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Abstract 

Background 
Research on the electroencephalographic (EEG) signatures of attention-deficit hyperactivity 
disorder (ADHD) has historically concentrated on its frequency spectrum or event-related 
evoked potentials. In this work, we investigate EEG microstates, an alternative framework 
defined by the clustering of recurring topographical patterns, as a novel approach for 
examining large-scale cortical dynamics in ADHD. 

Methods 
Using kmeans clustering, we studied the spatio-temporal dynamics of ADHD during rest 
condition by comparing the microstate (MS) segmentations between adult ADHD patients 
and neurotypical controls, across 2 independent datasets: the first dataset consisted of 66 
ADHD patients and 66 controls, while the second dataset comprised of 22 ADHD patients 
and 22 controls and was used for out-of-sample validation.  

Results 
Spatially, ADHD and control subjects displayed equivalent MS topographies (canonical 
maps), indicating preservation of prototypical EEG generators in ADHD. However, this 
concordance was accompanied by significant differences in temporal dynamics. At the group 
level, and across both datasets, ADHD diagnosis was associated with longer mean durations 
of a fronto-central topography (D), indicating its electrocortical generator(s) could be acting 
as pronounced “attractors” of global cortical dynamics. Lastly, in the first (larger) dataset, 
we also found evidence for decreased time coverage and mean duration of microstate A, 
which inversely correlated with ADHD scores, while microstate D metrics were correlated 
with sleep disturbance, the latter being known to have strong relation with ADHD. 

Conclusions 
Overall, our study underlines the value of EEG microstates as promising functional 
biomarkers for ADHD, offering an additional lens through which to examine its 
neurophysiological mechanisms.  

 
 

 

 

  

Jo
urn

al 
Pre-

pro
of



   
 

  4 
 

Main Text 

Introduction 

 

Attention-deficit / hyperactivity disorder (ADHD) is characterized by developmentally 

inappropriate levels of inattention, hyperactivity, or impulsivity, and is one of the most 

common psychiatric disorders, with a prevalence of 1 out of every 20 adults (1,2). As a result, 

there is a pressing need to understand its neural underpinnings in the hope of devising better 

treatments. 

    Recent literature reviews point to abnormal resting (EEG) electroencephalogram 

activities in ADHD patients (3–6). This is exemplified by a significant cluster of ADHD 

patients with a high theta to beta power ratio (TBR) (5,7), a signature supportive of theories 

that ADHD may be caused by a delay of brain maturation (8), seeing that the theta/beta ratio 

is known to progressively attenuate during normal cortical development (9,10).  

 However more recent studies (11,12) have failed to replicate this finding of elevated TBR as 

a diagnostic feature in ADHD, which was also confirmed in a meta-analysis (13).  

These divergent results suggest that the high TBR group, which is strongly associated with 

treatment response to methylphenidate (14) and neurofeedback (15,16), is only a subgroup 

within a wider spectrum of abnormal electrocortical activities. These different subtypes can 

also be found with the EEG signatures derived from adults with ADHD: which besides excess 

power of lower-frequency rhythms (17–19), also display opposing pattern(s) comprising of 

reduced alpha power (20,21) and/or excess higher-frequency beta power (22,23).Based on 
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these findings, the emerging consensus is that ADHD is not only highly heterogeneous in 

terms of behavior (24), but also electrophysiologically (25).   

 

    Although previous research on ADHD has concentrated on examining its EEG frequency 

spectrum (25), and/or event-related potentials (ERPs) (26) in this work we propose resting 

state EEG microstates (27) as an alternative analytical framework. Microstate analyses in 

ADHD have so far been limited to ERP microstates (28)  (29), hence the spontaneous resting-

state EEG still needs to be explored. By modelling the spontaneous EEG as a sequence of 

recurring topographical patterns, microstate (MS) analysis considers both spatial and 

temporal dynamics simultaneously. This could facilitate clearer spatio-temporal 

dissociations to be made in ADHD, as any uncovered deviations in MS dynamics would imply 

abnormal temporal activations of spatially distinct cortical generators. Although it is difficult 

to the identify microstates’ precise anatomical generators through mere clustering of scalp 

EEG data, their abnormal temporal signatures nevertheless point to significant departures 

from typical cortical dynamics. This may be a valuable framework when considering the 

brain as a large-scale dynamical system (27) . Previous work has identified significant links 

between microstate map dynamics and behavioral dimensions in clinical populations. For 

instance, the duration of microstate class D has been found to correlate negatively with 

hallucinations in patients with schizophrenia (30). Interestingly, as MS topographies are 

estimated on a timepoint-by-timepoint basis (i.e. instantaneously) using a broadband (e.g. 

1-30 Hz) signal, MS measures may be able to capture cortical dynamics that are either 

independent or common across EEG frequencies.   

Jo
urn

al 
Pre-

pro
of



   
 

  6 
 

    To validate these hypotheses, we apply below MS analysis to resting-state EEG recordings 

of 88 adults with ADHD, divided across two independent datasets. The first dataset, 

designated as the “test” sample, comprised of 66 ADHD patients and 66 neurotypical controls 

from the Netherlands. The second dataset, designated as the “retest” sample, comprised of 

22 ADHD patients and 22 neurotypical controls from Switzerland. 

Methods 

I.            Datasets 

                i.            Dataset  1 

 

Participants 

EEG recording of 66 ADHD Patients (31 female, mean age: 34.1, SD: 11.4) and 66 controls 

(41 female, mean age: 36.5, SD: 12.4) were obtained from participants enrolled by Research 

Institute Brainclinics and the neuroCare Group Nijmegen in the Netherlands between 2001 

and May 2018. (31). Briefly patients were screened for inclusion and included in case of an 

ADHD or ADD diagnosis (as confirmed by the MINI Diagnostic Interview or by a qualified 

clinician), or when ADHD-RS scores on either scale (ATT or HI) (32)  was equal to or higher 

than 5, for this study only adults were included. Patients were also screened for sleep 

disorders trough the Pittsburgh Sleep Quality Index (PSQI) (33). Sample was composed of 3 

ADHD subtypes including 40 patients of mixed subtype (inattentive and hyperactive), the 

“inattentive” subtype composed of 23 patients, and the “hyperactive” subtype composed of 

3 patients. All subjects signed an informed consent before treatment was initiated.  
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Recordings 

2-minute Eyes Open (EO) EEG recordings were performed thanks to a standardized reliable 

and consistent (34,35)  developed by Brain Resource Ltd (36,37). Signals were recorded 

continuously using “Quickcap” a 26-electrode cap placed according to the 10–20 

international system, with a sampling rate of 500 Hz. The ground electrode was placed on 

the scalp at AFz, and data was referenced to averaged mastoids. All electrode impedances 

were kept below 5 kΩ. In addition to that, a low pass filter above 100 Hz was applied prior 

to digitization and Horizontal and vertical eye movements were controlled for. EOG-

correction based on Gratton et al. (38) was applied to the data. 

 

      ii.            Dataset 2 

 

Participants 

Resting state EEG recordings of 22 ADHD (12 female, mean age: 32.3, SD: 9.2) adult patients 

and 22 healthy controls (14 female, mean age: 31.1, SD: 7.3) were obtained from (20). ADHD 

Patients were recruited through the Adult ADHD Unit at Geneva University Hospitals. After 

giving the written informed consent patient and controls underwent four clinical 

questionnaires including the Adult ADHD Self-Report Scale (ASRS v1.1) evaluates in 18 

questions current ADHD symptoms in adolescents and adults (39).   

 Clinician’s diagnostic was based on three structured questionnaires:  the ADHD Child 

Evaluation for Adults (ACE+), https://www.psychology-services.uk.com/adhd.htm),  the 
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French version of the Structured Clinical Interview for DSM-IV Axis II Personality Disorders 

(SCID-II,(40)) and the French version of the Diagnostic Interview for Genetic Studies (DIGS, 

mood disorder parts only, (41)(see (20) for extend description). Sample was composed of 3 

ADHD subtypes:  the “mixed” one composed of 16 patients of mixed subtype the “inattentive” 

subtype composed of 5 patients, and the “hyperactive” subtype composed of the last patient. 

 This study was approved by the Research Ethic Committee of the Republic and Canton of 

Geneva [project number 2017-01029]. 

Recordings 

Here, 3 min of EO rest was recorded continuously using a 64 Ag/AgCl electrode cap (ANT 

Waveguard, Netherlands) placed according to the 10–20 international system, with a 

sampling rate of 500 Hz. The ground electrode was placed on the scalp at a site equidistant 

between Fpz and Fz, and the reference electrode at CPz. Electrical signals were amplified 

using the eego mylab system (ANT Neuro, Netherlands), and all electrode impedances were 

kept below 5 kΩ. 

     

 II.    Preprocessing 

 Both datasets underwent the same preprocessing pipeline: data was processed in Matlab 

with EEGLAB (42), using the default settings of the Harvard Automated Processing Pipeline 

for Electroencephalography (HAPPE) (43). Concisely, this involved first filtering between 1-

100 Hz, removing line noise with a notch filter (between 48-52 Hz), rejection of bad channels 

(standard deviation cutoff of z=3), removal of non-cerebral artifacts such as eye-blinks and 
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muscle activity using independent component analysis (via the MARA plug-in (44)). Lastly, 

rejection of “bad” 1-second EEG segments was carried out using amplitude-based and joint 

probability artifact detection (standard deviation cutoff of z=3). 

  

III.     Fitting 

The de-artifacted data (from Datasets 1 and 2) was band-passed filtered between 1-30 Hz 

and re-referenced to common average reference. Microstate maps were estimated 

separately for each dataset (Dataset 1 and 2) and group (ADHD and CTRL). Here, we used 

Koenig’s Microstate toolbox for EEGLAB (available 

at https://www.thomaskoenig.ch/index.php/software/microstates-in-eeglab). For each 

subject’s resting-state recording, 2000 GFP (Global Field Power) peaks were selected 

randomly and submitted to modified (i.e. polarity-independent) kmeans clustering with 100 

repetitions. For each cluster number k=4 to k=7, microstate (MS) maps (i.e. cluster 

centroids) were estimated firstly at the subject level, and then optimally re-ordered between 

subjects by minimizing the average spatial correlation across maps. Finally, respective MS 

maps were averaged across all subjects (within each dataset/group) to give the aggregate 

map for each cluster. We found that k=5 provided the highest map reliability across subjects 

and datasets, which was estimated as the mean spatial correlation of each subject’s map with 

the group’s aggregate.  

 

 

Jo
urn

al 
Pre-

pro
of

https://www.thomaskoenig.ch/index.php/software/microstates-in-eeglab


   
 

  10 
 

IV.    Backfitting 

The k=5 global dominant maps of both datasets were then fitted back to the original EEGs 

using Cartool (45). During this procedure, each time point was assigned to a cluster label (i.e. 

microstate map) by spatial correlation analysis: each time point was assigned to the map 

with which it shared the highest absolute spatial correlation. If the spatial correlation was 

below the r=0.5 correlation threshold, the time point was labelled as “non-assigned”. A 

smoothing window of 7 samples (56.0 ms) was used to ensure temporal continuity of the 

signal by adjusting correlation of the central time point with a smoothing factor of 10. 

Identical label sequences which did not reach a duration of 3 samples (24.0 ms) were split 

into two parts, each sharing the highest spatial correlation with its neighboring segment and 

relabeled accordingly to the latest. At the end of this procedure, non-assigned timepoints 

were removed and participants with z >= 3 of unlabeled timepoints were excluded of further 

analysis. A label sequence was derived for each individual recording, which was used to 

compute 3 metrics: 

Global explain variance (Gev): the sum of variances weighted by the global field 

power of all time points assigned to a label. This metric is expressed in percentage 

(%). 

Time coverage (TimeCov): the proportion of time during which a label is present in 

the recording. This metric is expressed in percentage (%). 

Mean duration (MeanDur): mean temporal duration during which a label is present 

without interruption. This metric is expressed in milliseconds (ms). 
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After backfitting, outlier detection based on a high number of unlabeled timepoints (z score 

>3, dataset 1 = 13% | dataset 2 = 18%) identified two control subjects from dataset 1 and 

one control subject from dataset 2. These subjects were excluded from further analysis. 

 

V.     Power Spectrum Analysis 

Absolute power spectral density (PSD) was computed using Welch’s method for frequencies 

ranging from 2 to 30Hz. The window had an effective size of 2.048 seconds and no overlap. 

To obtain a relative metric that could be used for between subject comparisons, all values 

were divided by the sum of the full spectrum (2 - 30Hz). Obtained values were then added 

up within each studied frequency band:  delta (2 - 4Hz), theta (4 - 8 Hz), alpha (8 - 12 Hz), 

low-beta (12 - 20 Hz) and high-beta (20 - 30 Hz) for further analysis. 

 

VI.     Clinical measures of inattention and hyperactivity 

For each dataset, we selected the standardized clinical questionnaires that best reflected 

current (i.e. adult) symptoms of ADHD. 

For dataset 1, this was the ADHD Rating Scale (ADHD-RS, (37), which contained 23 questions 

regarding the presence of symptoms on a 4-point scale (0 =rarely or never, 1 =sometimes, 2 

=often, 3 =very often). The ADHD-RS contains two subscales for symptoms of inattention and 

hyperactivity. 

For dataset 2, this was the Adult ADHD Self-Report Scale (ASRS v1.1) which uses 18 

questions on a 5-point scale (0 =never, 1=rarely, 2=sometimes, 3=often, 4=very often) to 
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evaluate current ADHD symptoms in adolescents and adults (44).  The ASRS contains two 

subscales that assess the dimensions of hyperactivity and inattention. 

 

VI.     Statistics 

Group comparisons were conducted on the 3 spatiotemporal parameters thanks to unpaired 

permutation test for equality of means. Due to the absence of pre-established hypothesis, 

two-sided test was used for the first dataset. Results derived from this first analysis were 

used to establish working hypotheses for the second dataset leading to the use of one-sided 

tests. P-values were estimated by simulated random sampling with 10000 replications. 

Cohen’s d (d) was used to report effect sizes as standardized difference of means. When 

applicable, statistical results were corrected for multiple comparisons using Bonferroni 

method. 

Correlations between microstates parameters and Clinical scores were computed using two-

sided permutation test (10000 permutations) on Pearson correlation coefficient. 

Results 

   I.            Dataset 1 

i. Microstate topographies 

 

In the first dataset, we examined two minutes resting-state EEG data of 66 patients with 

ADHD and 66 controls. Neither mean age (p = 0.25) nor gender (fisher exact test, p=0.08) 

between groups differed significantly. 
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We applied microstate (MS) segmentation to both groups independently to identify potential 

topographies that might be specific to one population. We identified 5 equivalent maps 

across both ADHD and CTRL groups (Figure 1), corresponding to traditional MS 

topographies previously reported in the literature: a left-right diagonal orientation (A), a 

right-left diagonal orientation (B), a fronto-posterior orientation (C), fronto-central 

maximum (D) and a parieto-central maximum (F). Spatial correlation analysis revealed 

negligible differences between group MS maps, with a minimum absolute correlation of 87% 

for matched topographies. 

Consequently, we concatenated the EEGs of both ADHD and CTRL groups into a single 

‘pooled’ kmeans analysis, to obtain a set of common maps for both groups. These latter maps 

were used in the backfitting of all individual participant data. 

  

    ii.            Microstate Segmentation 

  

 As seen in Figure 2, we firstly observed a reduced temporal prevalence of map A in the ADHD 

group compared to CTRL:  in other words, the relative amount of time subjects spend in this 

configuration was significantly reduced (p ≤ 0.05, d= -0.43) in the ADHD group compared to 

CTRL. Additionally, although non-significant, state durations of map A were on average 

lower for the ADHD group (n.s., d= -0.-59) and the amount of global variance explained by 

map A was also reduced on average (n.s., d= -0.32). 

Interestingly, opposite effects were found for map D, which exhibited a relative increase in 

prevalence in the ADHD group: the fronto central topography of map D explained on average 
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more global variance (GEV, p ≤ 0.01, d = 0.71), dominated an increased temporal proportion 

(Time Coverage, p ≤ 0.05, d = 0.59) and had longer state durations (Mean Duration, p ≤ 0.05, 

d = 0.53) in the ADHD population. 

No significant results were found for other topographies  

 

      iii.            Regression analysis between microstates parameters and clinical 
measures 

 

By focusing on the significant results of the group-wise analysis, we hypothesized that 

microstate A and D dynamics might be related to differences in ADHD severity. We evaluated 

the relationship between the parameters of these two microstates and individual scores on 

the ADHD Rating Scale in ADHD patients. As show in in Figure 3, correlation analyses 

revealed a negative correlation between the microstate A parameters and clinical ADHD 

scores:  significant negative correlations were found between map A Time coverage 

and ADHD_total score (p ≤ 0.05 (F(x) = -0.2x + 15, R² = 7.7%), as well as ADHD_Hyperactivity 

(p ≤ 0.05    F(x) = -0.1x + 7, R² = 7.4%). Similar results were found between map A global 

explained variance (Gev) and ADHD_total score (p ≤ 0.05    F(x) = -0.3x + 14, R² = 7.7%) and 

ADHD_Hyperactivity (p ≤ 0.05   F(x) = -0.2x + 7, R² = 7.1%). Mean duration of map A was also 

correlated to ADHD_total score (p ≤ 0.05    F(x) = -0.1x + 22, R² = 9.3%) and ADHD_Inattention 

(p ≤ 0.05     F(x) = -0.06x + 11, R² = 5.8%). In this dataset, no significant correlations were 

found between clinical measures and map D parameters. 
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 Microstate D dynamics were also associated with Pittsburgh Sleep Quality Index (PSQI) 

(Figure 4) in the ADHD group, where higher PSQI scores indicate greater sleep disturbance. 

Here, positive correlations were found between PSQI total score and microstate D global 

explained variance (p ≤ 0.05    F(x) = 0.3x + 5.8,   R² = 7.8%) and time coverage (p ≤ 0.05    F(x) 

= 0.2x + 4.8, R² = 8.4%).   

 

 

     II.            Dataset 2 

      i.            Microstate topographies 

 

In this second ‘replication’ dataset, we applied the same MS analysis pipeline to 3 min 

resting-state EEG data of 22 adult ADHD patients and 22 adult controls. Neither mean age 

(p = 0.66) nor gender (fisher exact test, p=0.8) between groups differed significantly. 

. We observed remarkably similar MS topographies to dataset 1 (Figure 5), with a minimal 

inter-dataset spatial correlation of 0.89 (Figure S1). Both ADHD and CTRL groups exhibited 

the 5 classical microstate topographies ABCDF.  Spatial correlation analysis revealed minor 

difference between ADHD and CTRL group topographies (Figure 4a), with a minimum 

absolute correlation of 91% on the diagonal. Topographies were unchanged after 

concatenation of the ADHD and CTRL data. Similarly, to dataset 1, we used the group 

concatenated MS maps for backfitting and estimation of MS dynamics at the level of 

individual subjects. 
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      ii.            Microstate Segmentation 

 Based on the independent, group-wise differences found in the first dataset, we 

hypothesized that microstate D parameters would be elevated in the ADHD population while 

those of map A would be reduced. To test this, we performed directional (i.e. one-sided) 

permutation tests for equality of means on microstate A and D parameters only (Figure 

6).  Hence, in this section, statistical results were corrected for 6 comparisons.  

We replicated the deviations for map D both in terms of effect size and statistical significance: 

timepoints assigned to map D were significantly longer (p = 0.05, d = 0.77) in the ADHD 

population, while noticeable (but non-significant) increases of global explained variance 

(n.s., d = 0.49) and time coverage (n.s., d = 0.57) were also present. No significant differences 

were found for map A, hence ADHD deviations in this microstate were not replicated (n.s., 

GEV: d = -0.14 | time coverage: d = -0.07 | mean duration: d = 0.42) in terms of statistical 

significance. 

 

    iii.            Clinical correlations 

Based on group analyses led on both datasets, we tested the assumption that only microstate 

A and D would have a significant relationship with clinical scores. 

Analysis of ADHD patients alone did not reveal any significant correlations between ADHD 

clinical scores and those MS parameters. 
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Spectral power analysis 

None of the EEG bands demonstrated significant differences between ADHD and CTRL 

groups after Bonferroni correction, either for the first or second dataset (Fig 7). 

 Discussion 

The aim of this study was to investigate EEG microstates (MS) as potentially novel functional 

biomarkers for attention deficit and hyperactivity disorder (ADHD).  By applying this 

method to adult ADHD patients, we uncovered new electrophysiological characteristics of 

this disorder.  To this end, we applied spatial kmeans-clustering to two independent 

datasets, each composed of adults with ADHD and a neurotypical control group. We firstly 

observed a close correspondence between ADHD topographies (i.e. map clusters) and 

classical MS maps (A, B, C, D, F) typical of the normal population, suggesting no major 

deviations in the spatial organization of electrocortical generators. This equivalence enabled 

us to estimate each MS map underlying temporal dynamics, while testing for any statistical 

differences between ADHD and control samples. Here, we identified a longer mean temporal 

duration of a fronto-central topography (microstate D), which was statistically significant 

and had a medium-to-large effect size in both the first and second datasets (d=0.59 and 

d=0.77, respectively). Secondly, in the first (larger) dataset, we found additional evidence 

for decreased time coverage (d = -0.59) and mean duration (d = -0.43) of microstate A, which 

inversely correlated with ADHD inattention scores.    
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Microstate D 

Interestingly, microstate D has been reported to be more expressed during attentional tasks, 

such mental arithmetic (46,47), so it is intriguing (and perhaps counterintuitive) that it is 

also observed to be more prevalent in ADHD. However, a stronger temporal prevalence of 

specifically microstate D has also been found to accompany periods of unresponsiveness to 

stimuli during transitions to drowsiness (48). In contradistinction, a recent study reported 

that microstate D duration was positively correlated with vigilance level (49). Microstate D 

prevalence has also been observed to be altered during hypnosis (50), hallucinations (30), 

sleep (46,51) and in patients with schizophrenia (52)In view of the larger prevalence and 

duration of microstate D in both our datasets, this balance seems to be tipped towards the 

upper end of the distribution in adult ADHD.  As a result, we hypothesize that the 

electrocortical generator(s) of map D may be acting as persistent “attractors” of cortical 

dynamics, thereby reducing their global variability and/or complexity. This interpretation 

would also be compatible with a recent review suggesting that microstate D may be 

responsible for aspects of reflexive attention such as reorientation and switching of 

attentional focus (27,53,54). 

Anatomically, the fronto-central topography of map D has previously been associated with 

activation of the right inferior parietal lobe, the right middle and superior frontal gyri, and 

the right insula (46,55,56). These brain regions are known to be part of the Dorsal Attention 

Network (57,58).  Hence, our findings tentatively point to abnormal dynamics within this 

network and are supported by functional MRI studies (59).  
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Relationship with sleep disturbance 

Interestingly, we observed a significant correlation between microstate D prevalence and 

poorer sleep quality in ADHD patients.  Several relationships have previously been 

established between sleep disorders and attentional deficits (see (60) for a review). This 

result is even more intriguing considering a recent study by Ke and colleagues (61), who 

reported increases in microstate D coverage (and a reduction in microstate A) in sleep 

deprived individuals. These results, which overlap with those observed in the present study, 

support pre-existing hypotheses of a trinity between sleep, hyperactivity disorder and 

abnormal EEG signatures (62,63).  

 

 

Microstate A 

In the larger dataset,, we additionally observed significantly decreased time coverage of 

microstate A, which was inversely correlated with clinical inattention scores in the ADHD 

sample.  A recent study has shown that states of increased vigilance/alertness were 

associated with relatively less prevalence of microstate A (and longer durations of 

microstate D) (49).  Thus, the combined signature of lower microstate A coverage and 

increased microstate D duration in our study would imply that ADHD could be characterized 

as a condition of “hyper-vigilance”, consistent with its behavioral symptoms of physical and 

emotional hyperactivity (65,66). 
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Spectral Power differences 

Classical EEG spectral power analyses have frequently revealed slow-wave (e.g. theta) 

abnormalities with a fronto-central topography in clinical cohorts with ADHD (e.g. (67,68)). 

A plethora of studies have investigated spectral power differences in childhood and adult 

ADHD (5,69), but ultimately systematic reviews report an absence of consistent resting EEG 

abnormalities that could be characteristic of ADHD (6). This is in line with the data presented 

here, for which no significant differences in relative spectral power were found between 

ADHD and CTRL groups. Specifically, in the first dataset we observed relatively 

decreased low-beta power in ADHD patients compared to controls, while the second dataset 

appeared to have the opposite pattern. One may notice significance of this result different 

from the original article (20) using dataset 2. In our view, the difference may be explained 

by first a loss of statistical power owing to a smaller sample size necessary for balancing the 

dataset during MS analysis, and second a change in filter settings, since in the 

study broadband was defined as 1 - 30 Hz while original work used 0.5 - 40 Hz.  

 Consequently, it is possible that microstate measures, in particular microstate D, may prove 

to be more generalizable auxiliary biomarkers for the diagnosis and/or prognosis of ADHD.  

Conclusion 

In conclusion, and to the best of our knowledge, we present the first study resting-state 

microstate dynamics in adult with ADHD. We have confirmed across two datasets that 

microstates D and/or A may be promising functional biomarkers of ADHD (or at least one 

subtype of it).  To date, although no biological markers have been successfully used to clearly 

diagnose or guide ADHD treatment, the potential application of microstate analysis in this 
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population could prove to be an additional asset, to better understand its neurophysiological 

mechanisms. 

Limitations 

Given the case-cohort design as well as correlational analyses of this cross-sectional study, 

there was no way of being certain whether the observed MS differences were actually a 

cause or a consequence of ADHD. It is important to note that the process of diagnosing 

ADHD may have differed between and within our two datasets, given the involvement of 

different clinicians and psychiatric scales, and that those diagnostic methods may differ for 

current standard (70,71) especially for the second dataset which has not considered 

symptom history (71). Hence, it is possible that the microstate biomarkers uncovered are 

not specific to ADHD as a diagnosis per se but some of its behavioral subcomponent; for 

example, sleep disturbance (72). 
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Legends for tables and figures 

Figure 1 

Dataset 1: EEG microstate topographies in ADHD adults (n=66) vs. controls (CTRL, 
n=66). A) The five EEG resting-state topographies for the 3 conditions: ADHD, CTRL and ALL 
(ADHD + CTRL).  B) Spatial correlation coefficients of the 5 resting-state topographies 
between ADHD and CTRL.    

 

Figure 2 

Dataset 1: Measures of EEG microstate dynamics in ADHD adults (n=66) vs. controls 
(CTRL, n=64). A) The five EEG microstates for the 3 conditions: ADHD, CTRL and ALL (ADHD 
+ CTRL). B) global explained variance (GEV) of each microstate. C) time coverage of each 
microstate. D)  mean duration of each microstate. (**p ≤ 0.001, *p ≤ 0.05, Bonferroni 
corrected for 15 comparisons).  Boxplots consist of median (Q2), first quartile (Q1), third 
quartile (Q3), maximum (Q3 + 1.5*(Q3 - Q1)), minimum (Q1 -1.5*((Q3 - Q1). 

 

Figure 3 

Dataset 1: Correlation between EEG microstate parameters and ADHD clinical scores 
(ADHD patients only, n=66). Scatterplots: A) between ADHD clinical score (ADHD_total) 
and microstate A global explained variance (Gev, %). B) between ADHD clinical score 
(ADHD_total) and microstate A Time Coverage (%).  C) between ADHD clinical score 
(ADHD_total) and microstate A Mean Duration (ms). ADHD patients only (n= 66), all 
univariate regressions are significant.   

 

Figure 4 

Dataset 1: Correlation between EEG microstate parameters and ADHD sleep quality 
(ADHD patients only, n=66). Scatterplots: A) between ADHD PSQI total score 
(PQSI_total_pre) and microstate D global explained variance (Gev, %). B)  between ADHD 
PSQI total score (PQSI_total_pre)  and microstate D Time Coverage (%). ADHD patients only 
(n= 66), all univariate regressions are significant.   

 

Figure 5 

Dataset 2: EEG topographies in ADHD adults (n=22) vs. controls (CTRL, n=22).  A) The 
five EEG resting-state topographies for the 3 conditions: ADHD, CTRL and ALL (ADHD + 
CTRL).  B) Spatial correlation coefficients of the 5 resting-state topographies between ADHD 
and CTRL.    

 

Figure 6 
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Dataset 2: EEG microstates in ADHD adults (n=22) vs. controls (CTRL, n=21).  A) The five 
EEG microstates for the 3 conditions: ADHD, CTRL and ALL (ADHD + CTRL). B) global 
explained variance (GEV) of each microstate. C) time coverage of each microstate. D)  mean 
duration of each microstate(*p ≤ 0.05, Bonferroni corrected for 6 a priori comparisons). 
Boxplots consist of median (Q2), first quartile (Q1), third quartile (Q3), maximum (Q3 + 
1.5*(Q3 - Q1)), minimum (Q1 -1.5*((Q3 - Q1).  

 

Figure 7 

EEG relative power spectrum differences between ADHD and CTRL groups. For dataset 1 
(left panel, ADHD=66, CTRL=66) and dataset 2 (right panel, ADHD=22, CTRL=22): relative 
band-power values over all electrodes. Solid lines represent mean value across subjects; 
shaded areas represent 95% confidence intervals. Traditional frequency bands: delta (orange, 
2 - 4Hz), theta (green, 4 - 8 Hz), alpha (blue, 8 - 12 Hz), low-beta (red, 12 - 20 Hz) and high-
beta (purple, 15 - 30 Hz) are highlighted on the x-axis.  
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