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Summary
Tissue-type plasminogen activator (t-PA ) plays an important role in 
the removal of intravascular fibrin deposits and has several physio-
logical roles and pathological activities in the brain. Its production by 
many other cell types suggests that t-PA has additional functions out-
side the vascular and central nervous system. Activity of t-PA is regu-
lated at the level of its gene transcription, its mRNA stability and 
translation, its storage and regulated release, its interaction with co-
factors that enhance its activity, its inhibition by inhibitors such as 
plasminogen activator inhibitor type 1 or neuroserpin, and its removal 

by clearance receptors. Gene transcription of t-PA is modulated by a 
large number of hormones, growth factors, cytokines or drugs and 
t-PA gene responses may be tissue-specific. The aim of this review is to 
summarise current knowledge on t-PA function and regulation of its 
pericellular activity, with an emphasis on regulation of its gene ex-
pression.
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Introduction 

Tissue-type plasminogen activator (t-PA) is a serine protease that 
converts the proenzyme plasminogen into the proteinase plasmin. 
It is responsible for removal of intravascular fibrin deposits and 
exerts important functions in the brain and elsewhere. The ability 
of fibrin to specifically accelerate plasminogen activation by t-PA 
has led to its widespread use as a fibrin-specific thrombolytic agent 
for myocardial infarction and stroke (1, 2). The activity of t-PA in 
the pericellular space or in the blood circulation is controlled at six 
different levels, as presented in more detail below (▶ Table 1). 

In this review we will summarise current knowledge on estab-
lished functions for t-PA, the regulation of its pericellular activity, 
with an emphasis on regulation of human t-PA gene expression 
and the mechanisms influencing plasma t-PA concentrations and 
its relation to cardiovascular disease.

t-PA function

Depending on its site of expression, many distinct functions have 
been proposed for t-PA (▶ Table 2). Experimental evidence for the 
role of t-PA in the vascular system and in the central and periph-
eral nervous systems and for prevention of peritoneal adhesions 
appears to be conclusive. For other functions evidence is circum-
stantial and more work needs to be done to arrive at solid con-
clusions. Well-established functions proposed for t-PA are sum-
marised below. 

Fibrinolysis

The main function of t-PA within the vascular system is the re-
moval of fibrin (3). Thus, in t-PA deficient mice, clot lysis was im-
paired, in particular when combined with urokinase deficiency (4, 
5). In experimental primate models of acute disseminated intrav-
ascular coagulation, plasma concentrations of t-PA can acutely in-
crease by more than two orders of magnitude, due to thrombin-
mediated release from storage granules in endothelial cells (EC) (6, 
7). The high local increase of t-PA precisely at the site of thrombin 
generation allows the efficient removal of fibrin deposits at the 
luminal side of an intact vascular endothelium and is important 
for reducing tissue damage.

Angiogenesis

Secretion of t-PA by EC is increased by vascular endothelial growth 
factor and by basic fibroblast growth factor and, in combination, 
these growth factors have a synergistic effect (8). As plasminogen ac-
tivators contribute to angiogenesis (9) it is likely that t-PA con-
tributes as well. Direct evidence for a role for t-PA in angiogenesis 
was obtained in a pancreatic tumor model, where antisense reduc-
tion of t-PA expression diminished tumour angiogenesis (10).

Central nervous system

t-PA is expressed by neurons, microglial cells, astrocytes and cer-
ebral EC. Diverse physiological and pathological roles have been 
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proposed for t-PA in the brain: some related to its plasminogen ac-
tivator activity, some plasmin-independent. In particular, t-PA 
contributes to synaptic plasticity, learning and long term potenti-
ation and, during development, to neuronal cell migration. Patho-
logical phenomena to which t-PA contributes include glutamate-
induced cytotoxicity, disruption of the blood brain barrier or seiz-
ures. A full discussion of the many roles of t-PA in the central 
nervous system is outside the scope of this review and the reader is 
referred to several excellent recent reviews (11-18).

Peripheral nervous system

In a model of sciatic nerve crush injury, t-PA protected from axon-
al degeneration and demyelination, by removing fibrin deposits 
near the damaged nerves (19). Vascular sympathetic neurons store 
t-PA and release t-PA in response to bradykinin and phenyleph-
rine (20, 21). In rats, chemical sympathectomy abolished nerve 
fiber associated t-PA, while maintaining endothelial t-PA; it 
strongly reduced plasma t-PA and t-PA release from isolated blood 
vessels (20, 21). Thus, vessel-associated sympathetic neurons con-
tribute to t-PA release into the blood circulation. Conversely, t-PA 
plays a role in sympathetic nerve function because t-PA inhibition 
reduced sympathetic responses of the guinea pig vas deferens and 
t-PA null mice were deficient in norepinephrine release. This was 
independent of plasminogen and attenuated by plasminogen acti-
vator inhibitor type 1 (PAI-1) (22, 23). 

t-PA and peritoneal adhesions

Intraperitoneal adhesions are a common complication of abdomi-
nal surgery. An imbalance between coagulation activation and fi-
brinolysis is responsible for excessive fibrin deposition followed by 
infiltration with fibroblasts and collagen formation. Inflammatory 
activation of peritoneal mesothelial cells increased tissue factor 
and PAI-1 and reduced t-PA expression; statin treatment increased 
t-PA and reduced PAI-1, resulting in reduced adhesion formation 
in a rat laparotomy model (24-26).

Agonists modifying t-PA expression in 
 cultured cells or modifying plasma t-PA 
antigen concentrations

The regulation of t-PA gene transcription has been investigated in 
cultured primary human cells, in human foreskin and amnion ex-
plant culture and in human transformed cell lines. To date more 
than 30 different agonists have been identified that modify t-PA 
gene expression (▶ Table 3 and Suppl. Table 1, available online at 
www.thrombosis-online.com). It has to be stressed, however, that 
for most of these agonists, information on their in vivo effect in 
human plasma or human tissues is lacking. Some well-studied 
agonists will be treated in more detail below.

Table 1: Mechanisms regulating t-PA activity in the pericellular 
space. Activity of t-PA is regulated by different mechanisms that act on at 
least six different levels.

1. t-PA gene transcription. 

Agonists that affect t-PA gene transcription and/or mRNA turnover (for more 
information and references see Supplementary Table). 

• Histone deacetylase inhibitors (butyrate, trichostatin, valproic acid, MS275). 

• Statins.

• Thrombin.

• Growth factors: VEGF, bFGF, TGFb. 

• Hormones: dexamethasone, retinoic acid, estrogen.

•  Inflammatory agonists: TNF, IL-1, LPS.

•  cAMP inducers: vasopressin, adrenalin, epoxyeicosatrienoic acid.

2. mRNA stability, activation of t-PA mRNA translation and 
micro-RNA mediated translation inhibition.

3. Storage and regulated release of t-PA.

Storage of t-PA in Weibel Palade bodies in EC and in small regulated storage 
granules in EC, astrocytes and neuronal cells. 

Secretagogues induce t-PA release via an increase in:

•  intracellular calcium: thrombin, histamine, bradykinin, calcium ionophore.

•  intracellular cAMP: vasopressin, adrenalin, forskolin + IBMX.

4. Proteins that bind t-PA and plasminogen and enhance t-PA 
activity by >100 fold.

• Fibrin.

• Cell surface proteins: annexin II, the voltage-dependent anion channel.

•  Extracellular matrix proteins.

• Beta2-glycoprotein 1.

•  Denatured proteins, beta amyloid peptides.

5. Inhibition of t-PA by serine proteinase inhibitors. 

•  PAI-1, the principal inhibitor of t-PA.

•  Neuroserpin, a major t-PA inhibitor in the brain.

• Other serpins: Protease nexin 1, PAI-2, a2-antiplasmin.

6. Clearance receptors.

Hepatic clearance, responsible for the short (~ 5 minutes) circulating half-life 
of t-PA. 

• LRP1 on hepatocytes

• Mannose receptor on liver EC

Clearance from the extracellular space 

• LDL-receptor family members, LRP1, VLDL receptor

• Mannose receptor

EC: endothelial cells; VEGF: vascular endothelial growth factor; bFGF: basic fi-
broblast growth factor; LDL: low-density lipoprotein; LRP1: low-density lipo-
protein receptor-related protein 1; TNF: tumour necrosis factor alpha; IL-1: 
interleukin 1; LPS: lipopolysaccharide. 
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Protein kinase C

Ligand binding to Gq coupled receptors leads to an increase in 
intracellular Ca++ and to formation of diacylglycerol, an activator 
of protein kinase C which plays key regulatory roles in a multi-
tude of cellular processes (27). The effect of protein kinase C ac-
tivation on t-PA expression has been studied mostly by using 
phorbol ester (PMA), which mimics diacylglycerol. Treatment of 
EC, melanoma cells, non-small cell lung carcinoma cells, astro-
cytes or HeLa cells with (PMA), increased t-PA expression. The 
induction of t-PA by PMA was dependent on protein synthesis 
and preceded by a transient increase in c-fos (28, 29). Forskolin, 

an inducer of intracellular cAMP potentiated the t-PA gene re-
sponse to PMA (28, 30) in EC. In contrast, PMA downregulated 
t-PA gene transcription in HT1080 fibrosarcoma cells (31) and 
had no effect on t-PA in peritoneal mesothelial cells (24). The 
cell-type specific responses of the t-PA gene to PMA treatment 
may be due to differences in transcription factor binding to the 
proximal promoter (see below).

Inflammatory agonists

The profound effects of inflammation on haemostasis are well 
known. Inflammatory cytokines such as tumour necrosis factor 

Table 2: Proposed functions for t-PA. In the vascular system 

Cell Type

Endothelial cells

In the central nervous system

Cell Type

Neurons (a,b,c,d,e,h,i)

Microglial cells (e,f,g,i)

Astrocytes (g,i,j)

Cerebral EC (j)

In the peripheral nervous system 

Cell Type

Peripheral nervous cells

In the peritoneum

Cell Type

Peritoneal mesothelial 
cells

NB. The strict division of the beneficial and pathological effects of t-PA in the central nervous system with 
respect to each cell type may be more complicated than presented here and requires further investi-
gations. Expression of t-PA by many other cell types (monocytes, fibroblasts, keratinocytes, myocytes, 
gingival cells, dental pulp cells, retinal cells, hepatocytes and kidney cells, see Suppl. Table, available on-
line at www.thrombosis-online.com) suggests that t-PA may have additional functions outside the vas-
cular system, the central or peripheral nervous system or the peritoneum. The in vivo role, if any, of t-PA 
expressed by these cell types, still needs to be established.

Proposed function of t-PA

Storage and regulated release of t-PA; binding of t-PA to fibrin, followed by fi-
brin degradation (3, 4, 6, 7) 

Angiogenesis (8–10) reviewed in: (11–13, 15–18)

Beneficial effects of t-PA

a) Synaptic plasticity

b) Learning and long term potentiation

c) Neuronal cell migration

d) Anti-apoptotic (activation of pro-neurotrophins)

Pathological effects of t-PA

e) Excitotoxicity and pro-apoptotic effects

f) Demyelination

g) Cerebral inflammation

h) Alzheimer’s disease

i ) Seizures

j) Disruption of the blood brain barrier

Proposed function of t-PA

Protection from axonal degeneration and demyelination (19)

Regulated release of t-PA which may contribute to acute release of t-PA in 
the blood circulation (20, 21).

Sympathetic responses (22, 23).

Proposed function of t-PA

Prevention of intraperitoneal adhesion formation after injury (24–26).
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(TNF) or interleukin 1 (IL-1), IL-6 or the bacterial product lipo-
polysaccharide (LPS) exert strong procoagulant effects characte-
rised by an increase in tissue factor and a decrease of thrombomo-
dulin on endothelial cells. The effect of these inflammatory agon-
ists on t-PA expression was found to be cell-type specific. 

TNF reduced t-PA in human HT1080 cells (32) and in human 
umbilical vein EC (HUVEC), dependent on signalling via nuclear 
factor (NF)κB and p38 (33, 34). It increased t-PA expression in 
human peritoneal mesothelial cells (24) and gingival fibroblasts 
(35). 

IL-1α suppressed t-PA in human peritoneal mesothelial cells 
(24) but increased t-PA in human gingival fibroblasts (35), in os-
teosarcoma cells (36) and in primary mesangial cells (37). The ef-
fect of IL-1α was dependent on MEK, p38 and PI3 kinase (36, 38).

IL-1β  suppressed t-PA in HUVEC (39). This effect was depend-
ent on NFκB, but not on p38 (39). 

IL-6 induced a threefold increase in t-PA plasma concen-
trations in baboons (7, 40). It increased t-PA in dental pulp cells 
(41), but had no effect on t-PA production by HUVEC (39). As 
cultured HUVEC express no IL-6 receptor the effect of addition of 
soluble IL-6R was studied: addition of sIL-6R rather decreased 
t-PA (39). 

LPS suppressed t-PA in human peritoneal mesothelial cells (24) 
and increased t-PA in gingival fibroblasts (42) and in microglial 
cells (43). Experimental endotoxaemia in human volunteers led to 
an increase in plasma TNF concentrations, which was followed by 
an increase in plasma IL-6 and t-PA (44). This most likely repre-
sents a hierarchy in which LPS first increases TNF, which stimu-
lates IL-6 production leading to an increase in plasma t-PA, be-
cause TNF is capable of increasing IL-6 and t-PA (45) and IL-6 in-
creases t-PA (see above).

Taken together, the effects of inflammatory agonists on t-PA ex-
pression are cell-type – and agonist – specific. In addition, inflam-
matory agonists may affect t-PA activity by increasing expression 
of PAI-1, the principal t-PA inhibitor (46).

Retinoids

Retinoids play an important role in cell differentiation and devel-
opment. In most cell types studied, except keratinocytes and peri-
toneal mesothelial cells, retinoids increase t-PA expression. A 
requirement for de novo protein synthesis for RA-induction of 
t-PA gene transcription was shown for EC (47, 48), HT1080 fibros-
arcoma cells (49) and human astrocytes (50). In EC, the increase in 
t-PA was dependent on a two-step mechanism: RA first increases 
production of RA receptor β (RARβ); thereafter RA increases t-PA 
via RARb (47). RA interacts with PMA in a dose dependent 
manner. At moderate doses RA increased t-PA and synergistically 
potentiated the stimulatory effects of PMA in EC and HeLa cells, 
but at higher dosages RA reduced t-PA expression in HeLa cells, 
but not in EC (51). In rats, retinoic acid increased plasma t-PA ac-
tivity and t-PA antigen in lung extracts by 1.5- and 1.3-fold, re-
spectively. Conversely, a vitamin A deficient diet led to a reduction 
in plasma t-PA activity and t-PA antigen in lung extracts (48).

Statins

These cholesterol-lowering drugs are widely used in the preven-
tion of cardiovascular disease. Their therapeutic effect is not only 
due to cholesterol lowering, but also to pleiotropic effects related to 
their inhibition of protein geranylgeranylation (52). Among the 
pleiotropic effects are a 10-fold increase of t-PA mRNA and a five-
fold reduction in PAI-1 mRNA levels in human EC, smooth 
muscle cells, peritoneal mesothelial cells, and cardiac myocytes. 
The effect of statins is mediated by geranylgeranylated proteins of 
the Rho family of small GTPases (53), in particular of Cdc42 and 
Rac1 (54). Statins modify the structure of the cytoskeleton and dis-
ruption of actin filaments by latrunculin or cytochalasin D 
strongly increased t-PA (25, 53, 54). This suggests a direct relation 
between cytoskeletal function and t-PA expression. The statin-in-

Table 3: Agonists that modify t-PA gene expression in cultured 
human cells*.

Cytokines

Growth factors

Hormones

Toll-like receptor agonists

cAMP inducers

Cai++ inducers

Protein kinase C activator

Product of phospholipase A2

Epigenetic agonists

Drugs

Actin polymerization inhibitors

Shear stress

Epoxygenase product

Radiation

Heat shock

Various agonists

*For details and references see the Supplementary Table. BDNF: brain-derived 
neurotrophic factor (BDNF); EET: epoxyeicosatrienoic acid; EGF: epidermal 
growth factor; HDAC: histone deacetylase; HAT: histone acetyl transferase; 
HT-VLDL: hyper-triglyceridemic very low density lipoproteins; IL: interleukin; 
LPC: lysophosphatidylcholine; LPS: lipopolysaccharide; PMA: phorbol myris-
tate acetate; Poly I:C : polyinosinic:polycytidylic acid ; RA: retinoic acid; 
TGFb: transforming growth factor beta; VEGF: vascular endothelial growth 
factor. 

IL-1, IL-4, IL-6, TNF

TGFb, EGF, VEGF, BDNF

Estradiol, Dexamethasone, Retinoic acid, Vit-
amin D3

LPS, Poly I:C

8-bromo-cAMP and forskolin (synergy with 
PMA and EGF)

Thrombin, Bradykinin

PMA

Lysophosphatidylcholine

HDAC inhibitors: Butyrate, trichostatin, val-
proic acid, MS-275

HAT inhibitors: garcinol, anacardic acid,

Sirtuin agonists: Resveratrol, Quercitin

Statins, Rapamycin, Paclitaxel

Cytochalasin D, Latrunculin

Effect depends on type and intensity of shear 
stress

EET

UV, Ionizing radiation

Fibrin, Ethanol, Glucose, HT-VLDL

Protease peptone, Notoginsenoside R1

Sonic Hedgehog
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duced increase of t-PA in EC was dependent on activation of p38 
(54). In contrast, prolonged statin treatment of hypercholestero-
laemic patients or patients with diabetes type 2 or chronic kidney 
disease did not modify plasma t-PA antigen concentrations 
(55-58). At the present state it is not known whether these discrep-
ancies are due to artefactual responses of cells in culture or are 
caused by the isolation of the cells from their natural stroma or 
from the paracrine and endocrine effects of their in vivo environ-
ment. 

Epigenetic mechanisms regulating t-PA 
 expression

All cells in an organism have the same DNA, whereas gene re-
sponses are cell-type specific. Whether a gene is inactive or active, 
and to what extent, depends on its epigenetic state, which is deter-
mined by histone modifications and CpG methylation. Epigenetic 
mechanisms may be important for regulating t-PA gene ex-
pression. Early studies observed that dibutyryl cAMP increased 
t-PA secretion by EC, by liberating butyrate rather than via cAMP 
(59). Butyrate as well as other histone deacetylases (HDAC) in-
hibitors (trichostatin, MS-275, valproic acid) consistently increase 
t-PA production and storage in EC (60-63). t-PA is among the pro-
teins most strongly induced by HDAC inhibition (63). Treatment 
with HDAC inhibitors increased the acetylation state of histones 3 
and 4 associated with the t-PA promoter (62, 63) thereby mod-
ifying the t-PA associated chromatin into an active conformation. 
Expression of t-PA appears to require an unmethylated state of its 
proximal gene promoter. Indeed, in EC, which express t-PA, the 
proximal t-PA promoter is unmethylated, whereas in human pri-

mary hepatocytes, which express t-PA at low levels, it is partially 
methylated (62). 

Promoter and enhancer elements in the t-PA 
gene

The t-PA gene has at least two distinct transcription initiation sites 
(TIS), leading to mRNA transcripts with 203 and 103 5’non-trans-
lated nucleotides, respectively (▶ Figure 1). The longer transcript 
was used in PMA stimulated HeLa cells and the shorter preferen-
tially in a HUVEC derived cell line and in WI-38 human fetal lung 
fibroblasts (64-66). The position of promoter and enhancer el-
ements described below is with respect to the TIS of the longer 
transcript (position 42’065’194 on chromosome 8 in 
GRCh37/hg19; http://genome.ucsc.edu/) (67).

Proximal promoter

Several regulatory elements have been identified in the proximal 
t-PA promoter (▶ Figure 1). The PMA responsive element, TRE), 
at position –115/-102, is important for basal and PMA-induced 
t-PA expression (68). A distinct profile of TRE binding proteins 
was observed for HT1080 cells and HeLa cells. In HT1080 cells, 
CREB and jun, but not CREM or ATF2, bound the TRE, whereas 
in HeLa cells TRE binding proteins were ATF2, junD, fosB and 
fra-2 but not CREB (66, 69). Treatment of HT1080 cells with PMA 
induced CREB phosphorylation and its binding to the TRE, while 
overexpression of CREB in HeLa cells reduced the magnitude of 
PMA mediated induction of t-PA (70). This suggests that down-
regulation of t-PA transcription by PMA in HT-1080 cells requires 
CREB binding to the TRE. 

Kruithof, Dunoyer-Geindre: Tissue-type plasminogen activator

Figure 1: Structure of the t-PA promoter. The 
figure shows the position of alternative transcrip-
tion initiation sites (TIS) (doubly underlined) and 
transcription factor binding sites (underlined) in 
the t-PA gene promoter region. t1 represents the 
principal t-PA TIS in PMA stimulated HeLa cells 
(64), whereas t2 is the principal TIS in non-stimu-
lated WI-38 human fetal lung fibroblasts major 
position at +110 (65) and in a HUVEC-derived 
cell line (66). t3 and t4 represent alternative, 
minor TIS. Sequences of the first and second exon 
are in bold type. Transcription factor binding sites 
and the TATA box are underlined. Position of CpG 
dinucleotides are shown in grey. In HUVEC all 
CpG’s in the region –647 to –366 are fully 
methylated whereas the CpG’s in the region 
–121 to + 159 are unmethylated (62). Note that 
most of the transcription factor binding sites con-
tain or are closely flanked by a CpG dinucleotide. 
The TIS t1 is located at chromosome 8, position 
42’065’194 (Assembly GRCh37/hg19 ; http://ge-
nome.ucsc.edu/).
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GC boxes bind transcription factors of the Sp1 family. The GC 
boxes at +39 and +62 bind Sp1 (66, 69). Of these, the latter is im-
portant for basal and PMA induced t-PA expression in HeLa cells 
(68). In HT1080 cells, both Sp1 and Sp3 bind to the GC boxes at 
+39 and +62; both GC boxes were important for basal and RA-in-
duced t-PA expression, whereas the TRE did not contribute to 
t-PA induction by RA (71). Induction of t-PA expression by quer-
citin was dependent on an Sp1 binding site located elsewhere at 
-365; inhibition of p38 reduced Sp1 binding to this site (72). 

An NF1/CTF binding site, located 20 bp downstream of the 
TRE (69) exerts repressor activity in human EC and HeLa cells 
(73). An ELK1 site at +80 mediated the dexamethasone-induced 
downregulation of t-PA in breast cancer cells (74). 

Enhancers located between –2.1 and –3.1 kbp

In Bowes melanoma cells enhancer elements were identified in the 
region between –2390 to –2129 and a repressor between –2129 
and -2119 (75). The enhancer between –2288 to –2129 appeared 
to function in a cell type-specific fashion, because it was inactive in 
HeLa cells and HT1080 cells. 

An NFκB binding motif was identified at position –3081. It 
contributed to PMA-induced upregulation of t-PA in neuroblasto-
ma cells and to TNF- and IL-1β-mediated downregulation of t-PA 
in EC (33, 76). 

Multihormone enhancer region at – 7 kb

Induction of the t-PA gene by RA is mediated by a direct repeat 
of a GGTCA motif spaced by five nucleotides (DR5) at –7.3 kb 
(49). This motif is part of a multihormone responsive enhancer 
composed of four binding sites for the glucocorticoid receptor 
(77). RA treatment enhanced Sp1/Sp3 binding to a GC-box lo-
cated at position –7351, which is associated with the release 
rate of t-PA in vivo (78). Formation of the complex of Sp1/Sp3 
with this GC-box was inhibited by anti-RA receptor antibodies. 
This implies that Sp1/Sp3 and the RA receptor directly interact 
(79).

In WISH epithelial cells the RA-induced increase in t-PA oc-
curred through interactions of heterodimers of the retinoid recep-
tors, RARα or RARβ and RXRα, with the DR5 (80). At an early 
time period binding was preferentially to RARα/RXRα hetero-
dimers and at later time points to RARβ/RXRα heterodimers (80). 

Transient transfection of reporter genes, linked to the t-PA gene 
promoter and multihormone enhancer sequences in HT1080 cells 
revealed that Sp1 and Sp3 activate the t-PA promoter, but that the 
effect of retinoic acid required Sp1, but not Sp3 (71). 

Potential regulatory elements elsewhere in 
the t-PA gene

In addition to the known regulatory elements described above, 
DNase I-hypersensitivity mapping and in vivo foot printing in 
human neuroblastoma and glioblastoma cells identified several 

potential regulatory elements elsewhere within the t-PA gene (76). 
Analysis of the t-PA gene using the UCSC genome browser 
(http://genome.ucsc.edu) (67) illustrates the complexity of these 
potential regulatory regions. Suppl. Figure 1A (available online at 
www.thrombosis-online.com) shows the profile of histone modifi-
cations (H3K4me1, a marker for promoters and enhancers; 
H3K4me3, a marker for promoters, and H3K27Ac, a marker for 
active gene regions). In addition, it shows transcription factor 
binding sites, DNase hypersensitivity sites and RNA polymerase 2 
(pol2) binding sites. The figure clearly identifies the proximal pro-
moter, the enhancers at –2 to – 3 kbp and the multihormone en-
hancer. In addition, a broad 5 kbp region in the first intron con-
tains enhancer associated modifications. The pattern of histone 
modifications is cell-type specific, as illustrated by Suppl. Figure 
1B (available online at www.thrombosis-online.com). To what ex-
tent this putative enhancer contributes to cell-type specific ex-
pression and agonist-mediated up- or down-regulation of the t-PA 
gene remains to be established. Other transcription factor binding 
regions are observed elsewhere in the t-PA gene.

Promoter/enhancer elements regulating t-PA 
expression in vivo in mice

Little is known about the promoter/enhancer elements that dictate 
tissue-specific expression of t-PA. Studies in transgenic mice ex-
pressing lacZ under control of the 5’ flanking sequences of the 
t-PA gene revealed that elements between –9.5 kb and –3.0 kb are 
required to direct spatial and LPS-inducible expression to various 
regions of the mouse brain, while elements within the first 1.4 kb 
of the t-PA promoter direct expression exclusively to the medial 
habenula (81). None of the constructs directed lacZ staining to 
vascular tissue. We may, therefore, assume that elements required 
for EC-specific expression of t-PA are located elsewhere.

Post-transcriptional mechanisms regulating 
t-PA activity

Besides regulatory mechanisms based upon changes in t-PA gene 
transcription rate, t-PA activity in the pericellular environment is 
regulated by five additional post-transcriptional mechanisms 
(▶ Table 1), as summarised below. 

mRNA turnover or translation

The t-PA mRNA contains in its 3’non translated region a highly 
conserved AU-rich element; removal of this region reduced t-PA 
mRNA turnover (82). There is also evidence for a mechanism of 
t-PA mRNA translation inhibition depending on a target site lo-
cated in the same region (82). This suggests that t-PA mRNA 
translation is regulated by miRNAs, which inhibit mRNA trans-
lation through interactions with the 3’end of an mRNA. However, 
the effect of miRNAs on t-PA mRNA translation has not been re-
ported yet. 

Kruithof, Dunoyer-Geindre: Tissue-type plasminogen activator

For personal or educational use only. No other uses without permission. All rights reserved.
Note: Uncorrected proof, prepublished online

Downloaded from www.thrombosis-online.com on 2014-04-10 | ID: 1000468809 | IP: 129.194.8.73



© Schattauer 2014 Thrombosis and Haemostasis 112.2/2014

7

The 3’ untranslated region of t-PA contains furthermore a poly-
adenylation control element (ACE) (83). In mouse oocytes this el-
ement was responsible for deadenylation and translational silenc-
ing of the t-PA mRNA. During meiotic maturation, t-PA mRNA is 
re-polyadenylated and t-PA translation resumes. A mouse strain 
was created which expresses the enhanced green fluorescent pro-
tein (EGFP) coding sequence followed by the ACE element (84). 
High levels of EGFP mRNA was detected in all brain structures, 
but EGFP fluorescence was detected only in blood vessels, choroid 
plexus and Purkinje cells, suggesting cell-type specific translation 
inhibition. EGFP fluorescence increased after brain injury, pre-
sumably by release of translational inhibition. Similarly, glutamate 
induced a rapid increase in t-PA activity in hippocampal neurons 
resulting from translational activation of preexisting t-PA mRNA 
(85). These results imply that polyadenylation control of t-PA 
mRNA plays an important role in t-PA responses to brain insults.

Regulated release of t-PA from intracellular storage 
granules

An important aspect of t-PA function is its storage and regulated 
release. An early study in a rat hind leg model showed that platelet 
activating factor (PAF) and bradykinin were capable of inducing 
within a few minutes, an acute and transient simultaneous release 
of t-PA and von Willebrand factor, by increasing intracellular Ca++ 
(86, 87). Activation of guanylate cyclase reduced the PAF-induced 
release of t-PA and vWF (88). An alternative mechanism depends 
on cAMP. Indeed, isoproterenol, a beta-adrenergic agonist, or des-
mopressin, acting upon the V2 vasopressin receptor induced, via 
cAMP, an acute increase in plasma t-PA in vivo in man (89-92).

Acute t-PA release allows for a rapid increase in local t-PA con-
centrations. In chimpanzees and baboons injection of factor Xa 
and phospholipids led to wide-spread thrombin generation and a 
hundred-fold increase in plasma concentrations of t-PA (6, 7). 
This implies that blood vessels contain a large storage pool of t-PA. 
Two cell types may contribute: EC and vascular sympathetic neur-
ons. In cultured EC, there is evidence for more than two types of 
t-PA storage granule: Weibel Palade bodies (61, 93, 94) and small 
storage granules (95-97). Both storage pools are released by agon-
ists that increase intracellular Ca++ (thrombin, histamine, bradyki-
nin, calcium ionophore) or cAMP (61, 86, 91, 93-98). Vascular 
sympathetic neurons may also contribute to acute increases in 
plasma t-PA. Indeed, these cells release t-PA in response to bra-
dykinin or phenylephrine (20, 21). The acute release of t-PA by as-
trocytes suggests a similar mechanism of acute increases of extra-
cellular t-PA in the central nervous system (50). In hippocampal 
neurons t-PA resides in dense-core granules (DCGs) that traffic to 
postsynaptic dendritic spines. Depolarisation by high potassium 
levels led to a Ca++ dependent release of t-PA (99). 

Activation of t-PA by fibrin, extracellular matrix 
 proteins, cell surface receptors or amyloid proteins

Most serine proteases need to be converted from a single chain 
pro-enzyme into a fully active two-chain form. In contrast, the 

single chain and two chain forms of t-PA have a similar, low activ-
ity. The main activating event appears to be the binding of t-PA to 
cofactor proteins. For thrombolysis, the cofactor is fibrin itself, 
which increases t-PA activity by more than two orders of magni-
tude (100). This, in combination with the regulated release of t-PA 
from the vessel wall induced by thrombin assures that fibrinolysis 
is targeted towards forming fibrin deposits. Activation of t-PA by 
extracellular matrix proteins (101) may be of relevance for t-PA-
mediated matrix degradation in the context of cell migration. 
Binding of t-PA to annexin 2 at the cell surface increases t-PA ac-
tivity by two orders of magnitude (102). The activation of t-PA by 
beta-amyloid peptides, as well as the presence of t-PA in brain tis-
sue, suggests that t-PA may play a role in Alzheimer’s disease 
(103). Activation of t-PA by misfolded proteins in general, may fa-
cilitate removal of such proteins (104). 

Inhibition by proteinase inhibitors

The principal inhibitor of t-PA is PAI-1 (105, 106). It inhibits 
single chain and two chain t-PA with high efficacy (107). PAI-1 is 
expressed by almost all cell types in culture and is, like t-PA, regu-
lated by a large number of agonists. Among these are inflamma-
tory agonists, transforming growth factor beta, hypoxia, insulin 
and statins (46, 108). Thus, t-PA activity can be regulated at the 
level of agonist-mediated changes in t-PA expression, in PAI-1 ex-
pression or both. PAI-1 plays a role in many clinical conditions, 
such as inflammation, sepsis, the metabolic syndrome, fibrosis and 
cancer. The physiological and pathological roles of PAI-1 are dis-
cussed in more detail elsewhere (109-112). 

The brain contains a second t-PA inhibitor: neuroserpin 
(113-115). The relative importance of PAI-1 and neuroserpin in 
regulating brain t-PA activity is not known, but likely depends on 
the local cellular context and local physiological or pathological 
conditions. Neuroserpin and t-PA are co-expressed in neurons of 
many central nervous system regions (116). In patients with acute 
ischaemic stroke neuroserpin may have neuroprotective effects by 
inhibition of excitotoxicity, inflammation and blood brain barrier 
(117). 

Other protein capable of t-PA inhibition are PAI-2, α2-antiplas-
min and α2-macroglobulin. Based upon criteria of inhibitor con-
centration and inhibition rate constants, regulation of t-PA activity 
by these inhibitors appears to be unlikely of physiological rel-
evance. 

Clearance receptors

These play an important role in t-PA removal from the blood cir-
culation, with a half-life of only a few minutes, and from the peri-
cellular space. Two receptors may mediate t-PA clearance: the low-
density receptor-related protein 1 (LRP1) (118, 119) and the man-
nose receptor (120). LRP1 not only functions as a clearance recep-
tor for free t-PA and t-PA/PAI-1 complexes, it may also function as 
a signalling receptor (121, 122). 
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Mechanisms influencing plasma t-PA 
 concentrations and relation to cardiovascular 
disease
Circadian variation of plasma t-PA 

Acute myocardial infarction and stroke have a circadian pattern of 
occurrence with a peak in the morning (123). Considering the 
powerful capacity of t-PA to remove non-desired fibrin deposits, 
the circadian variation of plasma t-PA and PAI-1 antigen was in-
vestigated. Results of several studies showed a parallel circadian 
variation, with highest values in the morning (t-PA: 5 ng/ml and 
PAI-1: 21.9 ng/ml) and minima in the evening (t-PA: 3 ng/ml and 
PAI-1: 8.8 ng/ml) (124-126). As PAI-1 is in excess of t-PA, the ef-
fect of the circadian variation of t-PA and PAI-1 is that plasma 
t-PA activity is lowest in the morning (1 U/ml) and highest in the 
evening (1.8 U/ml) (125). It has to be stressed, however, that t-PA 
activity measured in these studies represented residual t-PA activ-
ity after reaction of t-PA with PAI-1 in vivo within the blood circu-
lation and ex vivo during blood handling, centrifugation and, 
often, freezing and thawing. For a proper assessment of t-PA activ-
ity, blood samples should be collected on an acid anticoagulant, 
which prevents ex vivo inhibition of t-PA by PAI-1 (127). In mice, 
chronic time shifts reduced liver t-PA mRNA, but increased liver 
PAI-1 mRNA and plasma PAI-1 level (128). No information is 
presently available on the genes responsible for the circadian vari-
ation of t-PA, whereas the genes Clock and BMAL are known to 
contribute to circadian regulation of PAI-1 (129). It remains to be 
established to what extent the parallel circadian variation of t-PA 
and PAI-1 reflects common mechanisms or is fortuitous. One fac-
tor may be the effect of PAI-1 on hepatic t-PA clearance. In human 
subjects, clearance of injected free t-PA (t1/2 = 2.4 min) was faster 
than that of t-PA/PAI-1 complexes (t1/2 = 5.0 min). Also, clearance 
of free t-PA was faster in patients with low plasma PAI-1 activity 
than in patients with high PAI-1 activity (t1/2 = 3.5 and 5.3 min, re-
spectively) (130). 

Seasonal variation of plasma t-PA levels 

In addition to its diurnal variations, plasma t-PA antigen concen-
trations also show a seasonal variation with lowest concentrations 
in late spring (3.5 ng/ml) and highest concentrations in autumn 
(5.6 ng/ml) (126). 

Age and exercise 

Release of t-PA is reduced with age in sedentary men. The age-re-
lated decline was not observed in endurance-trained men and ex-
ercise training normalised t-PA release in former sedentary men 
(131). This implies that exercise is a more important factor deter-
mining t-PA release than age.

Gene polymorphisms related to plasma t-PA 
 concentrations 

Initial studies on gene polymorphisms modifying the release rate 
of t-PA from the forearm vascular bed identified an Alu repeat in-
sertion/deletion polymorphism located in intron 8 of the t-PA 
gene. Subjects homozygous for the insertion had a higher release 
rate (mean: 10.9 ng min-1. L-1) than heterozygotes and homozy-
gotes for the deletion (mean: 4.5 and 0.9 ng min-1. L-1, respectively) 
(78). Later studies observed that the Alu polymorphism is in link-
age disequilibrium with a C>T polymorphism located at position 
–7351 in the multihormone response enhancer (132). The C vari-
ant had a 10-fold greater affinity for the transcription factors Sp1 
and Sp3 and, in reporter gene assays, a greater response to retinoic 
acid than the T variant (79). This polymorphisms thus explains the 
relation between Alu polymorphisms and the release rate of t-PA. 
In human brain tissue more t-PA mRNA was generated from the 
C-allele than from the T allele (133). 

The relation between t-PA gene polymorphisms and myo-
cardial infarction or stroke is controversial with some studies find-
ing a relation (134-136) and others not (137, 138). Plasma t-PA 
concentrations correlate with polymorphisms in the genes for sev-
eral renin-angiotensin system proteins, suggesting that this system 
modulates t-PA expression in vivo (139, 140).

Mechanism of the effect of estradiol on plasma t-PA 

The inverse relation between estradiol and plasma t-PA antigen 
concentrations can be explained by its effect on t-PA clearance. In-
deed, clearance of t-PA was significantly faster in estradiol treated 
mice than in control mice; the difference in the two treatment 
groups was reduced by mannan, which inhibits mannose receptor 
mediated t-PA clearance, and not by RAP an inhibitor of LRP-1 
mediated clearance (141). An estradiol-mediated increase in man-
nose receptor, and not in LRP-1 was observed.

Correlation of plasma t-PA with cardiovascular risk 
factors 

In healthy controls, plasma t-PA antigen concentrations are corre-
lated with cardiovascular risk factors, including serum lipids, body 
mass index and markers of systemic inflammation (142). Elevated 
t-PA antigen has been associated with an increased risk of coron-
ary heart disease in some (142-144), but not all studies (145) and a 
recent meta-analysis suggested that elevated t-PA antigen was only 
modestly associated with coronary heart disease (146). One has to 
bear in mind, however, that several factors, relevant for cardiovas-
cular disease, such as PAI-1 or the renin-angiotensin system (see 
below) may correlate with plasma t-PA levels. Another factor that 
may affect plasma t-PA antigen levels is the acute phase response, 
as shown by the correlation between t-PA antigen and C-reactive 
protein (142) and the three-fold increase in plasma t-PA antigen 
(but also the 20-fold increase in PAI-1 antigen) in IL-6-treated ba-
boons (40). For a proper evaluation of correlations of t-PA antigen 
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or activity with cardiovascular disease, therefore, all parameters 
mentioned above, have to be taken into account.

Conclusions

In this review we addressed the functions of t-PA and the many 
mechanisms by which t-PA activity is regulated. Despite the huge 
amount of information gathered thus far, a number of important 
questions remain with respect to t-PA function and regulation of 
its gene expression. Among these: 1) what is the function of t-PA 
expressed by cells outside the vascular system or the central nerv-
ous system; 2) what are the intracellular signal transduction path-
ways mediating t-PA responses to the various agonists in the dif-
ferent cell types; 3) what are the regulatory elements that deter-
mine tissue-specific expression of t-PA; 4) is there a relation be-
tween the C>T polymorphism located at position –7351 and car-
diovascular risk, 5) what is the function of the many thus far un-
known putative regulatory regions that are identified in the t-PA 
gene; 6) Another important question is the in vivo relevance of the 
large number of hormones, growth factors and cytokines that 
modulate t-PA in cultured cells. Are these effects also relevant in 
vivo or artifacts due to the isolation of the target cells from their in 
vivo environment? Well-designed studies, targeted towards the 
specific cell type – agonist combination of interest, are required to 
provide an answer to these questions. Such studies may improve 
our understanding of the ways by which the many physiological 
and pathological functions of t-PA are regulated. This will aid in 
the design of therapeutic approaches to more specifically increase 
or decrease t-PA expression.

Taken together a large body of information is available on the 
many mechanisms that regulate t-PA expression in cultured cells 
and t-PA activity in the pericellular environment or in plasma. 
However, the translation of this information in clinically relevant 
understanding is still insufficient, in particular as concerns the role 
and regulation of t-PA in vivo under physiological and pathologi-
cal conditions.
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