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We have applied a multiobjective genetic algorithm to the optimization of multiphoton-excited fluorescence.
Our study shows the advantages that this approach can offer to experiments based on adaptive shaping of
femtosecond pulses. The algorithm outperforms single-objective optimizations, being totally independent from
the bias of user defined parameters and giving simultaneous access to a large set of feasible solutions. The
global inspection of their ensemble represents a powerful support to unravel the connections between pulse
spectral field features and excitation dynamics of the sample.
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I. INTRODUCTION

In recent years, pulse-shaping techniques have been pro-
gressively implemented for increasing the degree of control
in light-matter interactions. In order to identify the optimal
pulse shape to drive a given photoprocess, a common ap-
proach relies on the systematic investigation of field interfer-
ences [1-4]. Such open-loop procedures, although quite time
consuming, undoubtedly present the advantage of providing
clear evidence of the processes at the origin of the selectivity
of the pulse and are not limited to simple atomic and
molecular systems as demonstrated by their recent applica-
tion to biological samples for improving selectivity in non-
linear microscopy [5,6] and biomedical imaging techniques
[6-8].

In parallel, after the suggestion of Judson and Rabitz [9],
closed-loop learning procedures based on genetic algorithms
(GAs) have contributed to a number of successful experi-
ments, ranging from steering of molecular reactions in gas
[10,11] and condensed [12] phases to high-harmonic genera-
tion [13] and control of fundamental biophysical processes
[14-16]. Despite their versatility and convergence rapidity,
GA-based approaches are subjected to a series of criticisms
concerning the robustness of the solution, the difficulty to
identify the global maximum, and a certain dependence of
the outcome on the experimental apparatus.

Indeed the goal of the optimization is often hindered or in
conflict with other experimental aspects: basic processes
such as the maximization of multiphoton vibronic transitions
suffer from these shortcomings, as the dominant solution,
likely corresponding to transform-limited excitation, pre-
vents the retrieval of the subtle pulse features matching the
target molecule dynamics [17]. To cope with this limitation,
the original optimization goal is usually modified inserting
ad hoc cost functions, meant to avoid convergence towards
unsuitable or meaningless solutions. On the other hand, this
procedure may entail undesirable consequences, as the rela-
tive weights adopted for the cost functions inevitably bias the
algorithm evolution and may divert the system to converge
to valuable solutions.

Optimal discrimination experiments [12,18,19] share
similar difficulties. The optimization goal is the selective en-
hancement of the signal from a specific chromophore in
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competition with a second one, characterized by similar or
overlapping absorption bands. The target objective is typi-
cally defined as the ratio between the signals simultaneously
generated by the two systems. Obviously, to avoid numerical
artifacts (division by zero) or convergence to solutions yield-
ing very small signal intensities, it is compelling to add an
offset (€) to the denominator and include a term (a) propor-
tional to the quantity to maximize.

Procedures based on the parametrization of the GA target
have been developed also to strengthen [20] the identifica-
tion of the essential features of optimal pulses and unravel
their connections to the sample photodynamics [21,22].
More recently, the issue of continuity of solution hypersur-
faces has been experimentally addressed with a technique
based on the introduction of a scalar variable in the GA
objective [23].

In the present work, we apply an optimal control algo-
rithm capable of handling simultaneously multiple target ob-
jectives [24]. The results demonstrate that it increases the
versatility and the robustness of the GA approach, avoiding
the artificial limitations dictated by user-defined scalar cost-
function parameters.

To evaluate the performance of this approach, we set up a
benchmark experiment based on the two-photon excitation of
a molecule of biological interest: flavin mononucleotide
(FMN), one of the main sources of autofluorescence in living
organisms [25]. A typical application of optimal dynamic
discrimination [19] could, for instance, be the efficient detec-
tion of bacteria among background aerosols that exhibit
similar fluorescence emission [26,27]. Given the nonlinearity
of the excitation process, the maximization of the fluores-
cence intensity (I5,,) is expected to have a trivial solution
corresponding to Fourier-transformed pulses. Following
Brixner et al., this dominant intensity dependence can be
lifted by normalizing FMN fluorescence by the second-
harmonic (SHG) signal (Igy;) generated by the same shaped
pulse in a nonlinear crystal [17]. In the following, we discuss
the results of a systematic series of optimizations that we
performed using both single (two scalar parameters « and )
and multiple targets, expressed, respectively, in the form

[IflLtO/(€+ISHG) + alﬂuo] and [Ifhw/ISHG 5 Iﬂuo]'
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TABLE I. Algorithm parameters used for all optimizations de-
scribed in this work.

Population size 20
Real variables 128
Crossover probability 8x 107!
Mutation probability 1x1072
Distr. index crossover 10
Distr. index mutation 20

II. METHODS

A. NSGA-II algorithm

We adapted to our experimental needs the elitist nondomi-
nated sorted GA (NSGA-II) developed by Deb et al. [24]. In
this section, we summarize its main differences with respect
to GAs typically employed for coherent control of photody-
namics [28,29].

NSGA-II varies from single-objective GAs substantially
in the way the selection operator acts. The key concept is
associated with the notion of domination: a solution is said to
dominate another solution if it is not worse in any of the
objectives and it is strictly better in at least one. Conversely,
a solution is nondominated if no solution can be found that
dominates it. After random initialization, at the ith iteration,
the population P; of size N generates an offspring population
Q; of N new individuals by standard tournament selection,
recombination, and mutation operators. The combined popu-
lation R;=P;U Q; is successively sorted according to non-
domination: the solutions fulfilling the definition of non-
domination are ranked in the first nondominated front ¥ 11 It
the size of F ll is smaller than N, all its members are retained
in the next parent population P;, ;. The remaining individuals
of P,,, are selected in the next nondominated front F iz, com-
puted after eliminating F} from R;. The same procedure is
continued until a set—say, F/—cannot be entirely accommo-
dated in P;,;. The elements of F} are then sorted according
to the crowding distance operator, which is introduced for
preserving the population diversity. The difference among
the individuals is calculated in the multidimensional target
space from the signals generated on each objective [24].

This naive description of the algorithm is sufficient to
clarify the concept of Pareto optimal set, extensively used in
the forthcoming discussion, which simply corresponds to the
final set of nondominated solutions. The latter are assumed to
balance the objectives in a unique and optimal way.

For this study we used a real codification of the NSGA-II
algorithm. We restricted the optimizations to a maximum of
two objectives, even if there is no computational limitation
regarding this point. The parameters used for the measure-
ments are summarized in Table I. We did not perform any
systematic study of these values for improving convergence
speed and/or quality of the outcome, our interest being lim-
ited to a straight comparison between single- and multiple-
objective approaches.

B. Experiment

The prism compression of a Ti:sapphire oscillator, capable
of delivering 15-fs pulses, was adjusted to limit the output
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bandwidth to 12 nm full width at half maximum (FWHM).
This precaution was necessary to prevent the pulse spectrum
dispersed by a 1200-grooves/mm gold grating to exceed the
size of our liquid-crystal pulse shaper (SLM-256, CRI)
placed at the Fourier plane of a zero-dispersion compressor
in a 4-f arrangement. Simultaneous amplitude and phase
modulation was performed addressing a total of 128 inde-
pendent pixels on the double liquid-crystal array. Note that
no calibration procedure was applied as the algorithm was
addressing directly the driving voltages of the active ele-
ments as optimization variables. The shaped pulses were
separated by a pellicle beam splitter (R/T=8/92, 2 um
thickness) into two distinct optical paths. The reflected beam,
focused by a 5-cm lens onto a 150-um-thick BBO crystal,
was used to generate the SHG signal detected by a photodi-
ode equipped with a 40-nm bandpass filter at 400 nm. The
transmitted part (50 mW average power) was focused by an
identical lens, onto a 1-mm suprasil flow cell where the
FMN sample was constantly refreshed. The fluorescence sig-
nal was collected by two lenses, spectrally filtered by means
of a BG40 Schott glass and a 40-nm bandpass filter centered
at 500 nm and detected by a photomultiplier tube. Both sig-
nals were fed into two independent lock-in amplifiers, before
being acquired by computer, and processed to provide feed-
back to the GA. For each sensitivity setting, the linearity in
the response of both arms was carefully checked throughout
the accessible dynamic range by measuring the signals gen-
erated by an unmodulated pulse at different intensities.
Frequency-resolved optical gating (FROG) traces were sys-
tematically acquired at the end of each optimization run with
a commercial SHG FROG device (Pulsecheck, APE Berlin).

The FMN solution was prepared using flavin mononucle-
otide from Sigma-Aldrich, dissolved in water at a concentra-
tion of 2 g/I.

III. RESULTS AND DISCUSSION

Figure 1 displays the comparison between the evolution
of a single-objective optimization of [/z,,/ (Isy+€)+alp,,]
[panel (a)] and that of a run of the NSGA-II algorithm si-
multaneously maximizing [14,,/Isuc:Iu,) [panels (b) and
©]

In (a), we observe the monotonous growth of the discrimi-
nation ratio Ig,,/Isy; generated by the best individual of
each generation. Notice that the plotted quantity differs from
the actual feedback signal. At the beginning of the optimiza-
tion, we identify a transient phase of 10-20 generations char-
acterized by Ip,,/Isuc<<1. This regime is associated with
larger efficiency of the SHG process with pulses with ran-
dom amplitudes and spectral phases. Since we carefully veri-
fied the linearity and the balance between the two optical
arms, this finding does not constitute a major limitation for
the optimization. After this short phase, the discrimination
ratio steadily increases with values constantly above 1. After
~120 generations, it converges to a final value of 1.25.

The evolution driven by the multiobjective algorithm de-
picted in Figs. 1(b) and 1(c) is somehow less straightforward.
During the first generations, the algorithm output is associ-
ated with a single solution per iteration, evidencing the exis-
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FIG. 1. Comparison between the evolution of a single-objective
optimization of [Ig,,/ (e+Isyg)+aly,,] with =0, €=0.3, and that
of a run of the NSGA-II algorithm maximizing simultaneously
Ufio! Isti s Tiuo)- Evolution of the discrimination ratio /g,,/Isyg in
the single-objective (a) and in the multiobjective (b) cases. (¢) Evo-
lution of /,, in the multiobjective run.

tence of an individual exhibiting simultaneously the greatest
discrimination ratio and fluorescence intensity. Once the
system has exited this region (dashed vertical line), the
number of feasible solutions suddenly inflates, eventually
saturating the number of individuals in the population
[dim(F - 45) > N]. This behavior is representative of conflict-
ing targets. In fact, consistently with the nondomination
ranking performed by the algorithm, each individual yielding
high values on one target is bound to be weak on the other
one. If this were not the case, there would be an individual
dominating all the others and dim(F!)=1. We observe that
the NSGA-II algorithm keeps on increasing both targets dur-
ing the whole optimization. At each step, the feasible solu-
tions represent the best compromise found between the two
conflicting goals. The large distribution of the solutions is
preserved by the crowding distance operator, which retains
for the next optimization step the pulses characterized by
maximal distance in the two-dimensional signal space. After
120 generations, as in the case of the single-objective opti-
mization, the signals converge to steady values [24].

The result of the evolution can be more easily appreciated
when I, is plotted against the control variable (Isy) [17],
as in Fig. 2. As both Iy, and gy are normalized with re-
spect to the signal generated with a reference unmodulated
pulse, the dashed diagonal line corresponds to the undis-
criminating situation /y,,=Isy¢. This condition was system-
atically verified at different intensities, as indicated by the
experimental data points along the diagonal. The global out-
put of the optimization is represented by the dots above this
line, where 15,,> Isyg. They correspond to all the individu-
als tested during the optimization, while the circles highlight
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FIG. 2. Global output of the multiobjective optimization of Fig.
1. Dots: individuals tested during the evolution. Circles: final fea-
sible population (Pareto front). Dashed line: undiscriminating solu-
tion 14,,=Igyg, retrieved by an unmodulated pulse at different in-
tensities, as demonstrated by the experimental data points lying
along the diagonal.

the final feasible population constituting the best approxima-
tion of the Pareto front of optimal solutions found by the
algorithm. For comparison, the solid square indicates the fi-
nal solution obtained with the single-objective optimization
reported in Fig. 1(a).

The discrimination ratios of all solutions belonging to the
Pareto front and their corresponding fluorescence intensities
are illustrated in Fig. 3. The plot contains the results of vari-
ous multiobjective (opened shapes) and single-objective
(solid shapes) optimizations associated with different [«; €]
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FIG. 3. Comparison between the results of several independent
multiobjective (open shapes) and single-objective (solid shapes) op-
timizations. The single-objective GA results are obtained using dif-
ferent [ «; €] parameter pairs. The crosses correspond to maximizing
the opposite goal with NSGA-IL, namely [ZsG/ 110 Isuc]- The dot-
ted curve indicates the experimental error at different signal
intensities.
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parameter pairs, together with the outcome of the optimiza-
tions presented above (solid square and open circles, respec-
tively). The dotted line is an upper estimate of the experi-
mental error in Ig,,/Igyg, calculated from the dispersion of
the fluorescence and SHG measurements generated by un-
shaped pulses at different intensities.

From this general comparison it is evident that the Pareto
front is a common solution for all the optimizations and that
single-target outcomes fit well in the general trend. Greater «
and € values give more weight to the signal intensity, leading
to a solution characterized by stronger signals and weaker
fluorescence and SHG discrimination. Smaller or vanishing
a and € values privilege the ratio at the expense of fluores-
cence intensity. Notice that, for all Ip,, values associated
with solutions of the single-objective optimizations, the dis-
crimination ratio retrieved by the multiobjective algorithm is
slightly but systematically higher. It is remarkable that the
same computational effort (the number of individuals tested
in the various optimizations is roughly the same) gives ac-
cess in the case of multiobjective optimization to a much
richer ensemble of solutions without affecting, even improv-
ing, their quality. The pulse best adapted for a specific appli-
cation can be readily selected within this collection.

The discriminating capacity and the signal magnitude as-
sociated to the different final pulses were tested several days
after the optimization, yielding results well inside the error
estimate given in the plot. As an additional check, we also
performed the opposite optimization—i.e., the simultaneous
maximization of [Zy/ 11,3 spc]. The crosses in Fig. 3 with
ratio below unity represent the feasible solutions obtained
this way. We observe a remarkable symmetry of this en-
semble with respect to that obtained by maximizing the fluo-
rescence.

This finding is consistent with the physical explanation
that can be formulated after inspection of Fig. 4(a), showing
a comparison between the SHG FROG traces of two pulses
respectively maximizing (left) and minimizing (right) the
Lol Ispe ratio and that of a reference unmodulated pulse
(center). The optimizations principally act suppressing one or
the other edge component of the pulse spectrum, in order to
enhance or reduce the nonlinear excitation of FMN (two-
photon absorption maximum at 760 nm [30]). This strategy
modulates the Ip,,/ [y ratio, taking into consideration that
the SHG process for a 150-um crystal is insensitive to wave-
length within the excitation pulse bandwidth (<15 nm).

As a consequence, the FROG spectral slices taken at zero
time delay in Fig. 4(b) indicate an overall bandwidth reduc-
tion of ~25% for both the SHG- (I7,,/IsyG=0.7) and
fluorescence- (I5,,/Isyg=1.77) enhancing pulses with re-
spect to the reference pulse. Beside this major effect on the
amplitude of the spectral components, we also observe a re-
duction of the pulse duration for both optimal pulses with
respect to the reference one.

In Fig. 4(c), we analyze the relationship between the two
targets of the multiobjective optimization presented in Fig. 2
and the position of the first spectral moment' of the pulses
belonging to the final Pareto front. One clearly recognizes

'Defined as [INNAN/ [I(N)dN.
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FIG. 4. (a) FROG traces corresponding to pulses maximizing
FMN fluorescence (left), undiscriminating (center), and maximizing
SHG (right). (b) Spectral cuts at zero time delay extracted from the
FROG traces in the top panel. (c) Behavior of the multiobjective
optimization targets Iz, and Ig,,/Isyc as a function of the first
spectral moment of the optimal pulses retrieved by the algorithm.

the competition between the two targets: discrimination de-
creases as the pulse spectral edge shifts to the red, toward the
laser output maximum (800 nm). At the same time, I, in-
creases, as the incident pulse intensity augments, enhancing
nonlinear excitation. Similar trends were found for all the
optimizations shown in Fig. 3, and a complementary behav-
ior at the blue side of the spectrum was observed for the
SHG maximization.

IV. CONCLUSIONS

The NSGA-II algorithm is applicable to a vast ensemble
of control problems. It allows approximating the Pareto front
by a large ensemble of solutions whose diversity is con-
stantly preserved during the optimization with a computa-
tional effort comparable to traditional GAs. Picking a single
solution from this set is an a posteriori judgement, which can
be done in terms of concrete experimental needs. Moreover,
we observed a slight improvement in the quality of the indi-
vidual solutions retrieved by the multiobjective algorithm in
comparison to the ones indicated by the single-target ap-
proach. Eliminating all scalar parameters in the objective ex-
pression (and in the crowding distance procedure [24]) as-
sures an unbiased convergence.

The distribution of solutions in the target space gives ac-
cess to primary information for unraveling the relationship
between pulse spectral field features and sample photody-
namics. In particular, any global trend in the final ensemble
of solutions may help associating specific pulse characters to
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different outcomes of the photoprocess. In this respect, the
unambiguous understanding of the strategy underlying the
optimizations presented in this work facilitates the compari-
son between the single- and multiple-objective approaches.
Finally, we observe that multiobjective optimization may
improve the performances of the so-called control pulse
cleaning procedure described by Lindinger et al. [31]. In that
case, the optimization target is modified including a one-
parameter cost function elaborated to suppress all unessential
field components to facilitate the deciphering of the optimal
pulse. A sensible combination of the two approaches, by in-
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troducing the genetic pressure against appearance of unnec-
essary pulse features as a parameter-free objective, may help
to generalize the result of the optimization.
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