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Abstract

Nosocomial infections (NIs)---those acquired in health care set-
tings---are among the major causes of increased mortality
among hospitalized patients. They are a significant burden for
patients and health authorities alike; it is thus important to mon-
itor and detect them through an effective surveillance system.
This paper describes a retrospective analysis of a prevalence
survey of Nis done in the Geneva University Hospital. Our goal
is to identify patients with one or more NIs on the basis of clini-
cal and other data collected during the survey. In this two-class
classification task, the main difficulty lies in the significant im-
balance between positive or infected (11%) and negative (89%)
cases. To cope with class imbalance, we investigate one-class
SVMs which can be trained to distinguish two classes on the ba-
sis of examples from a single class (in this case, only “normal”
or non infected patients). The infected ones are then identified as
“abnormal”’ cases or outliers that deviate significantly from the
normal profile. Experimental results are encouraging: whereas
standard 2-class SVMs scored a baseline sensitivity of 50.6% on
this problem, the one-class approach increased sensitivity to as
much as 92.6%. These results are comparable to those obtained
by the authors in a previous study on asymmetrical soft margin
SVMs; they suggest that one-class SVMs can provide an effective
and efficient way of overcoming data imbalance in classification
problems.

Keywords:

Nosocomial infections, Prevalence, Infection control, Surveil-
lance, One-class learning, Support Vector Machines.

Introduction

Infection control is a major and constant concern of health care
institutions; nosocomial infections, in particular, tend to attract
particular attention insofar as they directly engage the responsi-
bility of hospital authorities. Thus the increasing emphasis on
surveillance to monitor and detect infections, nosocomial or not.
It provides data to assess the magnitude of the problem, detect
outbreaks, identify risk factors for infection, target control mea-
sures on high-risk patients or wards, or evaluate prevention pro-

1. A nosocomial infection (from the Greek word nosokomeion for hos-
pital) is one that develops during a patient’s hospitalization whereas it was not
present or incubating at the time of the admission.
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grams. Ultimately, the goal of surveillance is to decrease
infection risk and consequently improve patients' safety.

Two methods are generally applied to perform surveillance: (1)
trans-sectional assessment (i.e. prevalence studies), because of
their capability to give estimates on a large population at rela-
tively low cost; or (2) prospective, ongoing surveillance (inci-
dence studies). The gold standard is the latter, which consists in
reviewing on a daily basis all available information on all hospi-
talized patients in order to detect all nosocomial infections.
However, this method is labor-intensive, infeasible at a hospital
level, and currently recommended only for high-risk, i.e., criti-
cally ill patients. As an alternative and more realistic approach,
prevalence surveys are being recognized as a valid surveillance
strategy and are becoming increasingly performed. Their major
limitations are their retrospective nature, the dependency on
readily available data, a prevalence bias, the inability to detect
outbreak (depending on the frequency the surveys are per-
formed), and the limited capacity to identify risk factors. How-
ever, they provide sufficiently good data to measure the
magnitude of the problem, evaluate a prevention program, and
help allocate resources. They give a snapshot of clinically active
NIs during a given index day and provide information about the
frequency and characteristics of these infections. The efficacy of
infection control policies can be easily measured by repeated
prevalence surveys [1].

Materials and Methods

Setting and data collection

The University Hospital of Geneva (HUG) has been performing
yearly prevalence studies since 1994 [2]. The methodology of
prevalence surveys is as follows. The investigators visit all
wards of the HUG over a period of approximately three weeks.
All patients hospitalized for 48 hours or more at the time of the
study are included. Medical records, kardex, X-ray and microbi-
ology reports are reviewed, and additional information eventual-
ly obtained by interviews with nurses or physicians in charge of
the patient. All nosocomial infections are recorded according to
modified Centres for Disease Control (CDC) criteria. Only in-
fections still active at any point during the six days preceding the
visit are included. Collected variables include demographic
characteristics, admission date, admission diagnosis, comorbid-
ities, McCabe score, type of admission, provenance, hospitaliza-



tion ward, functional status, previous surgery, previous intensive
care unit (ICU) stay, exposure to antibiotics, antacid and immu-
nosuppressive drugs and invasive devices, laboratory values,
temperature, date and site of infection, fulfilled criteria for infec-
tion.

Although less time-consuming than prospective surveillance, a
prevalence survey nevertheless requires considerable resources,
i.e., approximately 800 hours for data collection and 100 hours
for entering data in an electronic data base. Due to this important
effort, we can afford to perform such studies only once a year.
What is particularly time-consuming is the careful examination
of all available information for all patients, in order to detect
those who might be infected. The aim of this pilot study is to ap-
ply data mining techniques to data collected in the 2002 preva-
lence study in order to detect nosocomial infections on the basis
of the factors described above. '

Data preprocessing

The dataset consisted of 688 patient records and 83 variables.
With the help of hospital experts on nosocomial infections, we
filtered out spurious records as well as irrelevant and redundant
variables, reducing the data to 683 cases and 49 variables. In ad-
dition, several variables had missing values, due mainly to erro-
neous or missing measurements. These values were assumed to
be missing at random, as domain experts did not detect any clear
correlation between the fact that they were missing and the data
(whether values of the incomplete variables themselves or of
others). We replaced these missing values with the class-condi-
tional mean for continuous variables and the class-conditional
mode for nominal ones.

The class skew problem

Our nosocomial dataset shares the class imbalance problem ob-
served in many real world applications, especially in the medical
domain. Out of 683 patients, only 75 (11% of the total) were in-
fected and 608 were not. Data imbalance is particularly detri-
mental in classification problems where the heavily under-
represented class is precisely the class of interest. There have
been several proposals for coping with imbalanced datasets [3],
including: oversampling the minority class, under-sampling or
downsizing the majority class [4], or a combination of both [5,
6]; building cost-sensitive classifiers [7] that penalize more
heavily misclassification of the minority class; and rule-based
methods that attempt to learn high confidence rules for the mi-
nority class [8]. In this paper we investigate another alternative,
known as recognition-based learning or novelty detection,
which consists in simply ignoring one of the two classes and
learning from a single class [9, 10]. This approach is quite atyp-
ical: to minimize generalization error in a classification problem
involving ¢ > 2 classes, the standard approach is to build a dis-
criminating hypothesis h based on training cases from all ¢ class-
es..

One-class classification can be viewed as an attempt to distin-
guish between new cases similar to members of the training set
and all other cases that can occur. In a probabilistic sense, one-
class classification is equivalent to deciding whether an un-
known test case is produced by the underlying distribution that
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corresponds to the training set of normal cases. While it appears
similar to conventional binary classification problems, one-class
classification differs in the way a classifier is trained. It is trained
only on cases from one class, and never sees those from the sec-
ond class. It must therefore estimate the boundary that separates
those two classes based only on data which lie on one side.

Learning with one-class Support Vector Machines

Support vector machines [11, 12] (SVMs) are learning machines
based on the Structural Risk Minimization principle (SRM) from
statistical learning theory. They were originally introduced for
solving two-class pattern recognition problems. An adaptation
of the SVM methodology in order to handle classification prob-
lems using data from only one class has been proposed by [13,
14]. This adapted method, termed one-class SVM, identifies
“abnormal” cases amongst the known cases and assumes them to
belong to the complement of the “normal cases”. Scholkopf et
al. formulate the one-class SVM approach as follows:

Consider a training set {x;} i=1,...,n x; e R and suppose them
distributed according to some unknown underlying probability
distribution P. We want to know if a test example x is distributed
according to P or not. This can be done by determining a region
R of the input space X such that the probability that a test point
drawn from P lies outside of R is bounded by some a priori spec-
ified value v € (0,1). This problem is solved by estimating a de-
cision function f whichis positive on R and negative elsewhere.

Sx)>0 1.1

A non linear function ® : X—3 maps vector x from the input
vector space X endowed with an inner product to a Hilbert space
S termed feature space. In this new space, the training vectors
follow an underlying distribution P, and the problem is to deter-
mine aregion R’ of $ that captures most of this probability mass
distribution. In other words the region R’ corresponds to the part
of the feature space where most of the data vectors lie. To sepa-
rate as many as possible of the mapped vectors from the origin
in feature space 3 we construct a hyperplane H(w,p) in feature
space defined by

ifxe R and f(x) <0 ifx ¢ R

H(w,p) = {w,®x)) —p (1.2)
where w is the weight vector and p the offset, as illustrated in
Fig. 1.
The maximum margin from the origin is found by solving the
following quadratic optimization problem.

n

Minimize -%[(w, w>+\—,1;- zg.-p] 1.3)
i=1

subject to ({w, D(w)) 2p - ) £;20

where &; are so-called slack variables that penalize the objective
function but allow some of the points to be on the wrong side of
the hyperplane, i.e. located between the origin and H(w,p) as de-
picted in Fig.1. v € (0,1) is a parameter that controls the trade-
off between maximizing the distance from the origin and con-
taining most of the data in the region created by the hyperplane.
Itis proved in [14] that v is an upper bound on the fraction of out-



liers i.e. training errors, and also a lower bound on the fraction
of support vectors.

Separating hyperplan H(w,
The RBF kernel maps the data # CPATATING fyperpl v, 0)

onto this hypersphere™ ™
X

Aesiwi
- lIw Il T

X ,/ / target samples
Ve / classified as outliers
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Figure I - Schematic 2D overview of a one-class SVM classi-

fier. In the feature space, the vectors are located on a hyper-

sphere. The hyperplane H(w,p) separates the training vectors
from the rest of the surface of the hypersphere

Let (01 0, 0,) be n non negative Lagrange multipliers associ-
ated with the constraints, the solution to the problem is equiva-
lent to the solution of the Wolfe dual [15] problem.

]
Minimize i(x,.otj(d>(x,-), <I>(xj))

suject to
1 -
OSais—v—;, Z“x’_ 1 (1.9
i=1
the solution for w is
n 1
w = 2; _ 1<D(xi) where 0<o;< o (1.5)

and the corresponding decision function is :

ftx)) = sgn(o{@(xp), D(x)) —p) (1.6)

All training data vectors x; for which f(x;) <0 are called support
vectors (SVs); these are the only vectors for which o; # 0. SVs
are divided in two sets : the margin SVs, for which f(x;) =0, and
the non-margin SVs, for which f(x;) <0.

Notice that in (1.4) only inner products between data are consid-
ered; for certain particular maps @, there is no need to actually
compute @(x;) and B(x;); the inner product can be derived di-
rectly from x; and x; by means of the so-called “kernel trick”. A
kernel K is a symmetric function that fulfills Mercer’s [11, 15]
conditions. The main property of functions satisfying these con-
ditions is that they implicitly define a mapping from X to a Hil-
bert space 3 such that

K@, x) = (D(x), D(x) .7
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and thus can be used in algorithms using inner products. Accord-
ingly, the hyperplane (1.2) in feature space 3 becomes a non
linear function in the input space X.

flx) = sgn[ Y oK (x;, x) - p}

i=1

(1.8)

There are many admissible choices for the kernel function K(x;,
x;). The most widely used in one-class SVMs is the Gaussian Ra-
dial Basis Function RBF kernel:
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K(x;,x;) = e (1.9

where © is a parameter that controls the “width” of the kernel
function around x;. Since (CD(xi),tI)(xi)) =K(x, x)) = ¥ = 1 with
an RBF kernel, the training data in 3 lie on a region on the sur-
face of a hypersphere centered at the origin of 3 with radius 1 as
depicted in Fig. 1.

Finally we obtain the decision function of Eq. (1.8) with

. 1
p =Y ak(x,x) forany osatisfies O<a,< -
i=1
which defines the contour of the region R in input space by cut-

ting the hypersurface defined by the weighted addition of SVM
kernels at a given altitude p.

Experimentation and Results

The experimental goal was to assess the ability of one-class
SVMs to cope with imbalanced datasets. To train one-class
SVM classifiers we used an RBF kernel (Eq. (1.9)) and experi-
mented with different values for the v and ¢ parameters. Gener-
alization error was estimated using 5-fold cross-validation. The
extreme imbalance between the classes precluded the use of 10-
fold cross-validation, which would have resulted in an overly
small number of infected test cases per fold. The complete
dataset was thus randomly partitioned into five subsets. On each
iteration, one subset (comprising 20% of the data samples) was
held out as a test set and the remaining four (80% of the data)
were concatenated into a training set. Note that while the test set
should reflect the original class distribution for error estimation
to be plausible, one-class learning dictates restriction of the
training set to a single class (in this case non infected patients.
Error rates estimated on the test sets were then averaged over the
five iterations. Overall performance was quantified using the
metrics discussed in the following section.

Performance Measures

A widely used performance metric in classification is accuracy,
i.e. the fraction of correctly classified data points in the test set.
When the prior probabilities of the classes are very different,
such metrics might be misleading. For instance, on a dataset with
a 95%-5% class distribution, it is straightforward to attain 95%
accuracy by simply assigning each new case to the majority
class. Despite the impressive accuracy, such a solution is inac-
ceptable in medical diagnosis, as the classifier would have failed
to recognize a single diseased case (assuming healthy cases are
the majority). Performance metrics that dissociate errors specific
to each class are needed.



To discuss alternative performance criteria we adopt the stan-
dard definitions used in binary classification. TP and TN stand
for the number of true positives and true negatives respectively,
i.e., positive/negative cases recognized as such by the classifier.
FP and FN represent respectively the number of misclassified
positive and negative cases. In two-class problems, the accuracy
rate on the positives, called sensitivity, is defined as : TP/
(TP+FN), whereas the accuracy rate on the negative class, also
known as specificity, is : TN/(TN+FP). Classification accuracy
is simply (TP + TN)/ TP+TN-+FP+FN.

In medical diagnosis [16], biometrics and recently machine
learning [17], a more flexible way of assessing a classification
method is the receiver operating characteristic (ROC) curve. A
ROC curve plots sensitivity versus 1-specificity for different
thresholds of the classifier output. Based on the ROC curve, one
can decide how many false positives (respectively false nega-
tives) one is willing to tolerate and tune the classifier threshold
to best suit a certain application. A random assignment of classes
to data would result in a ROC curve in the form of a diagonal line
from (0,0) to (1,1).
Table 1: Performance of one-class SVMs for different
parameter settings using an RBF Gaussian kernel.

Parameters Accuracy Sensitivity Speciiicity
v © % % %
104 74.56 92.60 43.73
0.1 75.49 80.60 65.60
0.05 0.15 72.51 70.39 74.40
) 0.T7 71.69 66.94 7187
10% 75.69 79.28 68.27
0.06 74.97 7T1.14 69.837
0.2 0.07 74.97 76.82 ~ 7040
) 0.1 7436 7467 7227
Findings

Table 1 summarizes performance results for one-class SVMs. It
shows the best results obtained by training classifiers using dif-
ferent parameter configurations on non infected cases only.

Clearly highest sensitivity is attained when both v and ¢ are
small. As explained above (see “One-class Support Vector Ma-
chines”), v is an upper bound on the fraction of outliers that can
be ignored. Recall that in our application problem the outliers are
the abnormal (infected) cases. With smaller values of v, more
abnormal cases are taken into account, which explains the higher
sensitivity at the cost of decrease in specificity. Furthermore,
when ¢ is small, the system puts a Gaussian of narrow width
around each data point and hence most of the infected test cases
are correctly recognized as abnormal. As the value of sigma in-
creases, the region of influence of each Gaussian becomes larger
and the normal cases tend to dominate the abnormal cases, thus
increasing specificity at the cost of sensitivity. It is crucial to
tune the v and ¢ parameters in determining the balance between
normality and abnormality as there is no explicit penalty for
false positive in one-class classification, contrary to the two
class formulation [18]. Since the goal of this study is to identify
infected cases, the solution retained is that which achieves max-
imal sensitivity.
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In a previous study on the same dataset [18], we investigated a
support vector algorithm in which asymmetrical margins are
tuned to improve recognition of rare positive cases. Table 2
shows the best performance measures obtained previously.

Table 2: Best performance of SVMs with symmetrical and
asymmetrical margin.

SVM Classifier Accuracy Sensifivity Specificity
Sym. Margin 89.6% 50.6% 94.4%
Asym. Margin 74.4% 92% T2.2%

A comparison of Tables 1 and 2 shows that both one-class and
asymmetrical margin SVMs lead to significant improvements in
sensitivity over classical symmetrical SVMs. While the maximal
sensitivity attained by one-class SVMs (92.6%) is slightly high-
er (92%) than that of the asymmetrical margin approach, the lat-
ter achieves significantly higher specificity.

ROIC curve
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Figure 2 - ROC curve for one-class SVMs classifiers varying o.
Also plotted is the ROC curve for asymmetrical SVMs

In Fig. 2 a ROC curve shows the trade-off between sensitivity
and false positive rate (1-specificity) . Ideally, we want high sen-
sitivity (to detect most of the infected patients) and a low false
positive rate (to avoid mistakenly classifying non infected pa-
tients as infected). To allow for a direct comparison between
asymmetrical-margin and one-class SVMs, the ROC curve of
asymmetrical SVMs is also plotted. It is clear that while both ap-
proaches attain the same maximal level of sensitivity, asymmet-
rical SVMs do so at a much lower cost in specificity.

Conclusion and future work

We analyzed the results of a prevalence study of nosocomial in-
fections in order to detect patients with infections. The major
hurdle, typical in medical diagnosis, is the problem of rare posi-
tives. To address this problem we investigated the applicability
of an algorithm proposed by [14] to estimate the support of a dis-
tribution. Experimental results reported in this paper are encour-
aging. From the point of view of sensitivity, one-class SVMs
attain the highest level (92.6%) observed by the authors through-
out a series of studies on the problem. However, the price paid
in terms of loss in specificity is quite exhorbitant, and domain




experts must decide if the high recognition rate is worth the cost
of treating false positive cases. From this point of view, asym-
metrical-margin SVMs might prove preferable in that they main-
tain a more reasonable sensitivity-specificity trade-off.

In the near future, we intend to prospectively validate the classi-
fication model obtained by performing in parallel a standard
prevalence survey. We also plan to improve overall accuracy of
one-class SVMs by enhancing the resolution in the support re-
gion boundaries via conformal transformation, an approach de-
scribed in the context of the two-class SVMs by [19]. Overall
we feel that one-class SVMs are a promising approach to the de-
tection of nosocomial infections and can become a reliable com-
ponent of an infection control system.
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