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Stable asymptotics for M-estimators

Davide La Vecchia∗

Summary

We review some first- and higher-order asymptotic techniques for M -estimators and we study

their stability in the presence of data contaminations. We show that the estimating function (ψ) and

its derivative with respect to the parameter (∇θ⊤ψ) play a central role. We discuss in detail the

first-order Gaussian density approximation, saddlepoint density approximation, saddlepoint test,

tail area approximation via Lugannani-Rice formula, and empirical saddlepoint density approxi-

mation (a technique related to the empirical likelihood method). For all these asymptotics, we

show that a bounded (in the Euclidean norm) ψ and a bounded (e.g., in the Frobenius norm) ∇θ⊤ψ

yield stable inference in the presence of data contamination. We motivate and illustrate our findings

by theoretical and numerical examples about the benchmark case of one-dimensional location model.

MSC: 62E17, 62E20, 62F05, 62F12, 62F35, G2G35

Key words: Edgeworth expansion, Empirical likelihood, Higher-order, Infinitesimal robustness, p-

value, Redescending M - estimator, Relative error, Saddlepoint techniques, von Mises expansion.

1 Introduction

In the classical statistical approach, data are assumed to be a realization of a reference model.

Then, inference is usually based on asymptotic techniques, whose purpose is twofold. First,

from a practical standpoint, asymptotics define an approximate behavior of statistical quantities

(e.g., estimators and/or tests) and allow the implementation of inferential procedures. Second,
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asymptotic approximations can be applied theoretically to study the quality of the analyzed

procedures (e.g., the efficiency of estimates and/or the power of tests). See, e.g., van der Vaart

(1998) and reference therein for a book-length discussion.

For instance, assume we have to derive a confidence interval for the parameter in a one-

dimensional location model. To achieve the goal, we need to know the distribution of the

estimator. This quantity is seldom known exactly (e.g., this is the case of estimators which are

linear function, like the sample mean, of the underlying Gamma observations), and more often

only approximations are available. Typically, one defines a first-order approximation, based on

a linearization of the estimator. Then, the behavior of the linearized statistic is studied, as the

sample size (say n) goes to infinity. This leads, through the central limit theorem, to many

asymptotic normality proofs and the resulting first-order asymptotic distribution can be used as

an approximation to the exact distribution of the estimator. However, very often the accuracy

of the first-order asymptotic distribution deteriorates quickly in small samples. Moreover, the

Gaussian approximation tends to be inaccurate in the tails of the distribution.

To cope with the low accuracy of the firs-order asymptotic (Gaussian) approximation, sev-

eral techniques have been developed to achieve higher-order accuracy: many distributional ap-

proximations that improve on the first-order asymptotic theory are nowadays available. These

techniques are called higher-order asymptotics, since they are obtained considering higher-order

(beyond the first linear term) expansions of the statistics, and they are accurate, even for n = 1.

As emphasized by Young (2009), the higher-order techniques are defined by two main ap-

proaches: (i) analytic methods based on small sample asymptotics (including, e.g., Edgeworth

and saddlepoint techniques) and (ii) resampling methods (including, e.g., jackknife and boot-

strap). The focus of this paper is on small sample techniques, but we remark that the small

sample asymptotics and resampling methods have to be considered as complementary tools

(rather than alternative); see, e.g., Davison and Hinkley (1988), Hall (1992), and Davison et al.

(1995).

First- and higher-order asymptotic techniques represent helpful and powerful tools when the

actual data distribution follows exactly the reference model; see Example 1. Unfortunately, see

Example 2, many statistical procedures, which work well under the ideal model assumptions,

2



can lose their stability in the presence of moderate deviations from the theoretical model — we

call stable any statistical procedure such that a minor error in the reference model causes only

limited error in the conclusions. This aspect is the key point of the paper and we state the

following

Research question (RQ):“What is the behavior of the asymptotics when the actual

data distribution slightly deviates (in some distributional sense) from the reference

model?”

The RQ is related to the robustness of the considered statistical procedures; see, e.g., Huber

(1981), Hampel et al. (1986), and Rieder (1994). We here focus on statistical procedures for

M-estimators, which are defined by an estimating function depending on the data and on the

unknown parameter of interest.

To answer our RQ, we build on La Vecchia et al. (2012), who analyze the stability of some

asymptotics of M-estimators, extending and adapting the analysis of La Vecchia et al. to other

(higher-order) asymptotics.

The main contribution of this paper is to show that a bounded estimating function hav-

ing bounded derivative with respect to (henceforth, wrt) the parameter ensures the stability

of many asymptotics. Specifically, we study the stability of the: (i) saddlepoint density ap-

proximation and tail area of a real-valued function of the parameter; (ii) saddlepoint test of

Robinson et al. (2003), and, for the benchmark case of location, we define a new robust test

which guarantees the stability of the p-value in the presence of contamination; (iii) empirical

saddlepoint approximation; (iv) empirical likelihood method (which is connected to the empir-

ical saddlepoint). Finally, we illustrate numerically the role of the estimating function in the

stability of the first-order asymptotics and empirical saddlepoint density approximation, in the

one-dimensional location problem.

The message of our paper is in line with the robustness approach of Hampel et al. (1986):

the characteristics (like, e.g., upper and lower bound, shape, and derivative wrt the parameter)

of the estimating function determine the stability of the asymptotics.
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The paper has the following structure. In §2, we provide some motivating examples. In §3
we define the setting and introduce the notation. In §4, we discuss the stability of the first- and

higher-order asymptotics. In §5, we provide some numerical studies. In §6, we conclude and

highlight some possible research topics. Technical details and proofs are available in Appendix.

2 Motivating examples

2.1 Edgeworth vs. Saddlepoint vs. Gaussian asymptotics

In the family of higher-order techniques, the Edgeworth and the saddlepoint approximations are

the most popular methods.

One might try to improve on the first-order approximation by using the first few terms of

an Edgeworth expansion (see, e.g., van der Vaart (1998), Ch. 23), which is a series in powers of

n−1/2, where the first term is the Gaussian density. In general, the Edgeworth expansion provides

a good approximation in the center of the density, but can be inaccurate in the tails, where it

can even become negative. Saddlepoint techniques overcome the problems of the Edgeworth

expansions.

Since the seminal paper of Daniels (1954), saddlepoint expansions have been effectively ap-

plied to define confidence intervals (Tingley and Field (1990)), test statistics (Robinson et al.

(2003)), and to approximate p-values in several inferential problems. Roughly speaking, in the

Edgeworth techniques a higher-order approximation around the center of the distribution is ap-

plied. In the saddlepoint expansion, the higher-order approximation is replaced by a sequence

of local low-order approximations; see, e.g., Goutis and Casella (1999) for an overview. Thanks

to this approach, excellent small sample performances are obtained. See, among the others,

Field and Ronchetti (1990), Jensen (1995), Kolassa (2006), Butler (2007), or Brazzale et al.

(2007) for book-length presentation.

Among the different higher-order techniques, this paper deals with saddlepoint techniques.

Our choice is motivated by both theoretical and practical reasons. On a theoretical standpoint,

the saddlepoint techniques exhibit relative error O(n−1), which has to be compared to the abso-
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lute error O(n−1/2) obtained using the Edgeworth type expansions. This implies, for instance,

that the saddlepoint techniques provide very accurate numerical approximations for tail areas

down to small sample sizes and/or out in the tail; see Example 1. On a more practical note,

we remark that the excellent small sample behaviour is also due to the fact that saddlepoint

approximations are density-like objects and do not show the polynomial-like waves exhibited by

Edgeworth approximations. This simplify the implementation and implies that the saddlepoint

density approximations cannot be negative.

Example 1. We illustrate the use of different asymptotics for the approximation of the

density of the mean (Z̄ =
∑n

i=1 Zi/n) of n independent and identically distributed random

variables Zi ∼ χ2(df), where df represents the degrees-of-freedom. We make a comparison using

different sample sizes and different values of df . The true distribution of the mean is known in

closed form. For each approximation and in each considered setting, we compute the percentage

relative error, expressed as 100*(1-approximation/true). We consider three approximations: (i)

first-order Gaussian asymptotic; (ii) Edgeworth; (iii) saddlepoint. In Figure 1 we plot the results.

As highlighted by an anonymous Referee, in the considered case, the saddlepoint approximation

is exact (see Kolassa (2006), page 68), namely it features zero error. The Edgeworth performs

well near the center of the density, but it has large errors in the tails (especially in the left tail).

Finally, the error entailed by the first-order asymptotic Gaussian is much bigger than the errors

of the higher-order approximations.

2.2 Stability of the saddlepoint test

In the next example we illustrate the problem stated in our RQ, investigating the stability of

the saddlepoint test introduced by Robinson et al. (2003); details are available in §4.

Example 2. Let us consider the mean of n independent and identically distributed random

variables Zi ∼ χ2(df). Along the lines of Example 1 of Robinson et al. (2003), to test the

hypothesis H0 : df0 = 1, we make use of the saddlepoint test statistic 2nh(Z̄), where h(Z̄) =

(Z̄ − 1) − log(Z̄). Under H0 the test has a χ2(1) distribution and it has relative error O(n−1).

This yields accurate level, even for small sample sizes. However, in the presence of departures
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Figure 1: Percentage relative error of first and higher-order asymptotics, for the approximation
of density of the mean (Z̄) of n independent and identically distributed Zi ∼ χ2(df) variables,
for different sample sizes (n = 5 and n = 10, top and bottom panels, respectively) and different
degrees-of-freedom (df = 2 and df = 4, left and right panels, respectively). In each plot: dash-
dotted line represents the first-order Gaussian asymptotic, dashed line represents the Edgeworth,
while continuous line is for the saddlepoint.

from the reference theoretical model, the level of the test can be distorted. As a numerical

illustration, consider the case where we have n = 30 and two kinds of sample: (i) a clean
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sample, containing draws from a χ2(1); (ii) a contaminated sample, in which we replace three

observations of the clean sample by outliers having value 4 – this kind of sample represents a

situation where the actual data distribution slightly deviates from the reference model. Then, we

analyze the distribution of the test statistic, under clean and contaminated sample, in a Monte

Carlo experiment having size 2,500. Figure 2 shows that the test has the desired theoretical

accuracy for the clean sample. In contrast, in the presence of contamination, the sample mean

is inflated by the outliers and the distribution of the test statistic is far from the theoretical one.
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Figure 2: Saddlepoint test (distribution under the null) for the mean of n independent and
identically distributed Zi ∼ χ2(df) for the hypothesis H0 : df0 = 1, based on the statistic
h(Z̄) = (Z̄ − 1)− log(Z̄).

2.3 Asymptotic bias in the linear model

To give a partial answer to our RQ, we analyze the impact that small deviations from the

reference model can have on the asymptotic bias of different M-estimators of the parameters

in a linear regression model — the asymptotic bias can be interpreted as a measure of the

change in the performance of the estimator due to the presence of data contamination; a precise
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definition is available in §4. The aim of the example is to illustrate (only) one aspect related to

the estimating function and its derivative wrt the parameter.

Example 3. Let us consider the simple regression model Y = θ1 + θ2X + ǫ, where ǫ ∼
N (0, 1) and θ = (θ1, θ2). We generate a contaminated sample with size n = 200, as obtained

introducing a small number outliers in the (x, y)-space (namely, we have outliers in both the

response and the explanatory variable) — details about the simulation design are available in

the caption of Figure 3. Then, we consider three estimators: the maximum likelihood (defined

by an unbounded estimating function with unbounded derivative wrt θ), the Hampel-Krasker

(defined by a bounded estimating function with unbounded derivative wrt θ, see Hampel et al.

(1986)), and the second-order robust estimator (defined by a bounded estimating function and a

bounded derivative wrt θ, see La Vecchia et al. (2012)). The functional form of these estimators

is available in Appendix A, to which we refer for technical details. We here flag an important

aspect: the maximum likelihood estimator is designed to perform well under the reference model,

but it does not control the impact of outliers, while both the robust estimators, by design, limit

the impact of anomalous observations. More precisely, the Hampel-Krasker estimator controls

the impact of contaminated data on the first-order term of the asymptotic bias expansion, while

the second order robust estimator controls both the first- and second-order terms. In Figure

3 we plot the results. The stability of the second order robust estimator (rightmost panel) is

evident: the fitted regression line in the presence of contamination (continuous line) is almost

indistinguishable from the theoretical reference line (dotted line), while the other estimators are

more biased (with the Hampel-Krasker estimator less affected by the contamination).

The asymptotic bias analyzed in Example 3 represents only one characteristic (it is related to

the location) of the distribution of the estimator in the presence of departures form the reference

model. In the next sections, our aim is to gain further insights into other characteristics (e.g.,

the scale and more generally the whole distribution), in large and small samples.
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Figure 3: Linear model: Clean sample, generated accordingly to the regression model, with
θ = (−1, 3)′ and ǫ ∼ N (0, 1). Contaminated sample, generated by: replacing, with probability
5%, the original observations by Zy ∼ N (−5, 1) and using contaminated explanatory variable,
as obtained replacing, with probability 25%, the original explanatory variable (X ∼ N (0, 1)) by
Zx ∼ N (−4, 0.1). In each plot: diamonds represent the observations, the dashed line represents
the theoretical regression line, the continuous line represents the fitted line. The tuning param-
eters for the robust estimators are: b = 4.5 for Hampel-Krasker, b = 3.5 and c = 0.5 for the
second order robust estimator. With these tuning constants, the two robust estimators have a
very similar performance in the clean sample.

3 Setting and notation

LetM be the family of all probability measures on Z ⊂ R
m, form ≥ 1, and let T : dom(T) → R

p

be a statistical functional, defined on dom(T) ⊂ M and taking values in R
p, with p ≥ 1. For

P ∈ M, the functional value T (P ) can represent any characteristic of P , e.g., the location, the

scale, a tail area or, more generally, a quantity depending on P .
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In the standard parametric approach, Z is assumed to have distribution function described

by the parametric family P = {Pθ, θ ∈ Θ}, where Θ is an open convex subset of Rp, p ≥ 1.

A Fisher consistent M-functional T (·) is implicitly defined as the unique functional root of the

system of p moment conditions:

EPθ0
[ψ(Z;T (Pθ0))] = 0,

where ψ : Rm ×Θ → R
p is the estimating function, T (Pθ0) = θ0 and θ0 ∈ Θ.

Among the statistical functionals, the M-functionals play a central role for inferential pur-

pose: given n independent and identically distributed (i.i.d.) observations Z1, Z2, ..., Zn, an

M-estimator is the sample counterpart of the M-functional. Precisely, an M-estimator is the

implicit solution of the finite sample equations

n
∑

i=1

ψ(Zi; θ̂n) = 0,

where θ̂n = T (Pn) = Tn, and Pn represents the empirical measure.

Infinitesimal robustness (see, e.g., Hampel et al. (1986) for a book-length introduction) weak-

ens the parametric assumption Zi ∼ Pθ0, and allows the distribution of the actual data generating

process to belong to the neighborhood:

Uη(Pθ0) = {Pǫ,G = (1− ǫ)Pθ0 + ǫG, for G ∈ M} ; θ0 ∈ Θ, (1)

where ǫ ≪ 0.5, and M is the class of all measures on R
m. Then, the stability over Uη(Pθ0) of

statistical functionals is analyzed. In the following, we call stable any statistical functional T (·)
such that small deviations from Pθ0 imply bounded changes in the value of T (·). More precisely,

for any Pǫ,G ∈ Uη(Pθ0), such that dK(Pθ0;Pǫ,G) ≤ ǫ (dK represents the Kolmogorv distance), we

have ‖T (Pǫ,G)− T (Pθ0)‖ < ǫ · const, namely the changes of the functional remain bounded by a

constant.
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4 Robustness and asymptotics

4.1 Main result via von Mises expansion

Our analysis of the behavior of anM-estimator over Uη(Pθ0) makes use of the von Mises expansion

(see von Mises (1947)), which can be interpreted as a kind of sophisticated Taylor expansion for

statistical functionals.

The first (linear) order term of this expansion approximates the asymptotic bias:

Bias(ǫ, G, P ) = T (Pǫ,G)− θ0 = ǫT ′(ǫ, G) +Rem1, (2)

where T ′(ǫ, G) = limǫ→0 [T (Pǫ,G)− θ0] /ǫ is expressed by the Influence Function (IF), defined

as:

T ′(ǫ, G) =

∫

Z

IF (z;Pθ0)G(dz) where IF (z;Pθ0) =M−1(θ0;Pθ0)ψ(z; θ0). (3)

and M(θ0;Pθ0) = −EPθ0
[∇θ′ψ(Z; θ0)].

Remark. Roughly speaking, we can interpret T (Pǫ,G) as the value of the estimator in the

presence of contamination, while T (Pθ0) is the value of the estimator at the reference model.

With this interpretation in mind and looking at (2), the IF represents a first-order measure of

the effects that small perturbations have on the asymptotic bias. Moreover, (3) implies that IF

∝ ψ: if supz ‖ψ(z; θ0)‖ is bounded (here ‖ · ‖ is the Euclidean norm in R
m), then from (2) it

follows that the M-estimator is B-robust, namely it has a bounded first-order asymptotic bias.

La Vecchia et al. (2012) investigate the robustness features of the second order (quadratic)

term in the von Mises expansion, which reads as:

Bias(2)(ǫ, G, P ) = T (Pǫ,G)− θ0 = ǫT ′(ǫ, G) +
ǫ2

2
T ′′(ǫ, G) +Rem2, (4)

where

T ′′(ǫ, G) =

∫

Z×Z

ϕ2(z1, z2; θ0)d(G− P )(z1)d(G− P )(z2).
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The second-order kernel ϕ2(z1, z2; θ0) is defined in Fernholz (2001):

ϕ2(z1, z2; θ0) = IF (z1;Pθ0) + IF (z2;Pθ0) +M−1(ψ; θ0)Γ(z1, z2; θ0)

+M−1(ψ; θ0) {∇θ⊤ψ(z2; θ0)ϕ1(z1; θ0) +∇θ⊤ψ(z1; θ0)IF (z2;Pθ0)} ,

(5)

where

Γ(z1, z2; θ0)
⊤ =



















IF⊤(z2;Pθ0)EPθ0

(

∂2

∂θ∂θ⊤
ψ(1)(Z; θ0)

)

IF (z1;Pθ0)
...

IF⊤(z2;Pθ0)EPθ0

(

∂2

∂θ∂θ⊤
ψ(p)(Z; θ0)

)

IF (z1;Pθ0)



















, (6)

where ψ(j) is the j-th component of the vector ψ.

The expression in (5) suggests that an estimating function ψ such that

sup
z

‖ψ(z; θ0)‖ < const and sup
z

‖∇θ⊤ψ(z; θ0)‖ < const

has bounded IF and bounded ϕ2. Thus, from (4) it follows that Bias(2)(ǫ, G, P ) is uniformly

bounded over Uη(Pθ0). La Vecchia et al. (2012) label as second-order B-robust theM-estimators

defined by such a class of estimating functions.

The next proposition characterizes the stability of two important quantities which are related

to ψ and ∇θ⊤ψ and which are needed to define several first- and higher-order asymptotics ofM-

functionals — for instance, the expectation of ∇θ⊤ψ is a fundamental quantity in the first-order

asymptotic variance of the M-estimator.

Proposition 1 Let Zi ∼ Pǫ,G and ψ : Rm × R
p → R

p be an estimating function satisfying:

[A1 ] ψ is bounded, namely supz ‖ψj(z; θ0)‖ < const, for j = 1, ..., p;

[A2 ] ψ has a bounded ∇θ⊤ψ, namely supz ‖∂θjψi(z; θ0)‖ < const, for 0 ≤ i, j ≤ p,

12



where ‖ · ‖ is the Euclidean norm. Then for θ ∈ Θ

M(θ;Pǫ,G) = EPǫ,G
[−∇θ⊤ψ(Z;T (Pǫ,G))] and Σ(θ;Pǫ,G) = EPǫ,G

[ψ(Z;T (Pǫ,G))ψ
⊤(Z;T (Pǫ,G))]

(7)

are stable over Uη(Pθ0), namely:

sup
G∈M

‖∂ǫMij(θ;Pǫ,G)|ǫ=0‖ < const and sup
G∈M

‖∂ǫΣij(θ;Pǫ,G)|ǫ=0‖ < const. (8)

Interpretation. As in the case of the IF, the directional derivatives (∂ǫ at ǫ = 0) in (8)

are tools which measure the changes that the expected value of ∇θ⊤ψ and the variance of

ψ have in the presence of small perturbations of the reference model. Boundedness of these

derivatives implies that the considered quantities undergo bounded changes when the actual

data distribution slightly deviates from the reference model. The conditions in Assumptions

[A1] and [A2] guarantee that such a boundedness is uniform over the whole Uη(Pθ0). Thus, the
message of (8) is clear: there is no distribution in Uη(Pθ0) which can inflate or deflate M and

Σ too much. Similar interpretation holds for the derivatives of the other quantities that we are

going to consider in the next sections (see, e.g., Corollary 2 and Proposition 3).

4.2 First-order asymptotics

4.2.1 Stability in the presence of contamination

Suppose we are interested in conducting inference about a parameter η0 = j(θ0) ∈ R
q, where

q ≤ p and j(·) is a known function. Computing η̂ = j(θ̂n) is the natural way to draw such an

inference. The main issue with this approach is that the exact distribution of θ̂n is typically

available only in few special cases, and in general situations one has to rely on an asymptotic

approximation (e.g., via ∆-method), whose first-order (linear) term has an asymptotic Gaussian

distribution (see, e.g., van der Vaart (1998), Chapter 3). Detailed conditions to ensure the

asymptotic normality of general M-estimators are given in Appendix.
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When Pθ0 ≡ Pǫ,G, namely the reference model coincides with the actual distribution, the IF

is useful to express the first-order asymptotic distribution of θ̂n. For n sufficiently large, the

empirical measure Pn is near to Pθ0 and (2) yields

T (Pn)− T (Pθ0) = (θ̂n − θ0) =
1

n

n
∑

i=1

IF (zi;Pθ0) +Rem1. (9)

This is the standard asymptotic result, where Pn ⇒ Pθ0 and (9) implies that

√
n(θ̂n − θ0)

D→ N(0, V (θ0;Pθ0)),

where

V (θ0;Pθ0) =M−1(θ0;Pθ0)Σ(θ0;Pθ0)M
−⊤(θ0;Pθ0), (10)

and Σ(θ0;Pθ0) = EPθ0
[ψ(Z;Pθ0)ψ

⊤(Z;Pθ0)].

When Pǫ,G 6= Pθ0, namely the distribution of the actual data generating process does not

coincide with the reference model, the features of ψ affect the location/scatter of the asymptotic

distribution. In this regard, Proposition 1 has implications on the stability of the first-order

asymptotics of M-functionals and we state the following:

Corollary 2 Let Zi ∼ Pǫ,G and ψ : Rm × R
p → R

p be an estimating function defining an M-

functional, with M(θ;Pǫ,G) and Σ(θ;Pǫ,G) as in (7). Under [A1] and [A2] of Proposition 1, the

asymptotic variance functional at Pǫ,G defined as:

V (θ;Pǫ,G) =M(θ;Pǫ,G)
−1Σ(θ;Pǫ,G)M(θ;Pǫ,G)

−⊤,

remain stable over Uη(Pθ0).

Remark. Corollary 2 is related to V-robustness, see Hampel et al. (1986), which charac-

terizes the stability of the asymptotic variance. Specifically, V-robust M-estimators have an

asymptotic variance which neither shrinks to zero nor explodes over the neighborhood Uη(Pθ0);
see, e.g, Ferrari and La Vecchia (2012) and reference therein for a related discussion.
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4.2.2 Discussion

Many M-estimators are defined by an unbounded ψ, having also unbounded ∇θ⊤ψ. In the

presence of data contamination, these characteristics entail: (i) an asymptotic bias which can

be arbitrarily large (wrong location in the asymptotic distribution); (ii) an unstable asymptotic

variance functional (wrong scatter in the asymptotic distribution).

First-order B-robust M-estimators limit the impact of the contamination, since they are

defined by a bounded ψ, which yields a better control of the asymptotic bias. Nevertheless,

Proposition 1 implies that there is no guarantee that also ∇θ⊤ψ remains bounded and Corollary

2 implies that the asymptotic variance can be inflated by outliers.

Second-order B-robust M-estimators have bounded ψ and bounded ∇θ⊤ψ and they feature

V-robustness. Thus, Proposition 1 and Corollary 2 imply stable location and scatter in the

asymptotic distribution. Moreover, an application of the chain rule ensures that the directional

derivatives (∂ǫ) of other asymptotic functionals related to the first-order asymptotic distribu-

tion (e.g., confidence intervals, score-type tests, and p-values) remain stable as well; see, e.g.,

Heritier and Ronchetti (1994).

4.3 Higher-order asymptotics

This section discusses the implications that Proposition 1 has on saddlepoint-type asymptotics,

for some model-based and model-free techniques.

4.3.1 Model-based techniques

Saddlepoint density approximation. Theorem 4.5 in Field and Ronchetti (1990) shows

that, for every distribution in Pǫ,G ∈ Uη(Pθ0) satisfying the assumptions given in Appendix, the

exact finite sample density f(t;n, ε, G) of theM-functional can be approximated by a saddlepoint

expansion of the form f(t;n, ε, G) = g(t;n, ε, G){1 + O(n−1)}, for t ∈ R
p. The saddlepoint

density approximation is

g(t;n, ε, G) = (n/2π)p/2c−n(α(t;Pε,G);Pε,G)
∣

∣

∣
det M̃(t;Pε,G)

∣

∣

∣

∣

∣

∣
det Σ̃(t;Pε,G)

∣

∣

∣

−1/2

, (11)
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where the vector α(t;Pε,G) is the saddlepoint, i.e., the solution of the saddlepoint equation

Eht,Pǫ,G
[ψ(Z; t)] = 0, while

M̃(t;Pǫ,G) =

{

Eht,Pǫ,G

[

− ∂ψj(Z; t)

∂tr

∣

∣

∣

∣

t

]}

1≤r,j≤p

, (12)

and

Σ̃(t;Pǫ,G) =
{

Eht,Pǫ,G
[ψj(Z; t)ψr(Z; t)]

}

1≤r,j≤p
. (13)

In (12) and (13), we have

ht,Pǫ,G
(z) = c{α(t;Pǫ,G);Pǫ,G} exp{α⊤(t;Pǫ,G)ψ(z; t)},

where ht,Pǫ,G
(z) is the so-called conjugate density and

c−1{α(t;Pǫ,G);Pǫ,G} = EPǫ,G

[

exp{α⊤(t;Pǫ,G)ψ(z; t)}
]

.

The detailed construction of the saddlepoint density is available in Field (1982) and needs a

delicate use of the complex analysis. We here provide just the intuition of the whole procedure,

highlighting three main steps. Assume we have to approximate the density of the estimator

at a fix point θ. In the first step (also called Esscher’s tilting), we re-center (by means of the

conjugate density and of the saddlepoint) the unknown density of the estimator at θ. In the

second step, we use (locally at θ) a low-order Edgeworth expansion (very accurate because it is

at the center of the density) to approximate the tilted density. In the third step, we tilt back the

resulting approximate density, relating it to the desired density. The whole procedure is repeated

for each point θ ∈ Θ. The unusual characteristic of the resulting saddlepoint expansion is that

the first few terms (or even just the first Gaussian term in the local Edgeworth expansion) often

give very accurate approximations in the far tails of the distribution, even for small sample sizes.

To illustrate the role of ψ and ∇θ⊤ψ in the saddlepoint density approximation, let us as-

sume that the actual data distribution is Pǫ,G ∈ Uη(Pθ0). Under Pǫ,G, the exact density of the

M-estimator is f(t;n, ǫ, G). In general, Pǫ,G is unknown so that a saddlepoint of the density
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under the reference model Pθ0 (say, g(t;n, Pθ0)) is applied. For a given G ∈ M, the difference

between f(t;n, ǫ, G) and g(t;n, Pθ0) gives the total error due to the saddlepoint approximation:

errtot(t;n, ǫ, G, Pθ0) = f(t;n, ǫ, G) − g(t;n, Pθ0). Following Ronchetti and Ventura (2001), we

decompose this error as

errtot(t;n, ǫ, G, Pθ0) = errsad(n) + errdev(t; ǫ, G, Pθ0),

where

errsad(n) = f(t;n, ǫ, G)− g(t;n, ε, G) = O(n−1),

and

errdev(t; ǫ, G, Pθ0) = g(t;n, ε, G)− g(t;n, Pθ0). (14)

The errsad(n) is related only to the sample size. Differently, errdev(t; ǫ, G, Pθ0) expresses the

impact that the deviations from the theoretical model have on the saddlepoint approximation.

This error can be unbounded over Uη(Pθ0) unless the estimating function ψ is bounded and has

bounded ∇θ⊤ψ. The claim can be justified by considering that the saddlepoint approximation

g(t;n, ǫ, G) depends upon the estimating function and its derivatives wrt to the parameter via

M̃ and Σ̃ in (12) and (13), respectively. Thus, an unbounded ψ and/or an unbounded ∇θ⊤ψ

implies an unbounded errdev. More formally we state

Proposition 3 (La Vecchia et al. (2012), Proposition 3) Let ψ(z; θ0) be an estimating func-

tion satisfying the conditions in Proposition 1, then

sup
G

|∂εg(t;n, ε, G)|ε=0| <∞

Proposition 3 implies an additional property of second-order B-robust M-estimators: their

saddlepoint density approximation (and its relative error of order O(n−1), see La Vecchia et al.

(2012)) undergo bounded changes in the presence of contamination.
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Saddlepoint density and tail area approximations for a real valued function of the pa-

rameter. Gatto and Ronchetti (1996) define a saddlepoint approximation for the finite sample

distribution of a real valued function j(·) of T (Pn) and of T (Pθ0); for instance, j(·) can be just

a component of T (·).
Gatto and Ronchetti (1996) show that the saddlepoint approximation to the density of

j{T (Pn)} − j{T (Pθ0)} is:

pn(t; θ0) =

{

n

2πR̃′′
n(α)

}1/2

exp
{

n(R̃n(α)− αt)
}

. (15)

In (15), R̃n(α) is an approximate cumulant generating function of ψ and it reads as:

R̃n(α) = µnα+
1

2
nσ2

nα
2 +

1

6
n2κ3nσ

3
nα

3 +
1

24
n3κ4nσ

4
nα

4

where α is the saddlepoint defined by R̃′
n(α) = v, while µn, σn, κ3n, κ4n depend on the IF and

ϕ2. Moreover, Lugannani-Rice type formula yields the tail probability approximation:

P (j{T (Pn)} − j{T (Pθ0)} > t) = 1− Φ(r) + φ(r)

(

1

s
− 1

r

)

, (16)

where Φ(·) and φ(·) are the cumulative distribution function and probability density function of

the standard Normal, respectively, s = α
{

R̃′′
n(α)

}1/2

, r = sgn(α)
{

2n
(

αt− R̃n(α)
)}

.

Considerations analogous to the ones made for the saddlepoint density approximation in

§4.3.1 lead to the conclusion that Gatto and Ronchetti’s procedure is not stable over Uη(Pθ0)
when ψ does not satisfy [A1] and [A2] of Proposition 1. Indeed, (3) and (5) imply that a bounded

ψ, having also a bounded ∇θ⊤ψ, yields uniformly bounded IF and ϕ2, which in turn yield stable

R̃n(α). Thus, a straightforward application of the chain rule implies that second-order B-robust

M-estimators have stable saddlepoint density approximation and stable Lugannani-Rice tail area

approximation.

Saddlepoint test. Let us consider the case of simple hypothesis H0 : θ = θ0 ∈ R
p – the

case of composite hypothesis is analyzed in the same way, but entails a cumbersome notation.
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Robinson et al. (2003) propose the saddlepoint test statistic 2nh(Tn), where

h(t) = sup
α
{−Kψ(α, t)} = −Kψ(α(t), t) (17)

is the Legendre transform of Kψ(α, t) = logEPθ0
[expαTψ(Z, t)].

Under the null, the test has a χ2(p) distribution and, if ψ is the likelihood score, it is

asymptotically equivalent to the three classical tests: likelihood ratio, Wald, and score test.

However, the test has relative error O(n−1) which has to be compared to the absolute error of

order O(n−1/2) of the classical tests.

Robinson et al. (2003) define an approximation to p-value = Pθ0(h(Tn) > h(tn)), where tn is

the observed value of Tn. In particular, Robinson et al. start from the saddlepoint density ap-

proximation and they integrate it (using a Laplace technique, see, e.g., Barndorff-Nielsen and Cox

(1989)), evaluating

p-value =

∫

Ã

(n/2π)p/2c−n(α(t;Pθ0);Pθ0)
∣

∣

∣
det M̃(t;Pθ0)

∣

∣

∣

∣

∣

∣
det Σ̃(t;Pθ0)

∣

∣

∣

−1/2
(

1 +O(n−1)
)

dt (18)

over the area Ã = {t : h(t) ≥ h(tn)}.
A robust saddlepoint test has been derived in Lô and Ronchetti (2009) for the case of gener-

alized linear model (GLM), in the presence of contamination in the response variable (y-space).

However, Lô and Ronchetti’s test is based on a first-order B-robust M-estimator. Similarly to

the Hampel-Krasker estimator in the linear model of Example 3 in §2, the first-order B-robust

GLM M-estimator ensures a bounded Σ̃, but it does not guarantee a uniformly bounded M̃ . As

a result, the stability of the p-value over Uη(Pθ0) is still an open question.

We gain further insights on this question, considering the effect of data contamination on

the integrand in (18). To this end, we need to evaluate the p-value assuming that the actual

data distribution is Pǫ,G (see Example 2). Within this setting, M̃(t;Pε,G) and Σ̃(t;Pε,G) are the

key players. Once again, a joint application of the chain rule, in tandem with Proposition 1 and

Proposition 3, show that model deviations can make the integrand arbitrarily large over Uη(Pθ0),
if ψ and/or ∇θ⊤ψ are unbounded. As a consequence, the p-value can be unstable. Clearly, tests
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based on second-order robust M-estimators guarantee the stability of the p-value.

In the next example, we illustrate the construction of a saddlepoint test, which makes use

of a second order B-robust M-estimator. Differently from the results available in the literature

(which rely on first-order B-robust M-estimators), our test is defined by an estimating function

which imposes bounds on both M̃ and Σ̃. For illustrative purposes, we define the test for a

well-known benchmark: the one-dimensional location problem.

Example 4 (stable saddlepoint test for univariate location model). Let Z ∼ φ(z−θ),
where φ is the standard normal density and θ ∈ Θ ⊂ R. For b ∈ R

+, we set

ψ̃b,c(z − θ) =







c(z − θ)min
(

1; b
|Ac(z−θ)|

)

c ∈ (0, 1)

(z − θ)min
(

1; b
|A(z−θ)|

)

c ≥ 1.
(19)

Assume we have to test H0 : θ = 0. For c ≥ 1, the test based on ψ̃b,c is first-order equivalent

to the robust tests already discussed in Hampel et al. (1986), Ch 3, and it has the same spirit

as the test in Lô and Ronchetti (2009). For c ∈ (0, 1), we here flag the possibility to apply ψ̃b,c

in the definition of a new saddlepoint test, which controls the bound on M̃ .

The definition of the test via (17) requires the computation of the cumulant generating

function of ψ̃b,c at the saddlepoint. To illustrate the procedure, we set A = 1, just for the sake

of simplicity. Thus, the estimating function reads as:

ψ̃b,c(z − θ) =



















−b Z1

c(z − θ) Z2

b Z3

(20)

where Z1 = {z ∈ R : −b > c(z − θ)}, Z3 = {z ∈ R : b < c(z − θ)}, and Z2 = R \ (Z1 ⊔ Z3).

For t ∈ R, the cumulant generating function Kψb,c
(α, t) under H0 is obtained as:

log

[
∫

R

exp
{

αψ̃b,c(z − t)
}

φ(dz)

]

= log

[
∫

Z1

exp {−αb}φ(dz) +
∫

Z2

exp {αc(z − t)}φ(dz)

+

∫

Z3

exp {αb}φ(dz)
]

= log [I1 + I2 + I3] .
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After some algebra, we get:

I1 = Pr(Z1) exp {−αb} , I2 = Pr(Z2) exp
{

−αc
(

t+ αc
2

)}

, I3 = Pr(Z3) exp {αb} ,

where each Pr(·) is obtained using the cumulative distribution function of the standard Normal

– for instance, Pr(Z1) = Φ(t− b/c).

Once the cumulant generating function is available, the saddlepoint is the solution to

∂Kψb,c
(α, t)

∂α
=
∂αI1 + ∂αI2 + ∂αI3

I1 + I2 + I3
= 0,

which has to be solved numerically; see, e.g., Kolassa (2006), section 4.3, for some hints based

on Newton-Raphson or secant method, and/or on rescaling the cumulant generating function to

make it closer to a quadratic function.

4.3.2 Model-free techniques

Empirical saddlepoint density approximation. The saddlepoint approximation in (11)

has a parametric nature (it relies on Pθ0) and we already know that g(t;n, ε, G) can experience

some robustness issues when the actual data distribution does not coincide with Pθ0 . One could

conjecture that some gains in robustness are obtained using the nonparametric (empirical) sad-

dlepoint density approximation, as derived in Ronchetti and Welsh (1994), where an empirical

saddlepoint is defined via the empirical measure – thus avoiding any parametric modelling. We

are going to show that this conjecture is wrong.

Under conditions (i)-(v) in Ronchetti and Welsh (1994), the empirical saddlepoint density

approximation for θ̂n reads as:

ĝ(t;n, Pn) = (n/2π)p/2ĉ−n{α̂(t;Pn);Pn}
∣

∣

∣
det M̂(t;Pn)

∣

∣

∣

∣

∣

∣
det Σ̂(t;Pn)

∣

∣

∣

−1/2

, (21)

where

M̂(t;Pn) =
1

n

n
∑

i=1

{[

− ∂ψj(zi; t)

∂tr

∣

∣

∣

∣

t

]

exp{α̂⊤(t;Pn)ψ(zi; t)}
}

1≤r,j≤p

, (22)
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Σ̂(t;Pn) =
1

n

n
∑

i=1

{

ψj(zi; t)ψr(zi; t) exp{α̂⊤(t;Pn)ψ(zi; t)}
}

1≤r,j≤p
, (23)

and

ĉ−1{α̂(t;Pn);Pn} =
1

n

n
∑

i=1

exp{α̂⊤(t;Pn)ψ(zi; t)}, (24)

with α̂(t;Pn) satisfying:

1

n

n
∑

i=1

ψ(zi; t) exp{α̂⊤(t;Pn)ψ(zi; t)} = 0. (25)

Ronchetti and Welsh (1994) paper illustrates the accuracy of the empirical saddlepoint den-

sity approximation in many estimation problems, including the Huber-type M-estimator for the

one-dimensional location problem and for linear regression model.

We remark that for some inferential problems, the good performance of ĝ(t;n, Pn) can be per-

turbed by a small percentage of contaminated data, even for first-order B-robust M-estimators.

Indeed, we notice that the quantities in (22)-(25) depend on ψ and/or on ∇θ⊤ψ: estimators

defined by an unbounded ψ and/or unbounded ∇θ⊤ψ can have large M̂ and/or Σ̂. This is the

case, for instance, of the Hampel-Krasker M-estimator (see Appendix A), whose ĝ(t;n, Pn) can

be unstable over Uη(Pθ0) because ‖∇θ⊤ψ‖ can be made arbitrarily large in the presence of out-

liers in the (x, y)-space. In contrast, second-order B-robust M-estimators guarantee that the

approximation in (21) remains stable.

Another remark is in order: Section 2 in Ronchetti and Welsh (1994) illustrates how to

(i) implement the empirical saddlepoint and (ii) approximate the right tail area probabilities

via numerical integration. We notice that, for both (i) and (ii), the estimate θ̂n is needed: only

bounded ψ and/or bounded ∇θ⊤ψ imply that ‖θ̂n−θ0‖ remains stable in the presence of outliers.

The same arguments apply to the empirical version of the saddlepoint approximation de-

fined in (15) – where, e.g., the expected values in µn or in κ3 are computed using Pn; see

Gatto and Ronchetti (1996), page 669.
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Empirical likelihood. The empirical likelihood (EL) method of Owen (1990) leads to the

construction of nonparametric confidence regions for the model parameter. In many estimation

problems where the sample size is small, the EL confidence regions perform better than the ones

obtained by the first-order asymptotics; see Owen (2001) for a book-length discussion.

By comparing the expansions of the empirical log-likelihood ratio and the empirical cu-

mulant generating function calculated at the saddlepoint, Monti and Ronchetti (1993) illus-

trate the relationship between the EL and the empirical saddlepoint density approximation of

Ronchetti and Welsh (1994). On one hand, nonparametric approximation to the density of mul-

tivariate M-estimators is obtained using the EL method; on the other hand, nonparametric EL

confidence regions are defined using the empirical cumulant generating function evaluated at the

saddlepoint

K̂(t;Pn) = ln
[

n−1

n
∑

i=1

exp{α̂⊤(t;Pn)ψ(zi; t)}
]

where α̂(t;Pn) is defined in (25).

Let Ŵ (t) be the empirical log-likelihood ratio of Owen (see Owen (1990) for its formal defini-

tion and page 332 of Monti and Ronchetti (1993) for its Taylor expansion). Monti and Ronchetti

(1993) show that Ŵ (t) can be expressed using the empirical cumulant at the saddlepoint as

nK̂(t;Pn) = −1

2
Ŵ (t) +

1√
n
Γ(u)/6 +O(n−1),

where u = n1/2(t− Tn). The scalar quantity Γ(u) is given by:

Γ(u) = −1

n

n
∑

i=1

(

u⊤V̂ −1(Tn;Pn)IF (zi;Pn)
)3

,

where the matrix V̂ (Tn;Pn) = M̂−1(Tn;Pn)Σ̂(Tn;Pn)M̂
−⊤(Tn;Pn) is an estimate of the asymp-

totic variance, Σ̂(Tn;Pn) = n−1
∑n

i=1 ψ(zi;Tn)ψ
⊤(zi;Tn),

M̂(Tn;Pn) =
1

n

n
∑

i=1

∂ψ(zi; t)/∂t|Tn and IF (zi;Pn) = −M̂(Tn;Pn)
−1ψ(zi;Tn).
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Since Γ(u) depends upon both ψ and ∇θ⊤ψ, comments analogous to the ones made on the

stability of the empirical saddlepoint density approximation imply that bounded ψ and bounded

∇θ⊤ψ yield stable empirical likelihood confidence intervals (and tests) in the presence of data

contamination. Moreover, since the estimate Tn is needed to compute the EL confidence regions,

we remark that for (first- and second-order) B-robust M-estimators ‖θ̂n−θ0‖ remains stable (at

the first- and second-order, respectively) even in the presence of contamination.

Similar considerations apply for the stability analysis of the empirical exponential likelihood

tests proposed by Robinson et al. (2003).

5 Numerical studies

Assume we are given two M-estimators of location, defined by two different, bounded esti-

mating functions, having both bounded derivative wrt the parameter. An important practical

question arises naturally: Do different bounded estimating functions with bounded derivative wrt

the parameter yield different stability in their asymptotics? The following example answers this

question for the one-dimensional location problem.

Setting and estimation. Let z1, ..., zn be n i.i.d. real-valued observations of a random vari-

able Z, having a Laplace (L) distribution with location θ0 = 0 and scale one (thus, L(0, 1) ≡ Pθ0).

We introduce deviations from the reference model, assuming that the actual data distribution

is Pǫ,G = (1− ǫ)Pθ0 + ǫδz, where δz is a Dirac with mass in 5.5, and ǫ controls for the degree of

deviation from Pθ0. Increasing levels of contamination are considered: ǫ = 0%, 5%, and 10%.

Three M-estimators are analyzed: the estimator obtained by method of moments (sample

mean), the widely-applied first-order (Huber), and the second-order B-robust M-estimators.

They are defined by the estimating functions:

ψMM(z) = z − θ0, ψb = (z − θ0)wb(z; θ0), and ψb,c = (z − θ0)wb(z; θ0)wc(z), (26)

respectively, where wb(z; θ0) = min(1; b/|z − θ0|), wc(z) = min(1; c/z4); see Proposition 5 in

La Vecchia et al. (2012).
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The estimating function ψMM is unbounded, whereas the two robust estimating functions

(ψb and ψb,c) are both bounded. Moreover, all the estimating functions feature a bounded (in

absolute value) ∂θψ, whose upper bound over Z is equal to one. Proposition 1 implies that both

ψb and ψb,c have stable asymptotics. However, thanks to the use of higher-order weights wc(z),

the IF of ψb,c is of redescending type, namely lim|z|→∞ ψb,c = 0; see Figure 4. Thus, the second-

order B-robust M-estimator has a finite rejection point (it gives zero weight to large outliers),

which yields a better control of outliers; see Hampel et al. (1986).

E
st
im

at
in
g
fu
n
ct
io
n

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

 

 

ψ
b

ψ
b,c

ψ
MM

Observation value

Figure 4: Estimating function for the considered M-estimators: the method of moments (ψMM,
continuous line), the first-order robust (Huber estimator, ψb, dashed line) and the second-order
robust (ψb,c, dot-dashed line). The tuning constants are b = 1.5 and c = 4.

First-order asymptotics. Table 1 illustrates numerically the different performance of the three

estimators, in terms of their asymptotic bias and asymptotic variance, for n = 30 and n = 200.

The Monte Carlo size is 2,500. When ǫ = 0, all theM-estimators have essentially zero asymptotic

bias. However, for both n = 30 and n = 200, the second-order B-robust M-estimator yields
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asymptotic bias and asymptotic variance which are smaller than the corresponding quantities

related to the Huber-type estimator and to the estimator of the method of moments; similar

considerations hold for larger sample sizes (e.g., n = 2, 000, unreported). This evidence highlights

an important point: different bounded estimating functions imply different degrees of stability

in their first-order asymptotics. The higher-order weights in ψb,c, by construction, yield an

additional flexibility to fine tune the level of robustness.

Higher-order asymptotics. We investigate the higher-order asymptotics of the three M-

estimators using the empirical saddlepoint density approximation. To this end, we simulate one

clean sample containing n = 30 observations from Pθ0 and one contaminated sample, having the

same size as the clean one, but from Pǫ,G. We estimate the location using the threeM-estimators

as defined by the estimating functions in Eq. (26). Then, we implement the empirical saddlepoint

density approximation for each M-estimator, using the clean and the contaminated sample.

In Figure 5 we display the effect of data contamination on the empirical saddlepoint of

the estimator implied by ψb,c under Pǫ,G when ǫ = 0%, 5% and 10%: even in the presence of

contamination, the density remains fairly stable.

For the sake of comparison, Figure 6 illustrates the stability of the saddlepoint density approx-

imation for the three M- estimators, plotting the left- and right-tail error of the approximation

due to deviation from the reference model, defined as

errdev(t; ǫ, G, Pθ0) = g(t;n, P (ε,G)
n )− gn(t;n, P

(θ0)
n ), (27)

for |t| ≥ 0.3, where P
(ε,G)
n is the empirical measure under the contaminated model Pǫ,G, and P

(θ0)
n

represents the empirical measure under the reference model. The stability of the second-order

B-robust M-estimator appears evident. Looking at the right panel, we conclude that, when the

right-tail area probabilities are estimated via numerical integration of the empirical saddlepoint

(as suggested in Ronchetti and Welsh (1994), page 317), the second-order robust M-estimator

yields the most stable estimates in the presence of contamination. Similar considerations hold for

the left-tail area probabilities, and, hence for the confidence regions derived from the empirical

saddlepoint density approximation.
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Figure 5: Approximate density of the second order robust M-estimator of location for a Laplace
distribution, with mean θ0 = 0 and scale equal to 1. The dashed line with circles is the empirical
saddlepoint density approximation at Pθ0; the continuous line with squares is the empirical
saddlepoint density approximation under Pǫ,G with ǫ = 5%; the dotted line with triangles is for
ǫ = 10%. The sample size is n = 30, G is a Dirac in 5.5. The constants tuning the degree of
robustness are b = 1.5 and c = 2, as in Table 1.

6 Conclusion

The paper illustrates why the estimating function and its characteristics (e.g., its upper and lower

bound and/or its derivative wrt the parameter) determine the behavior of the asymptotics of

M-estimators. We illustrate that stable asymptotics can be obtained using a bounded ψ having

also a bounded ∇θ⊤ψ. Table 2 summarizes the findings for both model-based and model-free

methods considered in this paper.

Our considerations can be adapted to other higher-order asymptotic techniques; like, e.g.,

the saddlepoint method derived in Easton and Ronchetti (1986) and the small sample confidence

intervals of Tingley and Field (1990)). The interested Researcher can study the stability of other

asymptotic methods building on the sketch of the proof available in the Appendix.
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Figure 6: errdev in the left (left panel) and right (right panel) tail as in Eq. (27) of the empirical
saddlepoint density approximation of the right tail of three M-estimators: method of moments
(continuous line), first-order B-robust (Huber M-estimator, dash-dotted line), and second-order
B-robust (dotted line). The contaminated distribution Pǫ,G is obtained as in Eq. (1), where Pθ0
is L(0, 1), G is a Dirac in 5.5 and ǫ = 10%.
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n = 30
ψMM ψb ψb,c

Pǫ,G, with ǫ = 0
Asympt. Bias ≈ 0 ≈ 0 ≈ 0
Asympt. Variance 0.067 0.084 0.013

Pǫ,G, with ǫ = 5%
Asympt. Bias 0.244 0.001 -0.001
Asympt. Variance 0.096 0.082 0.015

Pǫ,G, with ǫ = 10%
Asympt. Bias 0.503 0.015 -0.001
Asympt. Variance 0.135 0.085 0.017

n = 200
ψMM ψb ψb,c

Pǫ,G, with ǫ = 0
Asympt. Bias ≈ 0 ≈ 0 ≈ 0
Asympt. Variance 0.010 0.017 0.001

Pǫ,G, with ǫ = 5%
Asympt. Bias 0.269 0.004 ≈ 0
Asympt. Variance 0.016 0.018 0.001

Pǫ,G, with ǫ = 10%
Asympt. Bias 0.544 0.007 ≈ 0
Asympt. Variance 0.022 0.020 0.001

Table 1: Pure location model: first-order asymptotics. The reference model Pθ0 is a Laplace distribution with location
θ0 = 0, scale parameter known and equal to 1 (L(0, 1)). The contaminated distribution is Pǫ,G = (1 − ǫ)Pθ0 + ǫδz ,
where δz is a Dirac with mass in 5.5. The considered contamination levels are: ǫ = 0, ǫ = 0.05, and ǫ = 0.10. Three
M-estimators are analyzed: the method of moments (ψMM), the first-order robust (Huber estimator, ψb) and the
second-order robust (ψb,c). The constants are b = 1.5 and c = 2. The sample sizes are n = 30 and n = 200. Monte
Carlo size is 2,500.
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Model-based techniques

Unb. ψ

Unb. ∇θ⊤ψ

Unb. ψ

Bou. ∇θ⊤ψ

Bou. ψ

Unb. ∇θ⊤ψ

Bou. ψ

Bou. ∇θ⊤ψ

Stable

asy. bias
- - -/+ ++

Stable

asy. var.
- -/+ -/+ ++

Stable

sadd. for T (·) - -/+ -/+ ++

Stable

sadd. for a real-valued function j(·)
of the parameter

- -/+ -/+ ++

Stable

sadd. test
- -/+ -/+ ++

Model-free techniques

Unb. ψ

Unb. ∇θ⊤ψ

Unb. ψ

Bou. ∇θ⊤ψ

Bou. ψ

Unb. ∇θ⊤ψ

Bou. ψ

Bou. ∇θ⊤ψ

Stable empirical

sadd. density
- -/+ -/+ ++

Stable empirical

sadd. for a real-valued function j(·)
of the parameter

- -/+ -/+ ++

Stable empirical likelihood (EL)

conf. int. & test
- -/+ -/+ ++

Stable empirical

sadd. test
- -/+ -/+ ++

Table 2: Summary of the stability properties implied by ψ and ∇θ⊤ψ. “Unb.” means “un-
bounded”, while “Bou.” means ”bounded”. The symbol “-” represents a lack of the considered
feature; the symbol “-/+” represents a partial fulfillment; the symbol “++” represents a com-
plete fulfillment.
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Lô, S. N. and Ronchetti, E. (2009). Robust and accurate inference for generalized linear models.

Journal of Multivariate Analysis, 100(9):2126–2136.

Monti, A. and Ronchetti, E. (1993). On the relationship between empirical likelihood and

empirical saddlepoint approximation for multivariate M-estimators. Biometrika, 80(2):329–

338.

Owen, A. (1990). Empirical likelihood ratio confidence regions. The Annals of Statistics,

18(1):90–120.

32



Owen, A. B. (2001). Empirical likelihood. CHAPMAN & HALL, CRC press.

Rieder, H. (1994). Robust asymptotic statistics.

Robinson, J., Ronchetti, E., and Young, G. (2003). Saddlepoint approximations and tests based

on multivariate M-estimates. Annals of statistics, pages 1154–1169.

Ronchetti, E. and Ventura, L. (2001). Between stability and higher-order asymptotics. Statistics

and Computing, 11:67–73.

Ronchetti, E. and Welsh, A. (1994). Empirical saddlepoint approximations for multivariate M-

estimators. Journal of the Royal Statistical Society. Series B (Methodological), pages 313–326.

Tingley, M. and Field, C. (1990). Small-sample confidence intervals. Journal of the American

Statistical Association, Vol. 85, No. 410.:427–434.

van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press, New York.

von Mises, R. (1947). On the asymptotic distribution of differentiable statistical functions.

Annals of Mathematical Statistics, 18:309–348.

Young, G. (2009). Routes to higher-order accuracy in parametric inference. Australian & New

Zealand Journal of Statistics, 51(2):115–126.

33



A Linear regression model

Let us consider the linear regression model Y = θ1+θ2X+ǫ, where ǫ ∼ N (0, 1). Set θ = (θ1, θ2),

then, we have that:

• The maximum likelihood estimator is defined by

ψ(y, x; θ) = ux

with u = y − θ1 − θ2x;

• The Hampel-Kasker (first-order B-robust) estimator is defined by:

ψb(y, x; θ) = Axumin

(

1;
b

|u|‖Ax‖

)

, (28)

where A is determined by

EPθ0
[−∇θ⊤ψb(Y,X ; θ0)] = I; (29)

• The second-order robust M-estimator has an estimating function given by:

ψb,c(y, x; θ) = Axumin

(

1;
b

|u|‖Ax‖

)

min

(

1;
c

‖x‖2
)

, (30)

where the matrix A is defined as in (29), with ψb replaced by ψb,c.

Estimating function (30) corresponds to the estimating function of an optimal B-robust

Hampel-Krasker M-estimator, with additional Mallows-type weights on the x variable. There-

fore, large observations in the x-space are typically down-weighted more than in the first-order

B-robustM-estimator and this yields the control of the derivative of the estimating function wrt

to the parameter.
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B Proofs

Proof of Proposition 1. Part (i). Let ψ be an estimating function ψ : Rm × R
p → R

p. For

Pǫ,G ∈ Uη(Pθ), we consider the quantities

M(θ;Pǫ,G) = (Mij(θ;Pǫ,G))1≤i,j≤p = EPǫ,G
[−∇θ⊤ψ(Z;T (Pǫ,G))] ,

Σ(θ;Pǫ,G) = (Σij(θ;Pǫ,G))1≤i,j≤p = EPǫ,G

[

ψ(Z, T (Pǫ,G))ψ
⊤(Z, T (Pǫ,G))

]

.

The stability of M over Uη(Pθ0) is related to the directional derivative

∂Mij(θ;Pǫ,G)

∂ǫ

∣

∣

∣

∣

ǫ=0

= ∂ǫEPǫ,G

[

−∂θjψi(Z;T (Pǫ,G))
]

|ǫ=0

= −
{

EG[∂θjψi(Z; θ0)]− EPθ0
[∂θjψi(Z; θ0)]

}

−EPθ0
[∇θ⊤∂θjψi(Z; θ0)]EG[IF (Z;Pθ0)].

(31)

Under A1, it follows that

sup
G∈M

‖EG[IF (Z;Pθ0)]‖ <∞. (32)

Under A2, we have that ∂θjψi is bounded for each 1 ≤ i, j ≤ p. Thus,

sup
G∈M

‖EG[∂θjψi(Z; θ0)]‖ <∞. (33)

Making use of Eq. (32) and (33) in Eq. (31), it follows

sup
G∈M

‖∂ǫMij(θ;Pǫ,G)|ǫ=0‖ <∞. (34)
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As far as the derivative ∂ǫΣ(θ;Pǫ,G) is concerned, we have:

∂Σij(θ;Pǫ,G)

∂ǫ

∣

∣

∣

∣

ǫ=0

= ∂ǫEPǫ,G
[ψi(Z;T (Pǫ,G))ψj(Z;T (Pǫ,G))] |ǫ=0

= EG

[

ψi(Z; θ0)ψj(Z; θ0)
]

−EPθ0

[

ψi(Z; θ0)ψj(Z; θ0)
]

+EPθ0

[

∇θ⊤(ψi(Z; θ0) + ψi(Z; θ0))
]

EG

[

IF (Z;Pθ0)
]

.

Under A1 and A2, this derivative is bounded, thus

sup
G∈M

‖∂ǫΣij(θ;Pǫ,G)|ǫ=0‖ <∞. (35)

That concludes the proof.

Proof of Corollary 2. The proof follows from the V-robustness of second-order robust

M-estimators; see La Vecchia et al. (2012). We here provide a sketch of the proof. The behavior

of ∂ǫV (θ;Pǫ,G)|ǫ=0 is related to ∂ǫM(θ;Pǫ,G)|ǫ=0 and ∂ǫΣ(θ;Pǫ,G)|ǫ=0. Therefore, we need to

compute these (functional) derivatives under the given assumptions A1 and A2. The derivative

∂ǫM(θ;Pǫ,G)|ǫ=0 is given in Eq. (31) and from Eq. (32)-(33), we already know that a function

ψ satisfying A1 and A2 is such that Eq. (34) holds. Moreover, Eq. (35) implies that derivative

∂ǫΣ(θ;Pǫ,G)|ǫ=0 stay bounded over Uη(Pθ0). That concludes the proof.

C Assumptions

C.1 Root-n consistency and asymptotic normality

The following general assumptions ensure root-n consistency and asymptotic normality of M-

estimators. They are fairly sharp and they can be found in Huber (1981), p. 131. Stronger and

more easily verifiable conditions are given in Duncan (1987). Weaker conditions to prove only

asymptotic normality can be found in He and Shao (1996), Corollary 2.2.

B1. For each fixed θ, let be ψ(z; θ) a p× 1-vector function on Z ×Θ, where Z ∈ R
m and Θ is
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a compact subset of Rp. The function ψ(z; θ) is separable in sense of Doob.

B2. The expected value EPθ0
[ψ(Z; θ)] exists for all θ ∈ Θ and has a uniques zero at θ = θ0.

B3. The function ψ is continuous in θ:

lim
‖θ̃−θ‖→0

‖ψ(z; θ̃)− ψ(z; θ)‖ = 0

Here and in the following assumptions, ‖ · ‖ represents the Euclidean norm.

B4. There exists a real-valued continuous function b(θ) that is bounded away from zero, b(θ) ≥
b0 > 0, such that:

(i) supθ
‖ψ(z;θ)‖
b(θ)

is Pθ0-integrable;

(ii) lim infθ→∞

‖EPθ0
[ψ(Z;θ)]‖

b(θ)
≥ 1;

(iii) EPθ0

[

lim supθ→∞
‖ψ(z;θ)−EP0

[ψ(Z;θ)]‖

b(θ)

]

< 1.

In addition to B1.-B4., the following assumption is needed to show the asymptotic normality

of the M-estimator implied by ψ.

N4. Define

u(z; θ, d) = sup
‖θ̃−θ‖≤d

‖ψ(z; θ̃)− ψ(z, θ)‖.

There are strictly positive numbers a0, b0, c0, d0 such that:

(i) ‖EPθ0
[ψ(Z; θ)]‖ ≥ a0‖θ − θ0‖, for ‖θ − θ0‖ ≤ d0;

(ii) EPθ0
[u(Z; θ, d)] ≤ bd, for ‖θ − θ0‖+ d ≤ d0;

(iii) EPθ0
[u(Z; θ, d)2] ≤ cd, for ‖θ − θ0‖+ d ≤ d0.

Moreover, the expectations EPθ0
[‖ψ(Z; θ)‖2] and M(ψ; θ0) = EPθ0

[∇θ⊤ψ(Z; θ0)] are nonzero

and finite. Finally, we also assume the following conditions about differentiability. Let ∂θj de-

note differentiation w.r.t. θj , then the function ψ(z; θ) has (Pθ0-a.s.) derivatives ∂θjψi(z; θ), for
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1 ≤ i, j ≤ p.

Condition B3. requires the continuity of ψ. This requirement can be weakened, considering

P0-a.s. continuity, namely

B3’ The function ψ is Pθ0-a.s. continuous in θ:

lim
‖θ̃−θ‖→0

‖ψ(z; θ̃)− ψ(z; θ)‖ = 0, Pθ0 − a.s.

C.2 Saddlepoint density approximation

The next set of assumptions ensure the existence of the saddlepoint density approximation; see

Field and Ronchetti (1990), p. 62.

A4.2M There exists an open subset U of Rm such that:

(i) for each θ ∈ Θ, Pθ(U) = 1;

(ii) ψ(z; θ) has Pθ0-a.s. derivatives ∂θk∂θjψi(z; θ) and ∂θl∂θk∂θjψi(z; θ),

for 1 ≤ i, j, k, l ≤ p.

A4.3M For each compact K ⊂ Θ:

(i) for 0 ≤ j, k ≤ p, 1 ≤ i ≤ p,

sup
θ0∈K

EPθ0
|∂θk∂θjψi(Z; θ0)|4 <∞;

(ii) there exists an ǫ > 0 such that for 1 ≤ i, j, k, l ≤ p,

sup
θ0∈K

EPθ0
[ max
‖θ−θ0‖<ǫ

|∂θl∂θk∂θjψi(Z; θ)|]3 <∞.

A4.5M The functions M(ψ; θ) and EPθ
[(∂θk1∂θj1ψr1)(∂θk2∂θj2ψr2)], 0 ≤ j1, j2, k1, k2 ≤ p,

k1 + j1 ≥ 1, k2 + j2 ≥ 1, 1 ≤ r1, r2 ≤ p are continuous on Θ.
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