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Abstract

We review some perturbative and nonperturbative aspects of topological string theory
on the Calabi–Yau manifolds Xp = O(−p) ⊕O(p − 2) → P1. These are exactly solvable
models of topological string theory which exhibit a nontrivial yet simple phase structure,
and have a phase transition in the universality class of pure two–dimensional gravity. They
don’t have conventional mirror description, but a mirror B model can be formulated in
terms of recursion relations on a spectral curve typical of matrix model theory. This makes
it possible to calculate nonperturbative, spacetime instanton effects in a reliable way, and
in particular to characterize the large order behavior of string perturbation theory.
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1 Introduction

Topological string theory on non-compact Calabi–Yau manifolds (also known as local
Calabi–Yau’s) has taught us many interesting things about topological strings and about
string theory in general. Although non-compact backgrounds are quite special, their
relative simplicity makes them also a fascinating laboratory. From the mathematical
point of view, the theory of topological strings on local backgrounds has made a myriad
of connections to other fields of mathematics and mathematical physics, including matrix
models, integrable systems, and combinatorics.

Among these local backgrounds, perhaps the simplest and the most peculiar are what
I will call local curves. This is the family of non-compact Calabi–Yau manifolds given by
the total space of a bundle over a sphere. More concretely, they have the form

Xp = O(p − 2) ⊕O(−p) → P
1, p ∈ Z. (1.1)

This family includes two of the most studied local backgrounds: for p = 1 one recovers the
resolved conifold, while X2 is the C×A1 singularity. Therefore, the family (1.1) provides
the simplest generalization of these well studied examples.

The study of topological string theory on Xp has led to many insights. For example,
the conjecture relating toric backgrounds to matrix models stated in [24] and further
refined in [5] was motivated to a large extent by the genus zero solution on Xp presented
in [8]. These backgrounds have been an important testing ground for recent techniques
and ideas, but one has to keep in mind that they are rather unconventional in many
respects.
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In this note we review some properties of topological string theory on Xp discovered
in [8, 24, 25]. We summarize them briefly in this introduction by emphasizing both their
connections to general aspects of topological string theory, as well as their idiosyncrasies.

• A-model and topological vertex. The Gromov–Witten theory for these spaces was
developed by Bryan and Pandharipande [6] and can be reproduced, in the equivari-
ant case, by the topological vertex of [1]. The total partition sum in the A model is
a sum over partitions. This is reviewed in section 2.1.

• Sum over partitions and mirror symmetry. The backgrounds Xp do not have stan-
dard mirror manifolds (see however [16] for some progress along this direction).
However, a mirror geometry can be extracted by studying the saddle-point of the
sum over partitions [8] and it is encoded in a complex curve which we will call the
spectral curve of the model. This is similar to the way in which the Seiberg–Witten
curve emerges from the sum over partitions in Nekrasov’s computation [26, 27]. The
mirror geometry is reviewed in section 2.3

• Matrix models. The generating functionals of Gromov–Witten invariants at genus g,
Fg, can be obtained by applying the matrix model formalism of [15] to the spectral,
mirror curve. This was conjectured and tested to lower genus in [24]. Therefore,
topological strings on Xp can be described by a matrix model formalism. The
matrix model/topological string correspondence was first found by [12] in some
special affine backgrounds and later generalized to toric manifolds [24, 5]. In the
case of Xp the existence of a matrix model description was proved by Eynard in
[14]. This development is briefly mentioned in section 2.4.

• Phase transitions. As for other topological string models, the free energies Fg of Xp

exhibit singular behavior for p > 2 at a particular point tc 6= 0 in the Kähler moduli
space. For most topological string models, this point is the conifold point and the
singular behavior is described by the c = 1 string at self-dual radius [17]. In the
case of topological string theory on local curves, however, the singular behavior is
described by the c = 0 string, i.e. by two-dimensional gravity [8]. Phase transitions
on Xp are described in section 3.

• Instantons and large order behavior. The matrix model formalism makes possible to
compute spacetime instanton corrections to the partition function [25]. Using the
connection between instantons and large order behavior, one obtains conjectural,
precise descriptions of the asymptotic behavior of the couplings Fg at large g [24, 25]
which can be tested numerically. This aspect is reviewed in section 4.

• Hurwitz theory. In the limit p → ∞, topological strings on local curves encode
the simple Hurwitz numbers of P1. This is established in section 2.2. Most of the
properties above can be seen to be inherited by this Hurwitz model (like in particular
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the critical behavior and the instanton effects describing large order), and we refer
for this to the original papers [8, 25].

We finally mention that the study of these backgrounds was originally motivated by
the results of [2] and the connection to the OSV conjecture [28].

2 Topological strings on local curves

First, we notice that since Xp is invariant under −p ↔ p − 2 we can restrict ourselves to
the case p > 0.

2.1 A model

The first step in understanding topological string theory on Xp is to determine the genus g
free energies of closed strings in the A model. Already this is nontrivial, since as explained
in [6], the A model has to be defined equivariantly with respect to an action of C∗×C∗ on
the bundles. Therefore, the most general topological string theory on Xp will depend on
two equivariant parameters s1, s2. The most natural choice (also called the equivariant
Calabi–Yau case) corresponds to the antidiagonal action, in which s1 = −s2. It can be
shown that in this case the dependence on the equivariant parameters drops out, and
one obtains topological closed string amplitudes Fg(t) which only depend on the Kähler
paremeter t (corresponding to the P1 in the base). We recall that, when expanded around
t = ∞, the Fg(t) are generating functionals of Gromov–Witten invariants at genus g,

Fg(t) =
∞

∑

k=1

Ng,ke
−kt, (2.1)

where k corresponds to the degree of the map. As usual in topological string theory, the
Fg(t) are put together into a single total free energy,

FXp(gs, t) =
∞

∑

g=0

g2g−2
s F Xp

g (t) (2.2)

and its exponential is the closed partition function

ZXp = exp FXp(gs, t). (2.3)

This partition function was computed in [6] and we can equivalently calculate it by using
the theory of the topological vertex [1]. We collect here some formulae from this theory
will be useful in the following. First of all, we define the q–number [n] as

[n] = qn/2 − q−n/2, q = egs . (2.4)
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A representation R of U(∞) is encoded by a Young tableau, labeled by the lengths of its
rows {li}. The quantity

ℓ(R) =
∑

i

li (2.5)

is the total number of boxes of the tableau. Another important quantity associated to a
tableau is

κR =
∑

i

li(li − 2i + 1). (2.6)

We also introduce the quantity

WR = q−κR/4
∏

∈R

1

[hook( )]
. (2.7)

We can now write the topological string partition function on Xp. It is given in terms of
the WR by

ZXp =
∑

R

WRWRtq(p−1)κR/2Qℓ(R), Q = (−1)pe−t. (2.8)

Although (2.8) gives an all–genus expression, it is effectively an expansion in powers of
Q. One can easily compute the first few terms in the expansion:

F
Xp

0 (t) = (−1)pe−t +
1

8
(2 p2 − 4 p + 1)e−2t +

(−1)p

54
(1 − 6 p + 3 p2)(2 − 6 p + 3 p2)e−3t

+ O(e−4t),

F
Xp

1 (t) = −(−1)p

12
e−t +

1

48
(p4 − 4 p3 + p2 + 6 p − 2)e−2t

+
(−1)p

72
(−2 + 14 p − 19 p2 − 20 p3 + 45 p4 − 24 p5 + 4 p6)e−3t + O(e−4t),

(2.9)
and so on.

2.2 Relation to Hurwitz theory

The partition function ZXp can be regarded as a “quantum deformation” of a simpler
theory, namely the counting of simple Hurwitz covers of P1. To see this, we first note that
the quantity WR is a q–deformation of the dimension dR of the representation R of Sℓ(R),
the permutation group of ℓ(R) elements: as gs → 0, one has that

WR → g−ℓ(R)
s

dR

|ℓ(R)|! . (2.10)

This suggests taking the following limit,

gs → 0, t → ∞, p → ∞, (2.11)
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in such a way that
pgs = τ2/N, (−1)pe−t = (gsN)2e−τ1 , (2.12)

and τ1, τ2 and N are new parameters that are kept fixed. In the limit (2.11)–(2.12) the
partition function becomes

ZXp → ZHurwitz =
∑

R

(

dR

|ℓ(R)|!

)2

N2ℓ(R)e−τ2κR/2Ne−τ1ℓ(R). (2.13)

This is the generating functional of simple Hurwitz numbers of P1 at all genus and degrees.
Recall that Hurwitz theory studies branched covers of Riemann surfaces, and Hurwitz
numbers enumerate these coverings for fixed genus and degree. When all branch points
are simple, the Hurwitz number is called a simple Hurwitz number, and for P1 it is given
at genus g and degree d by

HP
1

g,d(1
d) =

∑

ℓ(R)=d

(

dR

ℓ(R)!

)2

(κR/2)2g−2+2d, (2.14)

where the sum is over representations R with fixed number of boxes equal to the degree
d. Using this formula we can rewrite (2.13) as

ZHurwitz =
∑

d,m

N2d−me−τ1d
∑

ℓ(R)=d

(

dR

ℓ(R)!

)2
(−τ2)

m

m!
(κR/2)m

=
∑

g≥0

N2−2g
∑

d≥0

e−τ1dHP
1

g,d(1
d)

τ 2g−2+2d
2

(2g − 2 + 2d)!
,

(2.15)

where in the second line we have traded the sum over m by a sum over g. Notice that,
since κRt = −κR, only even powers of τ2 appear. The model described by (2.13) has
been studied in detail due to its connection to Hurwitz theory. From the physical point
of view, it was analyzed in [21, 9], and in the mathematical literature it has been studied
for example in [18].

The free energy of ZHurwitz describes connected, simple Hurwitz numbers HP
1

g,d(1
d)•:

FHurwitz = log ZHurwitz =
∑

g≥0

N2−2g
∑

d≥0

e−τ1dHP
1

g,d(1
d)•

τ 2g−2+2d
2

(2g − 2 + 2d)!
(2.16)

If we compare this to the total free energy FXp written in (2.2) in terms of Gromov–Witten
invariants, and take the limit (2.11)–(2.12), we find

lim
p→∞

p2−2g−2d(−1)pNg,d(p) =
HP

1

g,d(1
d)•

(2g − 2 + 2d)!
. (2.17)
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The l.h.s. is precisely the coefficient of the highest power in p of Ng,d(p). We can therefore
interpret the Gromov–Witten invariants of this model as q–deformed connected, simple
Hurwitz numbers, since they promote HP

1

g,d(1
d)• to polynomials of degree 2g − 2 + 2d

(which is equal to the number of simple branch points).

2.3 Mirror symmetry from large partitions

Sums over partitions of the form (2.8) are sometimes dominated by a single Young tableau
which can be regarded as the “saddle point” of the sum over partitions. This approach
has been very useful in understanding for example two-dimensional Yang–Mills theory
[13] or Nekrasov’s instanton sums [27]. Moreover, one expects that, if the total partition
function ZXp can be described by mirror symmetry, the mirror geometry will be encoded
in the saddle point of the sum over partitions (this is for example the case in instanton
sums, whose mirror description is the special geometry of the Seiberg–Witten curves).
Since we don’t have an easy way to construct the mirror geometry, we will deduce it as a
saddle partition of the sum (2.8). We summarize now the results of this deduction, first
performed in [8].

The first step is to notice that (2.8) admits a representation in terms of a q-deformed
group theoretical quantity of U(N), similarly to what was done in [21] in a similar context.
Let {li} be the lengths of rows in a Young tableau introduced before, and let hi = li+N−i.
We can write

ZXp =
∑

R

(

dimq R

qΩR

)2

q(p−1)κR/2e−tℓ(R) (2.18)

where

qΩR =
N
∏

i=1

[hi]!

[N − i]!
, (2.19)

and

dimqR =
∏

1≤i<j≤N

[li − lj + j − i]

[j − i]
(2.20)

is the quantum dimension of an irreducible representation R of U(N). If we introduce
the auxiliary ‘t Hooft parameter

T = gsN (2.21)

and continuous variables in the standard way:

hi

N
=

li
N

− i

N
+ 1 → ℓ(x) − x + 1 = h(x), (2.22)

we find that at large N the sum over partitions is controlled by an effective action for
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continuous variables

S = −
∫ 1

0

∫ 1

0

dxdy log
∣

∣

∣
2 sinh

T

2
(h(x) − h(y))

∣

∣

∣
+

2

T

∫ 1

0

dxLi2(e
−Th)

+

∫ 1

0

dxh(x)(t − (p − 1)T ) +
pT

2

∫ 1

0

dxh2(x) + (p − 1)
T

3
− π2

3T
− 1

2
t.

(2.23)

The planar limit is governed by a tableau density

ρ(h) = −dx(h)

dh
, (2.24)

which one can find as the saddle-point of the effective action. The result is the following.
It is useful to introduce the variable

λ = exp
(

1 − hT ). (2.25)

In terms of this variable, the density of tableaux ρ(λ) has its support on the interval

(x2, x1) ∪ (x1, e), (2.26)

where x1,2 are nontrivial functions of the Kähler parameter t. To specify these, one
introduces the mirror map

Q = (−1)pe−t = (1 − ζ)−p(p−2)ζ. (2.27)

The endpoints of the cut are given in terms of ζ by

x1 = (1 − ζ)−p(1 + ζ
1

2 )2, x2 = (1 − ζ)−p(1 − ζ
1

2 )2. (2.28)

The information on ρ(λ) is equivalently encoded in the resolvent

ω0(λ) =

∫ e

x2

dv

v

ρ(v)

λ − v
− 1

λ
log

λ

λ − e
, (2.29)

which according to [8] is given by

ω0(λ) =
1

λ
+

p

2λ
log

[

2

√

(λ − x1)(λ − x2) − λ −√
x1x2

(
√

x1 +
√

x2)2

]2

+
1

λ
log

[

(
√

λ − x1 +
√

λ − x2)
2

4λ

]

.

(2.30)
This function has a branch cut along [x1, x2], and its discontinuity is given by

y(λ) =
2

λ

(

tanh−1

[

√

(λ − x1)(λ − x2)

λ − x1+x2

2

]

− p tanh−1

[

√

(λ − x1)(λ − x2)

λ +
√

x1x2

])

. (2.31)
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It is well known that the mirrors to toric Calabi–Yau threefolds can be reduced to algebraic
curves. In [24] it was proposed that y = y(λ) is the appropriate mirror curve for the Xp

geometry. This can be tested in various ways, and we will review some of them below.
We then have a mirror geometry obtained from a saddle-point analysis of a sum over
tableaux.

This analysis makes possible to compute the genus zero free energy in closed form. As
detailed in [8], one finds that

d2F0

dt2
= − log(1 − ζ). (2.32)

We can also provide a closed expansion for the prepotential F0 as a series in e−t. This is
better done by working out the expansion of log (1 − ζ) through Lagrange inversion and
integrating (2.32) twice. In this way we obtain

F
Xp

0 (t) =

∞
∑

d=1

1

d!

1

d2

((p − 1)2d − 1)!

(((p − 1)2 − 1)d)!
(−1)dte−dt. (2.33)

2.4 Higher genus and matrix models

It was conjectured in [24] that the higher Fg of this model can be obtained by using the
matrix model formalism of [15] as applied to the mirror curve (2.30). This conjecture
was later proved by Eynard [14] by providing an explicit matrix integral representation
of ZXp. For example, using this formalism one finds that

F1 = − 1

24
log

[

(p − 1)2ζ(ζc − ζ)

(1 − ζ)3

]

. (2.34)

This genus one amplitude can be written as

F1 = F inst
1 +

1

24
log Q, (2.35)

where F inst
1 is the instanton part of F1 which follows from (2.8).

3 Phase transitions, critical behavior and double-scaling

limit

3.1 Review of phase transitions in topological string theory

For simplicity, we will assume in this general discussion that the Calabi–Yau X has a
single Kähler parameter t, i.e. h1,1(X) = 1 (this is in fact the case for the case we are
studying, Xp). When t is large (in the so–called large radius regime) the geometry probed
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by string theory can be regarded as a classical geometry together with stringy corrections.
This is well reflected in the structure of the prepotential F0(t) or genus zero topological
string amplitude, which in the large radius regime is of the form

F0(t) =
C

6
t3 +

∞
∑

k=1

N0,ke
−kt. (3.1)

In this equation, C is the classical intersection number for the two-cycle whose size is
measured by t. The infinite sum in the r.h.s. is given by worldsheet instanton corrections,
which are obtained by “counting” (in an appropriate sense) holomorphic maps from P1

to X. The instanton counting numbers N0,k are genus zero Gromov–Witten invariants,
and we have chosen units in which ℓs =

√
2π.

The series of worldsheet instanton corrections, regarded as a power series in e−t, has in
general a finite radius of convergence tc which can be obtained by looking at the asymptotic
growth with k of the numbers N0,k. We will characterize this asymptotic growth by tc
and by a critical exponent γ:

N0,k ∼ kγ−3ektc , k → ∞. (3.2)

When this holds, the prepotential behaves near tc as

F0(t) ∼ (e−tc − e−t)2−γ . (3.3)

It turns out that typical Gromov–Witten invariants of Calabi–Yau manifolds behave
asymptotically as

N0,k ∼ ektc

k3 log2 k
, k → ∞. (3.4)

This is of the form (3.2), with critical exponent

γ = 0 (3.5)

and subleading log corrections. This behavior was first established in [7] in the example
of the quintic, and since then it has been verified in other examples, like for example in
local P2, where the critical radius is given by [3, 20]

tc =
1

Γ
(

1
3

)

Γ
(

2
3

)Re G
(1

3
,
2

3
, 1; 1

)

∼ 2.90759 (3.6)

and G is the Meijer function.
The subleading log in (3.4) leads to log corrections near the critical point (also referred

to as scaling violations) of the form

F0(t) ∼ (e−tc − e−t)2 log(e−tc − e−t). (3.7)
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This is the genus zero free energy of the c = 1 string at the self–dual radius, once the
scaling variable e−tc − e−t is identified with the cosmological constant [4, 17].

The behavior of the prepotential gives a precise quantitative meaning to the distinction
between classical and quantum geometry. We will refer to the divergence of the large
radius expansion at t = tc as a phase transition with a critical exponent γ defined in
(3.4). The phase with

t > tc (3.8)

where the expansion (3.1) is convergent, is called the large radius or Calabi–Yau phase,
where classical geometry makes sense (albeit it is corrected by worldsheet instantons).
When t ≤ tc, the nonlinear sigma model approach is not well defined, and classical
geometric intuition is misleading.

In order to describe the phase structure of the model we have relied on the behavior
of the prepotential, i.e. the planar free energy. It is natural to ask what happens when
higher genus topological string amplitudes are taken into account. It turns out that the
higher genus Gromov–Witten invariants have the asymptotic behavior [4]

Ng,k ∼ k(γ−2)(1−g)−1ektc , k → ∞, (3.9)

where tc is the critical radius obtained at genus zero and it is common to all g, and γ is
the critical exponent that appears in (3.2). This is equivalent to the following behavior
near the critical point

F1(t) ∼ c1 log (e−tc − e−t),

Fg(t) ∼ cg(e
−tc − e−t)(1−g)(2−γ), g ≥ 2.

(3.10)

In conventional topological string theory, as we have mentioned, γ = 0, but the more
general form we have written above will be useful later.

We then see that the phase transition at t = tc is common for all Fg(t), and the critical
exponent changes with the genus in the way prescribed by (3.9). This sort of coherent
behavior in the genus expansion is not obvious, but seems to characterize a wide variety
of systems that admit a genus expansion (like for example matrix models, see [11] for
a review). When this is the case, one can define a double–scaling limit as follows. Let
us consider the total free energy F as a perturbative expansion in powers of the string
coupling constant gs:

F (gs, t) =

∞
∑

g=0

Fg(t)g
2g−2
s . (3.11)

We define the double–scaled string coupling as

κ = ags(e
−tc − e−t)γ/2−1, (3.12)

where a is an appropriate constant. We can then consider the limit

t → tc, gs → 0, κ fixed. (3.13)
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In this limit, only the most singular part of Fg(t) survives at each genus, and the total
free energy becomes the double-scaled free energy

Fds(κ) = f0κ
−2 + f1 log κ +

∑

g≥2

fgκ
2g−2, (3.14)

where fg = a2−2gcg. It is also customary to express the double–scaled free energy in terms
of the scaling variable z = κ2/(γ−2).

It turns out that, in some cases, one can determine the coefficients fg in closed form. In
the double–scaling limit of matrix models, they are governed by a differential equation of
the Painlevé type [11]. In the case of topological string theory on Calabi–Yau manifolds,
it was conjectured in [17] that, in terms of a natural coordinate

µ ∼ e−tc − e−t (3.15)

which in the mirror model measures the distance to the conifold point µ = 0, the double-
scaled free energy is universal and reads

Fds(µ) =
1

2
µ2 log µ − 1

12
log µ +

∞
∑

g=2

B2g

2g(2g − 2)
µ2−2g. (3.16)

This is exactly the all genus free energy of the c = 1 string at the self–dual radius. This
behavior has been checked in many examples (see, for example, [19] for a recent calculation
on the quintic Calabi–Yau).

3.2 Phase transitions for local curves

Surprisingly, the theory of local curves displays a phase transition, but in a different
universality class than the usual topological strings on Calabi–Yau threefolds. As shown
in [8], the phase transition of local curves belong to the universality class of 2d gravity.

The easiest way to see this is to analyze the asymptotic growth of genus zero Gromov–
Witten invariants. We found in (2.33),

N0,k =
1

k!k2

((p − 1)2k − 1)!

(((p − 1)2 − 1)k)!
, (3.17)

up to a sign (−1)pk. By using Stirling’s formula, we obtain

N0,k ∼ ektck−7/2, k → ∞, (3.18)

where
tc = log

(

(p(p − 2))p(2−p)(p − 1)2(p−1)2
)

. (3.19)

11



This corresponds to

ζc =
1

(p − 1)2
, (3.20)

By comparing to (3.2) we also deduce that

γ = −1

2
. (3.21)

The above results are valid for p > 2. For p = 1, 2 the series is convergent for all t > 0. The
above result for the critical exponent γ is not the standard one for Calabi–Yau threefolds,
and indicates that we are in a different universality class.

What is this universality class? (3.21) is the exponent typical of 2d gravity (see for
example [11] for a review and references), and in fact, if one takes the double–scaling limit

ζ → ζc, gs → 0, z fixed, (3.22)

where

z5/2 = g−2
s

(p − 1)8

4(1 − ζc)3
(ζc − ζ)5, (3.23)

then the total free energy (2.2) becomes the free energy of 2d gravity,

F(2,3)(z) = − 4

15
z5/2 − 1

48
log z +

∑

g≥2

agz
−5(g−1)/2, (3.24)

where the coefficients ag can be obtained by solving the Painlevé I equation

u2 − 1

6
u′′ = z (3.25)

satisfied by the specific heat
u(z) = −F ′′

(2,3)(z). (3.26)

Evidence for this result was given in [8]. One can test it at lower genus for all p, and for
all genera in the limit p → ∞ (i.e. Hurwitz theory) by using for example [18]. In fact, this
result follows from the description of this theory in terms of a matrix model conjectured in
[24] and proved in [14]. It follows from [15] that the computation of symplectic invariants
Fg of a given spectral curve commutes with the double-scaling limit. Therefore, it is
enough to show that the curve (2.31) becomes the spectral curve characterizing 2d gravity.
Let us verify this.

We first notice that near the critical point the endpoints of the curve behave as

x1 = x
(c)
1 + θ(ζ − ζc) + O(ζ − ζc)

2, x2 = x
(c)
2 + O(ζ − ζc)

2 (3.27)
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where

x
(c)
1 = (1 − ζc)

−p p2

(p − 1)2
,

x
(c)
2 = (1 − ζc)

−p (p − 2)2

(p − 1)2
,

θ = 2(1 − ζc)
−pp(p − 1)

p − 2
.

(3.28)

The coordinate λ in (2.31) must scale in this limit like

λ = x
(c)
1 − θ(ζ − ζc)s + O(ζ − ζc)

2. (3.29)

This defines the “renormalized” coordinate s. We now reexpress (2.31) in terms of the
scaling variables s and z, which is given in (3.23). After some cancellations, we find that

1

gs
y(λ)dλ → y(s)ds = −4

√
2

3
z

5

4 (2s − 1)
√

1 + sds, (3.30)

for all p > 2. This is the spectral curve of the (2, 3) model, therefore we have proved our
claim. We can also interpret the r.h.s. as the Laplace transform of the macroscopic loop
operator of 2d gravity, which corresponds to the disk amplitude of the FZZT brane of
Liouville theory (see [23] and references therein).

4 Non-perturbative effects and large order behavior

It was pointed out in [24] that the matrix model description of this topological string
models can be used to describe spacetime instantons. In matrix models, instanton effects
are associated to eigenvalue tunneling [29, 10], and in fact it is possible to write down
explicit formulae for the instanton amplitudes up to two loops by using only information
from the spectral curve [25].

Let us describe the instanton amplitudes for a matrix model described by a curve of
the form

y(z) = M(z)
√

(z − x1)(z − x2), (4.1)

The saddle points where the eigenvalues tunnel are located at

M(x0) = 0. (4.2)

The instanton action for an instanton tunneling to x0 is simply given by

A =

∫ x0

x1

y(p)dp. (4.3)
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Figure 1: The sequence Sg and the first three Richardson transforms for the local curve
X3, at the fixed value ζ = 0.24. The leading asymptotics are predicted to be given by the
instanton action A(ζ), shown as a straight line. The error for the available degree g = 8
is 0.014%

There might be many possible saddles x0, and as usual the leading contribution comes
from the instanton with larger action (in absolute value). The one-loop fluctuation around
the instanton is given by

µ = −i
x1 − x2

4

√

√

√

√

1

2πM ′(x0)
[

(x0 − x2)(x0 − x1)
]

5

2

. (4.4)

The instanton action and one-loop fluctuation are in general complex,

A = |A|eiθA, µ = |µ|eiθµ. (4.5)

Using the standard connection between instantons and large order behaviour (see for
example [22]) one finds that the Fg behave at large g as

Fg ∼ |A|−2g−b

π
Γ(2g + b) |µ| cos

(

(2g + b)θA + θµ

)

. (4.6)

where in the case of one-cut Hermitian matrix models and topological strings on local
curves [25]

b = −5

2
. (4.7)

As we explained in section 2, the Fg amplitudes of topological string theory on local
curves can be computed by the matrix model formalism of [15] applied to the curve (2.31),
as discussed in [24]. Therefore, we can apply the general expressions above to compute
instanton amplitudes in terms of spectral curve data, and we can indeed verify that the
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large order of the Fg is governed by (4.6). In order to apply formulae (4.3), (4.4) we have
to find the location of the saddle x0 in (4.2). For the cases p = 3 and p = 4 the relevant
solutions have been determined in [24]; they are given by

x0 =
4x1x2

(
√

x1 −
√

x2)2
, p = 3, (4.8)

and

x0 =
2
√

x1x2√
x1 −

√
x2

, p = 4. (4.9)

An explicit expression for the instanton action was also computed in [24]; it is given by
the expression

A(Q) = F (x0) − F (x1), (4.10)

where

F (x) = − log (f1(x))

(

log (f1(x)) − 2 log
(

1 +
2f1(x)

(
√

x1 −
√

x2)2

)

+ log
(

1 +
2f1(x)

(
√

x1 +
√

x2)2

)

)

− 2Li2

(

− 2f1(x)

(
√

x1 −
√

x2)2

)

− 2Li2

(

− 2f1(x)

(
√

x1 +
√

x2)2

)

− log
(x1 − x2)

2

4
log x

− p log (f2(x))

(

log (f2(x)) + 2 log
(

1 − f2(x)

2
√

x1x2

)

− log
(

1 − 2f2(x)

(
√

x1 +
√

x2)2

)

)

− 2pLi2

(

− f2(x)

2
√

x1x2

)

+ 2pLi2

( 2f2(x)

(
√

x1 +
√

x2)2

)

+
p

2
(log x)2 + p log(

√
x1 +

√
x2)

2 log x,

(4.11)
and

f1(x) =
√

(x − x1)(x − x2) + x − x1 + x2

2
,

f2(x) =
√

(x − x1)(x − x2) + x +
√

x1x2.
(4.12)

We can now numerically compare the behavior of the sequence Fg with the instanton
prediction (4.6). Since we have only computed ten terms in the sequence Fg, we need
standard acceleration methods to extract the asymptotics with some precision. For ex-
ample, assuming (4.6) holds, we can extract numerically the value of A and compare to
the instanton prediction. In order to extract A, we consider the sequence

Sg = 2g

√

Fg

Fg+1
= A + O(1/g) (4.13)

for a fixed value of ζ , and its Richardson transforms S
(N)
g for N = 1, 2, · · · , which help

to eliminate the subleading tail O(1/g). The resulting sequences S
(N)
g (ζ) should converge

to A(ζ), therefore they define numerical approximations to A(ζ). In Fig. 1 we show, for
p = 3, the sequence Sg at ζ = 0.24 and its Richardson transforms for N = 1, 2, 3. The
instanton prediction for A is the straight line. As we can see, the agreement between the
numerical extrapolation and the instanton prediction is remarkable.
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