whose source code is presented in the box be�
low� initializes the superclass PeriodicTask to run every hour� then it stores
the address and the password of the extension�s owner in non�transient �elds�
These informations are required by Meety facade to access meeting informa�
tions�

The constructor also initializes the attribute quietMeetings which con�
tains a list of meetings for which the user doesn�t want to send reminders�

The last step is for the attribute lastActionwhich obtains a value �	 hours
before the requested firstAction� Afterwards the exception is activated every
hour� but it checks meetings and sends reminders only when firstAction is
already �	 hours in the past� This is the solution we have chosen to have
an extension that works everyday at approximately the same time� and that
doesn�t send reminders more than once�

��� CHAPTER �� EXTENSIONS

::DontForget

Long secret
String ownerAddress
String ownerPassword
Vector quietMeetings
long lastAction
DontForget(nameSpaceTag,ownerAddress,ownerPassword,firstAction)
Vector caughtExceptions()
checkDate(IMeetyFacade,IAuthorization,IMeeting,Calendar)
checkOrganized(IMeetyFacade,IAuthorization,Vector,Calendar)
emailInfos(IMeetyFacade,IAuthorization,Long)
IMeetyFacade getFacade()
boolean isQuiet(IMeeting)
leaveAgentList()
Vector organizedMeetings()
Vector organizedMeetings(Long,IMeetingList)
String prepareBody()
registerInAgentList()
restart(Object)
restartFailed(RuntimeRemoteException)
sendMessages(IMeetyFacade,IAuthorization,IMeeting)
setQuiet(IMeeting,boolean)
stop()
timeToWork(Calendar)
work()
workWithInfo(IMeetyFacade,IAuthorization,Long)

::PeriodicTask::IDontForget

boolean isQuiet(IMeeting)
Vector organizedMeetings()
setQuiet(IMeeting,boolean)

::IRestartable

restart(Object)
restartFailed(RuntimeRemoteException)

::IAgentList

::DayList

::Day

::IAuthorization

::IMeetingList

::IMeetyFacade

::IParticipantList

::Participant

::IMeeting

::IPeriodicTask

Vector caughtExceptions()
setPeriod(long)
start(Object)
stop()
void work()

::IRemote

::Serializable

0..1

agtList

Figure ���� An extension that sends reminders the day before a meeting occurs�
The methods to control the extension are those of interfaces IPeriodicTask
and IDontForget�

���� A REAL EXTENSION� SENDING REMINDERS ���

���
� Parameter �rstAction is the next time the method must work
��
public DontForget	String nameSpaceTag� String ownerAddress�

String ownerPassword� Long firstAction�

f
super	nameSpaceTag� new Long	���������� �� run every hour
this�ownerAddress
 ownerAddress�

this�ownerPassword
 ownerPassword�

quietMeetings
 new Vector	��

lastAction
 firstAction�longValue	� � ���������

g

The next two methods allow the management of the list quietMeetings�
They work with the meeting identi�er� a Long value that is easier to handle
than the meeting instances or their proxies� When a meeting is �quiet�� no
reminder is sent�

���
� Returns true i� the meeting is listed in quietMeetings
��
public synchronized boolean isQuiet	IMeeting m� f
return quietMeetings�contains	m�getId	���

g

���
� Inserts or removes m from the list of �quiet� meetings
��
public synchronized void setQuiet	IMeeting m� boolean dontSendReminder� f
if 	isQuiet	m�� f �� in list
if 	�dontSendReminder� f

quietMeetings�removeElement	m�getId	���

g
g else f �� not in list
if 	dontSendReminder� f

quietMeetings�addElement	m�getId	���

g
g

g

The next method conveniently returns a collection of all meetings organized
by the owner of the extension� This allows for instance that the client program
displays all meeting titles in a list� in order to choose which meetings are quiet�
The �rst step is to look for Meety facade in the Namespace� then to use the
address and password to obtain an authorization� then to obtain the user
identi�er that corresponds to the address
this information is not con�dential

��	 CHAPTER �� EXTENSIONS

and doesn�t require an authorization�� Then the method obtains the list of all
meetings related to the user
this requires an authorization�� Only a subset
of these meetings are actually organized by the owner of the extension and
can be returned� The last �ltering step is carried out by the second version
of organizedMeetings which receives the user identi�er and the full list of
meetings�

���
� Returns null if the information cannot be obtained	
� Returns a possibly empty Vector otherwise	
��
public synchronized Vector organizedMeetings	� f

Vector result
 null�

IMeetyFacade facade
 getFacade	��

if 	facade �
 null� f
IAuthorization perm
 facade�getAuthorization	ownerAddress�

ownerPassword��

if 	perm �
 null� f
Long ownerId
 facade�getId	ownerAddress��

try f
IMeetingList meetings
 facade�getMeetingList	ownerId� perm��

result
 organizedMeetings	ownerId� meetings��

g
catch 	ch�unige�cui�queloz�meety��service�AuthorizationException ae� f

storeException	ae��

g
g

g
return result�

g

The second version of organizedMeetings returns a new Vector with
only the meetings for which the creator�s identi�er corresponds to the given
ownerId�

���
� Returns a new Vector with only the meetings organized by this user	
��
private Vector organizedMeetings	Long ownerId� IMeetingList meetings� f

Vector result
 new Vector	��

for 	int i
 �� i � meetings�size	�� ��i� f
IMeeting current
 meetings�elementAt	i��

if 	current�getCreator	��equals	ownerId�� f
result�addElement	current��

g
g
return result�

g

���� A REAL EXTENSION� SENDING REMINDERS ���

The next method is restartFailed� This method is called when the state
preserving mechanism is not able to move the extension� When this method
runs� the extension knows that it is going to disappear� Since the owner of the
extension will very likely be disconnected at this time� the best solution is to
send him an email message� Authorized users can use Meety facade in order
to send an email� thus the �rst step is to retreive the facade and to obtain an
authorization� Then emailInfos can be invoked to actually send the message�

���
� Sends an email to the owner �arg might be null�
��
public synchronized void restartFailed	RuntimeRemoteException arg� f
IMeetyFacade facade
 getFacade	��

if 	facade �
 null� f
IAuthorization perm
 facade�getAuthorization	ownerAddress�

ownerPassword��

if 	perm �
 null� f
Long ownerId
 facade�getId	ownerAddress��

emailInfos	facade� perm� ownerId��

g
g

g

The method emailInfos prepares the �elds of the message and asks the
facade to send it� Even if an exception occurs� it is not stored because the
extension is going to be destroyed�

���
� Sends an email to the owner� describing the state of this extension
��
private void emailInfos	IMeetyFacade facade� IAuthorization perm�

Long ownerId�

f
String title

Extension has been stopped
�

String body
 prepareBody	��

try f
facade�sendMessage	ownerId� perm� ownerAddress� title� body��

g catch 	Exception e� f
g

g

The next method prepares the body of the message sent by a dying exten�
sion to its owner� It concatenates all exception traces� with their timestamps�

��� CHAPTER �� EXTENSIONS

���
� Returns a String with all stored exceptions� plus the current status
��
private String prepareBody	� f

ByteArrayOutputStream buf
 new ByteArrayOutputStream	��

PrintWriter out
 new PrintWriter	buf��

out�println	
Extension cannot be preserved and has been stopped�nnnn
��
Vector exceptions
 caughtExceptions	��

int limit
 exceptions�size	��

for 	int i
 �� i � limit� ��i� f
ExceptionTrace t
 	ExceptionTrace�exceptions�elementAt	i��

out�println	
���

�
����������������
��

out�println	t�getTimeStamp	���

out�println	
���

�
����������������
��

out�println	t�getStackTrace	���

g
out�flush	��

return buf�toString	��

g

When an extension has been moved by the state saving mechanism� the
method restart is automatically invoked� This method ensures that the su�
perclass PeriodicTask is restarted as well and that the extension is registered
in the platform�s AgentList for the next shutdown�

���
� Method called to restart the agent after it has moved �IRestartable��
� Tries to restart the PeriodicTask �super�
� Asks the platform to preserve the state of this agent
��
public synchronized void restart	Object rejoined� f
super�start	rejoined��

registerInAgentList	��

g

The method work is invoked once per hour and is responsible to send
reminders for meetings scheduled during the next day if necessary� Calling the
work method of the superclass ensures that the event is traced� The facade� an
authorization� and the owner identi�er must be obtained before the extension
can actually perform its task�

���� A REAL EXTENSION� SENDING REMINDERS ���

���
� When the extension wakes up� it �rst fetches some information
��
public synchronized void work	� f
super�work	��

IMeetyFacade facade
 getFacade	��

if 	facade �
 null� f
IAuthorization perm
 facade�getAuthorization	ownerAddress�

ownerPassword��

if 	perm �
 null� f
Long ownerId
 facade�getId	ownerAddress��

workWithInfo	facade� perm� ownerId��

g
g

g

In workWithInfo� the �rst step is to initialize a Calendarwith the timezone
of the owner� This is important to determine which meetings are scheduled
for the next day� Then the method calls timeToWork to determine if �	 hours
have passed since the last action� If it is the case� the list of meetings organized
by the owner is retreived� and checkOrganized is invoked to send reminders
if necessary�

���
� If �� hours elapsed since the last action� retreive the meetings
� organized by extension owner and check if reminders mut be sent	
��
private void workWithInfo	IMeetyFacade facade� IAuthorization perm�

Long ownerId�

f
try f

TimeZone tz
 TimeZone�getTimeZone	facade�getTimeZone	ownerId� perm���

Calendar cal
 Calendar�getInstance	tz��

if 	timeToWork	cal�� f
IMeetingList meetings
 facade�getMeetingList	ownerId� perm��

Vector organized
 organizedMeetings	ownerId� meetings��

checkOrganized	facade� perm� organized� cal��

storeException	new Exception	
Meetings checked
���

g
g catch 	ch�unige�cui�queloz�meety��service�AuthorizationException ae� f

storeException	ae��

g
g

��� CHAPTER �� EXTENSIONS

The result of timeToWork is true if the given Calendar object
current
time� contains a value that is at least �	 hours after the value of lastAction�
In this case� lastAction is updated�

���
� Returns true if cal is �� hour later than lastAction
� Updates lastAction
��
private boolean timeToWork	Calendar cal� f
if 	cal�getTime	��getTime	� � lastAction � ��������� f �� act every day

lastAction
 cal�getTime	��getTime	��

return true�

g else f
return false�

g
g

The next method loops on all meetings organized by the owner of the
extension and passes only those which are not quiet to the method that will
actually check when the meetings are scheduled�

���
� Checks the dates of all meetings in organized that are not �quiet�
��
private void checkOrganized	IMeetyFacade facade� IAuthorization perm�

Vector organized� Calendar cal�

f
for 	int i
 �� i � organized�size	�� ��i� f

IMeeting current
 	IMeeting� organized�elementAt	i��

if 	�isQuiet	current�� f
checkDate	facade� perm� current� cal��

g
g

g

In the method checkDate� a copy of the Calendar is incremented by one
day� and if it belongs to the list of days when the meeting is scheduled then
messages are sent to participants�

���� A REAL EXTENSION� SENDING REMINDERS ���

���
� Sends messages to participants if �current� is scheduled for the next day
��
private void checkDate	IMeetyFacade facade� IAuthorization perm�

IMeeting current� Calendar cal�

f
try f

Calendar tomorrow
 	Calendar� cal�clone	��

tomorrow�add	Calendar�DATE� ���

DayList scheduledDays
 facade�getScheduledDays	current�getId	�� perm�

cal�getTimeZone	���

if 	scheduledDays�contains	new Day	tomorrow��� f
sendMessages	facade� perm� current��

g
g catch 	ch�unige�cui�queloz�meety��service�AuthorizationException ae� f

storeException	ae��

g
g

The last method sendMessages composes the message and sends it to
all participants of the current meeting� using the sendMessage method in
Meety�s facade�

���
� Sends an email �reminder� to all participants of current
��
private void sendMessages	IMeetyFacade facade� IAuthorization perm�

IMeeting current�

f
String title

Meety � Reminder for�
 � current�getTitle	��

String body

This message was sent by Meety service to remind younn

�
that the meeting with title�nnnn
 �
�nt
 � title �
nnnn

�
is scheduled for tomorrow�
�

try f
IParticipantList participants
 facade�getParticipants	current�getId	��

perm��

int limit
 participants�size	��

for 	int i
 �� i � limit� ��i� f
Participant part
 participants�elementAt	i��

String destAddr
 facade�getAddress	part�getUserId	���

facade�sendMessage	current�getCreator	�� perm� destAddr� title� body��

storeException	new Exception	
Message sent to
 � destAddr���

g
g catch 	Exception e� f

storeException	e��

g
g

With this last method� we have presented the whole source code of a pos�

��
 CHAPTER �� EXTENSIONS

sible extension of our service� According to our practical experience� this
extension is useful� in a couple of cases� participants themselves told us that
they could have forgotten the meeting� but that the message sent the day
before helped them remember�
From a theoretical point of view� the interest of such extensions is that they

take into account the precise needs of a user� without requiring an intervention
from the service provider� Furthermore� they are not limited to adapting the
service to the needs of a user� but can also be used for the integration with
other services� In this case� they can adapt the service to the needs of a new
application� for instance by performing appropriate data conversions or event
propagation�

Chapter ��

Results and lessons

Chapter highlights

� Which non�functional aspects are handled in the architecture and in the
case study� having described the implementation of Meety� we can now
ground our promise of a simpli�ed treatment of many non�functional
aspects with concrete facts�

� Remarks on the concrete usage of Meety� besides its theoretical interest�
the case study yielded a service that is concretely useful for a few people
who use it from time to time in order to schedule meetings�

���� Treatment of non�functional aspects

For each non�functional aspect of Chap� � we now examine if our study revealed
new opportunities to handle it� or an easier implementation� We also consider
bene�ts of mobile code that have been previously described in the literature�

	�
	
	 Delegation to the Client

In x ���� p� �� we suggested that an interesting e�ect of the architecture would
be to free the service provider from taking certains aspects into account� be�
cause mobile code would allow clients to implement their own strategies�

���

��� CHAPTER ��� RESULTS AND LESSONS

Aspect Handled by

event noti�cation Making important events visible at the Facade level is es�
sential� With our approach� the service provider can use
simple mechanisms at object level for noti�cations and
doesn�t need to send noti�cations across the network�

�ow control This aspect usually requires collaboration between the ser�
vice and the client� because the service must suspend the
transfer if the client is saturated� Mobile code allows that
the client installs its own objects to handle the transfer�
thus the service provider doesn�t need to specify and im�
plement this aspect�

memory
management

The service provider should ensure that all clients get a fair
share of available memory� and the execution environment
can help� The service doesn�t need to send related infor�
mation across the network� since the clients can run their
extensions on the service�s platform� and collect availability
data directly�

platform
adjustment

The service relies on the ability of clients with special needs
to hide themselves behind a mobile extension�

prioritization The service provider should ensure that all clients get a
fair share of available processing time� and the execution
environment can help� As with memory availability� the
availability of CPU time doesn�t need to be sent to the
client�

protocol
negotiation

Unless the service itself is a client of further services� the
service designer�s mind can be freed from this aspect thanks
to the ability of mobile code to encapsulate protocols�

real�time
constraints

Clients can improve service responsiveness with extensions
that require less interactions across the network �e�g� a
client for the Windows operating system	�

serialization Simple classes are able to serialize and deserialize their state
into Strings
 more complex classes may use readily avail�
able mechanisms �e�g� implement Serializable in Java	�
Other needs can be handled by extensions� which use the
methods of the service interface to obtain �raw� informa�
tion and process it into whatever representation the client
needs�

	�
	
� Bene�t from Locality

Having extensions that run directly on the server provides better control and
avoids some inherent problems of remote interaction
latency� disconnections�
etc��� The aspects for which this new possibility of mobile code is particularly
interesting are listed here�

����� TREATMENT OF NON	FUNCTIONAL ASPECTS ���

Aspect Handled by

accuracy
maintenance

Being closer to the information source� the client is able to
detect changes earlier� moreover he is able to program his
own strategies to maintain the accuracy of his own data
when a relevant event occurs�

bandwidth
management

The client can use a mobile extension to control the amount
of data sent back� whereas the service usually controls the
amount of data sent with reply
request schemes� Mobile
code is well known for its ability to save bandwidth�

bu�ering Although this aspect is related to communication� it is usu�
ally implemented on the client side only� thus mobile code
is not essential� However� the bu�er could be managed by
an extension on the server side� for clients that do not have
su�cient memory�

caching In our case study� caching is used only to avoid querying
the database when entity objects have not changed
 caching
informations exchanged between the service and its clients
has not been studied� This aspect cannot be completely
delegated to the client� because some conventions are nec�
essary to inform him when the cached data must be in�
validated� However mobile code could be useful to control
where the cache is located� or to store events while the client
is disconnected �x ������� p� ���	�

coordination With our architecture the service provider controls concur�
rent accesses at the Facade level and can ensure that there
are no internal coordination problems� Recent studies indi�
cate that the ability to co�locate tasks that must be coor�
dinated has a positive impact on work�ows �Tripathi et al��
����	� and solves some distributed coordination problems
in a robust and e�cient way �Rowstron� ����	�

event noti�cation The extensions are able to react quickly to events� or store
them if the client is not reachable at the time the event
occurs�

exception
handling

Mobile extensions are able to store exception traces until
the client is able to view them �x ���� p� ���	� this makes
debugging of the extensions easier� Mobility also provides
the opportunity of distinguishing between service failures
and network errors� something that is usually di�cult with
physical distribution� Some problems related to partial fail�
ures can also be avoided �Rowstron� ����	�

continued on next page

��	 CHAPTER ��� RESULTS AND LESSONS

continued from previous page

Aspect Handled by

indexing Several authors have shown that mobile extensions are able
to build indexes faster and using much less bandwidth than
immobile �robots� �Vigna� ����� chapter �	� �Brewington
et al�� ����	� �Sudmann and Johansen� ����	� In the case
of Meety� this is not really relevant�

infrastructure
dynamicity

Because they are physically co�located with the service� mo�
bile extensions can continue working even if the client is
disconnected from the network� and they can easily be re�
trieved� even if the client has moved when he reconnects
�x ���� p� ���	� Because they can easily be restarted on
another host� extensions can preserve their state� and even
remain active when the service is stopped for maintenance
reasons �x ���� p� ���	�

memory
management

The client is able to handle speci�c situations in accordance
with its particular needs� instead of being subject to an
inadapted generic mechanism�

prioritization Like memory management� the consumption of CPU
time can be controlled in a client speci�c�way�

	�
	
� Execution Environment

Ideally� a mobile code execution environment should provide much better sup�
port for the implementation of services that standard workstation operating
systems� Programming distributed applications on these platforms is generally
possible but too arduous�

Aspect Handled by

access control In Meety� the Facade checks Authorizations and rejects
some operations� The execution environment is also often
responsible to limit the operations that foreign code may
perform �x ������ p� ��	�

accounting Not handled by the architecture but essential to control the
amount of resources �bandwidth� memory� cpu	 consumed
by foreign code that runs on the same host as the service�
The execution environment can provide precious low�level
support �x ������ p� ��	�

accuracy
maintenance

The execution environment may o�er additional mecha�
nisms like leasing to handle this aspect �x ����� p� ���	�

activation The architecture exploits the ability to move graphs of ob�
jects to a secondary platform to preserve their state without
storing them on persistent media �x ���� p� ���	�

continued on next page

����� TREATMENT OF NON	FUNCTIONAL ASPECTS ���

continued from previous page

Aspect Handled by

authentication In the case study� the Facade grants an Authorization

when username and password are matching� The origin of
foreign code signed with digital certi�cates can be authenti�
cated and additional access rights can be granted� without
compromising security �x ������ p� ��	�

bandwidth
management

The service provider should ensure that all clients get a fair
share of available bandwidth� but this aspect is not taken
into account in our case study� Some execution environ�
ments o�er better support than plain TCP
IP for resource
control �see accounting and x ������ p� ��	�

deployment Although this possibility is not exploited in the case study�
the service could deploy itself on several nodes �see infras�
tructure dynamicity and parallelism	� Code mobility
allows client to install mobile extensions on the service�s
platform �x ���� p� ���	�

infrastructure
dynamicity

In �Tschudin� ����	 the dynamic deployment of a dis�
tributed service on all available platforms of a network is
described�

load balancing Not handled in the case study� Using mobility for this as�
pect �process migration	 is an old idea� e�g� �Shehory et al��
����	�

memory
management

The execution environment can provide low�level support
�see accounting and x ������ p� ��	�

parallelism Not handled in the case study� Other works have shown
that it is possible to parallelize a complex search procedure
on available computing platforms for increased performance
�Queloz� ����	�

prioritization The execution environment can provide low�level support
�see accounting and x ������ p� ��	�

scripting The service provider doesn�t need to de�ne a language or
to program an interpreter� since the execution environment
readily executes mobile extensions �Queloz and Villaz�on�
����	�

	�
	
� Remaining aspects

These aspects don�t seem to be in�uenced by mobile code in our work� but we
may have missed some nice opportunities to handle them in an easy way� We
present them here just for the purpose of completeness�

��� CHAPTER ��� RESULTS AND LESSONS

Aspect Handled by

auditing Handled by simple logs in the case study�

encryption Not handled in the case study� but may be necessary to
hide passwords in the database� An encrypted connection
�SSL	 is usually used to protect the dialog with the Web
clients�

historic Not studied�

input media
selection

Not studied�

internationalization Not studied�

media
synchronization

Not studied�

parameterization The service is able to store preferences in the database�
thus the user can access the service from anywhere using
a Web browser� and he will retrieve his usual con�guration
�a bene�t of the thin client model	�

payment Not studied �x ������ p� ��	�

persistence In Meety� a relational database is used to store persistent
data�

replication Not studied�

storage layout This aspect is encapsulated in entity and manager objects�
according to the underlying database technology�

user interface look
and feel

This aspect is not present in the service core� it is con�
�ned in the Web interface �e�g� Servlets	 and thus easier
to change� References between entities are represented in a
portable format �e�g� long integers	�

versioning Not studied�

	�
	
� Discussion

Among the �� non�functional aspects of our inventory
Chap� ��� only ��
don�t seem to bene�t from mobile code at all� For almost two thirds of them�
the proposed approach o�ers one or several important simpli�cations� either
because of the availability of code mobility or because of the features of a
suitable execution environment� Moreover� there are bene�ts for both the
service provider� and for the clients� hence our belief that the approach can
have a very positive impact� if used for the implementation of large scale
distributed applications�
Even if the possible improvements are very di�cult to demonstrate em�

pirically� because the primary impact is on non�functional aspects and not on
primary functional aspects� and thus doesn�t enable completely new �killer ap�
plications�� we think that large amounts of e�orts could be avoided with our
approach� First coding e�orts� because some aspects can be handled directly

����� CONCRETE USAGE OF MEETY ���

by the execution environment� hence coded only once� but also standardization
e�orts which frequently fail to deliver the expected results�

���� Concrete usage of Meety

� The service was �rst available in December ����� Until today
end of
April �

��� ��� people have requested a password�

� There are approximately � users� regularly coming back to organize new
meetings�

� An average of � or � meetings are organized each month since december
�����

� The service was announced one or two times to an estimated audience
of a few hundreds to a couple of thousand potential users� within the
University� and on a few scheduling mailing lists� It is also indexed by a
couple of search engines but no other e�orts were made to promote its
use�

Clearly� these values are extremely modest� and the computational re�
sources required are completely insigni�cant� It is di�cult to explain why
it is not used more often� Most feedback we got was rather positive� except
the following�

� Someone in a company would have liked to use it but they didn�t want to
store any meeting information in a database outside of their organization�

� Someone would have preferred a french interface�

� Someone told us that he prefers to call participants on the telephone
because it allows him to speak of other things
the communication is
poorer with the service��

� Someone had problems with participants who didn�t check their mail
often enough�

On the other hand� our practical experience with the organization of real
meetings using the system has shown that Meety is very convenient to �nd a
suitable date for more than �
 people� Moreover� in several cases it was nec�
essary to reschedule a meeting because of a change in the constraints
change
in the availability of one participant� addition of a new participant�� Finding
a new possible date was very easy for the organizer and did not bother the

��� CHAPTER ��� RESULTS AND LESSONS

participants since their answers had been stored in the system� and enough
dates had been proposed� The fact that Meety sends invitations and con�
�rmations automatically
and resends invitations to participants who fail to
answer� relieves the organizer from doing tedious messaging� It makes our so�
lution completely incommensurable with traditional ways to organize meetings
using phones� fax or email�
Possible explanations of the low observed use are�
�� that we have not

reached the right audience� since the e�orts we made to promote the service
were extremely limited�
�� that people are not yet used to such services� and
don�t understand the possible bene�ts� or that they don�t have access to the
Web� at the time they want to organize the meeting�
Apparently� the company that started TimeDance last year and which is

now out of business met the same kind of problems� although they had certainly
invested a lot of money and energy to promote their service�

Chapter summary

The �rst section on non�functional aspects shows how our case study validates
the idea of an easier management for all these concerns and hence of services
that are easier to build and to maintain in operation�
The second section reminds us that innovations are never guaranteed to

succeed� but it doesn�t discard our case study� since anyone that really needs
a similar service
even in a completely di�erent domain� will know the advan�
tages of building it with our architecture and will be able to follow our general
indications�

Part III

Perspectives and

conclusions

In this last part of the thesis� we discuss some additional points� which need
further study or that could not be treated in our research� Then we summarize
the contributions of the dissertation� and the bene�ts of our approach�

Chapter ��

Future work

We have presented an architecture that exploits mobile code environments in
order to implement services� which are easy to extend and to integrate� In this
chapter� we discuss some di�culties that haven�t been solved and we sketch
possible solutions that must still be veri�ed�

���� References between services

One problem that we have observed in our case study but that we haven�t
solved occurs when information that is referenced outside of a service must be
deleted� Suppose that service A is built according to our architecture� and that
service B references an instance I managed by A� Among the operations
use�
cases� of A� one can be invoked by the owner of I to delete this information�
D will denote this operation� Within A� there can be integrity rules that
ensure that deleting I doesn�t bring the system in an incoherent state� either
by preventing the deletion byD or by updating or deleting further entities that
reference I � Enforcing a complex set of integrity rules is not an easy task� but
it becomes much more di�cult when I is referenced within another service B�
unknown to A� Additional conventions are necessary to keep coherence when
D is executed�
This problem occurred with Meety because service A� which manages the

address books and provides the mapping from email addresses to user IDs is
separated from B� the service that manages other meeting informations� When
the owner of an address book removes an entry I � by interacting with A� there
may be informations in B that still depend on I � like the list of participants of
a meeting� or information speci�c to A like the time zone of the corresponding
user� Thus� I cannot simply be dropped from A�s tables� even if there is no

�

����� REFERENCES BETWEEN SERVICES �
�

more address book referencing this user�

The classical solution of this problem� which is related to the aspects of
accuracy maintenance andmemory management� is to count references�
But this mechanism doesn�t tolerate that a single decrementation is forgotten�
in a distributed context� where the counter is managed by A but no control on
B is possible� this can be unrealistic� Better answers could be leasing� where
counters are automatically decreased after a certain time� unless the lease has
been renewed� or market based allocation where data is deallocated when
no more sponsor is interested in it�

More work is needed to better evaluate the actual programming overhead
required by these approaches� In our experiments with M�� which o�ers a fair
amount of low level support
presence of a sponsoring account for each piece of
volatile memory� automatic deallocation by the platform�� we found that the
amount of work required to ensure proper sponsoring is not negligible� although
terminating a service is greatly facilitated by this approach� However� not
only volatile memory� but also persistent memory requires leasing mechanisms�
and with our architecture and current database technology� this requires the
explicit management of additional data structures
e�g� a timer for each entity
in a table�� as well as additional threads of control to check timer expiration�

We can speculate that this problem could well be handled at the level of
databasemanagers� by storing one additional expiration �eld for each entity�
and running one thread to clear expired ones� An additional method to renew a
lease would also be required� Last� each manager would be responsible to renew
leases for �external� entities referenced by its own entities� This could require a
fair amount of activity and additional storage because one timer is potentially
required for each external entity� But� instead of a �delete� operation that
blindly clears entities without taking into account external references� this
would be an automatic mechanism for data deletion� Once an entity is deleted�
further entities referenced in other tables and other services automatically
become available for deallocation�

There would probably be an interesting role for mobile extensions in this
context� given their ability to work in disconnected conditions� They could for
instance be used to renew leases without incurring network tra�c� provided
that additional mechanisms to terminate an extension are available�

There is a strong similarity between the mechanism above and some func�
tional parts of the service� which send noti�cations when a timer expires�
Hence� the aspect of Event noti�cation is also related and for some simple
cases� the problem could be solved by propagating a signal from A to B when
event D occurs� Being informed that the event has occurred� B can update
its own information accordingly
delete invalid information� store a copy of
I locally����� even without a fully��edged leasing mechanism� Again� mobile

�
� CHAPTER ��� FUTURE WORK

extensions can play an important role� by handling the event at the source�
and bringing the right amount of information� at a time that is suitable to B�
One �nal remark is that this section discusses only one kind of integrity rule�

maybe the one that occurs most frequently� but there are several additional
ones that may need more elaborate mechanisms than event noti�cation and
leasing� In any case� we think that there is an important investigation �eld in
this direction�

���� Decorators for customized behavior

In the previous section� the operation D is executed by A whenever requested
by the user� Although there may be some strong requirements in B to alter
its behavior� we didn�t consider this possibility� However� in several cases�
we would have liked to allow that extensions or external services alter the
behavior of the service�s operations� For instance� change the output that is
returned to the user� In the address book example above� a message could be
displayed saying �Don�t remove this person from your address book because
it participates in one of your meetings��
The decorator design pattern of
Gamma et al�� ����� wraps an object

around another one in order to alter its methods and to change its behavior�
Detecting when an object receives a message� and being able to reprogram the
event is also the idea of re�ective architectures and meta�object programming�
We think that this kind of techniques are necessary in order to allow extensions
that modify the system function� or alter the interaction with the end user�
Without them� extensions are still very useful� but their role is limited to
interacting with the service using its software interface� They can be used
to program new use�cases and new interactions with the end user� but they
can�t really modify existing ones� Schemes based on the invocation of methods
before and after the event o�er some control� notably because an exception
can cancel the execution� but decorators are intrinsically able to perform more
operations� like changing parameters� invoking the decorated method several
times� etc�
In principle� it is mostly at the level of control objects that such techniques

can be applied� since control objects are responsible to conduct the sequence
of events and the instantiation of entity and interface objects�
It will be necessary to study whether decorators can substitute meta�object

programming in those contexts where the latter is not available� One solution
could be to use factories that can be con�gured in such a way that they
return the decorators instead of the base objects� Obviously� this would require
rede�ning parts of the architecture� especially the servlets that assume some
of the responsibilities of control objects� It will also be necessary to restrict

����� EXTENSION REPOSITORY �
�

the scope of the decorators� in order to avoid security problems� Allowing that
a given user decorates only his own meetings and personalizes his interactions
with the system seems possible� but the situation can become tricky when
several services are involved� without special trust relationships between them!
Other problems are �stacking� of decorators� termination of a decoration� etc�
One good test case could be an extension that is able to guarantee an

anteriority constraint between two meetings� while the end user is interacting
with Meety using his Web browser� the extension checks that the date allocated
to meeting i is before the date allocated to meeting j� The extension must be
able to warn the user if the order is wrong or if there is no possibility left for
the second meeting� It is necessary to receive event noti�cations when the user
schedules a meeting� but also to display an information to the user� With the
current implementation� the extension cannot warn the user within the �ow of
Web based interaction� but requires a dedicated client to open a new window
on the user�s workstation�
Meta�object programming or decorators can also be extremely useful be�

cause they potentially replace event noti�cations� Instead of explicitly de�ning
observables and sending event noti�cations to observers� observers directly in�
sert their code on the invocation path� Of course� there are consequences both
from the point of view of security and of performance� but such alternatives
can be worth studying since de�ning events is usually a time consuming task�

���� Extension repository

One e�ect of making the �ow of control more explicit� as suggested in the
previous section� is to reduce the role of Servlets and to increase the responsi�
bilities of control objects and extensions� Servlets become a kind of communi�
cation channel between the Web user and the software e�ectively carrying on
the operations� At some point� control objects and extensions could become
undistinguishable software entities� that have sometimes been called �agents��
These agents interact with the user by generating HTML pages� which are sent
through the channel of Servlets� Answers from the user come back as HTTP
requests� which lead to new pages� and so on� This is similar to the �wizards�
that decompose a complex user interface in several simple steps�
In Chap� 	 we presented eAuctionHouse and Tabican� These two systems

have shown the feasibility of this technique� An interesting future development
would be to have a similar system for the management of agents� independent
from a speci�c application� It should let end users manage� and interact with
active extensions� and create new ones and parameterize them� Another side
of the service should let extension developers enrich the set of available exten�
sions� with suitable descriptions� code� discussions� etc�

�
	 CHAPTER ��� FUTURE WORK

The idea of a market for mobile agents� similar to the existing market for
reusable components� has already been evoked several times� but it has not
been achieved yet� In the case of Meety� we would have liked to �nd such
a generally available service� We abandoned the idea of developing our own
software for the management of extensions because of lack of time� But we
are sure that showing our users how to interact with agents� using their Web
browser� would have been a good feature to impress them�

���� Mobile code and non�functional aspects

The e�ect of mobile code on several non�functional aspects should also be
studied� Because having the possibility to perform computations on both
sides of the communication link potentially enables new solutions�

		
�
	 Caching

Caching implies duplication of data� and hence� the necessity to update or
invalidate the replica when the original data is changed or deleted� This is
frequently done by associating a timestamp to data� in order to record the last
time it was modi�ed� It could be interesting to study how event noti�cations
for data changes can replace timestamps� in terms of ease of programming�
scalability� performance� etc� For the service provider� event noti�cation may
be more interesting� e�g� require less memory or programming� when the aspect
of event noti�cation is already well handled by the service design� In this case�
the ability of mobile extensions to �lter events at the source or store them
when the client is disconnected can be exploited� Mobile code may also o�er
more possibilities with respect to where the cache is located�

		
�
� Coordination

In our case study� coordination was handled using Java�s synchronisationmech�
anism at several well�chosen places in order to avoid race conditions� However�
we have not studied this problem in depth� and we think that it is worth look�
ing for new solutions enabled by mobile code� Because interacting entities
can be co�located� and also because one entity that moves may replace several
threads running on di�erent machines� coordination problems may become
easier to manage in this new context� At the same time� it is necessary to
avoid that extensions� decorators� and all other kinds of mobile code obtain
an exclusive access to critical resources and interfere with other extensions� or
with the service�s core functionality�

����� MOBILE CODE AND NON	FUNCTIONAL ASPECTS �
�

		
�
� Exception handling

Like coordination� this aspect has not been treated very deeply in our archi�
tecture� but we think that mobile code enables original solutions� First� there
is the example presented in x ��	� p� ��� where the extension is able to move
with an ordered sequence of events� An interesting observation� since it is
usually very di�cult to reconstruct the sequence of event that leads to a given
state in a distributed setting� Second� we noticed that with our architecture
it is possible to change the state of entity objects in a non�de�nitive way and
thus� either to commit the change� or to leave the database unchanged if some
exception occurs before the sequence is able to run to completion� It could be
an interesting alternative to �transactional� systems that can also return to
the last consistent state after a failure occurs� Hence� the ability to co�locate
interacting entities� and to program the exception handling occuring on a re�
mote host seem to o�er interesting opportunities that would be worth studying
in greater detail�

Chapter summary

We think that our work can be extended by several interesting studies of the
aforementioned points� The meeting scheduling application� and the existing
Meety software seem seem to be good starting points to conduct such studies
in a real�world context�

Chapter ��

Summary of contributions

�� The �rst contribution of this dissertation is the extensive catalog of
non�functional aspects� This inventory concretely depicts the com�
plexity of large�scale software systems
DEDIS�� in which most aspects
are present� The large number of concerns that must be taken into ac�
count and the dense network of inter�dependencies somehow explain why
software design is intellectually challenging� It makes evident the need
for elaborate software engineering methods and tools� and for ways to
handle the concerns separately�

�� We emphasize mobile code�s most interesting feature� the ability to
encapsulate protocols� which provides incomparable �exibility and al�
lows integration with minimal collaboration� We contrast this approach
with protocol based approaches where huge e�orts are required to take
into account the speci�c needs of all interested parties� to deploy and pre�
serve the resulting �standards� and where ambiguities in speci�cations
frequently lead to incompatible implementations� We provide several
concrete examples of protocol encapsulation using mobile code through�
out the dissertation�

�� We show that as a side�e�ect of protocol encapsulation� the ability to
move code� and the availability of execution environments actually allow
that a signi�cant fraction of non�functional aspects are taken into
account in better ways than with competing technologies for distributed
systems� We infer that the motivation to use this technology will not be
based on an hypothetic �killer application�� because there is not a single
aspect where mobile code excels and that cannot be handled with other
techniques� but because it makes the work of the designers of DEDIS

�
�

�
�

easier� eventually leading to software with less defaults� and which is
easier to adapt to changing needs and easier to integrate�

	� We give a detailed description of an architecture for open and exten�
sible services� Unlike most existing work on mobility� which concen�
trated on the mobile parts of distributed applications� we show what is
actually necessary to receive mobile entities� Although the architecture
doesn�t allow full reprogrammability of the service� we argue that such
an approach o�ers important guarantees of evolution and accessibility of
information and events� Such features are usually not present in desktop
or client"server applications� leading to obsolete systems� or informa�
tion that cannot be accessed although represented in an electronic form�
Hence� we suggest that corporate IT departments change their point of
view and consider o�ering reusable and personalizable services� Once
there will be enough such services and su�cient security and continuity
guarantees are o�ered� they can be used by third parties with only little
collaboration�

�� As a case study� we implemented a new Web�based service for choos�
ing a suitable date collaboratively� This is a useful tool� freely available
for all Internet users� Since it is designed according to the thin client
model� a user can access his meeting information from any computer
connected to the Internet� This lets him easily introduce in the system
the informations required to organize a meeting� and lets him retrieve
them at any time� Such a system is a useful complement for all kinds of
electronic and non�electronic personal calendars� We argue that for most
end users� the ability to store information on the Web� instead of �les
on ones hard drive has many practical advantages
high availability� low
administrative cost� etc��� Moreover� a service that can be extended us�
ing mobile code is a guarantee that it can survive technological changes
and remain useful through programmability even when the user�s needs
evolve�

�� To implement our meeting scheduling service� using Java� we had to de�
velop a new library of classes for calendaring and for the management
of temporal intervals and domains� This package can be reused by other
Java developers working on similar problems� since it has been released
as open source software�

�� We also present in detail the implementation of actual extensions

mobile agents� within the Voyager environment� They illustrate well the
advantage of protocol encapsulation� and of letting the client choose im�
plementation details unilaterally� A set of high level conventions between

�
� CHAPTER ��� SUMMARY OF CONTRIBUTIONS

the service provider and its users are necessary� notably the descriptions
of classes that can be accessed as service API� But there are many low�
level tasks and details that the extension programmer needs to choose to
actually deploy useful agents� and he may do so without collaboration
with the service provider� and without going through heavy standard�
ization processes� These extensions also enrich the rather sparse list of
mobile agents e�ectively published and used�

There is no mobile code platform that satis�es all our requirements at the
present time� but we don�t think that we made unrealistic assumptions in
this dissertation� It may take some time until an environment that o�ers the
right combination of security� ease of use� performance and resource control
becomes available� mostly because it represents a huge programming e�ort�
but it should de�nitely be feasible� Then� the use of mobile code technology
at the level of applications should become more frequent� given the potential
advantages for end users� service providers and corporate IT departments�
especially as an investment towards future integration� This day� the job of IT
sta� that often struggles to adapt software that is too sti� will hopefully be
easier� and the experience of end users will improve� in front of systems that
will be more robust and easier to personalize than today�

Bibliography

Ad Astra Engineering� Inc�
������ Jumping beans white paper� Available on
request on http�""www�JumpingBeans�com"�

Allen� J� F�
������ Maintaining knowledge about temporal intervals� Com�
munications of the ACM� ��
���������	��

Baldi� M� and Picco� G� P�
������ Evaluating the tradeo�s of mobile code
design paradigms in network management applications� In Kemmerer� R�
and Futatsugi� K�� editors� Proceedings of the ��th International Confer�
ence on Software Engineering �ICSE����� Kyoto �Japan��

Berry� P� M�
������ The PCP� A predictive model for satisfying con�icting
objectives in scheduling problems� AI in Engineering� �������	��

Biberstein� O�
������ CO�OPN��� An Object�Oriented Formalism for the
Speci�cation of Concurrent Systems� PhD thesis� University of Geneva�

Binder� W�� Hulaas� J�� and Villaz�on� A�
�

�� Resource control in
J�SEAL�� Cahier du CUI ��	� University of Geneva� Switzerland�
ftp�""cui�unige�ch"pub"tios"papers"TR���	��

�ps�

Booch� G�� Jacobson� I�� Rumbaugh� J�� and Rumbaugh� J�
������ The Uni�ed
Modeling Language User Guide� The Addison�Wesley Object Technology
Series� Addison�Wesley Pub Co�

Brewington� B�� Gray� R�� Moizumi� K�� Kotz� D�� Cybenko� G�� and Rus� D�

������ Mobile agents in distributed information retrieval� In Klusch� M��
editor� Intelligent Information Agents� Springer�

Burke� P� and Prosser� P�
���	�� The distributed asynchronous scheduler� In
Zweben� M� and Fox� M� S�� editors� Intelligent Scheduling� chapter ���
pages �
������ Morgan Kaufmann�

�
�

��
 BIBLIOGRAPHY

Campione� M�� Walrath� K�� Huml� A�� and the Tutorial Team
������ The
Java tutorial continued� the rest of the JDK� Addison�Wesley� Reading�
MA� USA� http�""java�sun�com"docs"books"tutorial"�

Cesta� A�� Collia� M�� and D�Aloisi� D�
������ Tailorable interactive agents
for scheduling meetings� In Giunchiglia� F�� editor� Arti�cial Intelligence�
Methodology� Systems� Applications� volume �	�
 of Lecture Notes on Ar�
ti�cial Intelligence� Springer�

Cesta� A� and D�Aloisi� D�
������ Mixed�Initiative Issues in an Agent�Based
Meeting Scheduler� User Modeling and User�Adapted Interaction� �
��
���	�����

Chv�atal� V�
������ Linear Programming� W� H� Freeman and Company� New
York�

Coleman� D�
������ Web�based scheduling� online report
http�""www�collaborate�com"hot tip"tip
����html�

Committee on Information Technology Research in a Competitive World

�

�� Making IT Better� Expanding Information Technol�
ogy Research to Meet Society�s Needs� National Academy Press�
http�""stills�nap�edu"html"making IT better"� ISBN
��
��
�������

Conry� S� E�� Meyer� R� A�� and Lesser� V� R�
������ Multistage negotiation
in distributed planning� In Bond� A� H� and Gasser� L�� editors� Readings
in Distributed Arti�cial Intelligence� pages ������	� Morgan Kaufman�

Dijkstra� E� W� and Scholten� C� S�
���
�� Predicate Calculus and Program
Semantics� Springer�Verlag� New York�

Florio� S�
������ Notes R� calendar , scheduling� http�""notes�net"today�nsf"
��	�b��c���dcd���������

�aaa
f"���	
	�cf�b	�db�������c�

��d�d�$
OpenDocument�

Freuder� E� C� and Wallace� R� J�
������ Partial constraint satisfaction� Ar�
ti�cial Intelligence� ��
���������
�

Friha� L�
������ DISA� Distributed Interactive Scheduler using Abstractions�
PhD thesis� Universit�e de Gen�eve�

Fuggetta� A�� Picco� G� P�� and Vigna� G�
������ Understanding code mobility�
IEEE Transactions on Software Engineering� �	
���

BIBLIOGRAPHY ���

F&unfrocken� S�
������ Integrating java�based mobile agents into web servers
under security concerns� In ��st Hawaii International Conference on Sys�
tem Sciences� volume VII� Software Technology Track� pages �	�	��

Gamma� E�� Helm� R�� Johnson� R�� and Vlissides� J�
������ Design Patterns�
Elements of Reusable Object�Oriented Software� Addison�Wesley� ISBN

��
����������

Gar�nkel� R� S� and Nemhauser� G� L�
������ Integer Programming� John
Wiley , Sons� New York� Series in Decision and Control�

Glover� F�
������ Tabu search� �� ORSA Journal on Computing� �
�����
��
��

Greppin� C�
�

�� R�ealisatoin d�un service Web de gestion de carnets
d�adresses pour Meety� M�emoire de Licence� Universit�e de Gen�eve�

Grudin� J� and Palen� L�
������ Why groupware succeeds� Discretion or man�
date$ In Proceedings of the Fourth European Conference on Computer�
Supported Cooperative Work� Electronic Meetings II� pages ��������

Hamadi� Y�
������ Processing of distributed constraint satis�
faction problems� PhD thesis� Universit�e Montpellier II�
http�""magnum�lirmm�fr"-hamadi"Thesis"summary�html�

Harrison� C� G�� Chess� D�� and Kershenbaum� A�
������ Mobile agents� Are
they a good idea$ Technical report� IBM Research Division� T� J� Watson
Research Center� http�""www�research�ibm�com"massdist"mobag�ps�

Hartvigsen� G�� Johansen� D�� Farsi� V�� Farstad� W�� H%gtun� B��
and Knudsen� P�
���	�� The StormCast API� speci�cation of
software interfaces in StormCast ���� Technical Report �	����
Department of Computer Science� University of Troms%� Norway�
http�""www�cs�uit�no"forskning"rapporter"Reports"�	���html�

Held� M� and Karp� R� M�
���
�� The traveling salesman problem and mini�
mum spanning trees� Operations Research� �������������

Hillier� F� S� and Lieberman� G� J�
���
�� Introduction to Operations Research�
McGraw�Hill� �fth edition�

Holland� J� H�
������ Adaption in Natural and Arti�cial Systems� MIT Press�

Huai� Q� and Sandholm� T�
�

�� Nomad� Mobile Agent System for an
Internet�Based Auction House� Internet Computing� 	
����
����

��� BIBLIOGRAPHY

International Organization for Standardization
������ ISO ���������� Data
elements and interchange formats 	 Information interchange 	 Repre�
sentation of dates and times� International Organization for Standardiza�
tion� Geneva� Switzerland� http�""www�iso�ch"markete"��
��pdf�

Jacobson� I�� Christerson� M�� Jonsson� P�� and &Overgaard� G�
������ Object�
Oriented Software Engineering� A Use Case Driven Approach� Addison�
Wesley�

Johansen� D�
������ Mobile agent applicability� Lecture Notes in Computer
Science� �	����
����

Johansen� D�� Lauvset� K� J�� and Marzullo� K�
�

�� An extensible
software architecture for mobile components� Technical Report �

�
��� Department of Computer Science� University of Troms%� Norway�
http�""www�cs�uit�no"forskning"rapporter"Reports"�

���html�

Kiczales� G� et al�
������ Aspect�Oriented Programming� In European Con�
ference on Object�Oriented Programming ECOOP���� Finland�

Kirkpatrick� S�� Gelatt� C� D�� and Vecchi� M� P�
������ Optimisation by
simulated annealing� Science� ��
�������
�

Kotz� D� and Mattern� F�� editors
�

�� Agent Systems� Mobile Agents� and
Applications� number ���� in Lecture Notes in Computer Science� Zurich�
Switzerland� Springer�

Kumar� V�
������ Algorithms for constraint�satisfaction problems� A survey�
AI Magazine� ��
������		�

Lai� C�� Gong� L�� Koved� L�� Nadalin� A�� and Schemers� R�
������ User
authentication and authorization in the java platform� In Proceed�
ings of the ��th Annual Computer Security Applications Conference�
http�""java�sun�com"products"jaas"�

Lange� D� and Oshima� M�
������ Programming and Deploying Java Mobile
Agents with Aglets� Addison�Wesley�

Lea� D�
������ Design for open systems in java� In Garlan� D� and M�etayer�
D� L�� editors� Proceedings COORDINATION���� LNCS ����� pages ���
	�� Berlin� Germany� Springer�Verlag�

Lugmayr� W�
������ Gypsy� A Component�Oriented Mobile
Agent System� PhD thesis� Technischen Universit&at Wien�
http�""www�infosys�tuwien�ac�at"Gypsy"download"docs"gypsy�
diss�ps�gz�

BIBLIOGRAPHY ���

Maes� P�
���	�� Agents that Reduce Work and Information Overload� CACM�
��
����
�	
�

Milojicic� D�
������ Trend wars� IEEE Concurrency� �
����
��
�

Minar� N�� Gray� M�� Roup� O�� Krikorian� R�� and Maes� P�
������ Hive�
Distributed agents for networking things� In First International Sympo�
sium on Agent Systems and Applications �ASA�����Third International
Symposium on Mobile Agents �MA����� Palm Springs� CA� USA�

Mowbray� T� J� and Ruh� W� A�
������ Inside CORBA� Distributed Object
Standards and Applications� The Addison�Wesley object technology series�
Addison�Wesley� Reading� MA� USA�

Muhugusa� M�
������ Distributed Services in a Messenger Environment� The
Case of Distributed Shared�Memory� PhD thesis� Computer Science De�
partment� University of Geneva� Geneva� Switzerland�

Nadel� B�
������ Constraint Satisfaction Algorithms� Computational Intelli�
gence� �
	��������	�

Nesterov� Y� and Nemirovskii� A�
���	�� Interior�Point Polynomial Algo�
rithms in Convex Programming� volume �� of Siam Studies in Applied
Mathematics� Society for Industrial , Applied Mathematics�

ObjectSpace� Inc�
������ Voyager ORB ��� Developer Guide� �	��
 Quorum
Drive� Suite �

� Dallas� TX ���	
 USA� http�""www�objectspace�com"�

Papaioannou� T�
�

�� On the Structuring of Distributed Systems�
The Argument for Mobility� PhD thesis� Loughborough University�
http�""www�luckyspin�org"Docs"Thesis�Book�zip�

Queloz� P��A�
������ Problem Solving in M
� Scheduling and resource allo�
cation with VAD�heuristic� Cahier du CUI ���� University of Geneva�
Switzerland� http�""cui�unige�ch"-queloz"papers"m
 vad�ps�gz�

Queloz� P��A� and Pellegrini� C�
������ Foreign event handlers to main�
tain information consistency and system adequacy� In Workshop on Mo�
bile Agents in the Context of Competition and Cooperation� Autonomous
Agents Conference� Seattle�

Queloz� P��A� and Villaz�on� A�
������ Composition of services with mobile
code� In First International Symposium on Agent Systems and Appli�
cations �ASA���� and Third International Symposium on Mobile Agents
�MA���� ASA�MA���� Palm Springs� California� USA�

��	 BIBLIOGRAPHY

Rowstron� A�
������ Mobile Co�ordination� Proving Fault Tolerance in Tuple
Space Based Coordination Languages� In Ciancarini� P� and Wolf� A� L��
editors� Proc� �rd Int� Conf� on Coordination Models and Languages� vol�
ume ���	 of Lecture Notes in Computer Science� pages ������
� Amster�
dam� Netherland� Springer�Verlag� Berlin�

Sen� S� and Durfee� E� H�
������ Unsupervised surrogate agents and search
bias change in �exible distributed scheduling� In Lesser� V�� editor� Pro�
ceedings of the First International Conference on Multi�Agent Systems�
pages �����	�� San Francisco� CA� MIT Press�

Sen� S� and Durfee� E� H�
������ A contracting model for �exible distributed
scheduling� Annals of Operations Research� �����������

Sen� S� and Durfee� E� H�
������ A formal study of distributed meeting
scheduling� Group Decision and Negotiation�

Sen� S�� Haynes� T�� and Arora� N�
������ Satisfying user preferences while
negotiating meetings� International Journal of Human�Computer Studies�
	�
���	
��	���

Shehory� O�� Sycara� K�� Chalasani� P�� and Jha� S�
������ Agent cloning� An
approach to agent mobility and resource allocation� IEEE Communica�
tions Magazine� pages ������

Spivey� J� M�
������ The Z Notation� A Reference Manual� Prentice Hall
International Series in Computer Science� �nd edition�

Sudmann� N� P� and Johansen� D�
�

�� Adding mobility to
non�mobile web robots� In ICDCS��� Workshop on Knowl�
edge Discovery and Data Mining in the World�Wide Web�
http�""www�cs�uit�no"forskning"rapporter"Reports"�

���ps�

Sun Microsystems
������ JavaBeans� http�""java�sun�com"beans�

Sun Microsystems Inc�
������ Jini Connection Technology� Sun Microsystems
Inc�� http�""www�sun�com"jini�

Suri� N�� Bradshaw� J� M�� Breedy� M� R�� Groth� P� T�� Hill� G� A�� and Je�ers�
R�
�

�� Strong mobility and �ne�grained resource control in NOMADS�
In
Kotz and Mattern� �

�� pages �����

Tennenhouse� D� L� et al�
������ A survey of active network research� IEEE
Communications Magazine� pages �
����

BIBLIOGRAPHY ���

Tiemann� M� et al�
April ������ Information architecture vol�
ume III guidance� Technical report� U�S� Department of Energy�
http�""cio�doe�gov"iap"documents"vol� guidance"volume��htm�

Tripathi� A�� Ahmed� T�� Kakani� V�� and Jaman� S�
�

�� Distributed
collaborations using network mobile agents� In
Kotz and Mattern� �

��
pages ��������

Tschudin� C�
������ A self�deploying election service for active networks� In
Coordination���� Amsterdam� Holland�

Tschudin� C� F�
������ On the structuring of computer communications� PhD
thesis� University of Geneva� Switzerland�

Tschudin� C� F�
���	�� An introduction to the M
 messenger language� Tech�
nical Report Cahier du Centre Universitaire d�Informatique ��� University
of Geneva� Switzerland�

Tschudin� C� F�
����a�� The messenger environment M
 � A condensed
description� In Vitek� J� and Tschudin� C�� editors�Mobile Object Systems�
Towards the Programmable Internet �MOS����� volume ���� of LNCS�
pages �	������ Springer�Verlag� Berlin� Germany�

Tschudin� C� F�
����b�� Open resource allocation for mobile code� In First
International Workshop on Mobile Agents� MA��� Berlin�

Van Hentenryck� P�� Michel� L�� and Deville� Y�
������ Numerica� A Modeling
Language for Global Optimization� MIT Press� Cambridge� Mass�

Van Hentenryck� P� and Saraswat� V�� editors
������ Principles and Practice
of Constraint Programming� MIT Press� Cambridge� MA�

Vigna� G�
������ Mobile Code Technologies� Paradigms
and Applications� PhD thesis� Politecnico di Milano�
http�""www�cs�ucsb�edu"-vigna"pub"vigna PhDThesis���ps�gz�

Waldo� J�� Wyant� G�� Wollrath� A�� and Kendall� S�
���	�� A note on dis�
tributed computing� Technical report� Sun Microsystems Laboratories�
Inc�� http�""www�sunlabs�com"techrep"���	"abstract����html�

Yamamoto� G� and Nakamura� Y�
������ Architecture and performance eval�
uation of a massive multi�agent system� In Etzioni� O�� M&uller� J� P�� and
Bradshaw� J� M�� editors� Proceedings of the Third Annual Conference
on Autonomous Agents �AGENTS����� pages �������� New York� ACM
Press�

��� BIBLIOGRAPHY

Yokoo� M�� Durfee� E� H�� Ishida� T�� and Kuwabara� K�
������ Distributed
constraint satisfaction for formalizing distributed problem solving� In ��th
International Conference on Distributed Computing Systems� pages ��	�
���� Washington� D�C�� USA� IEEE Computer Society Press�

Zweben� M� and Fox� M� S�� editors
���	�� Intelligent Scheduling� Morgan
Kaufmann�

Index

agent
mobile� ��� ���
and mobile code� ��
in Voyager� ���
personal� ���� ���
roaming� ��

Aglets� ��
architecture� ���
client"server� ��
de�nition� ��
eAuctionHouse� ��
service� ��
StormCast� ��
TabiCan� ��

aspect� ��
dependencies� ��
functional� ��
non�functional� ��

auction� ��
Automation� �	

calendaring� ��� ���
Java� ��	
package� �	�

composition� ��
conceptual
model� ���

Concordia� ��
constraint
in scheduling� ��
programming� ���
satisfaction problem� see CSP

contact� ��

CORBA� ��
cross�cutting� ��
CSP
de�nition� ���

database� ��� �	
� ���� ���� �
��
�
�

debugging� ���
decomposition� ��� ��
decorator� �
�
DEDIS� ��
distribution� ��� ��

constraints� ���
hiding� ��� ���

DTD� ��
dynamicity� ��� ��� ��� ���

e�Marketplace� ��
eAuctionHouse� ��
encapsulation

of a protocol� ��
entity� ��� ���� �

evolution� ��� ��� ���
execution environment� see platform
extension
exceptions� ���
in architecture� ��
preserving� ���
publishing� ���
retrieving� ���
sending� ���

facade� ��� �	�� ���� ���

���

��� INDEX

IBM� ��
inter�operability� ��� ��� ���� ���

Java� ��
Jini� ��

large�scale system� ��

manager� ��� ��� ���� �
�
calendar� ���� ���
resource� ��

meeting
class� ���
problem� ��

message exchange� ��
messenger
and mobile code� ��
and protocols� ��
paradigm� ��
platform� ��

middleware� ���� ���
MIME� ��
Mitsubishi� ��
mobile code
and message exchange� ��
and PDU� ��
de�nition� ��
variants� ��

mobile object
and mobile code� ��
in Voyager� ���

mobility
strong� ��

Nomad� ��

OMG� ��
ontologies� �

PDF� ��
PDU� ��
platform� ��� ��� �	� ��� ��� ��� ���

�
�

Aglets� ��
Concordia� ��
messenger� ��
Voyager� ���� ���
Web servers� �

privacy
calendar� ���
Meety� ���
shortcomings� ���

programming
aspect oriented� ��

protocol� ��� ��� ��� ��

calendaring� ���
negotiation� ���
with messengers� ��

reference
between services� �

entity� ��
remote� ���

rescheduling� ���
resource control� ��� ��� ��� �
� ���

��� ���
RMI� ��

scheduling
as DEDIS� ��
automated� ���
con�icts� ���
constraints� ��
CSP� ���
de�nition� ��
distributed� ���
dynamic� ���
example� ��
model� ��	
software� ���
Web� ��

security� �	
CORBA Service� ��
in Facade� ��
in M�� �

INDEX ���

Web sites� �

service
CORBA� ��
de�nition� ��

Servlet� �	�
StormCast� ��
Sun Microsystems� ��

TabiCan� ��
TACOMA� ��
thin
client� ��� �
� �	�

travel� ��

use�case� ��� �	�� ���� �

� �
�

Voyager� ���

weather� ��
Web
client� ��� ��� �	�
scheduling� ��

server� ��� ��� ���� �	�
technology� ��� ��� ��	

XML� ��
XSL� ��

