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“Surely, in the light of history, it is more intelligent to hope rather than to 

fear, to try rather than not to try. For one thing we know beyond all doubt: 
Nothing has ever been achieved by the person who says, 'It can’t be done!' “  

(Eleanor Roosevelt) 
 
 
 
 
 

“What counts in life is not the mere fact that we have lived. It is what 
difference we have made to the lives of others that will determine the significance 
of the life we lead.” 

(Nelson Mandela) 
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Abstract 
 
Global environmental changes, linked to climate, biodiversity, environmental degradation, 

pollution, and others are threatening our planet more and more every day, with negative 

outcomes such as global sea level rise, intensified droughts, glaciers melting, etc. Environmental 

Sciences community and the human society at large need to find effective and operational 

responses to these complex changes. These actions imply more than ever a better understanding 

of the complex Earth system, the inter-linkage between its sub-systems and the impacts of 

human induced activities on natural phenomena. Such a challenge requires not only access to a 

huge amount of environmental data, from various disciplines and geographic scales, but also 

storing and processing resources as well as standardized performant tools, algorithms and 

services, able to extract useful and meaningful information from raw data, information which 

will support better decision making and better actions towards a sustainable development and a 

sustainable planet.  

This thesis focuses on analyzing and exploring solutions in which Information Technology, and 

especially parallel and distributed high performance systems, can improve the urgent needs of 

environmental community in managing this unprecedented amount of environmental data to 

provide meaningful information and knowledge in a timely manner. The required computational 

and storage capacity for such a challenge exceeds most of the time what an average 

computational center can offer. We propose in this thesis a general methodology and framework 

for easily porting and executing environmental applications simultaneously on different parallel 

and distributed infrastructures such as cluster, Grid and Cloud. Such a Hybrid Computing 

Environment introduces complex challenges to tackle with, especially in supporting the 

interoperability and the coexistence of the underlying distributed, heterogeneous computing 

infrastructures. The interoperability between Environmental Sciences (environmental data and 

environmental applications) and such a Hybrid Computing Environment is also an important 

goal to achieve in this thesis and the proposed approach is based on a mediation solution, 

through the introduction of an intermediate “broker” layer (mediator), able to hide the 

complexity of the computing environment and to provide access to its functionalities and 

capabilities in an easy and flexible manner. 
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Based on a heuristic approach, we have analyzed the lessons learned from integrating different 

types of environmental applications with different high performance parallel and distributed 

infrastructures and together with the accumulated theoretical knowledge we defined a 

conceptualization method for environmental applications, which allows an easy and flexible 

integration with any computing environment. The conceptual model is a key component in the 

general proposed methodology for porting and executing environmental applications on a Hybrid 

Computing Environment. Based on a conceptual model, the application is decomposed and 

scheduled to be executed on an appropriate set of computing resources, belonging to one or more 

distributed infrastructures. The proposed scheduler take into account factors like application 

type, task complexity, user preferences and specifications, platforms availability, execution 

history, etc. and the execution on different computing infrastructures is done using specialized 

adaptors.    

The definition of such a methodology and supporting framework came as a response to the 

urgent need of the environmental community of using as much computational resources as 

possible to efficiently and effectively analyze and process the huge amounts of data that are 

available today, to be able to make better informed decisions regarding the changes that are 

threatening our environment and our society. The proposed approach is easy and flexible enough 

to be applied on a large range of scientific applications, belonging also to other research fields. 

We believe that such a methodology is a step forward into a standardize way of accessing large 

heterogeneous storage and computing facilities for complex scientific applications. 
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Abstract 
 
Schimbările globale de mediu, legate de climă, biodiversitate, degradarea mediului, poluare dar 

și altele, amenință planeta noastră din ce în ce mai mult în fiecare zi, cu rezultate negative 

precum: creșterea nivelului global al mării, secete intensificate, topirea ghetarilor, etc. 

Comunitatea Științelor Mediului, și societatea umană în general, trebuie să găsească răspunsuri 

eficiente și operaționale pentru aceste schimbări complexe. Aceste acțiuni necesită mai mult ca 

oricând o mai bună înțelegere a sistemului complex numit Pământ, a interdependenței dintre sub-

sistemele sale și a impactului activităților umane induse asupra fenomenelor naturale. O astfel de 

provocare necesită acces nu numai la o mare cantitate de date de mediu, care provin din diferite 

domenii și se află la diferite scări geografice, dar și la resurse de stocare și de procesare, precum 

și la unelte, algoritmi și servicii performante și standardizate, capabile de a extrage informații 

utile și semnificative din datele brute, informații care vor sprijini procesul de luare a unor decizii 

și acțiuni mai bune, care vor duce către o dezvoltare durabilă și o planetă mai bună. 

Această teză se concentrează pe analiza și explorarea de soluții prin care tehnologia 

informației, și în special sistemele de calcul de înaltă performanță, paralele și distribuite, pot 

îmbunătăți nevoile urgente ale comunității de mediu legate de gestionarea acestei cantități fără 

precedent de date, pentru a furniza informații semnificative în timp util. Capacitatea de calcul și 

de stocare cerută pentru o astfel de provocare depășește de cele mai multe ori ceea ce un centru 

de calcul mediu poate oferi. În această teză propunem o metodologie și o platformă generală 

pentru portarea cu ușurință și execuția aplicațiilor de mediu, în mod simultan, pe diferite 

infrastructuri paralele și distribuite, cum ar fi cluster, Grid și Cloud. Un astfel de mediu hibrid de 

calcul introduce provocări complexe ce trebuie rezolvate, în special în sprijinirea 

interoperabilității și coexistenței infrastructurilor distribuite și eterogene care stau la baza acestui 

mediu hibrid. Interoperabilitatea dintre Științele Mediului (date de mediu și aplicații de mediu) și 

un astfel de mediu hibrid de calcul este un obiectiv important de realizat în această teză iar 

abordarea propusă se bazează pe o soluție de mediere, prin introducerea unui nivel intermediar 

"broker" (mediator), capabil să ascundă complexitatea mediului de calcul și să ofere acces la 

funcțiile și capacitățile sale într-un mod simplu și flexibil. 
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Pe baza unei abordări euristice, am analizat lecțiile învățate din integrarea diferitelor tipuri de 

aplicații de mediu pe diferite infrastructuri de calcul de înaltă performanță, paralele și distribuite, 

și împreună cu cunoștințele teoretice acumulate am definit un model conceptual pentru aplicații 

de mediu, ceea ce permite o integrare ușoară și flexibilă cu orice mediu de calcul. Modelul 

conceptual este o componentă cheie în metodologia generală propusă pentru portarea și execuția 

aplicațiilor de mediu pe un mediu hibrid de calcul. Pe baza modelului conceptual, aplicația este 

descompusă și planificată spre execuție pe un set adecvat de resurse de calcul, aparținând uneia 

sau mai multor infrastructuri distribuite. Planificatorul propus ia în considerare factori precum: 

tipul aplicației, complexitatea procesării, preferințele utilizatorului și specificațiile aplicației, 

disponibilitatea platformelor, istoricul de execuție, etc. iar execuția pe diferite infrastructuri de 

calcul se face folosind adaptoare specializate. 

Definirea unui astfel de metodologii, și a platformei aferente, a venit ca un răspuns la nevoia 

urgentă a comunității de mediu de a utiliza cât mai multe resurse de calcul, pentru a analiza în 

mod eficient prelucrarea unor cantități uriașe de date, disponibile în prezent, și pentru a lua 

decizii informate mai bune, cu privire la schimbările care amenință mediul nostru și societatea 

noastră. Abordarea propusă este ușoră și suficient de flexibilă pentru a fi aplicată pe o gamă largă 

de aplicații științifice, care aparțin altor domenii de cercetare. Noi credem că o astfel de 

metodologie este un pas înainte într-un proces de standardizare a accesului la infrastructuri mari 

de stocare și de calcul, eterogene, pentru aplicații științifice complexe.  
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Résumé 
 
Les changements environnementaux globaux liés notamment au climat, à la biodiversité, à la 

dégradation des habitats, et à la pollution mettent de plus en plus en danger notre écosystème 

planétaire avec des conséquences néfastes comme la hausse du niveau de la mer, une 

intensification des sécheresses, une fonte accélérée des glaciers, etc. La communauté des 

scientifiques œuvrant dans les sciences environnementales, et la société au sens large, ont un 

besoin accru de trouver des solutions efficaces et opérationnelles à ces changements complexes. 

Ces actions impliquent, plus que jamais, une meilleure compréhension du système de la planète 

Terre, des relations entre ses sous-systèmes, ainsi que des impacts induits par la société humaine 

sur les dynamiques naturelles de l’environnement. Un tel challenge requiert non seulement un 

accès à une immense quantité de données, provenant de diverses disciplines et à des échelles 

géographiques variées, mais également à des ressources massives pour le stockage et l’analyse 

de ces données, ainsi qu’à des outils standardisés performants, des algorithmes et des services 

capables d’extraire de l’information pertinente et utile à partir des données brutes. Ceci en vue de 

permettre un meilleur processus de prise de décision, et des actions ciblées et utiles pour 

satisfaire les buts liés au développement durable.   

Ce travail de thèse se focalise sur l’analyse et l’exploration de solutions permettant aux 

technologies de l’informations, et particulièrement les systèmes de calcul à haute performance, 

d’apporter des réponses utiles aux besoins de la communauté des sciences de l’environnement 

dans le domaine de la provision d’information et de nouvelles connaissances. Beaucoup de ces 

besoins demandent une capacité d’analyse et de stockage des données qui excède ce qu’un 

unique centre de calcul de taille moyenne peut offrir. Nous proposons dans cette thèse une 

méthodologie générale pour facilement porter et exécuter des applications environnementales de 

manière simultanée sur diverses infrastructures de calcul parallèles et distribuées telles que des 

clusters, Grid et Cloud. Cet environnement de calcul hybride introduit des problèmes très 

complexes à résoudre, notamment ceux en lien avec l’interopérabilité et la coexistence de ces 

infrastructures hétérogènes distribuées. Facilitée l’interopérabilité entre les données et 

applications environnementales et cette infrastructure hybride a été un des buts majeurs de cette 

thèse, et la solution présentée se base sur une approche utilisant une couche intermédiaire de 
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médiation (mediator) capable de cacher la complexité de l’environnement computationnel tout 

en donnant accès à ses fonctionnalités de manière simple et flexible.  

Nous basant sur une approche euristique, nous avons analysé les avantages et désavantages de 

l’intégration de différentes applications environnementales sur les infrastructures hautes 

performances parallèles et distribuées. Nous avons ensuite défini une méthode de 

conceptualisation pour les applications environnementales qui permet une intégration facilitée 

dans n’importe quel environnement computationnel. Le modèle conceptuel est un élément clé de 

la méthode générale proposée. Basée sur ce modèle, une application est décomposée et planifiée 

pour être exécutée dans un ensemble approprié de ressources computationnelles appartenant à 

une ou plusieurs infrastructures distribuées. 

Le composant de planification (planificateur) prend en compte des facteurs tels que le type 

d’application, la complexité de la tâche à exécuter, les préférences de l’utilisateur, la 

disponibilité des plateformes, l’historiques d’exécution, etc. L’exécution sur différentes 

infrastructures computationnelles est alors faite en utilisant des adaptateurs spécialisés. 

La définition et le développement d’une telle méthodologie vient en réponse aux besoins de la 

communauté environnementale à devoir utiliser une quantité croissante de ressources 

computationnelles, afin d’informer au mieux les processus décisionnels liés à l’environnement et 

la société. L’approche proposée est suffisamment flexible pour être appliquée à un large spectre 

d’applications environnementales, et même d’applications liées à d’autres thématiques. Nous 

croyons qu’une telle méthodologie est une avancée significative vers une façon standardisée 

d’accéder à un ensemble hétérogène de ressources de stockage et de calcul. 
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Chapter 1:  Research Context and Questions  

1.1. General Presentation of the Research Theme 
At the beginning of the 21st century, global changes linked to climate, biodiversity and 

habitat loss, environmental degradation and pollution, are threatening our natural environment 

and the human society at large, with already tangible negative outcomes (IPCC Climate Change 

2014 Synthesis Report [112]). Intensified droughts, ocean acidification, global sea level rise, 

increases in frequency of extreme weather events and glaciers melting are examples of such 

outcomes that are thought to intensify if appropriate international policies are not endorsed and 

applied. 

Responding effectively to all these complex changes has become an important challenge 

for policy makers, but also for the scientific community that demands access to continuously 

increasing quantities of heterogeneous data and resources (ESFRI e-IRG Report on Data 

management, 2009 [66]). The need to understand the inter-linkage between natural phenomena 

and human-induced activities is urgent and an important aspect for achieving this is the 

accessibility and processing of environmental data from various disciplines and geographic 

scales (local, regional, national and global).  

Scientists started to look and feel the need of an “innovative solution” which will allow 

them to access an operational infrastructure, supporting large scale multidisciplinary applications 

while providing highly elastic resources. The computational and storage capacity required for 

such a challenge exceeds most of the time what an average computational center can offer.  

In this thesis we propose a general methodology and framework for easily porting and 

executing environmental applications simultaneously on different parallel and distributed 

infrastructures such as cluster, Grid and Cloud. To achieve this goal, we focus on solving two 

main problems: 1) the interoperability and the coexistence of different distributed, heterogeneous 

computing infrastructures within a Hybrid Computing Environment, and 2) the interoperability 

between Environmental Sciences (environmental data and environmental applications) and such 

a Hybrid Computing Environment with its underlying infrastructures.  
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The methodology proposed in this research will allow users to interact in a central and 

transparent manner with several parallel and distributed infrastructures to try to solve the most 

challenging issues that are threatening our environment.   

1.2. Challenges and Research Questions 
The advances in technology and the extraordinary growth of digital data sources 

(including geographically distributed sensors, mobile devices, satellites and instrumented 

infrastructures) led to an unprecedented amount of data coming in different formats, from 

different sources and at different time intervals. Due to this data deluge and to the heterogeneity 

and distribution of computing and storing resources, we have to rethink the ways to store, 

process and analyze the data to provide meaningful information and knowledge in a timely 

manner (Diaz-Montes et al., 2015 [55]).  

Turning data into knowledge is not an easy task, especially when locating and accessing 

the right resources (e.g. data, information, tools and services, which can be information about the 

state of the Earth, relevant services, project results, applications, etc.) is done in a very scattered 

way through different state organizations, operators, service companies, data catalogues, 

scientific institutes, etc. 

The complexity of many sciences and engineering problems and applications, which can 

potentially transform our ability to understand the Earth System and manage our lives and our 

environment, requires computational and storage capacity exceeding in most of the cases what an 

average single computational center can offer (Diaz-Montes et al., 2015 [55]). Although many of 

these applications can be divided into sets of independent jobs, their collective complexity still 

requires “millions of core hours on any state-of the-art supercomputer, and throughput that a 

single multi-user queuing system cannot sustain” (Diaz-Montes et al., 2015 [55]). A general 

framework for simultaneously running scientific applications on different parallel and distributed 

environments such as Multicore, cluster, Grid, Cloud, etc. could bring huge benefits. The 

simultaneous execution on multiple environments is a complex and challenging task as it 

involves not only the interoperability of scientific applications with different parallel and 

distributed environments but also the interoperability and the coexistence of these environments.  

To this extent, the main goal of this research is: To analyze and explore in which way 

Information Technology, and especially parallel and distributed high-performance 
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systems, can improve the major challenges and needs the Environmental Sciences are 
facing in the process of extracting understandable and useful information from raw 
environmental data, leading in the end to a better informed decision making towards a 
sustainable development and a sustainable planet.    

 

To be able to achieve this goal, we have formulated some associated research questions 

that we will try to answer in the chapters of this thesis: 

1. What are the current urgent needs and challenges of Environmental Sciences 
(focusing on environmental data and environmental applications)? 

2. What is the state of the art of High Performance Computing (HPC) landscape 
(cluster, Grid, Cloud, Hybrid Computing)? 

3. What are the lessons learned based on a heuristic approach of integrating 
environmental applications with HPC?  

4. What are the flexible solutions to integrate environmental applications and 
environmental data with HPC infrastructures?  

5. How can we solve the interoperability between Environmental Sciences and 
Computer Science?  

6. Is there an efficiently way to take advantage of all the available heterogeneous 

computing infrastructures simultaneously?  
7. How can we solve the interoperability between different HPC infrastructures? What 

are the challenges and how this solution can be applied to Environmental Sciences?  
8. How can we evaluate and validate the proposed solutions?  

1.3. Objectives 
Based on the research questions formulated in the previous subsection, we have 

established the following main objectives for this thesis:  

x Analyze the main issues and problems needed to be solved in the Environmental Sciences 

field: gather, analyze, process, and distribute environmental data using dedicated services 

and applications.  

x Analyze and study the new trends in parallel and distributed computing infrastructures. 

The infrastructures considered in this research are Grid, Cloud, cluster, and Hybrid 
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Computing. These platforms were chosen due to their capabilities to deliver the necessary 

computing and storage resources needed for executing scientific applications in general. 

They can be very heterogeneous and hierarchical, making thus the execution even more 

challenging and the programming more complex. All these platforms aim to increase the 

execution speed of large-scale applications, offering a high number of computing and 

storage resources. Depending on the applications, some of them perform better than 

others do, while some offer a better scalability or more flexibility. They have many 

similarities but they present also many differences, which make the simultaneous usage 

of these platforms a complex and challenging task. 

x Experiment and extract common standards and properties of different kind of 

environmental services and applications: desktop applications, legacy code, Web 

applications, etc. At this point, different use cases will be chosen as a starting point for 

analyzing and confirming the need for a hybrid-computing environment. The aim is to 

experiment and to find solutions for optimal mapping of the execution of environmental 

applications onto parallel and distributed environments but also to explore and highlight 

the elements by which such mapping solutions converge toward an optimum. Based on 

these experiments and use cases, a minimum set of requirements will be collected and a 

list of lessons will be analyzed for the development of a new methodology.  

x Define a conceptual model for environmental applications, which will allow an easy and 

flexible integration with any computing environment. 

x Analyze the conditions in which a specific parallel and distributed environment is 

efficient and optimum for a certain application.  

x Explore the complexity of a hybrid computing environment and the major challenges.  

x Propose and explore a new methodology and a framework to solve the interoperability 

between environmental applications and a Hybrid Computing Environment. The mapping 

of environmental applications to an optimum and efficient computing environment 

should take into account several criteria such as applications features, user specifications, 

processing requirements, environment and resource availability, execution history, etc. 

Environmental applications usually require large computational and storage resources, 

which cannot always be delivered by a single platform. There are also cases in which the 

execution can be made on a smaller set of resources, even a local server, depending on 
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the application requests or even on the user specifications. Choosing the optimum 

execution environment, or the optimum combination of heterogeneous computing 

resources, becomes an important issue for obtaining better performances. 

x Propose a set of metrics able to evaluate the efficiency of the proposed methodology and 

framework. Draw conclusions and set up future research directions.  

1.4. Structure of the Thesis  
This thesis is structured in five big sections, which are further sub-structured in twelve 

chapters. This structure is illustrated in Figure 1 and presented in detail in the following.  

 
Figure 1: Thesis Structure 
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x Introduction – is the introductory part, which presents the big picture (general context) 

of the thesis, explaining the need for such a research work and the interdisciplinary nature 

of the thesis. This section contains one chapter:   
o Chapter 1 – presents the general interdisciplinary research theme, what are the 

major challenges and research questions we address during the thesis and what are 

our main objectives for this work. 

x State of the Art – gives a recent overview of the themes and fields approached in this 

thesis, both in Environmental Sciences and Computer Science research areas. This 

section contains four chapters: 
o Chapter 2 – focuses on the existing data challenges present in Environmental 

Sciences and introduces environmental data together with its main attributes, 

properties and transformations.     

o Chapter 3 – gives an overview on the basic concepts and notions underlying the 

Spatial Data Infrastructures, focusing on standards, interoperability, tools and 

initiatives used to support this idea.  

o Chapter 4 – introduces environmental applications, their specificity and 

characteristics and what are the challenges related to them. This chapter focuses 

on two main categories of environmental applications: hydrological modeling and 

remote sensing applications.    

o Chapter 5 – presents a general updated view of distributed systems (cluster, Grid, 

Cloud, etc.), focusing on the properties and tools that have been used more 

intensively in our research. We also introduce the concept of Hybrid Computing 

and we generally present the properties of distributed applications.      

x Development and Execution of Environmental Applications – describes in detail the 

main environmental applications used and developed during our research. This section is 

composed out of two chapters: 
o Chapter 6 – presents a set of environmental applications that were developed 

and/or used during our research in different national and international projects. 

o Chapter 7 – gives an overview of the growing needs and requests identified in 

Environmental Sciences to take advantage of the capabilities offered by the 

parallel and distributed infrastructures. This chapter focuses on a list of 
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experiments addressed in our research for porting different environmental 

applications on different parallel and distributed infrastructures. We analyzed the 

results, drew the conclusions and came up with a list of lessons learned based on 

the performed experiments. These lessons learned are the foundation of the next 

chapters, as we based our next proposals on our gained experience so far.   

x New Methodology and Framework Proposal – introduces a new methodology 

(ENV2CE) and a new framework for efficiently porting and executing environmental 

applications on a Hybrid Computing Environment (HCE). This section contains four 

chapters:  
o Chapter 8 – presents a conceptual description of environmental applications by 

introducing a proposal for an application conceptual model together with the 

methodology to apply this model.  

o Chapter 9 – gives an overview of what a HCE is, what are the properties, 

advantages, disadvantages and most of all the challenges of working with such an 

environment.  

o Chapter 10 – focuses on the new methodology and the new framework proposed 

for efficiently executing environmental applications on a HCE. This chapter 

presents the methodology phases, the system architecture and describes the main 

components together with their main functionalities.   

o Chapter 11 – presents the evaluation and the validation of the proposed solutions.  

x Conclusions – presents the general conclusions and contains one chapter:  
o Chapter 12 – concludes this research by answering the research questions 

addressed in the introduction, by emphasizing our contributions and by presenting 

recommendations for future directions of work.  

 

The chapters presented in this thesis are derived from scientific papers published during 

this research: 

x Chapter 2 is based on: 

o Rodila, D., Ray, N., Gorgan, D. (2015), Conceptual Model for Environmental 

Science Applications on Parallel and Distributed Infrastructures, Environmental 

System Research, Vol.  4/23, 2015, http://dx.doi.org/10.1186/s40068-015-0050-1. 

http://dx.doi.org/10.1186/s40068-015-0050-1
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Chapter 2:  Data Challenges in Environmental 

Sciences 

2.1. Environmental Data  

2.1.1. Introduction  

In the domain of Earth and Environmental Science there is an unprecedented avalanche 

of data due to a large extent to the fast evolution and availability of sensor/detector technologies. 

The advances in IT that enabled the capture, analysis and storage of massive amounts of data 

contributed also to this avalanche of data. The so-called “digital data deluge“ is a phenomena 

caused not only by the ease with which these large quantities of new data can be created but also 

by the output of re-analysis of already existing archived data (ESRI e-IRG Report on Data 

management, 2009 [66]). This phenomenon is considerably changing the way science and 

research is being conducted in many disciplines as they are dealing with unprecedented sizes of 

data that need massive computing capacities to handle it. 

Environmental data is spatial data, which means data describing features and phenomena 

and their locations relative to Earth coordinate reference system (McKee, 2015 [149]). This 

implies that environmental data are most of the time spatially referenced (i.e., referring to a 

geographic location) and as such belongs to geospatial data or geodata. Geospatial data describes 

geographical locations by giving attributes/information about their spatial and/or temporal 

extents (Giuliani et al., 2011 [84]). The amount of geospatial data has grown dramatically in the 

last 30 years mostly due to the rapid progress of communication means, as well as technologies 

to capture this type of data (e.g., GPS, sensors, satellites). Geospatial data is typically 

voluminous, complex, heterogeneous and geographically distributed. All these attributes make it 

generally difficult to access, share and distribute geospatial data, often with challenges to 

combine it with other types of data sets. Nowadays geospatial data is used and analyzed most of 

the times within a Geographical Information System (GIS) that has capabilities such as 

assembling, storing, manipulating, displaying, and merging data from different sources (Giuliani 

et al., 2011 [84]). In environmental sciences, GIS can be used in conjunction with Spatial Data 

Infrastructures (SDIs), that are widely used to share, discover, retrieve and visualize geospatial 
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data through standardized services (e.g., Open Geospatial Consortium (OGC) services). SDIs are 

therefore more than just data repositories, although suffering from limited analytical capabilities. 

Making use of GIS and SDI, a wealth of geospatial applications, technologies and initiatives 

have emerged recently in order to handle the increasing amount of environmental data, and to 

extract useful information out of it. A more detail description of all these technologies (GIS, SDI, 

OGC, etc.) will be given in the following sections.  

2.1.2. Formats and Standards 

Geospatial data is usually found in three forms: raster data (such as geo-images), feature 

data – usually represented as vector data (such as road networks and nation boundaries), and 3D 

geometry (Figure 2). Depending on the data capture technologies, the resolution of these data are 

usually quite high and are constantly growing as technologies improves (Mahdavi-Amiri et al., 

2015 [144]). 

Raster data includes geospatial imagery data sets, which are typically categorized in 

aerial or satellite photographs and that are very useful for visualization and analysis of locations 

(Mahdavi-Amiri et al., 2015 [144]). Aerial photographs are taken from aircraft (such as 

helicopters and balloons) that do not have a fix support on the Earth. Satellite photographs on the 

other hand are taken by satellites and they usually have a lower resolution and quality compared 

to aerial images but the later are subject to air traffic and other restrictions while satellites are 

operational all time (except for maintenance periods) and can even revisit frequently locations 

for time-laps captures (Mahdavi-Amiri et al., 2015 [144]). Recently, huge amounts of raster data 

are also collected by military, using drones (Nedelcu, 2015 [163]). 

Other forms of raster data sets (grid data) are these that describe terrain on the surface of 

the Earth. These can come in two formats: 

x Digital Elevation Models (DEMs) – also known as Digital Terrain Models (DTMs) or 

height maps, are regular grids of terrain elevation values. 

x Triangulated Irregular Networks (TINs) – sets of triangular faces with arbitrary 

connectivity, having the elevation values stored in the triangle vertices as coordinates.  

 

Acquisition of elevation data can be done using techniques such as ground surveying, 

which are expensive and time consuming but very accurate, but also laser scanning, using 
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LIDAR (Light Detection and Ranging) technology on low altitude aircraft. LIDAR is a remote 

sensing technique that uses laser pulses to determine the elevation with high accuracy, usually 

from an aerial survey (Nedelcu, 2015 [163]). Photogrammetry (deriving measurements from 

imagery data) is another option of determining elevation data (Mahdavi-Amiri et al., 2015 

[144]). 

 

 
Figure 2: Geospatial Data Types (Source: Nedelcu, 2015) 

 
Vector data sets (points, polylines, or polygons on the Earth) are composed of points 

connected by spherical ellipsoidal arcs and can represent region boundaries (such as nation or 

city boundaries) or geospatial networks and features (such as road and river networks or 
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residential house outlines) (Mahdavi-Amiri et al., 2015 [144]). Using rasterization, a vector can 

be represented as an ordered set of cells, where each cell corresponds to and contains one of the 

vector’s vertices/points. Generation of vector data can be accomplished with ground surveying, 

LIDAR and photogrammetry.  

3D geometric data sets model objects such as houses, office towers, bridges, cars or trees. 

These 3D models can be created using interactive modeling techniques or automatic methods, 

which can generate models based on large sets of images or LIDAR point cloud data (Otepka et 

al., 2013 [171]). An example of framework, which incorporates 3D models, is Google Earth.  

In Environmental Sciences there is data that is considered “independent” and data 

considered “dependent”. The “independent” variables are the ones being manipulated and 

selected to determine its relationship to an observed phenomenon. These are normally the input 

variables that are observed in its naturally occurring variation. The “dependent” variables are the 

observed results of the independent variables and are usually the output variables that cannot be 

directly controlled. The distinction of dependent and independent data is done by the researcher 

and by the context in which it is applied. Now considering the form of the response (dependent) 

environmental data, we can specify several types of data: continuous data (such as temperature, 

mass, distance), counts (simple – the number of plants infected by a disease, or categorical – the 

number of infected plants classified into tree species and town), proportions (such as: percent 

mortality, sex ratio), binary data (ex: alive or dead, present or absent), time to death/failure (ex. 

the time it takes juveniles to disperse out of the study area), time series (such as temperature data 

measured at fixed intervals, river discharged measured over time) and circular (ex: day of the 

year). A detailed description of all these types is done by Piegorsh and Bailer (2005) [176], and 

in (Analysis of Environmental Data [10]).  

There are also many de-facto standards for delivering environmental data such as: 

x GeoTIFF ([82]) – a TIFF (Tagged Image File Format) based interchange format for 

georeferenced raster imagery. 160 different remote sensing, Geographic Information 

System (GIS), cartographic, and surveying related companies and organizations have 

contributed to establish this format.  This format supports a variety of compressions and 

tiling options, supports many numeric data representations, it is widely supported by GIS 

and it is the standard format for OGC Web Coverage Services output. As a negative side, 

this standard is voluminous and relative new.   
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x HDF (Hierarchical Data Format [105]) – technology and data format addressing 

problems on how to organize, store, discover, access, analyze, share, and preserve data in 

the face of enormous growth in size and complexity. It was developed to facilitate access 

to scientific data by the National Center for Supercomputing Applications (NCSA), and 

it’s used in many fields, including Environmental Sciences. HDF-EOS (Hierarchical 

Data Format – Earth Observing System [106]) – the standard data format for all NASA 

Earth Observing System data products. Basically HDF-EOS datasets are HDF objects 

(images, tables, text, data arrays, etc.) with the added feature of being able to support 

geolocation information. There are two HDF formats and both HDF4 (or just HDF) and 

HDF5 have standard software interfaces available, they are widely used in modeling and 

remote sensing communities and the data model is general and flexible. The main 

drawback is that they require installation and use of the HDF4 and HDF5 libraries 

respectively. HDF and HDF5 are completely different and not compatible.  

x NetCDF (Network Common Data Form [164]) – set of software libraries and self-

describing, machine-independent data formats that support the creation, access, and 

sharing of array-oriented scientific data. This format also has a standard software 

interface and a wide range of tools available for manipulation and visualization. The data 

model is also general and flexible and it’s used extensively in the atmospheric science 

research community. It also requires the installation of netCDF libraries.  

x NetCDF-4 (Network Common Data Form, version 4) – aim to combine the best of 

netCDF and HDF5 format with backward compatibility to netCDF. It allows new 

features such as multiple unlimited dimensions, groups and zlib compression.  

x GRIB (Gridded Binary) – designed to exchange gridded data generated by numerical 

weather prediction models. It is efficient for transmitting and archiving large volumes of 

two-dimensional meteorological and oceanographic data and widely used for storage and 

exchange of gridded data within meteorological communities. The description of data is 

encoded in tables so the use of GRIB data has to always be done with the related tables.   

x XML with initiatives such as  

o GML (Geography Markup Language) (OCG – GML [94]) – used for representing 

and storing the structure and content of geographic features. It’s an OGC (Open 

Geospatial Consortium) standard developed for addressing geographic data 
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interoperability among GIS applications. It can be used to represent spatial and 

non-spatial aspects of geographic features and it’s the only language formally 

recognized as a standard for geospatial data exchange. It can capture feature 

characteristics such as: topology, routing, units, and measurements and can model 

feature attributes and geometries. The GML is mostly used in the WFS as a way 

to send geographical features between servers and clients. This language can be 

seen as a grammar, able to define concrete features through GML Application 

Schemas, as the GML core schema does not contain definition of features. The 

GML is mostly used and generated by software answering a specific request and 

then receiving the result as a GML dataset. The information stored in a GML file 

can be easily shared with other information as it is based on available XML 

technologies and for developing a specific data model, specialized/specific 

applications could reuse, extend and/or refine GML component in an application 

schema.  The Keyhole Markup Language (KML) has as main focus the data 

visualization. The difference between KML and GML is that the latest is not used 

only for data visualization but serves also as a modeling language as well as an 

open and interoperable exchange format over the Internet (Giuliani, 2011b [85]). 

o CSML (Climate Science Modeling Language) – GML application schema 

attempting to encapsulate important semantics of climate science data.  

o ESML (Earth Science Markup Language) – XML and API aiming to improve 

interoperability by defining a formal mechanism to describe scientific data 

formats. It is not a data exchange format itself.  

o NcML (NetCDF Markup Language) – XML representation of netCDF metadata.  

o EML (Ecological Metadata Language) – metadata specification used in ecology 

to document ecological data. 

2.1.3. Metadata 

Metadata is a structured, encoded data, used to describe the characteristics 

(documentation) of associated data for better identification, discovery, assessment and 

management. In other words, metadata is data about data. Given the dynamic nature of 

geospatial data, metadata are an essential component in supporting the discovery, evaluation, and 
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application of geospatial data beyond the originating source (organization) (Nebert, 2005 [161]). 

Metadata standards increase the value of data by facilitating data sharing through time and space. 

An example of metadata is a map legend, which contains information about the publisher of the 

map, the publication date, the type of map, a description of the map, spatial references, the map’s 

scale and its accuracy, etc. The Metadata usually answers to the What, Who, Where, Why, When 

and How questions of the data (Nebert, 2005 [161]). 

Data worth preserving should be preserved with the associated metadata that describes 

that data, including details about provenance and quality and should also be catalogued correctly 

so it can be found and used (Lu et al., 2015 [140]). 

Geographical metadata is typically an expression of the coverage (spatial) area of a 

particular dataset. Most of the time this will be a (minimal) bounding box but it may also be a 

shape of arbitrary complexity (Reid et al., 2012 [186]). The discovery of geospatial data is 

usually done through metadata catalogs that one can operate to search and brows for specific 

items of interest. Metadata are typically made available both for human consumption, in HTML 

form, and as machine-readable form, often as ISO XML for compliance with international 

obligations (Reid et al., 2012 [186]).  

The OGC - Catalog Service (CS) (Nebert et al., 2007 [162]) specification is the de facto 

standard for discovering information about geospatial data and services in a standards compliant 

fashion. It defines a standard method for defining, querying and organizing stores of geospatial 

metadata.  

2.1.4. Open Data 

Open data is data that can be freely used, re-used and redistributed by anyone, subject 

only, at most, to give the credit of the owner and possibly to share it in the same way 

(http://opendatahandbook.org). The first attributes of open data are the access and availability. 

This means that open data must be freely available (or at most it should have a reasonable 

reproduction cost) in a modifiable and convenient form. The property of re-use and redistribution 

of open data implies that the data must be provided under certain terms that would allow such 

activities as well as the mixing of this data with other datasets. Finally, open data must allow 

universal participation, without restriction on who can use it (even commercial use should be 

allowed). 

http://opendatahandbook.org/
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McKee (2010) [148] gives 18 powerful reasons for open publication of Geoscience data, 

such as: data transparency, verifiability, useful unification of observation, cross-disciplinary 

studies, longitudinal studies, re-use, planning, return on investment, due diligence, value 

maximization, data discoverability, data exploration, data fusion, service chaining, pace of 

science, citizen science and outreach, forward compatibility, and timely intervention.  

Open data is about how to unlock the potential of information to enable new services, 

new value, and to improve the decision making process for a better sustainable development. The 

European Commission supports Open Data initiatives to freely make available public data for 

use and reuse. Although the open data movement has begun, effective open data policies and 

practice depend on open interfaces and encoding standards, able to provide efficient publishing, 

discovery, assessment, access and use of data (Lu et al., 2015 [140]). 

A brilliant example of open data initiatives was the free and open access policy of 

Landsat data, which showed how to maximize the return on the large investments in satellite 

missions (Wulder et al., 2012 [244]). The huge benefits of similar Open Data initiatives was 

emphasized also by Barbara Ryan, the Secretariat Director, Group of Earth Observation (GEO 

[81]) by pointing out the economic benefits brought back by these initiatives: “The economic 

value of geospatial data lies in its utility” (Ryan, 2016 [204]). 

2.1.5. Linked Data 

Linked Data refers to a set of best practices used for publishing and connecting structured 

data on the Web in such a way that it is machine readable, its meaning is explicitly defined, it is 

linked to other external datasets, and other datasets can in turn be linked to it (Grothe and 

Brentjens, 2013 [98]). Linked data is also advocated in INSPIRE (INSPIRE, 2007 [111]) and 

uses web technologies such as RDF (Resource Description Framework) (RDF [184]) and HTTP. 

It aims to explicitly include relations between data in the data itself through Uniform Resource 

Identifiers (URIs) and vocabularies. 

Linked Data is less a technology than a set of best practices for publishing, sharing and 

connecting data and information.   
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2.1.6. Data Interoperability 

Interoperability is defined as the ability of two or more systems (organizations) to inter-

operate (work together) without additional changes. In the case of data, the interoperability refers 

to the ability of data to intermix (interoperate) with other different datasets. This is an extremely 

important quality of the data because it allows different components to work together and to 

build large, complex systems, otherwise not possible without interoperability.  

The practical benefits of open data, able to combine different datasets together and to 

develop new and better products and services are strongly emphasized through interoperability. 

Communication, large-scale data collection and processing also depend on the ability of data to 

interoperate through standard-based mechanisms and encodings (Lu et al., 2015 [140]).   

2.1.7. Big Data in Environmental Sciences – Big Geo Data 

Even though over the past years several definitions of Big Data have been proposed, 

there is no agreed definition yet (Granell et al., 2016 [95]). Big Data are usually defined not just 

as massive data sets but also as data having very complex and varied structures, making further 

actions (e.g., storage, analysis, visualization, processing) very difficult. New satellite, airborne 

and ground-based remote sensing systems characterized by high spatial, temporal and 

radiometric resolution are, or will be soon, available. New sources of geospatial data are 

emerging with the advances of sensors and communication technologies. Traffic detectors on the 

road, electrical grids or environmental sensors for measuring the air quality, mobile devices such 

as smartphones, crowdsourcing, are just a few examples (Nedelcu, 2015 [163]). With the launch 

of three families of Sentinels satellites, Copernicus will be producing for example, 8 TB of Earth 

Observation data per day (3000 TB per year) (Copernicus Big Data Workshop, 2014 [47]), 

which will lead to an increase of data volume, diversity and also value. Data from Landsat 

satellites provides the longest continuous record as seen from space of the Earth’s surface, 

starting with the launch of Landsat 1 in 1972 through Landsat 8 in March 2013 (Santos et al., 

2014 [206], Landsat News, 2014 [129]). Landsat 9 is planned to be launched in 2023, 

maintaining this incredible continuous stream of data. Data is growing at an unprecedented rate, 

at least by 20% every year (Lee and Kang, 2015 [133]), becoming not only bigger in volume but 

also increasingly complex, and accessible in a variety of formats. New important opportunities 

(such as the monitoring of Earth surface changes with greater frequency than ever) are 
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envisioned but also new challenges especially regarding the access, analysis, processing, and 

sharing of these data. 

Based on this, the main characteristics of Big Geo Data are gathered around the "5V" 

(Demchenko et al., 2012 [52], Nativi et al., 2015 [160], Kramer and Senner, 2015 [125]): 

x Volume – available amount of data. Geospatial data sets tend to be very large, gathering 

data from modern sensor networks, LIDAR scanners and artificial satellites, which can 

produce several GB to TB per hour (Kramer and Senner, 2015 [125]).  

x Velocity – rate of data collection. Large geospatial data streams are produced in short 

amount of time, requiring a faster data processing to get a higher derived value of 

information.    

x Variety – Geospatial data is typically heterogeneous, so this property of Big Data refers 

to the variety of sources producing it but also to the implementation of services dealing 

with these different types of data. Most of the time, data from different sources has to be 

combined and different data exchanged formats, reference systems and accuracies have to 

be considered.   

x Veracity – validity and accuracy of the data must be taken into account considering that 

data sources can be of different qualities, especially when it comes to coverage, accuracy 

and timeliness. 

x Value – how meaningful the row data is and how valuable is the obtained information 

(the main purpose of Big Data is to produce meaningful Small Data). 

 

Big Data is already embedded in environmental sciences studies and it is mainly 

produced by three important sources (Yang and Huang, 2013 [250]):  

1) From the impressive array of sensors that are placed in space (via remote sensing 

satellites) and in situ, used to measure and monitor weather, precipitations, vegetation, 

land cover, water quality, as well as other geophysical parameters. These collections of 

data sets satisfy all the characteristics of Big Data (the 5 Vs).  

2) From the various scientific models simulations used for predicting physical phenomena. 

Climate change for example can be considered one of the largest use cases of scientific 

modeling and simulation. Nowadays climate simulations can be run on a daily basis with 

increasingly higher horizontal (hundreds of meters rather than tens of kilometers) and 
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vertical (more model layers in the atmosphere) spatial resolution, as well as higher 

temporal resolution (minutes or hours rather than days or weeks). The update of these 

models is done more frequently and with much higher quantities of new data. Therefore 

the amount of data coming out of these simulations is very large, reaching typically 

petabytes of data from just one simulation. Based on this we can conclude that this data 

can as well be considered Big Data.  

3) From data assimilation, the process by which models are updated with the latest 

observational data to be able to correct and validate the assumptions made in the model 

due to different factors like missing parameters, incorrect data, etc.  

 

 
Figure 3: Big Data in Environmental Sciences (Source: Lu et al., 2015) 
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The rapidly increasing number of terabytes of data, coming from an explosion of sensors, 

satellites, crowd-sourcing, models, etc. have to be made valuable by making it easily discovered, 

accessed, assessed, aggregated, combined, open and interoperable (Lu et al., 2015 [140]). 

Analysis of this Big Data can give unprecedented possibilities for better decision making 

for understanding and mitigating the effects of climate changes. Nativi et al. (2015)  [160] 

emphasize the Big Data challenges in Global Earth Observation System of Systems – GEOSS 

(GEO, 2005 [80]) – and particularly its common digital infrastructure (GEOSS Common 

Infrastructure - GCI), which will be describe in detail in the next chapter. The presented 

challenges can be identified along all the Big Data dimensionalities: volume, variety, velocity, 

veracity and visualization. 

Many new research efforts are now directed towards the development of enabling 

technologies and paradigms to support requirements for Big Data handling (Granell et al., 2016 

[95]). Specific solutions for Big Data analytics have been developed, based on mobile code, such 

as in the European Grid Infrastructure – EGI (http://www.egi.eu/), the Earth System Grid 

Federation – ESGF (https://www.earthsystemgrid.org) and middleware through optimized SQL 

extensions, such as EarthServer (http://earthserver.eu/) raster query language or through Cloud 

solutions dedicated to Earth Science, such as Google Earth Engine – GEE 

(https://earthengine.google.com/). NoSQL databases, such as Google BigTables allow working 

with unstructured data, which is a big advantage but the geospatial processing capabilities of 

these solutions are still limited compared to GIS-enabled relational databases (Yang et al., 2011, 

2013 [248], Granell et al., 2016 [95]). Brokered architecture for efficiently connecting existing 

infrastructures (Nativi et al., 2013 [159]) and providing large amount of heterogeneous resources 

such as GEOSS and GEO DAB, initiatives described in the next chapter, have also been 

developed.    

To summarize, the main challenges identified in working with geospatial Big Data 

(Copernicus Big Data Workshop, 2014 [47]): 

x Sharing Big Data, using free and open data policy which will provide easy and free 

access; 

x Big Data coming from different sources, with different archival formats, require solutions 

to increase the speed of data encoding and thus to decrease the management time; 

http://www.egi.eu/
https://www.earthsystemgrid.org/
http://earthserver.eu/
https://earthengine.google.com/
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x Big Data cannot be moved easily meaning that the analysis and processing have to move 

to the data; 

x Big Data has to be used in multi-disciplinary research implying a shared understanding of 

what data is and how it can be used. Not only the data has to be described but also the 

processes that have to be performed, using new services; 

x Big Data dissemination and processing have to consider a broader user community;  

x Big Data requires: new approaches, services and concepts as well as good technical and 

programmatic coordination; 

x Big Data requires Big processing infrastructures. 

 

In the context of these challenges, the main research directions are towards (Loekken and 

Farres, 2014 [138]): 

x Open Data – all the data should be discoverable and accessible for free; 

x Open Computing – users should have access to perform the data processing online (on 

different processing infrastructures); 

x Open Source Software – all the platforms and software used for Big Data processing 

should be open source; 

x Open Collaboration – sharing of both data and applications among users; 

 

2.2. From Environmental Data to Knowledge and Wisdom 

2.2.1. Introduction 

Understanding the Earth System, having a more up to date, clearer picture of the world, 

has become an essential condition to respond to the current global changes (climate change, land 

use change, deforestation, loss of biodiversity, pollution, urbanization, etc.) that are threatening 

the natural environment and the society at large. Understanding such a system and predicting 

future behavior is a complex and challenging mission that requires not only a sustainable Earth 

observation, through satellites, airborne platforms, sensors, etc., but also an increased 

understanding of its components, processes and their interactions.   
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The ever increasing amount of geospatial data, resources and processing functions, 

available on the Web due to the IT technologies advances, has reached tremendous proportions 

and requires effective and efficient data processing methods and tools for geospatial information 

extraction and knowledge discovery.  

Raw data was never good enough as it simply exists and has no meaning of itself. Data 

represents a fact or a statement of a phenomenon/event without relations to other things. The 

information is actually seen as the data that has already been processed, organized data, or data 

that has been given meaning while knowledge goes beyond that and uses the information (the 

meaningful data) to describe a deterministic process, extracting useful patterns (Bellinger, 2014 

[26]). But is knowledge enough or do we need something more? Besides having the data, 

extracting what is useful out of it (information) and having the knowledge to apply the 

information in a useful manner (actionable information), people also need a vision, a way to 

synthesize new knowledge from what is already known and this is what we call wisdom. 

 

 
Figure 4: A Data-Information-Knowledge-Wisdom (DIKW) view 
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According to (Bellinger, 2014 [26]), “wisdom embodies more of an understanding of 

fundamental principles embodied within the knowledge that are essentially the basis for the 

knowledge being what it is”. Russell Ackoff (Ackoff, 1989 [4]) is known as the father of the 

DIKW (Data Information Knowledge Wisdom) hierarchy end explained the elements of its 

layers and their interconnections. An interpreted view of this pyramid is illustrated in Figure 4. 

The question that everybody should try to answer, not only in Environmental Sciences 

field, but in general, is “How can we more effectively get what we want?” but nowadays 

everybody is focusing on answering the question of “How can we more efficiently get what we 

want?” The distinction that one has to make here is in the difference between effective and 

efficient. According to (Ackoff, 1989 [4]), being effective is about doing the right things while 

being efficient is about doing the things right. Wisdom is concern with effectiveness but 

achieving wisdom isn’t easy and one must move successively through the other categories to 

reach this level. Considering the tremendous amount of available data nowadays, and the 

percentage of geospatial data out of that, we need efficient methods to be able to get effective 

results.   

2.2.2. Data Discovery and Access  

Discovery of geospatial data involves the use of services such as metadata catalogs to 

find data of interest over a specific geographic region (Nebert, 2005 [161]). Geospatial data 

catalogs are discovery and access systems, which usually use metadata to query on raster, vector, 

and tabular geospatial information. They offer a way to publish descriptions of geospatial data in 

a standard way. Indexed and searchable metadata are therefore extremely important and provide 

dedicated vocabulary that can be further used in intelligent geospatial search (Nebert, 2005 

[161]). Once the data is discovered, the access process involves the request, the packaging and 

the delivery of the specified data, either online or offline.  

Access to geospatial data is part of a process that goes from discovery to evaluation, to 

access and finally to exploitation. Effective access and reuse of geospatial data by users and 

applications is strongly related to multi-source data integration and interoperability (Mohammadi 

et al., 2008 [152]). Many spatial applications and services model and analyze parts of the 

environment that require multi-source spatial data, managed by different institutions and ranging 

from fundamental datasets (such as cadastre, topography, vegetation, roads and imagery to 
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location data) to socio-economic and infrastructure data (such as demography, valuation, public 

transport and utilities) (Mohammadi et al., 2008 [152]). Different organizations use different 

strategies and policies to capture, manage and share their data, leading to many technical issues 

(inconsistent standards, semantic heterogeneity, poor metadata or no metadata at all, 

inconsistency in data models, etc.) and nontechnical inconsistencies (inconsistency of 

institutional arrangements and policies, lack of regulation, different understanding and 

knowledge, capacity building, etc.) and heterogeneity among datasets.  

The integration and interoperability of geospatial data is a complex process and can only 

be addressed within a well-structured and holistic platform, able to all effective components and 

issues of geospatial data integration together (Mohammadi et al., 2008 [152]).  This platform will 

facilitate the usage of geospatial data from different sources, within an acceptable time and cost, 

through the fastest channels. It will also establish interoperability both at technical and 

nontechnical levels and it will establish effective interactions between different components, 

including policies, standards, collaboration and access. A Spatial Data Infrastructure (discussed 

in details in the next section) is a step forward to developing such a platform.  

Geo-Web Services (GWS) (Nebert, 2005 [161], Mohammadi et al., 2008 [152]) are 

significant technical tools, developed based on open standards, which facilitate the integration of 

multi-sourced datasets but also assess the integrability of these dataset. These services provide 

tools, services and formats, which comply with interoperability concepts. The assessment of 

geospatial data through GWS can be done through accessible and comparable measures such as: 

availability of metadata, format, coordinate system, bounding box, etc.  

2.2.3. Data Processing 

Data processing services provide operations for processing or transforming data in a 

manner determined by user specified parameters. The most common processing services 

available in the Geospatial domain are (Nebert, 2005 [161]): 

x Coordinate Transformation Services – convert geospatial coordinates from one 

reference system to another.  

x Image Processing Services: 
o Image Manipulation Services – manipulate images (resize, applying various 

filters, changing image resolution, color, contrast values, etc.). These services are 
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usually used in mathematical analysis of image characteristics such as image 

histograms, convolutions, etc.  

o Image Exploitation Services – support photogrammetric analysis of remotely 

sensed and scanned imagery, plus generation of reports and other products based 

on the analysis results.  

o Image Synthesis Services – create or transform images using computer-based 

spatial models, perspective transformations, and manipulations of image 

characteristics to improve different aspects such as: visibility, sharpen resolution, 

reduce cloud cover effects, etc.  

x Geospatial Analysis Services – exploit available geospatial information to derive 

application-oriented quantitative results that are not available otherwise from raw data.   

x Gazetteers – provide access to geospatial data indexed by place name instead of 

coordinate locations.  

2.2.4. Data Visualization  

The visualization of geographic data experienced a shift during the years from physical 

maps to graphical views and maps provided through online mapping interfaces within SDIs. 

Having the data in digital form has brought a lot of advantages, such as (Giuliani, 2011a [84]): 

easy storage and dissemination, facilitation of data exchange among groups / organizations / 

communities, faster and easier updates and corrections, ability to integrate data from different 

sources, ability to customize products and services, etc.  

Visualization tools can quickly portray a large amount of information, without the need to 

download the full data set, satisfying the needs of many users. Portrayal services are used to 

visualize geospatial information by producing rendered output, given one or more inputs, in the 

form of maps, perspective views of terrain, annotated images, etc. Examples of such services 

(Nebert, 2005 [161]): 

x Map Portrayal Services; 

x Coverage Portrayal Services; 

x Mobile Presentation Services.  
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2.2.5. Data Sharing 

Users tend to develop their own data sets, specific for particular applications or use cases, 

instead of using available existing data sets, for several reasons (Nebert, 2005 [161], Giuliani, 

2011a [84]): 

x The users are not aware of the existence of available data sets that they can use (poor 

documentation, lack of standards, etc.); 

x The users are not authorized to access and/or use data. The authorization problem is of 

great interest, especially for the organizations and institutes, which are not willing to 

share their data with everyone; 

x The access to the datasets is too complex; 

x The data is not trusted (history of the data capture/changes is not available). To be able to 

make a meaningful interpretation of the obtained data, the users need to know the history 

of the data, to trust the source of the data but also to be able to integrate it with data 

coming from other sources. The last issue refers to the standardizations problems, 

meaning that at the moment not all the data is exposed following well known standards in 

this area, making thus the integration of data coming from different sources a difficult 

and complex process; 

x Users are not used to sharing data with other groups/organizations; 

x Existing geospatial data stored in GIS systems may not be easily exported to other 

systems (data cannot be easily and meaningfully integrated with data from other sources); 

x Data may be dependent on other datasets (which might not be accessible). The users need 

to know if the data they are using depend on other data and if this is the case, they need to 

have access to all the dependent data in order to be able to use the initial data. 

In an Information Age, shared data has become a resource that contributes to national 

wealth (Lu et al., 2015 [140]) and the main benefits of sharing data are:  

x Open science and new research; 

x Data reusability;  

x Data longevity; 

x Greater exposure to data; 

x Generation of value added products.  
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2.3. Personal Contributions 
x Identification of major environmental challenges related to environmental data, from an 

engineering point of view, based on literature review:   

o Metadata, Open Data, Linked Data, Data Interoperability; 

o Environmental Big Data – issues and challenges; 

o Challenges in transforming raw data into meaningful and understandable 

information. 

x Published Papers: 

o Rodila, D., Ray, N., Gorgan, D. (2015), Conceptual Model for Environmental 

Science Applications on Parallel and Distributed Infrastructures, Environmental 

System Research, Vol.  4/23, 2015, http://dx.doi.org/10.1186/s40068-015-0050-1. 

 

  

http://dx.doi.org/10.1186/s40068-015-0050-1
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Chapter 3:  Spatial Data Infrastructure 

3.1. Definition and Concepts 
The world we live today is undergoing a process of profound and continuous change, a 

world that is strongly influenced by IT and communication technologies. A better economically 

and environmentally management of spatial data could bring important benefits, starting from 

local levels, all the way up to national, regional and global levels (Rajabifard and Williamson, 

2001 [179]). The concept of Spatial Data Infrastructure (SDI) was developed as a solution to 

these needs and it is used to describe the environment, the underlying mechanisms, technologies, 

policies and institutional arrangements able to support, in an interoperable and efficient way, the 

discovery, exchange and sharing of geospatial data and information between stakeholders at 

different levels, such as government, commercial and non-profit sectors, academia and citizens 

(Nebert, 2005 [161], Giuliani, 2011a [84]).  

 SDIs are more than databases as they also provide a list of extra functionalities (Nebert, 

2005 [161]):  

x Hosting of geographic data and their attributes (metadata); 

x Means to discover, visualize, and evaluate the data (catalogs and Web mappings);  

x Methods to provide access to geographic data; 

x Services and software to support applications of data; 

x Organizational agreements – to coordinate and administrate an SDI at local, regional, 

national and/or trans-national scale; 

x Ideal environment to connect applications to data (through standards and policies).  

 

To explore the full potential of geospatial data, an SDI must incorporate a set of 

components, which will allow users to find, discover, evaluate, access and use data. These 

components include (Giuliani, 2011a [84]): 

x A defined core of geospatial data; 

x Known and accepted standards and procedures; 

x Databases to store data and associated metadata; 

x Policies and practices to promote the exchange and reuse of information; 
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x Humans (both users and data providers) and technical resources to collect, maintain, 

manipulate and distribute geospatial data; 

x Good communication channels between people/organizations to allow shared knowledge 

and new partnerships; 

x Data dissemination procedures and supporting technologies; 

x Institutional arrangements to collaborate, cooperate and coordinate actions. 

 

The essential components of an SDI and their relations and the dynamic nature of such an 

environment, as presented in literature (Rajabifard and Williamson, 2001 [179], Giuliani, 2011a 

[84]) are illustrated in Figure 5. The main five components are: data, people, access network, 

policy, and standards. People are the key component to decision making, which is entirely based 

on data. The interaction between people and data is facilitated through components such as 

access network (technical infrastructures), policies (agreed by institutions) and standards. The 

rapid technological evolution make an SDI a dynamic environment in which all the components 

have to permanently adapt to provide improved or even new functionalities in the process of 

sharing and exchanging geospatial data.  

 
Figure 5: SDI Components: Nature and Relations (adapted from Rajabifard and Williamson, 2001) 

 
The overall objective of an SDI is to maximize the reuse not only of geospatial data and 

information but also of technical capabilities, skills, invested effort and capital. All these are 
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done through coordination and a wide range of activities, which involve data, standards, 

interoperability, delivery mechanism, institutional agreements, policies, financial and human 

resources. The goal is to avoid duplication efforts and costs and to enable users to save resources, 

time and effort on acquiring and maintaining datasets (Rajabifard and Williamson, 2001 [179]). 

The goals and objectives of SDIs come as a support for sustainable development, economic 

development, environmental management and social stability.   

The concept of SDI was developed to facilitate and coordinate the sharing and exchange 

of geospatial data especially between the boundaries of different countries (Rajabifard and 

Williamson, 2001 [179]), a very delicate and important issue, but the vision of an SDI 

incorporates different databases, ranging from local, to national, regional and global levels, into 

an information network and creates a framework able to make efficient use of geospatial data at 

different political and institutional levels (Rajabifard and Williamson, 2004 [180]).  

There is a growing number of national and regional SDI initiatives (either developed or 

planned to develop) to encourage sharing and collaboration of geospatial data and practices. The 

national SDI in the US is mostly build up from the U.S. Federal Geographic Data Committee 

(FGDC) and the National Spatial Data Infrastructure (NSDI).  FGDC was created in 1990, 

having the goal to “promote the coordinated development, use, sharing, and dissemination of 

geographic data” (Nebert, 2005 [161]). The National SDI in Australia started from the Australia 

New Zealand Land Information Council (ANZLIC), the peak inter-governmental body for spatial 

data issues.  An example of regional collaboration is the European Umbrella Organization for 

Geographic Information (EUROGI), which was set up to foster geographic information outreach 

and capacity building at the regional level. Their main goal is to support the definition and 

implementation of a European geographic information policy and to facilitate the development of 

the European Geographic Information Infrastructure (EGII).  

A model of SDI hierarchy is propose by (Rajabifard and Williamson, 2001 [179]) and it 

is illustrated in Figure 6. This model is made of inter-connected SDIs developed at different 

levels (from local to global), in which a higher level is formed through the integration of 

geospatial datasets developed and made available at lower levels. This hierarchical model allows 

decision makers to create dynamic and hierarchical relationships between any geographical 

levels and to uses this data for better informed decisions with an important impact across 

national boundaries.  
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Figure 6: SDI Hierarchy (Source: Rajabifard and Williamson, 2001) 

 
In literature (Rajabifard and Williamson, 2001 [179], Giuliani, 2011a [84]) there are two 

views of this hierarchy: 

x An umbrella view, in which the SDI at the higher level gathers all the components of 

SDIs at lower levels;  

x Building bock view, in which any level of SDI is a building block supporting the 

provision of spatial data at a higher level.  

 

There are a number of obstacles and issues that can slow down the development and the 

efficient use of an SDI (Nebert, 2005 [161], Adams and Gahegan, 2014 [5]):  

x Lack of standardized metadata;  

x Poor data documentation;  

x Lack of institutional co-ordination;  

x Insufficient flow of information; 

x Duplication of activities and results;  

x Overlapping of initiatives; 

x Poor resource management; 
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x Poor qualification of the technical qualifications;  

x Integration of new, highly heterogeneous data sources (local sensor networks and crowd-

sourcing). 

 

As discussed before, the rapid technological evolution make an SDI a dynamic 

environment in which all the components have to permanently adapt to provide improved or 

even new functionalities in the process of sharing and exchanging geospatial data. One of the 

changes that next-generation SDIs have to keep up with is the incorporation of data from highly 

heterogeneous non-traditional sources, such as local sensor networks and crowd-sourced 

message databases (Adams and Gahegan, 2014 [5]). These data can come in many forms, can be 

generated by a variety of producers, using different processes, they can be originally intended for 

different purposes, they might have variable, loosely defined, and sometimes unknown 

provenance, semantics, quality and context. Even though these data are not produced by 

authoritative agencies, they can represent better coverage of specific geographical phenomena 

and be more accurate due to their distributed methods of generation (Coleman et al., 2009 [44]).  

A next generation SDI will have to consider some important aspects (Adams and 

Gahegan, 2014 [5]): 

x Locate, access and understand the limitations of each used dataset; 

x Transform the used datasets into a consistent form (model) by: re-projecting, converting 

from raster to vector or harmonizing the semantics; 

x Combine the datasets using a dedicated analytical workflow;  

x Assess the accuracy and reliability of the results (and even publish them back into the 

SDI). 

 

Possible next generation SDI architecture, able to harmonize heterogeneous data sources, 

is presented by Adams and Gahegan (2014) [5] (Figure 7). In this case, the SDI acts as a 

mediator that harmonizes data generated from heterogeneous sources. At the center of this 

architecture, there are three layers of functionality: 

x Federation and Analysis Layer – at this level, all supported datasets are descriptively 

rich, interoperable and can be readily combined to perform different analysis. 
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x Mediation Services Layer – composed of software services to transform (harmonize) 

geospatial data sources, using supported conceptual models. 

x Knowledge Representation Kernel – used to describe and create rich descriptions of 

geospatial knowledge, the conceptual models of geospatial information (which passes 

through various exchange formats and analysis methods) and their semantics. 

    

 
Figure 7: Next Generation SDI Architecture to Harmonize Heterogeneous Data Sources (Source: 

Adams and Gahegan, 2014) 

 

SDI efforts around the world are motivated by the idea that shared data is an integral part 

of infrastructure and a resource that contributes to the national wealth in this Information Age we 

live (Lu et al., 2015 [140]).  

Although the SDIs have a lot of important benefits for the Geospatial community, one 

important drawback is the lack of analytic capabilities, which is an essential step needed to turn 

raw data into understandable and meaningful information. This means that the SDIs are not 
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capable of processing geospatial data and usually this is done on desktop computers which have 

limited resources and which are not capable of handling such a vast amount of data, process that 

requires a large number of both storing and processing resources for obtaining an acceptable 

execution time (Giuliani, 2011b [85]). 

3.2. Standards 
The interoperability is a highly important goal to achieve in the Geospatial domain. For 

this reason there are several organizations involved in publishing standards to effectively achieve 

the goal of interoperability, heading to a “geo-enable” Web (Giuliani, 2011b [85]). Due to the 

incompatibility of data problems, which are making the interoperability between systems hard to 

achieve, the need for standard services capable to provide the stakeholders the information in a 

standard, easy and effective way, has become more demanding. The use of common conventions 

and technical agreements gives the possibility to local communities, nations and regional 

decision-makers to easily discover, exploit, and share information but it also helps to limit the 

cost of data integration from various sources and to eliminate the need to develop dedicated tools 

for data conversion (Nebert, 2005 [161]).  

The main drawback in developing “open standards and protocols” is that it is time-

consuming and requires long-term support (Taylor et al., 2004 [224]). Usually this is not done 

unless a large corporation or sometimes a government agency supports it. According to Taylor et 

al. (2004) [224], a standard is declared only when two independently developed, interoperating 

implementations, based on that standard, exists.  

Standards and the consensus standards process are powerful agents for positive 

change.  Standards are developed and evolve to meet market needs as those needs are perceived 

by the standards' developers, but the standards probably only survive if those perceptions match 

the actual reality and evolving needs of the market (McKee, 2010 [148]). 

Open Geospatial Consortium (OGC [167]) and the International Organization for 

Standardization (ISO [113]) provide a range of standards for a Web service architecture that can 

handle spatial data in a specific way. Using these standards, the SDIs can be linked to form a 

network, providing thus more access to geospatial datasets (Kruger and Kolbe, 2008 [127]). A 

major role in supporting and promoting these standards is played by the INSPIRE (INSPIRE, 

2007 [111]), involved in building the framework necessary for sharing the geospatial data among 
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communities, organizations and even worldwide (Padberg and Greve, 2009 [172]). The 

implementation of OGC specifications is a step forward into the process of sharing and making 

the spatial information accessible to different communities (Rodila and Gorgan, 2010 [195]) but 

also a step forward in achieving an interoperable environment. 

3.2.1. Open Geospatial Consortium (OGC) 

The Open Geospatial Consortium (OGC) (OGC [167]) is a non-profit, international 

consortium that is leading the development of open and publicly available standards for 

geospatial and location based services – OpenGIS Web Services (OWS) as well as for software 

application programming interface for the geospatial community.  

In early 1990s, each GIS vendor had their own formats for publishing and exchanging 

their GIS data so a strong market requirement for a standard way of exchanging GIS data content 

was clearly needed and this was the start idea of the OGC (Reed et al., 2015 [185]).  

The OGC standards are mostly based upon the HTTP protocol and interact through 

messages over the Internet but new trends also consider including the usage of SOAP (Simple 

Access Object Protocol) protocol and WSDL (Web Service Description Language) due to the 

large number of incompatibilities with standard Web services. These standards offer thus 

possibility to create complex geospatial services and applications, accessible to a wide variety of 

users and share data in a standardized and interoperable way. This consortium was developed 

with the purpose of sharing geospatial data and services among different geospatial processing 

platforms.  

The main direction in the development of SDIs components focuses on the exchange of 

geospatial data in an interoperable way, using services capable to allow efficient access to 

spatially referenced data. The concept of Web services has been defined by Comet in (Comet, 

2004 [45]) as a “new paradigm” in which different providers offer some services, for certain 

users, allowing an easy access to distributed data and underlying the necessity of two systems to 

communicate with each other in an easy and cost effective way. A traditional Web service is able 

to describe and expose the functionalities it offers, providing a standard way for communicating 

with it and offering thus possibility to other services and application to interoperate with it.  In a 

similar way, through OGC standards, different Geographic Information System (GIS) 

applications can work together, exchange information over a network and interoperate. 
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Accessing and integrating geospatial data from different data sources is a challenging task or 

even impossible without interoperability and standardization, limiting organizations to work with 

specific software packages and fragmenting the geospatial data sources (Giuliani, 2011b [85]). 

The main goals of OGC are (OGC [167]): 1) provide free and open standards to the 

market, 2) lead the creation and establishment of standards that allow geospatial content and 

services to be easily integrated into different processes, 3) facilitate the adoption of open, 

spatially enabled reference architectures, 4) support the formation of new and innovative 

applications for geospatial technologies through advanced standards, and 5) accelerate market 

assimilation of interoperability research through collaborative processes.   

3.2.2. International Organization for Standardization (ISO) 

The International Organization for Standardization (ISO [113]) is an independent, non-

governmental international organization, with 161 national standards bodies, responsible for 

developing relevant International Standards, supporting innovation and providing solutions to 

global challenges.  

 Most of the existing standards already have a great deal in common with each other and 

the ISO standard has accommodated most of the various international requirements (Nebert, 

2005 [161]). ISO international Standards cover almost every industry and have an impact 

everywhere and to everyone (ISO [113]).  

ISO has a Technical Committee, TC 211, dedicated to the standardization of abstract 

concepts related to geospatial data, services, and the geomatics field in general (Nebert, 2005 

[161]). These standards may specify methods, tools and services for data management, acquiring, 

processing, analyzing, accessing, presenting and transferring data in digital/electronic formats 

between users/systems/locations.  

ISO 19115 (ISO 19115, 2014 [114]) provides an abstract or logical model 

(comprehensive vocabulary and structure) for the organization of geospatial metadata (used to 

characterize geographic data). This standard presents the schema required for describing 

geographic information and services by means of metadata. It provides information about the 

extent, the quality, the spatial and temporal access, the content, the spatial reference, the 

portrayal, distribution and other properties of digital geographic data and properties.  

ISO 19115 defines: 
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x Mandatory and conditional metadata sections, metadata entities, and metadata elements; 

x The minimum set of metadata required to serve the full range of metadata applications 

(data discovery, determining data fitness for use, data access, data transfer, and use of 

digital data); 

x Optional metadata elements - to allow for a more extensive standard description of 

geographic data, if required. 

 

The principles of this standard can be extended to other types of resources such as: maps, 

charts, textual documents as well as non-geographic data.  

ISO 19139 (ISO 19139, 2007 [115]) standardizes the expression of 19115 metadata using 

the Extensible Markup Language (XML) and includes the logical model (UML – Unified 

Modeling Language) derived from ISO 19115. The development of national and discipline-

oriented profiles of ISO 19139 will facilitate the exchange of information using common 

semantics and syntax (Nebert, 2005 [161]).   

3.2.3. World Wide Web Consortium (W3C) 

The World Wide Web Consortium (W3C [233]) is an international consortium 

responsible for the development of common protocols and specifications to support the evolution 

of the World Wide Web. Since 1994, W3C published more than 110 Recommendations aiming 

to discover the full potential of the World Wide Web by developing protocols and guidelines to 

ensure long-term growth (Giuliani, 2011a [84]). The web interoperability is essential for W3C, 

as this will allow the usage of compatible technologies. In the field of spatial data access, W3C 

woks on the Web graphic file formats, XML and metadata (Nebert, 2005 [161]).  

3.3. Tools and Services 

3.3.1. Geographic Information System (GIS) 

A Geographic Information System (GIS) is a tool capable to integrate data coming from 

different research fields such as: space science, survey and mapping science, geography, 

information science, computer science, environmental sciences and management science (Xiao et 

al., 2001 [246], Ondieki and Murimi, 2004 [168]). GIS is a computer system capable of 
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assembling, storing, manipulating, and displaying geographically referenced information from 

different sources, offering therefore new possibilities to reuse existing data (Giuliani, 2011a 

[84]).  GIS is therefore a new effective technical system (in complex processing and analysis of 

spatial data), capable not only of managing data, text information and graphs, but also of 

integrating and analyzing spatial data from different sources, with different formats, structures, 

projections and resolution levels.      

GIS technologies have evolved from a traditional model of stand-alone systems, having 

the spatial data tightly coupled with the systems used to create them, to an increasingly 

distributed model based on specialized, interoperable and independent GIS services. This 

evolution was influenced by factors such as (Nebert, 2005 [161]): 

x A growing role of GIS in organizations;  

x An increasing availability of spatial data;  

x Growing benefits of spatial data sharing and reuse; 

x Maturity of Web and distributed computing technologies; 

x Different functionalities needs of GIS users; 

x Less costs and complexity to install and pay for unused functionalities;   

x Flexibility to offer specialized services.   

3.3.2. Geospatial Services (OGC Web Services - OWS) 

The OGC Web service (OWS) technology was proposed to overcome the issues caused 

by the lack of interoperability between geospatial data and the processing systems. The OGC 

Web services are developed as a set of technologies, standards and interface protocols that allow 

sharing of geospatial resources in a distributed environment. The OGC Web services process 

data on demand based on users’ requirements and returns the data under different formats, also 

specified by the users. The retrieved data will match the specified requirements both from 

content and structure point of view (Di, 2004 [54], Werder and Kruger, 2009 [239], Rodila and 

Gorgan, 2010 [195]). 

3.3.2.1. Catalogue Service for the Web (CWS) 

The Catalogue Service (CS-W) (OGC – CSW [49]) provides interface standards to 

publish, discover, search and query metadata about geospatial data, services or related resources. 
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CSW uses queryable properties, enabling clients to search for geospatial resources by different 

attributes such as: subject, title, abstract, data format, data type, geographic extent, coordinate 

reference system, originator, publisher, purpose etc. (Lee and Percivall, 2008 [132], Giuliani, 

2011b [85]). 

3.3.2.2. Web Map Service (WMS) 

The Web Map Service – WMS (OGC – WMS [242]) provides interface standards to 

retrieve spatially referenced data dynamically from geographic information. It standardizes the 

display of information that comes simultaneously from multiple remote and heterogeneous 

sources (Lee and Percivall, 2008 [132]). In this context, a map means a graphical representation 

(JPEG, GIF or PNG files) of a geospatial data meaning that the service gives access only to the 

graphical representation of the geospatial data and not to the actual data. The WMS service is 

used for mapping purposes and can be combined with other WMS services. A request to a WMS 

services should contain the geographic layers and the area upon which the layer are applied - the 

area to be processed. The response to such a request will contain one or more map images. 

3.3.2.3. Web Feature Service (WFS) 

The Feature Service (WFS) (OGC – WFS [241]) provides a standardized way for 

accessing raw geographic data over the Web. It provides control over how to actually access the 

data: the data can be downloaded, analyzed, combined with other data from other Web services, 

etc. and not just visualized as in the case of WMS. The WSF is normally specified to access 

vector datasets consisting of features of geospatial data, encoded in Geography Markup 

Language (GML) (Rodila et al., 2010 [196]). There are both differences and similarities between 

WFS and WMS. The main difference is that WFS gives direct access to the geometry and the 

attributes of a selected geospatial data. Using the WFS, the user can work directly with a 

provided dataset. The main similarity between WFS and WMS is the invocation part. A WFS 

interface is invoked by a URL and it is able to perform a certain number of operations through 

which the client can manipulate the data. Based on these types of operations, there are two 

classes of WFS services (Giuliani, 2011b [85]): 

x Basic WFS, through which a client can retrieve and/or query features; 
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x Transactional WFS, through which a client can create, delete or update a feature. A 

transaction refers to one or more operations of data manipulation that form a logical unit. 

3.3.2.4. Web Coverage Service (WCS) 

The Web Coverage Service (WCS) (OGC – WCS [240]) provides standards for accessing 

raster datasets. In this case, raster data refers to an abstraction of the real world where spatial 

data is expressed as a matrix of cells or pixels, each such cell containing a value. This service is 

specified thus to describe and provide multidimensional coverage data. It standardizes the access 

to spatially extended coverages, usually encoded in a binary format and offered by a server (Lee 

and Percivall, 2008 [132]). It only gives access to different type of gridded data (such as Digital 

Elevation Model (DEM), remote sensing imagery, etc.) but does not provide transactional 

capabilities. 

3.3.2.5. Web Processing Service (WPS) 

The Web Processing Service (WPS) (OCG – WPS [243]) provides standards for 

processing and calculations of geospatial data. It can expose GIS functionalities in a standard 

way over the Internet, having support for SOAP, GET and POST communication (Rodila et al., 

2010 [196]). It was created and specified in 2007 having as purpose the distribution of geo-

processing functionality among the Web by sharing processes in an OGC-compliant way. In this 

context, the process refers to either a single processing task or to several tasks encapsulated 

inside a process (Padberg and Greve, 2009 [172]). This service is the only service able to store 

intermediate results at an external resource and use it as input data in a later service call (Rodila 

and Gorgan, 2010 [195]). 

The WFS and WCS standards are focusing on data accessibility: WFS allows a client to 

access vector data while WCS allows a client to retrieve raster data. Using the WPS standard we 

can extend the capabilities to processing the available data. A WPS service can offer a vast 

variety of GIS functionalities ranging from a simple calculation to complex models. This service 

acts as a sort of middleware between the client and the process that runs the calculations and 

allows users to know which processes are available, to select the required input data and their 

formats, to create a model and run it, to manage processes (status, storage for the output, etc.) 

and to return the output once the computation is completed (Giuliani, 2011b [85]). 



- 82 - 
 

3.3.2.6. Table Joining Service (TJS) 

The Table Joining Service (TJS) (OGC-TJS [225], Grothe and Brentjens, 2013 [98]) is an 

OGC standard (since November 2010) used to describe and exchange tabular data that contains 

information about geographic objects. TJS offers a standardized web service interface, which can 

automatically join tabular data (e.g. statistical data) to geographic data (such as administrative 

boundaries, postal codes, and statistical units) by distributed access (Figure 8) (Grothe and 

Brentjens, 2013 [98]).  

In addition to the specific OGC standards operation (GetCapabilities), TJS also specifies 

two distinct set of operation for data access and data joining: 

x DescribeFramework – allows a client to obtain a list of spatial frameworks for which 

geo-tabular data is available from the server. 

x DescribeDatasets – allows a client to obtain general descriptions of the attribute data 

tables that are available from the server. 

x DescribeData – allows a client to obtain a list describing the specific data contents of the 

attribute data tables (i.e. the attributes) that are available from the server. 

x GetData – obtains a specific set of geo-tabular data. 

x DescribeJoinAbilities – gets the list of spatial frameworks to which the server can join 

geo-tabular data, and the forms of output products supported. 

x DescribeKey – obtains a list of geographic identifiers for a spatial framework supported 

by the server. 

x JoinData – requests the joining of a specified geo-tabular dataset to its spatial framework 

and receives references to the products of that join.      

 

TJS encodes spatial framework data and attribute data in the GDAS (Geographic Data 

Attribute Set) format. This is an XML format defined in the TJS specification and optimized for 

joining data using TJS and it is mainly used for attribute data (Grothe and Brentjens, 2013 [98]). 

The attribute data is in most of the cases stored or exchanged in formats like CSV (Comma 

Separated Values), spreadsheets or XML and the data access service is responsible for 

transforming the data from these formats to GDAS. For geographic formats, relevant data 

formats could be: spatially enabled databases (PostGIS, Oracle spatial, ArcSDE), ESRi 

shapefiles, GML, etc.  
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TJS can be considered a supporting concept in SDIs for joining data coming from various 

distributed sources to view and download datasets. TJS is an open standard that increases 

interoperability, it is simple and powerful, can be used in service-oriented architectures, it uses 

the power of distributed computing and it offers an easy way to find data through registries 

(Grothe and Brentjens, 2013 [98]). This standard is still in its beginnings and some users 

consider it as just another service specification and another specific format for encoding data but 

implementations and successful stories of this standard might prove them wrong. Currently, there 

are only a few TJS implementations up-and-running (publicly available) but it’s believed that the 

adoption of TJS will have an impact on the organizations and on its service infrastructure 

(Grothe and Brentjens, 2013 [98]) as it has the potential to replace the “manual” data joining 

operation in the daily practice of data management for thematic mapping and spatial statistics. 

 

 
Figure 8: TJS - Joining Tabular and Geographic Data (Source: Grothe and Brentjens, 2013) 
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3.3.3. Geospatial Databases 

3.3.3.1. PostgreSQL/PostGIS 

PostgreSQL (http://www.postgresql.org/) is an open source relational database 

management system (RDBMS) providing functionality to store data and their relations in the 

form of tables. PostgreSQL itself cannot store geographical information and therefore the 

installation of a middleware to add support for geographic objects into the database (geo-enabled 

database) is needed. PostGIS (http://postgis.net/) is one of the software available to work in 

conjunction with PostgreSQL to add specific functions and tables for geospatial information. 

PostGIS follows the OGC Simple Features Specification for SQL.  

The main features provided by PostGIS 2+ include: 

x Geometry types for points, linestrings, polygons, multipoints, multilinestrings, 

multipolygons, and geometrycollections;  

x Spatial predicators for geometries interactions; 

x Spatial operators for geospatial measurements: area, distance, length and perimeter; 

x Spatial operators for geospatial set operations: union, difference, symmetric difference, 

buffers; 

x Spatial indexes for high speed spatial querying; 

x Processing and analytical functions for both vector and raster data; 

x Raster map algebra for fine-grained raster processing; 

x Spatial re-projection functions for both vector and raster data; 

x Support for importing/exporting ESRI shapefile vector data; 

x Support for importing raster data from many standard formats: GeoTiff, NetCDF, PNG, 

JPG;  

x Rendering and importing vector data support functions for standard textual formats such 

as KML, GML, GeoJSON, GeoHash and WKT using SQL; 

x Rendering raster data in various standard formats GeoTIFF, PNG, JPG, NetCDF, to name 

a few using SQL; 

x 3D object support, spatial index, and functions; 

x Network Topology support; 

x Limitations in supporting geospatial “big” data (Lee and Kang, 2015 [133]). 

http://www.postgresql.org/
http://postgis.net/
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3.3.3.2. Rasdaman 

Rasdaman (http://www.rasdaman.com/, http://www.rasdaman.org/, Baumann, 2009 [22], 

Baumann, 2014 [23]) is an Array Database Management System (DBMS) for big raster data 

storage that supports multi-dimensional arrays of very large sizes and therefore can handle 

inherently big satellite imaging data (Karmas et al., 2015 [118]). Conceptually, there is no size 

limitation for Rasdaman as a central DBMS of raster datasets and it offers a scalable, distributed 

environment to efficiently process very large number of concurrent client requests through a 

parallel server architecture which servers distributed datasets across the Web (Figure 9). 

 
Figure 9: Rasdaman (Source: Baumann, 2014) 

  

The extraction of data from Rasdaman is done through the execution of retrieval queries 

written in a query language defined by the OGC – WCPS (Web Coverage Processing Service) 

standard. This language allows the retrieval, filtering, processing and fast subsetting of multi-

dimensional raster coverages such as sensor, simulation, image, and statistics data. Existing 

databases exceed 100s of Terabytes and are heading to Petabytes while array queries have been 

split across more than 1000 cloud nodes.  

The main features of Rasdaman are (Baumann, 2014 [23], http://www.rasdaman.com/):  

x Flexibility – any query, any time, from 1D to 4D spatio-temporal data and beyond; 

http://www.rasdaman.com/
http://www.rasdaman.org/
http://www.rasdaman.com/
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x Scalability – individual dynamic optimization and parallelization for each query; 

x Performance – real-time access, processing, mixing and filtering of any-size spatio-

temporal data; 

x Open Standards support as issued by OGC: WMS, WCS, WCS-T, WCPS; 

x Free – available as open source, professionally managed in an open source project, under 

the OSGeo foundation; 

x Cost efficient – through intelligent, economic resource utilization and free source code. 

3.3.3.3. SpatialHadoop 

SpatialHadoop (http://spatialhadoop.cs.umn.edu/) is an open source MapReduce 

extension, designed to handle huge datasets of spatial data on Apache Hadoop. SpatialHadoop is 

designed with built-in spatial high level language, spatial data types, spatial indexes and efficient 

spatial operations.  

3.4. Interoperability  
Interoperability is defined by the Open Geospatial Consortium (2004) [167] as “the 

ability of a system or a product to work with other systems or products without special effort on 

the part of the customer”. In other words, the interoperability is the ability of different 

information technology components, systems and software applications to communicate 

(exchange data) accurately, effectively, and consistently but also to use the exchanged 

information. People and organizations working in an interoperable environment should be able to 

exchange knowledge (or information) as well as to use the extracted knowledge (information) to 

generate new one on top of them. Both interoperability and standards have gained an important 

role in organizations and communities also due to their economic component. They offer an 

environment which support sharing of data, information and computing resources, reducing 

therefore the cost needed to spend on developing and maintaining dedicated software and 

hardware (OGC, 2004 [167]). 

The term interoperability was initially defined for information technology while referring 

to the interoperability of two systems but nowadays we can extend this term to different levels 

(Reynoso et al., 2014 [188]):  

x Technical interoperability; 

http://spatialhadoop.cs.umn.edu/
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x Semantic interoperability;  

x Organizational interoperability. 

 

Software technology-based barriers to interoperability (Matott et al., 2009 [147], Laniak 

et al., 2013 [130]):  

x Different programming languages, compilers and development platforms; 

x Inconsistent separation of system and model components (user and model interface code, 

executable, algorithmic code, execution management code, warning and error handling, 

and statistical functionalities);  

x Different input/output file formats. 

3.5. Capacity Building 
Capacity building is an important element for adoption, acceptance and commitment to 

SDI concepts. The capacity building activities that follow the more technical elements of 

building an SDI are considerable challenging because they depend on the willingness of people 

from different organizations and institutions to co-operate.  

An important barrier to change is related to the community’s capacity to adapt to new 

standards and technologies; therefore building local capacity is a major constraint to the success 

of an SDI in many developing countries (Nebert, 2005 [161]). Long-term projects, such as the 

developing of an SDI and the built-up of a GIS implementation, require not only long term 

financing but also long term planning in the field of human resource capacity building.  

Building capacities on environmental issues can be applied to different categories: 

decision makers to make better informed decisions, scientists and technical people to better 

understand the underlying systems complexity and to general public, to better understand the 

impact of environmental, social and economic issues.  

3.6. Initiatives and Projects 
SDIs are becoming more and more used in international projects and initiatives. This is 

an important reason why different initiatives, both at the regional and global level, were already 

formed, promoting and influencing the creation of SDIs and the use of open standards (Giuliani, 

2011b [85]). The main concerns of these initiatives are related to the data access, standardization, 
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harmonization, interoperability, integration and services. They support and coordinate action for 

the implementation of common standards and effective mechanisms for development and 

availability of interoperable digital geospatial SERVICES as well as for tools and technologies to 

support the users in their purposes. These actions refer to policies, standards, data technologies, 

organizational structures, delivery mechanisms and additional resources necessary to ensure that 

the users will be able to work both at regional and global level, without affecting their final 

objectives and results (Giuliani, 2011b [85]).  

All these international initiatives come to support the development of SDIs and the 

sharing of geospatial data beyond the countries’ boundaries by promoting the development, 

implementation and adherence to common standards able to sustain data interoperability and 

better efficiency. 

3.6.1. INSPIRE 

The European Directive 2007/2/EC INfrastructure for SPatial InfoRmation in the 

European Community (INSPIRE, 2007 [111]) was launched in 2001 and approved in 2007 by 

the European Environment Agency, Eurostat and the Joint Research Center. This initiative 

defines a legislative framework to improve usability of relevant, harmonized and quality 

georeferenced spatial data to support the formulation, implementation, monitoring and evaluation 

of environmental protection policies as well as infrastructure development. It is a legal initiative 

that addresses technical standards and protocols, organization and coordination issues as well as 

data policy issues, including data access and creation and maintenance of spatial information.  

The INSPIRE directive will enable the sharing of environmental geospatial information 

among public organizations, facilitating the public access to data within Europe (EU, 2007 [67]) 

but also overcome the barriers affecting the data access and data exchange in Europe (INSPIRE, 

2007 [111]): 

x The collection of data should be done in a single place, only once, and the collected data 

should be kept in a single place such as to maximize the access efficiency of the others; 

in many cases the geospatial data is either missing and/or incomplete or IT is collected 

more than once by different organizations, case in which inconsistencies appear all the 

time; 
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x In many cases the geospatial data does not have attached metadata  (documentation, 

description) making it meaningless and with all this it is still shared among users; 

x The data collected at one level/scale should be shared at all levels/scales. This will 

consistently reduce the collecting and processing time;  

x The incompatibility of data coming from different sources is a big problem and is a result 

of incomplete data and lack of standards. This is the reason why there is an urgent need to 

develop and use common standard for sharing the geospatial data; 

x There should be promoting the infrastructures used to find available geospatial 

information but also to access and use them to meet a particular need. These 

infrastructures should be publically available and up and running; 

x Overcome the barriers for sharing the geospatial data: cultural, linguistic, institutional, 

financial and legal. 

 

 
Figure 10: Data and Information within the INSPIRE Framework (source: INSPIRE, 2007) 

 
The INSPIRE directives aims to offer data interoperability, giving the user the possibility 

to combine geospatial data and services from different sources in a consistent way without any 

additional efforts. The interoperability envisioned in INSPIRE is also presented in Figure 10. 
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According to the INSPIRE network architecture, all Member States shall develop and 

provide access to the following network services, presented also in Figure 11: 

x Registry services: allow the registration of different data services. 

x Discovery services: support the search and discovery of data sets and evaluation and use 

of geospatial data and services through their metadata properties. They provide 

functionalities for users both to manage and search catalogues for the purpose of 

discovery and evaluation. 

x View services: support actions like display, navigate, zoom in/out, pan, or overlay spatial 

data sets and display legend information and any relevant content of metadata. 

x Download services: enable copies of complete spatial data sets, or parts of such sets, to 

be downloaded and, when needed, accessed directly. 

x Transformation services: enable spatial data sets to be transformed (projection and 

harmonization) to achieve interoperability. They main function is to help other services in 

achieving compliance with the relevant INSPIRE specifications. 

x Invoke spatial data services: allow spatial data services to be invoked. They allow 

defining both the data inputs and data outputs expected by the spatial service and define a 

workflow or service chain combining multiple services. 

 
Figure 11: INSPIRE Network Architecture (INSPIRE, 2007) 
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3.6.2. Open Grid Forum (OGF) 

The Open Grid Forum (OGF) (www.ogf.org) is an open community leading the global 

standardization effort for Grid computing and dealing with the development of Grid standards as 

well as the extension of Grid community. In 2007 a memorandum of understanding has been 

signed between the OGC and OGF to support the development of specifications for the 

geospatial applications on the Grid, applications that have distributed computing needs (Padberg 

and Kiehle, 2009 [173]). The challenges derived from this integration process spread from 

technological to conceptual level due to the major differences that exists between the two 

domains. The interoperability between the Environmental/Geospatial and the Grid infrastructures 

consists in the integration of OGC Web services into the Grid environment and has to be 

achieved without altering the functionality and the standardized interface of these services while 

taking advantage in the same time of the capabilities offered by the Grid infrastructure. Solving 

the interoperability between Geospatial and Grid infrastructures would bring important benefits 

and solve important challenges in both areas and especially in EO environment, dealing with 

processing and storing large amounts of data and performing computationally intensive and 

complex calculations while achieving high performance (Rodila and Gorgan, 2010 [195], 2011 

[197]).  

3.6.3. GEO/GEOSS – GEO-DAB 

The Group on Earth Observation (GEO [81]) is a voluntary partnership of governments 

and international organizations launched in 2002 as a response to the calls for actions of the 2002 

World Summit on Sustainable development and the Group of Eight (G8). Such an international 

collaboration is extremely important for exploiting the growing potential of Earth observations to 

support decision making (Nativi et al., 2015 [160]). GEO has helped establish a cooperation 

platform among different data providers interested in sustainable development (Lu et al., 2015 

[140]). 

The Global Earth Observation System of Systems (GEOSS) is the result of coordinating 

efforts make by GEO to develop a global and flexible network of content providers, allowing 

decision makers to access a huge range of data and information (Nativi et al., 2015 [160]). 

GEOSS is composed of contributed Earth Observation systems such as systems for collecting 

http://www.ogf.org/
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primary data, systems focused on the creation and distribution of information products, etc., but 

all GEOSS systems continue to operate independently although the overall GEOSS represents 

much more than the sum of its components (GEO, 2007 [81]). The main objective of a system of 

systems is to allow users to perform functionalities that cannot be done with any single 

component (Bejar et al., 2009 [24]). This is done through a digital infrastructure (GEOSS 

Common Infrastructure - GCI), which coordinates the access to these systems, interconnects and 

harmonizes their data, applications, models and products (Nativi et al., 2015 [160]). 

 

 
Figure 12: GEOSS High-Level Architecture and GCI (Source: Nativi et al., 2015) 

 
GEOSS is a worldwide effort to build a system of systems and to connect already 

existing SDIs and EOs infrastructures. This system was not developed to create and/or store data 

but rather to work and build upon existing systems. To achieve this, the information providers 

must comply and implement a set of interoperability standards, including technical specification 

for discovering, collecting, storing, processing and analyzing geospatial data and metadata. This 

way the GEOSS interoperability is based on formal international standards, being focused on 
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interfaces and defining only how system components interfere with each other, emphasizing the 

minimum impact on affected system (Giuliani, 2011b [85]). 

GEO Discovery and Access Broker (GEO DAB) is a brokering framework in GEOSS (a 

key component of the GCI) used to handle the interoperability between systems and the 

availability of the component services and to intermediate (through an intermediary layer called 

broker) the bindings between users and providers (Figure 13), providing transparent 

functionalities for discovery, access and semantic interoperability (Nativi et al., 2015, [160]). 

The Brokering approach relaxes the requirements for a common data model and common 

exchange protocols of the participating systems by providing the necessary mediation and 

transformation functionalities in a transparent way.   

 

 
Figure 13: GEO DAB Brokering Framework (Source: www.geodab.net) 

 

3.6.4. Global Spatial Data Infrastructure (GSDI) 

The Global Spatial Data Infrastructure (GSDI) Association was set up in 2004 “to 

promote international cooperation and collaboration in support of local, national and 

international spatial data infrastructure developments that will allow nations to better address 

social, economic and environmental issues of pressing importance” (www.gsdi.org). Members of 

this organization include organization of all kinds, both from public and private sectors as well as 

non-profit organizations and academia from all over the world. The scope of the GSDI 

community is to develop and achieve the goal of a Global Spatial Data Infrastructure, relaying on 

http://www.geodab.net/
http://www.gsdi.org/
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international and open standards, policies and guidelines and interoperable standards-based 

services, systems, software and products that operate in a web-based environment .The purpose 

is to focus on communication, education, scientific research and partnership, supporting all 

societal needs for access and use of geospatial data 

The GSDI is intended to be non-competitive, collaborative, and to build on and unify 

common activities related to Geographic Information (GI) exchange and harmonization (Nebert, 

2005 [161]) and it is seen as a central component in addressing the challenges of global 

sustainable development. Without a global reference environment, with a consistent set of 

policies, standards, best practices and co-operating organizations, effective solutions addressing 

the pressing issues in the global context is not possible.  

3.6.5. Sustainable Development Goals – SDGs 

The set of Sustainable Development Goal (SDGs) (UN 2014 [228], UN-SDGs [229]) are 

an intergovernmental set of aspirational and universal global Goals, officially known as 

“Transforming our world: the 2030 Agenda for Sustainable Development”. They include 17 

goals (Figure 14), 169 targets and 159 indicators and are considered the biggest attempt in the 

history of human race to make the world a better place by ending poverty, fighting against 

climate change, combating injustice and inequality, and preserving biodiversity. 

 
Figure 14: Sustainable Development Goals (source: https://sustainabledevelopment.un.org/sdgs) 

https://sustainabledevelopment.un.org/sdgs
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The implementation of the SDGs requires, beside national statistics, national spatial data 

infrastructure (NSDI) and the provision of reliable fundamental geospatial data (Scott and 

Rajabifard, 2016 [208]), also coordinated global monitoring and modeling of many factors (Lu et 

al., 2015 [140]): social, economic and environmental, realized through the power of Earth 

Observation data and techniques together with an increasing computing and storage resource 

provision.  “Science, technology and innovation, and in particular ICT, have been identified as 

crucial to implementing the Sustainable Development Goals” were the words of the president 

Mr. Mogens Lykketoft during the 70th session of the United Nations General Assembly in 2015. 

The key question in this context is “how can geospatial information be implemented and 

integrated, at a policy level, to contribute more holistically to measuring and monitoring the 

targets and indicators of SDGs” (Scott and Rajabifard, 2016 [208]). Geospatial information and 

Earth Observations are able to provide new and consistent data sources and methodologies to 

integrate information from various sources, fill data gaps and/or improve the temporal and spatial 

resolutions of data.  

The success of SDGs also requires monitoring and evaluation procedures, standards and 

metrics to measure the progress towards the targets at local, national, regional and global level 

(Lu et al., 2015 [140]). Five priorities are emphasized by Lu et al. (2015) [140] for how scientific 

community should participate in the development of the SDGs: 

x Design diverse metrics – practical indices for tracking progress on each SDG. These 

metrics can have the roots in existing methodologies such as environmental impact 

assessment, natural asset valuation, cost-benefit analysis, and life cycle costing. For these 

metrics to be properly defined, the goals have to be measurable, comparable and 

achievable.  

x Establish monitoring mechanisms – decide which values (such as water and energy 

consumption, emissions and health impacts, etc.) have to be tracked and what systems are 

needed/able to do this (how and by whom as well). This step requires global 

collaboration between governments and scientific bodies not only to establish these 

monitoring mechanisms but also to implement them, especially in developing countries.   

x Evaluate progress – choose appropriate criteria to judge the progress towards the goals, 

based on accepted principles of good practice or governance. The evaluation of the 
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performance and implementations of SDGs should be done every 3-5 years through a 

peer-review mechanism established through the UN platform.  

x Enhance infrastructure – for a better global coverage and for better storage, analysis, 

processing and sharing of data. This can be achieved through better exploring the 

capabilities of Earth observation, ground-based monitoring and information processing. 

Geographic Information Systems (GIS) should be use to host and share data, while image 

processing, simulation and decision making tools should be used to support sustainability 

planning, management and enforcement. Capacity building is also an important aspect, 

especially in developing countries for better observing, data mining and statistics.  

x Standardize and verify data – to avoid collecting wrong or useless information. The 

cooperating authorities and agencies should agree on definitions, specifications, 

methodologies and formats to collect data and also on quality control services for data 

coming from different sources. All SDG data must be open access and released as soon as 

possible.  

 

Sustainable development will provide a tangible political “trigger” to foster and 

accelerate the development and adoption of legal, technical, geospatial and statistical standards; 

openness and exchange of data and metadata; interoperability of data and information systems; 

and integration of statistical and geospatial information (both management and exchange) (Scott 

and Rajabifard, 2016 [208]). 

3.6.6. Digital Earth  

Digital Earth (Digital Earth [56], Goodchild et al., 2012 [89], Mahdavi-Amiri et al., 2015 

[144]) is a global initiative to construct a comprehensive virtual representation of the planet. This 

initiative is a collaborative effort between Earth sciences, space sciences and information 

sciences to monitor and forecast natural and human phenomena. The International Society for 

Digital Earth (ISDE) (http://www.digitalearth-isde.org/) is a non-political, non-governmental and 

not-for-profit international organization, having as main goal the promotion of academic 

exchange, science and technology innovation, education, and international collaboration towards 

Digital Earth.  

http://www.digitalearth-isde.org/
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The vision of Digital Earth was created back in 1998 by a speech of then Vice-President 

Al Gore, who communicated a vision for the future and the way citizens would interact with 

global information resources to better comprehend the complexity of our planet and our 

interactions with it: “a multi-resolution, three-dimensional representation of the planet, into 

which we can embed vast quantities of geo-referenced data” (Gore, 1998 [90]). This initiative 

involves a national and international effort to plan and build a cooperative use, internet-based 

infrastructure to use large amounts of geo-referenced data and information resources, Earth 

science data, and cultural and historic data (Nebert, 2005 [161]). 

The creation of a digital representation of the Earth and its associated data is a complex 

and difficult task due to a series of factors such as the incredible size of geospatial data, 

differences between data sets, complexity of globe representation and visualization, etc. 

(Mahdavi-Amiri et al., 2015 [144]).  

One of the main challenges of Digital Earth is to construct the organizational structure 

able to enable citizens, industry, academia, and government interaction in developing this 

initiative. A strong public-private partnership to link industry and other non-government 

organizations with government must also be established (Nebert, 2005 [161]).  

Digital Earth can be seen as an initiative for a 3D representation of the Earth for 

integration, analysis and visualization that has emerged to facilitate solutions to data integration 

and analysis (Mahdavi-Amiri et al., 2015 [144]). In such a system, data are assigned to locations 

on the 3D Earth (approximated using either a sphere or an ellipsoid), through a variety of 

techniques. The Earth can be discretized into cells (using either latitude – longitude 

parameterization or a refined polyhedron projected to the sphere), and each such cell represent a 

particular region with a unique index (address), used for fast data access and/or hierarchical or 

adjacency queries (Mahdavi-Amiri et al., 2015 [144]). Discretization of the Earth into multi-

resolution hierarchy of indexed regular cells are known as Discrete Global Grid Systems 

(DGGSs) and represent the backbone of the Digital Earth systems.  

There are several identified technology development areas that need to support the 

development of such an initiative like Digital Earth (Nebert, 2005 [161]): 

x Computational Science:  

o high-speed computing for modelling and simulations; 

o integration and overlaying of diverse sources of geo-referenced information; 
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o interactive 3D visualization; 

o display and navigation; 

o computation of information products on demand. 

x Mass Storage – distributed active archives, with real-time access of large, multi-

resolution data sets. 

x Satellite Imagery – 1 meter to 1-kilometer resolution for the planet. 

x Broadband Networks – high-speed networks and public access nodes for transmission, 

interaction and collaboration. 

x Interoperability – using well defined standard and protocols.  

x Metadata – for automatic data documentation, discovery and preservation.     

 

The Digital Earth initiative is strongly influenced by the continued progress of national, 

regional and the global SDI initiatives as well as other geospatial data programs.  

3.6.7. EarthCube 

EarthCube (https://www.earthcube.org/, Gill et al., 2014 [83]) is a joint initiative between 

the National Science Foundation (NSF) Directorate for Geosciences (GEO) and the Division of 

Advanced Cyber Infrastructure (ACI), which began in 2011. EarthCube is an evolving and 

dynamic virtual community of more than 2500 contributors, including earth, ocean, polar, 

planetary, atmospheric, computer, and social scientists, data and information professionals.  

The goal of this initiative is to enable geoscientists to address the challenges of 

understanding and predicting a complex and evolving solid Earth, hydrosphere, atmosphere, and 

space environment systems. This goal should be achieved through the development of a common 

cyber-infrastructure for supporting collecting, accessing, analyzing, sharing and visualizing all 

forms of data and resource.   

Increased access to and use of advanced technological and computational capabilities 

should be used to obtain enhanced knowledge and understanding of, and ability to predict the 

Earth System. EarthCube supports standards for interoperability, promotes the usage of advanced 

technologies to improve and facilitate interdisciplinary research, and helps educate scientists in 

the emerging practices of digital scholarship, data and software management and open science. 

https://www.earthcube.org/
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All these activities foster a sustainable future through a better understanding of our complex and 

changing planet.  

3.6.8. Future Earth 

Future Earth (http://www.futureearth.org/) is a ten-year initiative for global sustainability 

research, launched at the Rio+20 UN conferences in 2012. This initiative proposes components 

such as: observing networks, high-performance computing, Earth-system models, theoretical 

frameworks, data-management systems, and research infrastructures, needed to track human 

dimensions and societal changes (Lu et al., 2015 [140]).   

The Future Earth research initiative will develop the knowledge for responding 

effectively to the risks and opportunities of global environmental change and for supporting 

transformation towards global sustainability.  

Future Earth aims to coordinate new, interdisciplinary approaches to research on three 

themes: Dynamic Planet, Global Sustainable Development and Transformation towards 

Sustainability. The goal of this initiative is also to provide a global platform to deliver ([75]): 
x Solution oriented research for sustainability, satisfy human needs for food, water, 

energy, and health through correlation between environmental change and development 

challenges;  

x Effective interdisciplinary collaboration – between and across natural and social 

sciences, humanities, economics, and technology development, to maximize the scientific 

output; 

x Timely information for policy makers – through knowledge generation that will 

support existing and new global and regional integrated assessment;   

x Participation – of different stakeholders – policy makers, funders, academics, business 

and industry – to co-design and co-produce research agendas and knowledge;  

x Increased capacity building – especially in developing countries, in science, technology 

and innovation. 

Members of the Governing Council of Future Earth include:  

x International Council for Science (ICSU); 

x International Social Science Council (ISSC); 

http://www.futureearth.org/
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x Belmont Forum of funding agencies; 

x United Nations Educational, Scientific, and Cultural Organization (UNESCO); 

x United Nations Environmental Program (UNEP); 

x United Nations University (UNU); 

x World Meteorological Organization (WMO).  

3.7. Personal Contributions 
x Heuristic approach on the technical details of SDI components: 

o Standards implementations; 

o Testing and working with different GIS and OGC services: WMS, WFS, WCS, 

WPS (PyWPS), TJS. 
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Chapter 4:  Environmental Applications 

4.1. Introduction 
Environmental Sciences is a multidisciplinary field that integrates physical, biological 

and information sciences to study together the systems, the problems and the solutions of the 

environment. In the beginning of Environmental Sciences, in the 1960s, the scientific community 

was more focused on disciplines, trying to develop knowledge in particular fields (such as 

geology, ecosystems, hydrology, etc.) but in the 1980s it became more and more obvious that 

these disciplines are strongly connected and the scientific community started to study them as 

interacting elements in a single big system (Dozier and Gail, 2009 [58]). After this shift, it was 

easier to understand complex, system-oriented phenomena that link concepts from different 

fields (climate change involves atmospheric science, biology, human behavior, etc.) but also to 

understand and make a better use of the collected data (such as these coming from satellite 

observations). The growing understanding of these complex processes lead also to the 

development of new models. The knowledge gathered mainly for scientific understanding, 

begins to be used more to support practical decisions and actions, redirecting the Environmental 

Sciences to environmental applications. The role between basic science and applications is 

emphasized by the societal needs. After collecting and analyzing the gathered information, the 

community needs also a more fundamental, process-based understanding of the phenomena – a 

science of environmental applications. This science is guided more by societal needs than by 

scientific curiosity, focusing more on specific actions as well as on their consequences (Dozier 

and Gail, 2009 [58]). 

Applications that are used to solve different environmental issues use specific data as 

input and produce outputs that are useful for the Earth and environmental community at large 

can be labeled as "environmental sciences applications" (or simply "environmental applications" 

hereafter). Since the 1990s, the number and diversity of environmental applications have 

increase dramatically. Many software systems were developed to integrate data coming from 

various thematic areas such as agriculture and soil science, ecology, terrain modeling, hydrology, 

land use/land cover, population distribution, education and health planning, energy resources, 

etc. The specificity of the majority of these environmental applications is the requirement of 
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large computational and storage resources due to the massive amount of input and/or output data 

that comes typically from a combination of high spatial and temporal resolutions. Other reasons 

for high performance requirements include also the utilization of compute-intensive algorithms, 

the execution of large number of scenarios, the urgent need of responses, etc. Different parallel 

and distributed infrastructures, such as Grids, Clouds, and High Performance Computing (HPC) 

systems can satisfy the necessary requirements for running these applications (Nativi et al., 2013 

[159]). Some examples of environmental applications taking advantage of the capabilities 

offered by parallel and distributed infrastructures are those using parameter estimation, model 

calibration (Vrugt et al., 2006 [232], gSWAT ([99], Bacu et al., 2011b [17]), Web Processing 

Service on the Grid (e.g., Giuliani et al., 2012 [87]) and numerical weather prediction (Maity et 

al., 2013 [145]), satellite images workflows over the Grid (GreenLand [96]). 

4.2. Hydrological Models 
The hydrological cycle has a great significance in different environmental systems. It 

involves basic sciences such as physics, chemistry and biology and it connects geology, ecology, 

atmosphere and society (Savenije, 2009 [207]). Studying the hydrological cycle, both regarding 

its present state as well its possible future changes, it’s therefore an important task that was 

strongly influenced by spatially distributed modeling. Flood and drought forecasting, water 

management, prediction of the impact of natural and human induced changes in hydrological 

cycle are just a few examples in which distributed hydrological models can be very useful. A 

schematic representation of the hydrological cycle is presented in (SWAT, 2009 [221]) and 

illustrated in Figure 15. 

Hydrological models are therefore important tools for simulating the behavior of 

catchments in space and time, providing important information not only to scientists but also to 

decision makers (Viviroli et al., 2009 [231]).  As many other environmental applications, these 

models have to simulate a large variety of physical processes which leads not only to a high 

complexity but also to a high degree of parameterization (Silvestro et al., 2013 [213]).  
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Figure 15: Schematic Representation of the Hydrologic Cycle (SWAT, 2009) 

Hydrological models are data driven, working with different types of complex data that 

can be retrieved in different manners, from different sources, with different policies and coming 

under different format standards. Collecting all the various types of quality data, needed for a 

hydrological model, can be a challenging task and can limit the model development. On top of 

this, the availability of software tools needed in the development process is another challenge 

that has to be taken under consideration by a specialist in hydrology. With all these challenges, 

the hydrological models have evolved a lot, on one side because of the exponential development 

of the computation capacity and on the other side because of the progress of Earth Observation 

techniques, which made huge amounts of data readily available. All these factors helped the 

scientific community to have a better understanding and representation of the studied 

phenomena. 

4.3. Remote Sensing Applications 
Remote Sensing (RS) is a technique of collecting data about an object or phenomenon 

from distance, without making physical contact with the object. Remote sensing is not limited to 
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digital, satellite based sensor systems but includes also the photogrammetric field and hence 

conventional analogue sensors, including aerial photography. A more detailed definition of 

remote sensing is given by Jensen (2000) [116]: “non-contact recording of information from the 

ultraviolet, visible, infra-red, and microwave regions of the electromagnetic spectrum by means 

of instruments such as cameras, scanners, lasers, linear arrays, and/or area arrays located on 

platforms such as aircraft or spacecraft, and the analysis of acquired information by means of 

visual and digital image processing”.  

Based on the definition, the field of remote sensing is associated with large amounts of 

visual data, coming from a broad range of sensors, which vary in their spectral, spatial, and 

temporal characteristics (Basaeed et al., 2012 [21]).  Beside traditional sources and collection 

methods of data, satellite remote sensing remains one of the largest sources of data collection 

(Cavallaroa et al., 2014 [39]).  

More than 1000 manmade satellites currently orbit our planet (UCS Satellite Database - 

http://goo.gl/wSaVJI), some near the edge of the Earth’s atmosphere and others tens of 

thousands of kilometers above us. A small number of these satellites play a critical and quickly 

expanding role in monitoring the Earth’s surface and atmosphere to track environmental 

conditions, and a number of new Earth-Observing missions are planned for the next decade 

(including Sentinel 5) (Seltenrich, 2014 [210]). These new satellites will offer higher resolution 

imagery, requiring more robust and precise algorithms to process the data they deliver. Taking 

advantage of satellite and airborne sensors to observe, measure, and record the radiation reflected 

or emitted by the Earth and its environment, remote sensing can significantly enhanced the 

information available from traditional data sources. 

Medium to high-resolution multi-spectral images are available not only for governmental 

agencies but also for research and academic centers, industries and citizens, from open data 

initiatives, every week and in some regions even twice per week, assuring a data continuity 

strategy (Karmas et al., 2015 [118]). This data deluge is also strongly influenced by the ever-

increasing technological progress and technological capabilities of the Web. Data is growing at 

an unprecedented rate, becoming not only voluminous but also increasingly complex, and 

accessible in a variety of formats. This brings new important opportunities (such as the 

monitoring of Earth surface changes with greater frequency then ever) but also new challenges 

especially regarding the access, analysis, processing, and sharing of these data. Even though EO 

http://goo.gl/wSaVJI
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data have become freely available, due to the incredible sizes (e.g., petabytes of data), once data 

are stored in archives, they become hard to transfer, mostly because of bandwidth limitations 

(Nikolaou et al., 2014 [165]). If users manage to solve this problem, massive computing 

resources are still needed to store and then process this data (Karmas et al., 2015 [118]). 

Harnessing the full potential of these EO datasets and getting meaningful information requires 

not only massive computing resources, but also specialized algorithms and dedicated tools, 

which have to be brought to data instead of moving the data to the processing centers (Karmas et 

al., 2015 [118], Evangelidis et al., 2014 [68]). 

Extraction of information from satellite – remote sensing data needs techniques and 

processes which are time consuming: image downloading, mosaic, re-projection, extraction of 

information of interest, classification, software based enhancement, etc. Tumwizere and Jeong, 

(2012) [226] describe the main steps in a remote sensing system data flow: 1) data source, 2) 

data collection, 3) geometric correction, 4) projection/mosaic, 5) information extraction, 6) data 

analysis, and 7) end user utilization.  

Remote sensing enables large-scale observations of areas that sometimes can be 

inaccessible or difficult to access using conventional methods of data retrieval. A satellite can 

capture images of an area in minutes while the data collected in the field could take much more 

time, even years. Remote sensing has been widely used in resource inventory, land use change 

monitoring, urban planning, monitoring of urban environment regarding air and water pollution, 

green spaces, traffic analysis, population estimation, agricultural analysis, environmental 

monitoring, and many other applications (Seltenrich, 2014 [210]). Through the development of 

remote sensing technology, such as increasing of spatial land spectral resolution, 3D laser 

scanning, data mining, advanced image processing technology, remote sensing is expected to be 

used more and more to support a sustainable environment.   

4.3.1. Landsat Mission 

We have focused our research mainly on working with Landsat satellite imagery, and 

recently especially on Landsat 8 data. The Landsat archive is probably one of the most 

authoritative repositories of freely available remotely sensed data, mostly because of the 

impressive historical archive and the ease of access. Data from Landsat satellites provides the 

longest continuous record as seen from space of the Earth’s surface, starting with the launch of 
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Landsat 1 in 1972 through Landsat 8 in March 2013 (Santos et al., 2014 [206], Landsat News, 

2014 [129]). Landsat 9 is planned to be launched in 2023, maintaining this incredible continuous 

stream of data. Landsat is one of the most popular Earth Observations programs for observing 

the Earth surface and it’s used in various areas such as monitoring, detecting, and classifying 

land surface changes.  

Landsat data has a long-term historical record of the entire globe, offering high quality 

data and becoming a vital reference in almost all areas by offering a global image archive with 

an unmatched value (Wulder et al., 2012 [244]). As Marcia McNutt, then-USGS Director, said: 

“Landsat is valued all over the world as the ‘gold standard’ of land observation” (Landsat 

Science, 2015) and will undoubtedly lead to incredible future insights on the Earth System.  In 

2008 all new and archived Landsat data held by the USGS have been made freely available over 

the Internet following a tremendous increase in scientific investigations and applications using 

Landsat data (Wulder et al., 2012 [244]).  Before the free and access policy, a daily average of 52 

scenes of Landsat data were distributed but since 2008, this number has dramatically increased to 

reach a value of 5’700 scenes (Ryan, 2016 [204]). In May 2015, Amazon Web Services (AWS) 

announced that it would host Landsat 8 imagery on its publicly accessible Simple Storage 

Service (S3). At that moment, AWS has made available over 80,000 Landsat 8 scenes (approx. 

85 Tb of data) and hundreds of other scenes are being added daily since then (Landsat Science, 

2015). The free and open access policy of Landsat data was a brilliant example on how to 

maximize the return on the large investments in satellite missions (Wulder et al., 2012 [244]). 

The immense benefits of similar Open Data initiatives was emphasized also by Barbara Ryan, 

the Secretariat Director, Group on Earth Observations (GEO) by pointing out the economic 

benefits brought back by these initiatives: “The economic value of geospatial data lies in its 

utility” (Ryan, 2016 [204]).  According to GEO, more than 12 million Landsat images have been 

delivered across 186 countries enabling users to access multiple-year scenes for the same 

locations (EarthZine, 2014 [59]).      

Landsat 8 satellite images the entire Earth every 16 days in an 8-day offset from Landsat 

7. Landsat 8 images consist of nine spectral bands, with a 30 m spatial resolution for Bands 1 to 

7, and 9 and 15 m resolution for Band 8 (panchromatic). It includes two new spectral bands: a 

deep blue band (Band 1) designed for coastal/aerosol studies, and a shortwave infrared band 

(Band 9) for cirrus (thin type of clouds that forms high in the sky) detection. The thermal bands 
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10 and 11 are useful for providing more accurate surface temperatures and are collected at 100 m 

resolution (http://landsat.usgs.gov/).  

Landsat 8 is acquiring around 550 images/day (approx. 60% more scenes per day 

compared to Landsat 7 (Roy et al., 2014 [202]), having the ability to image more frequently in 

persistently cloudy areas to improve data collections in areas of critical importance for climate 

studies (Landsat News, 2014 [129], Roy et al., 2014 [202]). It has improved high capacity on-

board recording and satellite to ground transmission capabilities, compared to previous Landsat 

systems. With all this, the strength of the Landsat is not necessarily the high resolution (as there 

are other instruments that provide much higher resolution than Landsat) but the impressive 

historical archive and the ease of access. 

4.3.2. Landsat Applications 

Based on recent studies (Santos and Gonçalves, 2014 [206], Landsat News, 2014 [129]) 

the target applications of Landsat 8 focus on natural processes such as volcanic eruptions, glacial 

retreat, floods, forest fires, and other natural disaster impacts, and on human induced processes 

such as urban expansion, crop irrigation, and forest clear-cutting. Even though Landsat in general 

is more oriented to land than sea, Landsat 8 provides an impressive picture of band combinations 

of coastal zones through the new Band 1 (coastal/aerosol band), which allows a closer 

investigation of coastal waters. Pan-sharpening continues to be available with Landsat 8 and 

allows the creation of a single high-resolution color image (useful to improve classification 

accuracy) by merging high-resolution panchromatic band of 15 m and lower resolution 

multispectral imagery of 30 m (Santos and Gonçalves, 2014 [206]). Landsat 8 is also used in 

agriculture for local and global decision making: monitoring crops, forecasting crop production, 

monitoring droughts and water use, computing vegetation indexes (SAVI, NDVI), etc. Possible 

problems could be detected and explored with more detailed resolution images (Santos and 

Gonçalves, 2014 [206]). Change detection techniques can also be applied using Landsat 8, such 

as for coastline changes but also for rapid detections such as clear-cuts and burnt areas. Santos 

and Gonçalves, 2014 [206] also made a preliminary analysis on remote sensing services to 

quickly produce land use and land cover (LULC) maps from Landsat 8 data. The conclusion is 

that rapid land cover mapping is feasible using automated processes and pre-defined training 

data but some adaption effort is needed to support the new features of Landsat 8 (16 bit images). 

http://landsat.usgs.gov/
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According to USGS, there is an expansive range of customers (from academics to 

foresters and urban planners to agricultural managers) that use Landsat satellite imagery.  This 

data has quickly found its way into a wide range of applications, which involve scientific 

discovery, managing and monitoring resources in different domains such as: economic and 

environmental quality, national security, public health and human well-being etc. (Roy et al., 

2014 [202]). 

The benefits of Landsat data can be observed in different areas, including (Roy et al., 

2014 [202]): 

x Water resources analysis and management; 

x Agriculture and forest analysis and management;  

x Homeland security;  

x Infrastructure analysis;  

x Disaster management;  

x Climate change science;  

x Wetland protection;  

x Monitoring land cover changes. 

4.4. Environmental Challenges Overview 
There are different types of challenges that limit our capacity to understand the Earth 

system, its components and their interactions. Among these challenges we have identified: 

x Environmental data is growing at an unprecedented rate, in volume, complexity, variety; 

x Data scarcity;  

x Data standards application; 

x Once data are stored in archives, they become hard to transfer, mostly because of 

bandwidth limitations;  

x Increasing need of services to access, store, analyze, process and share big environmental 

data in a standardized way; 

x Software requirements and availability to extract meaningful information out of raw data; 

x Computational and storage capacities.  
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All of these challenges can be seen at different levels, depending on the scale of the 

context. The envisaged solutions are the provision of massive computing and storage resources 

but also specialized algorithms and dedicated tools. A methodology and framework able to 

efficiently and automatically acquisition and process data is needed therefore. 

4.5. Conclusions 
The increase global annual Landsat data volume requires high performance 

supercomputers, capable of providing petabyte data storage and processing solutions. Recent 

technological developments have the potential to provide researchers and policy makers with an 

“unprecedented capacity to access, analyze, and integrate higher level products derived from the 

multi-petabyte scale archive of global Landsat data” (Roy et al., 2014 [202]).  

Consequently, data acquisition services are essential, especially for satellite images and 

applications in the area of remote sensing. There are unprecedented opportunities for efficiently 

and automatically producing near-real time Landsat 8 monitoring products but the first step for 

all this is the automatic data acquisition. Any remote sensing application has to perform this step 

before being able to perform any geo-processing concerning data analysis and/or data processing 

tasks. This task usually involves several steps such as data discovery, validation and downloads. 

The choice of the appropriate parallel or distributed infrastructure depends on the 

application features, data model, and processing requirements of the environmental application. 

To run on one or several of these distributed or parallel infrastructures (i.e., a heterogeneous 

computational environment), the application has to be modified to have a particular structure or 

to use particular programming interfaces for accessing the resources of the infrastructures. This 

is typically done without knowing too much details about the final infrastructure(s) on which the 

application will run. 

4.6. Personal Contributions 
x Identification of major environmental challenges related to environmental applications, 

from an engineering point of view; 

x Identification of general characteristics of environmental applications, mainly from 

hydrological and remote sensing fields. 
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Chapter 5:  Distributed Systems 

5.1. Introduction  
According to (Tanenbaum and Steen, 2006 [223]), a distributed system is a collection of 

independent computers that are presented to the users as a single compute resource and provides 

a single system view. A more complete definition of a distributed system is given by (Baker et 

al, 2002 [20]) as: “A type of parallel and distributed system that enables the sharing, selection 

and aggregation of geographically distributed autonomous and heterogeneous resources 

dynamically at runtime depending on their availability, capability, performance, cost, and users’ 

quality of service requirements”. The development of distributed systems was strongly 

influenced by the development of computer networks in the late 1970s and early 1980s 

(Andrews, 1999 [11]) and as the use of high-speed broadband network increases, the field of 

computing is constantly changing as well.  

Up to nowadays there are a few technologies that have emerged in this area and in the 

following we will present some of the most important ones. An adapted taxonomy of the current 

technologies is also presented in Figure 16.  

 

Figure 16: Taxonomy of Distributed Computing. 
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Before starting the presentation in detail of some of the most important distributed 

systems, we consider it is important to also shortly mention the Multicore systems.  

A Multicore is a processing system with two or more independent cores integrated on the 

same chip. Multicore architectures have evolved because it was difficult to make single-core 

clock frequencies even higher. These architectures explicitly exploit thread level parallelism, i.e. 

server can serve each client in a separate thread.  Multicore processors are Multiple Instructions 

Multiple Data (MIMD), meaning that different cores execute different threads, operating on 

different parts of memory. Most of the time Multicore is also a shared memory multiprocessor 

i.e. all cores share the same memory but they can also have distributed or mixed memory 

architectures. The additional performance offered by this platform is exploited only by 

parallelized applications. The execution of other types of applications can even be slow down. 

Older computers have just one CPU, but newer computers have multi-core processor chips and 

many CPUs. With single-CPU, single-core computers, it is also possible to perform parallel 

processing by connecting the computers in a network. However, this type of parallel processing 

requires very sophisticated software called distributed processing software. The main advantages 

of the system is that: it does not have the disadvantages of the Grid and Cloud, it has all the 

advantages of using a PC with different operating systems, the user is in full control of the job 

being processed, it can be stopped and restarted at any time, it is much simpler to use, not 

needing Grid or Cloud certificate, permission, etc., and depending on the PC, the processes can 

go faster up to the number of available CPUs. There are actually not many disadvantages in PPS, 

except that we need a powerful computer to take the full advantages of the system. With the 

advancement of new technologies, this is now available at a reasonable cost (Rouholahnejad et 

al., 2011 [200]).  

A major challenge in Multicore processing is the software development. The performance 

speed up depends on how good is the multi-threading of the parallel source code. The major 

characteristic of a good parallel code should be correctness, efficiency, scalability and 

portability.  

We also consider that it is necessary to emphasize here the difference between 

Distributed and Parallel. Distributed Computing it’s a type of Parallel Computing although the 

latest mostly refers to processing in which different parts of a program run simultaneously on 

two or more processors that are part of the same computer. Both types require that the program is 
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divided is section that can run simultaneously but Distributed Computing also requires that these 

sections run in different environments (and not on the same machine) (Kaur, 2015 [122]).   

Although Peer to Peer (P2P) networks are among the first distributed systems while the 

most important class of distributed systems contains the distributed computing systems that are 

used for high performance computing tasks (Tanenbaum and Steen, 2006 [223]): cluster, Grid 

(mid-1990s) and Cloud (2007). All these systems belong to the Utility Computing class, which is 

based on a service-provisioning model where users (consumers) pay providers for using 

computing power only when they need to. In other words, Utility Computing aims to show how 

computing needs of users can be fulfilled by IT industry and is based on the model used by 

conventional utilities (telephone, electricity, gas, etc.) (Kahanwal and Singh, 2012 [117]). A 

detailed comparison of all these distributed systems or a group of them and their specific 

functionalities are discussed in literature (Foster et al., 2008 [73], Sadashiv and Kumar, 2011 

[205], Mateescu et al. 2011 [146], Rings et al., 2011 [191], Rings and Grabowski, 2012 [192], 

Hajibaba and Gorgin, 2014 [103]). 

The trend in distributed systems is changing fast due to the ever-increasing needs and 

technological progresses and new computing paradigms start to develop such as Hybrid 

Computing (also known as Jungle computing) (2010 - 2011) and Fog Computing (2012). 

5.2. Peer to Peer (P2P) 
Peer-to-Peer (P2P) network is one of the first distributed systems (Hajibaba and Gorgin, 

2014 [103]). In this type of distributed systems every node acts both as a client and a server, 

providing part of the system resources and no peer machine has a global view of the entire P2P 

system. Peer machines are simply clients connected to the Internet, acting autonomously to join 

or leave the system. There is no master-slave relationship among the nodes and no central 

coordination or central database (Kahanwal and Singh, 2012 [117]).  An architecture of such a 

system is shown in Figure 17.  
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Figure 17: Peer to Peer (P2P) Network 

5.3. Cluster 

5.3.1. General Description 
A cluster can be seen as a set of loosely connected or tightly connected nodes, which 

communicate with each other and work together to achieve a common goal. The components of a 

cluster are usually connected to each other through a fast local area network (LAN), each node 

running its own instance of an operating system. In these systems, nodes are frequently 

homogenous in both hardware and operating system. The computing nodes are orchestrated 

usually by a middleware – a software layer that sits atop the nodes, which gives the users the 

impression of a large cohesive single computing unit instead of several working nodes (a single 

system image concept). Computer clusters emerged to improve performance and availability of a 

single computer and they have become popular also due to the availability of low cost 

microprocessors, high-speed networks and a large set of software for high performance 

distributed computing.   A computer cluster may be a very fast supercomputer or it may be just a 

simple 2-node system, which connects 2 personal computers together. Traditional owner centric 

clusters are usually excellent in handling capability workloads with large datasets in a well-

managed, secure environment. Capacity is fixed and there is usually no support for virtualization 

and resource sharing (Mateescu et al., 2011 [146]). 

The major advantages of a computing cluster are: 

x Cost efficiency – the cluster is cost efficient for the amount of power and processing 

speed it can produce.  
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x Processing speed – multiple high-speed computers work together to provide a unified 

faster processing. 

x Improved network infrastructure – different LAN topologies used within a cluster 

create a highly efficient and effective infrastructure.  

x Flexibility/elasticity – you can easily enhance the existing specifications or add extra 

components to the system to meet the size and time requirements of your workload.  

x High availability of resources – the failure of a machine in a cluster does not affect the 

processing of the other machines. 

x Run jobs anytime anywhere – the submission of jobs is easily done using simple APIs 

or management tools. 

5.3.2. Cluster Types  
Clusters can be of different types and a classification of these has been made in previous 

researches (Kahanwal and Singh, 2012 [117], Kaur, 2015 [122]): 

x High Availability Clusters (also known as Failover Clusters): groups of computers that 

support server applications and can be reliably utilized with a minimum downtime. These 

clusters immediately detect hardware/software faults and restart the application on 

another system (they harness redundant computers in groups or cluster that provide 

continue service) and this is called failover.  

x Load Balancing Clusters: required by applications with large volumes of client requests 

or having high demands on security and redundancy.  

o Software-based: involves installing special software on the servers, which 

dispatches or accepts requests from the client to the servers, based on different 

algorithms (simple round-robin for example or more complicated ones). 

Examples: Microsoft Network Load Balancing for web farms and Microsoft 

Component Load Balancing for application farms.  

o Hardware-based: consists of a specialized switch or router with software to give 

it load-balancing functionality. By having both functionalities into a single device, 

reduces the extra hardware but it is also more complex to program and to 

troubleshoot.  
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x High Performance Computing Clusters: used to increase computing throughput, used 

most of the time for complex applications with strict time constrains (example: run 

different jobs with different parameters or data sets). The cluster manages the resources 

needed for each job and handles the jobs execution.   

5.3.3. Architecture 
The architecture of a cluster computing environment, as presented by (Kahanwal and 

Singh, 2012 [117]) is shown in Figure 18. 

 
Figure 18: Cluster Architecture (Kahanwal and Singh, 2012) 

 
The components of a cluster system include (Kahanwal and Singh, 2012 [117]): 

x High Performance Computers;  

x Micro-kernel based operating systems; 

x High speed networks or switches; 

x NICs (Network Interface Cards); 

x Fast Communications Protocols and Services; 

x Cluster Middleware (hardware, Operating System kernels, applications and subsystems); 

x Parallel Programming Environment tools (compilers, parallel virtual machines, etc.); 

x Sequential and Parallel applications. 
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5.3.4. SLURM 
Slurm (http://slurm.schedmd.com/) is an open source workload designed for Linux 

clusters of all sizes and it provides three important functions: 

x Allocates exclusive and/or non-exclusive access to resources for users for a certain 

amount of time; 

x Provides a framework for starting, executing, and monitoring parallel jobs on a set of 

allocated resources (computing nodes); 

x Arbitrates contention of resources by managing a queue of pending jobs. 

 

Besides these there important functions, Slurm also provides a set of important 

properties, such as:  

x Scalability – can operate in a heterogeneous cluster (up to tens of millions of processors); 

x Performance – can accept 1000 job submissions per second and can fully execute 500 

simple jobs per second; 

x Free and Open Source – the source code is freely available under GNU General Public 

License;  

x Portability – initially was written for Linux but after it was ported to other systems;  

x Power Management – the jobs can specify their desired CPU frequency, the power use 

by job is recorded and idle resources can be powered down until needed; 

x Fault Tolerant – highly tolerant of system failures, including node failures executing 

control functions; 

x Flexibility – allows various interconnects, authentication mechanisms, schedulers, etc. 

through a plugin mechanism; 

x Resizable jobs – jobs can grow and shrink on demand; time and size limit ranges can be 

specified in the job submission; 

x Status jobs – status-running jobs exists to help identify load imbalances and other 

anomalies. 

 

http://slurm.schedmd.com/
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5.4. Grid 

5.4.1. General Description 

A Grid is a distributed paradigm that enables remote sharing, selection and aggregation 

of geographically autonomous resources dynamically at runtime, within a Virtual Organization 

(VO), based on different criteria: availability, capability, performance, quality of service, etc.  

Members of a VO can work together in projects, even across enterprises boundaries without the 

need to belong to the same affiliation. A VO defines what computational and data resources are 

shared but also who is allowed to access this resources (Hoeing, 2010 [107]). As opposed to the 

cluster systems, Grid systems frequently involve distributed management by multiple 

administrative entities (such as VO) (Bonomi et al., 2012 [30]).   

Grid infrastructures offer seamless, secure and on-demand access to geographically 

distributed computing, communication and information resources (Costan, 2010 [48]). The term 

Grid actually originates from the idea of making access to computational power as easily as to 

the electrical power grid. Grid systems are used for the execution of large tasks that require high 

computing power and/or large data storages. It is mainly designed to solve problems that are too 

big for a supercomputer while being flexible to solve smaller problems as well (Kaur, 2015 

[122]). With all this, Grid computing has not been accepted as default technology in the business 

domain, mainly due to missing features like quality of service agreements and the extreme focus 

on high performance compute jobs instead of general information system provisioning (Hoeing, 

2010 [107]). This is the point where Cloud computing entered in the scene as a new paradigm.  

A Grid has a variety of resources based on diverse hardware and software structures, 

computer languages and frameworks but enables exposing these heterogeneous resources with a 

unified interface, allowing users to access multiple resources in a unified manner. The amount of 

resources is still constant within a non-virtualized Grid and there is a limited interoperability 

between different Grid software stacks. 

The Grid middleware offers services to allocate compute resources, to access data 

resources, to monitor executing jobs, to provide security, etc. All these functionalities are offered 

in modern Grid middlewares via SOAP-based services (Hoeing, 2010 [107]). The security in 

such environments is normally assured using personal certificates, such a X.509 certificates, 

issued by a trusted institution. These certificates allow the communication with Grid services and 
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also facilitate the traceability of Grid activities of each user. A user can also delegate right to 

another Grid component, facilitating thus the execution of operations in a workflow.   

Infrastructures such as TeraGrid (Katz et al., 2010 [121]), EGEE (Enabling Grids for e-

Science) (Ferrari and Gaido, 2011 [70]) and DEISA (Distributed European Infrastructure for 

Supercomputing Applications) (Gentzsch et al., 2011 [79]) integrate high-end computing and 

storage systems via high-speed interconnects, and support traditional, batch-queue-based 

computationally/data intensive high-performance applications.  

Depending on their usage, Grid systems can be classified as follows (Figure 19): 

 
Figure 19: Grid Systems Taxonomy - Krauter et al., 2002 

x Computational Grid (a system with a higher aggregate capacity than any of its 

constituent machine): 

o Distributed Supercomputing  (executes the applications in parallel, on multiple 

machines, to reduce the completion time of a job); 

o High Throughput (increases the completion rate of a stream of jobs arriving in 

real time). 

x Data Grid (provides an infrastructure for synthesizing new information from data 

repositories – digital libraries or data warehouses. Special purpose data mining 

applications, which correlate information from multiple different high volume data 

sources, can be use cases for these systems). 

x Service Grid (provide services that are not provided by any single machine): 

o On Demand (dynamically aggregates different resources to provide new services. 

Ex: dynamically increase the fidelity of a simulation by allocating more 

machines); 
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o Collaborative  (connects users and applications into collaborative workgroups and 

enable real time interaction between humans and applications through a virtual 

workspace); 

o Multimedia (provides infrastructure for real time multimedia applications – 

required the support of QoS across multiple machines while the deployment on a 

single machine of a multimedia application can be done without QoS). 

 

The resource management in a Grid system involves managing the basic Grid elements. 

A Grid computing system must contain a Computing Element (CE), a number of Storage 

Elements (SE) and Worker Nodes (WN). A CE provides the connection with other Grid 

networks and dispatches the jobs on the WN through a Workload Management System (WMS). 

The storage of input and output data needed for job executions is done in the Storage Element 

while the WNs are the servers that offer the processing power (Garlasu et al., 2013 [76]).  To be 

able to access the Grid resources, a user needs certificates issued by the VO. The administrative 

part of a VO comprises a Workload Management System (WMS), which keeps track of all the 

available CEs, a Virtual Organization Membership System (VOMS) and the Logical File Catalog 

(LFC).   

5.4.2. Architecture 
A Grid architecture, as defined in literature (Rings and Grabowski, 2012 [192]) is 

presented in Figure 20. Local resources are entities of different types that fulfil job requests and 

are usually deployed on a private network. These resources include computing, storage, sensor, 

and services (Krauter et al., 2002 [126], Rings and Grabowski, 2012 [192]).  The Grid core 

services use specific protocol and interfaces to access the local resources from a public network 

and they include services for information, data, execution, and resource management. These Grid 

services are used by Grid schedulers to schedule jobs over several Grid infrastructures, or by 

Grid portals and Grid applications (Rings and Grabowski, 2012 [192]).  
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Figure 20: Conceptual Model of Grid Computing (Rings and Grabowski, 2012) 

 

5.4.3. gLite Middleware 

A Grid middleware provides secure access to diverse resources that are managed in a 

centralized manner (Rings and Grabowski, 2012 [192]). The gLite ([93]) middleware was 

produced by the EGEE (Enabling Grid for E-SciencE) (EGEE [60], Ferrari and Gaido, 2011 

[70]) project and subsequently developed by the EMI (European Middleware Initiative) project 

(EMI [61]). This middleware computer software is an integrated set of components designed to 

enable resource sharing and it was used by LHC (Large Hadron Collider) (LHC [135]) CERN 

experiment as well as other scientific domains. The gLite middleware offers just a command line 

interface therefore is quite hard for non-specialists to use it. GANGA (Moscicki et al. 2009 

[154], Harrison et al. 2013 [104]) and DIANE (Distributed Analysis Environment) (Moscicki, 

2003 [153]) are two software tools that can facilitate the accessibility of users to the Grid 

infrastructure through flexible programming interfaces as well as graphical user interfaces.  

DIANE is used in conjunction with GANGA to provide a more efficient usage of the Grid 

resources. Both of these tools will be described in detail in the following sections.   
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5.4.4. Scheduling, Execution and Monitoring Tools 

5.4.4.1. GANGA 

GANGA (Moscicki et al. 2009 [154], Harrison et al. 2013 [104]) is a Python front-end 

tool used for defining and managing Grid jobs and it was initially designed as an interface for 

Grid for two of the seven particle physics detector experiments at CERN – ATLAS and LHCb. A 

job defined with GANGA is usually composed of several blocks such as: application, backend, 

input dataset, output dataset, splitter and merger. The application refers to the software 

component that has to be executed while the backend specifies the used computing system. The 

input data set is the application input and the output dataset represent the generated data. The 

split and merge component are optional and can be used to divide the job in parallel sub-jobs and 

to combine their results.  

The main scope of Ganga was to facilitate different users to create, execute and monitor 

processes in the Grid infrastructure. It allows the motorization of processes even in independent 

sessions so the user can find the execution information even after log out/log in. Once a process 

has been launched for execution, the user can no longer modify it. A launched process can be in 

one of the following states: submitted, running, completed, failed or killed.  Ganga offers support 

for Grid certificates management both in the form of classic Grid proxy certificates as well as for 

VOMS extended certificates. The tool offers support for proxy certificate creation as well as 

useful notations regarding the certificates state.  

Ganga offers an abstract level over the already existing Grid technologies for execution 

and management of jobs in Grid infrastructure: Globus, Condor, Unicore or gLite. The offered 

functionalities can be accessed by the user either through command line, Python scripts or in a 

graphical user interface. The architecture of this tool, as presented in (Moscicki et al., 2009 

[154]) is illustrated in Figure 21. 
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Figure 21: Ganga – Architecture (Moscicki et al., 2009) 

 

5.4.4.2. DIANE 

DIANE – Distributed Analysis Environment (Moscicki, 2003 [153]) is another Python 

tool developed at CERN, which allows the efficient Grid execution of applications.  This tool 

allows the execution of applications on different Grid infrastructures. It uses a master-client 

model over the Grid services and the architecture is illustrated in Figure 22.   

The idea of DIANE is not to assign a Worker Node for each sub-task in an application, as 

this would considerably increase the execution time or occupy a lot of resources, but to start a 

certain number of Worker Nodes, which will be responsible for all application sub-tasks. The 

Master component is responsible for assigning the tasks for each worker and to monitor the 

execution. Each DIANE Worker will execute one or more tasks, depending on several factors. 
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Figure 22: DIANE - Architecture (Moscicki, 2003) 

 
 

Grid advantages (Taylor et al., 2004 [224]):  

x Provides components for reliable data management (Grid-FTP); 

x Resource allocation and management (GRAM – Grid Resource Allocation Manager); 

x Information discovery and look-up (GIS – Grid Information Service); 

x Authentication and security (GSS – Generic Security Service); 

x Infrastructure monitoring; 

x Virtualization through Open Grid Service Architecture (OGSA); 

x Extensive set of resource management components;  
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x Facilitates access to geographically distributed data sets; 

x Environment for a secure, scalable parallel and distributed set of resources.  

 

From a user point of view, especially in the GI community, the main advantages offered 

by the Grid infrastructure can be summarized in: 

x Security - the geospatial data is not shared in a distributed environment in a secure mode 

because the OGC Web services do not provide such security mechanisms. The Grid 

environment can facilitate these security mechanisms needed for transferring and 

processing heterogeneous geospatial data within a distributed environment. 

x Data management - the Grid infrastructure offers functionalities for management of 

large amounts of data, functionalities that are strongly needed in the Geospatial domain 

due to the multiple heterogeneous sources of data. 

x Computational power – needed by Geospatial applications, which usually work with 

data coming from different locations and in different formats, requiring special 

processing resources, most of the time available only on remote sites. The Grid 

environment is able to provide processing resources and high performance computing in 

a distributed environment (Di, 2004 [54]). 

 

Grid disadvantages (Taylor et al., 2004 [224]): 

x Lack support for some of the network and data management functionality; 

x Lack support for application level multicast (most of the Grid application only need 

reliable data transfer);  

x Grid provides support for data partitioning and replication but not for data indexing and 

retrieval. 

 

Applications running on the Grid: 

x Memory intensive application that need a message passing interface (MPI) may not be 

able to take advantage of the Grid infrastructure as the worker node do not communicate 

and the connection between them might not be fast enough (gigabit Ethernet) as needed 

for intense MPI applications; 
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x Applications requiring licensing are also hard to migrate on Grid infrastructures as it can 

be complicated to pay the license for all the nodes in the Grid and it can be complicated 

to schedule your work only on these who have the license installed;   

x Political challenges associated with sharing resources across different administration 

domains may also restrict the use of some application on a Grid infrastructure (Taylor et 

al., 2004 [224]); 

x Grid standards need improvements to have a larger set of applications taking advantage 

of its functionalities but the improvement of standards is usually done only when a 

significant number of industry players and government agencies recognize their need in 

this infrastructure and its standards (Taylor et al., 2004 [224]).  

5.5. Cloud 

5.5.1. General Description 

Cloud computing was one of the most explosively expanding technologies. It is a 

commercially driven technology that offers services to access computational and storage 

resources, platforms and software solutions. This paradigm has many definitions and views, 

depending on the used context. A combination of these definitions is given by (Hajibaba and 

Gorgin, 2014 [103]):  

“Cloud is a parallel and distributed system consisting of a shared pool of virtualized 

resources (e.g. network, server, storage, application, and service) in large-scale data centers. 

These resources can be dynamically provisioned, reconfigured and exploited by a pay-per-use 

economic model in which consumer is charged on the quantity of cloud services usage and 

provider guarantees Service Level Agreements (SLA) through negotiations with consumers. In 

addition, resources can be rapidly leased and released with minimal management effort or 

service provider interaction. Hardware management is highly abstracted from the user and 

infrastructure capacity is highly elastic.” 

The on-demand resource provisioning feature of Cloud computing (due to virtualization) 

enables capacity resizing, workload migration, better availability and better performance. With 

all this, Cloud interoperability limits resource sharing across providers and does not excel either 

in security and built-in workload management services (Mateescu et al., 2015 [146]).   
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5.5.2. Cloud Delivery Models 

Cloud computing offers its benefits through three types of services or delivery models: 

Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). 

These delivery models are illustrated in Figure 23 (Hajibaba and Gorgin, 2014 [103]) and 

described in the following.  

 
Figure 23: Cloud Delivery Models: IaaS, PaaS and SaaS (Hajibaba and Gorgin, 2014) 

5.5.2.1. Infrastructure as a Service (IaaS) 

An Infrastructure as a Service (IaaS) offers hardware related services using the principles 

of Cloud computing. This layer includes virtualized resources (storage, processors, and 

networks) that are used to deploy and run arbitrary software (Rings and Grabowski, 2012 [192]). 
Some authors (Kahanwal and Singh, 2012 [117]) also incorporate at this level some other 

services such as Communication as a Service (CaaS) and Data-storage as a Service (DaaS). 

Leading vendors that provide IaaS (Kaur, 2015 [122]): Amazon EC2, Amazon S3, Rackspace 

Cloud Servers and Flexiscale. 
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5.5.2.2. Platform as a Service (PaaS) 

Platform as a Service (PaaS) offers a development platform on the Cloud. The platforms 

provided by different vendors are usually not compatible. At this level, services for automated 

resource management, fault tolerance, dynamic provisioning and load balancing are deployed 

(Rings and Grabowski, 2012 [192]). These services are used within a running environment in a 

transparent manner via an API. Important vendors in this context (Kaur, 2015 [122]): Google 

Application Engine and Microsoft Azure.  

5.5.2.3. Software as a Service (SaaS) 

Software as a Service (SaaS) offers a complete software solution, hosted on the Cloud 

and accessible on pay-per-use basis. This layer provides Web interfaces for users to access 

applications without the need to install local software (Rings and Grabowski, 2012 [192]). 

Examples of providers (Kaur, 2015 [122]): Salesforce.com offering the online Customer 

Relationship Management (CRM) space, Googles gmail and Microsoft hotmail, Microsoft online 

version of office – BPOS (Business Productivity Online Standard Suite).   

5.5.3. Cloud Deployment Models  

A Cloud can be deployed using different models: Private, Public, Hybrid and 

Community. These models are illustrated in Figure 24. 

5.5.3.1. Private 

In private Clouds, the computing infrastructure is dedicated only to a particular 

organization and not shared with others. They are more expensive and more secure as their 

access is restricted and can either be externally hosted (by a third party specializing in Cloud 

infrastructures) or on premise (Kahanwal and Singh, 2012 [117], Kaur, 2015 [122]).  
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Figure 24: Cloud Deployment Models (Hajibaba and Gorgin, 2014) 

 

5.5.3.2. Public  

A Cloud vendor hosts the computing infrastructure of a public Cloud and it’s usually 

shared between any organizations, or to general public. The resources are accessible via the 

Internet and the customer has no visibility or control over where the resources are located. The 

clients can choose the security level they need and negotiate service levels agreements 

(Kahanwal and Singh, 2012 [117], Kaur, 2015 [122]).  

5.5.3.3. Hybrid 

A hybrid Cloud is formed from at least a private Cloud and a public Cloud and it 

typically used by organizations that host critical applications on private Clouds and applications 

with softer security constrains on public Clouds. In this model, the combined clouds retain their 

identities but are combined together through standardized technology (Kahanwal and Singh, 

2012 [117]). A hybrid Cloud can also be used in the context of a so-called Cloud Burst. In this 

situation, organizations use their own computing infrastructures for normal usage but access a 

public Cloud for high/peak load requirements (Kaur, 2015 [122]). General public does not have 

access to this type of Cloud.  
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5.5.3.4. Community  

A community Cloud involves sharing the Cloud infrastructures among organizations 

belonging to the same community or having a shared concern or interest (government 

organizations for example). This type of cloud can be managed by the organization or by a third 

party and can be accessed by both the general public and the organizations forming the 

community.  

5.5.4. Federated Cloud 

As customer’s requests for computational resources are getting higher and higher, public 

Cloud providers are force to increase the scalability more and more. Even so, sometimes only 

one public Cloud is not enough for satisfying all demands, introducing the idea of Cloud 

Federation or Federated Clouds (Caron et al., 2013 [38]). In such a Cloud Federation, the 

providers put their resources together to gain scalability. The problems that arise in this context 

are most of the time related with the appropriate selection of a Cloud among the federation of 

heterogeneous Clouds, based on computational power, availability, etc. An interesting solution 

for brokering is RightScale (RightScale [189]). This commercial solution allows you to manage 

applications that are spread between different Cloud Providers, using a single management 

interface, which interacts with a series of providers, such as Amazon Web Services, Windows 

Azure, Rackspace, CloudStack and OpenStack.  Solutions on the academic side, based on Cloud 

brokering, but with less advanced functionalities then commercial ones (Caron et al., 2013 [38]), 

include RESERVOIR (Rodero-Merino et al., 2010 [193]), CLEVER (Tusa et al., 2011 [227]). 

These projects all try to leverage multi-Cloud resources while hiding the complexity of 

managing them. (Caron et al., 2013 [38]) describes an improvement of the DIET (Caron and 

Desprez, 2006 [37]) architecture. They enable DIET, which is a hierarchically structured 

component (scalable middleware), to benefit from on-demand resources when handling client 

service requests. The improved architecture upgrades DIET to a multi-Cloud middleware 

designed to interact with multi-Cloud platforms, while hiding the complexity and the 

heterogeneity that lies behind.  

Cloud computing is a computing paradigm which has brought tremendous convenience 

for the processing of large-scale datasets but the main identified Cloud disadvantages are the 

need of high speed internet connection needed and the security issues.  
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5.5.5. Cloud Providers 

During our research, we have been working with two main Cloud providers, i.e. Open 

Stack and Microsoft Windows Azure. 

5.5.5.1. Open Stack 

Open Stack Cloud was designed to easily scale out, with a modular architecture (Figure 

25), which is based on a growing set of core services and a set of shared services, which provide 

an integrated cloud management. 

  

 
Figure 25: OpenStack Architecture 

The core services include the “Compute”, “Storage”, “Networking” and “Dashboard” 

components while the shared services are “Identity” and “Image”.  

The OpenStack Compute component (Nova) is used to provision and manage large 

networks of virtual machines and includes features for managing virtualized commodity server 

resources (CPU, memory, disk, network interfaces, etc.), managing local area networks (Flat, 

Flat DHCP, VLAN DHCP, IPv4 and IPv6 networks, etc.), managing virtual machine images 

(store, share, import, query, etc.), assigning floating IP addresses to VMs, providing security 

(role based access control - RBAC), etc. OpenStack compute is compatible with tools such as 

Hadoop ([100]) and High Performance Computing (HPC) applications.  

Hadoop is an open source platform that consists of the Hadoop kernel, Hadoop 

Distributed File System (HDFS [101]) Map Reduce and several other instruments.  Hadoop is 

currently one of the most mature, accessible and popular implementation of the MapReduce 
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programing model. This tool has been widely adopted both in scientific communities and in 

enterprises to solve Big Data related problems. Together with other associated systems, it 

provides a scalable, large-scale solution to data storage, analysis and mining.   

Hadoop Distributed File System (HDFS) (HDFS [101]) was developed from the need to 

store Big Data on multiple machines. HDFS is a block-structured distributed file system, which 

was designed to hold huge amounts of data, offering scalable and easy to use functionalities to 

operate with it. It also offers a great portability (as it is written in Java) as well as a great 

reliability (all files are replicated on two or more Data Nodes). HDFS is based on the principle 

that moving the computation to the data is cheaper than moving the data where the processing 

takes place, especially in the cases where the input data has a huge volume/size (Garlasu et al., 

2013 [76]).  

OpenStack Storage (Swift & Cider) provides both object and block storage. Object 

storage is a distributed storage system for static data (virtual machine images, backups, archives), 

which is written to multiple disk drives spread throughout the Cloud (LaBarge and McGuire, 

2012 [128]). It also provides persistent block storage devices. Examples of usage include high 

performance storage for databases, servers that need access to raw block level storage, 

expandable file systems, etc. (LaBarge and McGuire, 2012 [128]). 

The OpenStack Networking component (Quantum) is an API driven system for managing 

Cloud networks and IP addresses (static, DCHP or floating IP addresses). It also provides several 

networking models (such as flat or VLANs) and allows users to create and manage their own 

network (OpenFlow and SDN – software defined networking technology).  

OpenStack Dashboard (Horizon) is implemented as an extensible web-based application 

and allows both administrators and normal users to manage and control Cloud resources 

(compute, storage and networking). It is used to create users and projects, to assign users to the 

created projects and to control the resources allocated to the projects.  

OpenStack Identity (Keystone) maintains a database of users, which are mapped to the 

services they are allowed to access. It provides a common authentication system across the 

Cloud, which can be of multiple forms, including username and password, Amazon Web 

Services style login and token-based systems. It also provides facilities to define permissions for 

different types of resources and to set common policies across users and services.  



- 135 - 
 

OpenStack Image (Glance) provides services for disk and server images (discovery, 

registration, delivery). The administrators can create template images, which can be further 

instantiated by the users. The images can be stored in different formats such as Raw, VHD 

(Hyper - V), VDI (Virtual Box), qcow2 (Qemu/KVM), VMDK (WMware) and OVF (VMware, 

others) (LaBarge and McGuire, 2012). 

5.5.5.2. Windows Azure 

Windows Azure is an open and flexible global Cloud platform, which provides 

researchers with the power and scalability of Cloud computing for collaboration, computation 

and data-intensive processing. Windows Azure is deployed around the world, in different regions 

(places where you can choose to place and run your applications): 4 regions in North America, 2 

regions in Europe and 2 in Asia, each regions with huge datacenters, hosting 10s or hundreds 

thousands of servers. These regions are rapidly expanding around the world. The user can run 

his/her application in different regions, even simultaneously, by redirecting the traffic to the 

more convenient region.  

Compute models available in Windows Azure are Virtual Machines, Web Sites and 

Cloud Services. All three allows you to build scalable, reliable applications in the Cloud but it 

depends on the user requirements which one is more suitable.  

Virtual Machines (IaaS): 

x Enable you to be admin on the box; 

x They are durable (if you reboot the VM it will be still there, with all the changes and data 

you stored to disk); 

x SSH or remote desktop connection to run any workload; 

x Private networking possibility: deploy virtual machines in the Cloud and group them 

together so they are part of their own network. You can also then connect it back to your 

corporate network (if you have one) and establish a VPN secure tunnel to link your 

machines running in your own corporate environment up to your virtual machines in the 

Cloud – making them look like they’re all part of one connected network; 

x Huge flexibility both on the compute and networking sides; 

x They have drivers (backed up in the Windows Azure storage) which are triply replicated, 

providing reliability; 
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x Continuous storage geo-replication: when a user saves something in the storage system, it 

is automatically replicated to another data center, in the background (if this option is not 

deactivated).  

Web sites (specific PaaS): 

x Another flexible and very fast deployment compute model in Windows Azure; 

x Are managed services that can be used to run Web sites and Web APIs on the internet; 

x Are deployed in seconds using several flexible deployment options such as FTP, Git or 

TFS (Team Foundation Service); 

x Focus is on building and deploying HTTP based applications and not on VM, servers or 

infrastructure; 

x Allows users to use any tool and any OS; 

x Machine instances can be registered and scaled out as needed to additional VMs. 

Cloud services (full PaaS): 

x Another model used for building applications in Windows Azure Cloud;  

x Enable a broader set of workloads then Web sites while providing more automated 

management then VMs; 

x Enables users to build highly scalable applications and services;  

x Support not only Web based deployments, but also multi-tier architectures where you 

might have a combination of front ends, middle tiers, as well as virtual machines running 

as part of your solution; 

x Supports automated application management, making it easy to deploy, scale out, isolate, 

and recover from any type of hardware failure.  As well as support for automated updates; 

x A Cloud service is in essence a container of related service roles: Web role (Web server 

instances) and Worker role (VM that manage computation and data).  

 

Windows Azure provides also applications building blocks for: Big Data, Database, 

Storage, Traffic, Caching, Messaging, Identity, Media, CDN and Networking.  These are all 

managed services that provide a lot of value. Any of these services can be used with a VM, a 

Web Site or a Cloud Service, giving enough flexibility to consume them based on your needs.  

The storage system used in Windows Azure is a highly available, scalable and secure file 

system, in which you can store any type of data. Users can expose the storage through HTTP 
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URLs and make it either public or private. A new storage can be created in a few minutes and the 

continuous geo-replication is enabled by default. The storage services include: Blob service 

(binary and text data), Queue service (stores messages that may be accessed by a client), Table 

service (for structured storage for non-relational data) and Windows Azure drivers (for mounting 

an NTFS volume accessible to code running in your Windows Azure service).  

The Service Bus is another managed service, which provides secure messaging, relay and 

queue capabilities. It securely integrates cloud-based solutions with on premise environments 

and it enables a very loosely coupled architecture. The Service Bus can be used from any OS 

(whether it’s a VM, Web site or a Cloud Service) and with any supported programming language 

due to the existing cross platform libraries.  

5.6. Fog Computing 

5.6.1. General Description 

Fog computing is a new paradigm which extends the Cloud computing and enables 

computing at the source of the data as it’s pushing the frontier of computing away from 

centralized nodes to the edge of a network. This highly virtualized platform provides compute, 

storage and networking services between end devices and traditional Cloud Computing Data 

Centers. To achieve this, it enables a new breed of applications and services (Bonomi et al., 2012 

[30]).  

The Internet of Things (IoT) (also known as Internet of Objects) is a network of 

individual networks connected together with security, analytics and management. It covers a 

wide range of technologies and envisions a variety of “things” or objects, which are physically or 

virtually interrelated and are able to communicate with each other to deliver a new class of 

applications and services (Atzori et al., 2010 [14]). IoT has as main objective to smartly connect 

intelligent devices supporting wireless communication with existing networks and participating 

to computational tasks, using network resources (Madsen et al., 2013 [142]). The IoT has the 

ability to gather, analyze and distribute data that we can turn into information, knowledge and 

ultimately wisdom (Evans, 2011 [69]).   

The IoT model is based on the H/M/P structure (Madsen et al., 2013 [142]):    

x H – Hardware: sensors, actuators, embedded communication hardware; 
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x M – Middleware: providing on demand storage and data analysis tools; 

x P – Presentation: visualization and interpretation tools; 

By extending Cloud computing services to include smart sensors and intelligent devices, 

Fog computing has a big influence in the advancement of Internet of Things (IoT) (Madsen 

et al., 2013 [142]).    

Some of the main characteristics of Fog Computing (Bonomi et al., 2012 [30], Hajibaba 

and Gorgin, 2014 [103]) make this paradigm appropriate for a number of critical (IoT) services 

and applications:  

x Proximity of data to end-users; 

x Low latency, location awareness and edge location;  

x Wide spread (dense) geographical distribution;  

x Hierarchical organization; 

x Mobility;  

x Huge number of nodes; 

x Large scale sensor networks; 

x Predominance of wireless access; 

x Strong presence of streaming and real time applications; 

x Heterogeneity; 

x Interoperability and federation;  

x Integration with the Cloud; 

x Support for online analytics.  

5.6.2. Architectures  

In a Fog infrastructure, the data, processing and the applications are concentrated in 

devices at the network edges, being thus closer to the end-user, rather than being centralized like 

in Cloud. A Fog infrastructure multi-tier architecture is presented in (Hajibaba and Gorgin, 2014 

[103]) and illustrated in Figure 26. 
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Figure 26: Fog Computing Architecture (Hajibaba and Gorgin, 2014) 

 
Fog collectors of data generated by smart devices (vehicles, sensors, mobiles, etc.) are 

located at the border of the network and represent the first tire in the architecture. This first tire is 

designed for M2M (machine to machine) interaction and provides the following functionalities 

(Madsen et al., 2013 [142]): 

x Collects and process data from devices using a volatile memory (memory that requires 

power to maintain the stored information); 

x Sends control commands to the actuators; 

x Filters the local data and sends the rest of the data to upper tiers, responsible with 

virtualization and reporting, and into the Cloud.  

 

  Figure 26 shows how theoretically Fog is locate below the Cloud and it is similar with an 

optimized transfer medium in which the Cloud services, compute, storage, workloads, 

applications and Big Data can be provided at the edge of the network in a truly distributed way 
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or as (Hajibaba and Gorgin, 2014 [103]) defines it: “FOG brings computing from the core to the 

edge of the network”.  This approach enables analytics and knowledge generation at the data 

source. The idea of distributing the Cloud data and placing it closer to end-users has many 

advantages: eliminates service latency, improves QoS and also eliminates other data transfer 

issues. All this make the Fog computing paradigm a good candidate for Big Data, real time 

analytics, mobile computing and data streaming applications (Hajibaba and Gorgin, 2014 [103]). 

The term of Fog was chosen because fog is a cloud closer to the ground as Fog 

computing is similar to Cloud computing but closed to the data. The aim of Fog computing is to 

bring the hardware and software virtualization from Cloud to earth, closer to the user (Bonomi et 

al., 2012 [30], Hajibaba and Gorgin, 2014 [103]).  The idea of Fog Computing is not to replace 

the Cloud but to enhance it by including smart sensors and intelligent devices. It isolates the user 

data, which are exclusively located at the edge of the network and allows the users to connect 

analytics, security functions and other services directly to the Cloud.  

Fog computing is still a new paradigm, under development and needs some time to 

become mature enough to be used in production systems but the opportunities are huge.  

5.7. Hybrid Computing 

5.7.1. Concept Description 

The scientific applications of high-performance and distributed computing are widely 

spread and the most popular parallel and distributed platforms among scientists are Multicore 

processors, clusters, Grids and Clouds systems. Due to the integration of many-core 

technologies, these infrastructures are undergoing revolutionary changes, providing orders-of-

magnitude speed improvements. Although each of these systems is straightforward to program, 

due to many existing platform specific tools, creating applications able to run on an optimum 

combination of such systems becomes difficult. The programming complexity of the 

applications, running on such heterogeneous and hierarchical platforms, has vastly increased also 

because of data distribution, need of scalability and software heterogeneity (Maassen et al., 2011 

[141], Seinstra et al., 2011 [209]). These issues lead most of the times to the need of 

simultaneously using multiple platforms at the same time. In many realistic scientific research 

areas, domain experts are actually forced to concurrently use multiple infrastructures. All of 
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these infrastructures are undergoing many changes due to the integration of core technologies, 

providing speed improvements but becoming also more heterogeneous, complex and 

hierarchical.  

With platforms becoming more complex and heterogeneous, the programming of the 

applications is even harder and the efficient mapping of these applications to a suitable and 

optimum platform is challenging and complex as well. The problem becomes even harder to 

solve when the programmer has to take into considerations also the selection of an optimum 

computing platform among the available ones or even a combinations of simultaneous usage of 

several computing platforms, depending on the specific applications. The need to use multiple 

computing platforms for running an application is due to cases in which the reservation of a 

sufficient number of computing nodes in a single platform is impossible but also due to the 

distributed nature of the input data, heterogeneity of the software, ad-hoc availability of the 

resources etc. (Seinstra et al., 2011 [209]). 

The idea of a hybrid-computing environment (defined as the use of multiple diverse 

distributed and highly non-uniform high performance platforms and systems simultaneously, to 

achieve peak performances) is not new and it was born mostly because of the urgent need of 

scalability, data distribution, heterogeneity in software and hardware resources – all at once – 

required by many scientific problems of great complexity. This idea was discussed in previous 

works as well (Mateescu et al., 2011 [146], Belgacem and Chopard, 2015 [25], Borgdorff et al., 

2011 [31], Borgdorff et al., 2013 [32], Seinstra et al., 2011 [209]) even though it appears under 

different names such as Hybrid High Performance Computing, Elastic Cluster, Jungle 

Computing, Heterogeneous Distributed Computing, etc.   

In essence, a hybrid-computing environment is illustrated in Figure 27. Such an 

environment will become even more a key component for the research agenda of the coming 

years.   
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Figure 27: A Hybrid Computing Environment 

 

5.7.2. Initiatives 

An interesting approach of distribution among several supercomputing facilities is 

proposed in (Borgdorff et al., 2011 [31], Borgdorff et al., 2013 [32]) where the authors describe 

the concept of Distributed Multiscale Computing (DMC). The proposed approach allows 

different components of a multiscale application to be distributed on several supercomputing 

facilities and run in a tightly and/or loosely coupled way. This gives the users the possibility to 

access at once computing resources that are available at different computing centers. The DMC 

also allows running parts of an application on the most appropriate hardware such as GPU.  

A hybrid High Performance Computing (HPC) infrastructure architecture, also called 

Elastic Cluster, is introduced by (Mateescu et al., 2011 [146]) in which three different types of 

resources are combined and the benefits of these technologies are strengthen: owner-centric HPC 

(traditional), Grid computing and Cloud computing.  

The idea of Jungle Computing (defined as a new distributed computing paradigm) 

presented by (Seinstra et al., 2011 [209]) consists of all compute resources available to an end-
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user, including clusters, supercomputer, clouds, grids, desktop grids, as well as stand-alone 

machines and even mobile devices.  

Software frameworks have emerged as well in this direction, allowing users to execute 

external application over different computing resources such as GC3Pie [78], Ibis [108], etc. 

GC3Pie (Maffioletti and Murri, 2012 [143]) is a Python framework that aims to 

orchestrate the execution of external commands over different computing resources (such as a 

Sun/Oracle/Open Grid Engine cluster, the Swiss National Distributed Computing Infrastructure 

SMSCG, OpenStack Cloud, ARC-based computational grid, etc.). It is a flexible framework that 

allows the implementation of command line driver scripts (in the form of Python object classes) 

that can be customized easily by overriding specific object methods. GC3Pie also conceptualizes 

the executed applications but using plain programming language (i.e., you describe your 

application using a set of Python classes which can be extended and specialized). The tool was 

designed to coordinate the execution of independent applications meaning that it is used to steer 

the computation, not to perform it.  

Ibis software system for high-performance and distributed computing is presented in 

(Seinstra et al., 2011 [209]) as an implementation of a Jungle computing system able to simplify 

the programming and the deployment of applications on such an environment. Another platform 

designed to run on such a Jungle computing system is called Constellation and a specific usage 

and description of this lightweight software is mention in (Maassen et al., 2011 [141]). The scope 

of Constellation is to run applications efficiently on complex combinations of distributed and 

heterogeneous computing hardware. 

5.8. Distributed Applications 
Parallel and distributed applications are programs meant to run over parallel and 

distributed resources, having mechanisms to coordinate the communication between their 

components.  

Some confusion may come up when we talk about concurrent processing, parallel 

processing and distributed processing. Although these terms have common properties, they are 

somehow different. In parallel processing, all the processors share the same memory and can 

easily exchange massages among them. In distributed processing, each processor has its own 

memory, and the information exchange between processor is done through messages.  In the 
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past, distribution use to mean different geographic locations but today it can also refer to 

independent processes running on the same physical machine but in different virtual spaces.  

Considering the parallel programming model, we have to take into account two major 

aspects: the problem decomposition and the interaction between processes. The interaction 

between processes can usually be done either through shared memory or through messages. In a 

shared memory model, the processes share a common address space where they can read and 

write asynchronous, requiring special mechanism for memory consistency (such as locks, and 

semaphores). In a message interaction model, the parallel processes communicate through 

messages either synchronous or asynchronous. The problem decomposition in a parallel model 

can be done either at the process level or at the data level or both. The parallelism at the process 

level is usually called MISD (Multiple Instructions Single Data) or MPSD (Multiple Processes 

Single Data), the parallelism at the data level is labelled as SIMD (Single Instruction Multiple 

Data) or SPMD (Single Process Multiple Data) and both types of parallelism are usually referred 

to as MIMD (Multiple Instructions, Multiple Data) or MPMD (Multiple Processes, Multiple 

Data).  

Parallel applications are considered to be distributed in one of the following cases: 

x The processing of the application is distributed among several processing stations; 

x The processed data are distributed – this can happen due to several reasons such as: 

security policies, access rights, large data transfer costs, etc.; 

x The users of the application are distributed.  

   

Distributed applications can be further classified as following: 

x Batch Processing applications: 

o Singular jobs: 

� HPC jobs (MPI); 

� HTC jobs (BOT, …, Image rendering); 

� Many-Task computing; 

� Service workflows. 

o Periodical jobs: 

� Data centric (Data warehouse, …, Reporting); 

� Administrative (Cron jobs). 
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x Interactive applications:  

o Compute intensive (Multiplayer online games); 

o Data centric (OLTP, …, OLAP). 

5.8.1. Message Passing Interface (MPI) 

The Message Passing Interface (MPI) (Snir et al., 1998 [216], Gropp et al., 1999 [97]) is 

an efficient programming model successfully used in the high performance computing 

community for years. It provides highly optimized communication operations but it can only be 

used with a high-end and high-bandwidth network. Therefore, MPI allows efficient parallel 

programs to run on cluster nodes and multicore machine interconnected with a high speed 

network connection but not on Cloud platforms, which lack of low latency high bandwidth 

network capabilities. Attempts to implement MPI on Cloud platform still exists (Agarwal et al., 

2014 [6]).  

This paradigm requires high skills in parallel programming because the parallelization 

and the communication operation are explicitly handled and codded by the programmer. As 

examples of MPI implementation, we can specify OpenMPI (www.open-mpi.org) and MPICH 

(www.mpich.org).  

5.8.2. Bags – of – Tasks (BoT) 

Bag-of-tasks (BOT) model refers to a parallel computation composed of independent jobs 

that form a single logical computation. A successful BOT implies the successful termination of 

all jobs. BOTs are traditionally the most common type of parallel applications using Grid 

resources (Silberstein et al., 2009 [212]). This model is in general well suited for parameter-

sweep applications, where tasks are independent and operate on different input files.  

http://www.open-mpi.org/
http://www.mpich.org/
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Chapter 6:  Development and Description of 

Different Environmental Applications  

In this chapter we will present a set of environmental applications that we have developed 

and/or we have used as use cases within different national and international research projects. 

6.1. Research Projects 

6.1.1. MedioGRID (UTCN) 

MedioGRID (Parallel and distributed graphical processing on Grid structure of 

geographical and environmental data) (http://cgis.utcluj.ro/projects/mediogrid) was a national 

research project funded by the Ministry of Education and Research by the Excellence Research 

Programme (2005-2008, contract 19CEEX-I03). The main goal of the project was to accomplish 

a pilot program to process the images acquired in real time from meteorological and resource 

satellites, in order to extract the meteorological and environment parameters that characterize the 

atmospheric and terrestrial state. 

MedioGRID was an academic and research Grid network that connected, over a wide 

geographic area, servers and workstations located at each of the seven partners from Cluj-

Napoca, Timisoara and Bucharest. The main objectives of the project were: to develop a Grid 

structure to support the parallel and distributed processing of huge data (geographical and 

environmental); to develop algorithms for Grid based processing of satellite images; to develop 

and experiment environment supervising applications with data extracted from satellite images; 

and to model and visualize the virtual geographical space. 

Within this project, the first version of gProcess platform 

(http://cgis.utcluj.ro/applications/gprocess) was developed, supporting the development and the 

execution of satellite image processing over the Grid infrastructure. We also performed 

experiments on the development and execution of applications in Earth and Environmental 

Sciences domain through the GreenLand application 

(http://cgis.utcluj.ro/applications/greenland). 

http://cgis.utcluj.ro/projects/mediogrid
http://cgis.utcluj.ro/applications/gprocess
http://cgis.utcluj.ro/applications/greenland
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6.1.2. GiSHEO (UTCN) 

GiSHEO (On demand Grid services for high education and training in Earth Observation) 

(http://cgis.utcluj.ro/projects/gisheo) is a research project funded by European Space Agency 

through the ESA-PECS Programme (01 January 2008 - 31 December 2010). 

The main goal of the project was to set-up and to develop a reliable resource for 

knowledge and associated instruments for higher education and training, using existing 

distributed information on Earth observation and Grid technology. This will enable higher 

exploitation of the potential of ESA database information and synergies orientated towards 

education and training in Earth observation. 

6.1.3. enviroGRIDS (UTCN -UNIGE) 

enviroGRIDS (Building Capacity for a Black Sea Catchment Observation and 

Assessment System supporting Sustainable Development, Grant Agreement n 226740) 

(http://www.envirogrids.net/) is an 7th Framework Program for EU Research (FP7) project, 

which ran from 2009 to 2013. The aim of the project was to build capacities in the Black Sea 

region to use new international standards to gather, store, distribute, analyze, visualize and 

disseminate information on past, present and future states of the region to be able to assess its 

sustainability and vulnerability.  

The Black Sea Catchment region is a huge geographical area and a very complex 

environment.  The development of a hydrological model for this watershed implies therefore 

highly interconnected and continuously evolving interactions at many spatial and temporal scales 

(Gorgan et al., 2013 [92]). Among the main objectives of the enviroGRIDS project was also the 

development of a high-resolution model for the entire Black Sea Basin (BSB) able to evaluate 

the impact of land use and climate change on the water resources. The development, calibration 

and execution of the SWAT hydrological model for the BSB region were successfully 

performed.  

Within this project, we have developed and integrated environmental applications such 

as: gSWAT (http://cgis.utcluj.ro/applications/gswat) and GreenLand 

(http://cgis.utcluj.ro/applications/greenland).  

http://cgis.utcluj.ro/projects/gisheo
http://www.envirogrids.net/
http://cgis.utcluj.ro/applications/gswat
http://cgis.utcluj.ro/applications/greenland
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6.1.4. enviroPAD (UTCN-UNIGE) 

enviroPAD (Efficient Development and Execution of Environmental Applications on 

Parallel and Distributed Infrastructures) (https://www.unige.ch/envirospace/projects/enviropad/) 

was an 18-month project run from July 2013 to December 2014 and it was funded by the 

CRUS/SCIEX program (www.sciex.ch). The main goal of this project was to study and 

experiment a general solution/methodology for simultaneously running environmental 

applications on different parallel and distributed environments such as Multicore, cluster, Grid, 

Cloud, etc. The simultaneous execution on multiple environments is a complex and challenging 

task as it involves not only the interoperability of the applications with different parallel and 

distributed environments but also the interoperability and the coexistence of these environments. 

The research in this project was interdisciplinary as it requires the involvement of different 

leading experts from both the Environmental community (provided by enviroSPACE team and 

other colleagues at UNIGE and UNEP) and the Computer Science field (provided by the 

Technical University of Cluj Napoca, with inputs from the UNIGE teams). The developed 

methodology would allow users to easily port environmental applications to run on multiple 

environments and to benefit from all the advantages exposed by these platforms. Both the 

environmental and computer sciences communities will profit from the outputs of the project. 

6.1.5. UNEP Live (UNIGE-UNEP/GRID-Geneva) 

UNEP Live platform (http://www.uneplive.org/) is the main tool for environmental 

reporting and assessment for UNEP. The project has as main goal to facilitate the exchange and 

sharing of latest data, information, assessments and knowledge amongst member countries, 

research networks, communities of practice, indigenous people, and society with the scope of 

keeping the environment and the emerging issues under review.  

EDAP application was developed and integrated in this project.  

6.1.6. LiMES (UNIGE-UNEP/GRID-Geneva) 

LiMES (Live Monitoring of Earth Surface) (http://limes.grid.unep.ch/) is a project 

currently under development at UNEP/GRID-Geneva, which started in 2015 and has as main 

goal to obtain the automatic monitoring of landcover changes using satellite imagery.  

https://www.unige.ch/envirospace/projects/enviropad/
http://www.sciex.ch/
http://www.uneplive.org/
http://limes.grid.unep.ch/
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Within this project we have developed the LiMES application 

(http://limes.grid.unep.ch/).  

 

6.2. gProcess 
The gProcess platform (http://cgis.utcluj.ro/applications/gprocess) is an interactive toolset 

supporting the flexible description, instantiation, scheduling and execution of the Grid 

processing. The gProcess platform is a collection of Grid services and tools providing the 

following basic functionality: 

x Visual manipulation based interactive description of the Grid based satellite image 

processing by pattern workflow like directed acyclic graph (DAG); 

x Development of hypergraphs as complex composition of basic operators, Grid and Web 

services, and subgraphs; 

x Pattern workflow instantiation for particular satellite images; 

x Satellite data management, access and visualization; 

x Workflow based Grid execution; 

x Process execution control and visualization; 

x Optimal execution for appropriate mapping of the processing over the Grid resources. 

The optimal processing is achieved in terms of code optimization, total execution time, 

and data communication costs over the Grid. 

6.3. SWAT Hydrological Model 

6.3.1. General Presentation  

SWAT (Soil Water and Assessment Tool) (http://swat.tamu.edu/) is a physically based, 

open source hydrological model used for simulating different physical processes and predicting 

the impact of water and land management, sediment and agricultural chemical yields in large, 

complex watersheds, with varying soils, land uses, and management conditions. It was developed 

in the early 1990s as a continuation of the modeling experience done by the USDA Agricultural 

Research Service (ARS) and it is meant to assist water resource managers in assessing the impact 

of management on water supplies in watersheds and river basins (Arnold et al., 1998 [13]). The 

goal was to have a model that 1) is computationally efficient, 2) allows considerable spatial 

http://limes.grid.unep.ch/
http://cgis.utcluj.ro/applications/gprocess
http://swat.tamu.edu/
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detail, 3) requires readily available inputs, 4) is continuous-time, 5) is capable of simulating 

land-management scenarios, and 6) gives reasonable results. On top of offering all that, SWAT is 

also an open source model, which helped to quickly become popular worldwide and to gain a 

large user community.  

SWAT is a basin scale, continuous time model that operates on a daily time stamp 

(Gassman et al., 2007 [77]). It divides watersheds into sub-basis and further on into smaller units 

called Hydrological Response Units (HRUs). Sub-basins are spatially connected with river 

network but the HRUs have no spatial connection. HRUs are considered as cells within which 

the hydrologic process can be treated as homogeneous (Arnold et al., 1998 [13]) (homogeneous 

land use, management and soil characteristics). The sub-division in HRUs is performed in a 

stochastic manner by considering the unique combinations of land use, soil, and slope, without 

having a specific location in the sub-basin. This type of sub-division was necessary because of 

the large degree of heterogeneity within a watershed, which can come from differences in 

climate, topography, soil and geology but also from the boundaries separating soil types, 

geologic formations or land covers. The sub-basin analysis is divided into 8 different areas: 

hydrology, weather, sedimentation, soil temperature, crop growth, nutrients, pesticides, and 

agricultural management.  

The data needed for SWAT modeling is usually divided into spatial and no-spatial data. 

The spatial data is formed mostly from raster maps for Digital Elevation Model (DEM), land use 

maps and soil maps, and from vector data such as river geometry (digital stream network). The 

non-spatial data (hydrological and weather data) consists from meteorological variables like 

precipitation, temperature, wind speed, solar radiation, and relative humidity on daily or sub-

daily time steps. Hydrological and weather data usually come as tables (or arrays of points). All 

these data are needed to simulate soil water content, surface runoff, nutrient cycles, energy, soil 

temperature, mass transport, land management etc., at HRU level and then aggregate them at 

sub-basin level (Abbaspour et al., 2007 [2]).  

6.3.2. SWAT Calibration  

Like for most of the other hydrological models, obtaining meaningful results from SWAT 

implies some vital aspects: sensitivity, calibration, and uncertainty analysis (Gassman et al., 2007 

[77]). Sensitivity analysis in the process related with selecting the input parameters that have the 
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greatest impact on the SWAT output. In the literature there are reported a large number of 

sensitivity analysis methods. 

Manual calibration involves comparing measured and simulated values and then using 

expert judgment to determine which values to adjust, how much adjustment they need and in the 

end determine when reasonable results have been obtained (Gassman et al., 2007 [77]). 

Automated techniques on the other side use Monte Carlo or other parameter estimation schemes 

able to automatically detect what is the best choice of values for a set of parameters, usually 

based on a large set of simulations (Gassman et al., 2007 [77]).  

A calibration of the SWAT model is therefore a repeating process of changing the 

parameter values, followed by a model run, until a certain evaluation criteria is met. This process 

is illustrated in Figure 28.     

Both sensitivity analysis and calibration techniques can be evaluated with a wide range of 

graphical and statistical procedures and can be performed either manual or automatically 

(Gassman et al., 2007 [77]). 

As SWAT input parameters are physically based, they are allowed to vary within a 

realistic uncertainty range during calibration. Uncertainty is defined in the literature as “the 

estimated amount by which an observed or calculated value may depart from the true value.” The 

main sources of uncertainty are reported as: model algorithms, model calibration and validation 

data, input variability, and scale (Gassman et al., 2007 [77]). Some examples of these 

uncertainties presented in literature (Abbaspour et al., 2007 [2]): effects of wetlands and 

reservoirs on hydrology and chemical transport, occurrences of landslides and large 

constructions (roads, dams, tunnels, bridges) affecting water quality and quantity, unknown 

wastewater dischargers in the water streams, agricultural activities, etc.   

Monte Carlo simulation, first order error or approximation (FOE or FOA), Latin 

Hypercube (LH) simulation with constrained Monte Carlo simulation, mean value first order 

reliability, generalized likelihood uncertainty estimation (GLUE) are a few of the uncertainty 

analysis reported in the literature.  

SUFI-2 (Sequential Uncertainty Fitting Version 2) is an uncertainty analysis algorithm 

based on a semi-automated inverse modelling procedure (Abbaspour et al., 2004 [1]). Using this 

algorithm, the uncertainty of the input parameters are depicted as uniform distributions, while 

model output uncertainty is quantified by the 95% prediction uncertainty (95PPU), calculated at 
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the 2.5% and 97.5% levels of the cumulative distribution of output variables obtained through 

Latin Hypercube sampling (Abbaspour et al., 2007 [2]). In this algorithm as parameter 

uncertainty increases, the model output uncertainty increases. If for a single parameter value we 

obtain a single model response, the propagation of uncertainty in a parameter leads to uncertainty 

in prediction described by 95PPU. The algorithm starts by assuming a large parameter 

uncertainty, meaning that the measure data initially falls within the 95PPU, then decreases the 

uncertainty in steps based on specified rules. 

 
Figure 28: SWAT Flow Chart 
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Algorithm steps (Abbaspour et al., 2004 [1], Abbaspour et al., 2007 [2]): 

1) Define an objective function. The final parameter ranges are always conditioned 

on the form of the objective function. A combination of different types of 

functions can be possible to yield a “multi-criteria” formulation. 

2) Establish physically meaningful absolute minimum and maximum ranges for the 

parameters being optimized. The assumption is that all parameters are uniformly 

distributed within a region bounded by minimum and maximum values.  

3) Optional (but highly recommended) “absolute sensitive analysis” for all 

parameters in the early stages of calibration (keep all parameters constant to 

realistic values while varying each parameter within the range assigned in step 1). 

4) Initial uncertainty rages are assigned to parameters for the first round of Latin 

Hypercube (LH) sampling: bj : [ bj,min < /= bj </= bj,max], j=1,m. Appropriate 

ranges can be selected by using the sensitivity analysis in step 3. 

5) Perform LH sampling and obtain n parameter combinations, n = number of 

desired simulations (approx. 500 - 1000). Run the simulation program n times and 

save the simulated output variables of interest, corresponding to the 

measurements.  

6) Evaluate the simulations by calculating the objecting function g. 

7) Evaluate each sampling round through a series of measures and identify the 

relative significance of each parameter bi. This gives estimates of the average 

changes in the objective function resulting from changes in each parameter, while 

all others parameters are changing. We therefore have here a “relative sensitivity” 

based on linear approximation, which also depends on the ranges of the 

parameters (only provides partial information about the sensitivity of the objective 

function to model parameters). The ranking of sensitive parameters may change in 

every iteration.  

8) Calculate measures for assessing the uncertainties. Calculate the 95PPU for all 

variables in the objective function by the 2.5% (XL) and 97.5% (XU) of the 

cumulative distribution of every simulated point. Assess the goodness of fit by the 

uncertainty measures.  
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9) Further sampling rounds with updated parameter ranges (as the parameter 

uncertainties are initially large). Each subsequent iteration will have narrower 

parameter ranges, while ensuring that the updated parameter ranges are always 

centered on the top p current best estimates (p is a user defined value). In the final 

step, parameters are ranked according to their sensitivities and highly correlated 

parameters are also identified. The highly correlated parameters with the smaller 

sensitivities should be fixed to the best estimates and remove from other sampling 

rounds.   

Discretization of the watershed into HRUs results in the generation of a huge number of 

SWAT input files in ASCII format. Further on, each sub-basin needs four files to describe the 

sub-basin, weather, water use and water quality parameters. Each HRU needs six files to store 

information on chemistry, ground water, topography, management, routing, and soil properties 

(Abbaspour et al., 2007 [2]). The execution of SWAT hydrological models therefore involves a 

large set of input and output data, a high number of simulations, needed to be performed for 

model calibration to be able to obtain meaningful results, and a large number of parameters to be 

calibrated. Distributed hydrological models are especially difficult to calibrate because of 

different factors such as: time constrains, difficulties in parameterization, non-uniqueness and 

uncertainties in the conceptual model, model inputs, as well as lack of knowledge on parameters 

(Abbaspour et. al, 2010 [3]). All these challenges and issues imply the necessity of large storage 

and computational resources that can be offered by different distributed systems. This need is 

also implied by emergency environmental disasters, which need rapid modelling and analysis. 

The solutions in such cases is either to run the models with fewer simulations and obtain less 

than optimum solutions, or to run the models in large scale distributed systems to obtain 

meaningful and rapid results.    

6.3.3. Black Sea Catchment Use Case  

This use case was developed and partially executed in the frame of the enviroGRIDS 

project. The aim of the project was to build capacities in the Black Sea region to use new 

international standards to gather, store, distribute, analyze, visualize and disseminate information 

on past, present and future states of the region to be able to assess its sustainability and 

vulnerability.  
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The Black Sea Catchment region is a huge geographical area and a very complex 

environment.  The development of a hydrological model for this watershed implies therefore 

highly interconnected and continuously evolving interactions at many spatial and temporal scales 

(Gorgan et al., 2013 [92]). Among the main objectives of the enviroGRIDS project was also the 

development of a high-resolution model for the entire Black Sea Basin (BSB) able to evaluate 

the impact of land use and climate change on the water resources. The development, calibration 

and execution of the SWAT hydrological model for the BSB region were successfully 

performed.  

The Black Sea Basin has a total area of 2.3 million km2 and drains rivers of 23 European 

and Asian countries (Albania, Austria, Belarus, Bosnia, Bulgaria, Croatia, Czech Republic, 

Georgia, Germany, Hungary, Italy, Macedonia, Moldova, Montenegro, Poland, Romania, 

Russia, Serbia, Slovakia, Slovenia, Switzerland, Turkey, and Ukraine) into the Black Sea, the 

most important rivers in the basin being Danube, Dnieper, Don, Kuban, Kizilirmak, and Sakarya. 

The Black Sea Basin is presented in Figure 29.  

 

 
Figure 29: Illustration of Black Sea Basin 
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The sub-basins were delineated with a threshold area of 100 km2, resulting 12,982 sub-

basins and each of this was split into HRUs having unique combinations of slop, land use classes 

and soil types, resulting a number of 89,202 HRUs (Rouholahnejad et al., 2014 [201]). The 

simulation period was 1970-2006 using 3 years of initialization (1970-1972), 24 years for 

calibration (1973-1996) and 10 years for validation (1997-2006). Even though the model runs on 

a daily time step, monthly outputs were used for the calibration and validation of the model 

(build using SWAT2009). 

Sensitivity analysis, calibration, validation, and uncertainty analysis were performed for 

water quantity, water quality, and crop yield (Rouholahnejad et al., 2014 [201]). SUFI-2 

(Abbaspour et al., 2004 [1], Abbaspour et al., 2007 [2]) algorithm was used for calibration and 

uncertainty analysis. This is a tool used for sensitivity analysis, multi-site calibration and 

uncertainty analysis, capable of analyzing a large number of parameters and measured data from 

many gauging stations simultaneously offering therefore a high level of parallelization. 

Using this algorithm, all sources of uncertainty are mapped to a set of parameter ranges. 

These ranges are initially assigned to calibrating parameters based on sensitivity analysis, 

knowledge and literature. After this, sets of Latin Hypercube (LH) samples are drawn from the 

parameter ranges and the objective function is calculated for each parameter set. The uncertainty 

is quantified using the 95% prediction uncertainty (99PPU). The goodness of the model 

performance is evaluated considering the calibration and the uncertainty level, based on some 

defined rules regarding on how good the measured data is (what percent it falls in a certain 

uncertainty band) and how well the model matches with the observations. Two measured are 

used at this step, referred to as P-factor and R-factor. The P-factor provides a measure of the 

model’s ability to capture uncertainties (what percent of the measure data falls in the 95PPU 

uncertainty band). This index should have a value of 1 for perfect scenario. The R-factor is a 

measure of the quality of calibration and indicates the thickness of the 95PPU band. In an ideal 

case, this index is close to 0 (Abbaspour et al., 2007 [2], Rouholahnejad et al., 2014 [201]).  

The model input and output files (which can easily be thousands of files for high 

resolution models such as the one for the BSB) are stored in a TxtInOut directory. All the initial 

files are copy in a first phase in the BACKUP directory. These files will remain unchanged 

during the calibration process to have in the end a reference.  

SUFI-2 algorithm:  
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x Pre-processing phase (SUFI2_pre.sh) in which a Latin Hypercube (LH) procedure 

draws samples from the parameter ranges (SUFI2_LH_sample.exe). The 

parameter sets thus sampled are independent, allowing an easy parallelization.   

Theoretically all samples can be run in parallel, depending on the number of 

available computing resources. If all simulations were run in parallel, the theoretic 

time of an iteration would be the time of the longest simulation. 

x  Execution of SWAT_Edit.exe program, which copies the set of sampled 

parameters from par_val.txt into their appropriate locations in the SWAT input 

files. Depending on the number of model input files, this process can take a long 

time (open each file, make changes, save file, close file). 

x Execute the SWAT model (SWAT2009.exe) and extract the outputs of interest 

from the SWAT output files (output.sub, output.rch, …) 

x Post-processing phase (SUFI2_post.sh), in which a number of programs are 

executed: 

o SUFI2_goal_fn.exe – calculates the objective function. SUFI2 algorithm 

normally allows seven different functions (mean square error, summation 

and multiplicative forms of men square error, Chi square, Nash-Sutcliffe, 

weighted r2, and ranked sum of square error aimed at fitting the frequency 

distributions (Rouholahnejad et al., 2014 [201])). Each function implies 

another set of results meaning that the final parameter ranges are always 

conditioned on the chosen objective function. The use of “multi-objective” 

functions is also possible, where different variables are included in the 

objective function.  

o SUFI_95ppu.exe – calculates the 95%prediction uncertainty. SUFI2 maps 

uncertainties on the parameters in the model by fitting all measurements in 

the 95PPU (making the uncertainty band as small as possible) 

(Rouholahnejad et al., 2014 [201]). 

o SUFI2_new_pars.exe – calculates updated parameters for the next 

iteration. The assumption is that all parameters are uniformly distributed 

within a region bounded by minimum and maximum values (defined by 

the user). The absolute parameter ranges should be as large as possible but 
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still physically meaningful (usually based on literature and professional 

judgment).  

 

This process repeats until a satisfactory value of the objective function or model 

evaluation is achieved. The steps of this algorithm, as adapted from (Rouholahnejad et al., 2014 

[201]), are illustrated in Figure 30. After the calibration is finished, the outputs file from each 

parallel processing directory are collected and merged in the SUFI2.OUT directory.  

From a computational point of view, we can simplify the SWAT calibration process as 

the execution of a variable number of iterations till the calibration criteria is satisfied. Each such 

iteration consists of a number of independent simulations (as shown also in Figure 30). After 

each iteration, the user can change the chosen objective function to assess the impact of the 

function on the model’s results. This simplified view is illustrated in Figure 31. The simplified 

steps executed within an iteration are:  

x Pre-processing – this step is executed only once per iteration and at this phase, the 

parameters are generated within a defined range for each simulation, using LH algorithm. 

For each generated set of parameters, we have a corresponding simulation. In general, the 

number of simulations should be quite high, around 500-1000.   

x Execution – actual model execution.  

x Post-processing – This phase is executed at the end of the simulations and it’s meant to 

process the output data for the next iteration.  

 

For each model calibration, we need the following directory structure: 

x Model inputs – all the model input files plus configuration files; 

x Calibration outputs – holding the calibration outputs;  

x BACKUP – a copy of the model inputs which is not affected during the calibration 

process; 

x Executable – holds the model executables which are dependent on the model 

development.  
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Figure 30: SWAT Calibration Flow 

The calibrated model for the Black Sea Basin was used further on to calculate water 

resources component: blue water, green water flow, and green water storage, but also to assess 

the impact of land use and climate change on present and future water resources at high spatial 

and temporal resolution. The overall picture and detail conclusions can be found in final 
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enviroGRIDS reports as well as in (Rouholahnejad et al., 2014 [201]). The model outputs could 

be used to establish environmental goals, taking well-informed decision and develop monitoring 

strategies.   

 

 
 

Figure 31: Simplified SWAT Calibration 

 

6.4. gSWAT 
gSWAT application (http://cgis.utcluj.ro/applications/gswat) was developed in the 

framework of enviroGRIDS project and allows the user to calibrate SWAT models in a flexible 

and interactive manner by taking advantage of the Grid infrastructure. The graphical user 

interface links the user to the Grid infrastructure in a flexible and transparent way. It uses 

intuitive user interaction techniques that allow different categories of users to use the application. 

http://cgis.utcluj.ro/applications/gswat
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gSWAT is a Web application that may be used by specialists in calibration process of the SWAT 

models or by students who are learning the calibration process. For the calibration process, 

which is computational intensive and needs a lot of storage space, the Grid infrastructure offers a 

distributed execution environment and storage space as well for the outputs generated by SWAT. 

6.5. GreenLand 
The GreenLand (http://cgis.utcluj.ro/applications/greenland) is a Grid based application 

that offers scalability when dealing with large number of users and large processing data volume. 

The application has as main objective the generation and execution of workflows, based on 

satellite images, over the Grid infrastructure. In this case, each workflow could be represented as 

a DAG (Direct Acyclic Graph). The nodes of the graph could take the form of a simple operator 

or a sub-workflow. Multiple nested levels are allowed within the GreenLand application. Due to 

the computing and storage capabilities offered by the Grid infrastructure, the workflows 

execution times are significantly improved in comparison with standalone/cluster processing. 

6.6. EDAP – Environmental Data Acquisition and 

Processing 

6.6.1. Introduction 

EDAP – Environmental Data Acquisition and Processing – is an environmental 

application, which was initiated in 2015 and it is still under development at UNEP/GRID-

Geneva (United Nations Environmental Program - Global Resource Information Database – 

Geneva - http://www.grid.unep.ch). EDAP is used to automatically download environmental data 

(environmental variables) from different providers (World Bank – WB, Food and Agriculture 

organization of the United Nations – FAO, etc.) as well as from custom user input files, to 

process the data and to deliver it in different standard output formats. Currently, EDAP is used as 

an alternative way to provide data for UNEP Environmental Data Explorer – EDE 

(http://geodata.grid.unep.ch/).  EDE is the authoritative source for data sets used by UNEP and 

its partners in the Global Environment Outlook report as well as other integrated environment 

assessments and it gives access to a broad collection of harmonized environmental and socio-

economic statistical data at different aggregation levels, together with a considerable selection of 

http://cgis.utcluj.ro/applications/greenland
http://www.grid.unep.ch/
http://geodata.grid.unep.ch/
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geospatial data (such as maps, graphs) usually at global and regional scales. Its online database 

holds more than 500 different variables (http://geodata.grid.unep.ch/extras/datasetlist.php), 

covering themes like Freshwater, Population, Forests, Emissions, Climate, Disasters, Health and 

GDP. EDE serves most of its data to the UNEP Live platform.  

In the following we will present first a brief description of the EDE and the associated 

data flow, to give the context in which EDAP is integrated. After that we will present in detail 

the main objective of EDAP, the architecture and its components, the data flow and main 

functionalities.  

6.6.2. Context – Environmental Data Explorer (EDE) 

Environmental Data Explorer – EDE provides access to a large collection of harmonized 

environmental data and socio-economic statistical data sets, and this data are always furnished 

with associated metadata. EDE is not just a simple re-distributer of data (taken from different 

providers) but it also provided a value added data information.  

The main features of EDE are (De Bono, 2016 [51]): 

x Provides data at national level for 237 countries (when available) – these data are never 

modified and respect the original value provided by the original source; 

x Makes available aggregated indicators at regional and global scale following a proven 

complex protocol in order to estimate the eventually missing values for a country and 

consequently allow a more realistic aggregation process; 

x Follows main international standards (ISO19115, OGC); 

x Human interaction: data are selected, checked by real operators; 

x Continually updated to provide the latest data. 

EDE manages selected environmentally oriented indicators from more than 60 different 

sources such as (in the order of importance and amount of data retrieved): FAO – FAOSTAT, 

World Bank, IEA, UNFCCC, JRC-PBL, UN Population, UNSD, FAO-Aquastat, CRED, FAO-

FRA, OECD, UNESCO, WHO, FAO-Fishstat, etc. The data included in EDE are always 

retrieved directly from the original sources, to avoid any possible modification and to guarantee 

the most up to date information. In most of the cases, the data are downloaded manually from 

these data providers, they are formatted using different templates, depending on their original 

http://geodata.grid.unep.ch/extras/datasetlist.php
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structure and they are inserted into a PostgreSQL database, where they are processed 

automatically, using different SQL functions and procedures.  

The schematic representation of the EDE data flow is presented in Figure 32 and has five 

main steps: 1) Retrieve data from the source (supervised or automatically); 2) Data processing 

environment; 3) Offline aggregations and data verification; 4) Publish data and metadata on EDE 

public server; and 5) Publish metadata on EDE dedicated GeoNetwork. The steps for which 

EDAP provides an automatic alternative way of retrieving and processing the data are 

highlighted with red and include basically step 1b and 2 i.e. automatic acquisitions of data from 

different providers (WB, FAO, etc.) or user predefined input files and automatic processing of 

the data.     

 
Figure 32: EDE Data Flow and EDAP (adapted from: De Bono, 2016) 
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6.6.3. Scope and Objectives 

The EDE database contains an official list of 237 countries/territories, each associated 

with their related international acknowledged counties cods (ISO2, ISO3, UN, etc.). When 

retrieving the data (indicators) from different providers, we have to match the providers supplied 

standard code with the codes in our database. In some cases, unfortunately the providers do not 

have up to date standard codes and on top of this there is no general agreement on the countries 

and departments subdivisions (a country like France can incorporate or not overseas territories, 

depending on the provider). There are also situations in which different data providers have 

different measure units for data (indicators), requesting variable recalculation to appropriate 

standard units for a further processing. All these issues are usually treated manually by 

specialists at UNEP-GRID Geneva, making the data treatment process a time-consuming task 

and making the automation of data processing a complex procedure.  

The main goal of EDAP is to offer a completely automated flow to access external data 

(coming from different providers), to integrate the data into the EDE system and to process it to 

get the meaningful information, which has to be presented in different formats and for different 

purposes. The main objectives of this project are to reduce as much as possible the human 

intervention while integrating the accumulated expertise in an automatic workflow for data 

management; to reduce also the time needed to update the data (indicators) and metadata present 

in the current EDE system, which serves the UNEP Live platform; to avoid human errors implied 

by processing large heterogeneous datasets; and to make the data management process accessible 

to non-specialists.  

Currently there are several identified factors, which prevent or make the automation 

process difficult to achieve (De Bono, 2016 [51]):  

x Most of the providers do not have a standard way to share their data i.e. they do not 

provide a specific Web service and or a specific data structure/format, making it difficult 

to develop automatic scripts to harvest their data. 

x In the case the data providers actually have a Web service interface to download data, 

there is still no single protocol applied by all providers, and in most of the cases each 

provider uses its own style. This means that dedicated scripts have to be developed for 

each particular provider, reducing the code re-usage to the minimum. Some interesting 

initiatives such as Quandl (https://www.quandl.com/) got our attention. This library 

https://www.quandl.com/
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contains modules (developed in Python, R, etc.) allowing unified, but size limited access 

to hundreds of databases. Although this library is rather oriented towards financial and 

economic data, they give access to several Open Databases, including some International 

Organizations such as UN Statistic Division, WHO, FAO, etc. 

x The frequency of data update is different for each data providers and this is an important 

factor that has to be considered. If the data is updated several times during the year with 

irregular and not always predictable frequency, as in the case of the WDI (World 

Development Indicators) – World Bank, then automation becomes extremely useful. In 

case of infrequent updates (such as FAO-FRA which updates the data every 5 years) or 

indeterminate, the need of automation becomes less of a priority. 

x An automatic update and processing only applies to already existing data.  

 

Taking into account the above mentioned constrains and restriction, we have started the 

development of EDAP considering the most important two main data providers in EDE, i.e. 

World Bank and FAO. We also provide a third option for retrieving the data from user specific 

input files (which can be given in 3 different formats, based on the data structure). The third 

option was introduced dues to the frequent needs the specialists have on introducing particular 

mix of data sets (maybe collected from many different small data providers) in the system. In the 

future we also consider the usage of Quandl library to gain access more easily to data coming 

from small different other data providers.   

6.6.4. EDAP System Architecture 

The architecture of EDAP system is presented in Figure 33. We can distinguish 2 main 

components: Data Access and Data Processing.  

The Data Access component contains the data providers, the EDE database and the API 

layer. Currently we have 2 data providers, WB and FAO, and a file system containing excel user 

input files. In the future we plan to add other smaller data providers into the system (based on the 

EDE requirements) and one possible solution, to avoid interacting with each separate provider, is 

to use Quandl, which is a tool delivering financial and economic data from hundreds of sources 

into different formats via different popular tools (excel, CSV, R, etc.) The API layer contains at 

the moment a specific connector (API) for each data source. This specific connector connects to 
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the data source (WB, FAO or the user input files), queries the required data based on specific 

protocols, handles data exceptions (missing countries, different county codes, missing values, 

etc.), fetches the data in different Python data structures and exports the data in a standard CSV 

file format.  After this, the data is directly inserted in our PostgreSQL database. At this point, the 

data can enter the standard data processing flow, which is the same for all data. This process is 

described in detail in the next section.  

 

 
Figure 33: EDAP Architecture 
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The current version of EDAP is developed in Python and provides the user 3 different 

executions flows, based on the data provider: WB, FAO – FAOSTAT, and User Input File. The 

difference in the above-mentioned cases is the acquisition of the data. 

In the case of WB, the application uses the wbdata (https://pypi.python.org/pypi/wbdata) 

python library to connect to the WB site and download the required data.  The list of required 

indicators and required countries for which data is needed from WB is already set up in our 

database.  To be able to request this data from WB some appropriate formatting of the data is 

needed.  When requesting data from WB database, we take the list of available data and we 

match it with the list of required data. We only perform queries for the resulting set of data after 

matching.  

In the case of FAO, we retrieve the data using the FAOSTAT API 

(http://fenixapps.fao.org/repository/api/) and REST web-services. Similar with the WB case, the 

list of required indicators, with their corresponding codes, and the list of required 

countries/regions are stored in our PostgreSQL database.  

The third option given by the EDAP system is to insert the data automatically in the 

database, using predefined user input files. The system is capable to parse 3 types of excel 

custom input files and the difference between the 3 types of files is the display and the format of 

the data. 

The Data Processing component incorporates a series of data processing services. These 

services are used in the data execution flow and offer functionalities such as:  

x Format the data based on required standards; 

x Handle countries exceptions (aggregation/disaggregation), which can occur depending on 

the data provider. Especially in the case of FAO, there are several known countries 

exceptions that have to be handled in the automatic data processing flow; 

x Clean empty data entries in the database, which can appear either due to the lack of data 

from providers or from the lack of data in general. The system allows the user to choose 

in the configuration file the maximum number of empty data entries that are allowed for 

one year. If there are more empty values in the database than this number, the whole year 

is clean for that indicator; 

https://pypi.python.org/pypi/wbdata
http://fenixapps.fao.org/repository/api/
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x Interpolate data, currently based on two different interpolation algorithms, presented in 

the next section;  

x Format the output data based on required standards and generate output tables both for 

initial data and interpolated data. At least one output table is generated for each required 

indicator; 

x Update metadata, which is based on the ISO 19115 standard and has a series of attributes; 

x The update process usually involves the modification of just a few attributes; 

x Format and plot output data automatically using R. This step is needed to help the output 

data quality check by the specialists before inserting the output data in other execution 

flows or other systems (such as EDE); 

x Export the output data (created indicator tables), using sql dumps, for integration with 

other systems (data sharing). 

 

The two main components (Data Access and Data Processing) of EDAP systems are 

based on top of a computational environment, which can be formed from local server and/or 

cluster machines and/or a Cloud infrastructure.  

In the next section we describe in detail the data processing flow and the associated steps 

data is following.  

6.6.5. Data Processing Flow 

Standardized formats for metadata are a must for automated production, processing and 

exchange of data between national and international organizations. The EDE indicators are 

described, cataloged and served using the ISO 19115 “Geographic Information – Metadata” 

standard, from ISO/TC 22.  The main issue is that most of the data providers used in EDE do not 

apply this standard for metadata or any other standard for that matter. This implies, that in the 

case a new indicator is added in the EDE database, metadata are inserted manually and in most 

of the cases, the additional information has to be checked in provider’s documentation, if 

available. This is another factor, which makes the automation of data a complex task. After the 

standard metadata is attached to data, the update of an existing indicator requires only the 

modification of a few metadata sections, which can be easily done within an automatic flow.  
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EDAP inherits the requirements and constrains imposed by EDE although it is an in-

depended system and can be used to provide data for other systems too. Two EDE important 

constrains, applied also in the case of EDAP are:  

x National data (values), supplied for 237 countries when available, are not modified in any 

way as they are released from the original data source. The system only ads, if they are 

not already available, standard names and county codes. Base on this national data, the 

system provides functionality to aggregate the values (indicators) at regional and global 

scale, following a proven complex protocol to estimate the eventually missing values for 

a country/region and to provide a more realistic aggregation process.  

x Data always includes metadata, following the ISO19115 standard. In most of the cases, 

the metadata is missing and it has to be added by specialists.     

 

Regardless the data source, once the data is in our database, the execution flow is the 

same for all the cases: 

1) Gather and link all the metadata information;  

2) Clean the empty fields; 

3) Interpolate missing data (if possible); 

4) Format data and create Indicators Tables (for initial data and for interpolated data); 

5) Update metadata; 

6) Plot data using R graphics; 

7) Export the data. 

6.6.5.1. Gather and link all the metadata information 

When gathering the data in the table ALL, we perform a series of LEFT JOIN, having as 

main table the initial data insertion table. The LEFT JOIN operation will take all the data from 

the initial data insertion table and will add extra rows for all the extra matches in the LEFT 

JOINED tables. The extra rows in our case are added from the stat.cnty_completness_score 

tables because it matches 3 different completeness scores (in general: local, regional and global) 

for each data, depending on the aggregation type we can have (geo_agg_type). There are 

exceptions for some data, but in principles it triples the number of rows in the initial data 

insertion table (stat.data_file or stat.data_wb or stat.data_fao). If we have a huge number of 
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indicators (a large amount of data) the script can take a lot of time if we triple the nr. of rows in 

the database. As a solution, we give up 2 columns (geo_agg_type and compltn_score 

corresponding to each eggregation type) and we added 3 columns: compltn_score_local, 

compltn_score_regional and compltn_score_global. This way, we keep in the database only one 

row for each combination of (country, indicator and year) not 3. The scripts are more efficient 

and the efficiency is proportional with the amount of processed data. 

6.6.5.2. Clean empty fields 

This operation is done in the application to clean the database of the useless data. For the 

moment, the application allows the user to configure the level at which we what to clean the data 

by setting the CLEAN variables value in the configuration file (ede.cfg). This variable represents 

the minimum number of countries having value for a certain indicators per year, below which we 

delete the row in the database corresponding to that year and that indicator. This means that the 

cleaning algorithm will clean all the lines in the database corresponding to indicators and years 

for which we have values for less than a certain number (CLEAN) of countries.   

6.6.5.3. Data Interpolation 

Interpolation is a method used for estimating the value of a function between two known 

values.  Linear interpolation is the estimation of a new value by connecting two known values 

with a straight line.  If the known values are (x0, y0) and (x1, y1), then we have the following 

relation for point (x, y) that we want to interpolate: 

(y-y0)/(x-x0) = (y1-y0)/(x1-x0) 

This means that the y value for some point x is: 

y = y0 + (y1-y0)* (x-x0)/(x1-x0) 

This is the formula for linear interpolation in the interval (x0, x1), which can also be seen 

as a weighted average.  

The interpolation algorithms used in EDAP is based on the COMPLETE variable, which 

can be adjusted in the configuration file. This variable represents the number of missing years 

(for an indicator and a country) still acceptable to interpolate. This means that if we have a gap 

with a number of years larger than COMPLETE, we leave it like that, no interpolation is done.   

Currently we have 2 options of interpolation: 
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x Interpolate the values for the missing years and setting all missing values to the mean of 

the last known value and the next know value after the series of missing values.  

x Linear interpolation: set the value of the missing years as a weighted average.  

6.6.5.4. Format data and create Indicators Tables 

We create a table for each indicator that we have in the database using the name specified 

in the metadata table. The tables are created both for original data and for the interpolated data.  

6.6.5.5. Update metadata 

The metadata is updated after the creation of the indicator tables and only for the 

indicators for which the creation of the resulting table was successful. The metadata is updated in 

the current date and an SQL file is also generated with the used update queries.  

6.6.5.6. Plot data using R graphics 

R graphics are generated for the resulting data (indicators table) as a way to check the 

consistency of the obtained data (especially the interpolated data) 

6.6.5.7. Export the data 

After the specialist has analyzed the consistency of the data in the resulting indicators 

tables (using the R graphics), the tables are exported (using sql dump) and ready to be integrated 

in the production database or in other data flows.  

 

6.7. LiMES – Live Monitoring of Earth Surface 

6.7.1. Scope and Objectives 

Automatizing most of the processes for monitoring large amount of sites has become an 

essential goal considering the Information Age in which we live and the high velocity, variety 

and volume of data we experience. The main scope of LiMES project is precisely to automatize 

the processing of satellite imagery for monitoring landcover changes of several hundreds of sites 

per year (which can be chosen for example form the UNEP environmental hotspots, from the 

RAMSAR (RAMSAR  [183]) sites, monitoring protected areas or SDGs area of interest). The 
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whole process of processing satellite images is a complex one and implies several intermediary 

steps: discovery, download, conversion of raw files into images, actual processing (computation 

of index, pan-sharpening, image corrections, etc.), and display (Figure 34). All these steps are 

automated but the main issue is related to the image selection and the quality check. The 

intention is to reduce to the minimum the human intervention and to facilitate as much as 

possible helping options for the user.  

Currently we use satellite imagery coming from Landsat 5, 7 and 8 but in the future we 

also plan integration of other satellite data such as Sentinel 2.  

LiMES capabilities: 

x Allows a fast and easy update of the site through an automated workflow; 

x Based on fully open source and OGC standards compliant components and technologies: 

Python, GRASS, Gdal, OWS, OpenLayer; 

x Automatic Processing – based on Python and PyWPS;  

x Scalability – allows the processing and monitoring of thousands of sites; 

x Can be used for various thematics, such as: Hotspots monitoring, RAMSAR, Protected 

Areas, and at various geographical scales; 

x Flexible – for easily adding other (satellite) data providers;  

x Full transparency – all processes as well as all used images (and they reference) are 

available as metadata. 

LiMES next challenges: 

x Allow parallel processing of sites – the results will be considerable improved as the 

number of sites increases; 

x Visual compatibility of images; 

x Mosaicking;  

x Cloud masking;  

x Management of no-data in surface statistics; 

x Display and result analysis filtered by date: 

o Year – to monitor seasonal variations; 

o Month – to monitor long-term variations. 

x Allow more (guided) user interaction in image selection;  

x Result Image Ranking by the users. 
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6.7.2. System Architecture 

 
Figure 34: LiMES Architecture 

The LiMES architecture is presented in Figure 34 and it’s composed of 7 main 

components: Remote Sensing Data Acquisition, Data Providers, Computing Environment, 

Processing Layer, Geoserver component, Data Analysis and Validation, and User Interface.  
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The scope of LiMES is to hide the processing complexity as much as possible while 

giving the user a large degree of flexibility. All the functionalities in LiMES are offered as 

python scripts and exposed as WPS processes in a dedicated PyWPS instance installed on our 

server (UNEP/GRID-Geneva – UNIGE network). The WPS processes’ results are either exposed 

automatically in Geoserver as WMS, WCS or they are further on integrated on the site using 

javascript and HTML. The publication of results in Geoserver is done automatically using REST 

API (gsconfig and curl libraries). 

6.7.3. Execution Flow 

The execution flow of LiMES is presented in Figure 37, where all the main steps of the 

flow are clearly emphasized and delineated: discovery, download, processing, validation and 

display.  

Within the processing phase, a lot of operators can be applied on images. One example 

implementation is the calculation of Normalized Difference Vegetation Index (NDVI), following 

the formula:  

 
Figure 35: NDVI Formula 

Where:  

x NDVI – Normalized Difference Vegetation Index 

x nIR – electromagnetic reflectance in Near Infra-Red (not equal to zero) 

x Red – electromagnetic reflectance in Red (not equal to zero) 

 

An example of NDVI calculation is illustrated in Figure 36. 
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Figure 36: NDVI Example 

 
Figure 37: LiMES - Execution Flow 
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6.7.4. Use Cases 

6.7.4.1. Site Overview 

The LiMES site (Figure 38) is still under development but it already gives users different 

options for selecting existing monitoring area and to further apply different processing flows and 

visualize different details of that area.  

 

 
Figure 38: LiMES - Site Overview 

 

Figure 39 presents an example of monitoring site – the area of Mesopotamian 

marshlands, one of the world great wetlands, covering an estimated area of 15 000 – 20 000 km2 

(5 792 – 7 722 square miles), located at the confluence of the Tigris and Euphrates rivers in Iraq. 

The marshlands are an important center of biodiversity, play a vital role in the intercontinental 

migration of birds, and have long supported unique human communities. Upstream damming as 

well as drainage activities in the marshlands themselves have significantly reduced the quantity 

of water entering the marshes. Together these factors have led to the collapse of the ecosystem. 

Re-flooding, by breaching of dykes and drainage canals has begun for restoring the marshlands 
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and as a result of these activities, vegetation and wildlife have returned to some parts of the 

marshes. 

 
Figure 39: LiMES – Mesopotamian marshlands, Iraq 

 

6.7.4.2. Side By Side Option 

The Side by Side option gives users the possibility to visualize in comparison up to three 

images. The zoom is synchronized so that the users can navigate within the images and the 

corresponding area in the other images will be synchronized for an easy comparison of the status 

across time.  
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Figure 40: LiMES - Side by Side Option 

Figure 40 presents the Side by Side option for Mesopotamian marshlands. The three 

remote sensing images provide an illustration of the changes in this area. In 1973 the original 

marshlands were largely undisturbed. In 2000 the area was drained, with most of the wetlands 

having disappeared. On the other hand, the 2014 image illustrates recovery in progress with 

major portions in the central and western sections having been restored to some extent (yellow 

arrows) due to restoration activities.  

6.7.4.3. Swipe Option  

The Swipe option shows the impacts of different factor over the selected site, comparing 

the first available image with the last available one.   

Figure 41 and Figure 42 show the Swipe option of the same Mesopotamian marshlands 

area, site presented in previous sections. Using this option, the situation of this area (drained area 

and restoration activities) is even more emphasized over the time. In this case, only the 

differences between the past and the current situation are shown, no intermediary steps like in the 

case of the side by side option.  
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Figure 41: LiMES - Swipe Option 

 

 
Figure 42: LiMES - Swipe Option – Comparison 
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6.7.5. Conclusions 

The potential applications of LiMES are multiple and include: regularly updating the 

UNEP hotspots, monitoring the status of RAMSAR and other protected areas, where landcover 

changes monitoring is required, supporting the development of SDGs for a sustainable 

development, etc. As the satellite images in LiMES can be served using OGC image standards 

geospatial services, LiMES can be easily integrated with any interoperable platform that follows 

the OGC standards, including UNEP-Live.   

6.8. Global Flood Model 
A streamflow simulation framework, formed by the coupling of a Global Climate Model 

(EC-Earth) with a hydrological model (Continuum) was used to produce 140 years of streamflow 

time series on a large number of stations, all over the world (in all the 5 continents) (Silvestro et 

al., 2016 [215]). The scenario includes a current climate time window (from 1950 to 2012) and a 

future climate time window (from 2013 to 2094), having a spatial resolution of 1.125 and a time 

resolution of 3 hours. The time series were than post-processed to improve the knowledge about 

the impact of a possible climate change on streamflow extreme values.  

6.8.1. Continuum Hydrological Model 

Continuum (Silvestro et al., 2013 [213], Silvestro et al., 2015 [214]) is a distributed and 

continuous hydrological model, which aims at balancing the necessity for a complete description 

of physical processes with the goal of avoiding over-parameterization. This means that a special 

attention is given to reducing as much as possible the parameterization of the physical processes 

(so that land information can be extensively used as a constraint to parameter calibration) but in 

the same time, the model indents to maintain the necessary details of all the terms of the 

hydrological cycle. The model was designed to be implemented in different contexts but 

especially on data-scarce environments (with no stream flow data). All the main hydrological 

phenomena are modeled in a distributed way.  

The Continuum model requires five meteorological variables as input: rain, temperature, 

solar short wave radiation, air relative humidity, and wind speed. These inputs are produced by 

the EC-Earth model (Moss et al., 2010 [155]), a state-of-the-art Global Climate Model (GCM), 

developed in the framework of the European Consortium EC-Earth.  The EC-Earth model 
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simulates climate in the period 1960–2012, using reconstructed historical anthropogenic forcings 

and solar variability, and creates three scenarios for the period 2006–2094, based on the three 

representative concentration pathways (RCPs) for anthropogenic emissions (Silvestro et al., 2016 

[215]). The five input variables generated by the EC-Earth model need to be downscaled (using 

different techniques, based on the variable) to be further used in the hydrological model from 

1.125 deg (EC-Earth) to 0.083 deg (Continuum) spatial resolution. The temporal downscaling 

was not considered because the EC-Earth output already has a 3 hours fine resolution.   

A basin is represented using a regular square mesh based on a DEM, the flow directions 

are identified based on the directions of maximum slope derived by the DEM and the drainage 

network considers a representation, which distinguishes between hillslope and channeled flow 

and it is able to describe hydrodynamic and morphological conditions. Infiltration and subsurface 

flow exploit land use information and climatology to set the infiltration parameters and the 

overland runoff is distributed with differentiation between hillslope and channel flow (Silvestro 

et al., 2016 [215]).    

6.8.2. World Scale Scenario 

Considering the world scale of the application, the estimation of the model parameters 

does not allow a detailed calibration for each basin and for each section. Nevertheless, for such a 

scenario, the objective is not to reproduce with high precision all the characteristics of the 

hydrographs but rather to estimate the annual maxima daily streamflow (AMDS). The calibration 

of the hydrological model was done using stations where at least 15 years of daily data were 

available and the analysis was carried out on a larger number of sections, including these where 

only monthly streamflow data were available. A detail description of the hydrological model 

calibration is given by Silvestro et al. (2016) [215].   

Once the model was calibrated, a unique continuous simulation was run from 1960 to 

2094, generating a sample of 134 AMDS for each station. To be able to estimate possible 

differences between current and future climate of a given time period, the entire period was 

divided in three periods:  

x Current historical climate HC (1960 - 2012); 

x Near future climate NF (2010 - 2060); 

x Far future climate FF (2044 - 2094); 
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In such a large scale scenario, we can find a large number of sources of uncertainty 

related to the elements of the chai used to generate the streamflow time series, such as: the GCM 

output, the downscaling procedure, the hydrological model structure and parameterization, etc. 

All these factors make the statistical analysis and the estimation process about a trend at global 

scale even more complex. Several approaches to reduce these uncertainties are presented in 

(Silvestro et al., 2016 [215]). 

Model Specifications: 

x Developed by CIMA Research Foundation – International Center on Environmental 

Monitoring (CIMA [42]); 

x Large use case: Flood Model GAR (Global Assessment Report); 

x 2 main procedures to execute: 

o Generation of a hydrological model input, starting from the output of a climatic 

model; 

o Execution of the Continuum model. 

x 30 domains; 

x 1st procedure – 1 year – one domain -> 1.4 GB;  

x 30 domains – 150/185 years – 6,5/7,8 TB + output data 1-2 TB. 

6.9. Personal Contributions 
x Development of a new environmental application (Environmental Data Acquisition and 

Processing – EDAP). 

x Contributions to the development of different functional environmental applications 

mostly in the remote sensing and hydrological fields: gProcess, gSWAT, GreenLand, 

LiMES. The personal contributions are mainly oriented to: 

o Overall system architecture; 

o Processing components, using different geospatial technologies; 

o Scheduling and execution on different computing infrastructures; 

o Database design and implementation.  

x Analyzing and working with two environmental applications (hydrological models 

SWAT and GFM - Continuum) in different projects. 
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Chapter 7:  Porting Environmental Applications to 

Parallel and Distributed Infrastructures  

7.1. The Need of Parallel and Distributed Infrastructures 

in Environmental Sciences 
The urgent need of Environmental Sciences for large storing and computational resources 

to cope with the immense challenges of managing voluminous environmental data and complex, 

large-scale environmental applications is emphasized by the numerous environmental initiatives 

to make use of parallel and distributed infrastructures. In the following we will present some of 

these initiatives.  

The British Geological Survey has initiated the Environmental Virtual Laboratory 

(http://www.evo-uk.org/) (Vitolo et al., 2015 [230]) project and it is exploring the provisioning 

of data services, Web-enabled environmental models, and a suite of on-line local community 

tools in the spirit of the Cloud paradigm of software as a service.  

The US Department of Agriculture Natural Resources Conservation Service is 

developing the Cloud Services Innovation Platform (Lloyd et al., 2012 [137]) to offer data and 

modeling services for use in the field. 

The US Environmental Protection Agency has developed the WATERS (Watershed 

Assessment, Tracking and Environmental Results System) (WATERS [237]) program that 

provides services that perform various data services and related analysis like watershed 

delineation.  

These applications suggest a certain momentum in the community toward moving more 

of the tasks needed to support environmental sustainability, such as running environmental 

simulation models or large databases, to remote computer servers on the Cloud rather than on 

PCs (Laniak et al., 2013 [130]). 

Studies such as (Di et al., 2003 [53]; Muresan et al., 2006 [157], Gorgan et al., 2012 [91], 

Colceriu et al., 2013 [43], Sun et al., 2013 [219]) applied a successful approach to extend Grid 

computing to the remote sensing community and to make OGC Web services Grid-enabled. 

These studies considered that the Grid has a great potential for geospatial disciplines. 

http://www.evo-uk.org/
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Gridification of Earth Science applications has been a concern in the FP7 project 

enviroGRIDS (http://www.envirogrids.net/). A main goal of this project was the gridification of 

the Black Sea catchment to support its sustainable development through the development of a 

Grid enabled Spatial Data Infrastructure (gSDI). This goal was achieved through the integration 

into the Grid infrastructure of different services and tools among which we can mention the 

SWAT hydrological model and the Geospatial Web services – OGC. 

Yang et al. (2011 [248], 2013 [249]) reviewed research results in Cloud Computing 

addressing particular needs in geospatial and Digital Earth applications (Goodchild et al., 2012 

[89]). The conclusion was that the combination of service oriented architecture with Cloud 

computing faces challenges of storage and scalability in a global context, reflecting the 

community’s need to manage and process large scale amount of observations and processes data 

from environmental models and other services.  

  Wang et al. (2013) [236] examined remote sensing processing methods and strategies 

for large-scale meteorological monitoring in real-time and natural disaster warning scenarios. 

The conclusion was that Cloud computing is effective especially when the management of huge 

amounts of data and distributed parallel processing are essential requirements.  

Fustes et al. (2014) [74] described the usage of Cloud computing resources for data and 

processing intensive marine applications, such as the detection and localization of marine spills 

using remote sensing methods and advanced segmentation algorithms.   

Karmas et al. (2015) [118] proposed a scalable geospatial platform for the online and 

real-time harvesting of valuable information from big Earth Observation (EO) data. Their 

datasets are stored and pre-processed automatically on their hardware. They have been tested and 

validated the efficiency and automatically processing of high-resolution satellite data for 

different geospatial, environmental, agriculture, and water engineering applications. The authors 

also propose an automatic data acquisition and pre-processing component in which Landsat 8 

raw data are downloaded, stored, and pre-processed automatically. These steps are done through 

a series of python scripts, which control, facilitate and automate the entire operation. They check 

the Landsat 8 archive for any newly acquired dataset and download the ones corresponding to 

the interest area. Within this work, the authors emphasize the importance of automatizing both 

data acquisition and processing of Landsat data in real time harvesting of valuable information of 

the Earth system. 

http://www.envirogrids.net/
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Lee and Kang (2015) [133] describe the challenges and the opportunities of Geospatial 

Big Data. They also present a system architecture, developed with the support of the Ministry of 

Land, Infrastructure, and Transport of the Korean Government, on interactive analytics for real-

time or dynamic geospatial Big Data. The presented system consists of three layers: geospatial 

Big Data integration and management, geospatial Big Data analytics, and geospatial Big Data 

service platform. Distributed computing is used for retrieving and filtering the geospatial Big 

Data coming from various sources (satellites, drones, and vehicles, geospatial networking 

service, mobile devices and cameras) as well as for further analysis.  

Similar recent initiatives to analyze and process geospatial Big Data using distributed 

computing exist in literature. 

Kramer and Senner (2015) [125] propose a software architecture to process large 

geospatial data sets in the Cloud, using multiple algorithm design paradigms such as 

MapReduce, in-memory computing or agent base programming. The system is based on 

workflow executions, which are described in a domain specific language (DSL), parsed, 

interpreted and executed through a processing chain on a given Cloud infrastructure, using a 

scalable and fault tolerant distributed file system and respecting constrains defined by the user. 

In this case, the Cloud infrastructure is also used for storing and distributing large data sets but 

also for processing large volumes of geospatial data.  

Geospatial Big Data challenges are also described by Nativi et al. (2015) [160] within the 

context of GEOSS (Global Earth Observation System of Systems) and particularly its common 

digital infrastructure. The authors introduce a fully brokering approach implementation (GEO 

DAB, already described in 3.6.3) building on Cloud computing technologies. Their solution is 

based on a hybrid Cloud deployment model, composed from a few distinct private and public 

Cloud infrastructures that remain unique entities but are bound together to enable data and 

application portability.  

All these initiatives, research works, and projects emphasize the urgent need of parallel 

and distributed commuting for environmental services and application, to boost productivity and 

achieve higher performances towards a sustainable environment. Granell et al. (2016) [95] also 

emphasizes a wide use of standard-based web service implementations to support the 

development of flexible and dynamic services for environmental modelling applications. The 
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service abstraction can successfully enable ready to use, on demand services that can easily use 

Cloud computing.   

7.2. Challenges   
Based on the literature review and our practical experience, we have identified a list of 

challenges in porting environmental application on different parallel and distributed 

infrastructures and solving aspects of the interoperability between Environmental Sciences and 

Computer Science areas:  

x Environmental application particularities and specificity; 

x Technical understanding of an environmental application: structure, execution and data 

flow, data management, etc.; 

x Application parallelism: task, data, mixed, thread level; 

x Application type: legacy code, stand-alone, distributed, etc.  

x Application complexity: 

x Processes complexity; 

x Data volume, heterogeneity and complexity; 

x Application security. 

7.3. Experiments 
The enviroGRIDS project (http://envirogrids.net/) is a FP7 research project that aimed to 

develop a Spatial Data Infrastructure (SDI), targeting the Black Sea Catchment region, able to 

store, analyze, process and visualize obtained data while performing distributed simulations of 

environmental changes. These simulations had as purpose the assessment of the sustainability 

and vulnerability in the interest region and consist in executing different scenarios. To achieve 

all this, modeling the Black Sea catchment was necessary using high resolution data and a 

performant hydrological model – SWAT (Soil and Water Assessment Tool), described in section 

6.3.   

The calibration of large SWAT models involves a large set of input and output data and a 

high number of simulations, which requires a set of basic requirements. Decision makers also 

need to obtain near real time output from SWAT models to be able to make reliable and 

http://envirogrids.net/
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meaningful predictions and due to this time constrain, most of the hydrological models are 

executed with fewer function calls, which is reflected in the not so precise obtained results.  

In the following, we will focus on the calibration of different instances of SWAT model, 

which have been performed in the framework of the enviroGRIDS project.  

7.3.1. SWAT Calibration Execution on Grid – gLite Middleware vs. 

Multicore (UTCN) 

The following experiments were performed on the Grid infrastructure (gLite middleware) 

installed at the Technical University of Cluj-Napoca (UTCN). We performed a large number of 

SWAT simulations (within the calibration process), with different parameter sets, on the same 

large-scale model used by Rouholahnejad et al. (2011) [200]. Based on this, we have made a 

comparative analysis of the speedup obtained by a Grid infrastructure compared to a Multicore 

environment, on the same application model. The calibration was submitted on the Grid directly 

from command line, without using any interfaces, by using only some well-defined scripts. The 

goal of these experiments was not to present the calibration of the SWAT models on the Grid as 

a user-friendly application but to underline the advantages and the capabilities offered by the 

Grid infrastructure in the process of SWAT calibration, compared with those obtained on a 

Multicore architecture. The experiments we have performed have as purpose the comparisons of 

the obtained results with those obtained under Multicore execution of the same model, to proof a 

better performance and a better scalability when executing on the Grid. 

In the parallel processing experiment reported in (Rouholahnejad et al., 2011 [200]), a 

program or multiple computational threads are executed using more than one CPU or processor 

core. The Multicore executions benefit indeed of all the advantages of a PC and the most 

important ones are the full control of the job being processed and the easy access to the available 

resources. Comparing to this, Grid computing imposes some restrictions when it comes to 

accessing and using the available resources (obtaining a valid Grid certificate, registering and 

obtaining permissions to use the resources of a certain Virtual Organization, use some specialize 

tools to gain access to the Grid resources, to submit tasks for execution and to collect the tasks 

results, etc.). The control of the jobs submitted to execution is not as direct as in the other case 

but with the help of many available Grid tools and applications such as GANGA, DIANE 

(described in section 5.4.4) this is no longer a problem.  
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DIANE is based on a master-worker computing model. The master node is responsible 

for mapping and coordinating the received tasks to the assigned workers while the worker nodes 

are responsible for the actual execution of the tasks. DIANE does not submit the jobs directly to 

the Grid, but it uses GANGA to start a number of agents on different worker nodes. The master-

worker paradigm is widely used in parallel applications. It has proved to be efficient when using 

different degrees of granularity as well as when the partitioning of a task is easy to compute and 

there are low dependencies (Xhafa et al., 2010 [245]). All these additional requirements 

introduced by the Grid infrastructure are by far compensated by the huge gain in the execution 

time for large and complex processes. 

We have performed a comparative analysis based on the parallel execution of SWAT 

calibration, both on the Grid and Multicore architectures. We have used a large hydrological 

model, covering the Danube River Basin, build using the SWAT2009 program. The 

parallelization of SWAT is accomplished in this research at the simulation level by simply 

executing several SWAT runs with different parameters. Each simulation runs the same SWAT 

model but with different input parameters value. The execution of an iteration consists in 

performing three important phases: the pre-processing phase, the actual execution phase and the 

post-processing phase. In the pre-processing phase, the input parameters are generated randomly 

but within a specific range for each simulation. In the actual execution phase, each simulation is 

run on different worker nodes inside the Grid infrastructure and in the post-processing phase, the 

output of each simulation is retrieved and processed. The whole calibration process is presented 

in details in section 6.3.2. 

For the purpose of this case study, the SWAT calibration was executed over the Grid 

using some well-defined scripts. In the enviroGRIDS project, the SWAT calibration is performed 

over the Grid using the gSWAT (http://cgis.utcluj.ro/applications/gswat) application but for these 

experiments we have chosen to focus on the actual parallel execution instead on the graphical 

user interface provided by the gSWAT. The execution has been invoked through the command 

line, using dedicated scripts. These scripts can be run only within a certain directory structure, 

which must contain the calibration inputs, the calibration outputs, backup and the executable 

files. The calibration inputs contain the observed values, the parameters intervals and the output 

reaches. The calibration outputs consists of the best values of the simulation parameters and 

different statistics, the backup directory contains a copy of the SWAT model, and the executable 

http://cgis.utcluj.ro/applications/gswat
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files contain all the files that are executed during the calibration process - scripts and executable 

programs. 

The steps for calibrating the SWAT model over the Grid are presented in Figure 43: 

1. Create the necessary directory structure, needed for running the execution scripts. This 

directory structure is similar with the one used in SWAT-CUP and in gSWAT for 

performing a model calibration. This step is performed on the server. 

2. Copy the default files needed for calibration in their appropriate places inside the created 

directory structure. The default files (default input files and executable) are stored in a 

repository on the server and they are the same for each calibration project. 

3. Copy the calibration input files in the created directory structure. The input files are 

stored in a repository on the server. Using the gSWAT interface, the input files can be 

uploaded on the server from any location. 

4. Run the pre-processing phase in which the input parameters are generated randomly but 

within a specific range for each simulation. This phase is performed in the SUFI2 pre.bat 

script, which executes the SUFI2 LH sample.exe program. At this step, Latin hypercube 

samples are drawn from parameter spaces prior to hydrologic simulation (Rouholahnejad 

et al., 2011 [200]). The Latin hypercube sampling leads to n parameter combinations, 

where n is the number of desired simulations and should be relatively large 

(approximately 500 - 1000) for obtaining meaningful results. The n independent samples 

are stored in a file called par val.sf2. After this phase, the obtained parameter sets are 

independent and can be input for parallel simulations. 

5. Create the model calibration archive. For each calibration, we create such an archive, 

containing the directory structure with all the necessary files. The archive is uploaded 

more easily on the Storage Element, inside the Grid, reducing also the communication 

overhead between the Storage Element and the workers. Each worker performing a 

simulation of the calibration process has to connect to the Storage Element and copy the 

archive locally to have access to the created directory structure and the necessary files 

needed to run the given task. The archiving step is very important especially for high-

resolution projects, which can result in thousands of input files. 
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Figure 43: SWAT Calibration Steps on Grid 

 

6. Upload the model calibration archive to the Storage Element to become accessible to all 

the workers. This step is executed from a gLite machine. It requires the existence of a 

proxy-certificate and the necessary permissions for connecting and storing files on the 

Storage Element. 

7. Start the parallel calibration process in which each simulation of an iteration is run on a 

different worker inside the Grid infrastructure. This execution part consists in running the 

simulation program n times and extract from the SWAT output files the simulated output 

variables of interest, corresponding to the observations. The actual execution is 

performed using the SUFI2 run.bat, which runs the SWAT Edit.exe program. At this 

phase, the set of sampled parameters obtained in step 4 are copied in the input SWAT 
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files, in their appropriate place, process that can become quite complex especially if the 

model has a large number of input files as well as parameters. After the parameters are in 

the proper places, the SWAT model is executed and the outputs are extracted from the 

SWAT output files (Rouholahnejad et al., 2011 [200]) using the SUFI2 extract rch.exe 

program. Each such simulation represents one job executed by one worker in the Grid. 

The parallelization is achieved at this phase. We use DIANE and GANGA tools to run 

the jobs on the Grid, performing the following steps: 

a. Create the script to be executed on each worker node. 

b. Create the DIANE script in which we specify the input data, the output data and 

the execution task for each worker node. 

c. Start the DIANE master, which will coordinate the worker nodes, started to 

execute the simulations tasks and will collect the results from each job. 

d. Launch the jobs to execution: 

i. Start the Grid worker nodes using GANGA. 

ii. The GANGA tool will start at most as many worker nodes as required, 

depending also of the availability of the Grid resources. 

iii. Each started worker node will connect to the DIANE master node to get 

information on the task it has to execute. Before starting the execution, a 

worker node has to connect first to the Storage Element and retrieve the 

input files specified by the DIANE master. In this experiment, the input 

file is the model archive we have uploaded in step 6. After the worker 

node obtained the model archive, it has to extract the contained files and to 

reconstruct the necessary directory structure for a proper execution. 

Depending on the configured number of started worker nodes and on the 

availability of the resources on the Grid, a worker node will execute one or 

several tasks. If the number of worker nodes is smaller than the number of 

simulations we want to perform, some tasks will have to wait for the 

execution of others, increasing the total execution time. 

iv. After a worker node finishes the execution of a job, it connects to the 

DIANE master and sends the archived execution results. 
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8. Run the Post-processing phase in which the output of each simulation is retrieved and 

processed. This phase is the last one and it is performed using the SUFI2 post.bat, which 

executes a series of programs (SUFI2 goal fn.exe, SUFI2 95ppu.exe and SUFI2 new 

pars.exe). Those programs have the scope of computing the objective function, 

computing the 95% percent prediction uncertainty and computing the updated 

parameters, suggesting them to the next iteration (Rouholahnejad et al., 2011 [200]). The 

execution of such a process is repeated for as much iterations as needed to obtain a 

satisfactory outcome. More details of this process are presented also by Rouholahnejad et 

al. (2011) [200] and by Bacu et al. (2011a) [16]. 

 

The technical specifications of the Grid infrastructure (gLite middleware) used for testing 

are the following: 

x gLite middleware;  

x Resources:  

o one Computing Element (CE) and one Storage Element (SE); 

o Worker Nodes (WNs) – computational resources – 128 physical CPUs with 1024 

logical CPUs; 

o Storage Element – storing resources  ~ 13 TB; 

x Ganga tool – used as frontend for job definition and management; 

x Diane tool – employed for efficient usage of the distributed computing infrastructures. 

 

We have performed experiments on two instances of the Danube river model. The model 

has been developed by our enviroGRIDS partners from EAWAG (http://www.eawag.ch/) as 

described by Rouholahnejad et al. (2011) [200] and the two instances of the model differ from 

the size point of view (i.e. the amount of data and the number of parameters taken into 

consideration for the calibration process). The first instance (Danube1) is a large project and is 

the one used for tests on Multicore architecture. The second instance (Danube2) is even larger 

from the size point of view and due to its dimensions it could not be tested on the available 

Multicore machines (Rouholahnejad et al., 2011 [200]). 

For Danube1 project, the calibration of the SWAT was done by running the SUFI2 

program and setting 48 simulations. The execution of this process took around 2 days to run on a 

http://www.eawag.ch/
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server without any parallelization option. In (Rouholahnejad et al., 2011 [200]) the number of 

nodes that perform simulations could be the same or fewer than the number of available CPUs. 

The maximum number of jobs that could be submitted is computed based on the project size and 

on the available memory too. Similar, in Grid we can approximate an optimum number of 

workers that are needed to run the jobs as fast as possible but theoretically the Grid brings 

unlimited resources so that the number of executed jobs is not dependent on the available 

memory or on the number of processors. 

To be able to make a meaningful comparative analysis based on the results obtained by 

Rouholahnejad et al. (2011) [200] and those obtained in our research, we use the same 

performance measures which are commonly used to evaluate the performance of parallel 

computation (Rouholahnejad et al., 2011 [200]): speedup and efficiency. The formulas for the 

two measures are the followings: 

S(n) = T1 / Tn is the speedup for n parallel sessions; 

Where: 

x T1 is the computed time of the task when only one processor is used; 

x Tn is the computed time when n processors are used. 

 

E(n) = S(n) / n is the efficiency of a parallel system of n processors. 

 

The ideal speedup is defined by the number of processors/worker nodes. For example, in 

a machine with eight processors, the ideal speedup is eight. In a Multicore machine, the gap 

between the ideal speedup and the obtained speedup grows as the number of processors exceeds 

and as the number of jobs increases. This is due to the increase in the communication of each 

CPU with the hard disk, resulting in a loss of speed due to the disk limitation (Rouholahnejad et 

al., 2011 [200]). Based on the number of parallel jobs set to run on a Multicore machine, the files 

in the project (which are in a large number, especially in large projects) are simultaneously read 

and written to the hard disk. This is the reason why the speedup decreases, for large projects, as 

the number of parallel processes increases (Rouholahnejad et al., 2011 [200]). 
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7.3.1.1. Multicore execution results 

Figure 44 presents the execution results, in seconds, obtained for executing one iteration 

(48 simulations in this case) in the process of calibrating the Danube1 project on a Multicore 

server, using different number of cores. As seen from the figure, there is a clear improvement 

between running on a single core, which took approximately 1 day, 11 hours and 30 min 

(127,920 sec) and running on 24 cores, which took 4 hours and 15 min (15,267 sec). 

 

 
Figure 44: Danube1 SWAT Calibration - Multicore Results 

 

7.3.1.2. Grid execution results 

Similarly, Figure 45 presents the execution results, in seconds, obtained for executing one 

iteration (48 simulations in this case) in the process of calibrating the Danube1 model on a Grid 

architecture, using different number of worker nodes. 
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Figure 45: Danube1 SWAT Calibration - Grid Results 

 
The experiments were carried out using the gLite middleware, inside the VO supported 

by CERN vo.gear.cern.ch and using DIANE and GANGA tools. The variable in these 

experiments was the number of worker nodes started for executing the 48 simulations of one 

iteration: 20, 30, 40 and 50 worker nodes. The improvements are even significant when 

executing on the Grid. The same execution, which took 1 day, 11 hours and 30 min (127,920 

sec) when executing sequentially on one machine, it took around 39 min (2,305 sec) on 20 

worker nodes and around 31 min (1,825 sec) on 50 worker nodes. The results obtained both on 

Multicore and Grid architectures can be compared in this case from the total execution time point 

of view when performed on around 20 processing units (cores and worker nodes respectively). 

At this level, the Grid results are more than 6 times better then Multicore results. 

Both Figure 44 and Figure 45 show the improvements brought by parallel architectures 

especially in the execution of real-world computation-intensive applications such as calibration 

of a large-scale hydrological model, which was the case of our study. Our goal though was to 

highlight the fact that the Grid architecture can bring even better improvements than the 

Multicore architecture especially due to the large number of resources it can offer but also due to 
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the specific management of these resources. Although the number of worker nodes that we used 

on the Grid is contained within another range comparing with the number of cores used by 

Rouholahnejad et al. (2011) [200] we can still observe the improvements brought by the Grid 

architecture considering the speedup and the efficiency presented in Figure 46 and Figure 47. 

 

 
Figure 46: Danube1 Model - Comparative Speedup Multicore vs. Grid 

 

 
 

Figure 47: Danube1 Model - Comparative Efficiency Multicore vs. Grid 
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Figure 46 presents the speedup obtained for both architectures, considering different 

number of processing units and having as reference point the sequential execution on a single 

core station. The processing units refer to cores in the Multicore architecture, and to worker 

nodes in the Grid architecture. The figure clearly highlights the difference between the two 

architectures and the great improvements brought by the Grid infrastructure. 

Similarly, Figure 47 presents the efficiency obtained for both architectures. Once again, 

this figure confirms, if needed, that using the Grid architecture we obtain a better efficiency then 

using the Multicore architecture. Although the trend lines of the two graphics are somehow 

similar, the obtained values for Grid are clearly much higher. 

We have performed measurements over the Grid on Danube2 to highlight the scalability 

offered by this infrastructure, although we have no comparison with results obtained on the 

Multicore architecture, as the project is too large to run on the available Multicore machines, 

especially for a large number of simulations. For the execution of the Danube2 on the Grid, we 

have set the number of simulations to 24, 100 and 500. 

 
Figure 48: Danube2 SWAT Calibration on Grid – Execution Time 

 

Figure 48 presents the execution of Danube2 and proves the Grid scalability, especially 

for large-scale applications such as the execution of a large-scale SWAT hydrological model. 
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The input files used for calibrating the Danube2 model have a size of 1,3 GB and consists in 

327,000 files which have to be backup for execution. The archive we have to copy on the 

Storage Element (contains the input files, the default files and the executables needed for 

calibration) has 1,6 GB. This archive is copied only once on the Storage Element, at the 

beginning of the calibration process, but each worker node has to copy it locally for performing 

its tasks. 

Due to the large number of resources in the Grid infrastructure, the execution of the 

Danube2 model is scalable as the number of simulations performed for the calibration increases. 

When performing 100 simulations, the actual execution on the Grid of the calibration process 

took approximately 30,18 hours (108,635 sec.). When increasing the number of simulations to 

500 (normally a good simulation number for obtaining meaningful results), the execution on the 

Grid took approximately 30,85 hours (111,032 sec.). 

 

 
Figure 49: Danube2 SWAT Calibration on Grid - Execution / Simulation 

 

The scalability of the Grid can be deduced also from Figure 49, which presents the 

execution time/simulation in the calibration of the Danube2 model, as the number of simulation 

increases. When performing 24 simulations, the average time of one simulation is approximately 
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57 minutes (3,398 sec.). When the calibration process is set to 100 simulations, the average time 

of one simulation is approximately 18 minutes (1086 sec.) while for 500 simulations, the average 

time of one simulation is 3,7 minutes (222 sec.). As the number of simulations in the calibration 

process increases, the average time/simulation decreases. 

For obtaining even better execution times and an easier model management, we are 

considering mapping the calibration model to Grid databases as future work. This will improve 

the time needed to update all the calibration parameters in the appropriate files and will allow the 

definition of execution scenarios based on calibrated models in a more flexible way, considering 

the large volumes of data related to SWAT models. For achieving this goal, we have to consider 

the parallel and Grid databases architectures as well as important issues and constrains which can 

appear in this area.  

To conclude this result analysis, there are indeed some additional requirements that have 

to be fulfilled for accessing a Grid infrastructure (obtaining a Grid certificate, registering and 

obtaining permissions for running in a certain Virtual Organization, using some dedicated tools 

to access the available resources, to submit jobs for execution, to collect the job results, etc.), but 

the improvements Grid brings in the execution of real world, large-scale application are 

significant comparing to other parallel architectures, especially to Multicore. 

7.3.2. SWAT Calibration Execution on Baobab Cluster (UNIGE) 

The execution of SWAT calibration was done on Baobab cluster infrastructure using the 

SLURM (http://slurm.schedmd.com/) workload manager. The steps are quite similar with the 

ones performed in the Grid except that the input files were placed in the common file system and 

instead of sending jobs to CEs, we have launched jobs on individual nodes in the cluster. 

7.3.2.1. Platform Specifications 

- HPC Cluster – BAOBAB – provided by UNIGE (http://baobab.unige.ch/); 

- bought by end of 2012 and operational since early 2013; 

- master node in charge of administration and backup; 

- 57 compute nodes, each with  

o 2 Sandy Bridge Intel(R) Xeon(R) CPU E5-2660 @ 2.20GHz cpu with 8 cores 

each; 

http://slurm.schedmd.com/
http://baobab.unige.ch/
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o 64 GB of RAM; 

� for a total of 912 cores. 

- 1 compute node with; 

o 4 Sandy Bridge Intel(R) Xexon(R) CPU E5-4640 @ 2.40GHz cpu with 8 cores 

each.  

- a server node providing 40 TB (extended in December 2013) shared file system 

FraunhoferFS (FhGFS);  

- InfiniBand 4xQDR  (40Gbit/s) connectivity between master, nodes and storage. 

7.3.2.2. Execution Flow 

1. Archive the input files; 

2. Copy the archive to the local file system of each requested node (/scratch); 

3. De-compress the archive on / scratch in a unique directory (on each node you can have 16 

parallel computations) 

4. Launch the jobs; 

5. Compress the output in an output archive and copy it on the parallel file system (in the 

user ‘s /home directory); 

6. Once the jobs are finished, you don't have access to your /scratch data anymore. 

7.3.2.3. Results 

 
Figure 50: SWAT Calibration on Baobab Cluster - Execution Time 
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Figure 51: SWAT Calibration on Baobab Cluster - Execution Time/Simulation 

7.3.3. SWAT Calibration Execution on Open Stack infrastructure 

(UNIGE – HEPIA) 

The particularity on the Hepia cloud, in executing the above mentioned SWAT 

calibration steps, is that the input data was stored on a proxy machine and we have copied the 

input data, to each launched VM, using multicast (Udpcast software). This approach reduced 

significantly the download time. 

7.3.3.1. Platform Specifications 

x hepiaCloud - academic Cloud platform based on OpenStack, connected to 

SwissACC (Swiss Academic Compute Cloud) platform/project; 

x Available ressources - 41 compute nodes available;  

x vcpus free: 287 / 304; 

x ram free: 1953 GB / 1992 GB;  

x disk free: 9060 GB / 9148 GB;  

x All virtual machines in a private network which require the usage of an 

ssh gateway (gw.lsds-rg.org). 
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7.3.3.2. Execution Flow 

1. Archive the input files; 

2. Copy the archive to a Web server – accessible by each virtual machine. 

3. Launch instances with a predefined image and flavor;  

4. Copy the input data on each virtual machine, using multicast (Udpcast software). 

5. De-compress the archive on each virtual machine and start the execution; 

6. Compress the output in an output archive and copy it on a proxy machine. 

7. Wait for all the computations and delete the created instances. 

7.3.3.3. Discussions  

Issues: 

x Downloading the same data several times will rise a network bottleneck issue; 

x Disk I/O performance issue; 

x No available resources to match the full requirements; 

x Small range of IPs (~200 IP) for this use case (required 500 VM). 

Solutions: 

x Using multicast (over UDP instead of Unicast) - reduces significantly the download time 

independently of the number of instances.  

x Increasing the amount of RAM in the VM flavor to 5GB and create a tmpfs (a file system 

in memory) to minimize the I/O overhead. 

x Computation and data storage is made on RAM (including the downloading of the input 

data). 

7.3.4. SWAT Calibration Execution on Open Stack infrastructure 

(UNIGE – SwissACC)  

The execution of SWAT calibration on the SwissACC Cloud – Hobbes was performed 

using the boto library to access the data from and to S3 compatible Object Store 

7.3.4.1. Platform Specifications 

x SwissACC – Swiss Academic Compute Cloud; 

x Swiss wide computational science platform offering; 
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x Resources;  

x Services; 

x High quality know how for user and application support; 

x Provides access to Cloud platforms - UZH Cloud (Hobbes) http://cloud.gc3.uzh.ch/;  

x Compute nodes available: 80; 

x vCPUs available: 80; 

x RAM available: 160 GB.   

7.3.4.2. Execution Flow 

x Personalize a VM image (called SWAT image) based on an Ubuntu standard OS and we 

incorporate into it the required data of the SWAT model and the binary code.  

x Spawn new VMs instances from the SWAT image. Practically, this requires optimizing 

the data transfer of the SWAT image through the local network in order to avoid an 

instant network bottleneck. To this end, we have tested two approaches. The first one 

consists in using a smart distributed object store system "Cepth" for the SWITCH Cloud 

case. The second one consists in using multicast data delivery to transfer the SWAT 

image from its storage folder to the destined machines of the Hepia-Cloud platform. Both 

approaches showed a good performance. The last step consists in starting the 

computation where each VM performs a parameter sweeping of the model, runs the 

simulation, uploads the result files on a given location and finishes its execution. 

7.3.4.3. Discussions 

Copy on write (COW) technique is an optimization strategy based on the idea that when 

multiple tasks use identical copies of the same information, each task can be given pointers to the 

same resource instead of creating copies of that information for each process. The problem with 

this strategy is that when a local copy has been modified, the other processes are not aware of 

that change. When a task attempts to make a change to the shared information, a private copy of 

that information is created and the tasks is redirected to make the changes on that private copy, 

preventing thus the changes to become visible for the other processes. All these operations take 

place in the operating system kernel, making everything transparent.    

http://cloud.gc3.uzh.ch/
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The test performed using a smart distributed object store system "Cepth". For this 

approach, the execution steps are the following: 

1) Prepare a base volume, which will include the basic SWAT files and the input files 

specific for each particular use case. This means that we will personalize a VM image 

(called SWAT image) based on an Ubuntu standard OS and we will incorporate into it all 

the required data. 

2) Spawn the necessary number of VMs instances from the SWAT image. Using the smart 

block storage (e.g. Ceph) we will optimize the data transfer of the SWAT image through 

the local network in order to avoid an instant network bottleneck. 

3) Each VM will execute the SWAT model with different parameter sets and upload the 

results in storage. The execution and the data changes are performed by each VM in its 

volume. 

7.3.5. SWAT Calibration Execution on Windows Azure (UNIGE – 

SwissACC) 

To perform the execution of SWAT model on Microsoft Azure Cloud, we have 

developed a program that starts automatically a given number of Linux VMs on Azure. Upon 

starting, each VM runs a script, which starts the execution as described above. Within the Azure 

platform, we only had access to 4 virtual machines so the tests perform here were just a proof of 

concept for the procedure used to port applications on this infrastructure.  

For these tests, we used a Java program that starts automatically a given number of Linux 

VMs (maximum 4) on Azure. We have created an Azure storage container and uploaded the 

SWAT archive there. After this, we have started automatically a given number of Linux VMs on 

Azure. Upon starting, each VMs runs a script which: 

x Copies the input archive locally, from the Cloud storage;  

x Executes the SWAT model on this input; 

x Retrieves and copies the results back into the storage.  

7.3.6. Global Flood Model Execution on Baobab Cluster (UNIGE)  

The execution of the Global flood model consists of two main procedures: 
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x Generation of hydrological model input, using the Global Climate Model - EC-Earth 

model; 

x Execution of the Continuum hydrological model. 

The execution of the first procedure /1 year/1 domain has an output of approx. 1.4 GB. 

For the total number of 30 domains and for the total execution period (past and future)  ~150/185 

years the output data after the execution of the first procedure is ~ 6,5/7,8 TB while the final 

output (after the execution of the second procedure) consists of another ~ 1-2 TB. 

We have successfully executed 13 out of 30 domains on Baobab cluster. These domains 

are already calibrated while the rest of 17 domains are still in the process of being calibrated.  

The tests performed within this experiment were useful in gaining experience in working 

with large amount of data within a single execution. We have identified challenges and drew 

conclusions on possible solutions to transfer, store and process large amounts of data.  

7.3.7. Gridification of OGC Web Services (UTCN) 

The OGC (Open Geospatial Consortium [167]) Web services (OWS) are Geospatial 

services used to exchange information in an interoperable and efficient way over a distributed 

environment. The implementation of OGC specifications is a step forward into the process of 

sharing and making the geospatial information accessible to different communities but also a 

step forward in achieving an interoperable environment. Using the OGC standards, different GIS 

applications can work together, exchange information over a network and interoperate. The OGC 

Web services process data on demand, based on users’ requirements and return the data under 

different formats (content and structure), as specified by the users (Di, 2004 [54], Werder and 

Kruger, 2009 [239]).  

In (Rodila and Gorgan, 2012 [198]) we have analyzed the interoperability between the 

Geospatial and the Grid infrastructures through the gridification of the OGC Web services, using 

a mediation approach. We have made several test on these services executed over the Grid 

infrastructure (gLite Middleware), with a varying number of features in the database (amount of 

data) and a varying request complexity (number of performed service requests). These tests were 

done during the enviroGRIDS project and they proved the existence of a complexity boundary 

for the execution on each computing background. Based on this boundary, the execution is more 

efficient on a computational platform or another.  
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The experiments performed as a proof of concept were applied on an instance of WFS 

service, developed as a standard implementation inside the deegree project 

(http://www.deegree.org/), and had as goals to analyze the behavior of the execution time 

obtained when executing on the Grid environment, under different created conditions. The main 

goal was to emphasize the behavior of a Complexity Computation Component in correctly 

filtering the received requests as Grid or Web requests.  

 

 
Figure 52: OGC Gridification - Grid vs. Web Execution - 10 Features 

 

 
 

Figure 53: OGC Gridification - Grid vs. Web Execution - 100 Features 

 

http://www.deegree.org/
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The variable parameters modified during the experiments are the amount of data (number 

of features in this case), the number of queries enclosed in a service request and the number of 

working nodes inside the Grid (Rodila and Gorgan, 2011 [197]). The performed experiments 

were meant to emphasize not only the ideal case to execute a gridified OGC Web service but 

also the cases that raised several problems. The execution environment was the gLite platform 

and the execution VO was the one created for the enviroGRIDS project envirogrids.vo.eu-

egee.org. We have used the GANGA and DIANE Grid tools (described in section 5.4.4), 

developed by CERN, for the job management: division of jobs, submission on the Grid, 

monitoring, result merger, etc.  

 
Figure 54: OGC Gridification - Grid vs. Web Execution - 500 Features 

 

 
 

Figure 55: OGC Gridification - Grid vs. Web Execution - 1000 Features 
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The platform used for the enclosed tests was formed of 128 quadcore processors, 

equivalent to 512 cores. Each such core was considered a worker node inside the gLite platform. 

These tests proved the existence of a complexity boundary below which the execution of an 

OGC Web service request is more efficient when it is performed on a Web server (a single 

computer) than over a Grid infrastructure.  

Figure 52, Figure 53, Figure 54, and Figure 55 bring forth the comparative results of the 

service execution both over the Web and over the Grid, with 10, 100, 500 and 1000 features in 

the database and a varying number of performed service requests (10, 25, 50, 100, 200 and 500 

requests). The figures highlight the complexity boundary (at the intersection of the two graphics 

in each figure) and the point at which it is reached. The results analysis concluded that the 

complexity boundary is estimated at a lower number of service requests as the number of 

features in the database (amount of requested data) increases. 

 
Figure 56: OGC Gridification - Execution Time / Request 
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Figure 56 illustrates the execution time/request results. From this graphic we can observe 

that the Grid is slightly dependent on the number of features in the database (amount of data), as 

it disposes of a large number of computational resources while the Web execution time increases 

as the number of features increases, although not proportionally. Another important observation 

pointed out by this graphic is that the Grid execution time/request decreases as the number of 

service requests increases while the Web execution time/request increases under the same 

condition. 

 
Figure 57: OGC Gridification - Worker Loading (Request / Workers) 

 

Figure 57, highlights the worker loading in the Grid i.e. how many requests does a 

worker node in the Grid perform, while Figure 58 underlines the worker loading in the Grid 

considering also the number of features in the database. Both graphics emphasize a better 

resource utilization as the number of requests increases. They also highlight once again that the 
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Grid is slightly influenced by the number of features in the database, i.e. the amount of data. The 

results show that the Grid infrastructure is useful especially for large amounts of data and-or for 

a high number of service requests. 

 
Figure 58: OGC Gridification - Worker Loading (Features * Requests / Workers) 

 
The conclusion formulated by these results is that there are cases in which a local server 

is more appropriate to run simple OGC Web services requests than choosing a parallel and 

distributed platform and dealing with all the necessary resource management and application 

deployment issues. For complex requests, the usage of such a platform is indeed beneficial. The 

Grid solution is scalable because the performances increase as the number of features and 

requests increases (number of applications, users and data). The Web solution is less scalable as 

the performances decrease under the same conditions. 

Through these experiments, we have dwelt on the major problems that make the 

interoperability between the two platforms hard to achieve but also on a mediation approach for 

gridifying the OGC Web services. This approach was introduced as a possible solution to the 

interoperability problem. 

7.3.8. Landsat 8 Data Acquisition (UNIGE – UNPE/GRID-Geneva) 

Landsat 8 imagery is freely available for registered users through USGS network using 

Web interfaces such as EarthExplorer (http://earthexplorer.usgs.gov/), Glovis 

(http://glovis.usgs.gov/), or USGS Application Programming Interface (API). These images are 

http://earthexplorer.usgs.gov/
http://glovis.usgs.gov/
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also archived and freely available (without registration) through Google Earth Engine (GEE) and 

Amazon Web Services (AWS). These last two data providers are accessible either directly via 

HTTP protocol, or via gsutil (https://cloud.google.com/storage/docs/gsutil), which is a Python 

application that gives access to Google Cloud Storage from command lines. In (Rodila et al., 

2016), we have analyzed and we have discussed the performances and the reliability of these 

three Landsat 8 data providers and their associated access methods (Table 1). 

 

Table 1: Landsat 8 Data Providers and Accessing Methods 

 Provider / Access method http gsutil 

USGS usgs_http - 

GEE gee_http gee_gsutil 

AWS aws_ pds_http aws_pds_gsutil 

 

To be able to perform the automatic data acquisition flow, we have developed a testing 

platform, which is described in Figure 59.  

 
Figure 59: Landsat 8 - Data Acquisition Platform 

https://cloud.google.com/storage/docs/gsutil
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The components of this platform are developed in Python. The Broker Component is 

used to automatically connect to different available providers using available access methods 

based on user requirements. The Download Component is responsible for automatically 

downloading the previously selected data while the Performance Analyzer Component is used to 

monitor and analyze different performance parameters of the data download process from each 

data provider on each transfer access method (Table 1) referred as protocol in the following 

lines. 

The main objective of the following tests was to define and analyze which combination 

of (provider and access method) is faster and what are the possible network instabilities or the 

potential speed limitation after the download of a large number of scenes. 

In order to avoid possible interaction between providers, each session of test was 

performed randomly (i.e., protocols were run in random order). 

Three profiles of bands combinations were randomly used:  

x 3 bands (e.g., 2,3,4) to simulate the case of a simple composite process, 

x 3 bands (e.g., 2,3,4) and panchromatic (e.g., 8) to simulate the case of a simple composite 

process with pan-sharpening, 

x All bands (e.g. 1 to 11) to simulate the case of a more complex process. 

 

To avoid possible download speed limitation in case of recurrent download of the same 

scene (noticed during the development phase of the test), sites (path and row) were selected 

randomly. The number of acquired scenes on a site randomly varied from 1 to 3. 

The way providers distribute scenes varies. USGS and GEE are providing a single zipped 

file containing all bands, but using different compression format (respectively tar.gz and tar.bz). 

AWS allows a direct access to each band in a geotiff format with the compress deflate option 

(meaning they can be used directly). Consequently, unzipping of data was added in the test 

process, as well as a process of cleaning (removing zipped file and unnecessary bands). 

A comparison between the data access phases of two different providers (GEE and 

AWS), using gsutil, is shown in Figure 60. This figure shows the distribution of these phases 

(download only for AWS, shown in red; and download, unzip and clean for GEE, shown in blue) 

using as an example the access of all bands of scene IDs LC81980212015103LGN00, 
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LC81980212015279LGN00, LC81980212014260LGN00. This was tested on the 23rd of 

February 2016 and gives just an example to emphasize the differences in the data acquisition 

process, based on providers. 

 

 
Figure 60: GEE vs. AWS Acquisition Phases 

 
The size of acquired bands differs between providers (Figure 60). This means that for a 

given scene the size of downloaded data (zipped or not) and of the acquired band will not be 

comparable, as well as any download speed issued from these values. Consequently, the total 

time needed to get "ready to work" bands for a given set of scenes was used as a performance 

parameter (158 and 206 seconds in Figure 60). In order to compare protocols independently of 

the size of the dataset, total time of each protocol in each round of test was normalized by the 

minimum total time of the session (Total Time Ratio). In the Figure 60, the minimum time was 

158s, then aws_pds_gsutil ratio was 1, and gee_gsutil was 1.3 (206/158). This way, it is possible 

to answer to the trivial question "what is the faster (provider, access method) combination to 

access a dataset?” 
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7.3.8.1. Local Machines 

The described benchmarking tests were performed on a server located in the University 

of Geneva Network (1 Gb connection) on a Xen Virtual Machine (2.9 GHz, 8 Gb RAM, 4cpus). 

All protocols were tested in random order every 3 hours between the 18.2.1016 and the 

25.2.2016. Each protocol was then tested 56 times, 140 scenes were acquired for a total of 409 

Gb of downloads. The total execution time of the performed tests (per provider and session) is 

shown in Figure 61, Figure 62, and Figure 63. 

 

 
Figure 61: Landsat 8 Data Acquisition - Bands 2,3,4 - Execution Time 

 
Figure 62: Landsat 8 Data Acquisition - Bands 2,3,4,8 - Execution Time 
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Figure 63: Landsat 8 Data Acquisition - All Bands - Execution Time 

 
Considering that the USGS performance is really poor, having all the providers with the 

corresponding access methods together in one graph is not showing clearly the difference 

between all the combinations (provider, access method). For that reason we have created 

interrupted graphics (marked with black dots). This interruption can be seen on the vertical axis, 

were we have different time intervals. 

As seen in the graphics, gsutil has a better connection as http is always less effective and 

unstable (notice the break in the usgs_http line (orange), in all graphics, indicating an 

interruption). The USGS protocol is by far the slowest option and data acquisition process was 

interrupted at different times. 

GEE bandwidth is by far the fastest but the gains from the increased download speed are 

lost when unzipping and extracting the selected bands. Moreover, as the provided geotiff images 

are not compressed, storage is not optimized compared to data provided by AWS (Figure 60). 

The benefits of using the presented sets of (provider, access methods) for retrieving 

Landsat 8 data are related first of all with the fast and automatic way of accessing the data but 

also to the cost reduction of not storing large amounts of data in personal storages. The problem 

that we might see in the case of an automatic retrieval of data is associated with the changes that 

might appear in the API access or in the structure of the Landsat 8 archive.  

After analyzing and comparing the benchmark results, our conclusion is that USGS 

protocol should be used as a last option when imagery is not available through other protocol 
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(typically within the 24 hours following the data acquisition). Depending on the specific needs, 

or the type of application as well as on other factors, the choice of the data provider and 

associated data access method may vary. Another interesting possibility would be to also 

implement a combinations of more access methods from different providers and have a Mediator 

Component able to choose the best one, depending on availability, use case or preferences.  

The presented benchmark tests were performed as part of a bigger initiative for automatic 

monitoring of land cover changes using satellite imagery called Live Earth Monitoring System 

(LiMES) that will be presented in coming publications. The results will be further used to 

implement the automatic data acquisition component, which is vital for obtaining effective and 

efficient processing results. 

7.4. Lessons Learned 

The applications from Environmental Sciences usually target large geographical areas, 

modeled at high resolutions and require a large amount of geospatial data so that the 

parallelization methods would spread not only on computational parallelism but also on data 

parallelism. The geospatial information is very important and yet a big issue in many fields due 

to the large amounts of data that has to be analyzed and processed for obtaining meaningful 

information, which can be used further on in geospatial applications. These applications provide 

the necessary functionality for handling geospatial data but they lack the computational and the 

storing resources when running on desktop stations or on the Web. An important goal in 

Environmental Sciences is to handle geospatial information using geospatial services and 

applications and to exchange this information on a distributed environment and in an 

interoperable and efficient way. For this reason, it needs fast and reliable tools and components 

to remotely access geo-referenced data. Desktop computers are no longer sufficient for large-

scale applications. Parallel and distributed infrastructures such as Multicore, cluster, Grid, Cloud, 

etc. seem to provide the necessary functionalities for solving most of the problems related to the 

geospatial data: handle complex computations through parallelism, both at data level and 

processing level, support data management and data security. Depending on application features, 

data model, processing requirements, environment and resource availability, user requirements, 

etc., one of such infrastructures could be more appropriate than other ones. To be able to benefit 

from all these capabilities, a good and easy to use methodology is needed to be able to port the 
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necessary geospatial applications and services to parallel and distributed infrastructures and to 

obtain high performances. We need to analyze the conditions in which a specific parallel and 

distributed infrastructure is efficient and optimum for a certain application. An optimum 

environment can be chosen from different perspectives: from the user point of view, an optimum 

environment might be the one that gives the best execution times and offers the best guarantee 

that the execution will complete successfully while from a developers point of view, an optimum 

environment might be the one that requires minimum application changes and 

minimum/balanced usage of resources.  

The experiments performed in this chapter were not meant necessarily to improve the 

applications performances, although in most of the cases we have achieved this, but rather to 

observe the behaviour of each infrastructure and to understand what are their strengths and their 

weaknesses.  

To summarize, the following are the main lessons learned from our set of performed 

experiments. These lessons are the foundation to our next chapters:  

x Environmental applications are characterized by longevity (typical long life time) and in 

many cases large scale. 

x Environmental applications experience a high degree of heterogeneity at different levels: 

interfaces, metadata and data models, data providers, formats, coordinate reference 

systems, resolutions, ontologies, etc.  

x The heterogeneity and interoperability issues in environmental applications can be 

addressed using two general approaches: 

o Standardization – defining common specification for interfaces, metadata and data 

models. This is a long, slow process, which requires commitment and adoption 

from the participating systems, high ICT expertise, and most of the times complex 

specifications.  

o Mediation – adapting and harmonizing heterogeneous interfaces, metadata and 

data models. This is possible only if the harmonization and adoption is 

theoretically and practically feasible. This implies that distinct data models must 

be mapped to a higher-level conceptual model, able to reconcile the 

heterogeneous implementations.  

 



- 224 - 
 

x The rapid growth of the volume of environmental data requires an improvement in the 

efficiency of acquisition and processing. Real-time, rapid and efficient access and 

processing of massive amount of data has become a necessity. There are several ways of 

improving the efficiency, among which we mention the optimizations of the processing 

algorithms and techniques and the execution of these algorithms and techniques on 

parallel and distributed processing environments (Sun et al., 2013 [219]). 

x Long term benchmarking of the Landsat 8 satellite data accessibility showed efficient 

protocols exists to access the data easily, effectively, and consistently. As with any 

automated workflow, any change in the way data are provided (standards or API) or a 

server interruption would immediately lead to a failure. Anyhow the large panel of data 

providers as well as the numerous access methods, guarantee data availability at any time 

with the incorporation of failover heuristics into the harvesting script giving it the ability 

to switch between protocols in case of non-response. Data acquisition can also take 

advantage of parallel and distributed infrastructures, especially for storing large amounts 

of downloaded data (before being processed) and retrieving the data in parallel in case 

several data providers are involved.  

x The use of computational resources from different distributed infrastructures can be 

achieved through pluggable components, which can access each composing infrastructure 

connected to a central manager able to coordinate the scheduling of jobs on these 

resources, provisioning on resources and adapted execution depending on the type of 

chosen resource.    

x Porting applications and services to parallel and distributed infrastructures is a very 

difficult task to accomplish since each platform requires particular details to take into 

account when integrating applications that have not been designed to run on that platform 

in the first place. These applications have to be modified to have a particular structure or 

to use particular programming API for accessing the resources from each individual 

architecture, without knowing too much details about the running platform. 

x Fusion tools and services to merge different heterogeneous data sources should include 

functionality such as: processing, feature extraction, situation assessment, modelling and 

prediction services, preparing and aggregating environmental data into formats suitable 

for human use and automated services.  
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x Big Data should be kept close to the producer and the moving of voluminous data 

representing geospatially distributed fields over networks should be minimized. 

x A data mediation layer is necessary to convert data from sophisticated formats of 

Environmental Sciences to more familiar formats of the software development 

community.  

7.5. Personal Contributions 
x Execute different environmental applications on different distributed infrastructures: 

o SWAT calibration on gLite (Grid) vs. Multicore (UTCN); 

o SWAT calibration on Baobab cluster (UNIGE); 

o SWAT calibration on OpenStack Cloud (UNIGE - HEPIA); 

o SWAT calibration on OpenStack Cloud (UNIGE - SwissACC); 

o SWAT calibration on Windows Azure Cloud (UNIGE - SwissACC); 

o Global Flood Model on Baobab cluster (UNIGE); 

o OGC services Gridification on gLite (Grid) (UTCN); 

o Landsat 8 Data Acquisition on local servers (UNIGE - UNEP/Grid-Geneva). 

x Observe the behavior of each infrastructure and understand what are their strengths and 

their weaknesses in porting environmental applications.  

x Explore alternative solutions to connect different computing backend - GC3Pie tool, 

provided by the GC3 team (ETH – Zurich). 

x Published Papers: 

o Rodila, D., Bacu, V., and Gorgan, D. (2012). Comparative Parallel Execution of 

SWAT Hydrological Model on Multicore and Grid Architectures, in International 

Journal of Web and Grid Services (IJWGS), Vol. 8/3, September 2012, pp.304 – 

320, http://dx.doi.org/10.1504/IJWGS.2012.049172. 

o Rodila, D., and Gorgan, D. (2012). Geospatial and Grid Interoperability through 

OGC Services Gridification, in International Journal of Selected Topics in 

Applied Earth Observations and Remote Sensing (JSTARS), Vol. 5/6, December 

2012, pp. 1650 – 1658, ISSN: 1939-1404, 

http://dx.doi.org/10.1109/JSTARS.2012.2217115.  

http://dx.doi.org/10.1504/IJWGS.2012.049172
http://dx.doi.org/10.1109/JSTARS.2012.2217115
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o Silvestro, F., Campo, L., Rudari, R., De Angeli, S., D’Andrea, M., Rodila, D., and 

Gabellani, S. (2016). Impacts of EC-Earth Global Climate Model RCP4.5 climate 

change scenario on maximum daily streamflow quantiles at global scale, Journal 

of Climate (submitted article). 

o Bacu, V., Mihon, D., Stefanut, T., Rodila, D., Abbaspour, K., Rouholahnejad, E., 

and Gorgan, D. (2013). Calibration of SWAT Hydrological Models in a 

Distributed Environment Using the gSWAT Application, in International Journal 

of Advanced Computer Science and Applications (IJACSA), pp. 66–74, ISSN 

2158-107X. 

o Gorgan, D., Bacu, V., Mihon, D., Rodila, D., Abbaspour, K., and Rouholahnejad, 

E. (2012). Grid based calibration of SWAT hydrological models, in Journal of 

Nat. Hazards Earth Syst. Sci., Vol. 12/7, pp. 2411-2423, 

http://dx.doi.org/10.5194/nhess-12-2411-2012. 

o Mihon, D., Bacu, V., Rodila, D., Stefanut, T., Abbaspour, K., Rouholahnejad, E., 

and Gorgan, D. (2012). Grid Based Hydrologic Model Calibration and 

Execution, Chapter in the book: Advanced in Intelligent Control Systems and 

Computer Science, Dumitrache I. (Ed.), Springer-Verlag, Vol. 187, pp. 279-293, 

ISBN 978-3-642-32548-9, http://dx.doi.org/10.1007/978-3-642-32548-9_20. 

o Rodila, D., and Gorgan, D. (2012). Mapping Geospatial Applications onto 

Parallel and Distributed Environments, in ePaMuS 2012 – 5th International 

Workshop on Engineering Parallel and Multi-Core Systems – The Multi-Core 

Workshop, Palermo, Italy, 4-6 July, 2012, pp. 443 – 448, 

http://dx.doi.org/10.1109/CISIS.2012.152. 

o Rodila, D., Bacu, V., and Gorgan, D. (2011). Comparative Analysis of 

Distributed and Grid Based Execution of SWAT Model, in 3PGCIC 2011 - Sixth 

International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 

Barcelona, Spain, October 26-28, 2011, pp. 273-278, 

http://dx.doi.org/10.1109/3PGCIC.2011.49. 

o Rodila, D., and Gorgan, D. (2011). A Mediation Approach in Geospatial Web 

Services Gridification, in ICCP2011 – IEEE International Conference on 

http://dx.doi.org/10.5194/nhess-12-2411-2012
http://dx.doi.org/10.1007/978-3-642-32548-9_20
http://dx.doi.org/10.1109/CISIS.2012.152
http://dx.doi.org/10.1109/3PGCIC.2011.49
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August 25-27, 2011, pp. 541-548, http://dx.doi.org/10.1109/ICCP.2011.6047928.   

o Rodila, D., Bacu, V., Ardelean, V., Borlea, C., and Gorgan, D. (2011). Geospatial 

Web Services Gridification in enviroGRIDS, in European Geosciences Union - 

General Assembly EGU 2011, Vienna, Austria, April 03-08, 2011, (abstract and 

presentation), http://meetingorganizer.copernicus.org/EGU2011/EGU2011-

11469.pdf. 

o Bacu, V., Mihon, D., Rodila, D., Stefanut, T., and Gorgan, D. (2011). gSWAT 

Platform for Grid based Hydrological Model Calibration and Execution, in 

ISPDC 2011 - 10th International Symposium on Parallel and Distributed 

Computing, Cluj-Napoca, Romania, July 6-8, 2011, pp.288-291. 

o Gorgan, D., Bacu, V., Mihon, D., Stefanut, T., Rodila, D., Kokoszkiewicz, L., 

Rouholahnejad, E., Abbaspour, K., and van Griensven, K. (2011). Grid Based 

Hydrological Model Calibration and Execution by gSWAT Application, 2011 
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978-0-7695-4237-9, http://dx.doi.org/10.1109/3PGCIC.2010.65.  
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Chapter 8:  Conceptual Description of 

Environmental Applications 

8.1. Introduction  
The computing industry has experienced a sustained exponential growth in processor 

performance until recently by scaling clock frequency and enhancing uni-processor micro-

architecture (Raman, 2011 [182]). Since 2004, however, uni-processor performance has grown at 

a much slower pace. Increasing design complexity, power and thermal constraints, and 

diminishing returns from uni-processor micro-architectural enhancements are the primary 

reasons for the slowdown. Meanwhile, Moore's law continues to be followed with a doubling of 

the number of transistors per unit area approximately every two years. Processor designers 

leverage these additional transistors by placing multiple cores on the same die (Raman, 2011 

[181]). Parallel execution resources available for the execution of an application may vary from 

different number of cores or computing nodes to different sizes of memory or storage nodes. The 

performance goal of an application may also vary, depending on different functions such as cost, 

throughput, etc. Another variable item is the program’s workload.  All these elements of 

variability compose the execution environment of a program (Raman, 2011 [181]).  To be able to 

efficiently execute an application, we have to adapt it’s structure to this variable execution 

environments in a flexible manner which implies that the program should not be encoded with a 

single static parallelism configuration (Suleman et al., 2010 [218], Raman et al., 2011 [182]). 

To our knowledge there is no convenient tool/framework to allow a user to easily express 

and control the execution of an environmental application in heterogeneous computing 

environments, without having expertise in sophisticated workflow systems or control of the 

backend functionality. The main goal of this section is to fill that gap and to propose a 

conceptual model of environmental applications, which will be a key component in a general 

methodology for porting these applications on different parallel and distributed infrastructures. 

The conceptual model facilitates and simplifies not only the understanding of the application 

structure but also the general execution on different computational platforms. It provides a 

platform-independent, robust, convenient and easy way to use a mechanism that allows a user to 

execute an application on a heterogeneous computing environment, and as such provides a first 
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step towards the automation of this process. The execution of the applications and the selection 

of the computing environment(s) can be done automatically by an intelligent component, based 

on a complete conceptual model as well as on application related information provided by the 

user and other useful information such as availability of computing environments, previous 

execution history of the application, etc. 

8.2. Conceptual Models 
Conceptual modelling is an activity of formally describing properties as well as actions of 

the physical and social world, having as purpose a better understanding, communication and 

visualization.  

The descriptions that arise from conceptual modeling are meant to be used both by 

humans and machines.  The concept of conceptual modeling was first associated to semantic data 

modeling but soon it has found applications in many other fields such as modeling organizational 

environments, modeling software development processes or even modeling different parts of the 

world for better human communication and understanding (Mylopoulos, 1992 [158]). 

Conceptual models, mostly graphic, are used to represent both static and dynamic 

phenomena and they usually play an important role in communication between developer and 

user, in understanding of a new domain, they provide a good documentation and provide input in 

the design process. High quality conceptual models enable also early detection and correction of 

errors (Wand and Weber, 2002 [234]). 

A model is in fact an approximation, with different levels of details, of the real world 

systems. It is a physical, mathematical or logical representation of a system, phenomenon or 

process and serves as a representation of an event/thing that is real or deliberately created. A 

model is thus produced by abstracting from reality a description of the system, with the 

observation that not all the aspects of the system are represented, as that would be too timely, 

complex and expensive. A model can then represent the system at some point of abstraction or at 

different levels of the abstraction, depending on the requirements but also on the modeler 

decisions (which can be challenging) and having the purpose to represent the system in a reliable 

way (Sokolowski and Banks, 2010 [217]). Modeling means making a simplified logical 

representation of a real world environment or system. The model is not an identical replication of 

a real-world system considering that not all the information detailing the environment is 
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considered, rather it is a plausible representation of the parts of the system that matter the most 

for a specific purpose. 

Considering that Environmental Sciences is a complex and interdisciplinary domain, 

conceptual models are useful methods for facing these challenges of deep understanding of the 

studied phenomena. Conceptual models are useful in improving the coherence and analyzing the 

environmental issues and integrating knowledge. They help the user to understand the 

complexity of environmental systems but also the variety of scientific approaches there exists to 

formulate and solve the environmental problems (Fortuin et al., 2011 [72]). 

8.3. Environmental Applications Conceptualization 

8.3.1. Definition 

Scientific applications typically use two types of parallelism to get more benefits from 

large computing systems (Bochenina, 2014 [29]):  

x Task parallelism – different tasks of an application workflow can be executed 

concurrently;  

x Data parallelism – each task can be executed on more than one processor at a time. 

 

Task parallel application workflows are usually represented as DAG (Direct Acyclic 

Graph), which represents the dependency among tasks, based on their execution time and 

communication time. In a DAG, the vertex or the node weight represent task processing time and 

the edge weight represent data dependencies and communication time (also known as 

communication cost) between tasks.  A DAG is usually represented as (Amalarethinam and 

Josphin, 2015 [8]):  

G = (V, E) 

Where:   

x V is a set of nodes / vertices;  

x E is a set of directed edges. 

 

The source node of an edge is called parent node and the sink node is called child node. 

A node with no parent is called entry node while a node with no child is called an exit node. The 
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critical path is a series of tasks that must be completed for an application execution to finish on 

schedule. Each task on the critical path is a critical task.  

A DAG example is illustrated in Figure 64. It contains 10 Tasks, T1 is the entry node, T 

10 is an exit node with no child node and T3 is a parent node (for T6 and T7).   

DAG representations are frequent for complex applications and the composing tasks 

(with the associated dependencies) require advanced scheduling procedures that must consider 

QoS requirements.  

 
Figure 64: DAG sample 

 

8.3.2. Formal Description of an Environmental Application 

Based on our conceptual model, an environmental application can be described using the 

following notation: 

EnvA = (I, E, S, SEnvA, LE)   
where: 

x I = {I1, I2, . . .,In} - Input data set, n >= 0;  

x E = {E1, E2, . . .,Em} - Executions (Processes) set, m >= 0; 
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x S = {S1, S2, . . .,Sp} - Services set, p >= 0; 

x SEnvA = {SEnvA1, SEnvA2, . . ., SEnvAr} – Sub-applications set, r >= 0; 

x LE = {LE1, LE2, …, LEs} – Loop Executions set, s >= 0. 

 

The input elements are represented of environmental data that can come from different 

providers, in different formats and different sizes. These elements can represent the inputs of 

executions, of loop executions, of services, or of sup-applications.   

Each execution and loop execution has associated a set of pre-conditions and a set of 

post-conditions. The set of pre-conditions is composed from the set of inputs necessary for that 

execution and the set of processing requirements necessary for running that execution. A valid 

execution must have valid pre-conditions. The set of post-conditions is usually composed from 

the set of outputs of that execution and possibly the specifications on where to store the output.  

x Pre (Ei) = {I1, I2, … | Ii  is input for Ei} U {PR1, PR2, …| PRi  is processing requirement for 

Ei } 

x Post(Ei) = {O1, O2, …| Oi is output for Ei} 

The schematic representation of a conceptual model, using the above-descried 

components is the following: 

 
Figure 65: Conceptual Model Structure 
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Each component of the conceptual model is stored in the database with a list of 

characteristics: 

x Each input has associated the following information:  

o Id – unique identified;  

o Description – a short description of the input; 

o Type – the type of the input (which can vary from a satellite image to an 

environmental statistical indicator); 

o Location – specifies where is the input stored (which infrastructure and what 

element). In the case of a Grid infrastructure, this can represent the address of a 

Storage Element (SE) and the path inside that SE. In case of a Cloud, the address 

of the Cloud Storage can be given, etc. In the case the input represent the output 

from another execution in the application, the location is the id in the database of 

the output element.   

o Access mode – the list of possible credentials to be able to access the input from 

the given location.   

x An Execution is defined in the database using the following information: 

o Id – unique identifier of the execution; 

o Description – short description of the performed execution; 

o Inputs – the set of inputs; 

o Outputs – the set of outputs; 

o NrOfLoops – attribute to specify the number of loops in case of a loop execution. 

For normal executions this is normally 1; 

o CPU – processing requirement needed to run the execution; 

o Memory – processing requirement needed to run the execution; 

o Observations – field used to describe additional observations regarding the 

execution. 

x The Sub-Application element (SEnvA) allows the insertion of an already executed 

application (flow) within another workflow. This element is described using: 

o Id – unique identifier of the sub-application; 

o Description – short description of the sub-application; 
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o Inputs – the initial inputs of the inserted sub-application; 

o Outputs – the list of outputs; 

o CPU – processing requirement needed to run the sub-application; 

o Memory – processing requirement needed to run the sub-application; 

o Observations – field used to describe additional observations regarding the 

execution of the sub-application. 

x The Service element is used to describe an execution performed by a Web or Geospatial 

service. For this, we use the following attributes: 

o Id – unique identifier in our database; 

o Description – short description of the service; 

o Address – the access address of the service; 

o Request – the execution request at the specified address; 

o Inputs – the initial inputs of the service request; 

o Outputs – the list of outputs; 

o CPU – processing requirement needed to run the service; 

o Memory – processing requirement needed to run the service; 

o Observations – field used to describe additional observations regarding the 

execution of the service. 

 

The language used to describe the presented conceptual model for an environmental 

application is an extension of the PDGL (Process Description Graph Language) used in the 

gProcess platform (http://cgis.utcluj.ro/applications/gprocess, Bacu et al., 2009 [15], Rodila et 

al., 2009 [194]). This language allows the definition of additional control flows, compared to a 

simple DAG. It allows the definition of the environmental application conceptual model, which 

is an abstract description, but it also allows the description of an instantiated conceptual model, 

in which we can map all the information of the application and of the execution of the 

application on different computing resources.  

8.3.3. Execution Patterns  

For the definition of the conceptual model, we have defined a series of execution patterns 

that can be used: 

http://cgis.utcluj.ro/applications/gprocess
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8.3.3.1. Simple Execution 

The execution flow in this case is a simple one in which the user defines the input(s) that 

are entries for a single execution point producing some output(s). The inputs and the outputs can 

be of different types and can be specified in different formats. 

 
Figure 66: Conceptual Model - Simple Execution 

8.3.3.2. Sequential Execution 

In this case the execution flow is modeled as a sequence of several executions. The 

execution of a step normally depends on the results of a previous execution. That is why 

synchronization has to be taken into consideration. Simple Execution is a particular case of 

Sequential Execution in which we only have one execution node. 

 
Figure 67: Conceptual Model - Sequential Execution 
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8.3.3.3. Parallel Execution 

The execution flow in this case is composed of several executions that are run in parallel. 

Each step is independent and can be executed concurrently with the others. A "Simple 

Execution" is also a particular case in which we only have one execution node. 

 
Figure 68: Conceptual Model - Parallel Execution 
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8.3.3.4. Composed Execution 

The composed execution has a complex structure in which one can include different 

types of executions: simple, sequential or parallel. This is useful if a user wants to save/use 

previously computed executions without having to define them again. All other mentioned cases: 

Simple Execution, Sequential Execution and Parallel Execution can be considered particular use 

cases of this type. 

 
Figure 69: Conceptual Model - Composed Execution 

8.3.3.5. Loop Execution  

The execution flow in this case consists in executing the same module several times. The 

module can be composed of several types of executions or it can be one of the already presented 

types. This is useful when the same set of executions has to be repeated several times. An 

example of this case can be the calibration of a climatic model. The inputs can be the same set of 

parameters or a slightly different one, but the outputs are usually different. 
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Figure 70: Conceptual Model - Loop Execution 

 

8.3.4. Methodology 

The proposed conceptual model covers all the above described use cases. Using this 

model, a user can easily describe the structure and the execution flow (workflow) of his/her 

application. The actual execution of this model can be done through instantiation, i.e. binding the 

workflow tasks to specific resources (different for each application and for each execution use 

case). The conceptual model provides a flexible way of specifying an environmental application 
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without being concerned with the low-level implementation details. The tasks in the conceptual 

model can be mapped on any executable platform at run time using mapping mechanism. In a 

concrete model, the specific resources of the applications are bind to the tasks. At this level, new 

tasks may also appear, related to data movement between tasks and/or repositories. The concrete 

model can be generated (either full or partial) either before or during the execution. 

The steps to complete the conceptual model for a specific application are the following 

ones: 

1. Define all the inputs of the application. Here the user has to specify for each input what is 

its type, how it can be accessed and to which execution task it belongs. The inputs can 

either be initial inputs or they can also be outputs from other executions. 

2. Define all the outputs of the application by specifying as well their type, where should 

they be stored and from what execution they come from. 

3. Define the executions tasks within the applications. Depending on what inputs are 

associated with a specific task, we can decide if the task will be executed in parallel or 

sequentially with other tasks. The loop executions are specifically described within a loop 

tag in the file in which the user has to specify what executions are parts of the loop and 

how many times the loop is repeated. 

4. Define the Composed Executions if any. At this point the user can specify the path to an 

already defined conceptual model (sub-application) of a previous application.  

 

The parser intended to process the defined conceptual model will explore all these pieces 

of information. The conceptual description can be used in general for any type of application so 

far but the specificity of the environmental science field will be modeled in the parser 

component, as this is the level where the differences appear concerning especially the input and 

output data, as well as the algorithms used to handle environmental data. 

8.3.5. Examples 

A general approach to port an application to a computing environment would include the 

following steps:  
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- Preprocessing phase (in which the framework gathers the information about the 

available computational system, the executed application, the user preferences, etc. In 

this step we define the application conceptual model as well); 

- Analysis phase (in which we model both the application structure and the execution 

flows, based on the gathered information in the previous phase); 

- Decision phase (in which we make decisions on which computing environments in 

more suitable, based on the application developed model, availability of the 

platforms, user preferences, history, predictions …); 

- Execution phase (in which we actually execute the application on the selected 

computing backend, based on the defined policies); 

- Monitoring phase (in which the execution is monitored and information is collected 

for future executions). 

 

The performed practical experiments as well as the knowledge gathered after reviewing 

the scientific literature in this area formed together the starting point and the foundation on 

which the conceptual model, for describing a general environmental application, was built.  The 

conceptual description contains specific details of the mapped application, such as: name, 

description, initial and intermediary inputs, outputs, executable processes, cost associated with 

each execution, etc. All these details are stored in a file and are used not only in determining the 

structure of the application but also the execution flow (i.e. control flow, specifying the order of 

the activities to be executed) and the data flow (specifying the input and the output data for each 

activity/task to be executed). Having this information in a common standard way is a step 

forward to automatize the mapping of applications on different computing infrastructures.  

The conceptual model structure is presented in Figure 71: 
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<EnvironmentalApplication> 
  <Input idDB="" name="" description=""> 
   <PreConditions> 
   ... 
   </PreConditions> 
   <LocalPath path="" /> 
   <PostConditions> 
    <Output idDB="" /> 
   </PostConditions> 
  </Input> 
  ... 
  <Service idDB="" name="" description=""> 
   <PreConditions> 
    <Input idDB=""/> 
    <Input idDB=""/> 
    ... 
   </PreConditions> 
   <URL path=""/> 
   <PostConditions> 
    <Output idDB="" /> 
   </PostConditions> 
  </Service> 
  ...   
  <Execution idDB="" name="" description=""> 
   <PreConditions> 
    <Input idDB=""/> 
    <Input idDB=""/> 
    ... 
   </PreConditions> 
   <PostConditions> 
    <Output idDB="" /> 
   </PostConditions> 
  </Execution> 
  ... 
  <SubApp idDB="" name="" description=""> 
   <PreConditions> 
    <Input idDB=""/> 
    <Input idDB=""/> 
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    ... 
   </PreConditions> 
    
   <PostConditions> 
    <Output idDB="" /> 
   </PostConditions> 
  </SubApp> 
  ... 
  <Loop idDB="" name="" description="" idDB=""> 
   <Execution idDB=""\> 
   <SubApp idDB=""\> 
   <Iterations nr=""/> 
  </Loop> 
  ... 
</EnvironmentalApplication> 
 

 

Figure 71: Environmental Applications Conceptual Model Structure 

 
An example of conceptual model for the SWAT hydrological model: 

 

<EnvironmentalApplication> 
  <Input idDB="1" name="BSInst11" description="initial 
IO directory of the SWAT model, instance 11"> 
   <PreConditions> 
   </PreConditions> 
   <LocalPath 
path="/home/denisa/SWAT/BSInst11/InOut/" /> 
  </Input> 
  <Execution idDB="1" name="pre-processingBSInst11" 
description="preprocessing phase of the SWAT model, instance 
11"> 
   <PreConditions> 
    <Input idDB="1"/> 
   </PreConditions> 
   <URL 
path="/home/denisa/SWAT/BSInst11/Executable/Pre-processing/"/> 
   <PostConditions> 
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    <Output idDB="1", name="BSInst11.tgz" 
description="generated calibration archive of the SWAT instance 
11" /> 
   </PostConditions> 
  </Execution>  
  <Execution idDB="2" name="iterationBSInst11" 
description="one iteration of the SWAT model, instance 11"> 
   <PreConditions> 
    <Input idDB="1"/> 
   </PreConditions> 
   <URL path="/home/denisa/SWAT/ 
BSInst11/Executable/Iteration/"/> 
   <PostConditions> 
    <Output idDB="X", name="BSInst11-ItX.tgz" 
description="Iteration X result archive" /> 
   </PostConditions> 
  </Execution>  
  <Loop idDB="1" name="BCInst11Calibration" 
description="calibration execution phase of the SWAT model, 
instance 11"> 
   <Execution idDB="2"\> 
   <Iterations nr="100"/> 
   <PostConditions> 
    <Output idDB="Y", name="BSInst11-OUT.tgz" 
description="Calibration result archive" /> 
   </PostConditions> 
  </Loop> 
  <Execution idDB="4" name="post-processingBSInst11" 
description="post-processing phase of the SWAT model, instance 
11"> 
   <PreConditions> 
    <Input idDB="Y"/> 
   </PreConditions> 
   <PostConditions> 
    <Output idDB="", name="BSInst11-final.tgz" 
description="final results of the SWAT instance 11" /> 
   </PostConditions> 
  </Execution> 
</EnvironmentalApplication> 

 

Figure 72: SWAT Conceptual Model - Use Case 
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8.3.6. Conclusions 

Our planet is a complex and interconnected system that can be analyzed at many levels of 

details. To be able to understand this system as well as the relationships behind it and to be able 

to answer the ever-growing list of questions regarding all the changes that we are experiencing, 

research has to be done on data at all these levels. Analyzing Big Data has become possible 

recently both due to the increasing capabilities of computational resources (and hardware 

advances) and to the availability of tools, algorithms and techniques used to take advantages of 

these resources. As the computational power increases, more accurate and efficient methods will 

be developed. 

The environmental datasets, beside containing data of different formats and types, are 

distributed and stored by different organizations so these large amounts of data are neither easy 

to find nor to collect and interpret. The complexity and heterogeneity of data formats leads also 

to data interoperability and data usability problems. The description of a conceptual model, able 

to describe a general Environmental Sciences application, had to take into consideration all these 

aspects.  The data is heterogeneous and the interpretation of data differs from each resource and 

scientist to another. Considering this, ontologies and semantic web technologies have also a great 

potential to provide the required semantic interoperability (Parekh, 2005 [175]). 

Allowing easy integration of environmental applications with high performance 

computing resources can greatly help tackling the many challenges and questions that 

Environmental Sciences are facing. This can lead environmental scientists to better take 

advantage of the powerful information that geospatial data can offer in order to scientifically 

influence environmental management decisions. To that end we have introduced in this paper a 

solution to easily model environmental applications and to facilitate their integration with 

different parallel and distributed environments.  

Taking into account the growing need for computational speed, storage and scalability, 

that environmental applications demand, the users usually tend to use or to switch more than one 

execution platform for obtaining the necessary resources. To be able to easily switch between 

these platforms we have analyzed and we came up with an application conceptual model, which 

hides the complexity of different types of environmental applications and that provides an easy 

and flexible way to map an environmental application to an execution platform. Using this 

model, a user can easily describe the structure, the data flow as well as the execution flow 
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(workflow) of the application. The aim of the proposed application conceptual model was to 

provide a platform-independent, robust, convenient and easy to use methodology, which would 

allow a user to execute an application on a heterogeneous computing environment.  

8.4. Personal Contributions 
x Propose a conceptual model of environmental applications, based on theoretical 

knowledge and practical experience gained on Chapter 7. The proposed model is a key 

component in a general methodology for porting these applications on different parallel 

and distributed infrastructure. 
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Chapter 9:  Hybrid Computing Environment (HCE) 

9.1. Introduction 
A large number of scientific and research communities but also business organizations 

have access nowadays to several parallel and distributed computing infrastructures such as 

clusters, Grids, Clouds, etc. but they don’t necessarily have the required technical expertise to 

use all of them.  Providing an interface between these communities and the available computing 

infrastructures, which will allow transparent and uniform access to all these sets of 

heterogeneous resources, seems to become extremely important.  To efficiently manage and 

build such an interface, new technologies, services and methodologies have to be developed to 

coordinate, manage, schedule and execute scientific applications over the available distributed 

computing infrastructures, which form a Hybrid Computing Environment (HCE).  

9.2. Similar Initiatives 
Some of the most important initiatives identified in the literature, focusing on the 

interoperability between two or more Distributed Computing Infrastructures (DCIs) are 

presented in the following. Most of them consider only two DCIs, either Grid and Cloud, or Grid 

and cluster, and rarely they focus on integrating all the available infrastructures.  

The European FP7 SHIWA project (SHIWA, 2012 [211]) (Sharing Interoperable 

Workflows for large scale scientific simulation on available DCIs) aimed to develop new 

workflow interoperability technologies to allow publicly available workflows to be used by 

different research communities on different workflows systems and executed on multiple 

distributed computing infrastructure.  

The European FP7 ER-flow project (ER-flow, 2013 [62]) (Building a European Research 

Community through Interoperable Workflows and Data) collaborates with SHIWA project 

(disseminates the achievements of SHIWA project) in trying to build a workflow user 

community across Europe by providing different tools, services and trainings to develop, share 

and run workflows with the SHIWA Simulation Platform. Both projects support the execution of 

workflows among a growing number of Distributed Computing Infrastructures (DCIs).  
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Other initiatives for combining the usage of different combinations of distributed 

computing infrastructures are described in (Kim et al., 2009 [123], Kloh et al., 2010 [124], 

Calatrava et al., 2011 [35], Karoczkai et al., 2015 [119]) 

Kim et al., 2009 [123] focus on the integration of High Performance Grids with Cloud 

environments while determining different usage models for applications (acceleration, 

conservation and resilience). They use the Comet Cloud [46] software (and a pull based 

scheduling approach) to automatically execute applications on dynamically federated hybrid 

infrastructures based on Grids and Clouds.  

Kloh et al., 2010 [124] analyze the usage of hybrid infrastructures for the execution of 

workflows. In their approach, the scheduling criteria are chosen through a Service Level 

Agreement (SLA) specified by the user (runtime, execution cost, reliability and network 

bandwidth).  

Calatrava et al., 2011 [35] describe different approaches to integrate the usage of Grid 

and Cloud-based resources for the execution of High Throughput Computing scientific 

applications. The authors present the advantages of using a hybrid infrastructure in reducing the 

execution time of HTC applications when compared to single infrastructures.  

The meta-brokering approach defined in (Karoczkai et al., 2015 [119]) to map the 

parameter study jobs of a workflow to different DCIs is to distribute the load of the workflow 

evenly among the connected DCIs, based on the number of available resources. This implies a 

load balancing that puts more job instances to DCIs having a higher throughput (having more 

resources to execute a certain number of jobs). This approach does not take into account the 

current background load of the managed DCIs (the running and the waiting jobs at that moment). 

They apply a weighted job instance distribution among the available infrastructures and rely on 

resource priority services to determine the high uncertainty and unpredictable load of each 

available infrastructure while assigning it a certain weight. Their solution for parameter study 

workflows obtained a more efficient distribution of job instances among the available computing 

resources with a shorter makespan.   

Improving scheduling algorithm’s efficiency improves application performances. Most of 

the current schedulers base their scheduling decisions on the computing power (and utilization) 

of the available resources but other aspects of improving the efficiency of scheduling (make the 

resource selection and schedule generation more efficient) can be considered such as network 
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related information, idea presented in (Yamini et al., 2011 [247]). Paying attention only to the 

load of the computing resources can lead to the selection of powerful unloaded computing 

resources with an overloaded network, which will decrease the performance, especially when the 

jobs require a high network I/O. Yamini et al., 2011 [247] propose a modified resource selection 

strategy by making the scheduler consider the available bandwidth before generating a schedule 

and submitting a job to the resource. Available bandwidth between the node submitting the job 

and the node to which the job is submitted is checked and if this link is already constrained 

because of other possible computations in that node, the next node with less constrained links is 

chosen by the scheduler. Their proposal is applied on a Grid environment, extended with Cloud 

resources on demand in case of peak demands or heavy requirements.  

Other Grid scheduling strategies extended to use on demand Cloud resources in case of 

peak demands or heavy requirements are presented literature by (Blanco et al., 2009 [28], 

Ostermann et al., 2009 [170], Rings and Grabowski, 2012 [192]).   

The CometCloud (CometCloud [46], Diaz-Montes et al., 2015 [55]) project at the 

Rutgers Discovery Informatics Institute (RDI2) is an autonomic framework, which enables real-

world applications on dynamically federated, hybrid infrastructure integrating (public & private) 

Clouds, data-centers and Grids. It offers programming support for Cloud bridging (on the fly 

integration of Grids, commercial and community Clouds and local computational environments), 

Cloudbursts (dynamic scale-out for dynamic workloads, spikes in demands or other unusual 

requirements) and various programming paradigms and application requirements. CometCloud 

can create a nimble and programmable environment, which can automatically evolve over time, 

adapting to changes in the application requirements and infrastructure (Diaz-Montes et al., 2015 

[55]). The 3 layer architecture of CometCloud framework is illustrated in Figure 73 and includes 

3 key layers: infrastructure/federation, autonomic management, and programming/interface.  

The infrastructure/federation layer manages the dynamic resource federation and 

provides important services such as (Diaz-Montes et al., 2015 [55]):  

x Information lookup (used for resource discovery); 

x CometSpace (a shared, decentralized shared coordination space which provides a single 

management space and multiple shared execution spaces). 

The autonomic management layer allows users and applications to define objectives and 

policies for resource provisioning and application execution while satisfying different user 
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defined constraints and application requirements. This layer also monitors the execution progress 

and prevents agreement violations.  

The programming/interface layer provides functionalities to describe application 

workflows (XML documents) and resources (availability, policies and constrains).  

 

 
Figure 73: CometCloud Architecture (Diaz-Montes et al., 2015) 

 

9.3. Distributed Systems Interoperability   
Interoperability is defined as the ability of making systems and organizations work 

together (inter-operate). People and organizations working in an interoperable environment 

should be able to exchange knowledge (or information) as well as to use the extracted knowledge 

(information) to generate new one on top of them (Reynoso et al., 2014 [188]).  

Interoperability between two or more systems foster innovation, allows the creation of 

new and innovative systems through composition of interoperable systems, increases system 

availability and reliability and provides a great mean to success (Rings et al., 2011 [191]).   
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The interoperability and interoperation of different distributed systems have to be done 

both at the technical level and at the logical level. Different ways of achieving interoperability 

between two systems exists: standards, adaptors, mediators, gateways.  

The long-term approach to achieve interoperability is the implementation of agreed 

specifications (standards), which capture both requirements and functionality and usually define 

interfaces and specify protocols to be used for communication via these interfaces. Ideally, these 

specifications are independent from implementations and are flexible enough for later 

improvements (Rings et al., 2011 [191]). The problem with standards is that usually it takes a 

long time for them to be accepted and adopted within a community and it requires long testing 

periods to validate that an implementation follows the standards, which are rarely unambiguous, 

and even longer tests are needed to verify if two implementations are interoperable. However, 

standardization can enable interoperability in a multi-vendor, multi-network and multi-service 

environment.  

In literature we can find several interoperability standard initiatives for Grid and Cloud 

computing. The Open Grid Forum (OGF) Open Cloud Computing Group (OCCI) Working 

Group (OGF [166]), the IEEE Standards Association (IEEE Standards Association [109]), the 

Distributed Management Task Force (DMTF) Cloud Management Standards (DMTF [57]) and 

the Open Cloud Consortium (OCC) are the major initiative for Cloud systems. OGF Grid 

Interoperability Now (GIN) is an interoperability initiative in Grid computing described by Rings 

et al., 2009 [190]. 

Interoperable distributed systems should allow applications to use them simultaneously. 

For this, commonly agreed protocols are required for information exchange and overall 

management. This is still hard to achieve and it will take a long time till all the distributed 

systems will adopt and implement these agreed protocols. Our proposed solution is the 

introduction of a broker component (Mediator), which will allow users to access and use the 

functionalities of different distributed systems in a transparent manner.   

9.4. Challenges 
There are a large number of applications with interesting workload characteristics and 

resource requirements, which can take advantage of a hybrid computing environment to reduce 

execution time, reduce cost (currency or resource allocation) or handle unexpected runtime 
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situations (unexpected delays or unexpected failures) (Kim et al., 2009 [123]). But developing 

and executing application in such a complex and dynamic computing environment presents new 

and significant challenges. Among these challenges we have identified the followings:  

x Coordination and management of available computing infrastructures; 

x Application decomposition into workflow, jobs and tasks;  

x Determining and provisioning the necessary mix of hybrid resources for executing the 

applications workflows; 

x Dynamically scheduling the application tasks across the hybrid execution environment; 

x Satisfying multiple and possibly changing application objectives: performance, cost 

(budget), error recovery (resilience), etc.    

9.5. Scheduling 
One of the main problems in all distributed infrastructures remains the application 

scheduling. Scheduling is defined as the assignment of resources to consumers in time, according 

with a task policy and ordering communication between tasks, and it’s considered most of the 

time a computationally hard problem (NP-Complete) (Pinedo, 2008 [177], Pop, 2008 [178], 

Bochenina, 2014 [29], Amalarethinam and Josphin, 2015 [8], Lopes and Menasce, 2015 [139]). 

The complexity of the scheduling process within a HCE if given by several factors such as: 

resource heterogeneity, size and number of tasks, variety of policies, high number of constrains, 

platforms interoperability.   

A scheduler is supposed to use some best resource selection strategy in terms of user 

requirements while also adapting with dynamic resources. A scheduler receives a scheduling 

problem and returns a schedule for it while interacting with different services such as a local 

resource manager, information services, forecasting, submission, security, and execution services 

(Yamini et al., 2011 [247]). The scheduling process is described by a scheduling algorithm, 

which is defined as a procedure used by a scheduler to determine when a task can be run on 

which resource (Pop, 2008 [178]).  

9.5.1. Conceptual Components of Scheduling  

In literature there is a large numbers of papers defining scheduling problems and 

scheduling solutions in different ways but the definition of a scheduling problem and of the 
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corresponding solutions involves clearly defining important properties such as (Lopes and 

Menasce, 2015 [139]): 

x Definition of workload and its components in a complete fashion. A workload defines 

the consumers of the resources and it’s normally composed of jobs, defined as a 

collection of computational tasks. There are many properties that can be considered 

when defining a job considering the number of tasks it contains as well as the 

dependency relations and the communication needs among the tasks, the required 

resources, the quality of service, etc. A task could be defined, for a user, as anything that 

needs a resource, from a bandwidth request, to an application. Tasks can be homogeneous 

(requiring similar resource demands) or heterogeneous (having different resource needs). 

They can also be independent or dependent. Dependent tasks are the tasks that have 

precedence constrains and communications needs to be satisfied while the independency 

appears when there are neither precedence relations among the tasks not communication 

needs. Regarding the quantity of resources a job needs, they can be rigid (require a fix 

number of resources), moldable (the scheduler decides on the quantity of resources), 

malleable (moldable jobs whose computing requirements can change during execution) 

and evolving jobs (the user decides on the fly the quantity of resources).  Jobs may also 

be associated or not to a Service Level Agreement (SLA) and penalties can be imposed 

when these SLAs are violated. Jobs not associated with SLA are considered best-effort 

jobs. Real-time jobs can also have hard deadlines or soft deadlines.  

x The resources required to execute a workload consist of a set of distributed nodes or 

computers, with one or more processing cores, connected usually through a high-speed 

network. A resource could be anything that can be scheduled, a machine, processor, disk 

space and memory, a QoS network (Pop, 2008 [178]). Resources consist of whole 

computing units, with main memory, storage devices and network access. They can be 

organized in a local environment as computer clusters or in widely distributed and 

scalable centers. The resource heterogeneity in a hybrid-computing environment implies 

nodes with different computing power, in terms of processing, storage and 

communication speeds. In such an environment, we are also talking about dynamic 

scalable infrastructures with dynamic online capacity, which has to be shared not only 

among the tasks within a specific job but also among different jobs and different users. 
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x Scheduling requirements such as goals and requirements that must be targeted by the 

proposed solution. The goal in a scheduling problem is usually to optimize one or more 

performance metrics (multi-criteria optimization) affected by scheduling decisions. One 

of the most popular scheduling goals is the minimization of the makespan but other goals 

can be considered as well (maximize resource utilization, maximize throughput, meet 

deadlines, minimize energy costs, etc.). The makespan is defined as the time difference 

between the start and the finish of a sequence of jobs or tasks. The granularity of 

scheduling is also important and it’s considered as a scheduling requirement. Usually this 

granularity is set to level 2: a workload is divided into jobs, which are further on divided 

into tasks. The job level scheduler decides which job should be executed next, what jobs 

are position in a waiting queue and in which order, what jobs are resubmitted due to 

failures or other errors, etc. Task level scheduler decides which task of a given job will 

run on which resource while the combination of the two levels implies a coordination of 

both schedulers. A third level can also be considered, in which the tasks consists of one 

or more processes that must be scheduled at the computing node assigned to execute the 

task but this is typically managed by the operating system.  

 

As described above, scheduling problems usually also involve other aspects such as 

resource scaling, resource sharing, data locality, failure model and quality of service required by 

the workload. Lopes and Menasce, 2015 [139] give a detailed description of all these properties. 

As both the workload and the resources may vary over time, scheduling is a dynamic 

activity and we have to consider its state both with its dynamic and static properties at time 

instances of interest. We also have to consider that for any scheduling problem there may be one 

or more scheduling solutions.  

The main three steps involved in a scheduling process are (Pop, 2008 [178]): 

x Resource discovery – generate a list of potential resources; 

x Information gathering about these resources and selection of a best set of resources based 

on user requirements; 

x Job execution (system preparation and submission), including job staging and system 

cleanup. 
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9.5.2. Scheduler Architecture 

Our proposed Scheduler Architecture is illustrated in Figure 74. Users or Application 

submit scheduling requests to the Scheduler, which will assign the pool of tasks to appropriate 

resources based on the computed schedule. This schedule is developed based on the scheduling 

requests, resource monitoring data (provided by the Resource Monitoring Service), execution 

history, and configuration parameters.   

 

 
Figure 74: Scheduler Architecture 

The Resource Monitoring Service gathers real-time information of the available shared 

resources in a heterogeneous and dynamic computing environment such as HCE and plays an 

important role in the scheduling process. The information provided by this service is used to 

generate automatic decisions for optimal assignation of tasks to resources.  In a HCE, this service 

has to interact to the available Monitoring Services corresponding to each independent 

computing infrastructure, part of the HCE.  

The schedule is sent for execution to the Execution Service, which also updates the 

Resource Monitoring Service with resource allocation changes.  
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The users/application receives feedback related with the chosen scheduling solution and 

the status of the tasks execution from the Scheduler. The Discovery Service is used to easily 

integrate new resources into the scheduling process.  

9.5.3. Scheduling Properties  

To achieve a general purpose scheduling approach, several properties have to be taken 

into consideration (Pop, 2008 [178]): 

x Efficiency – both regarding the improvement of the performance of the scheduled jobs 

and the scheduler introduced overhead, which should be reasonably low to not 

counterattack the benefits; 

x Fairness – sharing resources among users so that each user obtains his/her fair share;  

x Dynamics – the allocation strategy should adapt to load changes and exploit the full 

extent of the available resources; 

x Transparency – the behavior and results of a task execution should not be affected by the 

hosts on which it executes i.e. there should be no difference between local and remote 

execution. The ideal case is when the user is not even aware of the remote processing 

(except for the increase of performance), meaning that he is not involved in the selection 

of the resource, application changes, jobs submission, etc.  

 

Considering the scheduling strategies, there are two well-known models (Lopes and 

Menasce, 2015 [139], Karoczkai et al., 2015 [119]): the push and the pull models. The pull 

models start a pilot job in a DCI and pull jobs to it, feeding the resource with jobs and avoiding 

relying on out-dated information on DCI load. The push approach is more traditional and 

submits all job instances simultaneously to the scheduling component of the workflow 

management system. This approach may cause significant overheads and bottleneck problems.  

Based on the scheduler architecture, we can also split schedulers in three classes (Pop, 

2008 [178]): centralized, hierarchical and decentralized. In a centralized scheduler, all the tasks 

are sent to a single place (entity) in the system, called server or master. The tasks are initially 

place in a queue, waiting for scheduling and resource allocation. The main problem of this 

scheduling model is the poor scalability with increasing number of resources while the best 

advantage is the efficiency of scheduling due to the big picture of the available resources and 
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pending applications (Pop, 2008 [178]). A hierarchical scheduler is organized on different levels, 

with the higher-level component managing directly larger sets of resources and indirectly a 

smaller set of resources, using lower-level components (which can be local schedulers). This 

model addresses the scalability and the problem of single-point-of-failure but it has to handle site 

autonomy. A decentralized scheduler has multiple components that work independently and 

collaborate to obtain a good schedule (Pop, 2008 [178]). The schedule requests in such a model 

could be processed by a local scheduler or transferred to other local schedulers where other 

scheduling policies could be applied. The efficiency in this model is lower due to the lack of a 

big picture regarding the resources and the running applications but it delivers a better fault 

tolerance and reliability.   

Task scheduling processes can be categorized as static and dynamic. In static scheduling, 

the execution time of tasks and data dependencies between the tasks is known in advance and the 

scheduling is usually done during compile time. This type of scheduling is also called offline 

deterministic scheduling (Amalarethinam and Josphin, 2015 [8]). In dynamic scheduling, tasks 

are allocated to processors upon their arrival and the scheduling decisions are made at runtime. 

In this case, the tasks can be reallocated to other processors during the runtime. The dynamic 

scheduling is flexible and faster than the static one (Amalarethinam and Josphin, 2015 [8]). 

Dynamic scheduling is usually applies when it is difficult to estimate the cost of the applications 

or when jobs are coming online dynamically. This type of scheduling has two major components 

(Pop, 2008 [178]):  

x System state estimation – collecting state information and constructing an estimate, based 

on which the tasks will be further assigned to selected resources using load balancing. 

Due to the NP-Complete nature of scheduling algorithms and the complexity of a HCE, 

reasonable assumptions are hard to make for obtaining optimal solutions.  

x Decision-making – selection of an appropriate set of resources based on system state 

estimation and other factors.  

9.5.4. Scheduling Algorithms  

The most basic scheduler takes a job out of a set (pool) of available jobs and sends it to 

the CPU unit with the minimum amount of load. A job can be executed on a CPU if the sum of 

the memory needed by the job plus the current load of the CPU does not exceed the total amount 
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of memory of the selected CPU (Pop, 2008 [178]). If there is no CPU available, the job is added 

to a waiting queue, based on priorities, waiting for an available CPU to be found. When a job is 

scheduled on a CPU, it estimates the time needed for completion, based on the amount of power 

given by the CPU and remains in this state until a change appears (beginning or end of a job on 

the same CPU for example) or until the execution finishes.   

9.5.4.1. Scheduling Algorithms for Independent Tasks 

x Shortest Job First (SJF) – also known as Shortest Job Next (SJN) – non-preemptive 

algorithm that selects the waiting job with the smallest execution time to execute next. 

Although it requires accurate estimations of the runtime of all jobs that are waiting to be 

executed, this algorithm is simple and maximizes the job throughput (number of jobs run 

to completion in a given amount of time). The main disadvantage is the possible job 

starvations for jobs with a long execution time if short jobs arrive continuously.  

x Earliest Deadline First (EDF) – dynamic scheduling algorithm, mostly in real-time 

systems, which uses a priority queue based on job deadlines. When an event occurs (a job 

is finished, a new job is released), the job with the closest deadline will be scheduled 

next. This algorithm guarantees that the jobs deadlines are met as long as the total CPU 

utilization is not more than 100% (Pop, 2008 [178]) but when the system is overloaded, 

the rate of missed deadlines cannot be predicted but the worst-case response times can be 

calculated.   

9.5.4.2. Scheduling Algorithms for DAGs 

Scheduling DAG tasks in distributed systems is a known NP-complete problem, which 

requires different mapping heuristics, based on tasks requirements, structure, and DAG 

complexity, and task assigned priorities as well as tasks dependencies (Pop, 2008 [178], 

Alexandrescu, 2012 [7]). The mapping heuristics, which are experienced-based methods, are 

used for solving problems when an exhaustive search is not possible. They use estimations of the 

time it takes for a task to run on a specific resource/machine (task execution time). 

Some of the most used scheduling algorithms presented in literature are (Pop, 2008 [178], 

Alexandrescu, 2012 [7]): 
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x Highest Level First with Estimated Times (HLFET) – schedules a task to a processor 

that allows the earliest start time. In this algorithm, the static level (SL) of a node is 

calculated but the communication costs of the edges are ignored.  

x Earliest Time First (ETF) – computes at each step the earliest start times of all ready 

nodes and selects the one with the smallest start time (compared to all processors). When 

two nodes have the same earliest start time, the one with the higher SL is chosen.    

x Cluster ready Children First (CCF) – dynamic algorithm in which the graph is visited in 

topological order and the tasks are submitted as soon as the scheduling decisions are 

taken (Forti, 2006 [71]). The algorithm has two job queues: the RUNNING-QUEUE and 

the CHILDREN-QUEUE. When a task is submitted for execution, it is added in the 

RUNNING-QUEUE and when it is extracted from this queue, all its successors are 

inserted into the CHILDREN-QUEUE.  

x Hybrid Remapper – dynamic list scheduling algorithm having as starting point an initial 

DAG labeled with the execution and the data transfer times. The first phase of the 

algorithm consists in partitioning the set of tasks into blocks so that the tasks in a block 

do not have any data dependencies among them. At runtime, the second phase is executed 

and implies remapping the tasks considering the changes made to the initial statically 

plan. 

x Modified Critical Path (MCP) – uses the As Late As Possible (ALAP) time of a node as 

a scheduling priority. This ALAP is determined by first computing the length of the 

critical path and then subtracting the blevel of the node from it. The algorithm constructs 

a list of nodes in ascending order of ALAP times and then schedules them such that a 

node is scheduled to a processor that allows the earliest start time using the insertion 

approach (Pop, 2008 [178]). 

9.5.4.3. Scheduling Heuristics  

Some of the most common heuristics used to optimized scheduling processes in 

distributed systems, described in literature (Pop, 2008 [178], Alexandrescu, 2012 [7]) can be 

divided in two categories: heuristics that consider only one task at a time in the mapping process 

(such as: OLB, MET, MCT, SwA, KPB, etc.) – these heuristics usually have a low algorithm 

complexity and a short mapping time but they provide poorer results, and heuristics that consider 
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all the tasks (such as: MnMn, MxMn, Duplex, GA, SA, etc.) – provide better solutions but they 

usually take longer to run.  

x Opportunistic Load Balancing (OLB) – one task is picked arbitrary from the group of 

tasks and assigned to the next machine expected to be available. This heuristic does not 

take into consideration the expected execution time on that machine (implying a possible 

poor makespan) but it’s simple and offers high process utilization.  

x Minimum Execution Time (MET) – each task is picked arbitrary and assigned to the 

machine with the least expected execution time for that task, regardless of the time the 

machine becomes available (implying a possible severe load imbalance).  

x Minimum Completion Time (MCT) – each task is picked arbitrary and assigned to the 

machine with the minimum expected completion time for that task, avoiding the cases in 

which OLB and MET performs poorly.  

x Switching Algorithm (SwA) – a hybrid of the MET and MCT heuristics, designed for use 

in dynamic environments but it can also be used in static ones. In this heuristic a tasks list 

is generated that includes all unmapped tasks in a given arbitrary order. The first task in 

the list is assigned using the MCT heuristic. Following, the heuristic used to map the task 

is determine based on the load balanced index calculated for the system: if the load 

balanced index is higher than a threshold, MET is selected, if the load balanced index is 

lower than the threshold, MCT is selected, otherwise the current heuristic remains 

selected. These steps are repeated until all the tasks are mapped.   

x K-Percent Best (KPB) – in this heuristic, the “K-percent” of the machines with the 

smallest execution time for a given task are identified and the task is mapped to the 

machine in this subset with the minimum completion time. A value of K equal with 

1/M% makes this heuristic to be the same as MET while a 100% value makes it the same 

as MCT.  

x Min-Min (MnMn) – Out of the set T of all unmapped tasks, a set C of minimum possible 

completion times of all tasks on any of the machines is computed. The task with the 

minimum possible execution time is assigned on the corresponding machine and the 

process continues in the same way with the rest of the unmapped tasks.  

x Max-Min (MxMn) – similar with Min-Min heuristic, but when the task form C with the 

overall maximum completion time is assigned to the corresponding machine, it is 
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removed from C and the process repeats until the set C is empty. This heuristic tries to 

perform tasks with longer execution times first, leading to a better balanced allocation of 

tasks.   

x Duplex – combination of Min-Min and Max-Mix by performing both and choosing the 

better solution.  

x Genetic Algorithms (GA) – used for searching large solution spaces. It computes 

multiple possible mappings, considered as chromosomes in the population. Each such 

chromosome has a fitness value, computed using the objective function of the scheduling 

algorithm (based on the desired performance criteria needed to be improved). In each 

iteration, all the chromosomes are evaluated based on their fitness value and only the best 

of them will survive in the next population, which contains also new allocations based on 

crossover and mutation. The stop condition can be either a certain number of iterations or 

a convergence of the chromosomes to the same mapping. Genetic algorithms usually take 

much longer to run and are used in situations where there is no strict time limitation in 

which the heuristic has to finish the task mapping (Alexandrescu, 2012 [7]). 

x Simulating Annealing (SA) – uses the same representation of chromosomes as for the 

GA but considers only one possible solution (mapping) at a time. This heuristic allows 

poorer solutions to be accepted in the attempt of obtaining a better search of the solution 

space.  

x A* - search technique based on a µ-ary. It starts at the root node that is a null solution and 

as the tree grows, nodes (mapped tasks) represent partial mappings. Each parent node 

generates µ children, where µ is the number of possible mappings for task Ti. After this, 

the parent node becomes inactive. A pruning process is performed to limit the maximum 

number of active nodes in the tree at any time. Each node also has an associated cost 

function (of partial solution) plus a lower bound estimate of the time to execute the rest of 

the unmapped tasks. After the rood node generates µ nodes for the first task, T0 

(representing the mapping of the task on the available machines), the node with the 

minimum cost function generates its µ children and so on until a redefined number of 

nodes are created. Any time a node is added, the node with the largest cost function is 

deactivated, pruning the tree, and so on until a complete mapping is found (Pop, 2008 

[178]).  
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9.5.4.4. Near-optimal Scheduling Algorithms 

The most representative near-optimal scheduling algorithms presented in literature (Pop, 

2008 [178]) are: 

x Random and Best of n Random – a random scheduling algorithm, which chooses a 

resource at random for each task in the application (just by checking if that task can be 

executed on the assigned resource). The optimization of this algorithm (Best of n 

Random) randomly generates n schedules and choses the one with the highest benefit 

value.   

x Exhaustive Search – used both to discover the optimal solution to the scheduling 

problem and to define an upper bound on the computation time taken to select a schedule. 

It performs a depth first search on the tree of all possible scheduler, calculating the 

benefit of each scheduler and returning the optimal solution.  

x Simulated Annealing – generalization of the Monte Carlo method, used for optimization 

of multi-variable problems. The algorithm generates possible solutions randomly and 

compares their benefit with a currently selected solution, discarding or accepting the new 

ones. The process is repeated and in each iteration either a maximum number of new 

solutions are accepted or a maximum total number of solutions are considered. Once an 

iteration is completed with no new solutions accepted, the current solution is returned as 

the best one.  

x Game Theory – technique in which a number of players attempt to optimize their own 

payoff by selecting one of many strategies.  

x Genetic Algorithms. 
 

9.5.5. Scheduling in a Hybrid Computing Environment (HCE) 

The scheduling problem for jobs with precedence constrains has been shown to be NP-

hard (Pinedo, 2008 [177], Bochenina, 2014 [29], Amalarethinam and Josphin, 2015 [8]), which 

propagates therefore in a hybrid computing environment (HCE) as well and requires solutions 

based on approximations and heuristic techniques. Methods based on runtime estimates, which 

can be inaccurate, are a well-known problems mentioned in the job scheduling literature 

(Karoczkai et al., 2015 [119]).  HCE is a heterogeneous environment composed of different 
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distributed systems, which provide or not different type of public information regarding the 

current load of the infrastructure. An estimation of the current available capacity at a certain 

moment of time (runtime) is therefore difficult to make.  

Within a HCE, an adaptive scheduling has to be used, which can change the scheduling 

decisions dynamically according to the previous, current and/or future resource status (Pop, 2008 

[178]). Such an adaptive scheduling has to consider criteria such as: the heterogeneity of 

candidate resources, the dynamism of resource performance, and the diversity of applications.  

When scheduling an application on a HCE, which involves a high degree of resource 

heterogeneity, the problem of selecting the most convenient infrastructure and the computational 

resources that are able to support the execution jobs, is a complex problem. We have to consider 

a series of common parameters from all distributed computing infrastructures:  

x Estimated execution time of a job – either through user specification, use of a batch job 

or historical background of average execution time; 

x Data transfer time – the time required for data staging from user to the computational 

resource and back. This is useful to be able to compute the overhead of a remote 

execution. This time would be different based on the chosen computational infrastructure. 

On Grid infrastructures, data is usually copied on a Storage Element (SE) from where 

every worker node can copy it locally for execution, using GridFTP protocol. The 

selection of SE is also important and it’s usually done depending on the geographical 

distance (as close as possible to the Computing Elements (CEs)). Cluster architectures 

usually have a common file system so the transfer of data is really fast considering that 

the resources will see the data as local. Within a Cloud infrastructure, things tend to 

become more complex as there can be different solutions. We have experimented three of 

them and they are all presented in Chapter 7: . The most common solution is to copy the 

data to the closest Data Storage in the Cloud. Each VM can be configured to connect to 

the Data Storage and retrieve the data when needed. The results are copied back in the 

Data storage after execution, from where the user can easily retrieve them. Data intensive 

applications may have an overhead introduced by data transfer too big to take advantage 

of a remote execution. An estimation of this value can be done using the size of the 

input/output data, the bandwidth between the user and the storing place (which can be 
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dynamically recomputed after each transfer) and the type of chosen computing 

infrastructure.  

x Jobs dependences: 
o software dependences – libraries, software packages, operating systems; 

o hardware dependences – CPU architecture, available RAM; 

x Job type – influences the priorities assigned to each computing infrastructures. A HPC 

parallel job would be more appropriate to a cluster or a Grid infrastructure while 

independent serial jobs can equally run on the Cloud. Computational costs for each 

infrastructure still need to be taken into consideration.  

x User requirements/preferences/constrains – the selection of the appropriate resources 

has to be done while considering also the user preferences, requirement and constrains. 

One of the important constrains could be the user authorization to one or more computing 

infrastructures. To be able to launch into execution jobs, each of the composing 

infrastructures requires a certain level of authentication and authorization. Clusters and 

Clouds are usually based on user-password credentials while Grid infrastructures require 

a user certificate emitted by a Certificate Authority (CA). Other common constrains or 

requirements could be the total execution time of the application, the financial cost of 

execution (considering the execution on public Clouds), application security, etc.  
 

A series of particular parameter have to be considered based on specific computing 

infrastructure and we describe our vision on each of them in the following.  

Within a Cloud infrastructure, we have to consider the specific parameters base on Cloud 

provider as well, but the most common ones are presented also in literature (Calatrava et al., 

2011 [35]): 

x Access time to the Virtual Machine Image Repository and Catalog (VMRC) – this 

involves the time to interact to VMRC, search for an image and transfer the image from 

the repository to the deployment site (dependent on the VM size and on the bandwidth) if 

the image was found.  

x Deployment time of the VMs – time required to deploy a copied VMI on a physical 

infrastructure or, if such a VMI was not found, the time needed to deploy an empty VM 

and customize it with the necessary software and libraries. In some cases, this time is 
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increased also by the time required to boot up the physical node in which the VM is 

deployed.  

x User budget – maximum budget allocated by the user in case a public Cloud on a pay 

per use basis has to be used to provision resources. This budget will restrict not only the 

number of deployed VM but also their active time.  

x Cloud security and QoS – Cloud provider adherence to Service Level Agreement (SLA) 

and the obtained QoS based on failure history.  

 

In a Grid infrastructure we have to consider the following important parameters:  

x Grid session creation and configuration time – time needed to specify specific 

attributes to create a Grid session: user certificates, VO, WMS, WOMS, etc.  

x Proxy Certificate generation and delegation (authentication and authorization) – time 

required to generate the proxy certificate from the user certificates. A job execution on 

the Grid infrastructure requires a valid proxy certificate. If a MyProxy server already 

exists, only a copy of the proxy certificate will be used by accessing the server using a 

server URL, username, password, credentials name and validity of the proxy certificate. 

Users are typically restricted to resources from one or several VOs.  

x Job description time – using a dedicated description language (JDL for gLite). 

x Access time to get the list of compatible CEs and the corresponding information about 

the computing resources: total number of processors, total number of available 

processors, total number of jobs, total number of executing jobs and waiting jobs, etc. All 

this information is needed to select the Grid resources satisfying the job requirements.   

x Access time to get the list of SEs – to determine the closest SE to store the input and the 

output data and to minimize the data transfer time 

 

Specific parameters that have to be considered in a cluster infrastructure: 

x Job description (in SLURM for example). 

x Access the system information – to estimate a job waiting time.  

x Queue waiting time of the job – based on the user priority and the load of the cluster. 

x Maximum running time in the cluster – Baobab cluster for example has a maximum 

running time for a job of 4 day; after this range, the jobs are cancelled even if they are 
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still running. Acquisition of personal nodes in the Baobab cluster allows a maximum 

execution time of 7 days on the specific nodes.   

 

Workload and Resource Management System (WRMS) 
A workload and resource management system is defined as a service that is provided by a 

distributed network computing system that manages a pool of named resources to optimize a 

performance metric for a given workload (Figure 75). The main characteristics of a WRMS are: 

x Manages resources, including resource management conditions. 

x Manages tasks, including creating, assigning the ranks, waiting and monitoring. 

x Schedules and maps tasks to a set of resources and allocates resources for certain tasks at 

a time. 

 
Figure 75: Workload and Resources Management System (WRMS) 

 

 
Figure 76: Dynamic Infrastructure Management System (DIMS) 
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Scheduling a workflow on one or more distributed infrastructures must take into account 

specific issues and some of them are also related to the application type and the associated 

workflow. The most common issues we have identified are: intermediary data transfer, 

identification of reliability level of computational resources, optimization criteria (minimize the 

response time, maximize the resource utilization, makespan reduction, cost minimization, best 

resource selection, time constrains, reliability, network bandwidth, etc.) and variation limits for 

multi-criteria algorithms, tasks grouping to reduce bandwidth consumption, history utilization for 

resource selection, QoS requirements.    

9.6. Execution  
The efficiency of parallel programs depends not only on how efficiently the program was 

parallelized but also on the execution environment (workload, platform, performance goal). The 

variability of any of these dimensions implies variability in the execution environment and 

requires the adaption of the parallelism in the application. In the absence of an efficient and 

intelligent tuning and packaging, a parallel program can perform even worse than the original 

sequential program (Suleman et al., 2010 [218]).  

The parallelization process is an important topic as for the integration of the scientific 

applications within the parallel and distributed infrastructures and may occur at data level or/and 

at processing level. There are two concepts that have to be discussed when talking about task 

parallelization. First, a task can be divided into several independent sub-tasks operating on the 

same or different dataset, which we call task parallelism. This parallelism emphasizes the 

processing distributed nature. Secondly, a task can be divided into several subtasks, each 

processing a part of the whole dataset, which we call data parallelism, also known as partitioning 

or tiling in the geospatial community. As a whole, in this type of parallelism, the individual sub-

tasks require no communication between each other; nevertheless the process of 

combining/merging the individual results often incorporates specific logic due to the partition 

borders dependencies (Rodila and Gorgan, 2011 [197]).  

The execution of jobs on the Grid was already performed and presented in Chapter 7: . In 

our case this was done using CERN developed tools, GANGA and DIANE, for scheduling and 

launching into execution jobs on gLite Middleware based Grid infrastructures. Considering the 
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Grid platform, porting application on this platform raises different questions (Werder and 

Kruger, 2009 [239]): 

x How to divide a given task into several subtasks, which then can be executed 

concurrently? In most cases, the solution to this problem depends only on the algorithms 

and the processes of the task itself, and is therefore not specific or limited to Grid-

computing; 

x How to make use of the Grid functionalities in order to accelerate the processing? In this 

case, the available Grid middleware and orchestration of Web services have to be 

considered. 

The migration of existing applications to Cloud requires adapting them to a new 

computing environment. This migration process can be view from two perspectives 

(Andrikopoulos et al., 2013 [12]): 

x Migrating the whole application on the Cloud, using virtualization, and delegating the 

adaptation effort to the resource management level; 

x Migrating individual application layers or even individual architectural components on 

the Cloud, allowing a more flexible and a better control over the application migration. 

From the migration point of view there are several types of applications (Andrikopoulos 

et al., 2013 [12]): 

x Many applications are not ready to be moved on the Cloud because this computing 

platform is not mature enough yet for this type of applications such as safety critical 

applications (Badger et al., 2012 [19]). 

x Embedded systems for example are the type of applications, which may not make sense 

to migrate them at all. 

x Cloud-native applications are the applications specifically implemented for the Cloud.  

x Cloud-enabled applications are the ones that need to be adapted for the Cloud 

environment.    

What kind of migration can be performed depending on the application type? Adapting 

the Presentation Layer of an application to the Cloud environment is somehow similar to 

transforming applications in services (or exposing them as services). Concerns that affect the 

layers of an application when migrating to Cloud (Andrikopoulos et al., 2013 [12]): 
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1. What is the impact of the logical and physical distribution of the migrated application? 

2. What elasticity mechanism can be used for different types of applications? 

3. How does migration affect the multi-tenancy capabilities of applications? 

4. How to calculate the cost of migrating the application and operating in the Cloud? 

5. What is the impact of the Quality of Service levels of the application, and how is 

application security affected? 

Rapid elasticity – the capability to quickly scale outward and inward depending on 

demand (essential characteristic of Cloud computing). Elasticity provides means for optimizing 

the resource usage for the cases of unknown loads (fluctuating). The enabling foundation of 

elasticity is the application scalability, which can be of two types: horizontal (adding more 

instances when required – depends on the application and on the application’s components) and 

vertical (adding more computational resources to the application – depends on the service 

provider). The NIST report on Cloud computing (Badger et al., 2012 [19]) identifies limitations 

for the benefits of elasticity. Private Cloud scenarios exhibit basically the same limitations in 

maximum capacity similar to these of traditional data centers. Public Clouds are offering 

theoretically unlimited resources but at a certain cost. Hybrid architectures (combination of 

traditional and Cloud-enabled computing capabilities), combined with horizontal scalability are 

reported (Tak et al., 2011 [222]) to offer the best solution, at least in terms of cost effectiveness 

(only for certain type of applications however). 

The migration of an application to Cloud entails a loss of control over the QoS 

characteristics due to the reliance on the QoS levels offered by the service provider. As a result, 

the QoS characteristics (especially availability and reliability) offered by a Cloud service 

provider appear to have a greater importance to application stakeholders than hosting the 

application traditionally. 

Security is one of the major concerns and an obstacle to migrate to the Cloud. It entails 

both the communications and data aspects, but also the physical/digital one (the risk of losing or 

compromising data due to data center failures or other physical attacks). 

The most important open issue affecting all application layers is probably the 

interoperability between Cloud service providers. The difficulties in interoperability between 

providers are also due to the lack of standardization and the different application models used by 

services. 
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The execution of jobs on a Cloud infrastructure involves actions such as: launching 

virtual machine, installing the necessary software and libraries required by the job execution 

(contextualization service), sending jobs to execution on the deployed VMs and shutting down 

VM based on the queue of pending jobs and other execution constrains. We consider the 

existence of a catalog and repository service of Virtual Machine Images (VMIs) such as the 

Virtual Machine Image Repository & Catalog (VMRC) (Carrion et al., 2010 [36], Calatrava et 

al., 2011 [35]) that enables searching for specific VMIs based on hardware and software 

requirements of jobs. When trying to execute a job in the Cloud, a VMI able to satisfy the job 

requirements and constrains is searched in this catalog. If such an image is found, it will be 

retrieved from the repository and deployed in the Cloud. If we cannot find an appropriate VMI, 

an empty VMI has to be deployed followed by the installation of all the necessaries software and 

libraries (contextualization service). Once the VMI is contextualized, it is stored in the VMRC 

and used for future executions.  

9.7. Monitoring 
The monitoring information is extremely important in dynamic scheduling processes 

because it offers a full view of the heterogeneous resources and the current execution and it 

enables high performance computing. Monitoring tools track not only resource usage but also 

network traffic, job distribution and others, and present this information for further effective 

decision making processes (Pop, 2008 [178]). The monitoring information can be used in 

different scenarios such as: scheduling, performance tuning, performance evaluation, resource 

utilization, fault recovery, debugging, user information, etc.  

Specific infrastructures like Grids have monitoring components that provide information 

about the background load of the infrastructure through components called Information Systems. 

The monitored data they published is not always accurate (Karoczkai et al., 2015 [119]) and 

cannot be used for exact scheduling. Beside this, in Grid systems the execution time of running 

jobs is not known and estimations are hard to make (Lee et al., 2005 [131]). Local clusters on the 

other hand may provide more accurate load information but when dealing with commercial 

clouds, these types of information are usually hidden on the underlying infrastructure.  
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9.8. Fault Tolerance  
A fault tolerant system is one that provides a set of services based on a pre-defined 

contract, in spite of possible system errors. This system has to detect, correct and eliminate errors 

while it continues to supply an acceptable set of services (Pop, 2008 [178]). The goal of such a 

system is to improve its characteristics so that the detection and elimination of errors is done as 

smooth as possible. The complexity and the distributed nature of HCE imply also a large set of 

possible errors, some of them common to all distributed systems and some of them particular: 

x Network errors – caused by the communication channels and manifested through 

package losses or package corruptions; 

x Timing errors – occur either due to the impossibility of establishing a connection or when 

the response time of one of the components exceeds a certain expected time; 

x Response errors – caused by a service, which returns values outside of an expected range. 

A validation mechanism is necessary in this case; 

x Byzantine errors – arbitrary errors that can appear during the execution and they refer 

most of the time to crashes or omissions. In these cases, the system enters in an undefined 

behavior state; 

x Physical errors – caused by critical conditions of the physical resources (processor, 

memory, storage, network, etc.). In these cases, the corresponding physical resources 

should be removed or replaced; 

x Life cycle errors – specific to components with services that can expire at a certain 

moment of time or need to be updated.  

x Interaction errors – caused by incompatibilities at the communication protocol, security, 

workflows or timing. These errors are specifically larger in a HCE due to the diversity of 

distributed systems and the lack of interoperability standards between different 

computing infrastructures.  

 

There are different approaches to provide fault tolerance in distributed systems. The main 

one is the rollback technique, which requires the creation of application states at different 

moments of time and restoring the execution to the last stable state in case of an error. Another 

technique is replication, which implies the execution in parallel of the application on multiple 
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resources and in the case one is interrupted, the execution continues on the active resources. 

Process migration is also a possible solution to provide fault tolerance and can be applied either 

at the application level or at task level.  

9.9. Discussions 
When considering a heterogeneous environment of computing resources, the most 

common problems that can appear are related to the efficient load balancing across the existing 

machines, scalability, fault tolerance and security. Another important problem in these 

environments is the efficient mapping of the tasks to appropriate available resources. Creating an 

intelligent component that uses artificial intelligence to solve most of the above-specified issues 

can be a good solution that can improve the system’s reliability and efficiency. Although the 

research in this direction is limited, the outcomes are promising (Alexandrescu, 2012 [7]). The 

most important challenges that can appear in a computing heterogeneous environment are related 

to task mapping, transparency, communication and connection, fault detection and fault 

tolerance, synchronization, load balancing, security, resource scalability and resource discovery, 

etc.   

There are different scenarios in which the usage of multiple heterogeneous resources, 

coming from different computing infrastructures, can be of significant importance. 

1. Improve time performance – the usage of additional infrastructure resources is done 

to improve the application time-to-completion. In this scenario, the new resources are 

used to reduce the impact of queue wait time or to exploit an additional level of 

parallelism. When talking about the usage of public Cloud resources, appropriate 

budget constrain has to be taken into consideration.   

2. Error prevention – the usage of additional resources is done to handle unexpected 

situations such as unanticipated downtime, inadequate allocations or unanticipated 

queue delays.  

9.10. Conclusions 
A single parallel architecture started to become inadequate to cover the needs of 

parallelism of some large-scale complex applications, therefore the increasing interest in 

scheduling for heterogeneous distributed systems. Optimized scheduling algorithms for multi-
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criteria constraints are extremely important to achieve high resource utilization. Heterogeneous 

systems have proven to offer higher performance at lower cost than a single high performance-

computing machine, in many practical cases (Pop, 2008 [178]).  

Managing a Hybrid Computing Environment (HCE) formed of different distributed 

computing infrastructures (DCIs) and offering a transparent and flexible access of a large pool of 

highly heterogeneous resources are complex problems to solve and involves a large number of 

challenges that have to be considered and sophisticated approaches to be applied. Among these 

challenges we mention the followings:  

x Managing and administration of large scale scientific applications; 

x Conceptual descriptions of application through formalism and abstract concepts;  

x Efficient scheduling of the jobs composing the application workflow over a large set of 

highly heterogeneous resources; 

x Resource reservation mechanisms from a high uncertainty and unpredictable load of 

resources coming from different computing infrastructures;  

x Adaptive executions of jobs on different distributed computing infrastructures; 

x Error detection and error recovery mechanisms adapted to a HCE. 

 

We have focused our attention on scheduling mechanism within a HCE because we 

consider this an essential component in obtaining high performance computing. Various 

strategies for scheduling in distributed systems have been developed and reported in literature 

and most of them are oriented towards static scheduling (Braun et al., 2001 [33], Pop, 2008 

[178]). In this type of scheduling, both the assignment of tasks to processors and the execution 

start times are determined in advance. The tasks are assigned only once to a resource and the 

estimation of the execution cost can be made before the actual execution, informing and even 

given users the possibility to decide among several scheduling options. The main drawback of 

this type of scheduling is that it cannot be applied in a highly-dynamic environment, which 

undergoes a lot of changes such as: a node selected to perform a computation fails, or it becomes 

isolated from the system due to network failures, it is heavily loaded by other users/applications 

and the response time is not sufficient, etc. All these changes are possible in a HCE and therefore 

a dynamic scheduling mechanism is more appropriate. Similar, optimal schedulers are difficult to 

obtain in such a dynamic and complex environment and therefore sub-optimal ones seem a good 
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compromise. These algorithms use formal computational models and heuristics and instead of 

searching the entire solution space for an optimal solution, they stop when an acceptable solution 

is found.  

Scheduling a workflow in a HCE must take into account specific issues and some of them 

are also related to the application type and the associated workflow. The most common issues we 

have identified so far are: intermediary data transfer, identification of reliability level of 

computational resources, optimization criteria (minimize the response time, maximize the 

resource utilization, makespan reduction, cost minimization, best resource selection, time 

constrains, reliability, network bandwidth, etc.) and variation limits for multi-criteria algorithms, 

tasks grouping to reduce bandwidth consumption, history utilization for resource selection, QoS 

requirements.    

9.11. Personal Contributions 
x Analyze and explore challenges in a Hybrid Computing Environment (HCE), composed 

from different distributed computing Infrastructures (DCIs): cluster, Grid, Cloud. 

x Published Papers: 

o Rodila, D., Gorgan, D., Ray, N., and Lehmann, A. (2016). ENV2CE: 

Environmental Application Conceptualization and Execution on a Hybrid 

Computing Environment -Framework and Methodology Proposal, (to be 

submitted). 
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Chapter 10:  Environmental Applications 

Conceptualization and Execution on a Hybrid 

Computing Environment (ENV2CE) 

10.1. Introduction 
In this chapter we will introduce a new methodology ENV2CE (Environmental 

Applications Conceptualization and Execution on a Hybrid Computing Environment) for easily 

porting and executing environmental applications on a Hybrid Computing Environment (HCE) 

based on the application conceptual model (described in Chapter 8: ) and a new framework 

architecture. The HCE is composed from several heterogeneous computing resources belonging 

to local machines, HPC cluster, Grid and Cloud infrastructures. We will describe in detail the 

HCE, the proposed framework and its components and the underlying methodology to efficiently 

execute environmental applications on such a system.  

10.2. Similar Research Initiatives 
Raman (2011) [181] presents a system for flexible parallel execution called Parcae. The 

author presents a separation of concerns of parallel application development, its optimization and 

its use to be able to execute parallel applications robustly across a variety of execution 

environments. Using the Parcae system, the authors guarantee that the specified performance 

goals of an application are met in a variety of application execution environments. According to 

this research, the applications developed in the sequential programming model (which includes 

also the legacy code applications) are enhanced automatically to execute flexibly on Multicore 

platforms. The Parcae system is composed of 3 important components: Nona compiler, Decima 

monitor and Morta executor. This system optimizes the execution of multiple flexible programs 

running on a shared parallel platform and reduces the execution time by -1.39% to 41.94% with 

concomitant energy savings of 23.9% to 83.9%. The authors have reached to the conclusion that 

there are several important factors to maximize parallel program performance:  

x The ability to expose and optimize parallelism across multiple levels in a loop nest; 

x The ability to express multiple types of parallelism simultaneously;  
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x The ability to expose application features to the runtime system.    

 

Cooperative use of parallel resources, as orchestrated by a platform-wide resource 

manager in concert with each application’s run-time system, is essential to maximize platform 

utilization. Tighter integration between the application-level run time system and the operating 

system’s scheduler yields significant performance gains compared to when the two operate in 

isolation. The aim of the Parcae system is to support new parallelization optimizations and 

adaptive platform-level optimizations if possible suitable for the new executing infrastructures.  

Several tools have been developed to extract parallelism from sequential code (Bridges et 

al., 2007 [34]) or to extract thread-level parallelism (OpenMP - http://www.openmp.org, 

Leiserson, 2009 [134]). Parallelism extraction is just one part of the problem of synthesizing well 

performing programs that execute efficiently in a variety of execution environments. The other, 

equally important, part is the tuning and packaging of the extracted parallelism. In the absence of 

intelligent tuning and packaging, a parallel program may perform worse than the original 

sequential program (Weissman, 2002 [238], Suleman et al., 2010 [218], Raman et al., 2011 

[182]). 

To summarize, Parcae enables the separation of concern of parallelism discovery and 

extraction from the concern of optimizing and redeployment to adapt the application to a new 

execution environment.  

According to (Raman, 2011 [181]), the developments of parallel applications, which will 

be executed efficiently in a variable execution environment, have to take into consideration the 

following aspects: 

x Correctly partition the application into parallel sections/tasks; 

x Specify appropriate logic to the application to be able to adapt to the changes in the 

executing environment; 

x Design and implement a component able to adapt the application parallelism to the 

executing environment. 

Most of the existing solutions attempting to solve the parallelization of applications in a 

varying executing environment omit to treat separately these issues, resulting in limited 

portability, extensibility and flexibility.  

http://www.openmp.org/


- 279 - 
 

Libraries and API such as OpenMP, Threading Building Blocks (TBB) (Reinders, 2007 

[187]) and Pthreads (IEEE and the Open Group, 2004 [110]) impose the specification of a single 

fixed configuration of a parallel application (imperative specification). Such a single program 

configuration will become suboptimal as the execution environment changes (Suleman et al., 

2010 [218]). A better approach would be the case in which the programmer should not worry 

about a specific parallelism configuration. This should be adopted automatically at the execution 

as it depends on the chosen execution environment, without manually code the adaptation logic.  

An ideal system should also enable the expression of multiple parallelism types (data parallelism, 

task parallelism, pipeline parallelism) and selection of one or more types according to the 

application’s execution environment. In the ideal case, such a system should allow the 

specification of multiple performance goals without the need to rewrite the application code, 

assuring the portability of the application across different systems with varying goals and 

constrains (Raman, 2011 [181]). 

Most of the proposed systems (Curtis-Maury et al., 2006 [50], Reinders, 2007 [187], 

Blagojevic et al., 2007 [27], Wang et al., 2009 [235], Suleman et al., 2010 [218]) able to adapt 

the execution of parallel programs to a variable executing environment are tied to a specific 

performance goal, a specific parallelism type or a specific mechanism of adaptation.  

A high-level Grid and Cloud framework, which allows a smooth transaction from clusters 

and Grids to Clouds, is presented in (Amedro et al., 2010 [9]). They collect the information 

specific to the application infrastructure in a deployment file, separate from the application 

source code, allowing the application to run on different platforms without any modification. The 

authors have evaluated the performances obtained when running scientific applications on Cloud 

and they concluded that there are cases in which other traditional computing platforms perform 

better. These observations lead to the idea that the best approach in obtaining good results is a 

mixture between Cloud and other platforms. To facilitate the deployment of application in a 

hybrid Grid/Cloud environment, they used the ProActive Parallel Suite 

(http://proactive.activeeon.com/). ProActive middleware provides an abstract descriptor-based 

deployment model and gives the possibility to deploy an application on different platforms 

without changing the source code. 

http://proactive.activeeon.com/
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Giusti et al. (2010) [88] present the AMTHA (Automatic Mapping Task on 

Heterogeneous Architectures) algorithm for task-to-processors assignment and the MPAHA 

(Model of Parallel Algorithms on Heterogeneous Architectures) model. 

The lack of common standards in Geospatial area is a great obstacle in the 

interoperability of this field with different existing execution platforms. Muller et al. (2013) 

[156] present an approach to share, reuse and even standardize geo-processing logic in the 

remote sensing area by moving code packages as self-describing software components. These 

components should contain algorithmic code and machine-readable descriptions of the 

functionality, platform and infrastructure. The research also presents a mechanism to distribute 

those packages on the Web and to integrate them in different varying execution environments.    

Several other research studies have shown how Cloud providers are able to supply the 

needs of resources of different data intensive applications executing on different infrastructures.   

Palankar et al. (2008) [174] have investigated the possibility of mixing the Grid and the 

Cloud infrastructures by allowing the Grid users to perform costly data operations on the Grid 

resources while utilizing the data availability provided by the Clouds. The study is focused on 

the Amazon’s storage utility – Simple Storage Service (S3) – that aims to provide data storage as 

a highly available, low-cost service, with a pay-as-you-go billing model. The aim of the research 

is to integrate this service within the Grid infrastructure and to identify the needed requirements 

for such a storage service in this context. Although Grid applications can benefit from using 

Amazon services, such as improving data availability, Palankar et al. (2008) [174] highlighted 

that a balance between the benefits of Amazon services and the cost of using Amazon's 

infrastructure should be taken into account. “This balance involves performing expensive 

operations that generate large amounts of temporary data at the Grid infrastructure.” 

VioCluster (Ruth et al., 2005 [203]) is a virtualization based computational resource 

sharing platform, which allows to dynamically adapting the capacity of clusters by borrowing 

idle machines of peer domains. In this study, a broker is responsible for managing a virtual 

cluster/domain and it has borrowing and lending policies, which allow it to easily borrow and 

lend resources to another broker. Ruth et al. (2005) [203] conclude that dynamic machine trading 

between virtual domains decreases their job wait time and increases their resource utilization.   

Chang and Karamcheti (2001) [40] introduce an application-independent adaptation 

framework which simplifies the design of resource-aware applications i.e. applications which 
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adapt their behavior to changes in the executing resource characteristics while ensuring a desired 

performance level. The need for adaptation decisions is no longer explicitly programmed in the 

application. An interface is responsible for exposing the adaptation choices as alternate 

application configuration while the execution of the application is performed in a virtual 

execution environment with diverse resource availability. This framework allows automatic run-

time decisions for adapting an application and specifying when to adapt (by monitoring the 

application progress and the resource conditions) and how to adapt (by dynamically choosing an 

appropriate application configuration). 

10.3. Methodology  
Running applications across multiple computing resources has been done in previous 

works and some of them have been presented in section 10.2 but these approaches are not 

proposing a full methodology based on theoretical concepts and formalisms. They offer instead 

an API for a submission procedure and give examples on particular use case applications from 

different areas.  

We propose a methodology that is developed based on lessons learned from deploying 

and porting different large-scale environmental applications on different parallel and distributed 

computing infrastructures, presented in Chapter 7: . This accumulated expertise from customized 

solutions helped us build a step-by-step, general, and possibly standard methodology to 

effectively and efficiently port environmental application on different computational backends. 

Giving the generality and the flexibility of the proposed solution, it can easily be extended to 

other scientific applications from other research fields. 

The steps of our methodology are: 

- Preprocessing phase - in which the framework gathers the information about the 

available computational systems, the executed application, the user preferences, etc. 

In this step we also define the application conceptual model. 

- Analysis phase - in which we model both the application structure and the execution 

flows, based on the gathered information in the previous phase. 

- Decision/Scheduling phase - in which we schedule the tasks to resources, we make 

decisions on which computing environments is more suitable, based on the 
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application developed model, availability of the platforms, user preferences, history, 

predictions, etc.  

- Execution phase - in which we actually execute the application on the selected 

computing backend, based on the defined policies.  

- Monitoring phase - in which the execution is monitored and information is collected 

for future executions. 

 

The main objectives of ENV2CE methodology are to:  

x Allow an easy and flexible execution of an environmental application;  

x Obtain a faster execution time; 

x Exploit to the maximum the parallelization within an application;  

x Utilize resources more efficiently; and 

x Provide the user the possibility to either choose what computational resources to use or to 

leave the system choose for her. 

10.4. Proposed Framework  
Most of the large scale scientific applications require large storage and computing 

facilities but unfortunately there is not a single standardized way to access these facilities, 

instead there are many protocols and tools used by different scientific, research, educational or 

private centers. In this regard, there is a clear need for a common standard to develop and 

execute large-scale scientific parallel and distributed applications. An innovative framework able 

to scale from single resources to multiple resources having different ownership, geographic 

locations, architectures and policies is a step forward in a new computational era.   

In this section we propose such a framework, having the following properties:  

x Resource heterogeneity – A hybrid-computing environment usually consists of multiple 

distinct types of resources. To overcome this heterogeneity, we proposed a software layer 

(a middleware) able to hide to the users the differences and the complexities of the 

incorporated computing infrastructures.   

x Scalability – A system is described as scalable if the performance of the system remains 

the same even if the number of resources, requests and/or resources increases. The 

scalability in our case is assured by the scalability of the underlying computing 
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infrastructures but a general overview of the entire system is kept by a monitoring 

component.  

x Transparency – Offering transparency to the users if very important. All the computing 

infrastructures, their interoperability and their underlying complexity are hidden from the 

user under a centralized system. The transparency can be handled at different levels: 

o Access Transparency: the users access the resources in a uniform manner, 

regardless of their type.  

o Location Transparency: the resources belonging to the same or to different 

infrastructures can be physically located in different parts of the world but the 

system provides uniform access to all resources.  

o Failure Transparency: failures should be detected and masked to the user till 

their recovery.       

x Fault handling – The system provides a Fault Handling component able to detect and 

recover from possible failures.   

 

Based on the above-described properties, we present the main framework functionalities: 

x Applications management: the framework offers an application management 

component through a conceptual description of the structure of the applications, which 

gives a better view on the execution and data flows. It also offers functionalities to map 

the conceptual description of the application to physical resources and schedule its 

execution on a HCE.  

x Internal and external data management: all distributed systems offers tools for data 

management but most of the time they can become complex and hard to understand and 

use. Our purpose is to offer a unified and transparent way to manage both the internal and 

the external data among the hybrid set of distributed infrastructures.  

x Access to a hybrid set of computing resources, which implies also authorization and 
authentication to these resources. The framework offers access to a dynamic set of 

heterogeneous resources.  Most of the time, the access to a set of resources only comes 

with user authentication and authorization processes. This ensures the security of the 

running applications on the accessed resources. The authentication offers a way to 
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establish the identity of the user while the authorization tells us what are the set of 

resources accessible by the user.     

x Conceptual description of environmental applications: a simple and flexible 

conceptual model is available to the user to map an environmental application and to 

better understand its structure, its task decomposition, its execution, and its data flow. 

x Intelligent optimization of resource selection based on different criteria: the 

framework provides an intelligent component (Mediator) able to optimize the selection 

of computing resources assigned to the execution of the application workflow tasks. This 

selection is done base on several criteria such as user preferences, tasks type, history, 

resource availability, and constrains.  

x Mapping, scheduling and execution of applications on a hybrid environment: after 

conceptually defining the application, the user has functionalities to submit to execution 

of the workflow of tasks composing the application. The user has the option to specify 

different execution preferences and constrains. The framework offers a scheduling 

algorithm, which aims for a better resource utilization and better performances while 

following the imposed constrains.       

x Error prevention and recovery mechanisms: the errors can appear at different levels in 

the implementation of the ENV2CE methodology, starting with the definition of the 

conceptual model of an application and ending with the result collection. The framework 

must ensure a robust way of detecting the errors, no matter the level in which they 

appear, as well as to provide mechanisms of error recovery if necessary.    

x Execution monitoring and results management: monitoring the execution of the 

application on a HCE implies many functionalities: manage the individual distributed 

systems components and present a unified view of them, keep the user informed 

regarding the execution state, detect possible errors and adapt the context specific 

recovery mechanism in order to have a better success rate of execution. 

 

The main idea of our hybrid environment is to provide access to a large set of highly 

heterogeneous resources, which differ in basic properties such as processor architecture, amount 

of memory, storage capacity, connecting network and performance. The goal is to provide a 

uniform perception of these resources by the end users. This means that all the technological 
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complexity should be hidden and all the resources should be seen similarly, whether they are 

located on a cluster in the same building or on a remote Cloud.    

Hiding the technological complexity of such a system means dealing with numerous 

issues: 

x The difference of resources not only in basic properties but also in small details. 

Important aspects of the resources include (Mateescu et al., 2011 [146]):  

o resource ownership: locally owned or externally owned;  

o resource accessibility (private or public); 

o resource sizing: quasi-static (resource grow when purchasing new hardware) or 

dynamic (by using external public resources); 

o resource allocation policies: exclusive (per organization, group, project or user) or 

shared (among organizations, groups, projects or users); and 

o application portability: tied to a specific platform or platform agnostic. 

x The middleware and the tools used to access each resource, as each infrastructure has 

different access interfaces. This entails the particularities and the language of jobs 

submission for each platform; 

x Data access of each resource; 

x Security issues;  

x Lack of connectivity between resources;  

x Performance;   

x The monitoring components, which may vary even within the same environment; and  

x Procedures and tools for result collection. 

10.4.1. Distributed Computing Infrastructures Technical 

Specifications 

In this section we will present the technical specifications of all the parallel and 

distributed infrastructures used in our research. They are all members of our proposed HCE.  

The need to access multiple computing platforms concurrently from a single 

framework/application comes often due to the impossibility to reserve a sufficient amount of 

computing resources at once within a single platform. Even if one platform would have the 

required number of resources needed for a large scale complex scientific application, in real 
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world that platform is not dedicated to a single user but to a distributed pool of end-users who 

also demand access to a range of resources.  

The common goal of all distributed infrastructures is to provide efficient and transparent 

computing access over a distributed set of resources with as little effort as possible from the user 

point of view. Almost all these resources are nowadays equipped with multi-core processors and 

many core ‘add-ons’ which makes them more and more difficult to program, use and port 

applications on them, even for a computer scientist. Furthermore, combining heterogeneous 

resources together increases the difficulties and the issues to handle. The potential parallelism 

must now be explored at all levels of granularity.   

10.4.1.1. Grid Infrastructure (gLite Middleware) (UTCN) 

x gLite middleware;  

x Resources:  

o one Computing Element (CE) and one Storage Element (SE); 

o Worker Nodes (WNs) – computational resources – 128 physical CPUs with 1024 

logical CPUs; 

o Storage Element – storing resources  ~ 13 TB; 

x Ganga tool – used as frontend for job definition and management; 

x Diane tool – employed for efficient usage of the distributed computing infrastructures. 

10.4.1.2. Baobab Cluster (UNIGE) 

x HPC Cluster – BAOBAB – provided by UNIGE (http://baobab.unige.ch/); 

x bought by the end of 2012 and operational since early 2013; 

x master node in charge of administration and backup; 

x 57 compute nodes, each with:  

o 2 Sandy Bridge Intel(R) Xeon(R) CPU E5-2660 @ 2.20GHz cpu with 8 cores 

each; 

o 64 GB of RAM; 

� for a total of 912 cores. 

x 1 compute node with: 

http://baobab.unige.ch/
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o 4 Sandy Bridge Intel(R) Xexon(R) CPU E5-4640 @ 2.40GHz cpu with 8 cores 

each.  

x a server node providing 40 TB (extended in December 2013) shared file system 

FraunhoferFS (FhGFS);  

x InfiniBand 4xQDR  (40Gbit/s) connectivity between master, nodes and storage. 

 

10.4.1.3. OpenStack Cloud (UNIGE – HEPIA) 

x HepiaCloud - academic cloud platform based on OpenStack, connected to SwissACC 

(Swiss Academic Compute Cloud) platform/project; 

x Available resources - 41 compute nodes available;  

x vcpus free: 287 / 304; 

x ram free: 1953 GB / 1992 GB;  

x disk free: 9060 GB / 9148 GB;  

x All virtual machines in a private network which require the usage of an ssh gateway 

(gw.lsds-rg.org). 

10.4.1.4. OpenStack Cloud (UNIGE - SwissACC) 

SwissACC – Swiss Academic Compute Cloud (http://www.swing-grid.ch/SwissACC/) is 

a Swiss wide computational science platform offering: 

x Resources;  

x Services; 

x High quality know how for user and application support; 

x Provides access to Cloud platforms - UZH Cloud (Hobbes) http://cloud.gc3.uzh.ch/;  

x Compute nodes available: 80; 

o vCPUs available: 80; 

o RAM available: 160 GB.   

10.4.1.5. Windows Azure Cloud (UNIGE – SwissACC) 

The available Windows Azure platform has only 4 virtual machines and it’s a test 

platform. This is used just as a proof of concept to show the flexibility of the proposed 

framework to integrate at any time other Cloud providers or even other DCIs.  

http://www.swing-grid.ch/SwissACC/
http://cloud.gc3.uzh.ch/
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10.4.2. System Architecture 

 
Figure 77: ENV2CE - System Architecture 
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The System Architecture is a typical multi-tier client server architecture, customized to 

meet the proposed system requirements and to follow the proposed methodology with focus on 

the interoperability and openness of the included components. Figure 77 illustrates a possible 

implementation scenario. 

The Client Layer provides end users capabilities to insert new applications into the 

framework, to create conceptual descriptions of the applications, to instantiate conceptual models 

to real use cases data, to insert applications specifications, execution preferences and execution 

constrains, as well as to visualize monitoring reports and resulting data. The visualization of 

geospatial data can be done through a set of OGC standards implementations such as Web Map 

Service (WMS), Web Coverage Service (WCS), Web Feature Service (WFS) and also to be post 

processed using the Web Processing Service. 

The Application Layer contains the core services performed by the system and is 

composed of several important modules: Conceptualizer, Mediator, Executor and Monitor. 

10.4.3. Components Description 

10.4.3.1. Conceptualizer Component 

The Conceptualizer is responsible for generating the conceptual model of an application, 

instantiating it with specific data and computing resources and managing the application 

execution and data flows. At this stage, the workflow of the application is build and the workload 

is divided into sets of independent tasks. The Conceptualizer is therefore responsible for 

managing the application workflows, including the metadata and any other additional 

information related to the application workflow. 

This component includes a parser responsible for parsing the application conceptual 

model described by the user (detailed in section Chapter 8: ). At this step, all the information 

regarding the data and the execution workflow of the application are extracted and incorporated 

in an internal data structure. All the conceptual models (applications workflows at this stage) are 

stored in the database and can be further on used for other executions. After the scheduling 

solution was decided (Scheduler Component), the application workflow is instantiated with 

actual input data and actual execution resources.     
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10.4.3.2. Mediator Component 

The main goal of the Mediator Component is to achieve the integration and the 

interoperability between Environmental field (Environmental data and applications) and High 

Performance Computing (the Hybrid Computing Environment). The interoperability between 

two systems in general, defined as the state in which the two systems can work, communicate 

and interchange information while taking advantage of both systems capabilities and 

functionalities, is a challenging research topic. There exist two main approaches to achieve this 

state of interoperability between two systems, which are not compatible: 1) development and 

implementation of common standards that would allow an easy communication and exchange of 

information, and 2) a mediation (broker) layer, capable to mediate the differences between the 

two systems. The adoption of common standards is definitely the best way to achieve 

interoperability but in this ideal case, the two systems must also support the adherence of these 

new common standards. Both the definition and the implementation of standards are long and 

complex processes and involve many organizations and collaborations. The mediation approach 

involves the insertion of a new component capable to mediate the communication between the 

two systems and to easily explore their capabilities and functionalities. 

The Mediator Component is developed on the broker pattern, which separates users of 

services (clients) from providers of services (servers) by inserting a new, intermediary level, 

called broker. When a client needs a service, it has to interact with the broker, using a service 

interface. The broker then forwards the client’s service request to the appropriate server, which 

will process that request and send back the result. This component incorporates the Complexity 

Computation and the Scheduler Components and supports protocols and data models found in 

environmental domain.  

An important functionality of the Mediator component is to decide on which 

infrastructure to submit which tasks and this implies much more than just analyzing detailed 

performance metrics of each available computing infrastructure. The motivation of developing 

this component was to allow users who have access to a limited local set of resources and to a 

potentially much larger pool of distributed resources, to easily make use of all of them in an 

efficient manner while also hiding the complexity of the underling computational infrastructures’ 

mechanisms.  
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The functionalities exposed by each of the available distributed computing infrastructures 

(DCIs) within the HCE can provide many benefits, which are visible only in certain conditions. 

These infrastructures (Grid, cluster, Cloud, etc.) are not just powerful platforms that execute any 

process faster by making use of the parallel architectures on which they are built. Many other 

aspects have to be considered regarding the complexity they hide. In most of the cases, the 

functionality offered by these infrastructures can improve the execution time of a complex 

computation by taking advantage of the parallelization techniques. There are still cases in which 

the DCIs can have negative consequences, increasing the execution time of a process due to the 

overhead introduced by the management that lies behind (i.e. job creation, scheduling, 

submission and management, monitoring, result collection, etc.). These are usually the cases for 

simple processes, which do not need a high amount of resources. The cases in which DCIs and 

implicitly a HCE comes with an improvement in the execution time for environmental 

applications are particular. These cases are described for Grid infrastructure in (Rodila and 

Gorgan, 2010 [195], 2011 [197]). Before using a HCE and particularly the composing DCI, one 

should consider the full picture and look at the complexity that hides beyond each of these 

infrastructures. They can offer great advantages for performing large and complex computations 

but it slows down the small processes. The analysis of the boundary above which a DCI is 

beneficial in executing service requests is therefore an important part in the migration of 

environmental applications on a HCE and the Mediator component tries to find appropriate 

solutions.  

The identified cases in which a DCI can improve the performances obtained while 

executing an environmental application/service request are: 

x The time required to execute a request on a local server is considerably larger than the 

overhead introduced by job creation and management on any of the available DCIs; 

x Several requests are made in parallel at the same time; 

x The request (environmental application) is a complex request that can be split into several 

independent sub-requests, depending either on the requested data or on the requested 

functionality. 

 

Before porting an environmental application on a HCE, all these cases should be taken 

into consideration and analyzed to decide whether the given request falls in one of the cases. 



- 292 - 
 

Should it not be the case, the process of migration for this special case is useless and the request 

should be better executed on a local server. This analysis should be made for each individual 

request and should be part of the extended service either as an incorporated or as an additional 

component. 

The Mediator Component is responsible for the following activities:  

x Analyze the environmental application, base both on the user specifications in 

configuration file and the data and execution flows extracted from the application 

conceptual model; 

x Schedule all the application tasks based on different criteria: complexity estimation, 

execution history, user preferences, etc.; 

x Provide functionality for data parallelism at the task level if necessary, based on data 

requirements; 

x Applications and resources management.  

10.4.3.3. Complexity Computation  

The Complexity Computation Component is responsible for estimating the computational 

complexity provided by the application into runtime and/or costs estimates on a specific 

resource. The complexity analysis is a complex task and must consider different inputs such as: 

the type of the applications (as specified by the user in the configuration file), the data and the 

execution flows (as derived from the application conceptual model), the complexity estimated by 

the user, etc. Base on the estimations made by this component, the scheduling process adjusts the 

selection of resources for each application task to obtain better performances. 

Estimates of the relative complexities of the tasks to be scheduled are used to identify 

potential scheduling blocks. An initial hybrid mix of computing resources is determined based on 

user/system defined objectives, policies and constrains. Tasks that are computationally intensive 

may be more suitable for a cluster or a HPC Grid resource while tasks that require quick 

turnaround may be more suitable for a Cloud resource. A low-level complexity task or even 

application (simple execution or serial execution flows in the application conceptual model) may 

also be more appropriate to be executed on local servers instead of migrating it on one or more of 

the available DCIs within the HCE. High complexity tasks can also be further analyzed before 
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scheduling, to analyze the data parallelism option if the task input data is quite large. The 

allocation of tasks and the scheduling policy can change at runtime.   

The Complexity Computation component acts thus as a filter for the incoming requests 

(applications and tasks) and based on the results, it assigns different priorities for the available 

DCIs. Complex requests have to be further on analyzed before scheduling them for execution, to 

determine the level of data parallelism that can be further on applied.  

We define the complexity of an application as a function of different input parameters: 

EnvAppComplexity = f ( InputDataSize, InputDataNrOfFiles, NrOfWorkflowTasks, 

UserEstimatedComplexity ) 

Similarly, we define the complexity of a task as: 

TaskComplexity = f ( InputDataSize, RequiredProcessingPower, RequiredProcessingMemory, 

UserEstimatedComplexity ) 

Based on these initial estimations, we compute an estimation matrix in which we estimate 

the optimization criteria from mapping each task on each available and possible computing 

resource. The optimization criteria chosen here were the total execution time and the total 

execution cost.  

10.4.3.4. Scheduler 

As described in Chapter 9 scheduling is one of the most important problems in computing 

system. It is a dynamic activity and has to be described with both static and dynamic properties, 

at different instances of time. This activity can sometimes take a significant amount of time, 

especially when the complexity of the scheduling problem becomes sufficiently large. We should 

make sure that the execution time saved by selecting the optimal schedule, considering the 

specified context, is not less than the increase in time required to find that schedule.  

Shortly, scheduling is the process of assigning tasks to resources (machines) and then 

ordering the tasks for execution on each resource. To map n tasks (T1, T2, …, Tn) to m resources 

(R1, R2, …, Rm) (Figure 78) we have to consider the tradeoff between the quality of the solution 

and the time needed to get that solution.  
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Figure 78: Task Scheduling on Resources – Abstract View 

 
A scheduling problem may have one or more scheduling solutions and in this section we 

will consider a range of possible solutions. At execution, the goal of the scheduling algorithm is 

to always choose the solution that is closer to the optimum one, from the range of available 

solution at that time, in the given context.  

Within a scheduling problem there are two important phases that have to be considered 

(Hanh and Simonenko, 2015 [102]): the processing requirements required by a task (CPU, 

memory, etc.) and the optimization requirements (minimum parallel executing time, minimum 

execution cost, high resource utilization, etc.). Based on these two phases, the first step is to 

reduce the number of resources available for executing the tasks (reducing in the same time the 

space of scheduling solution) to the set of resources satisfying the processing requirements. 

Based on the new set of available resources, the second step consists in choosing the scheduling 

solutions satisfying the optimization requirements. Among these solutions (a reduce space) we 

can find the one that converges towards the optimal solution, considering the defined context and 

requirements (Figure 79). 

 
Figure 79: Scheduling Solutions Space - Abstract View 
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Let us define in the following the scheduling problem together with its important 

component: the workload, the resources and the scheduling goal and requirements. All these 

concepts were described in detail in Chapter 9.  

We consider therefore the scheduling problem SP (Figure 80) defined as a set of tasks, a 

set of resources and a set of scheduling requirement: 

 

SP = (T, R, Z)      (1) 
where: 

SP = scheduling problem; 

x T = {T1, T2, … Tn}, n >0 – list of tasks defining the workload;  

x R = {R1, R2, …, Rm}, m> 0 – list of heterogeneous resources (belonging to different 

computing infrastructures); 

x Ζ = {Z1, Z2, …} – list of scheduling requirements that must be fulfilled (optimality 

criteria). 

 

 
Figure 80: Scheduler Model 

The set of tasks is application dependent and it’s extracted based on the conceptual model 

of the application, defined in Chapter 8: . During the application execution, the conceptual model 

of the application is build and the workflow with the corresponding tasks is extracted. The tasks 

of the workflow should be assigned (mapped) to available required resources, which can belong 
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to any of the composed distributed computing infrastructures (DCIs) within the HCE. Based on 

the final set (pool) of selected resources, the final execution environment is determined at 

runtime and the Scheduler submits and executes the tasks according to the resources’ type. The 

central point of this execution flow is the appropriate selection of the resources (from the highly 

heterogeneous pool) to map the current set of workflow tasks.  

The set of resources depends on the HCE and the composed distributed computing 

infrastructures.  Each infrastructure has different types of resources, which have a high degree of 

heterogeneity even within that specific infrastructure leading therefore to an even higher degree 

within the HCE. For example Grids have active resources (CEs) that continuously execute 

submitted jobs while desktop Grids have volatile resources that can become unavailable (they go 

offline) anytime the owner wants to use that computer. Clouds have virtual resources that have to 

be deployed before being used, affecting the load and the waiting time of the task. When 

defining the set of heterogeneous resources within a HCE, we have to take into account that all 

types of resources introduce a certain amount of delay that affects the execution time of a 

submitted task.   

The resource selection should take into account all the common and specific parameters 

of each computing infrastructure, described in details in Chapter 9: , but will follow also specific 

rules: 

x Each used distributed computing infrastructure (DCI) will be assigned a certain 

priority weight. This weight is computed based on several factors: 

o User’s access to the DCI; 

o DCI resource availability (obtain the current load either through information 

system interrogation or through estimation);  

o DCI execution cost (which can vary based on the task type); 

o User budget (especially when assigning weights to public Cloud 

infrastructures); 

x The infrastructure with the highest weight will be selected as the first pool of 

resources to map the application jobs. Selection of resources from another 

infrastructure (having a lower priority weight) is done in the following cases: 

o When resources of the current infrastructure become exhausted – the current 

infrastructure cannot cope with the current workload to be executed; 
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o When task requirements (hardware and/or software dependencies) cannot be 

satisfied with the resources from the current infrastructure – no computational 

resource is found that has the specific required properties (encountered 

especially when complex software need to be executed). Installing the missing 

software or libraries might not always be possible and regarding the hardware 

dependencies, this is impossible to be modified; 

o When workload distribution is needed – need to access a larger pool of 

resources to obtain a higher throughput in terms of resource usage (depends 

on the user budget). This case is more appropriate to independent tasks when 

no communication is needed. 

 

A. Workflow description based on the application conceptual model 
A workflow is an abstract representation of an application, deduced in our case from the 

environmental application conceptual model, and it’s composed from a set of tasks, with 

precedence constrains between them, which can be executed in sequential mode, in parallel 

mode or a combination of them. We represent a workflow using the notation: 

 

W = ( T(W), B(W), maxST(W), ET(W) )      (2) 
Where: 

x T(W) = {T1, T2, …, Tn} – List of workflow tasks; 

x B(W) = User defined workflow budget (defined for public Cloud resource usage); 

x maxST(W) = User defined maximum start time of the execution; 

x ET(W) = User defined estimation of total execution time. 

 

B. Task description 
A task is the description of a compute or data transfer process, its dependencies 

(hardware and software requirements), and it’s constrains. We represent a task using the 

notation: 
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Ti = ( Res(Ti),, Exe(Ti), Dep(Ti), In(Ti), Out(Ti), maxST(Ti), ET(Ti), RT(Ti), D(Ti), P(Ti) ) (3) 
Where: 

x Id(Ti) – Task id; 

x Res(Ti) = Resource attributes for the task: resource type, resource count, … 

x Exe(Ti) = Executable of the task; 

x Dep(Ti) = List of dependencies: libraries, software, operating system, …; 

x In(Ti) = Inputs of the task; 

x Out(Ti) = Outputs of the task; 

x maxST(Ti) = User defined maximum start time of the task execution. All maxST(t) must 

satisfy the condition: maxST(Ti)  > =  maxST(W),  i = 1,n; 

x ET(Ti) = User defined estimation of task execution time; 

x RT(Ti) = The time when the task becomes ready for execution (all dependencies are 

completed, all the inputs are available) – this time is computed during runtime; 

x D(Ti) = Deadline of the task; 

x P(Ti) = Priority of the task. 

We define additional temporary task parameters such as: 

x ST(Ti) – actual start time of the task, which must satisfy the condition:    

RT (Ti) <= ST (Ti) <=  maxST (Ti);   

x WT(Ti) – waiting time of the task – defined as: WT(Ti) = ST(Ti) – RT(Ti); 

x Weight (Ti) = P (Ti)/eD(Ti) – weight of the task – the tasks with the higher weight (higher 

priority and a tighter deadline) should be mapped first. The exponential function is used 

to increase the impact factor of the deadline in the weight.  

 

At the execution, a task can be in one of the following states: 

x Submitted – the task has been sent to execution to a chosen resource; 

x Wait – the task is in the waiting list to be mapped to a resource or the task is already; 

mapped to a resource but the resource is not yet available; 

x Running – the task is being executed; 

x Done – the execution of the task is successfully terminated; 

x Cancelled – the execution of the task has been cancelled from different reasons. 
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C. Resource description 
A resource is a reusable entity that is used to fulfil a task or resource request. This can be 

a machine, network, or some service that is synthesized using a combination of machines, 

networks, and software. 

We define the following characteristics for a resource Rj: 

Rj = ( Id(Rj), P(Rj), CPU(Rj), Type(Rj), C(Rj) )      (4) 

x Id (Rj) – resource id  

x MIPS(Rj) – Million Instructions Per Second 

x NFC (Rj) – number of free cores  

x NPC (Rj) – Total number of processing cores 

x Performance P (Rj) = NFC(Rj) * ( MIPS(Rj) / Nt(Rj) ). For simplification, the 

performance can also be defined as the time taken to execute a task in seconds.  

x CPU – the computing capacity of the resource – numbered of processes instructions per 

second.  

x Type(Rj) – Resource type: 1 (cluster), 2 (Grid), 3 (Cloud); 

x C(Rj) – cost per hour. This property if defined for Cloud resources, for all the other 

resources, this value is 0.  

Other resource characteristics could be taken into consideration (memory, bandwidth, 

latency delay, etc.), but for the sake of simplicity we will not include all of them in our approach.  

 

The workflow of the application can be divided into execution stages called jobs, based 

on the composed tasks and their interdependencies. At each stage of the workflow, the workflow 

manager determines the tasks that have to be executed at current stage as well as the relative 

computational complexity of each task. The number of tasks per stage and the complexity of 

each task can vary, making the runtime scheduling a complex process. Once the number of tasks 

to be scheduled within a stage have been identified, the scheduler analysis the tasks and their 

complexities to determine the appropriate mix of resources from each available infrastructure. 

Further improvements in the scheduling mechanisms can be done by: 
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x Clustering tasks based on their complexities to generate blocks of tasks for scheduling; 

x Estimating the runtime of each block on the available resources – using a cost estimator 

service; 

x Determine the allocations and the scheduling policies based on runtime estimates and 

overall objectives and resource specific policies and constraints.  

 

Once the resource allocations have been determined, the desired resources are 

provisioned and the workers are started, using the mechanisms appropriate for each individual 

computing infrastructure. During the execution, the workflow manager also monitors the 

execution of the tasks to determine the progress and to orchestrate the execution of the overall 

workflow. The scheduler also monitors the status of the resources and determines the progress to 

ensure that the scheduling objectives, the policies and constrains are satisfied. If this is not the 

case, the scheduler can dynamically change the resource allocation and scheduling policy as 

required.  

 

Our scheduler will put all tasks in a queue and will decide how to schedule them in order 

to meet the following requirements (goals): 

x Respect the time constrains of each task Ti, i = 1,n;  

x Enforce task dependencies – initially all RT(Ti), i = 1,n are set to 0; once the 

dependencies of a task Ti becomes available (processing requirements, input, …), RT(Ti) 

is updated to the current time of the system;  

x Respect the workflow constrains (time and budget) (user defined); Each constrain will 

have associated an importance weight (wi) such as the sum of all weight equals 1 

( ∑wi = 1 ) 

x Follow the defined selection rules. 

 

A list of possible mapping solution (tasks over resources) can be obtained offline, prior to 

actual execution of the workflow within a HCE. Within this range of possible solutions, the 

Scheduler should be able to select at runtime the solution closer to the optimum one. For this, we 

define in the following the concepts of solution, optimum solution, distance between two 

solutions and convergence rules.  
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A scheduling solution (SS) is defined using the equation: 

SS = ( M (T, R), C )     (5) 
Where: 

x T = {T1, T2, …,Tn}, n>0 – list of tasks needed to be scheduled;  
x R = {R1, R2, …, Rs}, s>0 – list of final selected resources; 
x M ( Ti, Rj ) – mapping of task Ti to resource Rj; 
x C - estimated total cost for the selected resources. 

 

Depending on the user requirements, specifications and constrains on the list of tasks 

(composing the application workflow), we define the cost using the following notation: 

C = ( Time (W), B )     (6) 
Where:  

x Time(W) –Execution time of the workflow (set of tasks); 

x B – Budge spent on resources (for public Cloud resources). 

 

Time (W) = ∑i
g (Time (PTGi)),      (7) 

where Time(PTG) is the execution time of a parallel task group 

Time (PTG) = maxj
p Time (Tj)      (8) 

 

The total workflow execution time – Time(W) – is the sum of all the execution times of 

the groups of parallel tasks within that workflow – Time(PTG). A group of parallel tasks is a 

group of tasks that can be executed in parallel. The total execution time of such a group is 

actually the maximum execution time of the composed tasks. Now the execution time of a task 

Time(Ti) is defined in our case using the formula: 

 

Time (Ti) = Time (schedule) + Time (waiting) + Time(submission) + Time (execution) + 
Time(result collection)      (9) 

 

An optimal scheduling solution (OSS) is a solution having a minimum cost (minimum 

time execution and minimum budget): 
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OSS = ( M (T, R), minC)     (10) 
 

The distance between a scheduling solution (SS) and the optimal scheduling solution 

(OSS) is defined as: 

d = min √∑ αi (Metrici)2     (11) 
Where 

x α – represents a weight; 

x Metrics – represents a selected optimal metric – in our case this will be the Time and the 

Budget. Other metrics can be added later. 

 

D. Proposed Scheduling Algorithm: 
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Input: List of Task descriptions T, list of resources descriptions R and list of scheduling constrains Z.  

Output: List of allocated resources R (which can come from different infrastructures) 
1  FOR ALL Rj in R DO 
2   eliminate Ri which do not satisfy any task performance 
requirements 
3  END FOR   
4  FOR ALL Ti in T DO  
5   FOR ALL Ri in R DO 
6     compute estimation execution time EET(Ti, Rj)  
7     compute estimation execution cost EEC(Ti, Rj) 
8   END FOR 
9  END FOR 
10 PTG = extractGroupsOfParallelTasks() 
11 finalPoolOfResources = [] 
12 computeInfrastructuresWeights() 
13 infrastructures = sortAvaiableInfrastructures() 
14 infrastructureNumber = getInfrastructureCount 
(infrastructures) 
15 FOR ALL TG in PTG DO 
16   requestedResources = ResourcesRequest(TG, R)   
17   count = getResourceCount(requestedResources) 
18   i = 0 
19   WHILE (i < infrastructureNumber) AND count > 0 DO  
20    infrastructureId = getId(infrastructures(i)) 
21    reservationId = getReservation(requestedResources, 
infrastructureId, count) 
22    IF (reservationId < 0) DO // not enough resources 
or not satisfying resources from the current infrastructure  
23     (partialCount, partialResources, 
reservationId) = getPartialReservation(requestedResources, 
infrastructureId) 
24     resourceIds = getResources(partialResources, 
partialCount, infrastructureId) 
25     addResourcesToReservation(finalReservation, 
resourceIds) 
26     count = count – partialCount 
27     requestedResources = requestedResources - 
partialResources 
28     i = i + 1 
29    ELSE DO // already reserved enough resources 
30     count = 0 // exit loop 
31    END IF 
32   END WHILE 
33   R = getAvailableResources() 
34 END FOR 
35 RETURN finalReservation 

 

Table 2: Scheduling Algorithm 
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The first step of the algorithm is to eliminate the resources that do not match any task 

performance requirements (line 2). In this way we reduce the scheduling solutions space (Figure 

79) by keeping only the resources that would possibly satisfy the optimization criteria. In line 6 

and 7 we compute an estimation matrix (both for execution time and execution cost). Each cell 

of the matrix (i,j) contains an estimation of tasks Ti over the resource Rj. This matrix will be use 

to reserve resources for a group of tasks in such a way to maximize the optimization criteria 

(execution time and/or cost). In line 10 we extract the groups of parallel tasks from the 

application workflow. For each such group, we have to also compute the maximum task 

execution time in the group, for equation (7) and (8). In line 12 we compute a certain weight for 

each available computing infrastructure. This weight is based on the user access to the 

infrastructure, user preferences on some infrastructures, optimization criteria, and estimation 

matrix.   

InfrastructureWeight = f (UserAccees, UserPreferences, OptimizationCrateria, 

EstimationMatrix) 

The selection of the resources always starts with the resources satisfying the optimization 

criteria and coming from the infrastructure with the highest weigh. When all the resources from 

the current selected infrastructure are finished or are not capable of satisfying tasks requirements, 

we move to the next infrastructure (next lower weight) (line 28). The weights of the 

infrastructures can also be manually set by the user before the execution.  

  For each group of tasks (line 15) we select (reserve) the required set of resources (line 21) 

from the current infrastructure. If the resources are not enough (line 22) we move to the next 

infrastructure until we get the necessary set of resources or we no longer have available 

resources. For each group of parallel tasks, we recompute the available resources in line 33 as 

after each execution, most of the resources become available. In the case of Cloud resources, a 

script has to be scheduled to release the virtual machine once the execution is ready. The ideal 

case would be to also compute the costs and time needed to keep running the virtual machines 

instead of shutting them down and turning them on again at the next possible execution.  

The algorithm returns a final set of resources, for executing all the groups of parallel tasks, and 

this set of resources represents a scheduling solution. The goal is to choose a solution as close as 

possible to the optimal one and we try to achieve this using the formula (11) based on the 

minimum distance between solutions. 
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10.4.3.5. Executor Component 

The execution of an application on one infrastructure cannot be ported and applied on 

another one. The ideal case would be to have a standard way for the execution of an application 

on distributed resources, regardless of their type and membership. This would be a step forward 

in solving a large set of environmental problems. 

The Executor component proposed in this research is responsible for actually launching 

into execution the workflow of the application (with the composing tasks) based on the defined 

scheduling policy. This component is formed from different infrastructure specific Adaptors, 

which are responsible for provisioning the resources on their specific infrastructure, configuring 

workers as execution agents on these resources and assigning the corresponding tasks to these 

workers. A platform Adaptor is a complex module, which has to handle and to mediate all the 

incompatibilities between the executed application and the execution platform. It has to consider 

specific platform issues such as communication protocols, connectivity, resource management, 

execution monitoring, fault recovery, etc. These platform Adaptor components are specific for 

each integrated execution platform and represent an essential point for the execution flow in the 

presented mapping framework. 

10.4.3.6. Fault Handling 

Distributed systems are large collections of heterogeneous loosely coupled resources and 

therefor is inevitable that some of them may fail due to numerous and diverse reasons. As 

failures are inevitable, some mechanisms are needed to solve faults related problems such as:  

x Failures detection;  

x Failures transparency for users; 

x Failures recovery; 

x Build Redundancy – redundancy is the best way to deal with failures and it’s achieved by 

duplicating data so that if one component crashes, another one will be able to provide the 

required information.  

10.4.3.7. Data Level 

The data level contains all the programs that hold the actual data on which the application 

operate. These programs can be different databases able to incorporate environmental data (such 
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as PostgreSQL, RASDAMAN) or different environmental data providers (their databases) such 

as USGS, Google Earth Engine, Amazon AWS, World Bank, FAO, etc. Besides the databases 

and the data providers, in the data level we can also have different file systems as well as 

metadata catalogs.  An important aspect about this level is that data is persistent, meaning that 

the data will be stored even when the system is not in used and can be accessible at any moment 

later. The data level is not only responsible for holding the data but also for making it consistent. 

This means that whenever some information changes, the metadata are updated too. Another 

important aspect about this level is that it’s independent of the processing level. The execution of 

an application is not affecting the structure of the data at this level and neither the other way 

around.  

Environmental applications can operate on different complex data types, some of which 

can be modeled in terms of relations but some others are more easily modeled in terms of 

objects. This is one of the main reasons why the selection of the database cannot be just a simple 

relational database but instead choose a mix and have also object oriented or object-relational 

databases.  

10.5. ENV2CE Execution Flow  
A flow of the execution of an environmental application on such a HCE has the following 

steps and is illustrated in Figure 81. 

1) Insert application specific information: application type, execution preferences, 

constrains; 

2) Create a conceptual model of the application;  

3) Validate the conceptual model; 

4) Instantiate the conceptual model with actual application data; 

5) Validate the instantiated conceptual model (existence and availability of the mapped 

data); 

6) Create an internal representation of the application based on the instantiated conceptual 

model; 

7) Intelligent resource allocation and scheduling for each application tasks based on 

preferences, constrains, execution history, resource availability, etc; 

8) Execution of application based on the proposed schedule; 
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9) Error detection at the execution level and application of error recovery mechanisms if 

necessary; 

10) Execution monitoring and reporting; and  

11) Execution History Management. 

 

 
Figure 81: ENV2CE - Execution Flow 

 

10.6. Conclusions 
Production computational infrastructures will soon start to provide hybrid computing 

environments that integrate different computing infrastructures such as traditional HPC clusters, 

Grids, Clouds and possible even other new concepts. Understanding the potential benefits of 

such a hybrid infrastructure, and the mechanism behind, is important.  In this chapter we have 
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experimentally investigated possible ways of integrating heterogeneous resources from different 

computing infrastructures to improve different objectives as well as how environmental 

applications can benefit from such a hybrid computing environment (HCE).  We have introduced 

a new methodology – ENV2CE to efficiently execute large-scale environmental applications on 

a HCE. We have also proposed a framework architecture able to manage such an execution and 

we presented in detail its components and functionalities. The proposed methodology is based on 

the definition of a conceptual model, which will facilitate and simplify not only the 

understanding of the structure of the application but also the general execution and data flow. 

This conceptual model hides the complexity of different types of environmental applications and 

provides and easy and flexible way to map these applications on different heterogeneous 

computational resources. 

The usage of a mix set of resources from different computing infrastructure is not just a 

case of gathering more resources for a problem but rather an experiment to demonstrate how 

different resource types and underlying resource management paradigms can complement one 

another to obtain better results (better execution times, better performance costs, etc.). The 

optimum execution environment is chosen based on a computed complexity of the received 

request, on the availability of the accessible platforms but also on the previous executions 

(history). The complexity of a request takes into account the application features, the parameters 

of the request (amount of data to be retrieved or processed, processes to be performed), the user 

specifications/preferences, etc. After selecting the optimum executing environment, the requests 

have to be adapted to be able to run on the chosen platform/platforms. This step is achieved for 

each available platform by the corresponding adaptor. A platform adaptor is a complex module, 

which has to handle and to mediate all the incompatibilities between the executed application 

and the execution platform. It has to consider specific platform issues such as communication 

protocols, connectivity, resource management, execution monitoring, fault recovery, etc. These 

platform adaptor components are specific for each integrated execution platform and represent an 

essential point for the execution flow in the presented mapping framework. 

The definition of such a methodology (and supporting infrastructure) came as a response 

to the urgent need of the environmental community in using as much computational resources as 

possible to efficiently and effectively analyze and process an increasing amount of data. 
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10.7. Personal Contributions 
x Introduce a new methodology and framework (ENV2CE) for efficiently porting and 

executing environmental applications on a Hybrid Computing Environment (HCE). 

x Propose a Mediation solution for the interoperability between environmental applications 

and different distributed computing infrastructures (HCE).  

x Execution of application tasks based on platform specific adaptors.  

x Propose a new scheduling algorithm for a HCE, considering user specifications, 

application complexity, history, and optimization criteria.  
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o Rodila, D., and Gorgan, D. (2012). Mapping Geospatial Applications onto 
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Chapter 11:  Framework Evaluation and 

Validation 

11.1. Introduction 
In Computer Science, most of the times, immediately after we ask ourselves the question 

on how to solve a problem, we think about the efficiency of the solution and the question 

becomes: how to solve the problem efficiently. Before finding an answer to this question, one 

should understand how to compare the relative efficiency of different solutions. 

In this thesis, we have explored and analyzed solutions for easily porting and executing 

environmental applications on different parallel and distributed infrastructures, such as cluster, 

Grid and Cloud. Based on our theoretic and heuristic approach, we proposed a new methodology 

and a new framework architecture for easily and efficiently executing environmental applications 

on a Hybrid Computing Environment (HCE). We considered that it is important here to mention 

that the execution efficiency in this case is relative to the standard execution procedures used in 

Environmental Sciences, where the applications and the processing are usually performed on 

local machines. We have shown in the thesis that the capabilities of different distributed 

computing infrastructures, forming the HCE, bring an efficiency improvement in the execution 

of applications only in certain cases and we have treated and filtered these cases through a 

Mediator component and using estimations of the complexities of application and its 

processes/tasks.        

11.2. ENV2CE – Components Validation  
Considering the high complexity of a Hybrid Computing Environment (HCE), regarding 

technical settings, installation, and management, the overall validation of the proposed 

methodology and framework was hard to achieve. We consider therefore a component based 

validation and evaluation, concentrating our efforts more on the validation process than on the 

contextual technical aspects. We present in the following how we achieved this.  

The ENV2CE methodology and framework were developed based on a heuristic 

approach achieved through a list of experiments evaluating the execution of different 

environmental applications on different parallel and distributed infrastructures. These 
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experiments were carried in different national and international research projects (MedioGRID, 

SEE-GRID-SCI, GiSHEO, enviroGRIDS, enviroPAD, GAR, UNEP Live, LiMES) and are part 

of a series of functional and tested environmental applications within these projects: gProcess, 

ESIP, gSWAT, GreenLand, EDAP and LiMES. These experiments were also validated through 

publications in different peer reviewed journals and conference proceedings papers, project 

deliverables and scientific presentations (the full list of publication is attached at the end of the 

thesis).        

Versions of the conceptual models presented in this research have been validated within 

the gProcess platform (Bacu et al., 2009 [15], Rodila et al., 2009 [194]), which was further used 

in functional environmental applications such as ESIP (Gorgan et al., 2009 - 24), gSWAT (Bacu 

et al., 2011b [17], 2013 [18], Rodila and Gorgan, 2012 [198], Rodila et al., 2012 [199]), 

GreenLand (Mihon et al., 2010a [150]) and GreenView (Mihon et al., 2010b [151]). The 

gProcess platform was validated especially through the development and execution of 

applications for satellite images processing.   

The Mediator component was tested and validated inside the enviroGRIDS project 

(http://www.envirogrids.net/), mostly in the gridification of the OGC Web services (Rodila et al., 

2010 [196], 2011 [197], 2012 [198]) and in the execution of SWAT hydrological model on the 

Grid infrastructure, using the gSWAT application (Bacu et al., 2011b [17], 2013 [18], Rodila and 

Gorgan, 2012 [198], Rodila et al., 2012 [199]). Within this component the Complexity 

computation functionality was also evaluated in effectively filtering the geospatial services 

requests and selecting the appropriate execution environment base on the requested data and 

performed processing.   

For the Scheduler component we considered a simulation-based approach. To create a 

simulation environment as close as possible to the real situation, we developed a Python 

framework able to automatically and randomly generate the parameters and the simulation 

conditions. This framework was used to test the performance of the proposed scheduling 

algorithm. Due to the NP-Complete nature of scheduling algorithms and the complexity of a 

HCE, reasonable assumptions are hard to make for obtaining optimal solutions. For this reason 

we focus on finding sub-optimal solutions (approximate and heuristic approaches). Instead of 

searching the entire solution space for an optimal solution, we limited the number of solutions by 

eliminating the resources that do not satisfy the processing requirement conditions. Within this 

http://www.envirogrids.net/
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smaller set of solutions, we want to select the solution that converges to the optimal one, 

considering our defined context of the problem. For this approach, a metric to evaluate solutions 

is needed but the efficiency is determine by several factors: availability of a function to evaluate 

a solution, the time required to evaluate a solution, the ability to judge the value of an optimal 

solution based on some metrics, a mechanism for intelligently pruning the solution space. 

To be able to evaluate an algorithm, certain efficiency indictors or performance metrics 

have to be defined. For our evaluation, we considered the following:   

x Total Time to Completion (TTC) – the total execution time for an application 

workflow. TTC is composed of different parts: time to create the application workflow 

and to divide it into set of tasks (stages), the scheduling time, the queueing time (or the 

time needed to start VMs if in the Cloud), and the actual runtime of the workflow. We 

can also add the time for results collection.   

x Total Cost of Completion (TCC) – the total (public Cloud) cost for the entire 

application workflow. 

x Overall Throughput (OT) – the time it takes for the HCE to run a batch of tasks.  

x Scheduling Algorithm Duration (SAD) – a measure of how fast the tasks are map to 

resources. Considering a complex computing environment like HCE, this is an important 

indicator especially for the cases where the tasks have to be mapped as fasts as possible, 

avoiding bottleneck situations.   

x  Makespan (M) – the time it takes for all the resources to finish executing all the tasks. 

The executions of tasks on a resource are done in parallel with the other resources. This 

implies that the makespan is the total task execution time for the slowest resource (the 

one that finishes the last).  

x Load imbalance (LI) – measures how balanced the load across the resources is. This 

indicator is defined as the difference between the time it takes for the last resource to 

finish execution (makespan) and the earliest time in which a resource finished its 

execution (executing the assigned tasks). The load is perfectly balanced if this indicator 

has a value of 0, implying that no resource is excessively overloaded and lowering the 

chances of resource failure due to overloading.  

x Success Rate (SR) – the weighted percentage of the tasks that finished before their 

deadlines.    
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The task object contains a number of parameters that can be used to estimate the time 

needed for execution. This estimation is done also based on a number of resource attributes such 

as the CPU power, memory and the processing time needed to complete. Normally we have to 

take into account the fact that if another task starts executing on the same processing unit before 

others completes, an interruption mechanism is used to re-estimate the time needed for the 

remaining tasks to complete. For simplification reasons, the simulator was forced to run just one 

task per CPU at a time, by matching the memory required by the task with the memory of the 

CPU. In this way we can avoid the simulation of the interruption mechanism needed when a new 

task is assigned to a CPU, to re-compute the estimations times of the currently running tasks on 

that CPU. 

The scheduler receives as input sets of tasks with dependencies and, using the provided 

scheduling algorithm and the underlying modeled configuration of heterogeneous resources 

(coming from different available computing infrastructures), it assigns each tasks to a 

corresponding processor for execution, according to the implemented scheduling policies. Using 

the simulation framework we have randomly generated the number of tasks and the number of 

resources, within a certain range. We have performed experiment also with a fixed configuration 

of tasks (application workflow) and resources (from different infrastructures).  

The conclusion was that simulations tools can be very useful and very powerful, 

considering especially the complexity, the diversity, the dynamism and the costs of a HCE but 

the real conditions of such a computing environment are hard to map. There are a large number 

of errors that can appear in such an environment, from different reasons and having different 

effects. These errors play an important role in the efficiency and the successful termination of an 

execution. Our experiments were conducted for a small number of tasks and a limited number of 

processing resources. Further analysis on larger and more complex workflows might lead to 

different results and we plan to further evaluate these aspects in our future work. We also plan to 

consider more complex scheduling policies and more improvement scheduling criteria 

constraints in the future.   
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11.3. Conclusions 
The aim of this chapter was to evaluate and validate the ENV2CE methodology and 

framework at component level. The overall evaluation of such a methodology is a complex, long 

and expensive process, considering the complexity, the diversity, the dynamism and the costs of 

a Hybrid Computing Environment.  

 The components proposed in the ENV2CE framework were individually evaluated and 

validated in a series of experiments, parts of different research projects and different functional 

environmental applications used by the Environmental Sciences community. Further analysis on 

larger and more complex applications workflows is also planned, in our future work, to further 

evaluate the overall methodology.  
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Chapter 12:  Final Conclusions 

Data Revolution is no longer a novelty as we live in a world in which data gets bigger 

and more complex, and data access is faster than ever. Governments, agencies, research groups 

and citizens at large are dealing with an unprecedented exponential increase in the volume and 

types of data that is strongly influenced by the fast advances in technology. According to the 

United Nations (UN, 2014 [228]), 90% of the data in the world has been created in the last two 

years. How prepared are we and how fast can we adapt to this new world, considering resources, 

capacities, knowledge and state of mind? Many questions still need answers and many issues 

need urgent solutions. An increasing quantity of data is never used because it is not freely 

available, not well documented, not following standards, or because not enough storage or 

computing resources are available to extract useful information from it for better decision-

making. There is a clear need, at all scales, to discover, access, integrate, use and share spatial 

data from different sources to support well-informed decision-making and management of the 

growing national, regional, and global issues that are threatening our environment and the world 

at large. The vital importance, capabilities, benefits, and possibilities of using digital geographic 

information for sustainable development have been discussed and analyzed (Nebert, 2005 [161]) 

but appropriate specialized resources and services able to fully utilize these ever-growing sets of 

(big) data and information are not always available or suitable enough. Our capacity to handle 

large quantities of spatial information and the power to process it has increased exponentially in 

the last 30 years as a result of development in SDI, GIS technologies, Internet, and IT 

technologies. 

In this context, the main goal of this research was: To analyze and explore the ways in 

which Information Technology, and especially parallel and distributed high-performance 
systems, can improve the major challenges and needs the Environmental Sciences are 
facing in the process of extracting understandable and useful information from raw 
environmental data, leading in the end to a better informed decision making towards a 
sustainable development and a sustainable planet.    
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To be able to achieve this goal, we have formulated in the introduction of this thesis some 

associated research questions and in the following we will give an overview of our findings 

during this research work: 

1. What are the current urgent needs and challenges of Environmental Sciences 
(focusing on environmental data and environmental applications)? 

During our research we have identified a series of issues and challenges that the 

Environmental Sciences community is facing. Most of them are related with understanding the 

complex Earth System and its components, their processes and interactions. Understanding such 

a system and predicting future behavior is a complex and challenging mission that requires 

managing and processing huge amounts of environmental data, using complex techniques and 

massive computing and storage resources. Solving these challenges is an essential condition to 

respond to the current global changes. The major identified challenges are:  

x The dynamic and interdependent nature of environmental factors (both human and 

natural ones) and their impact; 

x Integration of social, economic and environmental considerations;  

x Decision and policies are based on existing knowledge, understanding, and observations, 

and often prove to fall short in terms of intended outcomes; 

x The need of a holistic thinking – assessing a problem in the context of the larger system – 

of systems – within which it occurs; 

x Understanding that complexity is a direct function of the problem statement, decision 

objectives, system understanding, and data availability; 

x The importance of merging the knowledge domains into coherent and appropriately 

complex representations of the relevant system (Laniak et al., 2013 [130]);  

x How to obtain knowledge from environmental data?  

x How to apply this knowledge to explain, explore, and predict environmental-system 

responses to natural and human induced factors (stressors)? 

x The diversity of stakeholders in Environmental Sciences; 
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x Discovery, accessing, processing, and preparation of data is particularly challenging due 

to a combination of cross-disciplinary, volume, and disparate sources, presenting data 

with varying formats and semantics; 

x Sensor data gathering, quality assurance and dissemination must be optimized; 

x Model developer have to deal with auxiliary observations of low and even unknown data 

quality;  

x Need for appropriate protocols, standards, sharing permissions, and removal of language 

and scale barriers between various environmental fields;  

x Interdependent elements: applications, science, technology and community; 

x Interoperability between different systems (such as information technology components, 

software applications, organizations) has to be seen as the ability to exchange information 

accurately, effectively and consistently and to use that information; 

x Environmental applications require large volumes of data and Big Data challenges have 

to be addressed effectively. Petabytes of geospatial data already exists and this amount 

grows every day at an increasing rate due to improving fidelity in data capture 

technologies (Mahdavi-Amiri et al., 2015 [144]); 

x Need of modeling services that could intelligently integrate user-generated observations 

(from smart devices), measurements (from sensor stations) and referenced data (from 

institutional data repositories) in a generic way (Granell et al., 2016 [95]). Access to 

crowd-sourced environmental observations demonstrates the value of sharing small and 

localized observations, that when aggregated in Big Data repositories, can built a deeper 

and broader understanding of environmental phenomena (Granell et al., 2016 [95]); 

x Data processing at varying aggregation levels; 

x Information access is not equally divided over the globe, or within countries or 

communities – environmental knowledge and environmental information flows should 

not become monopolized or controlled by only a few people/sectors (Karpouzoglou et al., 

2016 [120]); 

x Need of openness: combination of transparency, cooperation and collaboration. This will 

allow open sharing of products of individual research and development efforts supporting 

a wider access and enabling innovation;   
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x Need for new directions to design and develop environmental software applications to 

make the best use of both geospatial and Future Internet technologies (holistic, flexible 

and scalable solutions that enable multi-disciplinary approach); 

x Increasing demands for timely and contextually aware information delivery (Granell et 

al., 2016 [95]); 

x The need to cross artificial boundaries between current sectors, to interconnect already 

existing systems, and to break technical as well as organizational barriers (Granell et al., 

2016); 

x There is no roadmap or single methodology for generating actionable knowledge, 

therefore a certain degree of flexibility, openness to alternatives and iterative learning is 

needed; 

x High volume or high velocity collection of geospatial data is hard to fully exploit in many 

applications because of limited processing power (Lee and Kang, 2015 [133]); 

x Need for fast and reliable tools and components to remotely access geo-referenced data; 

2. What is the state of the art in High Performance Computing (HPC) landscape 
(cluster, Grid, Cloud, Hybrid Computing)? 

The scientific applications of high-performance and distributed computing are widely 

spread and the most popular parallel and distributed platforms among scientists are Multicore 

processors, clusters, Grids and Clouds systems. Due to the integration of many-core 

technologies, these infrastructures are undergoing revolutionary changes, providing orders-of-

magnitude speed improvements. Although each of these systems is straightforward to program, 

due to many existing platform specific tools, creating applications able to run on an optimum 

combination of such systems becomes difficult. The programming complexity of the 

applications, running on such heterogeneous and hierarchical platforms, has vastly increased also 

because of data distribution, need of scalability and software heterogeneity. These issues lead 

most of the times to the need of simultaneously using multiple platforms at the same time. 

Within this thesis we have identified the need of integrating different distributed computing 

infrastructures within a Hybrid Computing Environment and we have highlighted the challenges 

as well as the advantages of such a computing environment.  
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3. What are the lessons learned based on a heuristic approach of integrating 
environmental applications with HPC?  

The execution of environmental applications usually requires large computational and 

storage resources due to the massive amount of data, high resolutions, and large geographical 

areas they are using. Different parallel and distributed infrastructures, such as cluster, Multicore, 

Grid, and Cloud satisfy mostly the necessary requirements for running such applications. 

Depending on application features, data model, and processing requirements, one of such 

infrastructures could be more appropriate and efficient, and could offer better performances than 

other ones. Porting applications and services to parallel and distributed infrastructures has been a 

concern in many research communities and it is still a very difficult task to accomplish since 

each platform requires particular details to take into account when integrating applications that 

have not been designed to run on parallel and distributed infrastructures in the first place. These 

applications have to be modified to have a particular structure or to use particular programming 

API for accessing the resources from each individual infrastructure, without knowing too much 

details about the running platform. We drew all these conclusions from a long set of experiments 

in which we have executed different environmental applications on different parallel and 

distributed infrastructures. Based on these conclusions we set our goal to define a generic 

conceptual model for environmental applications which will allow an easy integration with any 

computing infrastructure and finally to propose a general methodology for porting scientific 

applications on different parallel and distributed infrastructures. This is a complex and 

challenging task that has the potential to help solving many scientific issues in many research 

areas.  

4. What are the flexible solutions to integrate environmental applications and 
environmental data with HPC infrastructures?  

Computing resources available for the execution of an application may vary from 

different number of cores or computing nodes to different sizes of memory or storage nodes. The 

performance goal of an application may also vary, depending on different functions such as 

energy, throughput, cost, etc. Another variable item is the program’s workload. All these 

elements of variability compose the execution environment of a program. For an application to 
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efficiently execute, it has to adapt to this variable execution environment in a flexible manner, 

which implies that the program should not be encoded with a single static parallelism 

configuration. Taking into account the growing need for computational speed, storage and 

scalability, that environmental applications demand, the users usually tend to use or to switch 

more than one execution infrastructure for obtaining the necessary resources. To be able to easily 

switch between these infrastructures we introduced an application conceptual model that hides 

the complexity of different types of environmental applications and that provides an easy and 

flexible way to map an environmental application to a computing infrastructure. Using this 

model, a user can easily describe the structure, the data flow as well as the execution flow 

(workflow) of the application. The aim of the proposed application conceptual model was to 

provide a platform-independent, robust, convenient and easy to use methodology, which would 

allow a user to execute an application on a heterogeneous computing environment.  

5. How can we solve the interoperability between Environmental Sciences and 
Computer Science?  

The interoperability between two systems in general, and between Environmental 

Sciences and Computer Science in our particular case, can be addressed using two general 

approaches: 

o Standardization – defining common specification for interfaces, metadata and data 

models. This is a long, slow process, which requires commitment and adoption 

from the participating systems, high ICT expertise, and most of the times complex 

specifications.  

o Mediation – adapting and harmonizing heterogeneous interfaces, metadata and 

data models. This is possible only if the harmonization and adoption is 

theoretically and practically feasible. This implies that distinct data models must 

be mapped to a higher-level conceptual model, able to reconcile the 

heterogeneous implementations.  

In this thesis we proposed a solution to solve the interoperability between Environmental 

Sciences (environmental data and environmental applications) and Computer Science (a Hybrid 

Computing Environment composed from several parallel and distributed computing 

infrastructures) based on a mediation approach, through the introduction of an intermediate 
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“broker” layer (mediator), able to hide the complexity of the computing environment and to 

provide access to its functionalities and capabilities in an easy and flexible manner. 

6. Is there an efficiently way to take advantage of all the available heterogeneous 

computing infrastructures simultaneously? 

There is a large number of applications with interesting workload characteristics and 

resource requirements, which can take advantage of multiple computing infrastructures at a time, 

to reduce execution time, reduce cost (currency or resource allocation) or handle unexpected 

runtime situations (unexpected delays or unexpected failures) (Kim et al., 2009 [123]). In many 

realistic scientific research areas, domain experts are actually forced to concurrently use multiple 

computing infrastructures. All of these infrastructures are undergoing many changes due to the 

integration of core technologies, providing speed improvements but becoming also more 

heterogeneous, complex and hierarchical. The simultaneous execution on multiple computing 

infrastructures is a complex and challenging task as it involves not only the interoperability of 

scientific applications with different parallel and distributed infrastructures but also the 

interoperability and the coexistence of these infrastructures. The need to use multiple computing 

platforms for running an application is due to cases in which the reservation of a sufficient 

number of computing nodes in a single platform is impossible but also due to the distributed 

nature of the input data, heterogeneity of the software, ad-hoc availability of the resources etc. 

(Seinstra et al., 2011 [209]).  

In this thesis, we have proposed the integration of different distributed computing 

infrastructures such as cluster, Grid and Cloud in a Hybrid Computing Environment. We have 

analyzed and presented the major challenges of such an environment and possible solutions.  

7. How can we solve the interoperability between different HPC infrastructures? What 
are the challenges and how this solution can be applied to Environmental Sciences? 

The computing is always changing to increase performance, changes which are reflected 

in microprocessor design and networks. Parallel and distributed high performance computing 

infrastructures, such as Multicore processors, clusters, Grids Clouds, became popular because 

they are able to offer the necessary resources needed for running large-scale scientific 

applications. These infrastructures can satisfy the need for processing power and storage 
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capacity, can improve accessibility to distributed storage and heterogeneous computing resources 

and can provide a reliable and secure environment.  

Interoperable distributed infrastructures should allow applications to use them 

simultaneously. For this, commonly agreed protocols are required for information exchange and 

overall management. This is still hard to achieve and it will take a long time till all the 

distributed systems will adopt and implement these agreed protocols. The interoperability of 

different parallel and distributed infrastructures and the creation of a Hybrid Computing 

Environment was achieved in this thesis through a mediation approach, by introducing an 

intermediate “broker” layer (Mediator), able to manage the interoperation between the 

heterogeneous set of resources coming from different computing infrastructures and to allow 

users to access and use the functionalities of these infrastructures in a transparent manner.   

In most of the cases, the functionality offered by distributed computing infrastructures 

can improve the execution time of a complex computation by taking advantage of the 

parallelization techniques. There are still cases in which the distributed infrastructures can have 

negative consequences, increasing the execution time of a process due to the overhead 

introduced by the specific management behind each infrastructure (job creation, submission and 

management, monitoring, result collection, etc.). These are usual the cases for simple processes 

which do not need such a high amount of resources. The analyze of the boundary above which 

distributed systems are beneficial in general in executing different processes but also the decision 

of which computing infrastructure is more appropriate than others for executing certain processes 

are two important challenges in the integration of environmental applications with a Hybrid 

Computing Environment. To achieve this integration we have introduced a new methodology 

and framework (ENV2CE) for efficiently porting and executing environmental applications on a 

Hybrid Computing Environment (HCE) and we have proposed a Mediation solution for the 

interoperability between environmental applications and different distributed computing 

infrastructures (HCE). The selection of the optimum set of heterogeneous resources needed for 

executing a specific application is a major challenge. In our proposed methodology, this set of 

heterogeneous resources, coming from different computing infrastructures, is chosen based on a 

computed complexity of the received requests, on the availability and accessibility of the 

computing infrastructures, on user preferences but also on the previous executions (history). The 

complexity of a request takes into account the application features, the parameters of the request 
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(amount of data to be retrieved or processed, processes to be performed), the user 

specifications/preferences, etc. At this level, we can define different complexity metrics and we 

can assign different weights to each input, considering application and user priorities. 

9. How can we evaluate and validate the proposed solutions?  

A set of defined metrics and experiments helped us evaluate the proposed methodology 

and framework and the conclusions are the following: 

x The real case of HCE is hard to achieve and depends on a lot of factors; 

x The evaluation of the ENV2CE methodology and framework was done at the component 

level; 

x The evaluation and validation of the ENV2CE framework components were performed 

within the experiments done in different functional environmental applications and 

research projects; 

x The simulation of the scheduling algorithm was realized within a developed simulation 

framework. 

During our research we also discovered and assessed some different solutions and 

directions for the current environmental issues and we considered it is important to emphasize 

them:  

x Open technologies approaches – remove institutional and geographical barriers 

associated with information flow (Karpouzoglou et al., 2016 [120]); 

x Encourage widespread re-use of data for different purposes and data brokers and fusion 

of heterogeneous data;   

x Bridge the gap between qualitative data (local observations, citizen generated data and 

perception data) and the quantitative data systems (typically used in decision support 

tools); 

x Encourage multi-disciplinary approach in research and development activities towards 

developing effective geo-spatial data analytics; 

x Data analytics research and development activities are needed to deal with the very high 

rates (speed) characterizing the new geospatial data flows;   
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x Provide algorithms and workflows capable to deal with huge quantities of data arriving at 

very high speed (Nedelcu, 2015 [163]); 

x Visual representation of information is a fundamental component to interact indirectly 

with environmental observations and models. It helps display complex data in a more 

understandable way (visualization can increase the human capacity to process and retain 

complex information and reduce cognitive workloads); 

x Interlink contemporary models from different disciplines to optimize the search for 

answers to increasingly complex questions (slow process due to the slow development 

and adoption of standards in the data and model sharing);  

x The implementation of the SDGs towards a sustainable development will provide a 

tangible political “trigger” to foster and accelerate (Scott and Rajabifard, 2016 [208]): 

o the development and adoption of legal, technical, geospatial and statistical 

standards;  

o openness and exchange of data and metadata;  

o interoperability of data and information systems; and 

o integration of statistical and geospatial information (both management and 

exchange). 

x Collaboration between organization is key to data management but also to data access 

and processing services; 

x Provide a common agreed framework that allows easy and seamless integration of data 

from different sources, giving access to services that can collaborate/work together to 

provide new meaningful and understandable knowledge and information (Giuliani, 2011a 

[84]);  

x Maximize the opportunities given by new technologies (such as HPC computing) towards 

a sustainable environment. Parallel architectures such as Grid, Cloud, Multicore, etc. 

seem to provide the necessary functionalities for solving most of the problems related to 

the geospatial data: handle complex computations through parallelism, both at data level 

and processing level, support data management and data security. 
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12.1. Concluding Remarks  
x Timely access and easy integration of environmental data are essential.  

x Transforming raw data into understandable information is an essential task that SDIs 

cannot fully satisfy. Therefore computational needs to process large data sets and 

efficient access to environmental data through OGC services will strongly influence the 

future success of SDIs. 

x The usage of Parallel and Distributed infrastructures in the development and execution of 

environmental applications can offer promising opportunities through substantially 

lowering the development and execution costs. 

x We need a good and easy to use methodology able to port the necessary applications and 

services to parallel and distributed architectures to obtain high performances. 

x The Hybrid Computing Environment (HCE) proposed in this thesis should be seen (is) a 

proof of concept, demonstrating the feasibility and usability of heterogeneous distributed 

computing resources in the environmental context.  

x The proposed HCE and the ENV2CE methodology do not offer a full replacement of the 

existing environmental information systems (which has a long history for offering strong 

support for geospatial data and processing). The intention is rather to complement the 

existing tools and services and to explore to the maximum the capabilities offered by 

different available distributed infrastructures.  

x Choosing the optimum execution environment or the optimum combination of 

heterogeneous computing resources becomes an important issue for obtaining better 

performances. 

x Porting applications and services to parallel and distributed infrastructures is a very 

difficult task to accomplish since each platform requires particular details to take into 

account when integrating applications that have not been designed to run on parallel and 

distributed platforms in the first place. These applications have to be modified to have a 

particular structure or to use particular programming API for accessing the resources 

from each individual architecture, without knowing too much details about the running 

platform. 
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12.2. Personal Contributions 
The main contribution of this PhD thesis is the new methodology and framework 

(ENV2CE) designed for efficiently porting and executing environmental applications on a 

Hybrid Computing Environment.  

Within this major contribution, we can identify several important original sub-

contributions, highlighted also at the end of each thesis chapter:  

x Identification of major environmental challenges related to environmental data, from an 

engineering point of view, based on literature review:   

o Metadata, Open Data, Linked Data, Data Interoperability; 

o Environmental Big Data – issues and challenges; 

o Challenges in transforming raw data into meaningful and understandable 

information. 

x Heuristic approach on the technical details of SDI components: 

o Standards implementations; 

o Testing and working with different GIS and OGC services: WMS, WFS, WCS, 

WPS (PyWPS), TJS. 

x Identification of major environmental challenges related to environmental applications, 

from an engineering point of view; 

x Identification of general characteristics of environmental applications, mainly from 

hydrological and remote sensing fields. 

x Development of a new environmental application (Environmental Data Acquisition and 

Processing – EDAP). 

x Contributions to the development of different functional environmental applications 

mostly in the remote sensing and hydrological fields: gProcess, gSWAT, GreenLand, 

LiMES. The personal contributions are mainly oriented to: 

o Overall system architecture; 

o Processing components, using different geospatial technologies; 

o Scheduling and execution on different computing infrastructures; 

o Database design and implementation.  
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x Analyzing and working with two environmental applications (hydrological models 

SWAT and GFM - Continuum) in different projects. 

x Execute different environmental applications on different distributed infrastructures: 

o SWAT calibration on gLite (Grid) vs. Multicore (UTCN); 

o SWAT calibration on Baobab cluster (UNIGE); 

o SWAT calibration on OpenStack Cloud (UNIGE/HEPIA); 

o SWAT calibration on OpenStack Cloud (UNIGE/SwissACC); 

o SWAT calibration on Windows Azure (UNIGE/SwissACC); 

o Global Flood Model on Baobab cluster (UNIGE); 

o OGC services Gridification on gLite (Grid) (UTCN); 

o Landsat 8 Data Acquisition on local servers (UNEP/Grid-Geneva). 

x Observe the behavior of each infrastructure and understand what are their strengths and 

their weaknesses in porting environmental applications.  

x Explore and analyze alternative solutions to connect different computing backend using 

GC3Pie tool, provided by the GC3 team (ETH – Zurich). 

x Propose a conceptual model of environmental applications, based on theoretical 

knowledge and practical experience gained from different execution experiments 

(Chapter 7). The proposed model is a key component in a general methodology for 

porting these applications on different parallel and distributed infrastructures. 

x Analyze and explore challenges and possible solutions in a Hybrid Computing 

Environment (HCE), composed from different distributed computing Infrastructures 

(DCIs): cluster, Grid, and Cloud. 

x Introduce a new methodology and framework (ENV2CE) for efficiently porting and 

executing environmental applications on a Hybrid Computing Environment (HCE). 

x Propose a Mediation solution for the interoperability between environmental applications 

and different distributed computing infrastructures (HCE).  

x Execution of application tasks based on platform specific adaptors.  

x Propose a new scheduling algorithm for a HCE, considering user specifications, 

application complexity, history, and optimization criteria.  
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12.3. Perspectives and Future Work  
The future of Earth System as well as our future not just as scientists but also as human 

beings will depend on our ability to find and implement effective solutions to the current and 

future environmental problems. Regional-scale land use management, impacts of global climate 

change, valuation of ecosystem services, fate and transport of nanomaterial, life-cycle analysis, 

biodiversity, etc. are just few of the environmental problems that we are facing today. Our long-

term goal should be to foster an increased understanding of the Earth systems well enough to 

predict future outcomes, impacts and consequences, to increase awareness and detection of 

unintended consequences of decisions and policies, and to reduce the perception of “black box” 

modeling of the Earth System. The rapid technological developments in information technology, 

telecommunications, sensors, networks etc. have greatly improved our ability to deal with 

complex environmental problems and challenges, especially regarding the huge amounts of 

environmental data and the environmental services, tools and methods needed to manage this 

data, but we still need to make large improvements in harnessing the full power and the potential 

of the technological progress to achieve solutions never possible before.   

In this thesis we have proposed solutions to solve not only the interoperability between 

two different scientific research fields: i.e. Environmental Sciences and Computer Science, but 

also the interoperability between different parallel and distributed computing infrastructures, 

forming a Hybrid Computing Environment, using a Mediation approach. To this extent, we have 

introduced a new methodology and framework (ENV2CE) for efficiently porting and executing 

environmental applications on a Hybrid Computing Environment.  

The research presented in this thesis offers a background for future research activities, 

among which we emphasize the followings:  

x Integration of a more details analysis of the application complexity. Based on this, better 

task estimations can be done, improving therefore the scheduling algorithm and the 

overall performance.  

x Improve the application conceptual model to integrate other application flows of 

particular cases.  

x A more detailed experimental framework, focusing on better understanding the specific 

infrastructures’ parameters, their interdependencies, correlation as well as a sensitive 

analysis to determine a better weight of their importance within a Hybrid Computing 
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Environment. It would also be interesting to extend the concepts and understanding 

gained in this work to other computational platforms and other metrics to improve.  

x A better validation of the proposed methodology and framework through more intense 

experiments and different real use cases.   

We believe that the ENV2CE methodology and framework is a step forward into a 

standardized way of accessing large heterogeneous storage and computing facilities for complex 

environmental applications. This achievement is an important element in better understanding 

the Earth System, predicting its future behavior and responding to the current global changes 

(climate, land use and demographic changes, loss of biodiversity, pollution, urbanization) that 

are threatening the natural environment and the society at large.  

12.4. Results 
x SCIEX Swiss Scholarship (18 months) – University of Geneva – Technical University of 

Cluj-Napoca – enviroPAD:  Efficient Development and Execution of Environmental 

Applications on Parallel and Distributed Infrastructures; 

x 14 ISI journal papers (4 as first author); 

x 27 national and international conference proceedings papers (9 as first author);  

x 1 book chapter; 

x Presentations at different trainings and workshop events.  

x Member in research projects, such as: enviroPAD, enviroGRIDS, MedioGRID, GiSHEO,   

SEE-GRID-SCI, mEducator; 

x Guest Editor, “International Journal of Embedded Systems (IJES)”, Inderscience, ISSN: 

1741-1068 (http://www.inderscience.com/browse/index.php?journalID=45); 

x Program Committee Co-Chair of the “5th International Workshop on Engineering Parallel 

and Multi-Core Systems ePaMuS – 2012 – The Multi-Core Workshop”; 

x Program Committee Member at the “Groupware and Online Campuses” track from the 

“3rd International Conference on Emerging Intelligent Data and Web Technologies 

EIDWT-2012”; 

http://www.inderscience.com/browse/index.php?journalID=45


- 334 - 
 

x Program Committee Member at the “SeDiS – 2012 Workshop”, held in conjunction with 

the “3rd International Conference on Emerging Intelligent Data and Web Technologies 

EIDWT - 2012” (http://sedis.hpc.pub.ro/). 

 

  

http://sedis.hpc.pub.ro/
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