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Cancer immunotherapies emerge as promising strategies for restricting

tumour growth. The tumour microenvironment (TME) has a major

impact on the anti-tumour immune response and on the efficacy of the

immunotherapies. Recent studies have linked changes in the ambient tem-

perature with particular immuno-metabolic reprogramming and anti-cancer

immune response in laboratory animals. Here, we describe the energetic

balance of the organism during change in temperature, and link this to the

immune alterations that could be of relevance for cancer, as well as for

other human diseases. We highlight the contribution of the gut microbiota

in modifying this interaction. We describe the overall metabolic response

and underlying mechanisms of tumourigenesis in mouse models at varying

ambient temperatures and shed light on their potential importance in

developing therapeutics against cancer.

Introduction

The development of immunotherapies has revolution-

ized the field of cancer immunology and treatment.

However, the majority of cancer patients do not fully

benefit from this treatment, partially due to a meta-

bolic reprogramming of the tumour microenvironment

(TME), resulting in augmented immunosuppressive

activities and limited anti-tumour immune responses

[1,2]. Both cancer and immune cells depend on certain

metabolic traits for their functions. Various metabolic

sensing and utilizing capacities orchestrate the cell via-

bility and behaviour in adaptation to the TME. Nota-

bly, the tumour-infiltrating immune cells experience

metabolic stresses in the TME that influence their

functional activity and efficacy of immune checkpoint

blockades. Though the number of new cancer cases

has been strikingly increased since 2008 all over the

world [3], there is considerable heterogeneity among

different types of cancer across countries and parts

of the world. These variations can be attributed to

genetic differences, environmental factors, lifespan, as

well as other cancer inducements, including social

behaviours, economic developments and the advance-

ment of the healthcare system [4].

Acclimation to changes in temperature cause alter-

ations of the competitive organismal fitness due to var-

ious programs, including activation of thermogenesis

[5,6]. In addition, external temperature impacts the

organism’s basal and dynamic metabolic rates, which
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can be linked to body mass and healthspan. However,

while the interaction between thermogenic activation

and its metabolic regulation has been extensively stud-

ied [7], little is known about the effect of ambient tem-

perature on chronic diseases, particularly cancer.

“Cold tumor” is characterized by a paucity of

tumour-infiltrating T cells, insufficient to trigger a

proper anti-tumour immune response [8,9]. Based on

the worldwide incidence and mortality rates of “cold

cancers” such as melanoma, colon cancer and lung

cancer [10], a higher comprehensive assessment of

the cancer burden is trendily shown in areas with

lower local temperatures [11,12]. Human and animal

studies have demonstrated that cold exposure induces

changes in immune responses in both cellular and

humoral aspects, indicating suppression of innate

immune reactivity under short-term cold exposure [13].

In contrast, prolonged cold exposure enhances lym-

phocyte proliferation and pro-inflammatory cytokine

production [14]. Varying housing temperatures alter

how cancer cells grow and metastasize in mice, due to

alterations of anti-tumour immune responses that are

dependent on cytotoxic T-cell infiltration [15]. Intrigu-

ingly, it is emerging that the intestinal microbiome can

also regulate the patient response to immune check-

point blockade therapy through host immune system,

supported by evidence that antibiotic treatments can

impair the efficacy of the immunotherapies [16,17].

This review focuses on how the whole-body metabo-

lism changes induced by environmental temperature

influence the anti-tumour immune response. We also

describe the interplay between the gut microbiome and

immunometabolism during temperature shifts and

cover the known mechanistic insights on regulating

tumour progression by the ambient temperature.

Finally, we provide insights into the mechanisms that

regulate immune response through the temperature-

mediated interaction between adipose tissue and the

microbiota, which might shed light on therapeutics for

metabolic disease and cancer.

Ambient temperature and fat
metabolism

Differences in the environmental temperatures influ-

ence organism’s biophysical requirements, their meta-

bolic activities and the gut microbiota (Fig. 1).

Glucose and lipid uptake is essential energy source for

the cancer cells, and adipose tissues play a central role

in regulating the energy balance during the ambient

temperature changes [18,19]. Adipose tissues contain

several distinct types of cells [20,21] and are broadly

divided into white and brown adipose tissues (WAT

and BAT respectively). WATs are generally responsi-

ble for storing lipids mainly in the form of triglyc-

erides, while BAT utilizes glucose and fat to generate

heat through uncoupling oxidative phosphorylation

largely mediated by mitochondrial inner membrane

protein uncoupling protein-1 (UCP-1) in a process

called non-shivering thermogenesis [22]. Following

prolonged cold exposure, brown fat cells also emerge

in subaccountants WAT (known as “beige” or “brite”

adipocytes) in a process commonly referred to as

WAT browning. These multilocular cells have a higher

thermogenic capacity than the white adipocytes due to

the large number of UCP1-positive mitochondria [23].

Several biological cues can promote WAT browning

ranging from cold exposure, endurance exercise and

dietary regiments, to sympathetic nervous stimulation

via b3-adrenergic receptor activation, as well as micro-

biota alterations [24–27]. Cold exposure-induced acti-

vation of the b3-adrenergic receptor signalling

promotes uptake of glucose, fatty acid (FA) and

triglyceride-rich lipoproteins to the BAT from the

internal reservoirs, which are then used as an energy

source for the non-shivering thermogenesis [28–31].
The ambient temperatures where metabolic rate is at

a minimum are the usual definition of a thermoneutral

zone, and it is in the interval of 29 °C in the light

phase and up to 33 °C during the dark phase in mice

[32]. Housing temperature of 20–22 °C (room tempera-

ture, RT), therefore, represents a mild cold environ-

ment for mice [33], coupled with proportional

allocation of energetic resources to enable thermogene-

sis. Thermoneutrality leads to “whitening” of the adi-

pose tissues compared to RT-kept mice due to

suppression of the sympathetic activity and decreased

oxygen consumption rates and thermogenesis [34,35].

In absence of UCP-1, thermoneutrality causes an obe-

sogenic phenotype in mice, most likely due to the lack

of a chronically elevated metabolism at this tempera-

ture [36]. In humans, even at basal state at warm tem-

peratures, BAT has increased glucose uptake, lactate

release and metabolic activity compared to WAT [37].

Interestingly, the “whitened” beige adipocytes follow-

ing thermoneutrality can regain their thermogenic

capacity after cold exposure [38], a process partly

mediated by transcriptional and epigenetic regulation

under different temperature conditions. Cell-type-

specific profiling in vivo demonstrated that beige adi-

pocytes undergo whitening-induced chromatin changes

[39], enabling preservation of their epigenetic memory

from the previous cold challenge. Further research is

required to fully understand the cellular machinery

leading to the temperature-driven changes in the adi-

pose tissue, as well as the preference of specific

2 The FEBS Journal (2022) � 2022 Federation of European Biochemical Societies.
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subcutaneous vs. visceral fat depots to undergo brown-

ing with relation to tumour growth.

Ambient temperature and immune
responses

The immune cells monitor and respond to the environ-

mental metabolic cues, as well as to various endogenous

triggers, resulting in alterations in their function [40].

Human and animal studies have demonstrated that

different ambient temperatures can change immune

responses in cellular and humoral aspects. The interplay

between the immune system and the thermogenic

response of the organism can be viewed in the context of

the life-history theory [41], which proposes that the pri-

oritization of resources between biological programs

depends on the environment. In hostile environments,

resources are shifted away from growth and reproduc-

tion programs into maintenance programs [41–43].
Interestingly, the competition for resources is also

Fig. 1. Temperature change causes metabolic reprogramming in various organs. Organism’s biophysical requirements at different ambient

temperatures, including their metabolic activities in distinct tissues and gut microbiota. Cold stimuli, sensed by neurons in skin, activate the

sympathetic nervous system (SNS) that is responsible for local production of norepinephrine (NE) in BAT. Cold exposure also triggers

muscle shivering and thus contributes to BAT thermogenesis. During prolonged cold exposure, browning of WAT is also be involved in

thermogenesis through various mechanisms, including stimulation of hepatic FGF21 and bile acid (BA). Increased hepatic acylcarnitine

metabolism contributes to lipid oxidation in the liver and other tissues. In addition, cold-induced appetite and metabolic changes lead to gut

microbiota shifts in the firmicutes/Bacteroidetes ratio, where firmicutes abundance increases over Bacteroidetes (from 72.6% in RT to

35.2% under cold), and an almost absence of the Verrucomicrobia phylum from both faeces and caecum, affecting various organs. Warm

exposure causes opposite changes in the microbiota, with marked beneficial effects on bone remodelling in part through enhanced polya-

mine production. Resting oxygen consumption is decreased in liver acclimated to warm. Beige adipocytes can undergo epigenomic repro-

gramming with warming. Cold exposure (4–18 °C); thermoneutral temperature (29–33 °C); warm exposure (≥34 °C).

3The FEBS Journal (2022) � 2022 Federation of European Biochemical Societies.
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present between the various maintenance programs,

where the metabolic response to cold requires an ener-

getic trade-off with other energy costly programs such

as the immune responses. Indeed, cold lowers major his-

tocompatibility complex class II (MHCII) on monocyte

and renders them less activated, which in turn sup-

presses priming of pathogenic T cells during autoimmu-

nity. This results in reduced T-cell cytokine expression

and consequently attenuates neuroinflammation [44,45].

These data indicate prioritization of resources towards

thermogenesis leading to a constrained immune

response, resulting from a decreased energy availability

for the mouse immune system [44,45]. While this compe-

tition is evidently protective against autoimmunity, it

may also explain the increased susceptibility to certain

viral infections during cold [46,47], which warrants fur-

ther investigation. Moreover, thermoneutral housing

enhances the infiltration of immune cells in the TME

[15]. This is in line with the accumulating body of evi-

dence that repeated cold exposure suppresses immune

activities in mice [13], whereas warm provokes greater

anti-virus immune responses [46]. Intriguingly, mice at

thermoneutral housing accumulate LyG6+ monocytes in

bone marrow, but decrease in circulating blood, which

causes protective effects against atherosclerosis [48].

While these data strongly support the idea that prioriti-

zation of energetic resources constrains the immune

response favouring increased thermogenesis, human

data are more complex. Evidence suggests both a sup-

pressive and supportive effect of cold environmental

temperature on the immune system, which partly

depends on the length of the cold exposure. Several

studies suggested that while short-term cold stimulation

decreases human lymphoproliferative response and Th1

cytokine production [49,50], it also provokes inflamma-

tory responses and immunosuppressive signature genes

[51,52]. In line with the data from mice, long-term adap-

tation to cold exposure induces an anti-inflammatory

reaction [14], implying that the shift in the immune

response during cold adaptation may be of general

importance.

The immune response, in turn, modulates the fat

metabolism of both lean and obese mice [53]. Recruit-

ment of anti-inflammatory signals is strongly associ-

ated with beige adipogenesis in the fat [54–56]. Low-
grade inflammation of the WAT is a hallmark of obe-

sity and is linked to pro-inflammatory (M1-like)

macrophage infiltration and activation in the WAT,

together with diminished capacity for browning. Ear-

lier reports suggested that after cold exposure, the

WAT is infiltrated by an increased number of eosino-

phils that could drive the macrophage polarization

from a pro-inflammatory to an anti-inflammatory state

[57,58]. There are several potential mechanisms by

which WAT-resident macrophages could exert their

browning role [59,60]. M1-like polarized macrophages

attach to the adipocytes via binding integrin a4 to vas-

cular cell adhesion molecule 1 (VCAM-1) [61], leading

to sustained inhibition of the beiging program. In

addition, a subpopulation of macrophages called sym-

pathetic neuron–associated macrophages take up and

degrade norepinephrine [62,63] released from the net-

work of sympathetic nerve endings in WAT [64]. The

sympathetic neuron–associated macrophages are

increased in obesity and ablation of norepinephrine

uptake by these cells increases browning. Furthermore,

at thermoneutrality, mice show increased infiltration of

macrophages in BAT and corresponding pro-

inflammatory cytokines, Ifnc, Tnfa, Il-1b and Il-6 [65].

In humans, T-helper (CD4+)- and T-cytotoxic (CD8+)-

cell counts are not significantly changed after 3 weeks

of 30- to 60-min cold exposure daily (cold water swim-

ming – 14 °C/18 °C) [14,66]; however, T lymphocytes

were increased after 6 weeks of the same intermittent

cold. Short-term (20–60 min) cold exposure, on the

other hand, led to a decrease in peripheral CD4+

counts [67]. T-cell proliferation may be suppressed

partly by the myeloid-derived suppressor cells

(MDSCs) under RT conditions compared to ther-

moneutral temperature, by up-regulating the b3-
adrenergic receptor [57]. As mentioned above, cold

exposure reduces T-cell priming via a lower expression

of MHCII on monocytes [44]. Also, acute heat stress

is reported to increase the number of natural killer

cells (NK cells), which are a type of cytotoxic lympho-

cytes critical to the innate immune response [68], while

chronic heat inhibits the activity of splenic NK cells,

and increases Th2 to Th1 ratio [69]. The immune

response in reaction to hyperthermia (39–43 °C) in

both murine and humans includes up-regulation of T-

cell priming markers in dendritic cells (DCs), aug-

mented Toll-like receptor 4 (TLR4)+ macrophages and

enhanced lymphocyte trafficking to lymphoid [70].

This immunomodulation is concomitant to the aug-

mented heat shock protein (HSP) levels and their

interaction with HSP receptors on immune cells after

hyperthermia. In human cancer patients, local hyper-

thermia does not alter cytokine levels; however, whole-

body hyperthermia elevates Il-1, Il-6 or Tnfa [71], indi-

cating that whole-body hyperthermia could be benefi-

cial in immunotherapies.

Adipose tissue is a highly metabolically active organ

that stores and releases lipid metabolites. In a com-

bined lipidomics/RNA-sequencing analysis of inguinal

WAT, short-term (3 days) cold exposure resulted in

overall changes in lipid compositions: specifically,

4 The FEBS Journal (2022) � 2022 Federation of European Biochemical Societies.

Temperature in immunometabolism and cancer H. Wang et al.

 17424658, 0, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1111/febs.16632 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [27/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



enrichment of glycerophospholipids and sphingolipids,

as well as transcriptomic changes of the thermogenic

machinery, fatty acid metabolism and triacylglycerol

and glycerophospholipid synthesis [72]. However,

chronic (10 days) cold exposure led to mitochondrial

glucose oxidation in mouse BAT and subcutaneous

WAT via enrichment in tricarboxylic acid (TCA) cycle

intermediates, which is not observed in visceral WAT

[73]. Short-term cold exposure also alters the plasma

amino acid pool and causes a substantial increase in

glutamine and branched-chain amino acids, such as

glutamine content, proline, tryptophan and phenylala-

nine as an energy source for BAT thermogenesis

[74,75]. Furthermore, studies point to an involvement

of other metabolic mechanisms such as the futile cycle

of fatty acids, creatine and calcium for cold-adaptive

thermogenesis [76–78]. Thermogenesis-induced lipolysis

in adipose tissue may contribute to the recruitment

and activation of immune cells in peripheral circula-

tion and essential metabolic organs [79]. In lean indi-

viduals, adipose tissue-associated macrophages are

small in size and sparsely distributed among adipo-

cytes, but in obesity, they accumulate lipids and are

aggregated [80,81]. Additional potential metabolic sig-

nals, such as fatty acids, amino acids, hypoxia and adi-

pocyte stress, have been proposed to contribute to the

interaction between immune cells and adipocytes at

different temperatures [82,83]; however, more efforts

are needed to better understand their importance

(Table 1).

Ambient temperature and gut
microbiome

The human microbiota colonizes various parts of the

body, including the airways and skin. The gastroin-

testinal tract harbours remarkable microbiota abun-

dance and diversity, which mainly comprises strict

anaerobic bacteria from the phyla Actinobacteria, Bac-

teroidetes, Firmicutes, Proteobacteria and Verrucomi-

crobia [84] and a wide diversity of gut virome [85,86]

and fungi [87–89]. Beyond the role of the gut micro-

biota in food digestion and host physiological regula-

tion, accumulating evidence points to its protective

immune roles in enhancing anti-tumour immunothera-

pies in cancer patients [90,91]. Several environmental

Table 1. Metabolic and immunological effects of ambient temperatures in mice and human. BAT, brown adipose tissue; CE, cold exposure;

EAE, experimental autoimmune encephalomyelitis; FFA, free fatty acid; HDL, high-density lipoprotein; RT, room temperature; SAT, subcuta-

neous adipose tissue; TGs, triglycerides.

Temperature range Metabolic regulation Immunomodulatory effects Model References

CE 10 °C (2 weeks)

Control: RT 22 °C

Browning of BAT and SAT ↓MHCII on monocytes

↓IL-17A secreted by CD4+ T

cells

EAE (mouse) [44]

Thermoneutrality, (30 °C,

7 days pre-treatment)

Control: RT (22 °C)

↑FFAs and TGs in plasma ↓Macrophage and monocyte

recruitment in blood

↑Monocyte in bone marrow

Atherosclerosis

(mouse)

[48]

Thermoneutrality (30 °C, 2–

4 weeks)

Control: RT (22 °C)

Suppression of thermogenetic

gene expression in adipose

tissue

↓Tyrosine hydroxylase

expression in adipose tissue

macrophages

Wild-type mouse [57]

CE (4 °C, acute cold challenge

6 h)

Control: RT (22 °C)

↑Thermogenetic gene

expression in BAT and lipolysis

in SAT

↑Catecholamines secretion in

adipose tissue macrophages

Wild-type mouse [57]

Thermoneutrality (30–31 °C,

2 weeks)

Control: RT (22 °C)

Not specified ↑ CD8+ T lymphocytes

↓immunosuppressive MDSCs

and regulatory T lymphocytes

Melanoma and

colorectal cancer

mice model

[15]

Thermoneutrality (30–33 °C,

12 weeks)

Control: RT (22 °C)

Obesity via lipid profile

alterations (↑cholesterol)
↑Macrophage activation and

circulating immune cells

Obesity and

atherosclerosis mice

model

[157]

Sauna session (96 °C � 2 °C,

30 min)

Control: before session

↑Peripheral blood cortisol levels ↑Leukocyte and monocyte in

plasma

Healthy athletes [158]

Cold water immersion (14 °C,

1 h, 3 times a week,

6 weeks)

Control: RT (Not specified)

Increased metabolic rate

↑catecholamines in blood

↑ CD3+, CD4+ and CD8+ cells Healthy human [14]

Acute CE (7 °C, 2 h)

Control (18–25 °C)

↑HDL ↑IL-1b Healthy human [51]

5The FEBS Journal (2022) � 2022 Federation of European Biochemical Societies.
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factors, such as nutrients, salts and temperature, affect

the microbiota composition, colonization and meta-

bolic activities. Ambient temperature shifts have

recently been shown to change multiple biological

functions via alteration of the gut microbiome [92,93].

In turn, the intestinal microbiota participates in

the whole-body metabolism on multiple levels. On

one hand, the cold temperature-adapted microbiota

increases absorption of nutrients [94,95], by which

influences energy harvest from the diet and storage

[96–98], and modulates immune responses. On the

other hand, it affects the energy expenditure by regu-

lating the BAT and WAT browning and thermogenesis

[99,100]. Long-term cold exposure leads to almost

complete depletion of A. muciniphila, while increas-

ing the abundance of the family Lachnospiraceae,

Clostridiaceae, Ruminococcaceae and the relative pro-

duction of short-chain fatty acids [99], rendering them

less susceptible to high-fat diet-induced obesity [100]

(Fig. 1). In addition to the marked increase in food

intake, cold exposure also provokes lipoprotein pro-

cessing in BAT and hepatic conversion of cholesterol

to bile acids, which contribute to the microbiota

remodelling [101,102]. Thermal stress (> 40 °C) can

induce intestinal epithelial damage [103,104] leading to

increased intestinal permeability of the bacterially pro-

duced lipopolysaccharide (LPS) [105], which provokes

local and systemic immune responses, and is associated

with increased body mass index, impaired insulin sensi-

tivity and reduced fat browning [106–111].
Exposure to mild warmth (34 °C) induces a change

in the gut microbiota composition reflected by an

increase of the genera Turicibacter, Akkermansia and

Parabacteroides, and a reduction of Butyricicoccus,

Peptococcaceae or Ruminiclostridium [112]. Both

warmth and warm microbiota transplantation revert

the ovariectomy-induced transcriptomics changes of

the tibia and increase periosteal bone formation in

ovariectomized old female mice, a model of post-

menopausal osteoporosis. This effect is, in part, medi-

ated by the increased production of polyamines which

can impact the bone remodelling [112], but may also

have immune cell functions [113]. Beyond the altered

metabolic regulation, heat-stressed induced heat shock

proteins are mainly induced by enteric microbiota in

response to cellular stress [114]. These proteins serve

as intestinal ‘gatekeepers’ with several critical functions

in immune response and gut homeostasis maintenance,

including refolding of denatured proteins and eliminat-

ing damaged polypeptides from the gut [115,116].

While the above evidence suggests critical contribution

of the temperature-adapted microbiota to the host

immune regulation, recent studies stressed that on a

species level, humans and mice harbour distinct gut

microbiota composition [117]. In certain cases, these

differences are also evident on a family level. For

example, in humans, Bacteroidetes phylum is mainly

composed of the Bacteroidaceae family, and Firmicutes

phylum of the Ruminococcaceae family. In mice

instead, Bacteroidetes is primarily composed of the

S24-7 family, while Firmicutes consists of the order

Clostridiales [118,119]. In light of these reports, differ-

ent ways can be envisaged to overcome the challenges

in using mouse microbiota as a proxy for human; for

example, creating mouse models by transplantation of

human gut microbiota into germ-free mice

[113,118,120], as well as uncovering functional homo-

logues between the species of the mouse and human

microbiota [113]. While the work in animal models

indicates critical contribution of the microbiota in

modulating immunometabolism at different ambient

temperatures, the importance of human gut microbiota

in this context pends further investigation.

Ambient temperature and cancer

Ambient temperature has been explored more fre-

quently in cancer than other diseases. Several ecologi-

cal studies indicate lower cancer incidence and

mortality rates associated with warmer temperatures

[11,12,121]. For example, Repasky et al. [15] found

that mice housed at a RT had cancers that grew faster

and more aggressively than those accommodated at a

thermoneutral temperature (~ 30 °C), due to the

higher infiltration of immune cells at the warmer envi-

ronment. While the molecular explanation for these

effects pends additional investigation, hyperthermia,

also called thermal therapy, is a well-known alternative

strategy for cancer treatment, due to the cancer cell

death at a high temperature, up to 45 °C [122,123].

However, this approach is not widely used in cancer

patients, due to specific side effects (burns, blisters,

diarrhoea and vomiting) and the limitation of thera-

peutic efficiency.

The ambient temperature may contribute to

tumourigenesis through various physiological processes

such as metabolic and endocrine changes, as well as

alterations in the immune response and the gut micro-

biome (Fig. 2). Cancer and malignant cells undergo

metabolic alterations that acquire energy for their pro-

liferation, survival and migration, primarily through

accelerated glycolytic metabolism [124]. However, glu-

cose deprivation in the TME and host macroenviron-

ment can also lead to metabolic reprogramming in

cancer cells, such as activation of lipid metabolism,

and consequently alter tumour progression and drug
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resistance [125,126]. Accumulating evidence reveals a

link between BAT and cancer; however, there is con-

flicting evidence on whether this is a positive or a neg-

ative correlation [127–131]. Cancer patients show a

greater 18F-fluorodeoxyglucose (18F-FDG) uptake in

positron emission tomography/computed tomography

(PET/CT) scans, suggesting higher BAT activity com-

pared to healthy controls [128–131]. In contrast,

another study reports a better prognosis in cancer

patients with atypically strong BAT activity [127]. In

animal studies, housing mice at cold induces browning

of adipose tissue to support thermogenesis, and

increases secretion of cytokines that might promote

cancer [132]. Additionally, low ambient temperature

has been suggested to enhance tumour progression

through glutamine-secreting macrophages [133]. In

both liver and adipose tissue, chronic cold stress

(> 10 days) triggers the transcriptional activator perox-

isome proliferator-activated receptor-gamma coactiva-

tor (PGC1a) and the transcription factors peroxisome

Fig. 2. The effects of cold or warm ambient temperature on the tumour microenvironment during cancer progression. Temperature-induced

immune system reprogramming can be a hinder or benefit to anti-tumour immunotherapy. For example, cold exposure increases infiltration

of glutamine-secreting macrophages and pro-tumour cytokines to the TME, whereas warmth promotes activated immune cell infiltration to

the TME, such as helper T cells, cytotoxic T cells and NK cells. In both liver and adipose tissue, chronic cold-induced hormone and metabolic

reprogramming can either trigger tumour growth, such as FGF21 and fatty acid (FA) metabolism; or compete for nutrients with tumour, such

as glucose. However, during hyperthermia treatment, cancer cells can be selectively killed via wild protein denaturation and activation of cell

apoptosis. Additionally, temperature-induced change in gut microbiota may benefit the efficacy of anti-tumour immunotherapies; for

instance, CTLA-4 or anti-PD-L1.
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proliferator-activated receptors (PPARs) [134,135],

both of which play essential roles in regulating

tumourigenesis [136,137]. Additionally, cold

adaptation-induced increase in metabolic activity has

been linked with epigenetic changes that can con-

tribute to a higher risk of cancer [138]. In contrast to

these reports, a recent study suggested that cold expo-

sure inhibits growth of various types of solid tumours

by impeding the glycolysis-based metabolism in cancer

cells. Specifically, circulating glucose is important for

cancer glycolysis as energy source for growth, invasion

and metastasis. Therefore, the cold-provoked increase

of glucose uptake into BAT would render it less avail-

able for the tumour disposal [139]. Accordingly, the

study reported that providing excess amount of glu-

cose, or deleting UCP1, ablates the cold-induced

tumour suppression. The reasons for the inconsisten-

cies between this and the above-mentioned studies

warn further investigation, and may partly depend on

the exact timing and intensity of the cold exposure, the

host microbiota, as well as the diet.

Improving immune surveillance is essential for

cancer immunotherapies, which enhance immune-

mediated cancer cell clearance. The gut microbiota

produces a variety of small molecules and metabo-

lites, which play an indispensable role in human

immune response and metabolic health [140]. Accu-

mulating evidence supports the role of gut micro-

biota in tumour growth, influencing the anti-tumour

immunity and efficiency of anti-cancer immune

effects of various immune checkpoint inhibitors

(ICIs), including cyclophosphamide, CTLA-4 block-

ade anti-PD-L1 efficacy [90,91,141–143]. Microbial

molecules, such as butyrate and pentanoate, enhance

the activation of cytotoxic T cells and chimeric anti-

gen receptor (CAR) T cells by increasing their

mTOR activity and epigenetic reprogramming

[144,145]. It is, therefore, intriguing to understand to

which extent the gut microbiota changes due to

ambient temperature variations [112] participate in

the cancer immunometabolism.

Summary and perspectives

Alterations of the basal physiological metabolism dur-

ing chronic thermal stress, and the impact it may have

on the capacity of the immune response could be of

relevance not only in autoimmune [44] or potentially

infectious diseases, but also for as anti-tumour

response [146]. Exposure to lower temperatures shifts

the energetic balance towards thermogenesis on

account of the immune response [44], while energy

expenditure declines by ~ 50% in thermoneutral mice

[146,147]. Different adipose tissues harbour a distinct

populations of immune cells [148]. M1-like

macrophage-derived pro-inflammatory cytokines, such

as IL-1b and TNFa, suppress the expression of UCP1

in BAT and WAT [149,150]. BAT-specific regulatory

T cells respond to the activation of BAT under cold

stress and directly participate in the modulation of

energy homeostasis [151]. The gut microbiota composi-

tion regulates fat [99], lipid and glucose metabolism

[152,153], thus contributing to the energy homeostasis.

Although it has recently become clear that alteration

of the gut microbiota causes dysregulation of the

immune system [154], the exact nature of this interplay

remains to be established.

Mice are widely used for modelling human biology

during change in environmental temperature, as they

share the similar set of genes implicated in thermogen-

esis. However, humans and mice differ in physiological

thermoregulation in part due to disparate body sizes,

as well as due to differences in the living temperature.

Humans are often inclined to operate activities within

the thermoneutral zone, while most laboratory rodents

are housed below their thermoneutral zone and

demand increased energy for heat generation [147].

This may create a significant challenge when attempt-

ing to translate data from rodents to humans, as the

differences of the energy expenditure of mice and

humans are reflected on the functioning of the immune

system [155,156]. Environmental temperature, there-

fore, needs to be carefully considered as a factor that

may contribute to the responsiveness of the organism

to the anti-tumour therapies, and when attempting to

translate preclinical data from mice to therapeutics in

humans.
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