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A B S T R A C T   

Immune-checkpoint inhibitors have revolutionized cancer therapy, yet many patients either do not derive any 
benefit from treatment or develop a resistance to checkpoint inhibitors. Intrinsic resistance can result from 
neoantigen depletion, defective antigen presentation, PD-L1 downregulation, immune-checkpoint ligand upre-
gulation, immunosuppression, and tumor cell phenotypic changes. On the other hand, extrinsic resistance in-
volves acquired upregulation of inhibitory immune-checkpoints, leading to T-cell exhaustion. Current data 
suggest that PD-1, CTLA-4, and LAG-3 upregulation limits the efficacy of single-agent immune-checkpoint in-
hibitors. Ongoing clinical trials are investigating novel immune-checkpoint targets to avoid or overcome resis-
tance. This review provides an in-depth analysis of the evolving landscape of potentially targetable immune- 
checkpoints in cancer. We highlight their biology, emphasizing the current understanding of resistance mech-
anisms and focusing on promising strategies that are under investigation. We also summarize current results and 
ongoing clinical trials in this crucial field that could once again revolutionize outcomes for cancer patients.   

Introduction 

Over the last decade, immune-checkpoint inhibitors (ICI) have 
revolutionized cancer care, offering patients an alternative to chemo-
therapy or targeted therapies and a chance at long-term remission across 
many tumor types. The first two immune-checkpoint receptors for which 
clinically efficient inhibitors were successfully developed were the 
cytotoxic lymphocyte antigen-4 (CTLA-4) and the programmed death-1 
(PD-1) receptor. Most solid tumors and a subset of hematologic malig-
nancies benefit from using one or both drug classes. While ICI were 
initially evaluated and approved for the treatment of metastatic cancers, 
their use has now expanded to include early-stage cancer in certain 
tumor types, such as Triple-Negative Breast Cancer [1] or Non-Small- 
Cell Lung Cancer (NSCLC) [2]. Despite the significant progress her-
alded by these checkpoint inhibitors, most patients do not exhibit long- 
term responses and progress on therapy in the metastatic setting. Both 
primary and acquired resistance are observed that can stem from 
intrinsic and extrinsic mechanisms. 

Intrinsic resistance can result from a multitude of causes, including 
neoantigen depletion, faulty antigen-presentation machinery, 

interferon-gamma defects leading to PD-L1 downregulation and upre-
gulation of immune-checkpoint ligands, immunosuppression and 
phenotypic changes of tumor cells [3,4]. 

Extrinsic resistance causes comprise the acquired upregulation of 
inhibitory immune-checkpoints, which prevent T-cells from exhibiting 
polyclonal activation. In lung cancer, for example, increased expression 
of Programmed Cell Death Protein 1 (PD-1), CTLA-4, T-cell Immuno-
globulin and Mucin containing protein-3 (TIM-3), Lymphocyte activa-
tion gene-3 (LAG-3) and B and T Lymphocyte Attenuator (BTLA) on 
intratumoral CD8 T-cells appears to be correlated with the natural 
course of disease progression. Co-expressed inhibitory checkpoint re-
ceptors are sequentially upregulated and promote T-cell exhaustion, a 
state in which T-cells persistently stimulated by antigen exposure 
gradually lose their effector function and capacity to proliferate [5]. This 
phenomenon renders restoring T-cell function with PD-1 inhibitors more 
difficult. Similarly, treatment with PD-1 inhibitors, such as nivolumab, 
is followed by the upregulation of multiple checkpoint receptors, lead-
ing to resistance [6]. Moreover, upregulation of PD-1, CTLA-4 and LAG- 
3 limit the efficacy of single agent immune-checkpoint inhibitors [7,8] 
and are a mechanism of acquired resistance. 
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Many immune checkpoints have been identified, and there is great 
progress in understanding their biology. As such, clinical trials are 
ongoing of novel molecules that may overcome acquired resistance to 
immune-checkpoint inhibitors and prevent the emergence of extrinsic 
resistance mechanisms. As will be discussed in this review, some of these 
studies evaluate the upfront use of these new ICI in association with anti- 

PD-1/L1 to potentiate anti-PD-1/-L1 efficacy and prevent the emergence 
of resistance mechanisms. In contrast, others explore their efficacy at 
progression to overcome tumor immune escape. 

In this review, we will discuss the growing landscape of potentially 
targetable immune-checkpoints in cancer through an in-depth analysis 
of their biology and of both published and ongoing clinical trials. Fig. 1 

Fig. 1. Current and novel targets of immune-checkpoint inhibition in cancer.  
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provides an overview of the biological mechanisms of these novel 
targets. 

Lymphocyte activation gene-3 (LAG-3) 

LAG-3 is a co-inhibitory receptor expressed by immune cells and a 
type I transmembrane protein of the Ig superfamily [9]. Its extracellular 
domain harbors four Ig-like domains that share about 20% homology 
with the CD4 receptor. LAG-3 is expressed on the surface of lympho-
cytes, such as CD4 T cells, CD8 T cells, natural killer (NK) cells, and 

regulatory T cells (Treg) [10]. LAG-3 acts as a negative regulator of T- 
cell proliferation and effector T-cell activation [11,12], although the 
precise molecular pathways remain to be elucidated [13]. Several li-
gands of LAG-3 have been described, such as the major histocompati-
bility complex class II (MHC-II) [14], the fibrinogen-like protein 1 (FGL- 
1) [15], Galectin-3 (Gal-3) [16], and LSECTin [17]. Since the interaction 
of LAG-3 with MHC-II is of higher affinity than with other ligands, LAG-3 
is thought to interfere with the CD4-MHC-II interaction, thereby 
dampening T-cell activation [14]. However, the interaction between 
LAG-3 and MHC-II is probably more complex than just competitive 

Table-1 
Completed and ongoing phases III trials.  

Target Drug/intervention Tumor type Patients Results Clinical trial 

LAG-3 + PD- 
1 

Relatlimab + Nivolumab Vs Nivolumab Metastatic melanoma, 1st line 714 HR for PFS 0.75 
[95%CI 0.62 to 
0.92] 

Relativity-047 
(NCT03470922) 

Relatlimab + Nivolumab Vs Nivolumab Stage III or IV resected melanoma, 
adjuvant 

1050 Ongoing Relativity-098 
(NCT05002569) 

Relatlimab + Nivolumab Vs TAS102 or regorafenib Metastatic colorectal cancer 700 Ongoing Relativity-123 
(NCT05328908) 

Fianlimab + Cemiplimab vs Pembrolizumab Unresectable locally advanced or 
metastatic melanoma, 1st line 

1590 Ongoing NCT05352672 

Fianlimab + Cemiplimab vs Pembrolizumab Stage IIC to IV resected melanoma, 
adjuvant 

1530 Ongoing NCT05608291 

TIM-3 MBG453 + azacytidine vs placebo + azacitidine Intermediate/high risk myelodysplastic 
syndrome; Chronic Myelomonocytic 
Leukemia 

530 Ongoing NCT04266301 

TIGIT + PD-1 Ociperlimab + Tislelizumab vs Pembrolizumab Locally advanced unresectable, or 
metastatic NSCLC, PD-L1 ≥ 50%, 1st 
line 

660 Ongoing NCT04746924 

Ociperlimab + Tislelizumab + Concurrent 
Chemoradiotherapy (cCRT) Followed by Ociperlimab +
Tislelizumab vs Tislelizumab + cCRT Followed by 
Tislelizumab vs cCRT Followed by Durvalumab 

Locally advanced, unresectable stage III 
NSCLC 

700 Ongoing NCT04866017 

Atezolizumab + Tiragolumab vs Atezolizumab Unresectable esophageal squamous cell 
carcinoma after definitive concurrent 
chemo-radiotherapy 

750 Ongoing SKYSCRAPER-07 
(NCT04543617) 

Atezolizumab + Tiragolumab vs Atezolizumab Locally advanced unresectable, or 
metastatic NSCLC PD-L1 ≥ 50%, 1st line 

660 No improvement in 
PFS (unpublished 
results) 

SKYSCRAPER-01 
(NCT04294810) 

Tiragolumab + Atezolizumab + Platinum-Pemetrexed 
vs Pembrolizumab + Platinum 

Locally advanced unresectable, or 
metastatic NSCLC 

540 Ongoing SKYSCRAPER-06 
(NCT04619797) 

Tiragolumab + Atezolizumab + Carboplatin +
Etoposide vs placebo + Atezolizumab + Carboplatin +
Etoposide 

Extensive-Stage Small Cell Lung Cancer, 
1st line 

490 HR for OS 1.04 [95% 
CI 0.79 to 1.36] 
HR for PFS 1.11 
[95% CI 0.89 to 
1.38] 

SKYSCRAPER-02 
(NCT04256421) 

Tiragolumab + Atezolizumab + Carboplatin +
Etoposide vs placebo + Atezolizumab + Carboplatin +
Etoposide 

Extensive-Stage Small Cell Lung Cancer, 
1st line 

123 Ongoing SKYSCRAPER-02C 
(China) 
(NCT04665856) 

Atezolizumab + Tiragolumab + Paclitaxel + Cisplatin 
vs Paclitaxel + Cisplatin 

Unresectable locally advanced, 
recurrent, or metastatic esophageal 
carcinoma, 1st line 

461 Ongoing SKYSCRAPER-08 
(NCT04540211) 

Tiragolumab + Atezolizumab vs Durvalumab Locally advanced, unresectable stage III 
NSCLC, maintenance 

829 Ongoing SKYSCRAPER-03 
(NCT04513925) 

Pembrolizumab + Vibostolimab vs Pembrolizumab Resected, high-Risk Stage II-IV 
melanoma, adjuvant 

1560 Ongoing MK-7684A-010/ 
KEYVIBE-010 
(NCT05665595) 

Domvanalimab + Zimberelimab + Chemotherapy vs 
Nivolumab + Chemotherapy 

Locally advanced unresectable or 
metastatic gastric, gastroesophageal 
junction, and esophageal 
adenocarcinoma, 1st line 

970 Ongoing STAR-221 
(NCT05568095) 

Domvanalimab + Zimberelimab + platinum-based 
chemotherapy vs Pembrolizumab platinum-based 
chemotherapy 

Metastatic NSCLC, 1st line 720 Ongoing STAR-121 
(NCT05502237) 

Domvanalimab + Durvalumab vs Durvalumab Stage III Locally advanced, unresectable stage III 
NSCLC, maintenance 

860 Ongoing PACIFIC-8 
(NCT05211895) 

NKG2A Monalizumab + Cetuximab vs Cetuximab Metastatic HNSCC relapsing after 
platinum-based chemotherapy and PD- 
(L)-1 inhibitor 

370 Closure for futility 
(unpublished) 

INTERLINK-1 
(NCT04590963) 

NKG2A +
PD-L1; 
CD73 +
PD-L1 

Monalizumab + Durvalumab vs Oleclumab +
durvalumab vs Durvalumab + Placebo 

Locally advanced, unresectable stage III 
NSCLC, maintenance 

999 Ongoing PACIFIC-9 
(NCT05221840)  
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binding, and other mechanisms contribute to the inhibitory effect of 
LAG-3. LAG-3 seems to recognize stable complexes of peptide and MHC- 
II selectively, and not all MHC-II universally [18]. The binding of LAG-3 
to a particular stable peptide-MCH-II complex suppresses the respon-
siveness to the antigen in the T-cell. Interaction of LAG-3 with Gal-3 or 
FGL-1 also leads to T-cell inactivation in vitro [15,16]. Interestingly, 
FGL-1 is upregulated in tumors but not in normal tissues [15]. For 
example, FGL-1 expression has been described on the surface of tumor 
cells in NSCLC, which has been shown to be associated with a worse 
prognosis [15]. FGL-1 levels were furthermore associated with resis-
tance to PD-1/PDL-1 blockade. In mouse models, targeting the FGL-1- 
LAG-3 interaction achieved anti-tumor activity dependent on CD8 and 
CD4 T cells. Moreover, the concurrent blockade of LAG-3 and PD-1 led to 
a higher anti-tumor activity than that of LAG-3 alone in various pre- 
clinical models [19,20]. 

Various anti-LAG-3 agents have entered clinical trials. Relatlimab is a 
human IgG4 monoclonal antibody targeting LAG-3 and blocking inter-
action with its ligands, including MHC-II. Its anti-tumor activity and 
safety were demonstrated in phase I/II trials in patients with tumors 
refractory to anti-PD-1/L1 therapy, [21]. In the phase III RELATIVITY- 
047 trial, Relatlimab was further tested as first-line treatment in com-
bination with nivolumab for metastatic melanoma [22]. The association 
showed an improvement in progression-free survival (PFS) over nivo-
lumab alone (hazard ratio for progression or death, 0.75 (95% CI 
0.62–0.92); P = 0.006). The combination was deemed safe, with 18.9% 
of the patients experiencing Grade 3 or 4 treatment-related adverse 
events (AEs) versus 9.7% of patients in the nivolumab group. Overall 
survival data are still awaited. Nivolumab and relatlimab demonstrated 
a more modest clinical activity in melanoma patients after progression 
on anti-PD-1/-L1 in the phase I/IIa Relativity-020 trial, with an overall 
response rate (ORR) of 12% and 9.2% after one or more anti-PD1 con-
taining regimen, respectively [23]. The combination of nivolumab and 
relatlimab also showed promising results in the neoadjuvant setting in 
stage III or oligometastatic stage IV melanoma [24]. Among 30 patients, 
57% had a pathological complete response rate after 2 cycles, and no 
grade 3–4 immune-related AEs were reported. As a comparison, in the 
OPACIN-NEO trial, the association of ipilimumab (anti-CTLA-4) and 
nivolumab (anti-PD1) showed a pathological complete response rate of 
47 and 57% for the ipilimumab 3 mg/kg - nivolumab 1 mg/kg and 
ipilimumab 1 mg/kg – nivolumab 3 mg/kg regimens respectively, but 
with many more immune-related adverse events (grade 3–4 immune- 
related AEs of 40% and 20% within 12 weeks for each regimen 
respectively) [25]. Relatlimab is currently being tested in combination 
with nivolumab in various tumor types (cf. Table 1). 

Favezelimab is another antibody targeting LAG-3, which is currently 
being evaluated in a phase III trial in microsatellite-stable (MSS) meta-
static colorectal cancer (NCT05064059). In a phase I trial, including 
patients with metastatic colorectal cancer and gastric cancer, favezeli-
mab, in combination with pembrolizumab, had a favorable safety profile 
but only a modest anti-tumor activity, with an overall response rate of 
6% and 11.6 in patients with colorectal cancer [26], and gastric cancer, 
respectively [27]. Favezelimab is also being tested in lymphomas 
(NCT03598608) (see Table 2). 

Another LAG3 inhibitor, Ieramilimab (LAG525) was tested in mul-
tiple tumor types in a phase I/II trial [28]. The combination with the 
anti-PD1 spartalizumab led to a response in PD-1/L1 naïve patients but 
showed only modest anti-tumor activity in patients pre-treated with PD- 
1/-L1 inhibitors (ORR < 10%; 5.3%, 6.3% and 9.1% in patient with RCC, 
mesothelioma and melanoma respectively, 0% for NSCLC and TNBC) 
[29]. Other strategies, such as combining the targeting of PD-1 and LAG- 
3 with a single molecule, are also in development, like RO7247669, an 
anti-PD1-LAG3 bispecific antibody, or Tebotelimab, a bispecific DART® 
(Dual-Affinity Re-Targeting) molecule that selectively inhibits PD-1 and 
LAG-3 (NCT04082364). 

An additional LAG3 inhibitor, Fianlimab, was tested in combination 
with cemiplimab in an advanced melanoma phase I trial, with an 

Table-2 
Selected completed and ongoing phases I and II trials.  

Target Drug/intervention Phase Tumor type Clinical trial 

LAG-3 +
PD-L1 

Nivolumab +
relatlimab 

II Multiple solid tumors 
(NCT01968109)CRC  
(NCT03642067) 
Metastatic soft‑tissue sarcoma 
(NCT04095208)HNSCC  
(NCT04080804; 
NCT04326257)NSCLC 
(NCT04205552)  
(NCT02750514)Renal cell 
carcinoma  
(NCT02996110)Gastric cancer  
(NCT02935634)Metastatic 
melanoma  
(NCT04552223, 
NCT03743766, NCT03724968) 
Hepatocellular carcinoma  
(NCT04567615)Metastatic 
basal cell carcinoma  
(NCT03521830)Metastatic 
NSCLC  
(NCT04623775)Metastatic CRC  
(NCT03867799)Gastro- 
esophageal junction 
adenocarcinoma  
(NCT03704077 NCT03662659, 
NCT03610711, NCT04062656) 
Metastatic ovarian cancer  
(NCT046111269)Multiple 
myeloma  
(NCT04150965) 

REGN3767 +
cemiplimab 

II Breast cancer (NCT01042379) 
Advanced solid tumors  
(NCT04706715) 

LAG525 +
spartalizumab 

II TNBC (NCT03499899) 
Advanced solid tumors  
(NCT03365791, 
NCT02460224) 
Melanoma (NCT03484923 

LAG-3 +
PD-1 +
TIM-3 

INCAGN02385 +
INC‑MGA00012 +
INCAGN02390 

II Advanced solid tumors 
(NCT04370704) 

TIM-3 +
PD-1 

BMS‑986258 +
nivolumab 

II Advanced solid tumors 
(NCT03446040) 

BGB‑A425 +
tislelizumab 

II Advanced solid tumors 
(NCT03744468)  

TSR‑022 + TSR‑042 II Liver cancer (NCT03680508) 
Melanoma  
(NCT04139902) 

TIGIT +
PD-L1 

Tiragolumab +
atezolizumab 

II Cervical cancer 
(NCT04300647)Gastric and 
esophageal adenocarcinoma  
(NCT03281369)Urothelial 
carcinoma  
(NCT03869190)Pancreatic 
adenocarcinoma  
(NCT03193190)NSCLC  
(NCT03563716, 
NCT04619797)SCLC  
(NCT04308785)HNSCC  
(NCT04665843, 
NCT03708224) 

Domvanalimab +
zimberelimab 

II NSCLC (NCT04262856) 
Advanced solid tumors  
(NCT03628677) 

BMS‑986207 +
nivolumab   

Advanced solid tumors 
(NCT02913313, 
NCT04570839) 

CD112R 
+/- PD-1 

COM701 +/- 
nivolumab 

I Advanced solid tumors 
(NCT03667716) 

B7-H3 DS‑7300a II Advanced solid tumors 
(NCT04145622) 

Enoblituzumab II Prostate cancer 
(NCT02923180) 

(continued on next page) 
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interesting ORR of 62.5% and an acceptable toxicity profile [30]. This 
combination is also being tested in NSCLC [31]. 

Sym002, BI 754111, HLX26, TSR-033 and INCAGN02385 are other 
anti-LAG-3 antibody in development, alone or in combination with 
other immune checkpoints inhibitors (NCT03489369, NCT04370704, 
NCT03005782, NCT05287113, NCT05584137, NCT03250832, 
NCT03156114, NCT03433898). 

T-cell immunoglobulin and mucin domain-3 (TIM-3) 

TIM-3 is a surface glycoprotein encoded by the hepatitis A virus 
cellular receptor 2 (HAVCR2) gene and a member of the TIM family of 
immunoregulatory proteins [32,33]. TIM-3 is expressed by various types 
of immune cells: T Helper-1, CD8 T cells, regulatory T cells (T-reg), 
myeloid cells, natural killer cells and mast cells [34]. TIM-3 comprises 
an extracellular N-terminal immunoglobulin variable domain (v- 
domain), a mucin stalk, a transmembrane domain and an intra- 
cytoplasmic domain. When TIM-3 is not bound to its ligand, the HLA- 
B-associated transcript 3 (BAT3) protein is attached to its intracellular 
v-domain. The binding of BAT3 to the v-domain leads to the recruitment 
of the activated LCK kinase. This mechanism is thought to allow T-cell 
activation [34]. Four ligands have been described for TIM-3: galectin-9 
(Gal-9), phosphatidylserine (PtdSer), high-mobility group protein B1 
(HMGB1), and carcinoembyronic antigen-related cell adhesion molecule 
1 (CEACAM1) [34]. Gal-9 is found at the surface of tumor cells, or in a 
soluble form secreted by tumor cells or antigen-presenting cells (APCs) 
[34]. CEACAM1 is found on the surface of some tumor cells [35] and 
macrophages, monocytes and dendritic cells. PtdSer is a phospholipid 
released from apoptotic cells. HMGB1 is a non-histone protein with 
multiple functions [36]. It can be bound to DNA released from dying 
cells or secreted by tumor cells. 

Gal-9 and CEACAM1 bind to two different regions of the extracel-
lular v-domain, but both induce the same intracellular downstream ef-
fect: phosphorylation of the two tyrosine residues Tyr256 and Tyr263, 

upon which the BAT3 protein unbinds from the intra-cytoplasmic 
domain of TIM-3 [37]. This allows the binding of the tyrosine kinase 
FYN. FYN is supposed to have a competitive role to BAT3, as it binds to 
TIM-3 at the same location as BAT3, but leads to T-cell inactivation via 
an interaction with the phosphoprotein associated with glycolipid- 
enriched membranes (PAG) protein and CSK tyrosine kinase [38]. 
Consequently, the binding of TIM-3 to its ligand in T-cells ultimately 
leads to a decrease in T-cell receptor signalling, T-cell inhibition and to 
cell death [37,39]. TIM-3 is indeed found on exhausted tumor- 
infiltrating CD8 lymphocytes in various cancers [40,41]. T-reg cells in 
the tumor microenvironment also frequently express TIM-3, which has 
been shown to be associated with a worse prognosis [42]. TIM-3 upre-
gulation has been shown after a first response to anti-PD-1 therapy, in 
mouse models and in patients who developed acquired resistance to 
anti-PD-1 [43]. Moreover, in mouse models, the inhibition of TIM-3 led 
to a restoration of anti-PD-1 activity, and prolonged survival after anti- 
PD-1 failure [43]. Other pre-clinical models showed the superiority of 
dual blockade of PDL-1 and TIM-3 over PD-1 blockade alone in tumor 
control [41,44]. The targeting TIM-3 could also affect tumor growth by 
modulating T-reg activity. In pre-clinical models of head and neck 
cancer, dual TIM-3 and PD-1 blockage induced a depletion of tumor 
infiltrating TIM-3 + T-reg cells, associated with better tumor growth 
control [45], underlining the highly complex immunoregulatory 
mechanisms of TIM-3. 

Based on these results, molecules targeting TIM-3 have entered 
clinical trials, for which some preliminary results are available. Saba-
tolimab (MBG453), a monoclonal antibody targeting TIM-3, was tested 
in phase I/II trials either alone (133 patients) or in combination (86 
patients) with spartalizumab, in patients with advanced solid tumors44. 
The combination was relatively well tolerated, with grade 3–4 AEs 
suspected to be treatment-related reported in only 9% of patients. Effi-
cacy, however, was somewhat disappointing, as no patient had an 
objective response with sabatomimab monotherapy, and only 5 patients 
presented a partial response (6%, lasting 12–27 months) in the combi-
nation group. 

LY3321367, another TIM-3-targeting antibody, was evaluated alone 
or in combination with LY300054, an anti-PD-L1 antibody, in a phase 
Ia/Ib trial of patients with solid tumors [46]. No dose-limiting toxicity 
occurred in the dose escalation cohorts, neither with monotherapy nor 
combination therapy. A monotherapy expansion cohort of non-small cell 
lung cancer patients demonstrated a poor overall response rate, with 
only 1 partial response. However, more stable disease and longer me-
dian PFS (7.3 versus 1.9 months) were observed in patients with prior 
response to standard-of-care anti-PD-1/L1 therapy versus anti-PD-1/L1 
refractory patients. Nevertheless, the interpretation of these findings is 
limited due to the relatively small sample size. A combination expansion 
cohort revealed an overall response rate of 4%, a disease control rate of 
42% and a median PFS ranging from 1.5 to 3.7 months in patients with 
various tumor types. Interestingly, many patients developed anti-drug 
antibodies, although with no apparent repercussions on exposure and 
target engagement, as shown by pharmacokinetic and pharmacody-
namics studies. 

The LY3321367 and LY300054 combination was also evaluated in 
82 patients with microsatellite instability-high/mismatch repair-defi-
cient (MSI-H/dMMR) tumors [47]. Patients with no prior anti-PD-1/L1 
therapy received the anti-PD1 LY300054 in monotherapy (40 patients) 
or combination with LY3321367 (20 patients). Grade 3 or 4 treatment- 
related AEs occurred in 3 patients (7.1%) receiving the combination. An 
objective response rate of 45% was observed for patients treated with 
the combination therapy that were anti-PD1/L1 naïve patients (versus 
32.5% for the anti-PD1 LY300054 monotherapy). A more limited 
treatment efficacy (ORR 4.5) was observed in patients with anti-PD-1/ 
L1 resistant MSI-H/dMMR tumors. 

Cobolimab (TSR-022/GSK4069889) was tested in a phase I trial in 
patients with advanced solid tumors either as a monotherapy or com-
bined with anti-PD1 antibodies (dostarlimab and nivolumab). The 

Table-2 (continued ) 

Target Drug/intervention Phase Tumor type Clinical trial 

BTLA JS004 I Advanced solid tumors 
(NCT04278859) 

TAB004 I Advanced solid tumors 
(NCT04137900) 

NKG2A Monalizumab II Metastatic HNSCC 
(NCT02643550), 
(NCT03088059)Breast cancer  
(NCT04307329)Chronic 
lymphoid leukemia  
(NCT02557516) 

NKG2A +
PD-1 

Monalizumab +
durvalumab 

II CRC (NCT04145193)Advanced 
solid tumors  
(NCT02671435)NSCLC 
(NCT03822351) 
(NCT038223519)  
(NCT03833440) 

CD200 Samalizumab II AML (NCT03013998)Multiple 
myeloma  
(NCT00648739) 

CD73 +
PD-1 

Durvalumab +
Oleclumab 

II Sarcoma (NCT04668300) 

ICOS + PD- 
1 

JTX-4014 +
Vopratelimab 

I NSCLC (NCT04549025) 

GITR TRX518-001 I Melanoma (NCT01239134) 
GITR + PD- 

1 
REGN6569 +
Cemiplimab 

I Advanced Solid Tumor 
(NCT04465487) 

VISTA CI 8993 I Advanced solid tumors 
(NCT04475523) 

HMBD-002 I Advanced solid tumors 
(NCT05082610) 

VISTA, PD- 
L1 & PD- 
L2 

CA-170 I Advanced solid tumors and 
lymphomas (NCT02812875)  
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combination was safe, with less than 20% of grade ≥3 treatment-related 
AEs, and an ORR of 42.9% in melanoma patients [48]. 

A phase I trial investigated the safety and efficacy of LY3415244, a 
bispecific antibody against TIM-3 and PD-L1, in 12 patients with 
advanced solid tumors [49]. The study was terminated early, however, 
as two patients presented treatment-related anaphylactic reactions, and 
all patients developed anti-drug antibodies. Multiple other anti-TIM-3 
antibodies are currently being tested in phase I/II trials, alone or in 
combination with anti-PD1/L1 in liver cancer (NCT03680508), mela-
noma (NCT04139902, NCT04370704), non-small cell lung cancer 
(NCT04931654), glioblastoma (NCT03961971), esophageal squamous 
cell carcinoma (NCT04785820), or in trials including patients with 
various advanced tumor types (NCT03311412, NCT03744468, 
NCT04641871, NCT03708328 and NCT02817633). 

T cell immunoglobulin and ITIM domain (TIGIT) 

TIGIT is another member of the immunoglobulin superfamily, first 
described in 2009 [50]. It is composed of an extracellular variable 
domain, a transmembrane stalk, and an intracellular tail. The intracel-
lular domain contains an immunoreceptor tyrosine-based inhibitory 
motif (ITIM) domain and an Ig tail-tyrosine (ITT)-like motif that are 
implicated in the regulatory signal transduction within the immune cell 
[51]. TIGIT is expressed in CD8 + T cells, memory and regulatory CD4 +
T cells, T-reg and NK cells [52]. Various ligands for TIGIT have been 
described, like PVR (CD155), CD112 (nectin-2), and CD113 (nectin-3) 
[50]. These ligands have been described on tumor cells and antigen- 
presenting cells. PVR expression, in particular, was described and 
associated with worse prognosis in many tumor types, including colon 
cancer, NSCLC, melanoma and pancreatic cancer. [53–56]. 

TIGIT binding with PVR leads to decreased TCR expression and p- 
ERK mediated signalling in CD8 + T-cells [51,57], thus reducing T-cell 
activation and proliferation. In NK cells, the interaction of TIGIT with its 
ligand decreases cytokine release and cytotoxic function by recruiting 
the SHP-1 phosphatase by the TIGIT ITIM and ITT-like intracellular 
domains, leading to a blockade of the MAPK signalling [58]. Other 
mechanisms are involved in the regulation of T-cell activity by TIGIT. 
CD226 (DNAM-1) and CD96 are other receptors at the T-cell surface that 
share identical ligands with TIGIT, and their competitive binding 
interaction also plays a role in regulating T-cell activation. CD226 is a 
co-stimulatory receptor which activates T-cells upon binding to its 
ligand PVR. TIGIT, having a higher affinity for PVR than CD226 [50], 
interferes with the CD226-PVR interaction, thereby decreasing CD226- 
mediated T-cell activation [59]. Moreover, TIGIT directly interferes 
with CD226 homo-dimerization, leading to a decrease in CD226 
signaling [60]. 

TIGIT expression has been reported in several tumors, such as NSCLC 
and SCLC, melanoma, and colorectal cancers, and is a marker of poor 
prognosis [61]. TIGIT is frequently co-expressed with PD-1 in CD8 + T 
cells of the tumor microenvironment, constituting a potential mecha-
nism of immune evasion and ICI resistance [62]. 

Many drugs targeting TIGIT have entered clinical development. 
Tiragolumab, the most advanced anti-TIGIT antibody in its clinical 
development, has been studied in several tumor types. In the phase II 
CITYSCAPE trial, Tiragolumab combined with the anti-PD-L1 atezoli-
zumab was evaluated in NSCLC [63]. Among 135 randomized patients, 
the combination demonstrated a significant improvement in ORR (37% 
vs 21%) and PFS (5.6 vs 3.9 months) compared to Atezolizumab. 
Notably, the ORR increased to 66% in patients with tumors with a PD- 
L1 ≥ 50%. The treatment was described as safe, with comparable rates of 
treatment-related AEs between both groups (~20%). The predictive 
effect of TIGIT expression was also assessed in the trial, with 49 out of 
105 patients being defined as TIGIT-high (≥5% on IC). TIGIT expression 
did not affect PFS (HR 0.62, 95% CI 0.30–1.32). The phase III 
SKYSCRAPER-01 trial sought to follow up on the promising results of 
CITYSCAPE, evaluating the same regimen for the first-line treatment of 

metastatic NSCLC with PD-L1 ≥ 50%. However, the combination 
treatment did not improve PFS and the OS results are still awaited [64]. 
In the phase III SKYSCRAPER-06 study (NCT04619797), the combina-
tion of tiragolumab and atezolizumab in association with chemotherapy 
is being tested in metastatic NSCLC regardless of PD-L1 expression 
versus pembrolizumab plus pemetrexed and platinum-based chemo-
therapy,. While in the phase III SKYSCRAPER-03 trial (NCT04513925), 
atezolizumab and tiragolumab are being compared with durvalumab in 
treating unresectable stage III NSCLC. 

In SCLC, the phase III trial SKYSCRAPER-02 evaluated tiragolumab 
or placebo, in combination with the carboplatin, etoposide and atezo-
lizumab, in the first-line metastatic setting [65]. At an interim analysis, 
the trial failed to meet its co-primary endpoint of PFS improvement, 
with a PFS of 5.4 versus 5.6 months (p = 0.35). 

Tiragolumab is being evaluated in several other indications, such as 
unresectable locally advanced esophageal squamous cell carcinoma 
associated with atezolizumab in the SKYSCRAPER-07 phase III trial 
(NCT04543617) or in hematological malignancies (NCT05315713, 
NCT04045028). 

Domvanalimab, an IgG1 monoclonal antibody targeting TIGIT and 
reducing immunosuppression of T/NK cells, has been evaluated in 
NSCLC in the ARC-7 randomized phase II trial [66]. In combination with 
the anti-PD1 agent zimberelimab, domvanalimab showed superior ORR 
(41% vs 27%) and PFS (12 vs 5.4 months) versus zimberelimab in 
metastatic NSCLC with PD-L1 ≥ 50%. A third arm of the trial evaluated 
the triple combination of zimberelimab, domvanalimab and the aden-
osine receptor antagonist A2a and A2b etrumadenant, with results 
comparable to zimberelimab + domvanalimab. An ongoing phase III in 
NSCLC evaluates the combination of zimberelimab and domvanalimab 
with chemotherapy, compared to the standard of care consisting of 
pembrolizumab and chemotherapy (NCT05502237). Furthermore, 
domvanalimab is assessed in unresectable stade III NSCLC in association 
with durvalumab (NCT05211895), and zimberelimab. Furthermore, 
domvanalimab is also being tested in other cancer types such as upper 
gastrointestinal tract tumors (NCT05568095, NCT05329766) and mel-
anoma (NCT05130177). 

Ociperlimab, a third anti-TIGIT antibody, was evaluated in associa-
tion with the anti-PD-1 tislelizumab and platinum-based chemotherapy 
in patients with metastatic squamous and non-squamous NSCLC [67]. 
The ORR was 45.9% in squamous NSCLC, and 25.6% in non-squamous 
NSCLC (95% CI: 0.1, 0.4), with 57% of patients developing grade ≥3 
AEs. 

Various other anti-TIGIT are in development, such as vibostolimab 
[68], M6223 [69], IBI939 [70], etigilimab [71] or BAT6021 
(NCT05073484). 

V-domain Ig suppressor of T-cell activation (VISTA) 

VISTA, encoded by the Vsir gene located on chromosome 10 
(10q22.1), is a transmembrane protein with an extracellular IgV domain 
of the B7 protein family. It is also known as PD-1 homolog (PD-1H), B7- 
H5, V-set immunoregulatory receptor (VSIR), stress-induced secreted 
protein 1 (SISPQ), and differentiation of embryonic stem cells 1 (Dies1) 
[72]. It shares a 22% homology with PD-L1. VISTA is expressed on 
various immune cells, such as monocytes, dendritic cells, macrophages, 
circulating granulocytes, T cells, T-reg, and TILs, where it acts as an 
immune regulatory checkpoint [73,74]. VISTA is found predominantly 
in tissues presenting high levels of infiltrating leukocytes in humans 
[74]. Little is known about the ligands, co-receptors and signalling 
pathways through which VISTA regulates T-cells activity. The V-Set and 
Immunoglobulin domain containing 3 (VSIG3) [75], which is upregu-
lated in gastric, colorectal and liver cancer [76], and the P-selectin 
glycoprotein-1 (PSGL1) are binding partners, the latter at an acidic pH 
[77]. The VISTA-VSIG3 interaction inhibited T-cell proliferation and 
cytokine production in vitro [75]. As mentioned above, evidence from in 
vitro studies support the role of VISTA as an immune regulatory 
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checkpoint [73,74]. In a mouse model of autoimmune encephalomy-
elitis, blocking VISTA led to an increase in T-cell auto-immunity [78]. In 
another murine model of acute hepatitis, a VISTA-specific monoclonal 
antibody agonist directly inhibited T-cell activation and suppressed T- 
cell mediated acute inflammation [79]. VISTA expression on both T-cell 
and APC seems to contribute to the inhibition of T-cell activation, as in 
vitro analyses showed that VISTA deletion on both APC and T-cells led to 
a further increase in T-cell proliferation when compared to VISTA 
deletion in a single cell type [79]. Unlike other immune checkpoint, 
VISTA is also expressed on naïve T cells, where it maintains quiescence 
and promotes peripheral immune tolerance [73]. 

In tumors, VISTA expression has been identified in pancreatic cancer 
[80,81], melanoma, [80] mesothelioma [82], NSCLC, [83] breast cancer 
[84], colorectal cancer [85], renal clear cell carcinoma [86], endome-
trial and ovarian cancer [87]. Based on data from The Cancer Genome 
Atlas, mesothelioma showed the most significant VISTA expression 
among all cancer types [88]. Interestingly, VISTA expression on biopsies 
collected from patients upon progression after an initial response to 
immune checkpoint inhibitors was increased compared to pre-treatment 
biopsies, suggesting VISTA’s potential role in resistance anti-PD1/-L1 
therapies in melanoma [62]. Blando and colleagues compared the mi-
croenvironments of an immune-checkpoint inhibitor-sensitive (mela-
noma) and a resistant tumor (pancreatic cancer). They observed a 
significantly higher number of VISTA-positive cells in the pancreatic 
stromal area compared with melanoma, despite lower infiltration of 
CD3, CD4, and CD8 T cells, supporting a role for VISTA as an immune 
regulatory checkpoint in pancreatic cancer. 

Drugs targeting VISTA, alone or in combination with the PD-L1 
blockade, have been developed and are currently the object of early 
clinical trials (cf. Table 1), with the first results expected soon. 

CD112R 

CD112R, also known as PVRIG (Poliovirus Receptor (PVR)-related Ig 
Domain) is a transmembrane receptor belonging to the PVR family and a 
member of the DNAM1/TIGIT/PVR axis [89]. It comprises an extracel-
lular IgV domain, a transmembrane segment and an intracellular 
domain harboring an ITIM-like region with two tyrosine residues: Y233 
and Y293. The Y233 and its phosphorylation are implicated in the 
intracellular CD112R-mediated signal transduction [89]. CD112R is 
expressed predominantly on NK and T-cells, mainly effectors and 
memory CD8 + cells, and is found in various tumors, such as kidney, 
ovarian, lung and prostate cancer and acute myeloid leukemia [90]. 
CD112R binds to CD112 (also called PVRL2 or Nectin-2), a trans-
membrane protein of the nectin family, found in various cells and tis-
sues, which is also a ligand for TIGIT [91]. CD112 is also expressed in 
tumor cells, dendritic cells, tumor-associated macrophages, and non- 
immune cells such as fibroblasts or endothelial cells [89,92]. CD112 
expression levels in tumor cells often correlate with CD112R expression 
in TILs. Co-expression of both proteins has been described in the same 
tumor sample, supporting a role for the CD112R-CD112 interaction in 
regulating the tumoral immune microenvironment [92]. CD112R in-
hibits TCR-signaling in T-cells and T-cell activation in vitro [89]. In pre- 
clinical models of various tumor types, blocking the CD112R-CD112 
interaction promoted T-cell and NK-cell activation and was associated 
with a slower tumor progression [93]. Moreover, dual blockade of 
CD112R with TIGIT or PD-L1 further enhanced T-cells activation and 
tumor control [92–95]. 

CD112R blockade is currently being tested in clinical trials, with 
preliminary results reported of a phase I clinical trial evaluating 
COM701, a CD112R-targeting antibody that prevents its binding to 
CD112 [96]. Sixteen patients received COM701 alone, and 12 received 
COM701 plus nivolumab. While one patient in each group had a partial 
response, stable disease was observed for several, with a clinical benefit 
rate of 69% and 75% with monotherapy or combination therapy, 
respectively. COM701 was generally well tolerated and is currently 

being tested in triple combination with anti-TIGIT and anti-PD-L1. 
Preliminary results from 13 patients treated in the phase I dose escala-
tion study revealed a favorable safety profile with no dose-limiting 
toxicities and 23% of stable disease [97]. A phase II testing of this tri-
ple combination is ongoing. 

Inducible Co-stimulatory receptor (ICOS) 

ICOS (or CD278) is a co-stimulatory receptor expressed on T-cells, 
structurally a homodimeric protein, and a CD28/CTLA-4 family member 
[98]. ICOS is constitutively expressed on T-regs, whereas on CD4 + and 
CD8 + T-cells, its expression is induced by TCR activation. In TILs, ICOS 
expression varies according to subtype, with the most significant 
expression being observed in T-reg, followed by CD4 + and CD8 + T- 
cells [99]. The interaction of ICOS with its ligand ICOS-L (CD275) in-
duces the production of pro-inflammatory cytokines such as IFNγ and 
TNFα in T-effectors cells, whereas in T-regs, it leads to the production of 
anti-inflammatory cytokines such as IL-10. ICOS-L is expressed on 
antigen-presenting cells, B-cells, macrophages and dendritic cells, and 
other cells from the tumor micro-environment, such as fibroblasts and 
endothelial cells, where TNF promotes its expression-α [100]. The ICOS- 
ICOS-L interaction can thus play a dual role in tumor evolution: a pro- 
tumor effect by maintaining T-regs activity and an anti-tumor effect 
by promoting CD4 + and CD8 + T-cells [101]. ICOS expression in T-regs 
cells has indeed been shown to be associated with a worse outcome in 
gastric cancer [102], while higher ICOS expression on Th1-CD4 + cells is 
associated with better survival in colorectal cancer [103]. Interestingly, 
higher ICOS expression has also been demonstrated after anti-CTLA-4 
antibody exposure in pre-clinical models, suggesting a potential role 
for ICOS in anti-CTLA-4 mediated anti-tumor response [104]. Moreover, 
the same authors demonstrated that concurrent anti-CTLA-4 and ICOS 
stimulation led to a better anti-tumor effect than anti-CTLA-4 alone 
[105]. 

Currently, different agents targeting ICOS are under clinical devel-
opment. These agents aim to achieve an anti-tumor activity through two 
distinct mechanisms: (1) an antagonist activity against ICOS + T-reg 
cells, to deplete them in the tumor micro-environment, and (2) an 
agonist activity for ICOS + effector T cells. 

KY1044, an anti-ICOS monoclonal antibody, was shown to induce 
antibody-dependent cell-mediated cytotoxicity of ICOS + T-regs cells 
and increase T-effector cells to T-regs ratio [106]. It has been studied 
alone or in combination with atezolizumab in a phase I study, with a 
favorable safety profile but a low ORR of 5% [107]. A phase II study is 
ongoing (NCT03829501). 

Vopratelimab, on the other hand, is an antibody with a dual mech-
anism of action, depleting ICOS + T-reg and exerting an agonist effect on 
T-effector cells [108]. The depleting effect on T-reg might be due to the 
higher expression of ICOS on T-reg, compared to CD4 and then CD8 + T- 
cells, which could result in antibody-dependent cell-mediated cytotox-
icity with greater predominance in the T-reg compartment of the 
microenvironment. Vopratelimab showed anti-tumor activity in various 
in vitro tumor models, further enhanced when associated with anti-PD- 
1. Nevertheless, vopratelimab displayed limited anti-tumor activity in 
the ICONIC first-in-human phase I/II trial, where it was evaluated alone 
or in combination with nivolumab in patients with advanced solid tu-
mors [109] (ORR: 1.4% for vopratelimab alone, 2.3% for the 
combination). 

The development of Feladilimab (GSK3359609), another ICOS 
agonist, was recently stopped by GlaxoSmithKline [110]. Finally, MEDI- 
570, a pure antagonistic anti-ICOS antibody, which depletes ICOS- 
expressing cells, has demonstrated an interesting ORR of 33% in a 
phase I trial in relapse/refractory angioimmunoblastic T-Cell Lym-
phoma, with a favorable safety profile [111]. 
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B & T Lymphocyte Attenuator (BTLA) 

BTLA is a member of the CD28 family of receptors, which shares 
similarities with CTLA-4 and PD-1, regarding its structure and function 
[112]. BTLA is found on the surface of T-cells, B-cells and macrophages. 
The only BTLA ligand described so far is Herpesvirus entry mediator 
(HVEM), a member of the TNF-receptor family found on B cells, DCs, 
and T cells [113]. HVEM binding of BTLA leads to a decrease in T-cell 
activation and proliferation through the recruitment of SHP-1 and SHP-2 
upon phosphorylation of the BTLA’s intracellular ITIM and immunor-
eceptor tyrosine-based switch motifs (ITSM) [114]. Whereas BTLA is 
widely expressed on naïve T-cells, its expression decreases typically with 
T-cell maturation and activation. Conversely, BTLA expression was 
shown to be maintained on tumor-antigen-specific CD8 + TILs 
throughout differentiation, with a potential role in T-cell exhaustion 
[115]. Pre-clinical studies have demonstrated that simultaneous tar-
geting of PD-1 and BTLA can enhance T-cell response, thus providing a 
rationale for simultaneous targeting [115,116]. 

BTLA targeting is currently being evaluated in clinical trials with 
icatolimab, a monoclonal anti-BTLA antibody (NCT05427396, 
NCT05000684, NCT04137900). Very early results showed a favorable 
safety profile, however, with limited signal for clinical activity at this 
stage [117,118]. 

Glucocorticoids-induced TNF receptor family-related protein 
(GITR) 

GITR (also called TNFRSF18/CD357/AITR) is a co-stimulatory re-
ceptor and a member of the TNFR gene superfamily, including 4–1BB 
and OX40. GITR is constitutively expressed on T-regs at high levels and 
on naïve and memory T-cells at lower levels [119]. GITR expression 
increases upon activation of T-cells. GITRL (TNFSF18), identified as the 
ligand of GITR, is predominantly found on activated APCs. Upon binding 
to its ligand, GITR, like other members of the TNFR family, can activate 
the transcription nuclear factor-κB (NF-κB) pathways, resulting in 
reduced T-cell apoptosis and T-cell expansion. In T-effector cells, acti-
vation of GITR leads to T-cell expansion and activation [120]. In T-regs, 
the effect of GITR activation is less straightforward as it seems to 
decrease the T-reg suppressive function of T-effector cells [121,122]. 
GITR targeting by monoclonal agonist antibody led to tumor regression 
in pre-clinical models [123]. 

In early clinical trials, GITR targeting agents such as TRX518 or 
BMS986156 have shown disappointing results, with low clinical activity 
so far [124–126]. 

Natural killer group 2A (NKG2A) 

NKG2A is an inhibitory co-receptor expressed at the surface of NK- 
cells and to a lesser extent on a subset of CD8 + T-cells [127]. NKG2A 
forms a heterodimeric protein with CD94, with a cytoplasmic ITIM 
domain. HLA-E class I molecule, which is ubiquitously expressed, rep-
resents the ligand of CD94/NKG2A. When bound to its ligand, CD94/ 
NKG2A inhibits the T-cell effector function by recruiting the SHP-1 and 
SHP-2 phosphates by its cytoplasmic ITIM domain [128]. Thus, when 
activated, the CD94/NKG2A dimer dampens NK or CD8 + cell-mediated 
cytotoxicity. Interestingly, the strength of the interaction of CD94/ 
NKG2A with its ligand depends on the peptide exposed by HLA-E [129]. 
NKG2A has been shown to be expressed on tumor infiltrating NK cells 
from patients with liver cancer, where it is associated with an exhausted 
phenotype [130], and also on bladder cancer cells [131]. In vitro, 
combined NKG2A and PD-1 blockade enhances NK and CD8 + cyto-
toxicity and synergically reduces tumor growth [132]. 

Monalizumab, a monoclonal antibody targeting NKG2A, is currently 
being evaluated in clinical trials. In a randomized phase II study in pa-
tients with stage III non-resectable NSCLC with no signs of progression 
after chemo-radiotherapy, the combination of monalizumab with the 

anti-PD-L1 Durvalumab resulted in a greater ORR (35.5% vs 19.9%) and 
longer PFS (0.42; 95% CI, 0.24–0.72) than durvalumab alone. AEs rate 
was consistent across treatment arms [133]. The combination of mon-
alizumab and durvalumab is currently evaluated in this setting in the 
phase III Pacific-9 trial (NCT05221840). The same combination of 
monalizumab and durvalumab was evaluated in the neoadjuvant setting 
in NSCLC, where preliminary data showed an encouraging rate of major 
pathological response rate (30%), which was numerically higher than 
for durvalumab alone (11.1%) [134]. Monalizumab has also been 
evaluated in HNSCC. In the INTERLINK-1 phase III trial, the combina-
tion of monalizumab with cetuximab was compared to cetuximab alone 
in patients with HNSCC relapsing after platinum-based chemotherapy 
and a PD-(L)-1 inhibitor. Unfortunately, after the review from the in-
dependent data monitoring committee, Astrazeneca announced the 
premature closure of the trial for futility [135]. 

B7 homolog 3 protein (B7-H3) 

B7-H3 (CD276) is a cell surface protein of the B7 family. B7-H3 is 
found on APCs, on the surface of cancer cells and tumor-infiltrating 
vessels of various solid tumors, such as NSCLC, prostate cancer, 
HNSCC, pancreatic cancer, breast cancer, and colorectal cancer [136]. 
On the contrary, B7-H3 is rarely found in normal tissues, making it an 
interesting target for different strategies of anticancer therapy, such as 
antibody-drug conjugates or even immunotherapy with CAR-T cels 
therapies [137]. While B7-H3 ligands are currently unknown, B7-H3 
seems to play various roles in cancer. For instance, B7-H3 has been 
shown to play an immune inhibitory role by reducing T-cell activation 
and cytokine production [138]. As such, when expressed on tumor cells, 
B7-H3 is thought to contribute to tumor immune evasion, with B7-H3 
expression in tumor cells being associated with poor outcomes in 
NSCLC and HNSCC. Moreover, B7-H3 expression in NSCLC seems to be 
associated with poorer response to anti-PD1 therapy. 

In animal models, combining anti-PD1 and anti-B7-H3 synergisti-
cally increases anti-tumor immune response. Yet, B7-H3 was shown to 
contribute to some extent to the acquisition of some hallmarks of cancer, 
such as tumor invasion and metastasis. 

Enoblituzumab (MGA271) is a humanized monoclonal antibody 
targeting B7-H3, with a Fc region specifically designed to boost Fc- 
mediated activities, including antibody-dependent cell-mediated cyto-
toxicity. In a phase I study in 179 patients with various tumor types, 
enoblituzumab proved to be safe without dose-limiting toxicities and 
with some responses being observed [139]. Enoblituzumab was also 
evaluated in a phase II in the neoadjuvant prostate cancer setting, where 
it increased CD8 T-cell density in prostatectomy samples. Unfortunately, 
a phase II evaluating Enoblituzumab, in combination with the anti-PD-1 
Retifanlimab and DART® Tebotelimab in HNSCC was prematurely 
closed due to safety concerns (NCT04634825). 

CD73 

The CD73 protein (or 5′-nucleotidase) is a nucleotidase localized at 
the cell’s surface. It is an enzyme that converts adenosine mono-
phosphate (AMP) to adenosine. CD73 is frequently found at the surface 
of immune cells and various types of tumor cells, where it is generally 
associated with poor prognosis [140–142]. In the tumor microenviron-
ment, the conversion of AMP to adenosine increases its extracellular 
levels exerting a potent immunosuppressive effect. Extracellular aden-
osine binds to, among others, the A2A adenosine receptor (A2AR), found 
at most immune cells’ surface [143]. In T-cells, adenosine-A2AR inter-
action, inhibits T-cell activation and promotes apoptosis. 

Furthermore, CD73 has been shown to promote tumor growth, 
migration and invasion [144]. In pre-clinical models, CD73 inhibition 
led to the modification of immune cell infiltration of the tumor micro-
environment, with an increase in activated macrophages and CD8 + T- 
cells and an inhibition of tumor growth [145]. Moreover, the adjunction 
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of CD73-inhibition to anti-PD1/-L1 was shown to have a synergic anti- 
tumor effect. 

Oleclumab (MEDI9447) is a human IgG1 monoclonal antibody tar-
geting CD73, with an inhibitory effect. In a phase I study, oleclumab 
alone or combined with durvalumab was safe in patients with pancre-
atic, colorectal and epidermal growth factor receptor (EGFR)–mutated 
NSCLC [146]. In the phase II COAST study, oleclumab was evaluated 
with durvalumab as a consolidation therapy in patients with unresect-
able stage III NSCLC and no progression after concurrent chemo- 
radiotherapy [133]. Confirmed ORR and PFS were numerically higher 
when oleclumab was added to durvalumab, compared to durvalumab 
alone (ORR 30.0 vs 17.9%; HR for PFS 0.44, 95% CI, 0.26–0.75), yet, the 
trial design was non-comparative. The phase III Pacific-9 trial in this 
setting is ongoing (NCT05221840). Oleclumab has also been tested in 
triple-negative breast cancer, in association with durvalumab and car-
boplatin/paclitaxel chemotherapy, where it did not lead to a better 
disease control rate at 24 weeks of treatment [147]. In an early-phase 
trial in metastatic prostate cancer, the clinical efficacy of oleclumab in 
association with durvalumab and AZD4635, an adenosine A2A receptor 
antagonist, was also disappointing [148]. 

Another anti-CD73, uliledlimab was evaluated in combination with 
toripalimab (an anti-PD-1) in a dose-escalation and dose-expansion 
phase I/II study [149]. Among 48 patients with NSCLC, the ORR was 
12.5% (95%CI: 4.7%-25.2%). In another phase I study evaluating uli-
ledlimab in combination with atezolizumab (an anti-PD-L1), the ORR 
was 23% among 13 evaluable patients who received ≥10 mg/kg of the 
study drug [150] Other anti-CD73 antibodies are under clinical devel-
opment in association with various anti-PD1 (NCT05119998, 
NCT04572152, NCT03454451, NCT04672434). Another interesting 
approach is also in development, combining anti-CD73 and anti-TGFβ 
activities through the bispecific antibody AGEN1423. The targeting of 
both CD73 and TGFβ reduces the adenosine concentration in the tumor 
micro-environment and inhibits the immunosuppressive effect of TGFβ 
[151]. 

Indoleamine 2,3-dioxygenase 1 (IDO-1) 

Among the multiple mechanisms of resistance to anti-PD1 therapy, 
tryptophan catabolism has been shown to play a role. Tryptophan is an 
amino acid mainly degraded to kynurenine and kynurenic acid by the 
enzymes IDO-1 and tryptophan 2,3-dioxygenase [152]. An increase in 
IDO-1 activity decreases the levels of tryptophan and increases the 
concentration of kynurenine and other metabolites. This mechanism 
exerts an immunosuppressive effect in the tumor microenvironment 
through different mechanisms, including activating the aryl hydrocar-
bon receptor (AhR) by the tryptophan metabolites [153]. AhR activation 
drives an immunosuppressive response by promoting an increase of 
tumor-associated macrophages, regulatory T cells, and myelocyte- 
derived suppressor cells [154]. AhR activation also induces the pro-
duction of the pro-inflammatory and pro-TME tumorigenic cytokine IL6. 

Clinically, a decrease in tryptophan levels and an increase in its 
metabolites are associated with a worse outcome in various cancers 
[155–157], similar to the upregulation of IDO-1 [158]. 

In the clinic, despite promising early phase results of IDO-1 inhibitors 
in combination with anti-PD-1 [159], the ECHO-301/KEYNOTE-252 
phase III trial of the IDO-1 inhibitor epacadostat in association with 
the anti-PD-1 pembrolizumab showed no benefit over pembrolizumab 
alone in patients with metastatic melanoma [160]. The enthusiasm for 
IDO-1 inhibitors has since decreased, and multiple trials evaluating 
epacadostat or other IDO-1 inhibitors such as BMS-986205 were halted 
[161]. Whether IDO-1 inhibition still has a place in some specific clinical 
settings or in combination remains under evaluation (NCT03459222, 
NCT02658890). 

CD200 

CD200 is a cell-surface type I glycoprotein that comprises two Ig-like 
domains. CD200 is found in some normal tissues, such as the retina or 
neurons, and also on the surface of various activated immune cells, such 
as T-cells, B-cells or dendritic cells [162,163]. The ligand of CD200, 
CD200R1, is an inhibitory receptor expressed on immune cells, like 
natural killers, T-cells, B-cells and myeloid cells [164]. Upon activation 
through CD200 binding, CD200R1 can exert a direct inhibitory effect on 
NK cell activity [165]. The effect of CD200R1 activation on T-cells ac-
tivity is less clear. In some pre-clinical models of breast cancer, CD200 
blockade had an anti-tumoral effect [166], while other pre-clinical 
models of melanoma showed no impact on tumor growth control [167]. 

In the clinic, anti-CD200 molecules are being tested in hematological 
malignancies, with Samalizumab, an anti-CD200 antibody, being 
currently evaluated in a chronic lymphocytic leukemia phase I/II study 
[168]. 

Biomarkers for novel ICI 

The development of these novel immune checkpoint inhibitors has 
the potential to offer significant benefits to cancer patients. However, as 
novel ICI continue to evolve, there will be a growing need for new and 
reliable biomarkers to enhance patient selection and treatment response 
prediction, optimize treatment outcomes and minimize unnecessary 
toxicities and treatment costs. At present, these new targets lack vali-
dated biomarkers. For example, the role of tumor expression of immune 
checkpoints has not been clearly established. 

For anti-LAG-3 drugs, which are already used in clinical practice, the 
role of LAG-3 tumor expression was assessed in the Relativity-047 trial, 
using an immunostaining technique22. LAG-3 expression was quantified 
as the proportion of immune cells with positive staining within the 
tumor region (comprising the tumor, stroma and invasive margin) in 
relation to all nucleated cells present in the tumor region in samples 
containing a minimum of 100 viable tumor cells. LAG-3 expression was 
prognostic, with better outcomes for patients with LAG-3 ≥ 1% in both 
treatment groups. However, no predictive signal was found for LAG-3 
expression, as relatlimab-nivolumab performed better than nivolumab 
both in LAG-3 positive and LAG-3 negative subgroups. On the other 
hand, patients with PD-L1 negative tumors seem to benefit more from 
dual therapy than patients with PD-L1 positive tumors. This subgroup 
analysis led to the approval of relatlimab-nivolumab only for PD-L1 
negative melanoma by the European Medicines Agency. For anti-LAG- 
3, other approaches evaluating the use of peripheral blood CD8 T-cell 
signatures or plasma cytokine concentrations as biomarkers seem 
interesting, but are not clinically validated [169]. 

Anti-TIM-3 agents also lack any reliable biomarkers. Regarding the 
response to sabatolimab, several potential predictive biomarkers were 
assessed in pre-treatment biopsies: expression of CD8, PD-L1, CD163, 
LAG-3 and TIM-3 by immunohistochemistry, as well as RNA sequencing 
and gene signatures associated with TIM-3 pathways, or T-cell or 
interferon-gamma signatures44. However, no relationship between these 
immune biomarkers and response to treatment was observed. Of note, 
three responding patients had >10% TIM-3–positive staining in biopsy 
samples. Similarly, no relation was found between baseline TIM-3, PD- 
L1, and CD8 expression by immunohistochemistry and response to 
LY3321367. The small sample size of these trials and the low numbers of 
patients responding to therapy make it difficult to assess these potential 
biomarkers robustly. 

Regarding TIGIT, the link between TIGIT expression and response to 
TIGIT inhibition has not been adequately studied. Moreover, TIGIT 
expression is variable not only between different cell types but also 
according to cellular localization, highlighting that simple assessment of 
TIGIT expression in a tumor sample may be inefficient in determining its 
relevance in the immune tumor microenvironment [170]. 

A deeper evaluation of the complex structure of tumor immune 
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microenvironment, rather than simple immune checkpoint expression 
evaluation will probably be necessary to better guide treatment de-
cisions. Comprehensive analyses of genomics, transcriptomics and pro-
teomics may offer a more holistic view of the tumor-immune 
interactions and may be the way forward in precision immunotherapy. 

New trial designs for more efficient evaluation of novel strategies 

These novel developments in immunotherapy are moving simulta-
neously with a shift towards precision medicine in oncology. Identifying 
multiple potential targets for ICI and emerging new biomarkers will 
inevitably lead to the stratification of patients into multiple small sub-
groups according to individual tumor and patient specificities. 
Answering clinical questions efficiently and timely with traditional large 
2-groups randomized trials, which often address one question at a time, 
will become increasingly difficult. In response to these challenges, 
innovative approaches have emerged to optimize clinical research time 
and resources and reduce time from bench to bedside [171]. One of the 
solutions stands in the use of master protocols that allow for the eval-
uation of several investigational drugs for one tumor type (“Umbrella 
studies”) or of one investigational agent for several tumor types (“Basket 
trials”), within the same trial structure [172,173]. The use of a master 
protocol alleviates the organizational complexity of conducting multiple 
clinical trials concurrently, and thus may help to speed up the process of 
drug development [174]. A step further is the development of adaptive 
platform trials, which allow evaluating multiple interventions for a 
disease and adapting an ongoing trial according to data of included 
patients and based on a decision algorithm [175]. These trials often use 
statistical Bayesian inference models that are well-suited for adaptations 
based on observations. Bayesian models are increasingly used for dose 
finding in phase I/II trials [176]. Moreover, since they can take into 
account information from previously enrolled patients, they were 
adopted in new multi-arm adaptive trials to routinely change the 
number of arms and patient randomization distribution amongst them. 
By prioritizing the treatment arms with the highest chance of success, 
patient allocation is optimized to make the most of each enrolled patient 
[176,177]. 

As such, master protocols allow for an efficient use of control arms 
and the rapid introduction and evaluation of new promising strategies. 

Conclusion 

In recent years, there has been significant progress in understanding 
how cells bypass the immune system. These discoveries have opened the 
door to potential new treatment modalities. Although promising in pre- 
clinical models, many of these strategies did not translate into concrete 
clinical benefits, such as KIR-L and the antibody lirilumab. Even among 
the new ICIs that have demonstrated clinical activity, cautious optimism 
is warranted, given the poor correlation between early positive results 
and actual clinical benefit. Currently, none of the new ICIs seems to be as 
promising in terms of tumor control as the inhibition of the PD-1/PD-L1 
axis, at least in monotherapy. Therefore, many of these new compounds 
are tested in combination with an anti-PD-1 antibody, aiming to tackle 
the resistance to PD-1/PD-L1 blockade and provide synergistic effects to 
enhance antitumoral immunity. 

The future of immunotherapy probably lies in these combination 
strategies, as well as bispecific antibodies and antibody-drug conjugates 
and their combination with ICI. It is, however, improbable that a “one 
size fits all” strategy will work, even within the same tumor type, as the 
mechanisms of immune-escape and immunomodulation vary. More-
over, targeting immune checkpoints will probably prove insufficient in 
many situations, as these checkpoints are only one piece of the much 
larger puzzle that the immune system and tumor microenvironment are. 
Nevertheless, combinations of ICIs with other immunotherapy strate-
gies, chemotherapy, radiotherapy, or targeted therapies, may offer a 
solution in certain situations. 

Finally, the development of biomarkers to determine the cause of 
immune escape, and the monitoring of the resistance mechanisms, may 
provide the key to tailoring ICI strategies and an important step in 
precision oncology [178] Also, identifying predictive biomarkers of 
response is as important as defining the ones that predict a lack of 
benefit, such as oncogene-addicted non-small cell lung cancer [179]. 

The development of refined diagnostic tools to improve patient se-
lection should be part of the development of every new treatment 
strategy to improve response rates to ICIs and minimize the number of 
patients unnecessarily exposed to potential immune-related AEs. 
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