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Résumé

Le probleme de la sélection d’échantillons non aléatoires apparait sou-
vent en pratique dans de nombreux domaines différents. En présence de
sélection de ’échantillon, les observations apparaissent dans ’échantillon
selon une regle de sélection. Par exemple, les personnes choisissent
d’entrer sur le marché du travail si leur salaire est supérieur a leur salaire
de réserve, c’est a dire que si leur salaire sur le marché est inférieur a
une certaine limite, ils ne participent pas au marché du travail et ils sont
exclus de I’échantillon. Dans ces cas, les outils standard construits pour
les échantillons complets, par exemple les moindres carrés ordinaires,
produisent des résultats biaisés, et par conséquent, des méthodes de cor-
rection de ce biais sont nécessaires. Dans son ouvrage fondamental, Heck-
man (1976, 1979) a proposé deux estimateurs pour résoudre ce probléeme.
Ces estimateurs sont devenus 1’épine dorsale de I’analyse statistique stan-
dard des modeles avec une sélection d’échantillon. Toutefois, ces esti-
mateurs sont basés sur ’hypothése de normalité et ils sont tres sensibles
aux deviations par rapport aux hypotheses de la distribution, qui ne sont
souvent pas satisfaites en pratique. Dans cette these, nous développons
un systeme général pour étudier les propriétés de robustesse des estima-
teurs et des tests dans les modeles avec une sélection de ’échantillon.
Nous utilisons une approche infinitésimale (Hampel et al. 1986), qui
nous permet d’explorer le probleme de robustesse et de construire des
estimateurs et des tests robustes. Nous commencons par I’étude des
propriétés de robustesse de la classe générale des estimateurs en deux
étapes. Nous dérivons la fonction d’influence, la fonction de changement
de la variance et la variance asymptotique d’un M-estimateur général
en deux étapes, et fournissons leurs interprétations. Nous illustrons nos
résultats dans le cas de 'estimateur maximum de vraisemblance en deux
étapes, 'estimateur de “two-stage least squares”, et ’estimation des séries
chronologiques. En utilisant les résultats généraux pour un M-estimateur
en deux étapes, nous dérivons la fonction d’influence et la fonction de

changement de la variance pour ’estimateur de Heckman en deux étapes,



et démontrons la non-robustesse de cet estimateur et de sa variance es-
timée par rapport aux petites déviations du modele hypothétique. Nous
proposons une procédure pour robustifier I’estimateur, prouvons sa nor-
malité asymptotique et calculons sa variance asymptotique. Cela nous
permet de construire une alternative simple et robuste pour le test de
biais de sélection d’échantillon. Nous illustrons 1'utilisation de notre nou-
velle méthodologie dans ’analyse des dépences médicales, et comparons
les performances des méthodes classiques et robustes dans une étude
de simulation de Monte Carlo. De plus, nous étendons nos résultats
aux modeles d’équations simultanées avec sélectivité. Nous explorons les
propriétés de robustesse de ces modeles, et proposons une alternative ro-
buste aux estimateurs classiques. L’analyse de sensibilité des données sur
la force de travail et I’étude de simulation de Monte Carlo démontrent
I'utilité de la méthodologie robuste. Pour faciliter I'utilisation des méth-
odes développées, nous fournissons un package ssmrob pour le logiciel
statistique R.



Abstract

The problem of non-random sample selectivity often occurs in practice in
many different fields. In presence of sample selection, the data appears in
the sample according to some selection rule. For instance, people choose
to enter the labor force if their wage is greater than their reservation
wage, i.e. if their wage on the market is below the certain limit, they
do not participate in the labor force and are excluded from the sam-
ple. In these cases, the standard tools designed for complete samples,
e.g. ordinary least squares, produce biased results, and hence, methods
correcting this bias are needed. In his seminal work, Heckman (1976,
1979) proposed two estimators to solve this problem. These estimators
became the backbone of the standard statistical analysis of sample se-
lection models. However, these estimators are based on the assumption
of normality and are very sensitive to small deviations from the distri-
butional assumptions which are often not satisfied in practice. In this
thesis we develop a general framework to study the robustness prop-
erties of estimators and tests in sample selection models. We use an
infinitesimal approach (Hampel et al. 1986), which allows us to explore
the robustness issues and to construct robust estimators and tests. We
start by investigating the robustness properties of the general class of
two-stage estimators. We derive the influence function, the change-of-
variance function, and the asymptotic variance of a general two-stage
M-estimator, and provide their interpretations. We illustrate our re-
sults in the case of the two-stage maximum likelihood estimator, the
two-stage least squares estimator, and the estimation of time series. Us-
ing the general results for two-stage M-estimators we derive the influence
function and the change-of-variance function of the Heckman’s two-stage
estimator, and demonstrate the non-robustness of this estimator and its
estimated variance to small deviations from the assumed model. We
propose a procedure for robustifying the estimator, prove its asymptotic
normality and give its asymptotic variance. This allows us to construct a
simple robust alternative to the sample selection bias test. We illustrate
the use of our new methodology in an analysis of ambulatory expendi-
tures and compare the performance of the classical and robust methods
in a Monte Carlo simulation study. Furthermore, we extend our results
to the simultaneous equations models with selectivity. We explore the
robustness properties of these models and propose the robust alternative
to the classical estimators. The sensitivity analysis of the labor force
participation data and the Monte Carlo simulation study demonstrate
the usefulness of the robust methodology. To facilitate the use of the
developed methods, we provide an R package ssmrob.
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Chapter 1

Introduction

Randomization of the sample is one of the crucial principles in statis-
tics. When the observations in the sample are selected in a non random
way, the sample selection mechanism can lead to wrong inferences about
the underlying process. In economic and social sciences this problem is
encountered very often and constitutes an important issue. In 2000 the
Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel,
was awarded to James Joseph Heckman “for his development of theory
and methods for analyzing selective samples.”

The problem first appeared in the analysis of female labor market
behavior and the determinants of wages (Heckman 1974, Gronau 1974).
Suppose we are interested to identify the factors influencing the wages of
women. If we consider the sample with working women, we exclude those
who could work but decided not to do so, because their market wages
are lower than their home wages. This truncation will lead to biased
inferences. On the other hand, if we consider the random sample both
with working and non working women, we will have a subsample of zeroes.
The simple ordinary least squares regression on the complete sample will
be biased due to this subsample of zeroes. The relation between the
decision to work and the wage is the source of the selection bias. In order
to obtain unbiased results the information about the decision to work
must be included in the structure of the model.

Another example, which we will consider in this thesis, comes from
the analysis of the ambulatory expenditures (Cameron and Trivedi 2009).
It is natural to expect that the amount of money spent on the medical
services is linked with the decision to spend. It means that if we estimate
the data with only positive expenditures we will not take into account
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the information about zero expenditures, and hence we will obtain biased
estimates and wrong inference. On the contrary, if we estimate the re-
gression with all the data, then we will obtain biased results due to the
concentration of zeroes. The solution will be to introduce the selection
rule, which explains the decision to spend, and to use it to model the
amount of expenditures.

In spite of the fact that the sample selection problem first appeared in
economics, this methodology is widely used in many other fields, includ-
ing sociology, finance, political science, and computer science to mention
a few. The general review of the problem with discussion of various
methodological aspects is given by Vella (1998). For examples in sociol-
ogy see Berk (1983). A lot of other examples in social sciences can be
found in a review by Winship and Mare (1992). Banasik et al. (2003)
investigated the sample selection problem in credit scoring models. Col-
lier and Mahoney (1996) discussed the sample selection issues in political
science. For the example in machine learning, see Zadrozny (2004). For
the review of the problem in criminology see Bushway et al. (2007), and
references therein.

The examples discussed above suggest the model with a system of
two regressions. The first regression defines the selection mechanism (de-
cision to work or to spend), and the second is the regression of interest
(the size of the wage or the amount of expenditures). For the estimation of
this model first the joint maximum likelihood estimator was used. Then,
Heckman (1976, 1979) proposed an easy-to-implement two-stage correc-
tion for the estimation procedure, which treats the selection problem as
an omitted variable problem. It consists of estimation of the selection
equation by probit maximum likelihood, and the normal linear regression
with additional variable correcting the selection bias for the equation of
interest. Very often the researcher is also interested in the inference about
the selection equation, which makes the two-step procedure very appeal-
ing. This method became a standard tool for solutions of such problems
due to its simplicity and straightforward interpretation.

Classical statistics relies largely on parametric models, and the sample
selection models are not exceptions. It often happens in practice that the
assumed distribution does not hold exactly. It can hold for the majority
of the observations, with other observations having another pattern, or
instead of assumed distribution the data follows another distribution in
the neighborhood. Many classical procedures are well-known for not be-
ing robust. These procedures are optimal when the assumed model holds



exactly, but they are biased and/or inefficient when even small deviations
from the model occur. The statistical results obtained from standard
classical procedures on real data applications can therefore be misleading.
Robust statistics deals with deviations from the stochastic assumptions
and their dangers for classical estimators and tests and develops statis-
tical procedures which are still reliable and reasonably efficient in the
presence of such deviations. It can be also viewed as a statistical theory
dealing with approximate parametric models by providing a reasonable
compromise between the rigidity of a strict parametric approach and the
potential difficulties of interpretation of a fully nonparametric analysis.

In the past decades, robust estimators and tests have been developed
for large classes of models both in the statistical and econometric litera-
ture, and were used in various applications in different fields of science, in-
cluding biology, computer science, psychology, political science and many
others. Standard general books are Huber (1981, 2nd edition by Huber
and Ronchetti 2009), Hampel et al. (1986), Maronna et al. (2006), and
more recently Heritier et al. (2009), and Jureckova and Picek (2006). For
the history of the development of robust statistics see Stigler (1973, 2010).

The classical estimation procedures for sample selection models are
based on the maximum likelihood and ordinary least squares. These esti-
mators are well known to be very sensitive to the distributional assump-
tions (Hampel et al. 1986). The crucial assumption in selection models
is the assumption of joint normality of errors. Theoretically it is an ap-
proximation of reality, but in practice, the assumption of normality is
often violated, and the approximation is very far from the real data. The
model has been widely criticized for this sensitivity in literature (see more
detailed discussion in Chapter 2), but the general robustness theory for
this class of models is still missing.

In this thesis we try to fill this gap. We focus on the robustness analysis
of two-stage estimation procedures. Although a robustness investigation
of the MLE for this model could be carried out applying standard tools
of robust statistics, we feel that it is more important to perform such
an analysis for two-stage procedures. In fact the two-stage estimators
are structurally simpler, have a straightforward interpretation, and are
much less computationally intensive than the joint MLE which explains
its success in applied economic analysis. Moreover, there are numerous
extensions of the classical Heckman’s selection model, including switching
regressions (see Chapter 6), simultaneous equations with selectivity (see
Chapter 5), and models with self-selectivity, to mention a few, where

3
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the construction of the joint likelihood becomes difficult and cumbersome
whereas Heckman-type estimator can be easily computed.

The rest of the document is organized as follows. In Chapter 2 we
present the sample selection models. We revise the estimation methods
and testing for selectivity bias. Also we point out the robustness problem
and show the possible dangers of non-robustness. In Chapter 3 we present
the general framework of two-stage estimators, that is needed for the
robust analysis of sample selection models. The Heckman’s two-stage
estimator is a member of this class. Chapter 3 is a more detailed version
of Zhelonkin et al. (2012) paper. We derive robustness properties of two-
stage M-estimators and illustrate this methodology on three examples.
In Chapter 4 we present our new methodology for robust estimation and
testing for the classical Heckman selection model (Zhelonkin et al. 2013).
We illustrate its use in a simulation study and in the analysis of the
ambulatory expenditures data. Chapter 5 presents the extension of our
methodology for the simultaneous equations models with selectivity. In
Chapter 6 we present the new R package ssmrob for robust estimation
and inference in sample selection models, and show the extension for the
case of switching regressions model. Chapter 7 offers some concluding
remarks, discussion, and an outlook for future research.



Chapter 2

Sample Selection Models

In this chapter we present the sample selection models. In this field there
has been an enormous amount of research in past decades. We only
make a brief survey of estimation methods, testing issue, and problems
highlighted in literature. In Section 2.1 we present the basic selection
problem. Section 2.2 presents an overview of the estimation methods and
their critique. Section 2.3 deals with the testing for sample selection bias.
Some extensions of the model are given in Section 2.4. The robustness
problem is illustrated in Section 2.5.

2.1 Model

The conventional form of a sample selection model can be represented by
the following regression system

* T
Yi; = 1’11;51 + e, (2‘1>
* _ T
Yai = T2 + €,
where the responses yj; and y;; are unobserved latent variables, xj; is

a vector of explanatory variables, 3; is a p; x 1 vector of parameters,
7 = 1,2, and the error terms follow a bivariate normal distribution

()~ {(0) ()} e

with variances 0? = 1, o3, and correlation p. Notice that the variance

parameter o7 is set to be equal to 1 to ensure identifiability. Here (2.1)

bt
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is the selection equation, defining the observability rule, and (2.2) is the
equation of interest. The observed variables are defined by

wo= {0 o 24)
o ySw if Y1i = 17
Yoi = { 0, if y1; = 0. (2.5)

Note, that Heckman (1979) used different indexation, in his original pa-
per, “2” indexed the selection equation and “1” indexed the equation of
interest. We define indexes to correspond to the number of the estimation
stage.

This model is classified by Amemiya (1984) as a “Tobit type-2 model”
or “Heckman model” due to the estimator proposed by Heckman (1976,
1979). In statistics literature the selection models are sometimes referred
as models with missing not at random data or nonignorable missing-data
models (see Little and Rubin 2002, Ch.11).

If all the data were available, i.e. the regressor matrix was of full
rank, or the data were missing at random, i.e. no selection mechanism
was involved, we could estimate the model by Ordinary Least Squares
(OLS). But in general these conditions are not satisfied and the OLS
estimator is biased and inconsistent.

2.2 Estimation

In order to estimate the model (2.1)-(2.5) there are two popular para-
metric estimation procedures. First solution is the Maximum Likelihood
Estimator (MLE) based on joint likelihood function (see Heckman 1974).

Using the assumption of bivariate normality, the likelihood function
is given by

Wol=) = D log [@{Wl \/1@_7[)_6)}]
+ Zlog{ (?/m xm@)} Zlog T8 (26)

where @ is the vector of parameters, ¢ and ® denote the probability density
function (pdf) and cumulative distribution function (cdf) respectively.

6



FEstimation

This estimator is consistent, asymptotically normal and efficient, but it
has several drawbacks. First of all it is non-linear and obviously requires
iterative numerical methods. It is very expensive from the computational
point of view. Of course, given a modern computational power, it is no
longer a problem, but except for non-linearity, the likelihood function also
has local maxima (Olsen 1982), which requires a good starting point for
the numerical algorithm.

The second estimation procedure, and probably the most popular one,
is the two-stage procedure proposed by Heckman (1976, 1979). The idea
of this method is based on the fact that

T.
E(eqiler; > —ﬁ;&) = pdz%. (2.7)

Using (2.7) we can rewrite the equation of interest as:
Yoi = La; 2 + Nifx + vi, (2.8)

where \; = ¢(27,8,)/®(2T.31), Bx = po, and v; is a zero mean error term.
The selection equation can be estimated by probit MLE, then we estimate
A’s, and finally we estimate (2.8) by ordinary least squares (OLS) using
the observed subsample.

Both methods are criticized in literature, and have advantages and
drawbacks which will be discussed below.

The main advantage of the two-stage estimator is its simplicity. It is
easy to compute, it does not require any complicated algorithms, and the
interpretation of this estimator is straightforward. It can be also used to
compute the initial values for the ML estimator. At the same time it has
been also criticized for several issues.

The use of the inverse Mills ratio A can lead to possible problem of
multicollinearity. In fact A is quasi-linear (see Figure 2.1) and can be
approximated by the linear function of x7 ;. If the sets of explanatory
variables z1 and x5 overlap then the multicollinearity can be encountered.
For more insight about this problem see Stolzenberg and Relles (1997).
The possible treatment is to introduce the exclusion restrictions, i.e. to
make the sets of parameters in two estimation stages different by excluding
one or several variables from one of the equations.

Sometimes, the estimated value of p lies outside the interval [—1;1],
which happens due to the fact that in the second estimation stage the
estimated values of A\ are used, and the true value of p is close to +1

7
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inverse Mills ratio

Figure 2.1: Inverse Mills ratio.

(Toomet and Henningsen 2008). But the MLE also holds this drawback,
because of the convergence problem, as reported in Nawata (1994).

Davidson and MacKinnon (1993) point out the problem of heteroskedas-
ticity of the residuals in the second stage. The OLS covariance matrix is
valid only when p = 0. Otherwise the heteroskedasticity consistent esti-
mator must be used. But this problem was solved in the original paper
by Heckman (1979), and the computation of the corrected matrix is not
difficult.

But the major direction for critique, as in the case of MLE, was of
course the sensitivity to the assumption of normality. The two-stage
estimator is a bit less sensitive than the MLE, but it is far from be-
ing stable in presence of deviation from the distributional assumptions.
Several Monte Carlo studies have investigated the behavior of the es-
timators under completely different distributional assumptions; see, for
instance, Paarsch (1984), Zuehlke and Zeman (1991), and a survey by
Puhani (2000). All these studies stated the poor performance of the clas-
sical estimators in non-standard conditions.

2.3 Inference

The problem of testing for Sample Selection Bias (SSB) often arises for
applied researchers. The question of the presence or absence of the SSB
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is important for the choice of the model and therefore for the estimation
and further inference. In the case of absence of SSB it is possible to use
normal linear regression methodology, while its presence leads to more
complicated estimation procedures discussed above.

The simplest and the most widely used test was proposed by Heckman
(1979). Essentially, it is a simple regression t-test of Hy : §, = 0. It follows
directly from the two-stage estimator. Even if it is argued that the MLE
is preferred to the two-stage estimator because of its higher efficiency, the
t-test is still suggested to be used for practical purposes (Davidson and
MacKinnon 1993). Its popularity raises not only because of its simplicity.
Melino (1982) proved that Heckman’s test is equivalent to the Lagrange
multiplier test, which allows to deduce that it has desirable large sample
properties.

Other options, especially if the MLE is used, are the likelihood ra-
tio test of independent equations and the Wald test of Hy : p = 0 (or,
equivalently, Hy : arctanhp = 0).

2.4 Robustness Problem

The problem of sensitivity of the estimators to the misspecification in the
data has arisen many times in literature. The research on alternative esti-
mators is ongoing. Various methods aiming at relaxing the distributional
assumptions have been proposed. They include more flexible parametric
methods, such as a sample selection model based on the ¢ distribution by
Marchenko and Genton (2012), and extension for skew-normal distribu-
tion by Ogundimu and Hutton (2012), semiparametric (Ahn and Powell
1993, Newey 2009), and nonparametric (Das et al. 2003) methods. Gal-
lant and Nychka (1987) proposed a semi-nonparametric estimator based
on Hermite series. However, the general robustness theory for this class
of models is still missing.

In some sources nonparametric methods are classified as robust or to-
gether with robust, but these notions have little overlap (for extensive
discussion see Huber 1981, page 6). Indeed, the sample mean is a non-
parametric estimator of the population mean, but it is not robust, one
outlying observation is enough to break it down. The relaxation of the
distributional assumptions does not necessarily guarantee the robustness
of the method in the statistical sense. The definition of the quantita-
tive robustness is given by Hampel (1971) and it requires continuity with

9
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respect to the topology of weak convergence, or in other words, the es-
timator must have finite sensitivity to small deviations from the under-
lying model. The classical nonparametric estimators are not designed to
be robust! from this point of view. Nevertheless it is not an argument
against their use. In spite of the standard difficulties concerned with the
nonparametric estimators, like hard interpretability, often complicated
bandwidth selection, and curse of dimensionality, in situations when we
are completely uncertain about the undelying distribution the use of non-
parametric methods is preferable, and these estimators outperform the
classical and robust estimators. However, if there is evidence to use the
parametric model, then the robust estimators provide insurance and pro-
tection against distributional deviations and allow to benefit from the
parametric structure, e.g. computational simplicity and interpretability.

The goal of robust statistics in general and this thesis in particular is
to develop statistical procedures, which provide reliable results not only at
the model, but also in the neighborhood of it. We assume that the data
generating process lies in the neighborhood? of some parametric model
Fy (it encompasses both the structural and stochastic parts). There are
several ways to formalize the concept of neighborhood (see Huber 1981,
Chapter 2), but probably the most convenient way to do it is the so-called
Gross Error Model:

F,. = (1 — E)Fg + eG.

The model parameters are contained in vector #, which contains both
structural and stochastic parameters. Distribution G is some arbitrary
distribution (an important particular case is when G is a point mass),
and 0 < € < 1. Usually we expect € to be between 0 and 0.5, which
defines the contamination, i.e. proportion of the data from the arbitrary
distribution G. If one truly believes to know the exact composition of F,
he can use the classical methods if € = 0, or to use mixtures if € > 0. In
the latter case one must adequately choose the distribution G. In general,
practitioner cannot know exactly the data generating process, and it is
hard or even impossible to define G. Our strategy is to develop methods
which would be reliable for the majority of observations generated from
Iy and non-sensitive to the contamination G.

In order to illustrate the robustness problem in selection models we
use two examples. First example is the mixture of distributions and the

1Sometimes the term “resistant” is used.
2Note, that the word “neighborhood” is not exactly a neighborhood in the topolog-
ical sense, the idea is to assume the set of distributions around the true distribution.
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second example is the sensitivity to outliers. Let us first explore the
mixture.

Consider the case, when the error term follows a contaminated normal
distribution:

() =0mo{ () = peor{ (§) =} eo

where ) )
5, - ( o po > 9, = ( oo ) . (2.10)
poyp 1 TVIVy V)
We can explicitly compute the conditional expectation of E(e;|es >

—x7 1), which characterizes the selection bias, and allows to see its be-
havior in presence of contaminated observations. It is given by

Bleles > —d) = {(1—aalpy) +ev (£2)}
(2.11)

X {(1 — €)por1p(a] Br) + eTr1¢ (%)} :

Note that if € = 0 in (2.11), the usual selection bias under the normal
distribution is recovered. The derivation is given in the Appendix B.

Figure 2.2 depicts various plots of (2.11) as a function of linear predic-
tor x{ﬂl with p = 0.5 and o; = 1. In the top left panel, we set v, =1, =1
and let € vary. This means that a fraction € of points come from an uncor-
related bivariate normal distribution, hence the selection bias decreases
when € increases, as one would expect. In the top right panel, we set
e = 0.1, v, = 1, and let 14 increase. The effect is that the selection bias
increases too. In the bottom left panel, we set ¢ = 0.1, v; = 1, and let
15 increase. The effect is that the selection bias is reduced. This will
certainly have an impact on the estimators and tests for selection bias.
In our framework, when the variance of the error term in the selection
equation is equal to 1, this contamination corresponds to the increased
probability of leverage outliers. If the variability of errors increases, then
for large negative x; we can obtain a large positive error, which will set
the corresponding y; = 1, generating an outlier. The bottom right panel
combines the two previous cases.

This example is purely illustrative. It would be very naive to expect
such a simple contaminating distribution, and even if we exactly know
that there is a mixture of distributions, we cannot be sure that it is not a
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Figure 2.2: Selection bias under contaminated normal distribution.

mixture with some arbitrary distribution in the neighborhood, and not a
normal with different variance. Of course in real data there can be much
more complicated situations, and the consequences for the estimation and
testing can be more dramatic.

In the second example we investigate the sensitivity of the classical
sample selection bias (SSB) test (Heckman 1979). We carry out a simple
Monte Carlo simulation study. The explanatory variables x; and x, for
the selection and outcome equations respectively are generated indepen-
dently from the standard normal distribution. The error terms are gen-
erated from the bivariate normal with zero means, correlation p = 0.75,
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and oo = 1. In order to examine the sensitivity of the test we move a
single observation x1; from 0 (the mean value under the normal model)
to —6 in a sample of size 200.

The boxplots of the test statistic, the log,,(p-values) and the empirical
power of the test are shown in Figure 2.3. As x1; moves away from 0, the
test statistic decreases and eventually becomes smaller than the threshold
of 1.96 reversing the test decision. As a corollary, we see a substantial
increase of the p-values and a drastic reduction of the empirical power of
the test. Therefore, a single observation out of 200 can change completely
the decision about the presence of sample selection bias.

2.5 Extensions and Related Models

The class of sample selection models is very broad. The basic sample
selection model was extended in a variety of directions. Here we review
the most important contributions.

The formulation (2.1)-(2.5) gives a convenient framework with clear
structure of the model, which can be simplified or complicated if necessary.
To some extent, the sample selection model is an extension of the famous
Tobit model (Tobin 1958), or rather Tobit model is a particular case of
sample selection models. It is defined by

vi = 1 B+e; (2.12)
Sy ity >0,

where y! is an unobserved response variable, y; is an observed response,
x; is a vector of explanatory variables, and e; is an error term. Equation
(2.13) defines the censoring rule (the model is also known as censored
regression model). The connection between Tobit model (2.12)-(2.13)
and the Heckman’s selection model (2.1)-(2.5) is obvious. We only need
to replace y1; = 1 and y3; = 0 in (2.5) by y > 0 and y; < 0 respectively.
The model is usually estimated by MLE, but the Heckman’s two-stage
estimator is also applicable. The robustness problem for this model has
been studied by Peracchi (1990), where he proposed a robustified version
of the MLE.

A natural extension of the basic selection model is to consider the
model with two regimes, i.e. instead of truncation and non-observed data
we have the data following another regime. It is classified by Amemiya
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(1984) as a “Tobit type-5 model”. There are numerous applications, see
Greene (2008), Amemiya (1984), and references therein. We explore the
robustness issues for this model and propose a robust estimation proce-
dure in Chapter 6.

Another important issue is the possible endogeneity of regressors. The
simplest example is the estimation of supply and demand, which influ-
ence one another. The problem is usually treated using the simultaneous
equations models; see any general econometrics textbook, e.g. Davidson
and MacKinnon (1993), Greene (2008), Wooldridge (2002). The models
with non-random sample selection often have endogenous regressors. The
issue has been studied extensively in literature both in methodology and
in applications; see Lee et al. (1980) and Maddala (1983). We discuss
the robustness issues for the models with endogeneity and selectivity in
Chapter 5.

The model given by (2.1)-(2.5) uses the selection rule of probit type.
In some cases, for instance Kenny et al. (1979), the selection rule of Tobit
type is used. The difference between probit and Tobit selection rules is
that in case of Tobit the variable in selection equation is truncated and
not binary, i.e. yy; in (2.4) is given by yy; = I(y};, > 0)y};, where I is
the indicator function. This model can be estimated by the two-stage
estimator, and our new methodology of robust estimation is applicable in
this case too.

In this thesis we study cross-sectional data, but of course panel data
often have the selectivity issue too. Several estimation procedures have
been proposed by Wooldridge (1995) and Kiriazidou (1997). The problem
of sample selectivity together with endogeneity was studied by Vella and
Verbeek (1999) and Semykina and Wooldridge (2010). Of course the
robustness issues in this context are also of interest, and leaving it beyond
the scope of this thesis, we expect to explore it in future research.
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Figure 2.3: Influence of a single observation x1; on the sample selection
bias (SSB) test. The data generating process is described in Section 4.1
with the only difference that here p = 0.75. The sample size is 200 and
we generate 1000 replicates. The top panel represents the SSB test statis-
tic, the middle panel its log,q(p-values), and the bottom panel represents
its empirical power, i.e. the fraction of rejections of the null hypothesis
among the 1000 replicates. On the horizontal azis, x11 varies between 0
and —6 and the corresponding y11 = 1. The dashed line in the top panel
corresponds to 1.96, and in the middle panel to log,,(0.05).
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Chapter 3

Robustness Properties of
Two-stage M-Estimators

Many estimators in the statistics and econometrics literature are obtained
following a two-stage procedure. Typically, the first stage is preliminary
and provides the necessary input for the second stage, which is of main
interest. Sometimes, the first stage is also of interest, as in the case, for
instance, of time series where the trend and seasonality are removed in a
first stage, and similarly in spatial statistics; see Genton (2001). Several
papers in the literature discuss various statistical properties of two-stage
estimators; see for instance Murphy and Topel (1985), Pagan (1986), and
references therein. They mostly focus on two-stage Maximum Likelihood
Estimators (MLE) or Least Squares Estimators (LSE) in linear models. It
is well known that classical MLE and LSE are very sensitive to deviations
from the underlying stochastic assumptions of the model or to outliers in
the data. These deviations may lead to biased estimators and incorrect
inference.

In the existing literature some authors have proposed robust versions
of specific two-stage estimators. Kim and Muller (2007) proposed a two-
stage Huber version of two-stage least squares whereas Cohen Freue et al.
(2011) derived robust estimators with instrumental variables. Moreover,
Hardin (2002) derived a robust variance estimator for two-stage models
and Yeap and Davidian (2001) proposed a robust two-stage procedure
for hierarchical nonlinear models. Finally, Dollinger and Staudte (1991)
computed the influence function for the case of iteratively reweighted
least squares estimators and Jorgensen (1993) investigated the influence
functions of iteratively defined statistics. In spite of these developments,
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a general framework to analyze the robustness properties of two-stage
procedures is still missing.

In this chapter we present such a general framework based on M-
estimators. It has the advantage to include most of the two-stage esti-
mators available in the literature, to indicate a general way to robustify
two-stage estimators, and to clarify the structure of their asymptotic vari-
ance. Although we focus on two-stage estimators, our results can be easily
extended to multi-stage procedures.

This chapter is structured as follows. In Section 3.1 we present the
two-stage M-estimation framework. In Section 3.2 we derive the influence
function. In Section 3.3 we show the connection between the influence
function and the asymptotic variance. The derivation of the change-of-
variance function for the two-stage M-estimator is given in Section 3.4.
Section 3.5 provides some specific examples of applications. Section 3.6
offers the extension for multi-stage estimation procedures.

3.1 Framework

To analyze the robustness properties of two-stage estimators, we consider
the class of two-stage M-estimators. This class is general enough to cover
the vast majority of classical estimators used in statistics and economet-
rics and it provides a convenient framework to develop robust versions of
two-stage estimators.

Let Fy be the empirical distribution function putting mass 1/N at
each observation z; = (z}l), zi(z)), where zl-(j) = (j,y;), j = 1,2, 1 =
1,...,N, and let F' be the distribution function of z;. Also, let § =
(B1, B2) be a vector defining the parameters of the first and second stage,
respectively.

Consider the following system of equations:

Er [\Ifl(z(l); S(F))] ~ 0, (3.1)

Er \112(2(2);h(z(l);S(F)),T(F))] = 0, (3.2)

where Wy (-;-) and Wy(-; -, -) denote the score functions of the first and sec-
ond stage estimators respectively, h(-;-) is a given continuously piecewise
differentiable function in the second variable. Here S is the functional
for the parameters of the first stage, such that S(Fy) = Bl and at the
model S(F') = (1, while T is the functional for the second stage, such that
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T(Fy) = /35 and at the model T(F) = B,. Here T(F) depends directly
on F and indirectly on F' through S(F). Notice that we do not put any
restrictions on the presence or absence of one or several components of
the unit z.

3.2 Influence Function

For a given functional T'(F'), the influence function (IF) is defined by
Hampel (1974) as [F(z;T,F) = lime,o [T(F.) —T(F)]/e, where F, =
(1 —€)F + €A, and A, is the probability measure which puts mass 1
at the point z. It describes the standardized asymptotic bias on the es-
timator due to a small amount of contamination e at the point z. An
estimator is considered to be robust if small departures from the assumed
distribution have only small effects on the estimator. Therefore, a condi-
tion for (infinitesimal) robustness is a bounded IF with respect to z. In
our case F; is a contamination of the joint distribution of z;, but marginal
contaminations on the components of z; can also be considered; see the
comments below.

From (3.2), the functional T'(F,) is defined by:
/ o225 h(z1Y; S(F)), T(F))dF. = 0 (33)
and the derivative of (3.3) with respect to € evaluated at € = 0 is

%(1 — e)/\112(2(2);h(%m;S(Fe)),T(Fe))dF(é)

e=0

e [ WaE G S(R), T()aA
€

e=0
The second term of (3.4) is given by

%6 = Uy (2®; h(2W; S(F)), T(F)),

e=0

/ W, (39; h(20; S(F), T(F))dA.
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and the first term by

ge(l—e)/\pg( @, p (0 S(F.)), T(F.))dF(3)

- aae Uy (2@ h(z0; S(F), T(F.))dF(2)
= / 6\112(~2 0, T(F >)867]h< (1) n)dF (3 )SES(FG)

t/é,mg 22 p(20; S(F)), €)dF(Z) - TF(2: T, F),

e=0

e=0

e=0

where the derivative with respect to 6 is evaluated at 6 = h((; S(F)),
the derivative with respect to 7 is evaluated at n = S(F'), the derivative
with respect to ¢ is evaluated at & = T'(F'), and the derivative of S with
respect to € is the influence function of the estimator of the first stage,
ie. Z8(F)|ewo = IF(z; S, F).

Combining the derivatives of the two terms of (3.4), we obtain the IF
of the two-stage M-estimator:

[F(xT,F)=M" <\I’2(Z(2); h(=\Y; S(F)), T(F))

s [ o (29T(D;MWMMH@JN%&D>
(3.5)

where M = — [ ZW,(23); (21 S(F)), £)dF ().
Here are some remarks on the IF obtained in (A.6) and its sources of
unboundedness.

[i] If z; and y; are not contaminated, i.e. the distribution of 2V is
the marginal F(") of F, then IF(z; S, F) drops out and the IF of
the estimator of the second stage collapses to [F((x2,y9); T, F),
which implies that the robustness properties of the estimator are
determined just by the boundedness of the score function of the
second stage;

[ii] If A(-;-) does not appear in (3.2), then the IF of the two-stage
estimator is equal to the IF of the one-stage estimator, because
20,5 (29;0,T(F)) = 0;
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[ili] Robust estimators are obtained by bounding the IFs at both stages.
If the score function of the first stage is unbounded, the final esti-
mator is non-robust. Of course, if the score function of the second
stage is unbounded, the final estimator is also non-robust.

Depending on the location of the contamination (1st, 2nd or both
stages), a robust estimation procedure can be proposed. We suggest two
different approaches. The first is to ensure robustness by bounding the
IFs of both stages. All the terms in (A.6) except the score function of
the second stage and IF of the first stage are constants. Hence, we need
to have bounded score functions on both stages to produce a bounded-
influence two-stage estimator. The contamination can also emerge in only
one of the stages and in this case there is no need to use robust estimators
in both stages.

When y; and/or x; are contaminated, the second approach uses the
robust estimator in the first stage and computes robustly A(+;-). In the
second stage using the property [i], we are in the situation of classical
one-stage M-estimation.

3.3 Asymptotic Variance

Using the result in (Hampel et al., 1986, p. 85), we can derive the expres-
sion of the asymptotic variance. For the one-stage estimator we have

V(T,F) = /[F(z;T, FYIF(z,T,F) dF(2).

Denote the components of the IF as follows:

a(z) = Wz h(z0;S(F)), T(F)),

bz) = / %\112(2(2);Q,T(F))%h(é(l);n)d}?(é)~[F(z;S,F).

Using the expression of IF in (A.6) and integrating, we obtain the asymp-
totic variance of [3,:

V(T,F) = M- / )T+ a(z)b(z)"

+b(2)a(z)" +b(z )b(z)T) dF(z) M~ (3.6)

The form (3.6) is general for any two-stage M-estimator. In particular
this expression of the asymptotic variance is the generalization of the
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result in Murphy and Topel (1985). Then, specifying the vectors a(z)
and b(z), we can derive the asymptotic variances for the particular cases.
Given particular score functions and h(-;-) functions, we can obtain the
asymptotic variance for any M-estimator. If we assume the function h(-;-)
to be linear, then our result matches the result of Newey (1984) for the
fully identified case. If h(-;-) does not depend on the first stage equation
(for instance it is fixed) then all the vectors b(z) become equal to zero, and
(3.6) collapses to the asymptotic variance of the one-stage M-estimator.
In the cases when the error terms are independent the [ a(z)b(z)"dF(z)
and [ b(z)a(z)"dF(z) are equal to zero.

3.4 Change-of-Variance Function

The change-of-variance function (CVF) of an M-estimator 7" at the model

distribution F is defined by the matrix CV F(z; T, F) = |(0/0¢)V (T, (1—

)F + €A,) , for all z where this expression exists; see Hampel et al.

e=0
(1981). It reflects the influence of a small amount of contamination on
the variance of the estimator, and hence on the length of the confidence
intervals.

For the case of a two-stage M-estimator the CVF has the following
form:

CVF(z 8T F)=V(T,F)—- M { / D@S)dF(z)] V(T, F)
— M1 {%\1}2(2@); h(z; S(F)), 0)} V(T, F)
! / (Aa(=)" + Ba(=)" + Ab(=)" + Bb(z)")dF (z)M "

+ M~ / 2)AT +b(2)AT +a(2)BT +b(2)BT)dF(2)M ™!

+ M (a(2)a(2)" +a(2)b(2) " +b(2)a(2)" +b(2)b(2)") M~

—V(T,F) U DP9 dF(z) + 59\1/2(,2() h(zY; S(F)),0)| M~
(3.7)
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where D@9 is a matrix with elements
pes) _ (0 0Wu(=?:0,0)\ " 9h(=:s)
i oh o9, 05
ﬁ W (21
26 om,

IF(z; S, F)

h’e)) IF(z,T, F).

Matrix A is given by

0 0
- = (2). Iy OV O
A ah\IIQ(Z ,h,T(F))aSh(z ;) [F (2,8, F)
0

—1—%\112(2(2); h(zW: S(F)),0)-IF(z T, F).
The matrix B has the following form
B= / Rléh(z“);s)de(z,S, F)+ / %@2(2(2);h,T(F))RQdFIF(z,S, F)
— / (%\I/g(z(g);h,T(F))%h(z(l);s)dFMfl / DWAFIF(z,S, F)
d d

0
— / %\112(2(2); h, T(F))&h(z“); s)dFMfl%\Iﬁ(z(l); 0)IF(z,S,F)

0 0 0
+/ h\IIQ(z h, T(F))=—h(z""; s)dF M; 6,‘1’1(2 0)[F(z,S,F)

S

0 0
- (2). Il NN 0 ) SN .
+ ah\IIQ(z ,h,T(F))aSh(z ;8) - IF(z; S, F),

where DM denotes the matrix with elements

T
Dy = (ae—aej IF(z 8, F), (3.8)

RW is the matrix with elements
.
a D 9P hT(F)\ 9, . IF(s S F
i = <8h oh, g5 2 S E (=5, F)
28\11%(2(2), h,@

20 on,

>>TIF(2;T, F),

-
R® is the matrix with elements Rz(jz») = %%ﬁ);s) IF(z;S,F), and
J

M denotes the M matrix of the first stage. The derivation of the CVF
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function is similar to the derivation of the IF. The detailed computations
are given in the appendix.

Analogously to the properties of the IF of a two-stage M-estimator,
in case that the second stage estimator does not depend on h(-;-), the
CVF of the two-stage estimator collapses to the CVF of one-stage M-
estimator. The same happens if there is no contamination on the first
stage, i.e. if 2z ~ F. The CVF of the one-stage M-estimator has been
recently studied by Ferrari and La Vecchia (2012). The boundedness of
the CVF function is determined by the boundedness of the IF’s and the
derivatives of W-functions.

3.5 Examples

3.5.1 Two-Stage Maximum Likelihood

Equation (3.6) gives the general form of the asymptotic variance. We
can use it to obtain the expression of the variance for the two-stage MLE
derived in the paper Murphy and Topel (1985) and generalized by Hardin
(2002). Recall that

nEsE) = T
1

Wy(=2 (=05 S(F), T(F)) = 2282
562

where fi, fo are the probability densities and i, (5, are the parameter
vectors of the first and second stages, respectively. If we use these ex-
pressions in (3.6) then we immediately obtain the result in Murphy and
Topel (1985).

3.5.2 Two-Stage Least Squares

The Two-Stage Least Squares (2SLS) is an important method of estima-
tion in the case when the exogenous variables are correlated with the error
term. Consider the simplest case

y=z'B+u,

where z is a p x 1 vector consisting of p; exogenous variables ") and for
simplicity of notation one endogenous ® such that 27 = (27 2(?).
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The general case for multivariate z(? is treated in appendix. We assume
cov(z®,u) # 0 and cov(xg-l), u) = 0 for all j. In this case the ordinary
least squares (OLS) estimator is biased due to the endogeneity of x(%.
To find an unbiased estimator we need first to regress z(® on w, which is
the Vector of instrumental exogenous variables such that it is correlated
with z(? but uncorrelated with u, i.e. we have the first stage regression
@ = w'a + uy, where uy is the error term of the auxiliary regression.
In this case y, 2™, 2® w correspond to Yo, Ta, Y1, T1 from (3.1)-(3.2),
respectively, and 22 = (z(V),y) and (V) = (w @), Here h(-;-) is lin-
ear. The functional form of @ is ([ wadF LS wx®dF, where F is the
dlstrlbutlon function of the statistical unit z = (¥, y,w,2®). Then we
replace () by its estimate 2?) = w' & and regress y on x( ) and .
The score functions are equal to:

Uy ((w, 2?); S(F)) = (x(2)—wTa)w

L)
U((y, V) 0T, T(F)) = (y—(w(l))Tﬂl—wTaﬁz)( )

wTa

Using the general formula (A.6) we compute the IF for 2SLS as a special
case:

M = /86\112 Y, T )wTa,f)dF(z)

_ /< i > (@) wla )dF(2).

The derivative of Wy(+;-, ) with respect to A(-;-), which is the linear pre-
dictor from the first equation, is:

Dy, 2);0,T(F)) =5 0

00
—zM g,
- ( Yy — (x(l))Tﬁl — 2w’ af, > '

Combining the formulas above we find

Uy ((y, :1:(1)); w'a, T(F))

1) = (- )6 - was) (I, )

wa

_ (/ ( 5%%2 )wTdF(z)) IF(z:8, F)},

(3.9)
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where .
IF(z; S, F) = (/ wadF(z)) (¥ —w a)w.

The IF function of the classical 2SLS estimator is unbounded in any
component of z, which means that a deviation from the assumed model
can bias the estimator. We illustrate this fact by a simulation study
provided in the next section. Also note that from (3.9) we can obtain the
asymptotic variance of the 2SLS estimator using formula (3.6).

Simulations

We illustrate the robustness issues in this model via Monte Carlo simu-
lations. In our experiment, for simplicity of exposition, we omit () and
have u ~ N(0,1), 2® ~ N(0,1), corr(z®,u) = —0.6, 3, = 1, and an
intercept Sy = 0. There exists one instrumental variable w, such that
corr(x® w) = 0.6 and corr(w,u) = 0. We find the 2SLS estimate of
«a without contamination and with two types of contamination. In the
first scenario we contaminate z(?). We generate observations from the
model described above and replace them with probability e = 0.01 from
the degenerate distribution putting mass 1 at the point (—1,—1,9), cor-
responding to (y, w, x(2)). In the second scenario we contaminate w, using
the same idea as with #(®, but the degenerate distribution is now equal
to the constant vector (0,5, —2). Both types of contaminations generate
outliers only in one of four dimensions, either in 2® or in w. Two other
coordinates belong to the bulk of the data while (") is omitted. The
sample size is N = 200, and we repeated the experiment 200 times. The
values of average bias, variance, and Mean Square Error (MSE) presented
in Table 3.1 confirm the theoretical results derived above. Even under a
relatively weak contamination the estimates are seriously biased. Also
note that the variances of the parameters under contamination increase.
It can be explained by the fact that the CVF in (A.32) depends on the
IF of the 2SLS estimator and is unbounded. The unshaded boxplots in
Figure 3.1 correspond to the classical 2SLS estimator. Three types of
contamination are denoted by (a), (b), and (c¢), which correspond to the
non-contaminated case, the contamination of w, and the contamination
of (@), respectively.

We did not consider the case when y is contaminated because it ap-
pears only in the second stage and the treatment is obvious. When there
are outliers in 2® or in w the solution is less evident. Leaving the problem
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of optimality beyond the scope of this work, the problem of outliers in z(
can be treated by using robust first stage estimator. In the case when the
instrumental variable is contaminated, a robust first stage is not enough,
because the contamination emerges on the second stage anyhow. If we use
the non-robust estimator on the first stage, then the structure of the data
changes arbitrarily. If we use the robust estimator, then we correct the
bias of &, but #® = w’a still depends on w, which means that we have a
retained outlier in the main equation. A straightforward solution is to use
robust estimators for both stages, which preserve the structure of the data
after the first stage and downweight the outliers, moving them to the bulk
of the data in the second stage. We implemented the robust estimation
procedures for both types of contamination. The results are shown in Ta-
ble 3.1 and Figure 3.1. The grey shaded boxplots are the robust versions
of 2SLS based on MM-estimators introduced by Yohai (1987). We can
see that the robust version works well, there is no considerable bias, and
most importantly, the loss of efficiency is not dramatic. In Table 3.1 we
see that the variances of the parameters under the model for the robust
estimator are only slightly larger than for the classical estimator.
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Figure 3.1: 2SLS, parameter estimates. Unshaded boxplots correspond
to the classical 2SLS and shaded boxplots correspond to the robust 2SLS.
Case (a) is without contamination, (b) is with contamination of w, and
(¢) is with contamination of ¥ . The top panels correspond to the auzil-
wary regression, the bottom panels to the regression of interest. Horizontal
lines mark the true values of the parameters.

3.5.3 Time Series

In time series analysis, it is usually necessary to decompose the determin-
istic and the stochastic components and to make corresponding inferences.
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For this purpose, the two-stage estimation is usually preferred. In the first
stage, the trend is removed and in the second stage, the stochastic com-
ponent is modeled. To illustrate the results developed in the previous
sections, we consider the standard process with linear trend and autore-
gression (AR) of order 1, i.e.

Yr = ont + Gy, (3.10)
where a; follows an autoregressive process of order 1,
ar = Brag1 + uy, (3.11)

and u; are independent and identically distributed according to a N (0, 2).

The typical way to proceed is to estimate the trend by OLS or MLE
and to estimate the 2nd stage by MLE. Both estimators are non-robust.
The score function of the first stage is:

Ui (ye S(F)) = t(ye — at), (3.12)

which is clearly unbounded in g;. The score function of the second stage
is

o ((Yss Ye1); B(ye; S(F)), T(F)) = (ye1—a(t=1))(yr—at—=B(yi-1—a(t—1))),

(3.13)
which is also unbounded because of y; and y;_;. Hence, one possible out-
lier in the time series can bias both the estimators of trend and of AR.
The solution in this case is less evident. Clearly, the use of a robust esti-
mator for the trend is necessary, but the question of the type of estimator
for the AR is more complicated, see e.g. Kiinsch (1984) and de Luna and
Genton (2001), and a review in (Maronna et al., 2006, Ch. 8).

Simulations

We simulate the process defined by (3.10), (3.11). We have oy = 0.02,
p1 = 0.5, uy ~ N(0,1). The intercepts o and Sy are equal to zero. The
length of the trajectory is N = 500. We estimate this model with and
without contamination. The contamination is introduced by replacing
the observations of the time series generated from the model by random
numbers from N(0,1) without trend with probability e = 0.05. The
experiment is repeated 200 times. The values of average bias and variance
are presented in the table 3.2. The boxplots of the estimates are in the
Figure 3.2.
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For this simple example we propose a natural robustification procedure
similar to one explained in the last paragraph of Section 3.2. We use the
MM-estimator for the trend and compute the residuals using the robust
weights, i.e.

i = (ye — at)w(ye — at), (3.14)

where r; denotes the residual, and w(-) denotes the robustness weight.
The weighting function allows to approach the outliers to the bulk of the
data and to reduce their influence in the second estimation stage. Hence,
in the second step we can use the classical estimator of the AR process.

From the boxplots in Figure 3.2 it is clear that for the classical pro-
cedure the estimates are biased both for trend and autoregression. Even
if the test for the presence of trend is not going to change, the prediction
will be seriously biased. The robust estimator performs well. There is
small bias, but it is almost negligible. The loss of efficiency at the model
is not dramatic neither (see Table 3.2).

Table 3.2: Bias, Variance and MSE of the classical and robust estimators
at the model and with contamination

N =200 Not contaminated  y; is contaminated

Classical Bias Var Bias Var
Qg 0.0011 0.0296 0.0016 0.0345
aq 0.000001 | 0.00001 [| —0.0005 | 0.00001
Bo —0.00001 | 0.0001 | —0.0001 | 0.00001
Bo —0.0100 | 0.0015 || —0.2918 | 0.0092

Robust Bias Var Bias Var
g 0.0008 0.0301 | —0.0082 | 0.0301
Qg 0.00001 | 0.00001 || 0.00003 | 0.00001
5o 0.0003 0.0001 || —0.0001 | 0.00001
Bo —0.0129 | 0.0015 | —0.0343 | 0.0029

3.6 Three- and n-Stage Estimation

Suppose we have the model with more than two stages. There are many
examples, for instance, estimation of a MA with trend component. The
popular method is to estimate the trend component in the first stage and
to estimate the MA component by Durbin method which requires two
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Figure 3.2: Parameter estimates of autoregression with trend. Unshaded
boxplots correspond to the classical estimation procedure and shaded box-
plots correspond to the robust estimator. Case (a) is without contami-
nation, (b) is with contamination. The top panels correspond to the es-
timation of trend, the bottom panels to the estimation of autoregression.
Horizontal lines mark the true values of the parameters.

estimation stages. Another example is the simultaneous equations models
with selectivity, it requires the estimation of the selection equation in the
first stage, and 2SLS in the second stage, which in general is estimated in
two steps. We discuss this model in detail in Chapter 5. In this section
we obtain the IF for the n-stage M-estimator. This result is formalized

32



Three- and n-Stage Estimation

in the following proposition.

Proposition 1. Assume that z is a statistical datum containing the ex-
ogenous and endogenous variables. hy{zx_1;Tk—1(F)} is a piecewise dif-
ferentiable function transmitting information from stage k — 1 to k. For
the model given by the following sequence of M-estimators

Stage 1:  Ep [V1{z;T7(F)}] =0,
Stage 2 : Er (Vy|z9; hol{z; Th(F)}, To(F)]) =0

Stage n Er (V|20 hof{zn_1; Tna (F)}, T, (F)]) =0, (3.15)

the influence function of the n’th stage estimator is given by

IF(zT,, F) = M(V,)™" (\Ifn[zn;hn{zn_l;Tn_l(F)},Tn(F)]

a0
— VU, —h,dF - [F(T,_ 1
+/66 ”anh”d (T, 1)), (3.16)
where %hn = %hn(zn_l;n), LU, = 2V, {2,;0,T,(F)}, and IF(T,_) =
[F (2T, y, F).

Proof. Straightforward generalization of the IF for two-stage M-estimator
derived in Section 3.2. [

Clear that expanding the [F(z;T,-1, F) term in (3.16) gives us the
dependence of the n’th stage on all the previous stages up to the first
one. The estimator T),(F") depends on F' directly and indirectly through
the sequence of estimators T,,_1(F),...,T;(F). This dependence occurs
because of the presence of h(-;-) function. If this function is not present
then we obtain a sequence of independent estimators and the second line
of (3.16) vanishes.

The robustness properties of the n-stage estimator depend on the
boundedness of all the IF’s. It means that if the IF in one of the stages
is unbounded then the complete estimator is non-robust.
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Chapter 4

Robust Inference in Sample
Selection Models

In this chapter we present the main results concerning the robustness is-
sues in standard selection model. The chapter is structured as follows.
In Section 4.1 we investigate the robustness properties of the Heckman’s
two-stage estimator, we compute its influence function, the change-of-
variance function, give the connection between the influence function and
the asymptotic variance of the estimator, and show the nonrobustness
of the standard sample selection bias test. Section 4.2 is devoted to the
robust estimation and inference. We explore the possibilities to obtain a
robust estimator and propose a simple robust alternative to the sample
selection bias test. The Monte Carlo simulation study is given in Sec-
tion 4.3. The real data application is presented in Section 4.4. The simple
extension to the switching regressions model is offered in Section 4.5.

4.1 Robustness Issues with Heckman’s Two-
stage Estimator

In this section we present the main results concerning the two-stage es-
timator. We derive its influence function (IF) and its change-of-variance
function (CVF) and discuss the robustness properties of the classical es-
timator. Moreover, we explain the connection between its IF and the
asymptotic variance. Finally, we explore the robustness properties of the
SSB test.

We consider a parametric sample selection model {Fy}, where 6 =
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(01, 32) lies in ©, a compact subset of RP1TP2. Let Fyy be the empirical
distribution function putting mass 1/N at each observation z; = (zy;, 29;),
where zj; = (zj;,y;), j = 1,2,1=1,..., N, and let F' be the distribution
function of z;. The Heckman’s estimator is a particular case of general
two-stage M-estimators, with probit MLE in the first stage and OLS in
the second stage. Define two statistical functionals S and T" corresponding
to the estimators of the first and second stage, respectively. The domain
of S is a class of probability distributions on RP* and its range is a vector
in RP'. The domain of T is a class of probability distributions on RP**72
and its range is a vector in RP2.

The two-stage estimator can be expressed as a solution of the system:

/\Ifl{(xl,yl);S(F)}dF = 0, (4.1)

/‘1’2[(1‘2,?/2);A{(xl,yl);S(F)}yT(F)]dF = 0, (4.2)

where Wy (-;-) and Wy(+; -, -) are the score functions of the first and second
stage estimators, respectively. In the classical case Wy(-;-) is given by
(A.12), and Wo(+;-,-) is given by (A.8). Here M{(z1,y1); S(F)} denotes
the dependence of A on S(F') = (3, while T'(F') depends directly on F
and indirectly on F' through S(F).

4.1.1 Influence Function

For a given functional T'(F), the influence function (IF) is defined by
Hampel (1974) as [F(z; T, F) = lime,o [T{(1 — €)F + €A.} — T(F)]/e,
where A, is the probability measure which puts mass 1 at the point z.
In our case (1 — €)F + €A, is a contamination of the joint distribution
of z;, but marginal contaminations on the components of z; can also be
considered; see the comments below. The IF describes the standardized
asymptotic bias on the estimator due to a small amount of contamination
€ at the point z. An estimator is considered to be locally robust if small
departures from the assumed distribution have only small effects on the
estimator.

Assume that we have a contaminated distribution F, = (1 —¢)F +€G,
where G is some arbitrary distribution function. Using a von Mises (1947)
expansion, we can approximate the statistical functional T'(F.) at the
assumed distribution F' as

T(F) = T(F) + ¢ / [F(zT, F)dG + o(e) (4.3)
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and the maximum bias over the neighborhood described by F; is approx-
imately
sup [ T(Fe) = T(F)|| = esup [1F(z; T, F)].

Therefore, a condition for (local) robustness is a bounded IF with respect
to z, which means that if the [F(:;-,-) is unbounded then the bias of
the estimator can become arbitrarily large. Notice also that (4.3) can be
used to approximate numerically the bias of the estimator T' at a given
underlying distribution F, for a given . The next proposition gives the
influence function of Heckman’s two-stage estimator.

Proposition 2. For the model (2.1)-(2.5), the IF of the Heckman’s two-
stage estimator is

T -1
[F(Z;T;F):{/(?;f )\)\xzz)yldF} {(yz—%T@—)\ﬁA)(gg\Q)yl

T2 ! .
+/< v )yM dF-IF(z,S,F)}, (4.4)

where

s = (f h(ﬁﬁi?ﬁéﬁl)}]dF)1

T ¢(x] Bi)a
= NG - e TET

Proofs and derivations of all results are given in Appendix A.

The first term of (4.4) is the score function of the second stage and
it corresponds to the IF of a standard OLS regression. The second term
contains the IF of the first stage estimator. Clearly, the first term is
unbounded with respect to yo, o and A. Notice that the function A is
unbounded from the left, and it tends to zero from the right (the solid
line in Figure 4.3). From (4.5) we can see that the second term is also
unbounded, which means that there is a second source of unboundedness
arising from the selection stage. Therefore, the estimator fails to be locally
robust. A small amount of contamination is enough for the estimator to
become arbitrarily biased.

If there is no selection mechanism involved, then the IF has only the
first term. The same occurs if there is no contamination in the selection
stage. In Section 4.2 we will present two ways to construct two-stage
estimator with a bounded influence function.

(4.5)
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Graphical representation

We generate x; ~ N(0,1), 25 ~ N(0,1), and the errors e; and es from a
bivariate normal distribution with expectation zero, oo = 1, and p = 0.5.
The graphs of the IF for four types of contamination can be seen in Fig-
ure 4.1 and Figure 4.2. The solid lines represent the IF. The boxplots rep-
resent the standardized biases ! of the estimators of the simulated samples
under contamination of one observation number k. The top panel of Fig-
ure 4.1 represents the IF depending on x; when the corresponding value
of y; = 1, i.e. the outlier in the selection equation which is transmitted
to the main equation via A\. The bottom panel of Figure 4.1 represents
the IF depending on x; when the corresponding value of y; = 0, i.e. the
outlier in the selection equation which is not transmitted to the main
equation, but as we can see it still influences the final estimator. The top
panel of Figure 4.2 represents the IF depending on x5, i.e. the sensitivity
to the leverage outlier. The bottom panel of Figure 4.2 represents the IF
depending on s, i.e. the outlier in the dependent variable. Note that
the graphs in Figure 4.2 essentially the same as the graphs of the IF for
normal linear regression.

We can see that the IF’s are unbounded, which corresponds to the
theoretical results. The bias of the estimator under contamination is not
bounded. As it was mentioned the MLE is also non-robust. It’s IF is
unbounded, the figures can be seen in Salazar (2008). The IF of the
probit estimator is plotted in Figure A.1 in appendix.

4.1.2 Asymptotic Variance and Change-of-Variance
Function

The expression of the asymptotic variance for the two-stage estimator has
been derived by Heckman (1979), and later corrected by Greene (1981).
Duncan (1987) suggested another approach to derive the asymptotic vari-
ance using the M-estimation framework. Using the result in Hampel et al.
(1986), the general expression of the asymptotic variance is given by

V(T,F) = / IF(z,T,F)-IF(z,T,F) dF(z).

Istandardized bias= n{3(F.) — B(F)}
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Figure 4.1: IF of the Heckman two-stage estimator. The solid lines rep-
resent the IF. The boxplots represent the standardized biases of the esti-
mators of the simulated samples under contamination of one observation
number k. Top panel corresponds to the contamination of Case A, i.e.
Tk varies from —6 to 6 and y;p, = 1. The bottom panel corresponds to
the contamination of Case B, i.e. x1x varies from —6 to 6 and y = 0.
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Figure 4.2: IF of the Heckman two-stage estimator. The solid lines rep-
resent the IF. The boxplots represent the standardized biases of the esti-
mators of the simulated samples under contamination of one observation
number k. Top panel corresponds to the contamination of Case C, i.e. xo
varies from —6 to 6. The bottom panel corresponds to the contamination
of Case D, i.e. yor varies from —6 to 6.
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Specifically, denote the components of the IF as follows:
a(z) = (Y2 — 2502 — AP ( $/\2 ) ,
b(z) = / ( x;g: ) NdF - [F (2 S, F),
M(Uy) — / ( ifg A )dF. (4.6)

Then the expression of the asymptotic variance of Heckman’s two-stage
estimator is

VT.F) = M(Wy)" / {a(z)a(=)" + a(2)b(=)"

After integration and some simplifications (see Appendix B) we obtain
the asymptotic variance matrix of the classical estimator

A(2)) - o fae (- 40)

+8XTAX Var(S, F)XT AX] (XTX)™H(4.7)

where A is a diagonal matrix with elements 0;; = %’\((xxl—l_iﬁ‘il)), matrix X
consists of vectors x; = < gg\% ), and Var(S, F') denotes the asymptotic
i

variance of the probit MLE.

Robustness issues are not limited to the bias of the estimator, but
concern also the stability of the asymptotic variance. Indeed, the latter
is used to construct confidence intervals for the parameters and we want
the influence of small deviations from the underlying distribution on their
coverage probability and length to be bounded. Therefore, we investigate
the behavior of the asymptotic variance of the estimator under a contam-
inated distribution F, and derive the CVF, which reflects the influence
of a small amount of contamination on the asymptotic variance of the
estimator. These results will be used in Section 4.1.3 to investigate the
robustness properties of the SSB test.

The CVF of an M-estimator 7" at a distribution F’ is defined by the ma-

trix CVF (2, T, F) = [(0/0e)V{T, (1—€)F+€eA,}| ,forall z where this

e=0
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expression exists; see Hampel et al. (1981) and Genton and Rousseeuw
(1995). As in (4.3) a von Mises (1947) expansion of log V(T F,) at I
gives

CVF(=T.F) G}_ 48)

V(T,F) = V(T, F)exp {e/ T
If the CVF(z; T, F) is unbounded then the variance can behave unpre-
dictably (arbitrarily large or small); see Hampel et al. (1986, p. 175).
Similarly to the approximation of the bias, using (4.8) one can obtain the
numerical approximation of the variance of the estimator T at a given
underlying distribution (1 — €)F + €G for a given G.

Proposition 3. The CVF of the Heckman’s two-stage estimator is given
by

T
CVF(8,T, F) =V — M(W,) {/DHdF+ ( ety AR )}V
2

+ M(¥y)~ /{A a(2)" + Apb(2)" }dF M (0,) ™

+ M(Wy)~ /{BHb + a(z)Af; JdFM(U,) ™

+ M(Wy) ! / {b(2)A]; + b(2) B}, }dF M (V,) ™

+ M(U2) " {a(z) +b(2)} {a(z) + ()} M(¥) "

- V{/DHdF+ ( ‘7;2;%{ AA? )}M(%)—l, (4.9)

where V denotes the variance of the Heckman (1979) estimator M(Wy) is

defined by (4.6), Ay = —a( ), By = %b(z), and Dy = 2-2W,(2; )\, 0).
All these terms are given explicitly in Appendiz A.

The CVF has several sources of unboundedness. The first line of (4.9)
contains the derivative of the score function Wy(-;-,-) with respect to the
parameter which is unbounded. The same holds for the fifth line. Finally,
in the fourth line there are two terms depending on the score functions
of two estimators which are unbounded. Clearly, the CVF is unbounded,
which means that the variance can become arbitrarily large. Taking into
account that the two-stage estimator by definition is not efficient, we
can observe a combined effect of inefficiency with non-robustness of the
variance estimator. These problems can lead to misleading p-values and
incorrect confidence intervals. Second order effects in the von Mises ex-
pansion are discussed in general in La Vecchia et al. (2012).

886‘
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4.1.3 Sample Selection Bias Test

Heckman (1979) proposed to test for the selection bias using the stan-
dard t-test of the coefficient §5. Melino (1982) showed that this test
is equivalent to a Lagrange multiplier test and has desirable asymptotic
properties. Several other proposals are available in the literature, see e.g.
Vella (1992), but the simple Heckman’s test is the most widely used by
applied researchers. Here we investigate the effect of contamination on
this test statistic

B Bx
R W

Using the expressions for the IF and CVF of the estimator and its
asymptotic variance, we obtain the von Mises (1947) expansion of the
test statistic:

T(F.) T(F) IF(z=T,F) 1 CVF(zT,F)

= € —T(F
NG NG

which provides an approximation of the bias of the test statistic under
contamination. It is clear that the IF of the test depends on the IF
and CVF of the estimator. Hence, the IF of the test statistic is also
unbounded. Since, according to Hampel et al. (1986, p. 199), the IFs of
the level and of the power of the test are proportional to the IF of the test
statistic, the test is not robust. Moreover, because Heckman’s two-stage
estimator suffers from a lack of efficiency, small deviations from the model
can enhance this effect and increase the probability of type I and type II
errors of the SSB test.

Notice however that the term containing the CVF is of higher order,
which means that the influence of the contamination on the test statistic
is mostly explained by the IF of the corresponding estimator. Hence, for
practical purposes we need to have at least a robust estimator with a
bounded IF with an additional bonus if the CVF is bounded as well.

Wy

4.2 Robust Estimation and Inference

In this section we suggest how to robustify the two-stage estimator and
propose a simple robust alternative to the SSB test.

43



Robust Inference in Sample Selection Models

4.2.1 Robust Two-Stage Estimator

From the expression of the IF in (4.4), it is natural to construct a robust
two-stage estimator by robustifying the estimators in both stages. The
idea is to obtain an estimator with bounded bias in the first stage, then
compute A\, which will transfer potential leverage effects from the first
stage to the second, and use the robust estimator in the second stage,
which will correct for the remaining outliers.

Consider the two-stage M-estimation framework given by (4.1) and
(4.2). We can obtain a robust estimator by bounding both score functions.
In the first stage, we construct a robust probit estimator following the idea
of Cantoni and Ronchetti (2001). We use a general class of M-estimators
of Mallows (1975) type, where the influence of deviations on y; and x;
are bounded separately. The estimator is defined by the following score
function:

U2 S(F)} = vz o (o) — alBy), (4.10)
where o(81) = £ 3" | E{v(21;; i) bwi (z1;) 1] is & term to ensure the un-
biasedness of the estimating function with the expectation taken with
respect to the conditional distribution of y|z, v(:|-), wi(x1) are weight
functions defined below, and p; = (21, 81) = ®(2T.31).

The weight functions are defined by

1
V(213 i) = Yoy (T")Vl/Q—(M)’

Y1i— i
V2 (i)

where r; =

defined by

are Pearson residuals and 1., is the Huber function

¢c1(r) = { " ’r| = e (411)

cisign(r), |r| > ¢.
The tuning constant c¢; is chosen to ensure a given level of asymptotic
efficiency at the model. A simple choice of the weight function wi(-) is
wy; = V1 — H;;, where Hy; is the ith diagonal element of the hat matrix
H = X(XTX)~1XT. More sophisticated choices for w; are available, e.g.
the inverse of the robust Mahalanobis distance based on high breakdown
robust estimators of location and scatter of the z1; (see Rousseeuw 1985
and Rousseeuw and Van Driessen 1999). For the probit case we have
that p; = ®(z1,81), V() = ®(x].61){1 — ®(xT.51)} and hence the quasi-
likelihood estimating equations are

n

Neor (45 ¢($£ﬁl)$1z W _
; {%1 (73) w1 (215) [@(2T3){1 — ®(aT5 — 1)}'/2 (ﬁ1)} 0,
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and E{t., (r;)} in the o) term is equal to

fefpianl] - i} 0-ovte
+¢{V1;—(’;)} 2(a50)

This estimator has a bounded IF and ensures robustness of the first esti-
mation stage.

To obtain a robust estimator for the equation of interest (second stage)
we propose to use an M-estimator of Mallows-type with the following W-
function:

U (2 N\ T) = W, (3 — 22 By — ABy)w(za, N1, (4.12)

where W, (-) is the classical Huber function from (4.11), but with a dif-
ferent tuning constant ¢y, w(-) is the weight function, which can also be
based on the robust Mahalanobis distance d(x2, \), e.g.

B T, lf d(xg, )\) < Cm,
Wiz A) = { drsgy @2 ) 2 e

We summarize the result in the following proposition.

Proposition 4. Under the assumptions stated in Appendiz A, Heckman’s
two-stage estimator defined by (4.10) and (4.12) is robust, consistent, and
asymptotically normal, with asymptotic variance given by:

V(T,F) = M (¥F)! / {ar(=)an(=)" + br(2)bp(=)T}dFM (U8) "

(4.13)
where M (W) = — [ 52-Wi(2; X, T)dF, ap(z) = U5 (A, T), and

0 , -
= [ Uiz N\ T)NdF — Uz S)YdF »  UE(z 9).
[ ueanxar{ [ Sutesir) i)
The asymptotic variance of the robust estimator has the same struc-
ture as that of the classical Heckman’s estimator. Its computation can
become complicated, depending on the choice of the score function, but
for simple cases, e.g. Huber function, it is relatively simple.
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4.2.2 Robust Inverse Mills Ratio

Often the outliers appear only in one or a few components of the obser-
vation z = (z1,y1, T2, y2). In these cases the use of robust estimators in
both stages is not necessary. If outliers are in y, and/or x5, then a robust
estimator for the equation of interest is needed. If outliers are in x; and
y1 = 0, then a robust estimator of the probit model is needed. The most
complicated case is when a leverage point z; with y; = 1 in the selection
equation is transferred to the equation of interest through the exogenous
variable A, a nonlinear transformation of 21 3;.

In this case a natural solution is to bound the influence of the out-
liers that come into the main equation when computing A. Since A is
unbounded and approximately linear in the predictor 273, from the left
(see Figure 4.3), we can transform the linear predictor in such a way
that it becomes bounded, ensuring the boundedness of A\, and hence the
boundedness of the IF of the final estimator.

To achieve this we rewrite the linear predictor =18, = & 'y, —
rV2(u)}, where r = (y1 — p)/VY?(p) and p = ®(2TB;). Then, us-
ing the bounded function v, from (4.11), we obtain the bounded linear
predictor

n(ziBr) = & {y1 — e, (V3 (0)} (4.14)

and (4.14) ensures the boundedness of the inverse Mills ratio. It also
has the advantage to avoid introducing an additional weight to bound
directly A\, which would increase the complexity of the estimator. Note
that, if ¢; — oo, then nn = 2T 3;. The classical and robust versions of the
inverse Mills ratio are plotted in Figure 4.3. Depending on the tuning
parameter ¢; of the robust probit, the influence of large linear predictors
can be reduced, which ensures the robustness of the estimator.

4.2.3 Robust Sample Selection Bias Test

To test SSB, i.e. Hy : By = 0 vs Hy : By # 0, we simply propose to
use a t-test based on the robust estimator of ) and the corresponding
estimator of its standard error derived in Section 3.1, where the latter is
obtained by estimating (4.13).

The first term of (4.13), M(¥5) ™ [ar(z)ar(z)'dFEM(VE)~! is sim-
ilar to the asymptotic variance of standard linear regression, but with
heteroscedasticity. Therefore, we use the Eicker (1967) - Huber (1967) -
White (1980) heteroscedasticity-consistent variance estimator, i.e. we es-
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inverse Mills ratio

imrrob{x)

Figure 4.3: The solid line corresponds to the classical inverse Mills ra-
tio. The dotted lines correspond to the robust inverse Mills ratio from
Section 4.2.2.

timate this first term by M (U5) 11 ™ a(z)a(z)" M(TE) ", where M ()
and ag(z) are the sample versions of M and ag(z), respectively.
T he second term of the asymptotic variance in (4.13),

! [br(2)br(2)TdF M (¥E)7, is the asymptotic variance of the
problt MLE pre— and post-multiplied by the constant matrix, which de-
pends on the form of the score function of the second stage. Thus, a
consistent estimator 1s

S b)) M) =
; 1= OUENT .
> aﬁiv >(528_ﬁj) v

oWl AWy (294 M\ T(F)) OA(214;S(F))
B B2 051 :

where
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4.3 Simulation Study

Consider the model described in Section 2.1. We carry out a Monte Carlo
simulation study to illustrate the robustness issues in this model and com-
pare different estimators. In our experiment we generate x; ~ N(0, 1),
x9 ~ N(0,1), and the errors e; and e, from a bivariate normal distribution
with expectation zero, o1 = 0o = 1, and p = 0.5, which gives g, = 0.5.
The degree of censoring is controlled by the intercept in the selection equa-
tion, denoted by (1o and set to 0, which corresponds to 50% of censoring.
Results (presented in Appendix C) are similar for other censoring propor-
tions such as 75% and 25%. The intercept in the equation of interest is
[ba9 = 0. The slope coefficients are 517 = 521 = 1. We find the estimates
of 81 and Py without contamination and with two types of contamination.
In the first scenario we contaminate x; when the corresponding y; = 0.
We generate observations from the model described above and replace
them with probability € = 0.01 by a point mass at (4,0, 1, 1), correspond-
ing to (x1, 41,2, y2). In this case we study the effect of leverage outliers
when they are not transferred to the main equation. In the second sce-
nario we contaminate x; when the corresponding y; = 1. We use the
same type of contamination as in the first scenario, but the point mass
is at (—4,1,1,1). This is the most complicated case, because the outliers
influence not only the first estimation stage, but also the second stage
through A. The sample size is N = 200 and we repeat the experiment
500 times. We do not show in this section (see Appendix C) the cases
when only the second stage is contaminated because this is essentially the
situation of standard linear regression which has been studied extensively;
see e.g. Hampel et al. (1986) and Maronna et al. (2006).

In Table 4.1 we present the results of the estimation of the first stage
using a classical probit MLE and a robust probit M-estimator. Under the
model we see that the robust estimator is less efficient, but in the presence
of a small amount of contamination it remains stable, both for bias and for
variance. The classical estimator is clearly biased and becomes much less
efficient. In Table C.1 we present the results of the two-stage procedure
for four different estimators. We compare the classical estimator, robust
two-stage (robust 2S) from Section 3.1, robust inverse Mills ratio (IMR)
from Section 3.2, and the estimator using only the robust probit in the first
stage and OLS in the second. First of all, notice that all the estimators
perform well without contamination. The loss of efficiency for the robust
versions is reasonable and the bias is close to zero. Obviously, under
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contamination the classical estimator breaks down. This effect can be seen
in Figure 4.4. The boxplots correspond to the four estimators described
above. The classical estimator is denoted by (a), the robust probit with
OLS by (b), the robust IMR by (c), and the robust 2S by (d). In the case
when the outlier is not transferred to the equation of interest (Figure 4.4
top panel) it is enough to use a robust probit, but when the outlier emerges
in the equation of interest (Figure 4.4 bottom panel), a robust estimation
of the second stage is necessary. The robust IMR and the robust two-
stage estimators are both stable regardless of the presence or absence of
outliers in A or x;. The robust IMR estimator has smaller variance than
the robust two-stage, but in the case of outliers in yy or x5 it will require
a robust estimator in the second stage anyhow. So this estimator cannot
be considered as a self-contained estimator, but it is a useful tool in some
situations.
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Figure 4.4: Parameter estimates by classical and robust two-stage esti-

0, and

1. Case (a) corresponds to the classical

estimator, (b) corresponds to robust probit with OLS on the second stage,
(c) corresponds to robust IMR, and (d) to robust two-stage. Horizontal

lines mark the true values of the parameters.

Top panel corresponds to y,

mators with contamination of 1.
bottom panel corresponds to 1,
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4.4 Example: Ambulatory Expenditures

To further illustrate the behavior of our new robust methodology, we
consider the data on ambulatory expenditures from the 2001 Medical Ex-
penditure Panel Survey analyzed by Cameron and Trivedi (2009, p. 545).
The data consist of 3,328 observations, with 526 (15.8%) corresponding
to zero expenditures. The distribution of the expenditures is skewed, so
the log scale is used. The selection equation includes such explanatory
variables as age, gender (female), education status (educ), ethnicity (bl-
hisp), number of chronic diseases (totchr), and the insurance status (ins).
The outcome equation holds the same variables. The exclusion restriction
could be introduced, by means of the income variable, but the use of this
variable for this purpose is arguable. All these variables are significant
for the decision to spend, and all except education status and insurance
status are significant for the spending amount.

The p-value of the SSB t-test is 0.0986, which is close to the border of
the 10% level. Although the 10% significance level can be chosen, at 5%
level (which is usually chosen by some conventional wisdom) the variable
is not significant. The estimation of this model using joint MLE returns
the p-value of the Wald test equal to 0.38 (see Cameron and Trivedi 2009).
Such behavior of classical MLE is not surprising due to the fact that it
uses stronger distributional assumption than Heckman’s estimator, and
is even more sensitive to the presence of contamination. The possible
conclusion of no selection bias seems to be doubtful.

In Table 4.3 we present the estimation results of the data by the clas-
sical estimator obtained using the R package sampleSelection (Toomet
and Henningsen 2008) and by the robust two-stage estimator proposed in
Section 4.2.1. For all the variables the differences between the estimates
are not dramatic, except for the inverse Mills ratio (IMR) parameter.
The robust estimator returns B 1mr = —0.6768, compared to the classical
B,-m, MillsRatio — —0.4802. We can remark that the classical estimator is
downward biased. Moreover if we consider the standard errors, we see
that the standard error of the robust estimator (0.2593) is smaller than
that of the classical one (0.2907). If the distributional assumptions were
satisfied then such situation would be impossible, but in this example it
is not surprising, because the classical estimator of the variance is not
robust (see Section 4.1). The p-value of the robust SSB test is p = 0.009,
which leads to the conclusion of the presence of SSB.
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Table 4.3: Estimation results of the Medical Expenditures data by the
classical estimator and by the robust two-stage estimator from Sec-
tion 4.2.1. The standard errors are given in parentheses. Significance

codes: “***7(.001, “**” 0.01, “*” 0.05, “.” 0.1.

Classical Robust
Selection
intercept —0.71771 —0.74914
(0.19247)** | (0.19507)***
age 0.09732 0.10541
(0.02702)*** | (0.19507)***
female 0.64421 0.68741
(0.06015)*** | (0.06226)***
educ 0.07017 0.07012
(0.01134)*** | (0.01147)***
blhisp —0.37449 —0.39775
(0.06175)*** | (0.06507)***
totchr 0.79352 0.83284
(0.07112)** | (0.08028)***
ins 0.18124 0.18256
(0.06259)** | (0.06371)**
Outcome
intercept 5.30257 5.40154
(0.29414)*** | (0.27673)***
age 0.20212 0.20062
(0.02430)*** | (0.02451)***
female 0.28916 0.25501
(0.07369)*** | (0.06992)***
educ 0.01199 0.01325
(0.01168) (0.01162)
blhisp —0.18106 —0.15508
(0.06585)** (0.06507)*
totchr 0.49833 0.48116
(0.04947)*** | (0.03822)***
ins —0.04740 —0.06707
(0.05315) (0.05159)
inverse Mills ratio —0.4802 —0.67676
(0.2907) (0.25928)**
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4.5 Switching Regressions Model

A natural extension of Heckman’s model is the switching regression model
or “Tobit type-5 model”. In this case we have two regimes, and the regime
depends on the selection process. This model consists of three equations:

*x _ T
Y = v;81 + e,
* _ T
Yo1; = Ta1;01 + €25,

* T
Yogi = Tagi22 + €34,

where the error terms follow a multivariate normal distribution. The
observed variables are yy; = I(y}; > 0) and

Yoi = Yo ify =1,
’ Ysgis i y1; = 0.

The model can be estimated by a two-stage procedure with the fol-
lowing switching regressions:

T N+, iy =1
Yoy = { x211621+5/\1 z+vl7,7 1T Y14 ) (415>

230,800 — BroXi + vai,  if g1 =0,

where \; = A;(2%.6;) and A\; = A\;(—zT.3;). This system can be estimated
as two independent linear models.

The IF for the first regression in (4.15) is exactly the same as that
in the basic Heckman’s model and is given by (4.4). For the second
regression in (4.15), a slight modification is required. The IF for the
second regression is given by (4.4), where A is replaced by AN by

v 1= 8l B} Bi)al 1 + d(af )
{1-o@afp))

2
T
1’1,

and y; by 1 — .

Obviously, the A is unbounded from the right and therefore the con-
clusion about the robustness properties remains the same. A robust esti-
mator can be easily obtained using the procedure described in Section 4.2.
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Chapter 5

Robust Estimation of
Simultaneous Equations
Models with Selectivity

In Chapter 4 we discussed the robustness issues for standard Heckman’s
selection model. In this chapter we extend our results to the case of Si-
multaneous Equations Models (SEM). This class of models is an extension
of multivariate linear models and is one of the central topics in modern
econometric theory. SEM with truncated or censored dependent variables
show a considerable interest in various applications, e.g. see recent works
by Michel-Kerjan et al. (2011) and Di Falco et al. (2011). Many more
examples can be found in a book by Maddala (1983).

The classical estimators for SEM are sensitive to deviations from the
assumed distribution. There are several proposals of estimators of SEM
without selectivity. Krasker (1986) proposed a bounded influence two-
stage estimator. Krishnakumar and Ronchetti (1997) suggested the use
of robust estimators based on maximum likelihood (ML) and investigated
the optimality problem. Recently, Cohen Freue et al. (2011) proposed a
robust instrumental variables estimator. For a review of the robustness
issue in SEM see Maronna and Yohai (1997) and references therein. But
the problem of robust estimation in presence of censoring or selectivity
has not been treated.

In this chapter we fill this gap by providing a robust alternative to the
classical estimator. The chapter is organized as follows. In Section 5.1
we present the model and discuss the estimation methods. Section 5.2
presents a discussion of the robustness issue. A robust estimator is pro-
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posed in Section 5.3. A Monte Carlo simulation study is presented in
Section 5.4. In Section 5.5 we illustrate our methodology on a real-data
application.

5.1 Simultaneous Equations Models with Se-
lectivity

5.1.1 Definition

The simultaneous equations model with selectivity is given by the follow-
ing system of equations

[i = U)iTOé + e, (51)
Iy, = BX;+ €9;, if I > 0, (52)
Y, = 0,if I, <0, (5.3)

where e; and e; are the error terms following a multivariate normal dis-
tribution with zero mean and covariance matrix >:

2_<1 ”1T2), (5.4)

Ol12 222

Y; is a ¢ x 1 vector of endogenous variables, X; is a p x 1 vector of
exogenous variables, w is a [ X 1 vector consisting of some or all variables
from X and also additional exogenous variables. In many applications X
includes both exogenous and lagged endogenous variables. The variable
I is unobserved, we only know whether I > 0 or I < 0. B and I' are
p X q and ¢ X ¢ matrices of parameters, respectively, « is a [ X 1 vector of
parameters.

Equation (5.1) defines the selectivity rule. The system given by (5.1)-
(5.3) is the truncated SEM. The switching SEM, a straightforward gen-
eralization, is discussed briefly below (see Remark 1).

5.1.2 Estimation

There are two popular methods to estimate the SEM with selectivity. The
first is to use a Heckman (1976, 1979) type procedure. In the first stage
we obtain an estimate & of a by probit MLE. It is known that

$(w; a)
O (w!a)

7

E(egilfi > 0) = —012 = _012)\i7 (55)
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Robustness Properties

where ¢() and ®() denote the standard normal probability density and
cumulative distribution functions respectively. Without loss of generality,
consider the first structural equation in (5.2). We can rewrite it as

Y1i = Y12Y2i + -+ YigYgi + L1.Xi — o2\ + vy, (5.6)

where E(v;|I; > 0) = 0. Replacing ); by its estimate \; = ¢(w? &) /®(w! &)
we obtain the parameters 7, 5, and 012 by 2SLS (Wooldridge 2002, p. 568).
The computation of the asymptotic variance is given in Lee et al. (1980).

Remark 1. If instead of truncated SEM we have a system of switching
SEM then the inverse Mills ratio term for the second regime will be

o(wi'a)
1—®(wla)

%

A= (5.7)

Apart from this, the estimation procedure remains the same.

The second estimation procedure is to use the full information maxi-
mum likelihood (FIML). The major virtue of FIML is its asymptotic effi-
ciency, but if the distributional assumptions are not exactly satisfied the
virtue becomes a vice because of very high sensitivity of this estimator to
different deviations from the assumptions. For the simple Heckman (1979)
selection model different Monte Carlo studies investigating performance
of the estimators under non-standard assumptions have been carried out,
e.g. see Paarsch (1984) or Puhani (2000) and references therein. Also
FIML has higher computational complexity, and the likelihood function
of this estimator is not globally concave (Olsen 1982, Toomet and Hen-
ningsen 2008), which requires more complicated numerical algorithms.
The robustness properties of MLE in general are well known. The in-
fluence function is not bounded and the estimator is not robust. The
robustification of such estimators is even more complicated, because of
the introduction of additional non-linearities via bounding of the score
functions. It leads to obstructed tractability of the results, and difficulty
to use it in practice.

5.2 Robustness Properties

In this section we derive the influence function of the estimator and discuss
the robustness properties and possible problems.

The Heckman-type estimation procedure explained in Section 5.1 can
be rewritten in a more general form. Assume that the set of exogenous
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variables X consists of the variables X (1), which are used as explanatory
variables for the equation of interest, and X®, which are used as instru-
ments for endogeneity correction equation. Note that the sets XV and
X® can be overlapping. The estimation procedure consists of two steps,
where the second step is the 2SLS, which itself can be splitted into two
steps. Finally we have a three-stage M-estimator

Er[U{(y,zP); \,0}] = 0, (5.9)
Ep[Ws{(y,=M); \, h(z®;0), (8,71} = 0, (5.10)
where Wy (+;-), Wa(+;-,+), and W3(-;-, -, ) denote the score functions of the

first, second and third stage estimators respectively, b is a vector of auxil-
iary parameters, and h(-; ) = 2®@7his a function computing the estimated
values of . The classical estimator can be recovered by using the MLE
and OLS W-functions.

The score function of probit MLE is given by

U {(I,w);a} = (CD [—®(w a) ))> d(w” a)w. (5.11)

(wTa)(1 — P(wla

For simplicity of exposition assume that we have only one endogenous ys;
in (5.6). Then the score function of the auxiliary stage is

Y Pt Ul () BT

and taking into account that g, = (27, /\)B, we obtain the score function
of the last stage

Us{(yr, M) A (2®50), (87} = [y — {@PT, )b, 2T A} g
012
(x@T \)b
X ) : (5.13)
A

Note that A = A(w;«), which means that it depends on the first esti-
mation stage. The last estimation stage depends on both previous stages
directly through A and h(z®;b) and indirectly via the second stage, which
itself depends on the first stage through .

The following proposition characterizes the IF of the classical Heckman-
type estimator.
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Proposition 5. For the model (5.1)-(5.3) the influence function of the
Heckman type estimator given in Section 5.1 is unbounded in all the com-
ponents of statistical datum z = (Y, X, w).

Proof. The proposition is the corollary of the Proposition 1 from Sec-
tion 3.6. The score functions are given by (5.11)-(5.13). Consider the
first line in (3.16), the score function ¥,, corresponds to the score func-
tion in (5.13). In the second line of (3.16) the I F(z;T,_1, F') depends on
the score function (5.12) and on the IF of the previous stage, which itself
depends on (5.11). All these score functions are unbounded, which gives
unboundedness of the final IF. O

The unboundedness of the IF means that a small amount of contam-
ination can make the estimator arbitrarily biased. Notice that the IF is
unbounded in all the components of z, which means that if the contami-
nation appears in the first estimation stage, i.e. in the selection equation,
the final estimator will be biased. Taking into account that the inverse
Mills ratio term can be also used as an instrument, the direction of the
bias and the behavior of the estimator becomes almost unpredictable. In
the next section we construct an estimator with a bounded IF.

5.3 Robust Estimation

Robust estimators are usually complicated from the technical point of
view. They often require complex numerical methods and/or sophisti-
cated computational algorithms. This technical issue sometimes becomes
the reason for practitioners to avoid robust estimators at all. We con-
struct a robust estimator of SEM with selectivity based on a three-stage
M-estimator of Mallows type. It is structurally similar to the classical
Heckman-type procedure, which makes it a simple-in-practice and useful
complement to the classical estimator.

First we estimate the selection equation by the robust version of pro-
bit ML. The robustness is achieved by using the bounded score function
(5.11). The robustness weights are introduced to control the effect of
the leverage outliers in w and residuals r = {I — ®(w’a)}/{®(wa)(1 -
d(wla))}. For a detailed treatment of robust probit see Zhelonkin et al.
(2013), and for robust generalized linear models in general see Cantoni
and Ronchetti (2001).

Having obtained the robust estimator of a;, we can use it to estimate
the inverse Mills ratio. Then we use the 2SLS to get rid of the endogeneity
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and to consistently estimate the parameters of the equation of interest.
We propose to use a two stage robust Mallows type M-estimator, because
of its structural closeness to the classical estimator and good robustness
properties. The robust Ws-function is the following:

R A e A P R U | R | BT

where U, () is the classical Huber (1973) function:

wcz(r> - { " ’r’ = ¢z (515)

cosign(r), |r| > ¢y,

wo(+) is the weight function, which can be based on the robust Maha-
lanobis distance d(z®, \), e.g.

©,  ifdE®, ) <c
(2) )\ — X ) 9 ms 5 16
Wl @ ey, . .
2( ) { m, if d($(2),)\> Z Cms ( )

where ¢y and ¢, are tuning constants controlling the degree of robustness.
The robust V¥3-function is given by:

(@7 \)b
U {(y1, 2D); A, h(@ P To), Ts} = W, (rs)ws z® ,(5.17)
A

where U, is also a Huber-function, ws is a leverage weight function, and

8
3= %1 — {(x(Q)Ta A)ba x(l)Ta )‘} 6
012

The weight functions ws can have the same form as wy in (5.16), possibly
even with the same tuning constant. The choice of the tuning constants
depends on the desired levels of efficiency and robustness. The optimality
problem in the case of linear regression has been studied extensively in
literature (Hampel et al., 1986, Ch. 6).

Similarly to the standard selection model discussed in Chapter 4 and
formulated in Proposition 4 the robust estimator proposed in this section
is also consistent and asymptotically normal at the model F'. The test
statistics have the same form as in the classical case (see Section 4.2),
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which allows to compare the estimators and to see the deviations of the
estimators from each other.

The structural similarity of the classical and robust estimators allows
to use it also as a diagnostic tool. At the model both estimators are
consistent and must show close results. If it is not the case then it is a
signal about the distributional deviation of the data from the assumed
model or/and about the presence of errors in the data.

Remark 2. If we estimate not under the model, but we allow some devi-
ation from it, then the classical estimator can become arbitrarily biased.
The robust estimator allows some bias but it is finite. In case when there
are several estimation stages and the atypical observations pass through
all or several stages then the accumulated bias of the final estimator can
become noticeable even if the robust estimators were used in every stage.
In this case it can be controlled by reducing the tuning constants.

5.4 Simulation Study

Consider a system of two equations with two endogenous variables. For
each equation we have one instrument x; and z, generated from a stan-
dard normal distribution independently of each other. In the selection
equation we have one explanatory variable w, also following a standard
normal distribution independent from z; and x5. The error terms follow
a multivariate normal distribution

€1 0 1 0.5 0.75
€21 ~ N 0 3 1 0.5
€22 0 1

The sample size is N = 200 and we repeat the experiment 500 times.
We study the effect of contamination in the selection stage. With
probability 0.01 we replace the values in the datum (I;,w;) by (1,—6).
We expect the outliers to affect the estimator of the selection equation,
and to emerge in the estimation of the SEM via the inverse Mills ratio.
The results can be seen in Figure 5.1. The white boxplots correspond
to the non-contaminated sample, and the shaded boxplots correspond to
the contaminated sample. Letter (c¢) denotes classical estimator, and (r)
denotes robust. It is clear that without contamination both classical and
robust estimators perform well. The variability of the robust estimator
is a bit higher than that of the classical, which is natural. Under con-
tamination we see that the () coefficients of both equations are seriously
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biased towards zero, which will also affect the sample selection bias test.
The robust estimator is more stable.

In the second scenario of contamination we study the effect of contam-
ination in the exogenous variable xq, which also appears as a regressor in
the selection equation. The exogenous variable is used twice as a regressor
in selection and in 2SLS, and moreover it appears in 2SLS stage via the
inverse Mills ratio. The results can be seen in Figure 5.2. Under contam-
ination, the classical estimator clearly breaks down. Obviously the [)’s
are seriously biased, but moreover all the other coefficients except ;7 are
affected. The robust estimator remains stable except for a little bias in

By’s.

5.5 Wage Data Application

To illustrate our methodology in practice we consider the example 17.7
in Wooldridge (2002). The data about women’s labor force participation
consist of 753 observations, with 428 (56.8%) having non-zero wage. In the
selection equation we have such explanatory variables as non-wife income
(nwifeinc), experience (exper), squared experience (ezpersq), age, num-
ber of children less than 6 years of age (kidslt6), and number of children
between 6 and 18 years (kidsge6). We assume that the variable educa-
tion (educ) is endogenous. The set of instrumental variables consists of
mother’s education (motheduc), father’s education (fatheduc), and hus-
band’s education (huseduc). The variable of interest is the wage in a log
scale (lwage), which is regressed on educ, exper, expersq, and age. We use
the Heckman-type estimation procedure, which means that the inverse
Mills ratio is used as an instrument and as a regressor in the equation of
interest. Note, that educ, exper, expersq are moderately correlated with
each other (variance inflation factors are between 15 and 25).

Estimation of the data set provides no evidence for the presence of
selection bias. In order to check the robustness of this conclusion we
perform a sensitivity analysis. For the observations 126 and 348 we change
the values of kidslt6 from 0 to 3. These observations are given by

126

lwage nwifeinc exper expersq age kidslt6 kidsge6
-1.822631 17.90008 17 289 35 3 2

348
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lwage nwifeinc exper expersq age kidslt6 kidsge6
-1.766677 9.000047 10 100 44 3 2

Recall that we have modified only the number of children less than 6

years. Of course having three small kids is not an extreme case, and it

can be hardly assigned to be a mistake in the data or a clear outlier.
The results of the classical and robust estimation are the following

Call:
Im(formula = lwage ~ st2SEM.MROZ$fitted + exper +
expersq + age + INVMILLSRAT)

Residuals:
Min 1Q Median 3Q Max
-2.53481 -0.33563 0.03285 0.38715 2.53239

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.1600032 0.3809733 -0.420 0.67471
educ$fitted 0.0884884 0.0233268 3.793 0.00017 **x*
exper 0.0017975 0.0202225 0.089 0.92921
expersq -0.0001823 0.0004829 -0.377 0.70603
age 0.0136759 0.0067873 2.015 0.04455 x*
INVMILLSRAT -0.5849879 0.1978288 -2.957 0.00328 *x*
Signif. codes: 0 ‘**%*x’ 0.001 ‘*x’ 0.01 ‘%’ 0.056 ‘.” 0.1 < ’> 1

Residual standard error: 0.6947 on 422 degrees of freedom

Call: rlm(formula = lwage ~ st2SEMrob.MROZC$fitted + exper +
expersq + age + INVMILLSRAT, weights = xweight)
Residuals:
Min 1Q Median 3Q Max
-2.03521 -0.33401 0.02231 0.34019 2.41157

Coefficients:

Value Std. Error t value
(Intercept) -0.4743 0.3364 -1.4099
educ$fitted 0.1103 0.0211 5.2285
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exper 0.0425 0.0188 2.2598
expersq -0.0010 0.0005 -1.9907
age 0.0015 0.0060 0.2463
INVMILLSRAT -0.1723 0.1946 -0.8854

Residual standard error: 0.501 on 422 degrees of freedom

We can see that the sample selection bias test of the classical estimator
becomes significant. The robust estimator is a bit affected, but much less
than the classical one. The robust estimator returns the same set of
significant variables as without contamination. While by the classical
estimator, exzper and erpersq become non-significant, and age instead
becomes significant.

From this example, one can clearly see that the classical estimator is
highly sensitive even to a negligible amount of contamination. The robust
estimator is more stable, and its use cannot be ignored. We suggest to
use it in parallel to the classical estimator as a complementary routine, to
indicate possible problems. In the presence of deviations from the model
and/or errors in the data, the robust estimator becomes an alternative to
the classical ones.
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Figure 5.1: Parameter estimates by classical and robust estimators with

The wunshaded boxplots correspond to the non-
contaminated case, shaded boxplots correspond to the contaminated case.

Letter (c) denotes classical estimator, (r) denotes robust estimator. Hor-

1zontal lines mark the true values of the parameters.
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Chapter 6

The R Package ssmrob

To facilitate the applications of ideas of this thesis, we provide an R (R
Core Team 2012) package for robust estimation and inference in sample
selection models. The implementation of the classical estimators of sam-
ple selection models in R was made by Toomet and Henningsen (2008),
and can be found in package sampleSelection.

The chapter is organized as follows. In Section 6.1 we discuss the
implementation of the package. Section 6.2 contains the description of the
functions. In Section 6.3 we explain how to use the package. Section 6.4
offers two real data examples.

6.1 Implementation

The main function in the package is ssmrob. It works as a router deter-
mining the type of the model and choosing the necessary estimator. In
the current version (version 0.2) there are two options: censored Heck-
man’s selection model (Tobit-2) and switching regressions model with
probit selection mechanism (Tobit-5). If the Tobit-2 model is chosen then
the heckitrob function is called, if the Tobit-5 model is chosen then the
heckitbrob is called. More detailed description of the functions with
their parameters and options is given in the next section.

The command ssmrob returns the object of class heckitrob or
heckitbrob for Tobit-2 or Tobit-5 respectively. The package provides the
generic functions for these classes: print function prints the estimation
results, summary calculates and prints the summary of estimation with
standard errors and ¢-values of the estimates, coef function extracts the
estimated coefficients, vcov function returns the variance-covariance ma-
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trices for the two estimation stages, fitted function calculates the fitted
values, and residuals function returns the residuals of the model.

The summary function returns the object of class summary.heckitrob
or summary.heckitb5rob for Tobit-2 or Tobit-5 respectively. Generic func-
tion vcov returns two or three variance-covariance matrices, one for selec-
tion equation and one or two (depending on the model) for the outcome
equation. Functions fitted and residuals return one or two vectors
of fitted values or residuals, also depending on the model (one vector for
Tobit-2, two vectors for Tobit-5).

The package also contains several auxiliary functions such as dLambdadSM,
dLambdadSM5, MmatrM, PsiMest, x2weight . covMcd, and x2weight.robCov.
They are needed for computation of the asymptotic variances and of the
robustness weights.

The package is written completely in R. It depends on packages
sampleSelection (Toomet and Henningsen 2008), robustbase (Rousseeuw
et al. 2012), and mvtnorm (Genz et al. 2012). The package mvtnorm
is required only for the examples based on simulated data, which re-
quires simulation from the multivariate normal distribution. All these
packages are available from the Comprehensive R Archive Network at
http://CRAN.R-project.org/.

6.2 Description of the Functions
ssmrob(outcome, selection, control = heckitrob.control())

This function is a router, depending on the type of parameters in selection
and outcome, chooses the model and calls the corresponding estimator.
Parameter outcome is a simple formula for the case of truncated selec-
tion model, or a list of two formulas for the case of switching regressions.
Parameter selection is a formula for the selection equation. Parameter
control defines the accuracy and the robustness tuning parameters, see
the description of heckitrob.control function below.

The default method is the two-stage M-estimator of Huber’s type, i.e.
without leverage weights.

heckitrob.control(acc = 1e-04, test.acc = "coef", maxit = 50,
weights.x1 = c("none", "hat", "robCov", "covMcd"),
weights.x2 = c("none", "hat", "robCov", "covMcd"),

tcc = 1.345, t.c = 1.345)
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Tuning parameters for the robust two-stage Mallows-type M-estimator.
Parameters acc and test.acc control for the accuracy of estimation.
Maximum number of iterations is defined by maxit.

The leverage weights for the first and the second stage estimators
are defined by weights.x1 and weights.x2 respectively. If none is cho-
sen then the weights are equal to 1. If hat is chosen, then weights on
the design of the form /1 — h;; are used, where h;; are the diagonal ele-
ments of the hat matrix. If robCov is chosen, then weights based on the
robust Mahalanobis distance of the design matrix are used, where the co-
variance matrix is estimated by the rob.cov method from package MASS
(Venables and Ripley 2002) using the minimum volume ellipsoid estima-
tor (Rousseeuw 1985). Similarly, if covMcd is chosen, but the covariance
is estimated by minimum covariance determinant estimator (Rousseeuw
and Van Driessen 1999). However, it should be noted, that the use of
robust Mahalanobis distance can be limited in some specific cases, e.g.
binary data (Hubert and Rousseeuw 1997, Maronna and Yohai 2000). In
such cases, the hat matrix based weights can be used to avoid numerical
problems.

Parameters tcc and t.c are the tuning constants for the Huber-
functions of the first and second stage estimators respectively.

heckitrob(outcome, selection, control = heckitrob.control())

Function presents the robust two-stage estimator of the simple selection
model (Tobit-2). Parameters outcome and selection must be formulas.
Note that, if the Huber tuning parameters are large and the leverage
weights are ones, then the estimator converges to the classical Heckman’s
two-stage estimator.

heckitbrob(outcomel, outcome2, selection,
control=heckitrob.control())

Similarly to the previous function, but heckit5rob estimates the switch-
ing regressions model.

The computation of the asymptotic variance matrices is made by func-
tions heck2steprobVcov and heck5twosteprobVcov for the Tobit-2 and
Tobit-5 models respectively. They both are used inside of the correspond-
ing estimator functions. The output can be obtained by using the vcov
method on the object of heckitrob or heckitbrob classes.
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6.3 Using the ssmrob Package

In this section we provide the illustrative simulation experiments. We
demonstrate the usage of the ssmrob function.

6.3.1 Tobit-2 Model

First, we simulate the data:

R> library(mvtnorm)

R> N=1000

R> covmat = matrix(c(1,0.75,0.75,1),2,2)

R> eps = rmvnorm(N, mean =rep(0,2), sigma=covmat)
R> x1 <- rnorm(N)

R> y1 <- x1 + eps[,1] > 0

R> x2 <- rnorm(N)

R> y2=ifelse(yl > 0.5, x2 + eps[,2], 0)

We set the sample size equal to 1000. The errors are generated from
a bivariate normal distribution with correlation equal to 0.75. Then we
generate the explanatory variables (x1 and x2) following a standard nor-
mal distribution independently from each other. One could use the same
variable for the selection equation and for the outcome equation, but we
would like to study the robustness problem, and leave the exclusion re-
striction issue beyond the scope of this work. Reader, interested in this
issue, can consult Toomet and Henningsen (2008). And finally, using the
explanatory variables and the errors we compute the response variables
(y1 and y2). The data generated from the explained procedure is not
contaminated, and from the output below one can see that the estimator
is close to the true parameters.

R> summary(ssmrob(y2 ~ x2, yl1 ~ x1), control =
R> heckitrob.control(weights.x1l = "robCov",
weights.x2 = "covMcd"))

Robust 2-step Heckman / heckit M-estimation
Probit selection equation:
Estimate Std.Error t-value p-value
(Intercept) 0.05280394 0.04704872 1.122 2.62e-01
x1 1.03283217 0.06905866 14.960 1.43e-50 *x*x*
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Outcome equation:
Estimate Std.Error t-value p-value
(Intercept) -0.004639395 0.07063611 -0.06568 9.48e-01

X2 0.907592366 0.03674991 24.70000 1.17e-134 *x*x*
IMR 0.810391013 0.09893104 8.19100 2.58e-16 **x
Signif. codes: O ‘*¥x’ 0.001 ‘*x’ 0.01 ‘*x’> 0.05 ‘.’ 0.1 ¢ > 1

In order to test for the robustness of the estimator we introduce
the contamination. With probability 0.01 we generate outliers from the
degenerate distribution putting mass one at the point (xy,y1, T2, y2) =
(—6,1,1,1). It generates leverage outliers in the selection stage, which is
the same as the contamination of Case A in Section 4.3.

R> uni=runif(N,0,1)
R> for(i in 1:N)
R> if(uni[i]<0.01) {x1[il=-6; y1[il=1; x2[il=1; y2[il=1}

The results of the estimation are the following:

R> summary(ssmrob(y2 ~ x2, yl1 ~ xl1, control =
R> heckitrob.control(weights.x1 = "robCov",
weights.x2 = "covMcd")))

Robust 2-step Heckman / heckit M-estimation
Probit selection equation:

Estimate Std.Error t-value p-value
(Intercept)  0.06232741 0.04725277 1.319 1.87e-01
x1 1.02487851 0.06916874 14.820 1.14e-49 *x*x*
Outcome equation:

Estimate Std.Error t-value p-value
(Intercept) 0.05061578 0.07107007 0.7122 4.76e-01

x2 0.90783347 0.03726999 24.3600 4.74e-131 ***
IMR 0.70443818 0.10097710 6.9760 3.03e-12 **x
Signif. codes: 0 “**x’ 0.001 ‘xx’ 0.01 ‘x> 0.056 “.” 0.1 ¢’ 1

It is clear, that the estimator allows some bias, but it is controlled. It
can be made smaller by decreasing the tuning constants. For comparison
we present the output of the classical estimator from the sampleSelection
package.
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R> summary(selection(yl ~ x1, y

Tobit 2 model (sample selection
2-step Heckman / heckit estimat
1000 observations (463 censored
7 free parameters (df = 994)
Probit selection equation:

Estimate Std. Error
(Intercept) 0.12687 0.04172
x1 0.42344 0.03467
Outcome equation:

Estimate Std. Error
(Intercept) 0.23671 0.08207
x2 0.88779 0.03809
Multiple R-Squared:0.5185,Adjus
Error terms:

Estimate Std. Err

invMillsRatio  0.3258 0.10
sigma 0.9422
rho 0.3458

Signif. codes: O éxxxi 0.001 &

The estimator of the inverse Mills ratio drops to 0.326, while with the
robust estimator it is 0.704, which is much closer to the true value of
0.75. Note, that we can obtain the classical estimates using the ssmrob
function by using large values, e.g. 1000, of the tuning parameters tcc
and t.c, and setting the leverage weights weights.x1 and weights.x2

equal to ’none’.

6.3.2 Tobit-5 Model

Similarly to the tobit-2 model, we generate the data using the same algo-

rithm.
R> library(mvtnorm)
R> covm <- diag(3)

R>
R>

covm[lower.tri(covm)] <- c(0
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model)
ion
and 537 observed)

t value Pr(>|tl)
3.041 0.00242 *x*
12.212 < 2e-16 **xx

t value Pr(>Itl)
2.884 0.00401 *x
23.306 < 2e-16 *x*x

ted R-Squared:0.5167

or t value Pr(>|t])

97 2.971 0.00304 x*x
NA NA NA
NA NA NA

*x1 0.01 éxi 0.05 €.1 0.

.75, 0.5, 0.25)

covm [upper.tri(covm)] <- covm[lower.tri(covm)]
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R> eps <- rmvnorm(1000, rep(0, 3), covm)

R> x1 <- rnorm(1000)

R> y1 <= x1 + eps[,1] > 0

R> x21 <- rnorm(1000)

R> x22 <- rnorm(1000)

R> y2=ifelse(yl > 0.5, x21 + eps[,2], x22 + eps[,3])

The DGP is similar to the tobit-2 case, but with minor modifications.
We generate two explanatory variables for the outcome equation, namely
x21 and x22 for the first and second regimes respectively. The error terms
follow a trivariate normal distribution. The response variable (y2) in the
outcome equation has two regimes, depending on the selection variable
y1. Without contamination we have the following output:

R> summary(ssmrob(list(y2 ~ x21, y2 ~ x22), y1 ~ x1,
R> control = heckitrob.control(weights.xl = "robCov",
R> weights.x2 = "covMcd")))

Robust 2-step Heckman / heckit M-estimation
Probit selection equation:

Estimate Std.Error t-value p-value
(Intercept) -0.04487983 0.04717327 -0.9514 3.41e-01
x1 0.99888413 0.06514231 15.3300 4.54e-53 *x**
Outcome equation, regime 1:

Estimate Std.Error t-value p-value
(Intercept) 0.1207170 0.07596463  1.589 1.12e-01
x21 1.0036156 0.04215398 23.810 2.74e-125 *x*x*
IMR1 0.6566172 0.09779090 6.715 1.89e-11 *x*x
Outcome equation, regime 2:

Estimate Std.Error t-value p-value

(Intercept) -0.05188555 0.07260708 -0.7146 4.75e-01

x22 1.052170568 0.04251854 24.7500 3.41e-135 x**x*
IMR2 0.54288563 0.10716225 5.0660 4.06e-07 *x*x
Signif. codes: 0 “**x’ 0.001 ‘xx’ 0.01 ‘x> 0.056 “.” 0.1 ¢ ’ 1

The estimates are close to the true values of the parameters. Next,
we introduce the contamination. With probability 0.01 we introduce the
leverage outliers in the selection equations, such that they appear in the
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equation of interest in the second regime. This type of contamination
corresponds to the Case B for the first regime and to the Case A for the
second regime.

R> uni=runif(N,0,1)
R> for(i in 1:N)
R> if(uni[i]<0.01) {x1[i]=6; y1[i]l=0; x22[i]l=1; y2[i]=1}

We estimate the contaminated sample and obtain the following out-
put:

R> summary(ssmrob(list(y2 ~ x21, y2 ~ x22), y1 ~ x1,
R> control = heckitrob.control(weights.xl = "robCov",
R> weights.x2 = "covMcd")))

Robust 2-step Heckman / heckit M-estimation
Probit selection equation:

Estimate Std.Error t-value p-value
(Intercept) -0.05226743 0.04734428 -1.104 2.70e-01
x1 0.99741226 0.06534541 15.260 1.33e-52 *x*x
Outcome equation, regime 1:

Estimate Std.Error t-value p-value
(Intercept) 0.1128210 0.07740272  1.458 1.45e-01
x21 1.0006546 0.04235204 23.630 2.03e-123 *x*x*
IMR1 0.6613017 0.09943004 6.651 2.91e-11 *x*x
Outcome equation, regime 2:

Estimate Std.Error t-value p-value

(Intercept) -0.0809203 0.07117386 -1.137 2.56e-01

x22 1.0516439 0.04197831 25.050 1.66e-138 x*x*x*
IMR2 0.4840658 0.10523967 4.600 4.23e-06 **x
Signif. codes: 0 “**x’ 0.001 ‘xx’ 0.01 ‘x> 0.05 ‘.” 0.1 ¢’ 1

The estimator is stable. Of course, it is affected by the contamination,
but the bias is controlled and can be even reduced. The estimator of the
first regime remains the same. To compare, below we give the output of
the classical estimator.

R> summary(ssmrob(list(y2 ~ x21, y2 ~ x22), y1 ~ x1,
R> control = heckitrob.control (tcc=1000, t.c=1000)))
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Robust 2-step Heckman / heckit M-estimation
Probit selection equation:

Estimate Std.Error t-value p-value
(Intercept) -0.1076174 0.04206950 -2.558 1.05e-02  *
x1 0.5705124 0.04682784 12.180 3.82e-34 *x**
Outcome equation, regime 1:

Estimate Std.Error t-value p-value

(Intercept) -0.1970618 0.13091679 -1.505 1.32e-01
x21 1.0042791 0.04183671 24.000 2.48e-127 *x*x*
IMR1 1.0339217 0.16239044 6.367 1.93e-10 *x*x*

Outcome equation, regime 2:
Estimate Std.Error t-value p-value

(Intercept) -0.1761809 0.07785650 -2.263 2.36e-02  *
x22 1.0721582 0.04289107 25.000 6.55e-138 *x*x*
IMR2 0.2621362 0.10677171 2.455 1.41e-02  *
Signif. codes: 0 “**x’ 0.001 ‘xx’ 0.01 ‘x> 0.056 “.” 0.1 ¢’ 1

The estimators of both regimes are seriously affected by the contam-
ination. For the robust estimator the inverse Mills ratio coefficients are
0.661 and 0.484, and for the classical estimator they are 1.034 and 0.262.
Recall that the true values are 0.75 and 0.5.

6.4 Examples

In this section we demonstrate how the package can be used with the real
data. We examine two datasets already analyzed in literature. In the first
example there is no robustness problem, and the results of estimation by
classical and robust procedures are close. In the second example, on the
contrary, the results of estimation by the classical and robust estimators
are different, which indicates the robustness problem.

6.4.1 Wage Offer Data

The first dataset is an example from Wooldridge (2002). We consider the
Example 17.6 (p. 565) about the wage offer for married women, with
potential selectivity bias into the labor force. The dataset consists of
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753 observations, with 325 (43.2%) truncated observations. The selec-
tion equation defining the labor force participation includes the following
variables as age, education status (educ), non-wife income (nwifeinc), ex-
perience (exper), squared experience (ezpersq), number of children less
than 6 years of age (kidslt6), and number of children greater than 6 years
of age (kidsge6). In the equation of interest the log-wage offer depends
the package

on education, experience, and squared experience. Using
sampleSelection we obtain the following output.

R> data(MROZ.RAW)
R> selectEq <- inlf ~

R> outcomeEq <- lwage
R> summary(selection(selectEq, outcomeEq,

nwifeinc + educ + exper +
expersq + age + kidslt6 + kidsge6

educ + exper + expersq

data

= MROZ,

method="2step"))

Tobit 2 model (sample selection model)

2-step Heckman / heckit estimation

753 observations (325 censored and 428 observed)
15 free parameters (df = 739)

Probit selection equation:
Estimate Std.
0.

-0.
0.

.123348

.001887

.052853

.868328

.036005

(Intercept)
nwifeinc
educ

exper
expersq
age
kidslt6
kidsge6

270077
012024
130905

Outcome equation:

educ
exper
expersq

Error terms:

invMillsRatio

O O O O O O oo

0.0004389

Error t value Pr(>lt|)

.508593
.004840
.025254
.018716
.000600
.008477
.118522
.043477

Estimate Std. Error
(Intercept) -0.5781032 0.3050062
0.1090655 0.0155230
0.0438873 0.0162611
-0.0008591

0.13362
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0.531 0.59556
-2.484 0.01320
5.183 2.81e-07
6.590 8.34e-11
-3.145 0.00173
-6.235 7.61e-10
-7.326 6.21e-13
0.828 0.40786

t value Pr(>|t])

KKk
*kk
Kk

KKk
KKk

-1.895 0.05843 .

7.026 4.83e-12
2.699 0.00712

*kok
* %

-1.957 0.05068 .
Multiple R-Squared:0.1569,Adjusted R-Squared:0.149

Estimate Std. Error t value Pr(>lt])
0.03226

0.241 0.809
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sigma 0.66363 NA NA NA
rho 0.04861 NA NA NA

Using the robust estimator we obtain results similar to those obtained
using classical estimator.

R> summary (ssmrob(outcomeEq, selectEq))

> summary (heckrob.MR0OZ)

Robust 2-step Heckman / heckit M-estimation
Probit selection equation:
Estimate Std.Error t-value p-value

(Intercept) 0.185085844 0.5215843100 0.3549 7.23e-01
nwifeinc -0.013812287 0.0051413318 -2.6870 7.22e-03 *x*
educ 0.131746879 0.0263491696 5.0000 5.73e-07 **x
exper 0.123029123 0.0192493260 6.3910 1.64e-10 **x
expersq -0.001905781 0.0006133654 -3.1070 1.89e-03 *x*
age -0.050790058 0.0087215189 -5.8240 5.76e-09 **x
kids1lt6 -0.840732688 0.1223745428 -6.8700 6.41e-12 **x
kidsge6 0.039740117 0.0453318208 0.8766 3.81e-01
Outcome equation:

Estimate Std.Error t-value p-value
(Intercept) -0.4720491368 0.2595473904 -1.8190 6.90e-02
educ 0.1114265409 0.0132375403 8.4170 3.85e-17 **x
exper 0.0366974402 0.0134697652 2.7240 6.44e-03 *x
expersq -0.0007015977 0.0003696587 -1.8980 5.77e-02
IMR -0.0495792781 0.1338459784 -0.3704 7.11e-01
Signif. codes: 0 “**x’ 0.001 ‘xx’ 0.01 ‘x> 0.05 “.” 0.1 ¢ ’ 1

The parameter estimates obtained by classical and robust estimators
are very close. The standard deviations are also close, and the test statis-
tics are similar. The significance of the parameters remains the same.
Finally, we can conclude that there is no evidence of violation of distri-
butional assumptions and that the classical estimator provides reliable
results. The test for sample selection bias is non-significant for both es-
timators. In absence of selection bias the data can be estimated by OLS
(see Wooldridge 2002, Table 17.1).
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6.4.2 Ambulatory Expenditures Data

The second example is an example considered in Section 4.4. The results
of the estimation obtained using the R package sampleSelection (Toomet
and Henningsen 2008) are:

R> data(MEPS2001)

R> attach(MEPS2001)

R> selectEq <- dambexp ~ age + female + educ + blhisp +
totchr + ins

R> outcomeEq <- lnambx ~ age + female + educ + blhisp +
totchr + ins

R> summary(selection(selectEq, outcomeEq, method="2step"))

2-step Heckman / heckit estimation

Probit selection equation:

Estimate Std. Error t value Pr(>|tl)

(Intercept) -0.71771 0.19247 -3.729 0.000195 *x*x
age 0.09732 0.02702 3.602 0.000320 *x*x
female 0.64421 0.06015 10.710 < 2e-16 **x*
educ 0.07017 0.01134 6.186 6.94e-10 **x*
blhisp -0.37449 0.06175 -6.064 1.48e-09 *x*x
totchr 0.79352 0.07112 11.158 < 2e-16 **x*
ins 0.18124 0.06259 2.896 0.003809 *x

Outcome equation:
Estimate Std. Error t value Pr(>|tl|)

(Intercept) 5.30257 0.29414 18.028 < 2e-16 x*x*
age 0.20212 0.02430 8.319 < 2e-16 xxx
female 0.28916 0.07369  3.924 8.89e-05 *xx
educ 0.01199 0.01168 1.026 0.305
blhisp -0.18106 0.06585 -2.749 0.006 *x
totchr 0.49833 0.04947 10.073 < 2e-16 **x*
ins -0.04740 0.05315 -0.892 0.373

Error terms:
Estimate Std. Error t value Pr(>|t|)

invMillsRatio -0.4802 0.2907 -1.652 0.0986 .

sigma 1.2932 NA NA NA

rho -0.3713 NA NA NA

Signif. codes: 0 “**x’ 0.001 ‘*xx’ 0.01 ‘x> 0.05 “.” 0.1 ¢’ 1
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Using the robust two-stage estimator we obtained:

R> summary (ssmrob(outcomeEq, selectEq,
control=heckitrob.control(tcc=3.2, weights.x1="robCov")))

Robust 2-step Heckman / heckit M-estimation

Probit selection equation:

Estimate Std.Error t-value p-value
(Intercept) -0.74914476 0.19506999 -3.840 1.23e-04 *x*x
age 0.10541500 0.02769588  3.806 1.41e-04 *x**
female 0.68740832 0.06225762 11.040 2.41e-28 **x
educ 0.07011568 0.01146521 6.116 9.62e-10 *x**
blhisp -0.39774532 0.06264878 -6.349 2.17e-10 *x*x
totchr 0.83283613 0.08027772 10.370 3.24e-25 *x**
ins 0.18256005 0.06371471  2.865 4.17e-03 **
Outcome equation:

Estimate Std.Error t-value p-value
(Intercept) 5.40154264 0.27672891 19.520 7.53e-85 *x*x
age 0.20061658 0.02450765 8.186 2.70e-16 ***
female 0.25501033 0.06992954  3.647 2.66e-04 ***
educ 0.01324867 0.01161609 1.141 2.54e-01
blhisp -0.15508435 0.06506654 -2.383 1.72e-02  *
totchr 0.48115830 0.03822948 12.590 2.52e-36 *x**
ins -0.06706633 0.05159205 -1.300 1.94e-01
IMR -0.67676033 0.25927579 -2.610 9.05e-03 *x*
Signif. codes: 0 “**x’ 0.001 ‘*x’ 0.01 ‘x> 0.056 “.” 0.1 ¢’ 1

In this case there is clear evidence, that the distributional assump-
tions are violated. The classical estimator produces underestimated in-
verse Mills ratio and leads to conclusion of no selection bias. The robust
estimator is more reliable and should be preferred in such situations.
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Chapter 7

Discussion and Conclusion

We introduced a framework for robust estimation and testing for sample
selection models. These methods allow to deal with data deviating from
the assumed model and to carry out reliable inference even in the presence
of deviations from the assumed normality model. Monte Carlo simulations
demonstrated the good performance of the robust estimators under the
model and with different types of contamination. Although we focused on
the basic sample selection model, our methodology can be easily extended
to more complex models. This was done in the end of Chapter 4 for the
switching regressions model, and in Chapter 5 for the case of simultaneous
equations models with selectivity. Other important extensions include
problems with different censoring rules, such as ordered or multinomial
models, and models with multiple selection rules. Another interesting
class of problems are the models with non-additive errors. Leaving these
issues beyond the scope of this work we believe that these problems will
be addressed in future research.

The results in Chapter 3 provide a more general framework than that
in the selection models. We explore the robust estimation and inference
issues in two-stage models. There, we presented three simple examples of
how our approach can be used. Certainly, there are many other possible
situations where the robust two-stage procedures are useful. In particular
the results for time series can be extended to spatial statistics. Also, we
should note that others than sample selection models empirical examples
in modern economics are based on latent two-stage procedures, e.g. series
of regressions, use of composite indexes as variables, and so on. The fields
of economics and social sciences are growing and becoming more and more
complex involving more sophisticated models and estimation techniques.
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Given the increasing complexity of the data, the use of robust analysis
cannot be neglected.

The proposed robust estimators and tests can be used not only as al-
ternatives to the classical procedures, but also as complements to them.
One can use classical and robust analysis in parallel. If there is no ro-
bustness problem, then both procedures return similar results (see wage
offer example in Chapter 6), and the classical methods can be used. But
if the results are different, then it is a flag that a more careful analysis
is required, or that the robust methods should be preferred (see ambula-
tory expenditures example). The importance of robust procedures in the
analysis of real data has been proven many times in the literature. We
believe that the methodology presented in this thesis will be useful for
practitioners in various fields of science.
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Appendix A

Technical Derivations

A.1 IF of the probit MLE

In general, probit model belongs to the class of generalized linear models
(GLM), see McCullagh and Nelder (1989). And the inverse of the normal
cdf is used as the link function in GLM when the distribution of the
response variable is binomial, i.e. when the conditional expectation of
the response variable y given set of explanatory variables x is modeled,
we have

E(ylz) =g~ '(z"8) = ®(z" B),

where g denotes the link function, and 3 is a vector of parameters. This
link is not canonical for the binomial distribution, the canonical link is
logit.

The use of probit model instead of logit is motivated by the formula-
tion via the latent underlying process. Assume that there is an unobserv-
able response variable y* defined by the following regression

y=a"B+e,
the observed variable is

_Jy=1 ity >0,
Y=V y=0 ify <o,

where e is normally distributed random noize, which provides the connec-

tion with the use of the normal cdf as the link. For more details about
probit model see Maddala (1983).
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The log-likelihood is given by:

N

> [ylog{@(@"B)} + (1 - y) log{1 — d(a"5)}]. (A.1)

i=1
It is well known (see Hampel et al. 1986) that, MLE belongs to the class
of M-estimators and has the following form of the IF:

IF(5T, F) = M(V, F) ™0 (= T(F)), (A2)

where W is the derivative of the log-likelihood with respect to 3, matrix
M is given by

MU, F) = —/{%\D(z;ﬁ)}dF(z), (A.3)

and z denotes the datum (y, x).
We only need to specify ¥ and M for this particular case. Taking the
derivative of (A.1) with respect to 8 we obtain

y — ®(="B)

(="B){1 - <I>(xTﬁ)}¢(x Bz, (A.4)

U(z;8) =
() = 5
and M is given by

_ o(z’B)? exTdF(»
P = [ | agy| e 49

The influence function of the probit MLE is unbounded, which means
that the estimator is not robust. The plot of the IF can be seen in
Figure A.1. The solid lines represent the IF, and the sequences of boxplots
correspond to the standardized biases of the estimators. The top panel is
the case when x varies from —6 to 6 and the corresponding y = 1. In the
bottom panel the corresponding y = 0.
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Figure A.1: IF of the probit MLE. The solid lines represent the IF’s.
The boxplots represent the standardized biases of the estimators of the
simulated samples. We vary x from —6 to 6, and in the top panel the
corresponding y = 1 and in the bottom panel the corresponding y = 0.
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A.2 1IF of the Heckman’s two-stage estima-
tor

Proof of Proposition 1. The Heckman’s estimator belongs to the class of
two-stage M-estimators and satisfies the conditions required in Zhelonkin
et al. (2012). The IF of the general M-estimator has the following form:

[F(2;T,F) =M(¥y)~" (@2[(1‘2, Yy2); M (z1,91); S(F)}, T(F)]

+ [ g elan, 6. 7)) b o) }FIF 5. F>>’
(A.6)

where M (WUs) = — [ ZWs[(29,y2); h{(21,41); S(F)}, €]dF and I F(z; S, F)
denotes the IF of the first stage. Note that in (A.6)
eral M-estimators.

To find the IF of the Heckman’s estimator we need to identify the
derivatives in (A.6). The h(-;-) function is the inverse Mills ratio and its
derivative with respect to f; is:

T and S denote gen-

_q)(fripﬁl)ﬁb(xr{ﬁﬂxripﬁl - ¢($1T51)
(I>($1T51)2

/

0
A= 8_77)‘{(9517%)277} =

2
i (AT)
The score function of the second stage is

Wo[(x,92); M (21,91); S(F)}, T(F)] = (y2 — 3 82 — AB)) ( 33\2 ) Y1

(A.8)
The M (V;) matrix is given by

- [ (-l miMnisena) i = [ (Y g ) mar

(A.9)
The derivative with respect to the second parameter of Wy is
8 0 i)
—VU 0, T(F)} = — .
o0 2{($2,y2)7 ’ ( )} ( Yo _xgﬂQ _ )\ﬁ)\ >y1 ( A >5Ay1
(A.10)
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After taking the expectation, the first term of the righthand side of (A.10)
becomes zero. The [ F(z; S, F) = M ()"0 {(z1,y1); S(F)} is the IF of
the MLE estimator for probit regression, where:

N ¢($Tﬂ1)2 -y
v = | E(w%){l—@(z%)} vrdf (A

¢(x{51)
(-731T51){1 - q)(x{ﬁl)}

Inserting the expressions in formulas (A.7)-(A.12) in (A.6) we obtain the
IF of Heckman’s estimator. ]

Ui{(z1,5); S(F)} ={y1 — @(l’fﬁl)}@ z1. (A12)

A.3 CVF of the one-stage M-estimator

The particular cases of the CVF for the location model and for the linear
regression framework were explored in Hampel et al. (1986). Here we
need to obtain the expression of CVF for general two-stage M-estimator.
In order to do this we first derive the CVF for general one-stage M-
estimator. Consider the equation (3.1), for simplicity of notation we omit
the subscript denoting the estimation stage. Suppose that the contami-
nating distribution is F, = (1 — €)F' + €A, then under F, the asymptotic
variance is

V. = Mel/\If{z;S(Fe)}\If{z; S(F)YdE.M ™ (A.13)

We need to compute the derivative of V, with respect to € at ¢ = 0.

oV, 0 0 0
€ — _Mfl M*l M*l_ . M*l M*l _Mfl
Oe | _, O ° CZOQ * 86Q —0 + Q@e R
(A.14)
where 5
M, = — / (= 0)E, (A.15)

note that W{z; S(F.)} depends on € through the estimator S(F), and
Qe = /\If{z; S(F )Y {z; S(F.)} dF.. (A.16)
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For simplicity of notation denote U, = W{z; S(F.)} = ( ¥y Uy,
and U = U{zS(F)}= (¥, ¥ ... v, )"
aV. 0 0 0
: =M —— VU dF| M+ =V )M QM
de |._, ( Oe 00 ’5:0 i 00 ) @
0
+ M! (/ a—xpexpde — /wTdF + WT) M
€ e=0
0 0 0
~M'QM M | == VdF| M+ V| M
@ ( dc 00 ‘60 o )
(A.17)
Note that the matrix in brackets in the third line is symmetric and is the
same as the one in the first line.
Now we need to find the derivatives in (A.17). Clear that
ow, ou,
oV _ | G e,
00 e
o, 0w,
96, 90,
Every element of this matrix is a scalar. Then the derivative of this matrix
with respect to € must be the matrix of the same dimension. And the
derivative in the first and third lines of (A.17) is
0 Ve 0 Ve
Sou..  Gow
22\1, _ 9 90, -+ 9c o0,
de 00 ‘ e=0 e e=0
o OV pe o OVpe
de 961 " De 86,
0 0w\ 0 ou, )"
(mﬁ) IF(z 5, F) (%W;) IF(z5,F)
T
_ | (&%) 1F=8.F) (&%) 1F(s,
0 B‘I}p T o B\I/p
(%T) IF(z 5, F) (%TJ IF(2; S, F)
= D (A.18)
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The derivative in the second line of (A.17) is

2y 20U,
Q\I] \I’T — %\1[26\:[[16 %\I[Qelppe
e — —
W, Wy ... QU2
(89x11) [F(z S, F)¥; ... (%\Dl);[F(z;S,F)\I/p
| (2w) IF(% S, )0, ... (2W,) IF(%S,F)Y,
(2w,)" IF(z 8, F)¥, (2w,)" IF(z 5, F)
U, (20,) IF(% S, F) ... U, (20,) IF(z5,F)
| W (GW) TR S,F) L Wy (5,) TF (25, F)
U, (29,) IF(z; S, F) v, (2w,)" IF(z; S, F)
(20,)" IF(z; S, F)
29, IF(z; 8, F
— (69 2) : (2757 ) (\Ijl \112 \ij)
(2w,) IF(z; S, F)
T
(20,)" IF(2; S, F)
T
N (ZW,)" IF(z;8,F) (0 0, W, )
. p
(2w,)" IF(z S, F)
_(2y IF(z S, F)UT + i~ IF(z; S, F)¥” '
~\ 0 " 0" ) 1=
] o[
= 5g¥ ) WIF (5. F)' + IF(z:8,F)U" ( 50 ) (A.19)
Finally, we get
CVF(z5,F) = < DAF + \I!)V—V(/DdFJr%\If)Ml
( / RdF + / RTdF+wT> M, (A.20)
where

0 0
<a_a_ z) [F(Z>SaF)7
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_ a . T
R= <69\D> [F(z S, F)¥",

and V is the variance at the model without contamination.

A.4 CVF of the two-stage M-estimator

Assume that we need to estimate ¢ parameters in the first stage, p param-
eters in the second stage and we construct k variables h(z(V; S(F)), such
that £ < p. Then variance-covariance matrix of the two-stage estimator
is p X p dimensional.

In order to obtain the CVF of the two-stage M-estimator we need to
find the following derivative

0 0
—V. — Y (mtoes) -t
86 e=0 86( ‘ QE ‘ ) 5:07
9. (28) 1 s—1 4 0 (25) -1
- M QM+ M =Q M
de |- de " |
+M‘1Q(25)2M€‘1 , (A.21)
86 e=0

where Q%) denotes the @ matrix of the two-stage estimator, M =
— [ &W,[2®; h{zW); S(F)},0)dF (%), € denotes the dependence of the es-
timating functional on the contaminated distribution. To get rid of pos-
sible ambiguity denote M; the M-matrix of the first stage.

Let us compute the necessary derivatives separately.

oM, 9 9
- = Il N P~ )P N S~C DR
de | —o e 80%[2 W {2 S(F) Y, 0ldF B
—l—%\lfz[z@), h{zM; S(F)}, 0] — M (A.22)
Denote W, = @2[2(2);h{z(1);S(F)},T(F ] = ( Wy Wo Yoy )T
and Wy, = Wy[z®; h{zW; S(F)}, T(F,)] = ( Uore Wope ... Uspe )T.
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The derivative under the integral of the first term of (A.22) is

9 8\1’215 Qa\lfgle
% ov & 0w
22\1}2 — e 80212E De 8021726
0e 0 o -
@8\1127;5 Qa\llgpe
9 00, de 00,
T
0 0Vay Oh X 9 OUq \ Oh ]
<% 391) a (28, F) <% aep>&]F(Z,5,F)
T
0 0Vag el . 9 OWas \ O )
= <% 8%1) a_};]F(Z’S>F) (% a%p)%]F(Z,S,F)
0V r oV
T . T
(&%) IF(T,F) (L) 1F(=TF)
T T
| (%) TR L (2%2) IR=TF)
8‘1’2;} T 8‘1/2() T
(% 001 ) IF(27 T7 F) (% (991, > IF(Z7 T, F)

where he = h{zM; S(F.)}, h = h{z", S(F)}, %aggji = geag V(2173 0)),
gh — (%h(z(l);C). The derivative %%\Iéji = %8%].\1’21'[2(2); h{z; S(F)}, 6]
is the derivative with respect to the parameter vector 6.

0

e=0 86

P ngS)
Oe

/ {ac(2) 4 be(2)} {ac(2) + be(2) Y d{(1— ) F + €A}
(A2D)
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Splitting the integral, we have

/a( Ja(2)"dF + a(z)a(z)",
o [anrar, T | geaomara =0
/a( )b(2)"dF + a(z)b(2)7,
% / b(ad()TdR| = / eteFad) dF|
% / b2 R = / sl dE|

/b( Jo(2)TdF + b(2)b(=)".

Now we need to compute the derivatives of a.(z) and b.(z):

0 0 0
_ _ (2). Il 1). .
A aeae(z) B ah‘llg{z ,h,T(F)}ash(z ;) [F(z; S, F)
b2 B0 S()), 0] TF( T, ), (A25)
0 [0, 0 1
a | =5 / i Vo hedF MW
0 0 0 0
/a s5-hdF - IF (2 S,F) + - Wa=h - IF (2 5, F)

(A.26)
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The first term of (A.26) is

9 [ 0Vs Ohe
Oe oh 0Os

-1
le \IJ1€

_ 1
= (ae ah\pge)‘ 5 hdFM; 0,
G,
v (5o h)
/8h%8 F( )

) (0
+ / o Yoz hdF M, (&‘1’16)

(A.27)

dF M1,

1

We know that M;'W; = IF(z S, F), 81\4_1 is the derivative of

M~! matrix of one-stage M-estimator (see first 711ne of formula A.17),

and 20| = 2UIF(z; 5, F). Hence,
e=0
9 [ OUy Oh, . B d 0 )
9e ) “on gs V| _/<aeah‘l’ >‘ ashdFIF(Z 5, F)
/(‘?h\% (8665 ) E:OdlU’IlU’(Z;S,F)

—/%%ghdFMfl (/ D(l)dF) M,

0 0 0 _1
— %\Ilga—hdFM (89 Ml) M ¥,

0 ) _
+/%\I/2£hdFM1 ag VI F (=5, F),
(A.28)

where D) denotes the D matrix of the first stage, i.e. Be 30\11 , which

e=0

is defined in formula (A.18).
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Qa\lfgle QalI,QlE
ﬁﬁ\p e aiffe e 8h2k26
dedh J e=0
28\1121,6 Q(’)\nge
Oe Oh1 Qe Ohyg
T T
0 v o) o 9v 0
(&%) 2rIF(S) ... (&%) ZhIF(S)
T T
| (Bo=) anrrs) o (B%) ZniEes)
. .
9 0T2 )" 8 9 0%\ 8
(&%) 2rIF(s) ... (&52) 2rIF(S)
T T
0 0 0 0¥a
(G%) 1P() . (&%) IF(T)
T T
o] 8\1122 0 8\1122
| @) 1 () @) | g,
T T
o oV P o ov D
(% 8h21 ) IF(T) (% 8hi ) IE(T)
(A.29)
which is p X ¢ dimensional.
9 ohy. D Ohie
géh — Oe 85216 e 852;
Deds | _, —o
Qahke Qahks
Oe 0s1 Oe Osq
T
(9m) 1F(S) (s%9m) 1P(S)
T T
_ (%%) IF(S) ... (8%%) IF(S) | _ g,
i i
(%%) IF(S) ... (%gi) IF(S)
(A.30)

with the dimension of the matrix equal to k X q.
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Using Ry and Ry we obtain the matrix B

B, 5, )
B=— = — hdFIF(z: S, F — FIF F
86b6(z) B /Rlashd (2,5, F) + o 9 Rad (2; 8, F)
—/ﬂxp 9 parm /D(l)dF—M - 9y IF (2 S, F)
oh 20s 1 P! "
+/3\1/ hdF M 3\1} IF(z 8, F)
oh 20s L 90 =
g _ 0
Uy—hdF - IF F)4+ —WUy—h-IF F
/ah2 hd (zS)+ah voh TF(2:5,F)
0 1 (1) 0 .
g _ 0 ., 0
+ %%a hdF M;* %\If IF(z; 8, F)
+ 2\1/ Qh IF(z; S, F). (A.31)
oh *0s ‘

Combining all the terms we obtain
CVF(z8,T,F)=—M"" ( / DS qF — M) MQRI M
- <%‘I’2[Z(Q); h{z"; S(F)}, 9]) M QP M
b / [Aa(2)" + a(2)AT + Ab(=)T + a(=)BT}dF M~

+ M / {Ba(z)" + b(2)A" + Bb(2)" + b(2)B" }dF M~

. Mle(QS)Mfl
+ M~ {a(2) + b(2)} {a(z) + b(z)} M~
M—1Q(25)M—1 (/ DS JF _ M) ML

0
— MM (09‘1’2[ i h{z"; S(F)},e]) M
Recall that V = M Q@9 M~ we can factorize V and simplify the for-
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mula

CVF(z,8,T,F)=V - M ( / DESGF + %\112[2(2); h{zW; S(F)}, 9]) 1%

+M! / {Aa(2)" + Ba(z)" + Ab(2)" + Bb(2)" }dF M~

s / {a(2)AT + b(=)AT + a(z)B" + b(z)B"YdF M~

+ M Ha(2) +b(2)} {a(z) + b(z)}T Mt

-V (/ DEdF + %%[z@); h{zW; S(F)}, 9]) M
(A.32)

Note that the expression of the CVF in (A.32) has the same structure
as the CVF in (A.20). The first line in (A.20) corresponds to the first
and the last lines of (A.32). In the last line of (A.20) the integrals of R
and RT have the analogs in the lines 2 and 3 in (A.32). The main source
of unboundedness of the one-stage CVF, i.e. WU in (A.20), corresponds
to the line 4 in (A.32). Also, the CVF of the 2-stage estimator linearly
depends on the CVF of the 1-stage estimator through Bb(z)T, b(z)BT
and b(2)b(2)T terms.

A.5 CVF of the Heckman’s two-stage esti-
mator

Proof of Proposition 2. Using the result in Section A.4 we can proceed
with the computation of the CVF for the Heckman’s estimator. Recall
that the function h{zy; S(F)} is a scalar function A(z?3,) and its deriva-
tive with respect to f; is given by (A.7). The IF’s of T'(F') and S(F') are
given by (4.4) and (4.5), respectively. The M(¥;) and M (¥;) matrices
are given by (A.11) and (A.9), respectively and the scores Wy{z; S(F)}
and Wo{z; \, T(F)} are given by (A.12) and (A.8). The derivative of the
score function with respect to A is given in the formula (A.10).

The second term of the matrix D is equal to zero, hence the D matrix
for Heckman’s estimator takes the form

_ (0 m )y :
DH_(:L’QT 2)\>)\y1]F(z,S,F),
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where 0 is a (py — 1) X (pa — 1) matrix of zeroes.
Denote the analog of the A matrix for the Heckman’s estimator as
Ajp. we obtain

— _:CZ/B)\ / . xQ.ng x2)\ .
i = ( Y2 — 21 B2 — 2B, >W IF (%8, F) + ( n e ) nIFGTR).

Next, we need to get the expression of By. Define Rg) and Rg)
corresponding to the R™M and R® matrices :

0 —X2

1 _ ! . )
1) =y JuXtFes () T JntFeT )

where 0 in the first term is a (ps — 1) vector, and in the second term 0 is
a (py — 1) X (po — 1) matrix. Let us compute Rg):

@_090 _9
By _8688)\6 - 86)\ .
{(I) T81) (21 61)? — o(aT Br)a] 1 — (a1 B1) + 20(a] B1) } o(aT 1)
q)(JZTﬂl)
T
GA) 2 ( Tﬁl) G ¢<x161)}]{ T IRz 8, F))"

The expression above is a p; vector. The DU matrix for the probit
estimator is:

=0
a1 B)’a] B
51 {1 ®(z ?ﬁl)}
) V( B 208 4
(T ) {1 — (T )2
where we first take the derivative with respect to 6, and when we take
the derivative with respect to €, we evaluate the second derivative with
respect to 6 at @ = S(F'). We defined all the ingredients of the By matrix,
and we can use them in (A.31).
In order to obtain the expression of the CVF we need to insert the
expressions obtained above into (A.32). By noting that the integrals of
Bga(2)T and a(z)BY% are equal to zero, we finally obtain (4.9). O

0 8
Dprobzt (9 8 (Z 9)

e 1F(z; S, F)} rxt

(: 8, F)] w127,

99



Appendixz A

A.6 Assumptions and proof of Proposition 4

Denote U (z;0) = { Wl (z; 51)7, Wi (z; b1, 52)T}. Assume the following
conditions, which have been adapted from Duncan (1987):

(i) z1,...,2n is a sequence of independent identically distributed ran-
dom vectors with distribution F' defined on a space Z;

(ii) © is a compact subset of RP1TP2;
(iil) [ U2(2;0)dF = 0 has a unique solution, 6, in the interior of ©;

(iv) WF(z;0) and ZWF(z;6) are measurable for each 6 in ©, continuous
for each z in Z, and there exist F-integrable functions & and &
such that for all § € © and z € Z |[Uf(2;0)UE(2;0)T] < & and
|5 U7 (2:0)] < &

(v) [ ¥f(z;0)¥F(z;0)"dF is non-singular for each 6 € ©;

(vi) [ &WR(z;600)dF is finite and non-singular.

Proof of Proposition 3. Consistency and asymptotic normality follow di-
rectly from Theorems 1-4 in Duncan (1987). The asymptotic variance
consists of two terms, because ag(2)br(z)? and br(2)ar(2)? vanish after
integration, due to the independence of the error terms. O
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Complementary Materials

B.1 Selection bias under contaminated nor-
mal distribution

Counsider a bivariate random vector with contaminated normal distribu-
tion:

(o) ~a-on{ (3) = ear{ (3) =) o

where
O'% PO I/% TU1Vy
Zl — y 22 — 2 .
por 1 TV Vs v

We need to derive the conditional expectation E(e;|es > —d), where
d corresponds to the linear predictor x1;3; in the case of sample selection
models. From (B.1) we can derive the following probabilities:

P@2>—@:41—@w@+e¢(i),

Vo
1— 6)¢2<617da 01, 17,0) + Eq>2(617d7 V1, VQaT)
(-0 (2)+e(2)

where ®5() denotes the bivariate normal cdf. The necessary probability
P(eq]es > —d) is equal to

Y

P(€2 > —d’61> = (

P(61 < dl)P(€2 > —d|€1)

P(€1|€2 > —d) = P(62 = —d)
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Taking into account that P(e; > —d|e;) has P(e; < d;) in denominator,
we obtain

(1 - 6)@2(0, d) 01, 17 P) + 6¢2(C7 d7 , V2, T)
- .
(1= )0(d) +ed (£)
Using the result in Kotz et al. (2000) (page 255), that the 222(e1c2.00.000) _

oeq
L_exp (— <)o e2__ P4 , we obtain
o1vV2m 207 02\/1—;)2 01\/1—;)2

(1-¢) _ i —pey d
fleilea > —d) = 7T exp( 2"f)¢(01v1—/>2+v1—92)
12 (1—5){)(d)+6<1>(%>

P(e; < cleg > —d) =

(B.2)

2
€ _ €1 P —Teq d
e S G 79 v e
_ <
1 e)CID(d)—&-e‘P(VQ)

a-os(eroat)e( s )
(1-)@(d) +ew (L)

030 ( —r d
e¢>(617 ,1/1) (Ul\/1_72+y2\/1_‘r2

+ (1—5)@(d)+e¢(%)

WE ol Fith
(176)¢(61,0,0’1)(1> e +e¢(e1,0,1/1)‘13 —
(1—e)q>(d)+e<1><%) :

The densities can be represented in the form of the densities of ex-
tended skew-normal type (Arellano-Valle and Genton 2010). The expec-
tations are known, therefore we obtain

-1
3}

X {(1 — e)@(d)pal% +ed (%) 7'1/1:;2?; } ,

2

|~

Eleiles > —d) = {(1_e)q>(d)+eq>(

S

and finally

E(eiles > —d) = {(1 —€)P(d) + €P (%) }1
(B.3)
X {(1 — €)po1p(d) + eTvi (%) } .
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The correspondence between the analytical expression of the selection
bias in (B.3) and Monte Carlo simulation is presented in Figure B.1.
Different values of the parameters are considered, and the graphs match
in all panels.

no contamination p=0 vr=d
=2
| o o |
L':\: | (=]
w !
e} - o |
— (=]
Pa——— - 24 R
= =
u
5 21 2 -
= | = | o ]
=5 T T T T =5 T T T T = T T T T
4 2 [u] 2 4 4 -2 0 2 4 4 -2 o 2 4
linear predictar linest predictar lineat predictor
vi=4 vi=4 and we=3 =3 and w=4
e
w o
A = 24
=
=
o e
o w
o a | -
- - o= o =
W =
a = -
i =
" - w_|
=2 w _| =
o
= = =
= T T T T = T T T T = T T T T
4 2 i 2 4 -4 2 0 2 4 -4 -2 i 2 4
linear predictor linear predictor lingar precictar

Figure B.1: Comparison of analytically computed selection bias and Monte
Carlo simulation.

B.2 IF of 2SLS, general case

Assume that we have the following regression model:
y= {1+ 35 +e,

where cov(zy,e) = 0 and cov(zg,e) # 0, i.e. xy is exogenous and x5 is
T11 T21

endogenous. Denote x; = and z9 = . So the total
xlpl ‘%2272
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number of explanatory variables is p; + ps = p. Suppose that for each xo;
we have a vector of instruments w; such that cor(w;;,e) = 0 for Vj. Each
w; is a ¢; X 1 dimensional vector and the total number of instruments is
equal to > ¢; = q.

The most popular solution of this problem is 2SLS. The idea is to
regress the endogenous variables xo; on corresponding set of instruments
w;, then estimate Z9; and on the second stage regress y on z; and 5. It
means that on the first stage we have the following system of equations:

_ T
To1 = wWiQp+ e,

_ T
Lop, = wpgap2+€2p27

where ey; are the error terms with zero expectation.
In each datum z = (y,x1,zo, w) we have the following matrix of in-
struments:

Wy ... Wig 0 0

0 0 Wo1 ... Wag 0 0
w =

N S TR,

In the first stage we need to estimate the ¢ dimensional vector of
parameters:
a1

The MLE of « is:

-1
o= (/ wdeF> /wT:cng,

where F' is the distribution of the datum z. Next, we estimate T, = wa
and regress y = x1 31 + &5 s.
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Let us compute the IF of the second stage estimator. For this we can
use the general formula (A.6) and need to specify its components. The
IF of the first stage is proportional to the score function of the estimator.

U {(zg,w); S(F)} = w” (25 — wa).
The score function of the second stage is:

Wy [(21, m2,9); MH{S(F)}, T(F)]

T11
Ba1
T T T . L1ip
= y—xlﬁl—(wlal wmozm) : T
2p2
T
wp2ap2

The derivative of the score function with respect to h{S(F)} = wa is

a p X py dimensional matrix. The derivative of h(-) with respect to the

estimating functional is %g))} = w, which is p, X ¢ dimensional matrix.

Combining all the terms we obtain the expression of IF, which is un-
bounded in all components of z.

B.3 Asymptotic variance of Heckman’s two-
stage estimator

In order to derive the expression of the asymptotic variance for the Heck-
man’s two-stage estimator in (4.7) we can use the general expression of
the variance for two-stage M-estimator in (3.6). Let us compute the four
terms separately.

[a@a@aF = [ Wal(ra )i Mo S T(F)
X Ws[(22,y2); M (x1,31); S(F)}, T(F)TdF.
Using the Uy functions from (A.8) we obtain

Jaaerar = [on-atn-am (5 )u
X {(yz — 23 o — \B)) < :1;\2 ) yl}TdF.
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Denote = = ( 93\2 ) and [ = ( gl ) For the empirical distribution Fiy
A

we obtain

n

[ a2l dFy = 3 2~ "B (32 - a7 ),

i

and using the matrix notation
/a(z)&(z)TdFN = X"Var(Error)X.

Taking into account that Var(Error) is heteroscedastic, i.e. E(v3;|Ta;, \i, €15 >
2

—1;3,) = 03 {1 + %(mllﬂg)\i — )\f)}, see Greene (2008), we obtain:
2

/a(z)a(z)TdFN =05 {XT (1 - %A) X} :

where A is the diagonal matrix with % on the diagonal. Consider

[ a(2)b(z)"dF. This term is the expectation of the multiplication of the
score functions of two stages. It means that there is a multiplication of
error terms of two equations, and according to the construction of the
estimator, these error terms are independent. Hence,

/a(z)b(z)TdF = 0.
By analogy:
/b(z)a(z)TdF =0.

The last term 1is
[oenerar - | [ [ el )0 T SN 175,

0

< IF(2:5,F)" ( / %‘Pz{(ﬂ«b,yz);97T(F)}(%>\(77)dF) iF.

where the inner integrals are the constants, taking the integral of squared
IF(z,S, F;) we obtain

[uemeyrar %wm,y»;e,T<F>>%A<n>dFVar<s>

X (/ %Wz((xg,yQ);é’,T(F))dF)T. (B.4)
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The sample version of (B.4) is given by
/ b(2)b(2)TdFy = B3XTAX, - Var(S) - X AX,

By is a scalar, X is n X (p + 1) matrix, A is n X n matrix, X; is n X ¢
matrix, Var(S) is ¢ X ¢ matrix, hence the final product is (p+1) x (p+1)
matrix. Finally, the asymptotic variance matrix is

AR )t = ol (- Ga) 1)

+B3XTAX Var (S, F)X] AX] (XTXx)™.
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Additional Monte Carlo
Simulations

C.1 Sample selection model

We use the data generating process described in Section 4.3. The level of
censoring varies from 25% to 75%. We consider four types of contamina-

tion:

Case A: Contamination of z; when the corresponding y; = 1. The
degenerate distribution putting mass 1 at the point (—6,1,1,1).
Study of the effect of the leverage outliers when they are transmitted
to the main equation.

Case B: Contamination of x; when the corresponding y; = 0. The
degenerate distribution putting mass 1 at the point (6,0, 1,1). Study
of the effect of the leverage outliers when they are not transmitted
to the main equation.

Case C: Contamination of x5. The degenerate distribution putting
mass 1 at the point (1,1,6,1). Study of the effect of the leverage
outliers in the equation of interest.

Case D: Contamination of y5. The degenerate distribution putting
mass 1 at the point (1,1, 1,6). Study of the effect of the outliers in
the variable of interest.

We study six estimators with a two-stage structure. They differ by
the introduction of robustness into different stages of estimation. In Fig-
ures C.4-C.6 they are denoted as follows
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(a): Classical Heckman’s estimator.

(b): Classical probit MLE and robust linear regression in the second
stage.

¢): Robust probit MLE and OLS.

(
(d): Robust inverse Mills ratio from Section 4.3 and OLS.
(e): Robust two-stage from Section 4.2.

(

f): Robust two-stage with robust inverse Mills ratio.

In Figure C.1, Figure C.4, and Figure C.7 we present the results of
estimation of the data without contamination. All the estimators perform
well, no considerable bias is encountered.

Under contamination the classical estimator breaks down for each type
of contamination. The estimator based on classical probit MLE and ro-
bust second stage performs well only when the contamination emerges
in the second estimation stage, if it appears in the first stage, it breaks
down. Combination of robust probit and simple OLS is robust only if the
contamination is in the first stage and is not transmitted into the second
stage, i.e. the corresponding y; = 0. Robust probit with robust IMR
performs well when the contamination is in the first stage. When there
is a contamination in the second stage the robust estimator is needed
anyhow. The most robust estimator is the estimator (f). It has the best
performance from the robustness point of view, but the loss of efficiency
at the model is the largest.
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Figure C.1: Parameter estimation of selection model without contami-
nation. (a) denotes the classical Heckman’s estimator. (b) denotes the
Classical probit MLE and robust linear regression in the second stage. (c)
denotes the robust probit MLE and OLS. (d) denotes the robust inverse
Mills ratio from Section 4.3 and OLS. (e) denotes the robust two-stage
from Section 4.2. (f) denotes the robust two-stage with robust inverse
Mills ratio. The solid line marks the true values of the parameters. The
level of censoring is 25%.
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Figure C.2: Parameter estimation of selection model with contamination.
The top panel and the bottom panel correspond to the contamination of
Case A and Case B respectively. (a) denotes the classical Heckman’s
estimator. (b) denotes the probit MLE and robust linear regression in
the second stage. (c) denotes the robust probit and OLS. (d) denotes
the robust inverse Mills ratio from Section 4.3 and OLS. (e) denotes the
robust two-stage from Section 4.2. (f) denotes the robust two-stage with
robust inverse Mills ratio. The solid line marks the true values of the
parameters. The level of censoring is 25%.
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Figure C.3: Parameter estimation of selection model with contamination.
The top panel and the bottom panel correspond to the contamination of
Case C and Case D respectively. (a) denotes the classical Heckman’s
estimator. (b) denotes the probit MLE and robust linear regression in
the second stage. (c) denotes the robust probit and OLS. (d) denotes
the robust inverse Mills ratio from Section 4.3 and OLS. (e) denotes the
robust two-stage from Section 4.2. (f) denotes the robust two-stage with
robust inverse Mills ratio. The solid line marks the true values of the
parameters. The level of censoring is 25%.

113



Appendiz C

0792°0 | ©GS2°0 | 9€60°0 || TRATO | TZLT0 | €CE0°0 || €VET'0 | 9€€T°0 | 19200 ¥eg
€620°0 | €820°0 | ¢T00°0— || 6£20°0 | 6£20°0 | 0000 || 8S20°0 | 850°0 | 0T000 Teg
T6EE0 | 90€€°0 | ¥860°0— || 6€61°0 | LE6T°0 | ¥ST0°0 || 6¥CT°0 | 6VGT°0 | ©0000 0cg
YINT ¥snqol + Sg 1snqoy
€6£2°0 | €6€2°0 | TLL00 || T69T°0 | L6ST°0 | 6960°0— || 960T°0 | S60T°0 | 0L00°0 Xeg
76200 | ¥S20°0 | S500°0— || SFg0°0 | #7200 | 9500°0— || 950°0 | 95¢0°0 | ¥200'0— Teg
072€ 0 | LF1€0 | 9960°0— || 9020 | 666T°0 | 8080°0 || T60T°0 | T60T°0 | 6T00°0— Ocgl
Sz Isnqoy
12€3°0 | ¥7¢c0 | L2800 || L¥60°0 | L¥60°0 | TL00'O || LGITO | €STT°0 | %1200 ¥eg
00200 | 00200 | TG00'0— || 68T0°0 | 68T0°0 | LT00°0— || 66T0°0 | 66TO°0 | 6T00°0— Teg
TS0E'0 | €862°0 | GES0°0— || O¥V80°0 | SE80°0 | TEZO'0 || 980T°0 | S8OT'0 | 9800°0 Ozgf
YINT ¥snqoy
81020 | 9961°0 | STL0°0 || G160 | TgFO°0 | SECF0— || 9280°0 | 9280°0 | 6000°0 Xeg
96100 | 9610°0 | T€00°0— || ©0T0O'0 | 86TO°0 | ¥6TO'0— || S6TO°0 | S6TO°0 | £500°0— Teg
€982°0 | G8LZ0 | #880°0— || €661°0 | S8S0°0 | TSLE'O || 8€60°0 | 8€60°0 | €500°0 Ocg
ST0 + ¥qoid gsnqoy
9899°0 | GS67°0 | 6SIF0 || T6TO'T | 9€€8°0 | 90€7°0 || 640T°0 | 620T°0 | TL000 ¥eg
¢ec0'0 | 88200 | S600°0— || SPE00 | SFT0'0 | £200°0— || SST0°0 | ¥S50°0 | S500°0— Teg
1$66°0 | 620L°0 | SOPS0— || 86&F'T | 0GFI'T | #9€S°0— || 080T°0 | 080T°0 | ¥Z00 0— Ocg
qorw] + HTIN 1qo1d
66550 | 16680 | 60070 || 6TFC0 | 68L0°0 | L£0%°0— || 0L80°0 | 0L80°0 | LT00°0 Xeg
96100 | 9610°0 | L200°0— || €0%0°0 | 86T0°0 | 6TC0°0— || S6TO°0 | S6TO°0 | GZ0O'0— Teg
0T€8°0 | G€9G°0 | GLTS0— || TSPE0 | S6TT'0 | €FSE0 || T€60°0 | TE60°0 | L¥00°0 Ocgl
mN PG@EMU@E
HSIN Tep serq HSIN Tep serq HSIN Tep serq

0 = /i ‘pajyeurwure)uod st Iz

1 = Ui ‘poyeurrejuod st Tz

PpojeuruIBjuod 0N

00¢ = N

"946¢ st buriosuad fo 1a02] Yy, uoyDUIWUDIU0D [0 sadfi
OM) AIPUN, PUD [9POUL DY) 9D SLOIDWILSD 2HDIS-0M] 1SNQOL PUD [DILSSD]D Y] JO HS PUD 22UDIIDA ‘SDUT T°0) 9[qe],

114



Additional Simulations

60€T°0 | LOST'0 | LETO0 || €60T°0 | 680T°0 | L0Z00— eg
€G620°0 | 05200 | 08T0'0— || ZSE0'0 | 9T€0°0 | 80RD0— Teg
L8TT°0 | 9LTT°0 | TE€ELO'0 | OFOTO | 6I0T°0 | 09%0°0 Ocg
YINT ¥snqor + §g 1snqoy
geoT’0 | TEOT'0 | #800°0— || 992T°0 | 99210 | ©L00°0 Xeg
L¥20°0 | ¥¥20°0 | ¥8T0°0— || 0£¥0°0 | GGE0'0 | 0880°0— Teg
GzOT'0 | ¥IOT'0 | 8€€0°0 || ¥9TT0 | ¥9TT0 | TT00°0— O2g
Sg 1snqoy
¢102°0 | G89T°0 | 908T°0— || €V6T°0 | 9T6T0 | 12500 ¥eg
CEST'0O | TITT0 | LFPIF0— || T8GR0 | 88TT'0 | 8658°0— Teg
86£9°0 | T962°0 | €98C°0 || €TI8T'0 | €ELT°0 | £€680°0— Ocg
HINT 3snqoy
TEST'0 | SVET'0 | ST 0— || €0ST°0 | ¥8YI°0 | 6£70°0 Xeg
¥€8C'0 | TTTT0 | TSI 0— || 8GS8°0 | T6TT'0 | 6L98°0— Teg
0299°0 | €¢62°0 | 08090 || ¥€9T°0 | 92ST°0 | 9€0T0— O2g
ST0 + 3qoad gsnqoyg
€€0T°0 | TEOT'0 | 6900°0— || T22T°0 | 0LZT°0 | S600°0 eg
0S%0°0 | L¥20°0 | T8TO0— || 0€F0°0 | GSE0°0 | G880°0— Teg
0Z0T°0 | 0TOT'0 | STEO'0 | 99TT°0 | 99110 | G200 0— Ocg
qorwy + HTIN 1qo1d
9Z81°0 | TFET'0 | T0E'0— || SSYT'0 | L9VTI0 | LSFO'0 Xeg
7€82°0 | OTTT0 | TSTF0— || ©SS8°0 | T61T1°0 | 6L98°0— Teg
0199°0 | 92620 | 0L09°0 || 929T°0 | GISTO | TSOT0— Ocg
mN mﬁgdaxowm
HSIN TeA serq HSIN Tep serq

pojeururejuod st &

pojeuruIejuod SI o

00¢ = N

"946¢ s buriosuad fo jaaa) 2y (7 puv ) sadfi
Jo uoupuUDIU0D LIPUN SL0IDULLISD 2HDIS-0MY JSNQOL PUD [DIISSD]D Y] JO HGIN PUD UDIIDA ‘SDIT T O[R],

115



Appendiz C

Stage 2: pay

Stage 2 py

Stage 2: p,

0s

0o

S T
t

15

oa

T T T T T
[T GO B O N O

T T T
(IR C I O]

4]

T T T T T
LTI R GO R GV O] 4]

Figure C.4: Parameter estimation of selection model without contami-
nation. (a) denotes the classical Heckman’s estimator. (b) denotes the
Classical probit MLE and robust linear regression in the second stage. (c)
denotes the robust probit MLE and OLS. (d) denotes the robust inverse
Mills ratio from Section 4.3 and OLS. (e) denotes the robust two-stage
from Section 4.2. (f) denotes the robust two-stage with robust inverse
Mills ratio. The solid line marks the true values of the parameters. The

level of censoring is 50%.
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Figure C.5: Parameter estimation of selection model with contamination.
The top panel and the bottom panel correspond to the contamination of
Case A and Case B respectively. (a) denotes the classical Heckman’s
estimator. (b) denotes the probit MLE and robust linear regression in
the second stage. (c) denotes the robust probit and OLS. (d) denotes
the robust inverse Mills ratio from Section 4.3 and OLS. (e) denotes the
robust two-stage from Section 4.2. (f) denotes the robust two-stage with
robust inverse Mills ratio. The solid line marks the true values of the
parameters. The level of censoring is 50%.
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Figure C.6: Parameter estimation of selection model with contamination.
The top panel and the bottom panel correspond to the contamination of
Case C and Case D respectively. (a) denotes the classical Heckman’s
estimator. (b) denotes the probit MLE and robust linear regression in
the second stage. (c) denotes the robust probit and OLS. (d) denotes
the robust inverse Mills ratio from Section 4.3 and OLS. (e) denotes the
robust two-stage from Section 4.2. (f) denotes the robust two-stage with
robust inverse Mills ratio. The solid line marks the true values of the
parameters. The level of censoring is 50%.

118



Additional Simulations

16600 | G860°0 | 9520°0 || €800 | 62800 | 8€T00 || LG80°0 | G&80°0 | OTT0°0 Xeg
$010°0 | ¥0T0°0 | 9600°0— || 00100 | 0T00°0 | TF00'0— || €010°0 | £0TO°0 | TSO0 0— Teg
€9%0°0 | 6S70°0 | 0610°0— || €9€0°0 | 09€0°0 | LFT0°0— || TLE0°0 | 69€0°0 | 8ET0°0— Oeg
HINT S1qoI + §g 1snqoy
2L60°0 | 6960°0 | 0LT0°0 | 86L0°0 | 8LL0°0 | #1#0°0— || 2€80°0 | 0£80°0 | 22100 Xeg
$010°0 | ¥0TO°0 | 6S00°0— || TOTO'0 | TOTO'0 | £900°0— || €9€0°0 | €010°0 | ¥S00°0— Teg
LS00 | ¥SF0°0 | 69T0°0— || L9€0°0 | ¥9€0°0 | 6LT0°0 || €9€0°0 | 29€0°0 | 9110 0— Ozgf
Sz 1snqoy
69L0°0 | 9L0°0 | ¥020°0 | 9290°0 | €290°0 | 66000 | 9990°0 | ¥S90°0 | L¥T00 Xeg
8800°0 | 8800°0 | G£00°0— || #800°0 | ¥800°0 | 8200°0— || 80070 | 2L800°0 | G£00°0— Teg
g6£0°0 | 06£0°0 | G2TO0— || G820°0 | G820°0 | ¢€00°0— || 60£0°0 | 60£0°0 | 9900°0— 0z
YINT 3Snqoy
0720°0 | 6€L0°0 | 20TO°0 || S89T'0 | 92£0°0 | ST9€°0— || 8290°0 | 8290°0 | 05000 Xeg
8800°0 | 8800°0 | ¥£00°0— || 060070 | 8800°0 | 9210°0— || 2800°0 | 280070 | G£00°0— Teg
Z8E0'0 | I8L0°0 | 9600°0— || €650°0 | 92200 | TT6T'0 || 00LO0 | 00£0°0 | TFOO 0— 0zg
STO + Hqoid snqoy
T86V°0 | LFPE0 | LI6€0 | 09280 | 66720 | 0VL2°0 || 8280°0 | 92800 | SITO0 Xeg
#0100 | €0T0°0 | GS000— || 20100 | TOTO'0 | TL00°0— || €0T0°0 | €0TO°0 | 9S00 0— Teg
2OTE0 | #L61°0 | 8GEL0— || €191°0 | #8IT0 | 1L02°0— || 29€0°0 | 09€0°0 | TIT0°0— 0zg
qorw] + TN Hqoid
SICH'0 | €660 | S06£°0 | ISIT'0 | OFFO0 | 122270~ || €290°0 | €290°0 | 9¥00°0 Xeg
6800°0 | 6800°0 | 9200°0— || 06000 | 8800°0 | TFT00— || L800°0 | L800°0 | ¥£00°0— 1z
¥¥8C°0 | 6SLT°0 | #62€°0— || €570°0 | 8220°0 | T1ZET'0 || 8620°0 | 8620°0 | LEOO 0— Ozgf
mN PG@EMU@E
HASIN TeA serq HSIN TR\ serq GSIN | TeA serg

0 = /i ‘pajyeurwure)uod st Iz

1 = Ui ‘poyeurrejuod st Tz

PpojeuruIBjuod 0N

00¢ = N

9406 st buriosuad fo 1202] Y], uoyDUIWLDIU0D [0 sadfi
OM) AIPUN, PUD [9POUL Y] 9D SLOIDWILSI 2HDIS-0M] 1SNQOL PUD [DILSSD]D Y] JO S PUD 22UDIIDA ‘SDIT ¢ 1) 9[qe],

119



Appendiz C

GGR0°0 | G880°0 | 0L00°0 || 09400 | 66200 | €IT00— eg
90T0°0 | S0TO0 | L&TO0— || 2STO°0 | TETO'0 | 8FFO0— Teg
69€0°0 | 69€0°0 | #2000 || €¢£0°0 | €6€0°0 | ¥200'0 Ocg
YINT ¥snqor + §g 1snqoy
L€80°0 | L€80°0 | 6T00°0— || S00T0 | #00T'0 | 6LT0°0 Xeg
LOTO'0 | GOTO'0 | 62T0°0— || ¢9TO'0 | GETO'O | TTG0°0— Teg
79€0°0 | €9€0°0 | SP00°0 || GOFO'0 | 86£0°0 | GLTO0— O2g
Sg 1snqoy
8T1GC'0 | €IET'0 | TLVE0— || €22T°0 | G90T0 | EFFI0 ¥eg
6690°0 | 0420°0 | 0L0Z°0— || §295°0 | L90T°0 | 85L90— Teg
G96g°0 | Ge0T'0 | L26E0 || 1€L0°0 | 22500 | SFFT0— Ocg
HINT 3snqoy
79€2°0 | L1210 | 98€€0— || €LTT°0 | 800T'0 | €82T°0 Xeg
6690°0 | 0,200 | 0L02°0— || 929S°0 | 890T°0 | 1SL9°0— Teg
18720 | 1860°0 | ©LSE'0 || 8690°0 | ¥0S0°0 | 96E€T°0— O2g
ST0 + 3qoad gsnqoyg
T€80°0 | TE€80°0 | 6TO0°0— || 8660°0 | S660°0 | 0610°0 eg
9010°0 | SOTO0 | OETO'0— || 9TO'0 | 9€T0°0 | TISO0— Teg
T9€0°0 | T980°0 | L¥00°0 || TOVO'0 | L6€0°0 | LLTO'0— Ocg
qorwy + HTIN 1qo1d
19€2°0 | #1ST°0 | 98€€°0— || 89TT°0 | ¥OOT'0 | TSTI0 Xeg
6690°0 | 0,200 | 0L02°0— || 929S°0 | 690T°0 | 1SL9°0— Teg
08%¢°0 | 6.60°0 | €28€°0 || 26900 | ¢0S0°0 | S6ET0— Ocg
mN mﬁgdaxowm
HSIN TeA serq HSIN Tep serq

pojeururejuod st &

pojeuruIejuod SI o

00¢ = N

9406 st buriosuad fo paaa) 2y (7 puv ) sadfi
Jo uoupuUDIU0D LIPUN SL0IDULLISD 2HDIS-0MY JSNQOL PUD [DIISSD]D Y] JO HGIN PUD UDIIDA ‘SDIT F) O[R],

120



Additional Simulations

Stage 2: pay Stage 2 py Stage 2: p,

04

02

0o

02

04
05
F
t

T T T T T T T T T T T T T T T T T T
[ IR ) N C N O N U [V () B G GV O ) LTI R GO R GV O] 4]

Figure C.7: Parameter estimation of selection model without contami-
nation. (a) denotes the classical Heckman’s estimator. (b) denotes the
Classical probit MLE and robust linear regression in the second stage. (c)
denotes the robust probit MLE and OLS. (d) denotes the robust inverse
Mills ratio from Section 4.3 and OLS. (e) denotes the robust two-stage
from Section 4.2. (f) denotes the robust two-stage with robust inverse
Mills ratio. The solid line marks the true values of the parameters.
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Figure C.8: Parameter estimation of selection model with contamination.
The top panel and the bottom panel correspond to the contamination of
Case A and Case B respectively. (a) denotes the classical Heckman’s
estimator. (b) denotes the probit MLE and robust linear regression in
the second stage. (c) denotes the robust probit and OLS. (d) denotes
the robust inverse Mills ratio from Section 4.3 and OLS. (e) denotes the
robust two-stage from Section 4.2. (f) denotes the robust two-stage with
robust inverse Mills ratio. The solid line marks the true values of the
parameters.
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Figure C.9: Parameter estimation of selection model with contamination.
The top panel and the bottom panel correspond to the contamination of
Case C and Case D respectively. (a) denotes the classical Heckman’s
estimator. (b) denotes the probit MLE and robust linear regression in
the second stage. (c) denotes the robust probit and OLS. (d) denotes
the robust inverse Mills ratio from Section 4.3 and OLS. (e) denotes the
robust two-stage from Section 4.2. (f) denotes the robust two-stage with
robust inverse Mills ratio. The solid line marks the true values of the
parameters.
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