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Abstract

This thesis aims at proposing relevant optimization techniques, such as meta-

heuristics, for various logistics problems faced by international companies. Four

different projects are studied, each one having its own specificity. They all

appear at different levels of the supply chain. The first project focuses on pro-

duction – it is a scheduling problem with smoothing issues – and was performed

in collaboration with Politecnico di Milano (Italy). The second project aims at

studying a problem proposed by Renault France, on packing items in trucks.

Almost 600 different loadings were tackled. Then, a project focusing on an

online vehicle routing problem – where dynamic travel times and dynamic per-

turbations (such as traffic jam) are encountered – is jointly proposed with the

CIRRELT in Montreal (Canada). Finally, a problem faced by a famous Swiss

watch brand is exposed and tackled. It consists of an inventory dispatching

problem, with various perturbations on the supply chain. For each problem,

models and solution techniques are proposed, implemented and compared. Rel-

evant ingredients are highlighted and important parameters are discussed. Each

project has its own conclusions, where future works are also discussed. The four

projects were the topics of four academic papers submitted to international jour-

nals.
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Résumé

Cette thèse a pour vocation de proposer des techniques d’optimisation perfor-

mantes pour des problèmes logistiques complexes auxquels doivent faire face

les entreprises internationales. Quatre projets différents sont étudiés et cha-

cun d’entre eux détient ses propres spécificités, qui apparaissent à différents

moments de la châıne d’approvisionnement. Le premier projet traite de la pro-

duction – un problème d’ordonnancement avec des contraintes de lissage – et

a été réalisé en collaboration avec l’École Polytechnique de Milan (Italie). Le

second projet a été proposé par Renault France et concerne le remplissage de

camions. Presque 600 chargements ont été étudiés dans le but d’être optimisés,

tout en tenant compte de diverses contraintes métier. Le troisième projet a été

réalisé en collaboration avec le CIRRELT à Montréal (Canada) et concerne le

routage de véhicules. Ici, des temps de trajets dynamiques ainsi que des pertur-

bations dynamiques (telles que des congestions de trafic) sont pris en compte.

Le quatrième et dernier projet a été formulé par une entreprise suisse active dans

la haute horlogerie de luxe. Plusieurs perturbations apparaissent sur la châıne

d’approvisionnement et le but est de définir la meilleure façon d’envoyer les

montres depuis l’usine jusque vers les magasins représentants la marque. Pour

chaque problème, des modèles et des techniques de résolution sont proposés afin

d’apporter des solutions concrêtes dans l’aide au processus de décision. Les

paramètres importants sont à chaque fois discutés et mis en valeur dans une

optique globale de résolution du problème. Chacun des quatre papiers a été

soumis à une revue académique internationale.
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Positioning of the thesis

Operations research is constantly used to help managers make better decisions

and manage risk. It is a science as itself. Using tools as mathematical mod-

eling, statistical analysis and state-of-the-art optimization methods, operations

research is used to produce optimal or near-optimal solutions for problems too

big to be solved by human souls. This field of mathematics was born during

World War II, to help war planners optimize war strategies. It was then widely

used in business, finance and governments. Recently, such techniques have been

applied to network problems (e.g., cell towers positioning), vehicle routing (e.g.,

transportation of goods, customers visit), logistics (e.g., supply chain optimiza-

tion), and finance (e.g., portfolio optimization). The types of problems faced

by operations research are diverse but have a common point of interest: they

are very hard to solve, often due to the size and the structure of the problem

at hand. After a correct modeling of the problem, optimization techniques are

used to produce solutions which meet the quality requirements edited by the

concerned firm. Important international companies have now understood the

potential of such a science and are investing an important amount of money

to get new decision tools, available thanks to the recent advances in the com-

puter area. Moreover, large companies are now hiring intensively in operations

research, where R&D teams can grow up to several hundreds of people. For ex-

ample, Renault France, EDF (the French national electricity company) or DHL,

have very important R&D teams working in this field, and have partnerships

with academicians around the globe to learn recent advances and techniques.

Operations research is very active in logistics and operations management. Fig-

ure 1 presents a typical supply chain. The suppliers provide raw material to a

13
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Suppliers Production Distribution Clients
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Figure 1: A typical supply chain

factory, where the final products are manufactured. These products are then

distributed (e.g., through warehouses or distribution centers) to reach the final

clients. Interesting information on supply chains can be found in [22, 23, 118].

Very often, the optimization problems arising along the supply chain are hard

to solve together, this is why researchers often tackle the different problems

separately. To address such specific problems, researchers must first model the

problem, which often consists in formulating the problem with mathematical

tools. Depending on the nature of the problem, different methods can then be

used to solve the modeled problem. Exact methods, which guarantee to gen-

erate optimal solutions, can be used to solve problems when the time limit is

consequent or when the size of the problem is reasonable. Recent advances in

this field, such as mixed-integer programming, non-linear programming, decom-

position techniques, and global optimization, look very promising and could be

used in the future to solve bigger problems.

Nowadays realistic problems are often too consequent and exact methods are not

competitive due to exponential computation times. As it is frequently the case,

(meta)heuristics are designed, but optimality is no more guaranteed. Therefore,

techniques such as genetic algorithms, tabu search or ant-colony are considered

as standard methods in the metaheuristics field. Such techniques are accurately

described in [45]. Metaheuristics operate at a higher level than heuristics, and

thus tends to drive a sub-level heuristic for high performances, for instance by

diversifying the search. A definition for metaheuristic is proposed in [94], which

we quote here: “A metaheuristic is formally defined as an iterative generation

process which guides a subordinate heuristic by combining intelligently differ-

ent concepts for exploring and exploiting the search space, learning strategies

are used to structure information in order to find efficiently near-optimal so-

lutions.” Etymologically, meta states for at a higher level and heuristic for
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finding. State-of-the-art reviews on metaheuristics are proposed in [14, 45],

where different classification methods are exposed. As stated above, the major

drawback of metaheuristics is to provide a solution without guarantee on its op-

timality. Thus, metaheuristics must be carefully designed and compared with

exact methods on small instances where mixed-integer programming tools like

CPLEX/Gurobi are still relevant, in order to be trusted on realistic instances.

Depending on the constraints of the problem faced by the industry, different

(meta)heuristic methods could be used. We now describe a non-exhaustive list

of state-of-the-art algorithms that are relevant to this thesis, and deeper infor-

mation on each algorithm can be found in the different chapters of this thesis.

Greedy heuristics are the most primitive and fastest ones. They start from an

empty solution, and at each step, insert the component in the solution which

minimizes the augmentation of the objective function. On the opposite, local

search methods, such as descent, tabu search [50], or variable neighborhood

search [56], start from a feasible solution (typically returned by a greedy algo-

rithm) and at each step, try to improve the best visited solution by performing

a tiny modification on the solution (called a move). In the population-based

metaheuristics, a pool of solutions is kept in a memory, and new solutions are

generated from the pool. Genetic algorithms [54], ant-colony optimization [30],

and adaptive memory algorithms [110], are members of the latter methods. Of-

ten different methods are combined to reach better performances (such as a tabu

search with adaptive memory algorithm). Each set of algorithms have different

advantages and drawbacks. Greedy algorithms are fast but very often return

solutions of poor quality. Local search methods are slower, but usually find

solutions of better quality even if they are often stuck in local optima, which

probably forbid to find better solutions. Finally the population-based methods

are very powerful but usually require more memory to perform. Therefore, the

method used to address a problem must fit the company requirements such as

time limit, computation power, techniques, etc. As each problem has its own

constraints and specificity, it is hard to find the criteria to accurately measure

the quality of a solution, and therefore of a method. In [129], guidelines are

provided to produce efficient metaheuristics for various problems, according to

various criteria (e.g., quality of the results, speed, robustness, simplicity, ability

to take advantage of the problem structure). In addition, for some companies,

one objective function can be clearly defined, but as it is commonly the case,

multiple objectives must be tackled together. A lexicographic order (i.e., a hi-
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erarchy in the objectives is provided) of the objectives is often used to handle

multiple objectives, but other techniques such as multicriteria decision-making

[82] can also be used. The company requirements are then used to define which

techniques suit best for the problem.

In this thesis, four different problems are presented and tackled. The first

project (bullet 1 in Figure 1), jointly realized with Politecnico di Milano (Italy),

focuses on a job scheduling problem with smoothing issues. This problem arises

in factories where different machines are used to perform different tasks, such

as car plants, where cars are scheduled to be produced on customers orders.

All the tasks cannot be performed on all the machines, and managers want to

smooth the use of the available resources.

In the second project (bullet 2 in Figure 1), performed with Renault France,

items must be packed in trucks such that they fulfill factory constraints. It is an

extension of the well-known strip-packing problem, where items must be packed

in a bin of fixed size. Here, a set of items must be packed in a truck, with truck

sizes constraints. A total of almost 600 instances were tackled. These trucks

are used to bring car pieces to the plants which produce the cars of Renault,

and therefore packing is extremely important to ensure correct delivery times

and the minimization of the number of used trucks.

The third project (bullet 3 in Figure 1) was realized with the CIRRELT center

in Montreal (Canada). The CIRRELT is the Interuniversity research center

on Enterprize Networks, Logistics and Transportation. The problem tackled

there was an extension of the well-known vehicle routing problem. Here, global

positioning devices (GPS) are used to constantly monitor the positions of the ve-

hicles in an online fashion. Dynamic travel times and perturbations are encoun-

tered along the routes, as well as time-windows (time frames to visit customers).

Optimization techniques are proposed to deal with such uncertainties.

Finally, the last project (bullet 4 in Figure 1) is an inventory dispatching problem

faced by a Swiss watch company (which cannot be named due to a non-disclosure

agreement). Three different perturbations are encountered along the 3-level

supply chain (one at the production level, one at the wholesalers level, and

one on the demand). An accurate simulator has been designed and solutions’

solvers were defined to help decision-makers select the best decision at the right
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moment. Exhaustive sensitivity analysis is proposed to highlight the parameters

that need to be addressed more carefully.

The projects are presented as four different chapters. Each chapter is closed

by relevant conclusions and future works, and was submitted to an interna-

tional journal for publication. The authors of each paper are mentioned at the

beginning of the corresponding chapter.
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Chapter 1

Metaheuristics for a job

scheduling problem with

smoothing costs relevant for

the car industry

Jean Respen - University of Geneva, Switzerland

Nicolas Zufferey - University of Geneva, Switzerland

Edoardo Amaldi - Polytechnic University of Milan, Italy

We study a new multi-objective job scheduling problem on non-identical ma-

chines with applications in the car industry, inspired by the problem proposed

by the car manufacturer Renault in the ROADEF 2005 Challenge. Makespan,

smoothing costs and setup costs are minimized following a lexicographic order,

where smoothing costs are used to balance resource utilization. We first de-

scribe a mixed integer linear programming (MILP) formulation and a network

interpretation as a variant of the well-known vehicle routing problem (VRP).

We then propose and compare several solution methods, ranging from greedy

procedures to a tabu search and an adaptive memory algorithm. For small

19
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instances (with up to 40 jobs) whose MILP formulation can be solved to opti-

mality, tabu search provides remarkably good solutions. The adaptive memory

algorithm, using tabu search as an intensification procedure, turns out to yield

the best results for large instances, with up to 500 jobs and 8 machines.

1.1 Introduction

Since production systems involve various important aspects such as cost, time

and available (human and material) resources, multi-objective planning prob-

lems are of growing practical relevance. As mentioned in [78], multi-objective

scheduling problems can be tackled using five different approaches: the lexico-

graphic, utility, goal programming, simultaneous or interactive approaches. No

perfect approach comes out and each one has its own advantages and draw-

backs. Some approaches require more parameters whereas others are unable

to generate efficient solutions under certain conditions. See the survey [32] on

multi-objective combinatorial optimization, including theoretical results as well

as exact and heuristic methods, and [64] on multi-objective metaheuristics. A

good reference book on this topic can be found in [31].

Multi-objective scheduling problems often involve minimizing the makespan

while considering setup costs and times. Various approaches have been pro-

posed to tackle makespan minimization in the literature (e.g., [97]). For a sur-

vey on scheduling techniques accounting for setup issues, the reader is referred

to [1]. Single machine scheduling methods to minimize a regular objective func-

tion under setup constraints are proposed in [6]. In [37], heuristic methods

and a branch and bound procedure are described for parallel machines subject

to setup constraints. For the same problem, a computationally intensive non-

linear mixed integer model and an approximation method for real-world sized

instances are proposed in [2]. In [88], a hybridization of a particle swarm and

local search algorithms is proposed to solve the flexible multi-objective job-shop

problem. Whereas in a job-shop problem a set of jobs must be scheduled on a

set of different machines and each job has a specific routing on the machines, a

flexible job-shop problem is an extension where each job can be processed by a

set of different machines along different routes.
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Nowadays, new constraints, known as smoothing constraints, are attracting a

growing attention in the area of job scheduling (see the survey on smoothing

constraints known as “balancing in assembly line” in [10]). Smoothing con-

straints (or costs) allow to schedule the jobs with a well-balanced consumption

of the production resources. These constraints are now widely used, in par-

ticular for car sequencing problems (see for example [8]), where cars must be

scheduled before production in an order respecting various constraints (colors,

optional equipment, due dates, etc.), while avoiding overloading some important

resources. As an example, if the yellow cars with air-conditioning are scheduled

first, the unlucky customer who ordered a grey car without air-conditioning may

wait for a long time. For the car plant, balancing between optional equipment

and colors allows to respect customers deadlines and to prevent overloading

some resources (machines or employees), which has an impact on cost reduc-

tion. As mentioned in [126], there is a complex tradeoff at the core of many

practical scheduling problems, which involves balancing the benefits of long pro-

duction runs of a similar product against the costs of completing work before it

is needed (and potentially causing other work to be tardy).

In this paper, we address a multi-objective production scheduling problem with

smoothing costs inspired by the problem proposed by the car manufacturer Re-

nault in the ROADEF 2005 Challenge (http://challenge.roadef.org/2005/

en/). In the Renault problem, car families are defined so that two cars of the

same family contain the same optional equipment. Each car option i is associ-

ated with a pi/qi ratio constraint requiring that at most pi vehicles with option

i can be scheduled in any subsequence of qi vehicles, otherwise a penalty occurs.

This penalty was artificially created by Renault in order to penalize the pos-

sible congestion (which corresponds to an unbalanced use of some production

resources) that might occur in the assembly line. Since another goal consists in

minimizing the number of color changes in the production sequence, the overall

objective is to minimize a weighted function involving the numbers of ratio con-

straint violations and color changes. The resulting problem is NP -hard and no

exact algorithm can be competitive because the instances involve hundreds of

cars. A survey of the above challenge can be found in [120]. The winning team

proposed a very fast local search which combines a standard local search with

a tuned transformation step [33]. The team ranked second developed a variable

neighborhood search based on an iterated local search procedure, along with in-

tensification and diversification strategies [108]. Efficient tabu search methods
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were also devised (e.g., [26, 130]).

The multi-objective scheduling problem we propose and investigate here is a

variant of the Renault problem. Unlike in the Renault problem, we consider

several machines (resources) which are not identical, eligibility constraints (a

job cannot necessarily be performed on all the machines), setup constraints,

and three different objectives functions. Adopting a realistic priority among the

objectives, we aim at minimizing in a lexicographic order the overall makespan,

smoothing costs, and setup costs. Mathematically such a lexicographic order al-

lows to convert a multi-objective problem into a problem with a single objective.

Preliminary experiments showed the relevance of the proposed lexicographical

approach, as many solutions with the same first objective values are very likely

to occur. In the studied problem, we use a pi/qi ratio constraint with pi = 2

and qi = 3. In other words, a penalty occurs if more than two jobs of the same

family are sequentially produced on the same machine. As confirmed in [90],

the problem considered in this paper is of obvious interest from a modern car

production point of view. Indeed, car manufacturers often face problems where

smoothing different resources is mandatory. As stated above, color changes is

of important matter. In addition, resources such as the workforce must often

be smoothed, for example by alternatively performing tasks that requires more

workers with less constrained workforce tasks. The problem we describe here

is interestingly complete as it intends to include different type of real-world

constraints, which were never jointly considered before.

Building on our preliminary work [106], this paper adds: an extended literature

review, a practical motivation, an accurate test of a mixed integer linear pro-

gramming (MILP) formulation, new and more efficient metaheuristics (namely,

a greedy randomized adaptive search procedure (GRASP), a refined tabu search

with intensification and diversification procedures, and an adaptive memory al-

gorithm), and computational results for a much larger set of instances.

The remainder of the paper is organized as follows. In Section 1.2, we describe

the problem under consideration, pointing out the differences with respect to

the Renault problem proposed in the ROADEF 2005 Challenge and we give a

MILP formulation. In Section 1.3 we provide a network interpretation. Since the

MILP formulation is very challenging even for small-size instances, in Section

1.4, we describe three advanced metaheuristic methods, namely a GRASP, a



1.2. PROBLEM DESCRIPTION AND MILP FORMULATION 23

tabu search and an adaptive memory algorithm. Computational results are

reported and discussed in Section 1.5. First, we evaluate the quality of the

solutions provided by our tabu search method for small instances (with up to

40 jobs) with respect to the optimal solutions found with the MILP formulation.

Then we compare the performance of all the heuristics on larger instances (with

more than 100 jobs) that cannot be tackled with the MILP formulation. Finally,

Section 1.6 contains some concluding remarks.

1.2 Problem description and MILP formulation

In the considered problem (P), a set of n independent jobs have to be scheduled

on a set of m unrelated (non identical) parallel machines. Each job j belongs

to one of the g available families and has a processing time pij depending on

the machine i. For each pair of job j and machine i, the eligibility of j on i

is specified by the binary parameter ui
j . The goal is to minimize not only the

makespan (f1) but also the smoothing costs (f2) and the setup costs (f3), which

take real values and have different units. A realistic lexicographic approach is

adopted with the following priority order: f1 > f2 > f3. Note by the way that

a lexicographic approach was also used in the ROADEF 2005 Challenge, and

is relevant from a practical standpoint. As mentioned in Equation (1.1), the

lexicographic optimization is achieved via multiplicative coefficients α > β > γ,

where α, β and γ are chosen such that no deterioration on fi can be compensated

with improvements on fi+1. Hence, the units of the different fi’s are of minor

importance. A small value of Cmax usually indicates a high occupancy rate of

the machines, and as a consequence, the production system will be available

sooner for future commands.

As previously mentioned, a smoothing cost occurs whenever more than two jobs

of the same family are sequentially produced on the same machine. For every

triple of jobs {j, j′, j′′}, the parameter fjj′j′′ = 1 if j, j′, j′′ are of the same

family, and 0 otherwise. Then kf denotes the smoothing cost associated with

the family f to which job j belongs, which is incurred only if fjj′j′′ = 1 and if

jobs j, j′, j′′ are consecutively scheduled on the same machine.

The setups are job and machine dependent: cijj′ (resp. sijj′ ) is the setup cost
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(resp. time) encountered to prepare machine i to perform job j′ after job j.

There are two types of setups: major ones (if the involved jobs belong to two

different families) and minor ones (otherwise). Minor setups can be considered

as a small encountered time/cost associated with a technician who needs to

slightly modify the configuration of the machine to perform the next job. On the

opposite, a major setup occurs when external technicians (working at a higher

hourly rate and bill for transportation) or a significant machine transformation

(e.g., its capacity, its reprogramming) are required.

The multi-objective scheduling problem (P) is clearly NP -hard since it admits

as a special case the classical NP -hard multiprocessor problem of minimizing

the makespan (every job is eligible on every machine and no smoothing and

setup costs are considered).

1.2.1 MILP formulation

Consider the following sets of binary decision variables:

• for every machine i and pair of jobs j, j′, xi
jj′ = 1 if job j is followed by

job j′ on machine i, and 0 otherwise;

• for every machine i and triple of jobs j, j′, j′′, yijj′j′′ = 1 if jobs j, j′, j′′ are

consecutively scheduled in this order on machine i, 0 otherwise;

• for every machine i and job j, zij = 1 if job j is scheduled on machine i,

and 0 otherwise.

In addition, for every job j and machine i, let rij be a real variable representing

the order (or rank) of job j if it is scheduled on machine i (rij = 0 if job j is not

scheduled on machine i).

Using the above variables and parameters, the problem can be formulated as

the following mixed integer linear program:
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minimize

f = α · f1 + β · f2 + γ · f3

= α·Cmax + β·
m
∑

i=1

n
∑

j=1

n
∑

j′=1

n
∑

j′′=1

kj·fjj′j′′·y
i
jj′j′′ + γ·

m
∑

i=1

n
∑

j=1

n
∑

j′=1

cijj′·x
i
jj′ (1.1)

subject to

n
∑

j=1

pij · z
i
j +

n
∑

j=1

n
∑

j′=1

sijj′ · x
i
jj′ ≤ Cmax ∀i (1.2)

zij ≤ ui
j ∀i, j (1.3)

zij + zij′ ≥ 2 · xi
jj′ ∀i, j, j′ (1.4)

2 · yijj′j′′ ≤ (xi
jj′ + xi

j′j′′ ) · fjj′j′′ ∀i, j, j′, j′′ (1.5)

(xi
jj′ + xi

j′j′′) · fjj′j′′ − 1 ≤ yijj′j′′ ∀i, j, j′, j′′ (1.6)

n
∑

j=1

zij − 1 =
n
∑

j=1

n
∑

j′=1

xi
jj′ ∀i (1.7)

n
∑

j′=1

xi
jj′ ≤ 1 ∀i, j (1.8)

n
∑

j=1

xi
jj′ ≤ 1 ∀i, j′ (1.9)

zij ≤ rij ≤ n · zij ∀i, j (1.10)

rij′ ≥ (rij + 1)− n · (1− xi
jj′ ) ∀i, j, j′ (1.11)

xi
jj′ + xi

j′j ≤ 1 ∀i, j, j′ (1.12)

m
∑

i=1

zij = 1 ∀j (1.13)

0 ≤ yijj′j′′ ≤ 1 ∀i, j, j′, j′′ (1.14)

xi
jj′ , z

i
j ∈ {0, 1} ∀i, j, j′. (1.15)

Constraints (1.2) ensure a correct makespan computation. Constraints (1.3) en-

sure that eligibility is satisfied on each machine. Constraints (1.4) allow two jobs

to be scheduled consecutively only if they are scheduled on the same machine,

whereas Constraints (1.5) and (1.6) ensure that three jobs can be scheduled con-
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secutively only if all the three jobs are scheduled consecutively two at a time.

Constraints (1.7) guarantee that the correct number of jobs will be consecutively

scheduled, while Constraints (1.8), (1.9) and (1.12) ensure the correct number

of consecutive jobs. Constraints (1.10) and (1.11) are the sub-tour elimination

constraints given in [115], which involve, for each pair of job j and machine i,

a real variable rij indicating the order of job j on machine i. Constraints (1.13)

guarantee that each job is scheduled exactly once. Finally, fractional values are

possible in Constraints (1.14) because of the objective function (1.1) and of the

Constraints (1.5) and (1.6). Clearly, relaxing the integrality of the yijj′j′′ vari-

ables makes the MILP formulation easier, and ensures that yijj′j′′ ∈ {0, 1}. Note

that all constraints are needed to have a valid MILP formulation of problem (P).

1.2.2 Illustration

To illustrate the problem, we consider a small instance with two machines (m1

and m2). Table 1.1 gives processing times pij per job per machine, family iden-

tifier fj per job j, eligibility constraints ui
j per job and machine, and finally

smoothing costs kf per family. Table 1.2 gives setup costs and times (it is as-

sumed that setup times and costs are equal). For a realistic implementation of

the lexicographic order, we take α = 1, 000, 000, β = 1, 000, and γ = 1. A feasi-

ble solution (fulfilling eligibility constraints) is proposed in the Gantt diagram of

Figure 1.1. Let us now derive its objective function value. Cmax is equal to 551

as machine 1 involves the longest total processing times plus minor setup times

(119+5+105+5+152+6+159). Setup costs are equal to 5+5+6+5 = 21 and

are represented as black stripes on Figure 1.1. Machine 1 involves smoothing

costs because it schedules two times three consecutive jobs (jobs 3-1-4 then 1-

4-6) of the same family, and the smoothing costs amount to 45+45 = 90. Thus

the objective function value is 1 ·21+1, 000 ·90+1, 000, 000 ·551 = 551, 090, 021.

Figure 1.2 shows the optimal solution found by the above MILP formulation.

The objective function value is 452, 045, 048.

m1 3 1 4

m2 5 2

6

time
100 200 300 400 500

Figure 1.1: Gantt diagram for a feasible solution
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Table 1.1: Processing times and families

j p1
j p2

j fj u1
j u2

j kf

1 105 108 1 1 1 45

2 105 154 2 0 1 52

3 119 155 1 1 1 45

4 152 110 1 1 1 45

5 150 154 2 0 1 52

6 159 125 1 1 1 45

Table 1.2: Setup costs and times per machine

j 1 2 3 4 5 6

m1 m2 m1 m2 m1 m2 m1 m2 m1 m2 m1 m2

1 - - 35 32 6 9 5 7 32 31 5 10

2 37 49 - - 32 38 45 50 6 7 40 42

3 5 7 45 35 - - 6 7 35 48 8 5

4 6 8 47 30 7 9 - - 33 30 6 8

5 36 47 9 5 45 36 35 39 - - 42 41

6 5 8 45 40 5 7 8 5 38 32 - -

m1 3

1

4

m2 5 2

6

time
100 200 300 400

Figure 1.2: Gantt diagram for the optimal solution

1.3 Network interpretation

Assuming that setup costs are proportional to setup times (which is realistic

from a practical standpoint), our production problem can be easily interpreted

as a variant of the well-known vehicle routing problem (VRP) in a network.

Let the n jobs be represented by n vertices labeled 1, . . . , n of a complete directed

graph G = (V,E). A color is associated with each job family. Since each vertex

belongs to a unique family, it has a single color and the vertices can be grouped
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by color. Each vertex is connected to all the other vertices by an arc. Arcs

are used instead of edges as setup times are not necessarily symmetric. If two

vertices are of the same family, then the arc linking them is colored with the

family color and the corresponding setup time is minor. Otherwise, the arc

is uncolored and the setup time is major. Two vectors are associated with

each arc (j, j′): a processing time vector Pj′ = (p1j′ , p
2
j′ , . . . , p

m
j′ ) and a setup

time vector Sjj′ = (s1jj′ , s
2
jj′ , . . . , s

m
jj′ ). In addition, a virtual uncolored vertex

labeled 0 is defined. With each arc (0, j) are associated a processing time vector

Pj = (p1j , p
2
j , . . . , p

m
j ), and a setup time vector S0j where si0j = 0 for each

machine i. With each arc (j, 0) are associated a processing time vector P0

where pi0 = 0 for each machine i, and a setup time vector Sj0 where sij0 = 0 for

each machine i.

In the VRP, n clients have to be visited exactly once by a set of m vehicles so as

to optimize an objective function (see [47, 68] for recent surveys on the topic).

Numerous extensions of this problem have been proposed, such as the vehicle

routing problem with time windows (VRPTW) or the vehicle routing problem

with pick-up and delivery (VRPPD) (see [55] for a good reference book on the

existing VRP extensions). The VRP is considered as a reference NP -hard com-

binatorial problem and is still attracting considerable attention. A particularly

interesting extension is the multimodal VRP problem, where different means of

transport are used. It is especially relevant to overseas transportation of goods.

A typical example would be a trip starting with a truck, continuing with a boat

or a plane, followed by a train, and the final trip to the delivery point uses a

second truck. In this example, it is obvious that changing the mean of transport

would cost a lot to the company selling the good, but would still be cheaper than

using a single mean of transport (imagine a truck traveling from Asia to West

of Europe) or would be mandatory if a single mean of transport is impossible.

Thus a smoothing cost would force the algorithm to find intermodal solutions.

Setup costs and times would be involved when changing the mode of transport,

and the processing times would be the trip time needed by each vehicle.

The correspondence between (P) and the VRP is the following. The clients

correspond to the jobs, the vehicles to the machines, and the sequence of vertices

visited by vehicle i to the sequence of jobs executed by machine i. Given the

graph G, the objective is to find m circuits (starting from and ending at vertex

0, representing a depot), such that every vertex is visited exactly once. An
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illustration with n = 8 and m = 2 is given in Figure 1.3, where edges are

used instead of arcs for the sake of simplicity (the graph is not drawn complete

for the same reason). Vertices are grouped by color classes, and dashed edges

connecting vertices of different color classes are uncolored. On the contrary,

colored plain edges connect vertices of the same color class. A double weighted

edge [1, 2] is indicated as an example: job 1 has a processing time of 110 on

machine 1 and 135 on machine 2; a minor setup of 6 occurs when finishing job 1

and preparing machine 1 for job 2, and the corresponding setup for the second

machine is 8. Figure 1.4 shows a feasible solution for the instance of Figure 1.3.

Note that the circuit visiting the first color class encounters a smoothing cost

because it consecutively visits three vertices with the same color.

Network formulations (NETFORMs) (see [52, 53]) have shown significant effi-

ciency to model complex problems, with huge cost savings and greatly speed

completion. The NETFORM concept is used to model both linear and non-

linear problems with a graph, and is able to model entirely complex issues.

Whereas the standard approach is to develop a linear formulation to model the

problem, in contrast, a NETFORM can be used to model and then solve the

problem directly from its graphical representation (e.g., [57, 112]). Regarding

problem (P), a NETFORM has been developed, but the resulting graphical for-

mulation is not representative enough to be showed here with two dimensions.

Indeed, a NETFORM would require the n jobs and the m machines to be rep-

resented with vertices. From each job vertex j to each machine vertex i, arcs

of type (ja,b, i) should be drawn, where ja,b represents a sequence of three con-

secutive jobs a− b − j multiplied by kj (fabj · kj with the notation introduced

in Section 1.2.1). In addition, setups (which are job and machine dependent)

should weight these arcs with sbj and cbj for each job b. Even if this formula-

tion is too complex to be drawn, it has allowed us to improve the quality of our

algorithms, and is currently still a good approach to validate methods to tackle

(P) and to ensure their accuracies.

Since (P) contains specific features such as smoothing costs, eligibility con-

straints, and setup costs and times, existing VRP algorithms cannot be directly

applied. Therefore, we decided to address (P) as a scheduling problem with

dedicated specialized algorithms, and leave the vehicle routing approach for fu-

ture research. However, since metaheuristics such as tabu search and adaptive

memory algorithms proved to be very powerful for the VRP and some of its
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extensions (e.g., [25, 43, 110]), we design tabu search and adaptive memory

algorithms for (P).

0

1

2

P
=
(1

1
0
, 1

3
5
)

S
=
(6

,8
)

Color class 1

Color class 2

Color class 3

Figure 1.3: Network representation of the problem

0

Color class 1

Color class 2

Color class 3

Figure 1.4: A possible feasible solution for Figure 1.3
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1.4 Heuristic algorithms

In this section, we describe different solution methods for problem (P), ranging

from a greedy randomized adaptive search procedure (GRASP) to more efficient

metaheuristics such as tabu search and population based algorithms. All these

methods will be compared according to a given time limit of t seconds. If a

method stops before t, it is restarted as long as t is not reached, and the provided

solution is the best one generated within t seconds. In the following algorithms,

the lexicographic order is used as follows when comparing the value of two

solutions s1 and s2: fi(s1) and fi(s2) are only computed if fi−1(s1) = fi−1(s2).

This allows to save a significant amount of computing time. The reader is

referred to [45] for information on local search techniques and metaheuristics,

and to [129] for guidelines on an efficient design of metaheuristics according to

various criteria.

1.4.1 Greedy and descent procedures

First we briefly summarize some simple procedures (three greedy ones and two

descent ones) that we use as components of the proposed metaheuristics and for

comparison purposes.

In the greedy procedures, to build a feasible solution step by step from scratch,

we select at each step an unscheduled job and insert it at the best position (i.e.,

leading to the least increase in the objective function value), while respecting

eligibility and setup constraints. Different job selection criteria are considered:

(1) randomly among all the unscheduled jobs; (2) the least flexible job first (the

flexibility of a job is defined as the number of machines it can be performed

on); (3) exhaustive search (each insertion is tested for each non performed job).

We propose three greedy procedures for (P): GrR with random selection, GrF

based on the flexibility strategy, and GrE based on the exhaustive strategy.

Ties, which often occur, are randomly broken.

For the greedy algorithm, each restart occurs when a complete solution is built,

whereas for a descent method, each restart occurs when a local optimum is

found.
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In Des, a simple descent local search is performed to improve an initial solution

provided byGrE. In contrast, LDes is a two-phase algorithm. In the first phase,

the three greedy procedures are alternately used to generate initial solutions,

on which a descend is then applied, if the running time is not above t
2 seconds.

At the end of such a learning phase, a weight is assigned to each of the three

greedy procedures, which is proportional to the average quality of the resulting

solutions (i.e., the ones obtained at the end of the descent process). In the

second phase, the next greedy procedure to be applied is randomly selected

based on those weights. Thus, the greedy procedure leading in average to the

best results in the first phase has more chance to be selected in the second phase.

For both Des and LDes, the best move out of a portion of r% (parameter) of

all possible moves is performed at each iteration. r = 100% has been tuned

for Des and LDes. Note that several values for r were tested in the interval

[0%, 100%].

1.4.2 GRASP

As mentioned in [34] and detailed in [104], a two-phase greedy randomized

adaptive search procedure (GRASP) tends to produce better results compared

to simple greedy procedures.

In the first phase, a set of solutions are built from scratch with a randomized

greedy procedure. At each step of the solution construction process, a restricted

candidate list (RCL) is filled with the b best possible insertions, a single can-

didate is picked at random from RCL and inserted at the best position. Thus

different runs are likely to yield different solutions.

In the second phase, a local search is typically used to rapidly improve the

quality of the best solution found. The type of move (modification of the current

solution) we consider consists in reinserting a job somewhere else in the solution.

More precisely, a job can be moved to a different position on the same machine,

or it can be moved from a machine to another (as long as the eligibility constraint

is satisfied). Preliminary experiments showed that r = 100% is an appropriate

choice for GRASP .
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In our GRASP adaptation for (P), the RCL size is tuned to 5 (based on various

tests for values in the interval [1,20]). Des is used in the second phase. GRASP

is summarized in Algorithm 1.

Algorithm 1 GRASP

While a stopping condition is not met do

1. Create an empty solution s

2. While s does not contain all the jobs do

(a) Generate the RCL as a set of the 5 best possible insertions

(b) Randomly pick a member among the RCL, and insert it in s

3. Perform Des on s

4. If f(s) < f(s⋆), set s⋆ = s

Return the best solution s⋆

1.4.3 Tabu Search

Tabu search [51] relies on the observation that a basic local search often gets

stuck in a small portion of the search space. To escape from local optima, when

a move is performed from the current solution xr to the neighbor solution xr+1,

the reverse move is forbidden (tabu) for tab (parameter) iterations. Diversifica-

tion and intensification strategies have been proposed to improve performance

and find local optima of better quality. An interesting survey on tabu search

can be found in [46] with general advices for efficient implementations.

In our tabu search TS for problem (P), the initial solution is provided by GrE

and the moves consist in reinserting a job somewhere else in the solution (as in

the second phase of GRASP). The best move out of a portion of r% (parameter)

of all possible moves is performed at each iteration. Preliminary experiments

showed that r = 50% is an appropriate choice for TS.

If a job j is moved somewhere in the schedule at a given iteration, it is forbidden

to move j again for tab iterations. Preliminary experiments showed that it is

reasonable to choose the integer tab uniformly at random in [ n10 ,
n
2.5 ] for small
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instances (n < 100), and in [ n25 ,
n
13 ] for large instances (100 ≤ n ≤ 500). Note

that tab values were tested in the interval [0, 3 · n]. In addition, a second tabu

structure is used: when a job j, initially positioned between jobs j′ and j′′, is

inserted somewhere else in the schedule, it is then tabu to move j back between j′

and j′′ for 2 · tab iterations. As this second tabu structure is less restrictive than

the first one, the tabu duration is set to a larger value. Note that when a move

improves the best ever visited solution s⋆, its two associated tabu durations are

increased by a random integer uniformly generated within interval [ n25 ,
n
15 ]. TS

contains an aspiration criterion, which allows a tabu move to be performed only

if this move improves s⋆.

TS also contains diversification and intensification procedures. On the one

hand, if after p1 (parameter) iterations, s⋆ is not improved, a diversification

procedure is triggered, which consists of randomly moving p2 (parameter) jobs

in the current solution. Preliminary experiments showed that p1 = n · 100 for

small instances (n < 100), p1 = n+100 for larger instances, and p2 = n
2 (for all

the instances) are reasonable values. On the other hand, when s⋆ is improved,

an intensification procedure occurs, and consists in performing a descent with

jobs swaps on a per machine basis. Note that parameters p1 and p2 were tested

in interval [0, n2].

TS is summarized in Algorithm 2, where U(a, b) uniformly returns a random

integer in the interval [a, b], and f(s) denotes the objective function value of

solution s.

1.4.4 Adaptive memory algorithm

Unlike in local search methods, a population-based algorithm simultaneously

deals with several solutions. This allows to diversify the search and thus increase

the probability to reach better local optima. Population-based algorithms fall

within the class of evolutionary methods, which include genetic algorithms, ant

colonies, swarm algorithms, and adaptive memory methods.

A basic version of the adaptive memory algorithm, first proposed in [110], is

summarized in Algorithm 3, where steps (1), (2) and (3) amounts to a genera-
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Algorithm 2 Tabu search (TS) for problem (P)

Generate an initial solution s with GrE

While the time limit t is not reached do

1. Perform a job move on s to reach the best non tabu neighbor solution s′

2. Each time a job j is moved to reach a neighbor solution s′, forbid j to
be moved again for tab = U( n

25 ,
n
13 ) iterations, and forbid j to move back

between its previously adjacent jobs for 2 · tab iterations

3. If the move improves s⋆, increase both tabu durations by U( n
25 ,

n
15 )

4. Set s = s′

5. If f(s) < f(s⋆), set s⋆ = s and perform a descent local search (swap jobs)
on a per machine basis

6. If p1 iterations have been performed without improving s⋆, randomly move
p2 jobs in the current solution

Return the best solution s⋆

tion.

Algorithm 3 Adaptive memory algorithm

Initialize the central memory M with solutions

While a stopping condition is not met do

1. Create an offspring solution s̄ from M by using a recombination operator

2. Apply a local search operator on s̄ (during I iterations) and let s denote
the resulting solution

3. Update M with the use of s

Return the best solution encountered

To describe our adaptive memory algorithm AMA for problem (P), we need to

define the way the population M is initialized, the recombination operator, the

intensification (or local search) operator, and the memory update operator. M

is initialized by randomly generating a few (typically between 10 and 20) solu-

tions and by improving them with a local search. The intensification operator

could be tabu search or a descent algorithm. The overall balance between the in-



36 CHAPTER 1. PRODUCTION

tensification and the diversification potential of the adaptive memory algorithm

has to be tuned with parameter I (which denotes the number of iterations that

the intensification operator is run): the smaller it is, the more importance is

given to diversification.

In AMA, the initialization of the population is performed as follows: while

M contains less than 10 solutions (parameter tested in the interval [1,20]),

construct a solution with GrE, improve it with TS (without intensification and

diversification) for I iterations (parameter tested in the interval [1,2000] and

tuned to 500), and finally insert it in M.

The intensification operator is TS (without intensification and diversification),

which is run for 500 iterations. Let s denote the resulting solution. In addition,

let sworst be the worst solution ofM (i.e., the solution with the largest objective

function value). If f(s) < f(sworst), the memory update operator replaces sworst

with s, otherwise the oldest solution of M is replaced by s.

To formally describe the recombination operator, assume that a solution sp

takes the following form: sp = {Mp
1 ,M

p
2 ,M

p
3 , . . . ,M

p
m} where Mp

i describes the

schedule of the machine i. The recombination operator works as follows: first,

we randomly select in M a solution sp and one of its Mp
i . We then insert the

selected Mp
i (without changing the associated job sequence) in the offspring

solution s̄. All the jobs of Mp
i are then removed from all the solutions of M

(to prevent scheduling twice the same jobs in s̄). The solution sp cannot be se-

lected in the next step of the recombination operator. The next non considered

machine i to be scheduled in s̄ is the one associated with the solution sq of M

such that |s̄ ∪M q
i | is maximized. In other words, at each step of the recombi-

nation operator, the number of additional scheduled jobs is maximized. At the

end, the remaining jobs that are not scheduled in s̄ are greedily inserted in the

best positions. This operator is inspired from the very efficient recombination

operator for the graph coloring problem [38].

An illustration of the recombination operator is given in Figure 1.5. Twelve jobs

are scheduled on three different machines, and M contains the two solutions s1

and s2. First, a solution and a machine are selected at random and inserted in s̄.

Here solution s1 and machine 3 are selected, thus M1
3 is inserted in s̄. Then the

different solution (i.e., solution s2) containing the largest number of additional
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jobs is selected (i.e., M2
1 ) and inserted in s̄ (note that job 9 is removed, as it is

already scheduled in s̄). M1
2 is then inserted in s̄ (without job 5 which is already

scheduled in s̄).

1 2 3 4

5 6 8

10 1112

1

2

3

s1

1 2 34 5

6

8

1011

12

1
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3

s2

1 2 34 5

6 8

1

2

3

s

10 1112

Figure 1.5: Illustration of the recombination operator of AMA

1.5 Computational results

In this section, we first compare the solutions provided by our tabu search

method with those found by solving the MILP formulation with CPLEX 12.4 for

small instances. For instances with more than 40 jobs, the MILP formulations

turn out to be too challenging and thus only heuristics and metaheuristics will

be compared. As the proposed (meta)heuristics have comparable performances

with less than 100 jobs, we decided to compare them from n ≥ 100.

Tests were performed on an Intel Quad-core i7 @ 3.4 GHz with 8 GB DDR3

of RAM memory, and the time limit t is 3600 seconds. Note that considering

larger time limits is not relevant from a practical standpoint, as the time actually

available is even smaller [90]. TSD corresponds to TS with the diversification

procedure described above, and TSDI corresponds to TS with diversification

and intensification procedures. As TS, TSD, TSDI , and AMA are not methods

with restarts, the results are averaged over ten runs.
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1.5.1 Instances

As (P) is a new problem, we generated dedicated instances inspired from the Re-

nault instances proposed in the 2005 ROADEF Challenge http://challenge.

roadef.org/2005/en/. Each instance is characterized by: the number of jobs

n ∈ {10, 20, 30, 40, 100, 200, 300, 400, 500}, the integer number of machines m ∈

[1, 8], the number of families g = max{⌈0.02 · n⌉, 2}, the family identifier fj

for each job j, the integer processing times pij of each job j on each machine i

uniformly generated within [100, 200], the integer setup costs cij uniformly gen-

erated within [30, 50] for major setups, and within [5, 10] for minor setups (we

choose sij = 0.5 · cij), and the smoothing cost kf of family f uniformly gener-

ated within [40, 60]. To ensure the respect of the lexicographic order, we took

α = 1, 000, 000, β = 1, 000, and γ = 1.

1.5.2 Results on the small instances

The MILP formulation was expressed in the AMPL modeling language and

solved using CPLEX 12.4, with a time limit of 10 hours and a memory limit of

7 GB. The results obtained with the MILP formulation and those provided by

TSD are summarized in Table 1.3. Only TSD is considered in the comparison as

we only aim to benchmark a fast and reasonably efficient local search technique

with solving the MILP formulation to optimality. In contrast with Section 1.4.3,

TSD is used with the following parameters: p1 = n·10 and p2 = n
2 . The first two

columns indicate the values of n and m (observe that there are three instances

per couple (n,m)). The third column (f⋆) corresponds to the objective function

value of the best solution ever found by the MILP formulation or by TSD.

The fourth column indicates the percentage gap between the solution found

by solving the MILP formulation and f⋆ (where the percentage gap between a

solution value f(s) and f⋆ is calculated as f(s)−f⋆

f⋆ ). The fifth column reports

the computing time (in seconds) needed to find the best returned solution when

solving the MILP formulation within the time limit or the memory limit (with

a gap of 1e−4). The sixth column indicates the type of output provided by

the MILP formulation: O stands for optimal, M for a memory-limit exceeded

(when CPLEX required more than 7 GB of memory), and finally T stands for

time-limit exceeded (when CPLEX required more than 10 hours of computing
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time). When the type is M or T , the solution returned is an upper bound, thus

CPLEX can sometimes be defeated by TSD. Note that TS needs about 200

MB of memory on the instances with 500 jobs. The seventh column gives the

percentage gap between the solution found by TSD and f⋆. Finally the last

column gives the time (in seconds) required by TSD to find its best solution.

The results show that TSD is able to find optimal solutions on all the instances

with 10 jobs in a computing time comparable to CPLEX. On the instances with

20 jobs, TSD finds an optimal solution in most of the cases, and usually requires

much less computing time than CPLEX to reach its best solution. For instances

with 30 or more jobs, TSD provides remarkably good results in a fair amount of

computing time. For example, for the first instance with 30 jobs and 1 machine,

CPLEX requires 16,508.63 seconds to find an upper bound whereas TSD finds

the same upper bound in 0.87 seconds. Moreover, on four instances with 40

jobs, TSD finds a better solution than the upper bound returned by CPLEX.

Note that for one instance with n = 40 jobs and m = 1 machine, CPLEX yields

a large percentage gap with respect to the solution found by TSD. The results

obtained for the three instances with n = 40 and m = 1 suggest that the MILP

formulations of the instances with n = 40 are harder for CPLEX when m = 1

than when 2 ≤ m ≤ 5.

In summary, Table 1.3 shows that on the small instances, our tabu search algo-

rithm is very competitive when compared to CPLEX and is strongly advised if

the allowed computing time is small.

1.5.3 Results on the large instances

The results obtained with the (meta)heuristics on larger instances are summa-

rized in Table 1.4. The first two columns indicate the values of n and m (observe

that there are five instances per couple (n,m)). The third column (f⋆) corre-

sponds to the objective function value of the best solution ever found by any of

the algorithms. The fourth column reports the percentage gap between the best

solution of GrR and f⋆. The next columns provide the same information for

the other methods. The average results, reported in the last line of Table 1.4,

show that AMA performs better in terms of average solution quality than the
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other algorithms and suggest the following order of decreasing solution quality:

AMA, TSDI , TSD, TS, LDes, Des, GrE, GRASP , GrR, and GrF .

Even for instances with the smallest values of n, GrR and GrF are dominated

by GrE. This is likely due to the fact that GrE tries all the possible insertions

before performing the best one, whereasGrR selects the next job to be scheduled

in a random fashion and GrF selects the least flexible job. On the opposite, the

computing time required by GrE is much larger (especially when n grows) than

the time required by GrR or GrF to find a feasible solution. The average results

show that on the full set of instances, GrR and GrF show similar performance,

whereas GrE performs clearly better.

Concerning the local search methods, Des significantly outperforms the greedy

procedures. The initial solutions provided by GrE are substantially improved

and the learning process added in LDes is relevant, as it leads to slightly better

solutions than Des. The performance of GRASP is disappointing. This may

be due to the fact that, at each step of the construction phase, the next job to

be scheduled is randomly selected in the restricted candidate list, which leads

to non promising insertions most of the time. Even if Des is triggered as soon

as GRASP finds a feasible solution, the solution quality remains poor.

Our tabu search TS compares favorably with the greedy procedures and the

descent methods Des and LDes. The diversification and intensification proce-

dures improve the average performances of TS. The diversification on its own

decreases the average percentage gap of TS by 0.18%. The intensification proce-

dure involves a higher computational load, as a descent local search is performed

on each machine, but leads to improvements in the average solution quality and

thus should be used when computing time is not an issue.

Figure 1.6 shows the evolution of the objective function value when applying

TS (without diversification nor intensification) and Des to the first instance of

Table 1.4 with 500 jobs and 8 machines. TS decreases much faster the objective

function value and outperforms Des after 1.5 seconds. For TS, Figure 1.7 shows

the variation of the different components of the objective function. Note that

the x-axis (time [s]) is log-scaled on both Figures. Slight variations of the main

objective (makespan) are shown on Figure 1.7 while the current computing time

is less than 10 seconds, but consequent variations are then affected on the ob-
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jective function value on Figure 1.6. Furthermore, while the objective function

decreases after 78 seconds and the makespan remains the same, the smoothing

costs decrease and the setup costs increase. The lexicographic order of the ob-

jectives easily explains this behavior, as smoothing costs have a higher priority

than setup costs. As the three objectives only encounter minor variations for

the last 2000 seconds, diversification procedures would probably be useful for

TS on this instance. This is numerically confirmed: according to Table 1.4, the

diversification procedure improved the results on this instance.

Finally, the AMA algorithm turns out to perform best, as it finds the best

averaged results on almost 85% of the instances. This shows the efficiency of the

recombination operator, and the good compromise between the intensification

and diversification (which relies on a relevant tuning of parameter I). For each n,

Table 1.5 shows the average computing times required by the three tabu search

methods and the adaptive memory algorithm to provide their best solutions.

Again, AMA is advised as it requires computing times comparable to or lower

than the other methods, while leading to better results. When n ≥ 400, AMA

requires significantly less computing times but still provides the best solutions,

suggesting that this trend may remain unchanged when n > 500.
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Table 1.3: Results on the small instances (10 ≤ n ≤ 40)

n m f⋆ MILP gap MILP time Type TSD gap TSD time

10 1 1,389,816,077 0.00 0.38 O 0.00 10.80

10 1 1,501,760,081 0.00 0.99 O 0.00 0.14

10 1 1,508,296,076 0.00 0.31 O 0.00 0.00

10 2 706,638,111 0.00 0.07 O 0.00 1.16

10 2 621,604,121 0.00 0.04 O 0.00 0.00

10 2 727,226,071 0.00 0.08 O 0.00 0.32

10 3 467,117,092 0.00 0.07 O 0.00 0.14

10 3 451,096,089 0.00 0.08 O 0.00 0.25

10 3 462,702,041 0.00 0.06 O 0.00 0.05

10 4 384,041,063 0.00 0.08 O 0.00 0.44

10 4 348,000,104 0.00 0.36 O 0.00 1.64

10 4 369,500,110 0.00 0.21 O 0.00 0.76

10 5 280,500,081 0.00 0.06 O 0.00 5.39

10 5 262,500,060 0.00 0.04 O 0.00 2.98

10 5 272,500,032 0.00 0.05 O 0.00 4.00

20 1 3,074,792,122 0.00 6,967.54 M 0.00 0.14

20 1 2,902,836,126 0.00 8,606.24 M 0.00 2.79

20 1 2,933,730,126 0.00 7,621.15 M 0.00 0.15

20 2 1,376,640,152 0.00 2,256.20 O 0.00 36.59

20 2 1,394,548,160 0.00 391.70 M 0.22 1,058.63

20 2 1,351,600,151 0.00 1,734.03 O 0.00 59.26

20 3 890,592,124 0.00 1,059.72 O 0.00 782.73

20 3 909,034,150 0.00 988.03 O 0.00 64.71

20 3 917,928,184 0.00 222.85 O 0.11 69.67

20 4 784,676,084 0.00 6.42 O 0.00 6.12

20 4 681,435,145 0.00 226.95 O 0.00 134.70

20 4 659,950,145 0.00 250.44 O 0.00 250.36

20 5 585,88,082 0.00 1,083.93 M 0.00 63.01

20 5 543,811,165 0.00 200.69 O 0.01 529.83

20 5 519,976,086 0.00 1.28 O 0.00 340.05

30 1 4,680,108,172 0.00 16,508.63 M 0.00 0.87

30 1 4,622,020,175 0.00 21,706.25 M 0.00 1.32

30 1 4,463,844,175 0.00 15,116.50 M 0.00 15.05

30 2 2,004,618,202 0.00 1,387.39 M 0.03 0.14

30 2 2,104,191,199 0.00 2,523.70 M 0.10 132.81

30 2 2,101,672,207 0.00 3,095.95 M 0.52 672.13

30 3 1,319,352,222 0.00 34,038.50 T 0.12 158.03

30 3 1,439,321,141 0.00 22,320.38 M 0.00 99.66

30 3 1,411,368,252 0.00 19,519.88 M 0.00 1,583.47

30 4 976,268,222 0.00 2,968.51 M 0.16 599.09

30 4 1,022,895,165 0.00 3,208.21 M 0.09 1,310.22

30 4 1,218,267,138 0.00 31,193.88 M 0.00 1,233.68

30 5 793,171,254 0.00 8,560.03 M 0.18 203.07

30 5 884,660,138 0.00 31,299.50 M 0.11 1,386.85

30 5 886,850,189 0.00 19,188.75 M 0.00 1,430.92

40 1 5,919,821,222 5.49 558.11 M 0.00 26.28

40 1 6,164,956,122 0.04 1,941.35 M 0.00 0.16

40 1 5,917,315,221 0.04 32,548.63 T 0.00 4.83

40 2 2,710,187,249 0.00 3,220.14 M 0.34 66.24

40 2 2,801,168,252 0.00 7,532.44 M 0.57 0.10

40 2 2,781,210,253 0.00 1,189.22 M 0.55 123.53

40 3 1,796,921,255 0.00 34,612.13 T 0.40 3.67

40 3 1,787,057,254 0.00 33,496.75 T 0.00 0.04

40 3 1,849,462,226 0.00 33,937.63 T 0.29 56.33

40 4 1,280,150,276 0.00 11,304.25 M 0.31 0.09

40 4 1,303,972,390 0.20 34,138.00 T 0.00 238.08

40 4 1,290,020,292 0.00 35,021.25 T 0.16 0.07

40 5 1,060,908,249 0.00 9,977.16 M 0.29 125.55

40 5 1,050,153,273 0.00 33,779.87 T 0.46 1,024.50

40 5 1,038,747,251 0.00 8,110.58 M 0.00 289.05

Averages 0.10 9,093.72 0.08 236.87
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Table 1.4: Results (percentage gaps) on the large instances (100 ≤ n ≤ 500)

n m f⋆ GrR GrE GrF Des LDes GRASP TS TSD TSDI AMA

100 3 4,249,340,634 7.56 3.07 8.83 1.87 1.87 3.51 2.66 2.66 2.66 1.29

100 3 4,233,412,799 6.29 0.81 6.29 0.61 0.64 1.47 0.45 0.45 0.45 0.05

100 3 4,415,300,685 5.38 0.35 5.38 0.33 0.35 1.89 0.37 0.36 0.35 0.10

100 3 4,644,682,485 3.00 5.50 3.24 5.49 3.84 3.33 6.60 3.87 3.24 1.32

100 3 4,295,080,595 7.13 0.00 6.67 0.00 0.00 2.66 0.75 0.74 0.74 0.48

100 4 3,373,945,784 6.54 0.53 20.93 0.52 0.53 1.29 4.11 3.44 3.69 1.20

100 4 3,073,716,830 7.97 1.35 7.97 1.35 1.35 0.70 0.58 0.58 0.58 0.30

100 4 3,186,260,735 8.31 0.34 7.82 0.33 0.33 1.40 0.39 0.33 0.33 0.19

100 4 4,631,194,470 7.64 16.24 8.31 16.24 8.21 9.73 15.00 14.39 10.15 5.77

100 4 4,209,242,697 8.50 2.27 8.50 2.26 2.26 4.58 2.44 2.44 2.45 1.28

200 4 6,577,040,922 10.32 2.70 8.82 0.18 0.22 6.91 0.80 0.89 0.89 0.35

200 4 6,457,674,556 11.12 1.18 10.62 0.67 0.58 7.10 1.25 1.25 1.25 0.49

200 4 7,047,345,176 6.82 8.32 5.90 4.35 4.33 5.05 6.06 6.18 5.68 1.06

200 4 6,368,356,399 9.51 0.93 9.73 0.84 0.66 6.64 0.54 0.53 0.53 0.20

200 4 6,364,989,381 10.20 3.72 10.09 1.28 1.43 6.12 0.72 0.67 0.67 0.12

200 5 5,338,469,163 10.70 11.82 9.26 2.03 2.02 6.20 0.69 0.86 0.85 0.35

200 5 5,107,140,155 14.17 11.70 12.76 7.17 8.25 9.82 4.39 4.47 4.48 1.65

200 5 5,014,498,122 11.98 3.66 11.68 3.66 3.68 7.87 1.35 1.36 1.36 0.71

200 5 4,918,697,112 12.23 1.48 13.17 1.35 1.29 8.42 1.79 1.80 1.80 0.73

200 5 4,932,777,432 11.33 1.37 12.28 0.05 0.00 6.03 0.91 0.91 0.91 0.18

300 5 7,546,705,860 12.85 10.49 12.82 10.59 10.72 11.25 1.16 1.16 1.16 0.33

300 5 8,548,622,664 11.43 7.37 3.91 2.59 2.79 10.85 4.06 4.30 4.57 1.15

300 5 7,514,486,040 15.39 3.10 26.16 2.71 2.74 12.42 2.49 2.48 2.48 0.63

300 5 7,845,598,285 13.33 1.43 18.16 0.98 1.02 10.50 1.44 1.45 1.44 0.87

300 5 7,721,296,294 10.47 1.45 11.85 0.94 1.24 7.99 0.41 0.47 0.47 0.10

300 6 6,010,630,502 14.28 0.27 12.35 0.08 0.16 9.45 0.43 0.43 0.42 0.18

300 6 6,787,291,394 11.95 8.30 8.57 0.00 0.03 7.36 3.11 3.04 3.32 1.10

300 6 7,219,121,497 16.55 6.27 26.08 4.23 4.23 12.97 4.00 3.98 3.98 1.51

300 6 6,129,353,362 14.15 0.77 13.83 0.42 0.47 9.76 0.55 0.49 0.50 0.25

300 6 6,225,313,650 14.57 6.00 14.55 2.45 2.90 10.30 2.34 2.36 2.35 0.78

400 6 8,090,382,439 15.95 0.85 16.07 0.73 0.69 12.53 0.77 0.75 0.75 0.56

400 6 11,705,162,038 12.32 1.79 16.00 1.30 1.31 9.39 1.51 1.51 1.51 0.56

400 6 8,748,386,495 16.99 4.93 13.50 3.64 3.79 14.43 3.49 3.41 3.41 1.07

400 6 9,680,318,902 7.84 18.39 6.02 18.38 6.56 9.71 7.57 4.48 4.20 2.42

400 6 8,394,069,677 14.87 3.14 15.33 3.01 3.16 11.61 1.68 1.76 1.76 0.63

400 7 7,332,170,300 15.42 7.49 13.63 7.03 7.21 12.90 2.25 2.32 2.31 0.78

400 7 7,089,360,402 14.41 7.99 13.76 2.88 2.34 10.73 0.67 0.65 0.65 0.16

400 7 6,983,157,045 16.43 0.42 16.67 0.15 0.05 11.78 0.36 0.37 0.37 0.10

400 7 7,276,891,594 15.43 3.44 14.85 2.34 2.35 11.85 1.77 1.84 1.84 0.65

400 7 7,248,836,517 16.93 8.35 20.61 7.46 7.47 14.35 3.18 3.13 3.20 0.86

500 7 8,970,000,685 16.15 2.45 16.89 2.15 1.91 12.95 0.78 0.72 0.74 0.38

500 7 8,955,682,152 14.87 2.18 15.97 2.22 2.02 11.65 1.08 1.08 1.09 0.32

500 7 8,971,542,025 14.62 6.37 14.54 3.95 3.53 11.74 1.13 1.15 1.15 0.30

500 7 8,789,686,209 15.58 2.04 16.66 0.67 0.70 13.25 0.89 0.92 0.93 0.51

500 7 11,647,554,659 13.11 12.03 8.90 5.99 6.82 10.38 2.42 0.70 1.01 1.00

500 8 7,602,048,722 17.01 10.08 18.02 3.31 3.78 13.52 1.65 1.49 1.47 0.61

500 8 7,425,937,611 15.74 1.01 15.89 0.59 0.63 12.19 0.30 0.29 0.29 0.11

500 8 7,410,231,321 16.95 1.79 17.41 1.44 1.35 11.84 0.95 0.94 0.94 0.59

500 8 7,527,643,588 17.49 5.03 17.40 3.57 3.84 13.67 2.61 2.70 2.69 0.78

500 8 8,350,425,967 17.57 8.62 17.17 7.66 8.16 13.89 3.19 2.58 3.15 0.94

Averages 12.35 4.62 12.84 3.08 2.72 8.96 2.20 2.02 1.94 0.76
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Figure 1.7: Values of the objective functions for the TS run presented in Fig.
1.6

Table 1.5: Average computing time (in seconds) needed to get the best solutions

n TS TSD TSDI AMA

100 648.32 600.26 547.73 430.82

200 1,175.79 909.67 1,478.01 1,538.92

300 2,034.97 1,416.29 1,787.66 1,787.36

400 2,329.38 2,761.35 2,630.58 2,170.91

500 2,568.90 3,020.97 2,598.77 1,628.75

Averages 1,751.47 1,741.71 1,808.55 1,511.35
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1.6 Conclusions

We have addressed a new multi-machine multi-objective job scheduling prob-

lem with interesting applications for example in the car industry. The problem

includes the following realistic features: jobs of various families, different ma-

chines (or production resources), makespan minimization, machine eligibility,

machine and job dependent setup times and costs, as well as smoothing costs.

We gave a MILP formulation and a network interpretation. Small instances

can be solved via the MILP formulation. For larger instances, we developed

and compared several (meta)heuristics, namely a GRASP, tabu search and an

adaptive memory algorithm. When the number of jobs increases, the adaptive

memory algorithm provides the best solutions and is very competitive in terms

of trade-off between solution quality and computing time.
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Chapter 2

Metaheuristics for truck

loading in the car

production industry
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The delivery of goods to car factories is a challenging problem. The French car

manufacturer Renault is facing daily a complex truck loading problem where

various goods must be packed into a truck such that they fulfill different con-

straints. As trucks can deliver goods to different factories on the same tour,

classes of items have been defined, where a class is associated with a delivery

point. As the number of items and the standard deviation of the sizes of the

items are significant, no exact algorithm is competitive. A tabu search and

genetic algorithms are proposed to tackle this problem. The results show that

the most effective method is a genetic algorithm. An extension is then pro-

posed, which consists in tackling all the instances within a given time limit. For

this extension, results show that a combination of the algorithms is the most

powerful strategy.

47
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2.1 Introduction

The French car manufacturer Renault is facing a complex truck loading prob-

lem, where items need to be placed in a truck such that they fulfill different

constraints. The items are typically car parts (wheels, brakes, chassis, etc.)

used to build the car production. This problem is called here the Renault truck

loading problem (RTLP ). Renault is dealing on a daily basis with more than

a thousand trucks, which have to deliver goods to car factories, making this

problem relevant to their production plan. As a single truck can deliver goods

to different delivery points, classes of items have been defined, where a class is

associated with a delivery point. Each problem instance contains the size of the

truck (in millimeters) and the various sizes of all the items that must fit in (in

millimeters). The heights of the items can be ignored as they rely on complex

factory constraints which are supposed to be already satisfied. At first sight,

this problem seems related to a strip-packing 2D problem with rotation, which

has been already covered by many research papers. In the strip-packing 2D

problem, rectangular items must be packed in a single bin of fixed width and

infinite length, with the objective of minimizing the total length of the packing.

Relevant surveys on this topic can be found in [60, 74, 92, 109]. This problem

is a strongly NP-hard combinatorial problem.

In this paper, we aim at tackling some new features proposed by Renault : differ-

ent classes of items, and a significant number of items per truck in conjunction

with a large standard deviation of the sizes of the items. Such elements make

the considered problem more relevant to modern and realistic issues. To solve

RTLP , Renault proposes a simple but efficient greedy heuristic (SG), and an

advanced greedy heuristic called “look-ahead greedy” (LAG). Renault proposes

us to benchmark their algorithms with state-of-the-art metaheuristics, to mea-

sure the possible gap between their algorithms and a possibly better solution

method. An important aspect is the tradeoff between the computing time and

the solution quality.

Based on the problem presented in [105], the contributions of this paper are

the following. (1) We present a complex bin-packing problem RTLP faced by

a real company. (2) We accurately measure the limitations of exact methods

for RTLP . (3) We propose advanced metaheuristics to efficiently tackle RTLP ,
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which perform better than the ones presented in [105], and we provide interesting

features for future bin-packing methods. The obtained solutions indicate to

Renault that it is possible to save interesting spaces for some trucks, which could

result in the insertion of additional items for such trucks. (4) 597 instances are

tackled to ensure the robustness of our methods (only 30 instances are considered

in [105]). (5) We propose a global technique which conducts various types of

solution methods to efficiently load several trucks according to a predefined

computing time limit. Our analysis show the relevance of combining various

types of heuristics/metaheuristics to achieve better performances.

The paper is organized as follows. In Section 2.2 is proposed a formal description

of the problem and a MILP formulation for RTLP . In Section 2.3, a review

of the literature concerning the bin-packing problems is depicted. In Section

2.4 are proposed various metaheuristics for RTLP , and the obtained results are

discussed in Section 2.5. In Section 2.6 strategies are proposed to tackle a set

of instances within a given time limit. Section 2.7 concludes the research and

proposes some future works.

2.2 Description of the problem and MILP for-

mulation

In this section, we start by formally describing RTLP . We then propose a MILP

formulation.

2.2.1 Description of the problem

RTLP can be formally described as follows. A number n of rectangular items

need to be placed in a truck (of width Wt and length Lt). First, for each item i,

we know its width wi, its length li, and its class Cj , where j ∈ {1, . . . ,m} with

m ≤ n. Therefore, it is possible to have more than one item of class Cj . The

height of each item is supposed to respect the height of the truck. In addition,

the classes must be placed in an increasing fashion from the front to the rear of

the truck. More precisely, the abscissa of the origin item (the item which the
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lowest abscissa value) which belongs to class Cj (label 1 on Figure 2.1) must

be strictly smaller than the abscissa of the extremity of any item of class Cj+1

(label 2 on Figure 2.1), and such that the abscissa of the extremity item (the

closest one to the rear) of class Cm (label 3 on Figure 2.1), denoted as f , is

minimized. The truck size is a hard constraint to fulfill, as it is not allowed to

exceed neither its length nor its width.
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Figure 2.1: A possible solution for RTLP

Nowadays, instances of the standard bin-packing problem with up to 100 items

can be tackled with exact methods and solvers based on linear programming

(e.g., [84]). Unfortunately, RTLP cannot be labeled as a standard bin-packing

problem and exact methods are limited to much smaller instances. This is due

to the large standard deviation among the sizes of the items (the items have

widths or lengths of minimum 570mm and maximum 1810mm, with a standard

deviation of 196), and to the class management constraint. In 2009, researchers

from Renault stated in a conference presentation ([91]) that an exact method

relying on a recent version of CPLEX is limited to 6 or 7 items for RTLP . In

this paper, we first propose an integer linear program relying on CPLEX 12.5

able to solve instances with up to 13 items in about 7 hours on a powerful com-

puter (i.e., Intel Quad-core i7 @ 3.4 GHz with 8 GB DDR3 of RAM memory).

This limitation is a first motivation to design (meta)heuristics to tackle the real

instances proposed by Renault (which contain up to 66 items). Moreover, as the

truck loading plan has to be often rebuilt due to constant changes in the pro-

duction plan, the need for fast and efficient algorithms is mandatory. Therefore,

(meta)heuristics appear to be the most appropriate methods for RTLP .
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2.2.2 MILP formulation

An exact model formulation for RTLP is now proposed. The following notation

is used: xl
i and yli are non-negative values representing the coordinates of the

bottom left corner of item i, whereas xr
i and yri are non-negative values repre-

senting the coordinates of the top right corner. Notation ci corresponds to the

class value Cj of item i. zi is the binary value corresponding to the orientation

of item i, where zi=0 if the item is not rotated (according to the initially given

orientation) and 1 otherwise. Moreover, we use a lower bound fLB of f defined

as ⌈(
∑

n li · wi)/Wt⌉. Using the above variables and parameters, the problem

can be formulated as the following mixed integer linear program:

minimize f , subject to the following constraints:

f ≥ xr
i ∀i (2.1)

xr
i = xl

i + (1− zi) · wi + (zi) · li ∀i (2.2)

yri = yli + (1− zi) · li + (zi) · wi ∀i (2.3)

xr
i ≤ xl

j ∨ xr
j ≤ xl

i ∨ yri ≤ ylj ∨ yrj ≤ yli ∀i, j (2.4)

yri ≤ Wt ∀i (2.5)

xl
i ≤ xr

j ∀i, j s.t ci+1 = cj (2.6)

f ≥ fLB (2.7)

xl
i ≥ 0, xr

i ≥ 0, yli ≥ 0, yri ≥ 0 ∀i (2.8)

zi ∈ {0, 1} ∀i (2.9)

Constraints (2.1) ensure that f is correctly computed as the maximum on all

i of value xr
i . Constraints (2.2) and (2.3) ensure a correct computation of the

coordinates of each item, whereas constraints (2.4) check that all x and y are

getting consistent values. Constraints (2.5) ensure that yri is less than the truck

width for all i, whereas constraints (2.6) check the class management constraint.

Constraints (2.7) define fLB as a lower bound of f . Finally, constraints (2.8)

forbid negative values for the decision variables.
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2.3 Related literature

For exact methods, literature often proposes methods to tackle instances pro-

posed in [9] or in [11]. The sizes of the instances are with up to 200 items.

Each item has a width or a length in {1, . . . , 100} and a standard deviation of

approximately 30 to 40.

If the number of items is less than a hundred, an exact branch-an-bound is

proposed in [84] to tackle a problem where a set of n rectangular pieces must be

cut from an unlimited number of standardized stock pieces. This problem is a

generalization of the 2D bin-packing problem (2D-BPP). More recently, in [83],

an exact method for the strip-packing problem is proposed, solving instances

with up to 200 items. The paper proposes a new relaxation, leading to a better

lower bound, which is then used with a branch-and-bound algorithm to solve

instances to optimality. Lower-bounds and an integer linear formulation for the

2D-BPP with up to 100 items are depicted in [99], where bins have variable

sizes and costs, and the objective is to minimize the overall cost of bins used

for packing the items. For the perfect packing problem, where there is no

wasted space, [71] propose an exhaustive approach, relying on a branch-and-

bound, able to tackle instance with up to 30 items. Finally, a mixed integer

programming formulation for the three-stages 2D-BPP is proposed in [103]. In

real applications, three stages often occur, where a stage is either a horizontal

cut, a vertical cut, or a combination. Recent advances in the strip-packing

problem can be found in [27], where significant improvements, regarding to

existing algorithms for the strip-packing problem are exposed. Because of the

specificity of RTLP (i.e., class management constraint and important standard

deviation among the sizes of the items), it is not possible to take advantage of

the above exact algorithms to tackle it.

In the area of bin-packing, many researches focus on metaheuristics to tackle

problems involving packing of items. Metaheuristics propose to find good solu-

tions (in contrast with optimal solutions for exact methods) in a fair amount of

time. A good reference book on metaheuristics can be found in [45], whereas

[129] proposes general rules to improve metaheuristics performances according

to various criteria and the kind of faced problem. A survey is proposed in [76]

on heuristic and metaheuristic methods for the 2D-BPP, with greedy algorithms
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and a tabu search for four different problems (bin-packing with or without rota-

tion, and with guillotine cutting required or not, where with guillotine cutting,

only orthogonal cuts that bisect one component of the cutting material are al-

lowed). Instances sizes vary from 10 up to 100. The goal of the tabu search is

to empty a specific target bin B by performing modifications, which consist in

moving subsets of items from B to other bins, where they can be rearranged.

A tree-decomposition heuristic for the BPC-2D (2D bin-packing with conflict)

is proposed in [67] for instances with up to 100 items, where a conflict graph

G = (V,E) is given, for which each vertex j ∈ V represents an item, and there

is an edge [j, j′] ∈ E if items j and j′ are incompatible. If two incompatible

items are loaded in the same bin, a conflict occurs. The goal is to minimize

the total number of bins, without creating any conflict. Simple heuristics and a

tabu search are proposed to tackle this problem, where for the tabu search, the

neighborhood structure consists in moving an item from a bin to another. A

tabu search is proposed in [75] to tackle the problem of packing each item into

a bin, such that the total number of required bins is minimized. A move also

corresponds to relocate an item in the solution. Instances contain at most 100

items. The TS2PACK algorithm is proposed in [28]. It consists in a two-level

tabu search for the 3D bin-packing problem (where the height of the bin has

to be also considered). Whereas the first level aims at minimizing the total

required number of bins, the second level consists in optimizing the packing of

the bins. Instances sizes range from 50 to 200 items. Similarities between the

bin-packing and the stock cutting problems are depicted in [74].

Recent advances have been made in genetic algorithms to tackle the 2D-BPP,

where a population of solutions are combined and mutated to produce the off-

spring population. This process allows to diversify the search, and is usually

combined with an intensification process, such as tabu search, to improve its

performance. [15] proposes a genetic algorithm, where the solutions are not en-

coded. Instead, fully defined layouts are handled. The orientation is taken into

account and extensive computational experiments show the effectiveness of the

method. The crossover operator works in the following way: two parents are ex-

amined layer by layer, in a descending order, and the best parent layer is always

transferred to the offspring. A genetic algorithm and a simulated annealing are

described in [119]. Both approaches are compared and show that the genetic

algorithm prevails on most of the instances. Here different types of crossover

operators are used, namely order-based crossover (OBX), cycle crossover (CX),
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order crossover (OX), partially matched crossover (PMX), uniform crossover

(UX) and Stefan Jakobs crossover (SJX). In the same area, [13] proposes a

self-adaptive genetic algorithm and a self-adaptive parallel recombinative sim-

ulated annealing, and the genetic algorithm performs best in this case as well.

The authors use four different crossover operators, and at each generation se-

lect one crossover operator to be performed. The four possible crossovers are:

PMX, CX, partially mapped crossover random locations (PMXRL), and pre-

serve location crossover (PLX). Other relevant works in this area can be found

in [59, 66, 72, 73, 100].

The bin-packing problem presents many similarities with the container loading

problem. However both problems are usually tackled by different communities

of researchers. Thus, a careful study of the container loading problem literature

has been performed. [42] proposes a tabu search for a routing and container

loading problem, where moves consist in interchanging a pair of items between

two different vehicles. In this problem, the three-dimensional container loading

problem is considered, the loading process is divided into subproblems and is

tackled with tabu search. In the same field, [39] proposes a parallelized genetic

algorithm, but only a single container is considered. Crossover operators are here

uniform order-based crossover (UOC), PMX, and CX. This paper was followed

by [16], where the authors propose a parallel tabu search algorithm and expose

improved results compared to the previous parallel genetic algorithm. The tabu

search works on encoded solutions, and two neighbor solutions differ in the

position of the items in the encoded solution. [80] are working as well with

parallel algorithms, but an hybrid local search is used. A simulated annealing is

combined with a tabu search, and results show high solution quality. They work

as well with encoded solutions, and two solutions are neighbors if the sequences

in which the items are packed differ from exactly one position. Other interesting

works, involving complex techniques, can be found in [128, 98, 89].

2.4 Solution methods for RTLP

Different metaheuristics are now proposed to tackleRTLP , based on tabu search

and genetic algorithms. All the proposed methods have a stopping condition of

T minutes (parameter).
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2.4.1 Solution space structure

To tackle bin-packing problems, one can work either with true solutions or

encoded solutions. A true solution directly represents a real loading of the items

in the truck, which means that the position of each item has to be continuously

known. Then, if an item is added to or removed from the truck, the new position

of the loaded items is very hard to recompute, which is a major drawback.

Working with encoded solutions require the use of a decoding algorithm to built

the associated true solution and to get its value. Such an approach has the main

advantage of being very flexible when adding (resp. removing) an item to (resp.

from) the solution. Therefore, a decision has been made to work with encoded

solutions. More formally, an encoded solution s is a sequence of elements. To

build a true solution ŝ and compute its value f(s), a decoding greedy algorithm

(DGA) is performed on the encoded solution s. To drive DGA, information

(some are mandatory and others are optional) are carried in each element of

s, and can contain the item identifier (ID, mandatory), the class identifier (C,

mandatory), the item orientation (O, optional), and the item side (S, optional).

Thus, component i of the solution s takes the form si = (IDi, Ci, Oi, Si), where

ID ∈ {1, . . . , n}, C ∈ {1, . . . ,m}, O ∈ {not rotated, 90◦ rotated}, and S ∈ {left-

sided, right-sided}. Concerning S, left-sided enforcesDGA to try every possible

position for the item, but only among the positions which are adjacent to the

left side of the truck or to the left side of each already loaded item. DGA thus

decodes the vector s into a real solution ŝ (i.e., a true loading) by inserting in

ŝ the items from s in a FIFO order, and using the O and S information (if

provided) while respecting the class management constraint. At each step, DGA

pops the next item i of s and greedily loads it in the truck, while respecting

Ci, Oi and Si. If Oi (or Si) is not provided, DGA can decide by itself its value

(minimizing the augmentation of f), and thus owns more freedom. For instances

with n = 60, DGA requires less than 0.1 second (on the used computer) to

decode a solution into a real loading.

An example is now proposed. Five items, initially oriented as presented in Figure

2.2 (A), have to be placed in a truck. A possible encoded solution is the fol-

lowing: s=((1,1,not rotated,right-sided), (3,1,90◦ rotated,right-sided), (2,1,90◦

rotated,left-sided), (5,2,?,?), (4,2,?,right-sided)). The corresponding decoded

solution ŝ is illustrated in Figure 2.2 (B).
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To generate this solution, DGA performs the following steps: it pops the first

element ID1 and loads the corresponding item on the right side, without rota-

tion. At that time, the next item, corresponding to ID3, is loaded on the right

with a 90◦ rotation. Then item ID2 is loaded on the left with rotation, whereas

item ID5 is inserted at the best possible position tried by DGA while respecting

the class management constraint. Finally item ID4 is inserted on the right side

but DGA decided its orientation. When DGA is over, it returns the value f ,

which is in this example the extremity of item ID4.

1
32

12

f

Figure 2.2: (A) Items to be loaded (with initial orientations). (B) Corresponding
decoded solution.

Four different local search algorithms are proposed in [105]. They differ in the

sense that for the first version (called TS1), only the information ID and C are

contained in each element of the encoded solution. The second version (called

TS2) contains ID, C and O. The third version (called TS3) contains ID, C and

S. The fourth version (called TS4) contains ID, C, O and S. Thus, for the

first version, DGA can decide on its own the orientations and the sides (while

focusing on the smallest augmentation of f). In the second and third version,

DGA has the sequence in which the insertions must be made, and the orientation

or the side of each item (but not both). Finally, the fourth version constraints

DGA at the maximum due to the complete information set contained in each

component si of the vector s. Preliminary experiments (detailed in [105]) have

be made on a representative set of 30 instances. For each instance and each

version of tabu search was computed the average percentage gap with respect

to the best ever obtained solution. TS1, TS2, TS3 and TS4 have respectively

the following average gaps: 8.01%, 0.00%, 0.21% and 0.32%. This clearly shows

that the most important information to be carried to DGA is the one considered
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in TS2 (with ID, C, and O), whereas providing full freedom to DGA (as in TS1)

results in poor results. As a consequence, in this paper, we decided to only focus

on the solution space structure relying on ID, C and O.

2.4.2 Tabu search

A local search method starts from an initial solution, and at each iteration ex-

plores the neighborhoodN(s) of the current solution s to reach a possibly better

solution. The neighborhood of a solution s is the set of solutions reachable from

s by performing a specific modification (called a move) on s. The neighborhood

exploration continues until a stopping criterion is met (usually a number of it-

erations or a computing time limit), and the best found solution is returned to

the user. In a descent local search, the best move is performed at each itera-

tion, and the algorithm stops when a local optimum is reached. Tabu search is

a local search with the following specificities: when a move is performed, the

reverse move is forbidden (tabu) for tab (parameter) iterations. The best non

tabu move is usually performed at each iteration.

For RTLP , the seven following moves can be proposed:

(1) move an item j from position si to position si′ is s;

(2) move an item j from position si to position si′ is s while switching to the

opposite value its orientation O;

(3) move an item j from position si to position si′ is s while switching to the

opposite value its side S;

(4) move an item j from position si to position si′ is s while switching S and

O to the opposite values;

(5) for an item j, switch O to the opposite value;

(6) for an item j, switch S to the opposite value;

(7) for an item j, switch O and S to the opposite values.
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As mentioned in Section 2.4.1, the solution space considering ID, C and O

is the most powerful. Therefore, in the proposed tabu search TS, only the

moves considering moving an item in the encoded solution and switching O are

considered at each iteration, while respecting the class management constraint

(ties are broken randomly). In other words, only moves of type (1), (2) and (5)

are considered in TS (because the other moves are associated with less efficient

solution space structures).

The initial solution used by TS is found in the following way: for a time T ′ = λ·T

(where λ is a parameter tuned to 10% with λ tested in interval [0%, 60%]), a

random solution is generated and then improved with a descent local search.

As long as T ′ is not reached, restarts are performed. When T ′ is reached, the

best found solution is returned and is used as the initial solution for TS. This

initialization operator is called INIT in the following.

In tabu search, it is common that, at each iteration, only a random fraction υ

of the possible moves are generated. This restriction in the neighborhood size

allows to perform more iterations for a same time limit, and helps in bringing

more diversification. At each iteration, the tabu tenure tab is set to a uniformly

distributed value between a and b (parameters). Preliminary experiments shows

that the following parameter setting is appropriate for the considered instances:

(υ, a, b) = (50%, 25, 55), with υ tested in interval [1%, 100%], whereas a and

b were tested in interval [5, 200]. Note that more refined strategies were tested

for the neighborhood size and the tabu durations, but without leading to better

results. Thus, the simpler settings are favored. This observation holds for all

the parameters described in this paper.

The following diversification mechanism is also proposed. Let s⋆ be the best

encountered solution during the search process. When a number γ (parameter

tuned to 300, with γ tested in interval [50, 1000]) of iterations without improv-

ing s⋆ is reached, a diversification procedure DIV is triggered, which consists

of reversing the encoded solution, while respecting the class management con-

straint (i.e., for each class, the sequence of the items is reversed). This simple

process allows big jumps in the solution space.
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2.4.3 Genetic algorithm

In contrast with local search methods, genetic algorithms maintain a population

M of solutions, instead of working on a single solution. As with human genetic,

where chromosomes are used to encode our DNA, a genetic algorithm manages

a set of chromosomes (solutions), and each chromosome is a list of genes (vari-

ables). At each generation of the algorithm, the complete population is renewed

with |M| offspring solutions. To generate a new offspring solution, two parent

solutions are selected, based on their ability to produce a good offspring solu-

tion. An offspring is then generated by recombining the two parent solutions. A

mutation operator, which introduces random modifications to the offspring, is

triggered after the recombination methods to ensure that the offspring is differ-

ent enough compared to its parents. Finally the offspring is added to the new

population. Thus, to design a genetic algorithm, one has to carefully define the

following three different operators: the parent selection process, the recombina-

tion operator, and the mutation. At the end of a generation, the new population

replaces the parent population, and the algorithm continues the same process

until a stopping criterion is met.

To introduce the genetic algorithm for RTLP (denoted GA), we first define the

distance between two solutions s1 and s2 as

d(s1, s2) =
n
∑

i=1

∣

∣sL1 (i)− sL2 (i)
∣

∣+
n
∑

i=1

∣

∣sW1 (i)− sW2 (i)
∣

∣ (2.10)

where sWj (i) represents the width (measured according to the front-rear axis)

of the item i of solution sj , and sLj (i) the corresponding length. This distance

function is easy to compute and allows to measure the difference of shape be-

tween two true solutions, which is more relevant than to measure the structural

difference between two encoded solutions. Figure 2.3 proposes an illustration.

For the true solutions (A) and (B), the associated encoded solutions could be

the same following one: (1, 2, 3, 4). In other words, even if the loading sequences

of (A) and (B) are the same, the resulting loadings are very different, and this

difference can be accurately measured by the proposed distance function. In

contrast, the true solutions (A) and (C) have similar shapes even if the encoded

solutions could respectively be (1, 2, 3, 4) and (4, 1, 3, 2). Actually, the distance

between (A) and (C) is 0, considering that items 1, 2 and 4 have the same
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dimensions. In other words, even if the loading sequences of (A) and (C) are

very different, the resulting shapes of the loadings could be the same, and this

similarity is perfectly detected by the proposed distance function.

1 2

3

4

1 2

3

4

4 1

3

2

C
Figure 2.3: Illustration of the distance between solutions

In GA, N (parameter tuned to 10, with N tested in interval [1, 100]) initial

solutions are first generated similarly to INIT . For a time T ′ = λ · T (where

λ is a parameter tuned to 10% with λ tested in interval [0%, 60%]), a random

solution is generated and then improved with a descent local search. As long

as T ′ is not reached, restarts are performed. When T ′ is reached, the N best

visited solutions are selected for the second phase, which consists of improving

each solution with I (parameter tuned to 100, with I tested in interval [20, 600])

iterations of TS. Finally the N resulting solutions are inserted in M.

As long as T is not reached, the selection operator intends to select the two

most interesting solutions in M. The first solution s1 is stochastically selected

according to its rank in M, assuming that the solutions in M are ranked from

the best to the worst (according to f). Thus, the best solution has |M| times

more chance to be selected than the worst, whereas the second best has |M|-1

times more chance, etc. The second solution s2 is then selected as the one having

the largest distance with s1 (according to Equation (2.10)). This technique is

likely to generate an offspring solution different enough from the solutions in

M.

The recombination operator, denoted RECOMB, works as follows to produce

the offspring solution s̄ from two parent encoded solutions s1 and s2.

Ifm = 1, half of each parent solution is given to s̄ as follows: each parent encoded
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solution is split in two, and the operator randomly selects which parent gives

the first part. The other parent then gives the missing items in the order they

appear in it.

If m > 1, then the operator works in two distinct phases. In the first phase,

namely the constructive phase, it selects the next block (a complete class in the

constructive phase, then a part of a class in the reconstructive phase) belonging

to a class randomly selected from a parent and inserts it in s̄, until all the

classes are filled in s̄. After the initial constructive phase and any subsequent

reconstructive phase, a check is performed, and as long as each parent does not

give at least 40% and at most 60% of information to s̄, a reconstructive phase is

performed as follows. The largest block of s̄ from the parent having provided the

largest number of items is split in two, then one part of the block is given from

a parent (randomly selected) and the other part is given by the other parent.

This process allows to ensure that a fair amount of information is transmitted

to s̄ by each parent. Of course the procedure forbids duplicate items in the

offspring by selecting only the items that are not already present in s̄.

Figure 2.4 proposes an illustration of the RECOMB operator. Nine items,

with two different classes, have to be packed. The first class contains two items

(labeled 1 and 2), whereas the second class contains seven items. In the first

phase, it randomly selects which solution provides class 1 (here s1). Then s2

provides the second class. After this constructive phase, a check is performed

and it results that s1 gives 22.2% of its solution, whereas s2 gives 77.7% of

its solution. The algorithm then splits in two the block which has the largest

number of items (here the corresponding block is the complete second class,

with items 7, 9, 4, 5, 6, 8, 3), and each part of the block is provided by the

two different solutions. Then, the first part of the second class is provided by

s2 (items 7, 9 and 4), whereas the second part is provided by s1 (the missing

items are 5, 6, 8, 3, but they appear as 3, 5, 6, 8 in s1). Again, a check is

performed, and s1 gives 66.6% of its solution, whereas s2 provides 33.3% of its

solution. The last block, provided by s1 (containing items 3, 5, 6, 8) for class 2,

is the biggest block, thus the algorithm splits it in two. After the third step, s1

provides 44.4% of its solution, whereas s2 provides 55.5% of its solution. The

algorithm then stops and returns s̄, as each parent provides at least 40% and

at most 60% of data from its solution.

In the most efficient genetic algorithms currently used to tackle combinatorial
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Figure 2.4: Illustration of the recombination operator of GA

problems, called hybrid genetic algorithms, the mutation operator is often per-

formed by a local search method in order to improve the offspring solution. In

GA, TS without diversification is used as the underlying local search method.

Thus, after the generation of the offspring solution s̄, TS is used to improve s̄

for I iterations.

In GA, only one offspring s̄ is provided at each generation, and is used to replace

only one solution in the population. The worst solution sworst of M is replaced

with s̄ (the worst solution being the one with the longest loading). But if s̄ is

worse than sworst, then the solution sclose having the minimum distance value

with the set M\ sclose is replaced with s̄. More precisely sclose minimizes

D(s) =
1

|M| − 1

∑

s′∈M\s

d(s, s′) (2.11)

where d(s, s′) is defined according to Equation (2.10). This technique allows to

add more diversity in M.

The pseudo-code of GA is given in Algorithm 4.

2.5 Results

In this section are compared all the methods presented in this paper on a

set of 40 real benchmark instances provided by Renault. Note that a total
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Algorithm 4 Genetic algorithm GA proposed in this paper

Set M = ∅

While |M| < N , do

1. Generate a solution s using INIT

2. Perform I iterations of TS on s

3. Put s in M

While the time limit T is not reached, do

1. Select two parents based on the selection operator

2. Perform the recombination operator to produce s̄

3. Perform I iterations of TS on s̄

4. If f(s̄) < f(sworst), replace sworst with s̄. Otherwise, replace sclose with
s̄.

Return the best visited solution s⋆

of 597 instances exist (with the same difficulty), and are available on http:

//operations-research.unige.ch/downloads.html. Tests were performed

on an Intel Quad-core i7 @ 3.4 GHz with 8 GB DDR3 of RAM memory. The

time limit T is set to 3600 seconds. Such a time limit was confirmed to be a rel-

evant value, as the goal of this project is to benchmark the Renault algorithms

by finding the best possible solutions. Thus, the computation time is not a hard

constraint in this case. As tabu search and genetic algorithm are not methods

with restarts, their results are averaged over ten runs. For analysis purposes,

the 40 instances are split in five different groups in the result tables. Let Z

be the full set of 597 instances provided by Renault. We decided to consider

40 representative instances of Z which are partitioned into 4 instances types,

ranging from (A) to (D), and described below:

(A) large m values (m ≥ 6), given that the average m value in Z is 2.36;

(B) medium m values (m = 4);

(C) m = 1;
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(D) instances for which Renault was not able to find a feasible solution prior

to this project.

Table 2.1 summarizes the fourteen different instances. For each instance are

given the truck identifier ID, the number n of items, the number m of classes,

and the type to which the instance belongs.

Table 2.1: Presentation of the forty instances

ID n m Type

1 26 7 (A)
2 36 7 (A)
3 37 7 (A)
4 27 6 (A)
5 25 7 (A)
6 20 7 (A)
7 26 7 (A)
8 30 9 (A)
9 38 9 (A)
10 21 7 (A)
11 18 4 (B)
12 20 4 (B)
13 13 4 (B)
14 23 4 (B)
15 37 4 (B)
16 25 4 (B)
17 36 4 (B)
18 33 4 (B)
19 32 4 (B)
20 30 4 (B)
21 16 1 (C)
22 16 1 (C)
23 19 1 (C)
24 26 1 (C)
25 44 1 (C)
26 18 1 (C)
27 11 1 (C)
28 14 1 (C)
29 22 1 (C)
30 17 1 (C)
31 38 2 (D)
32 34 3 (D)
33 42 2 (D)
34 31 3 (D)
35 25 3 (D)
36 27 2 (D)
37 29 2 (D)
38 31 2 (D)
39 35 3 (D)
40 37 1 (D)

Renault proposes the two following greedy heuristics to tackle RTLP , denoted

SG (for Simple Greedy) and LAG (for Look-Ahead Greedy). SG builds a

solution from scratch, and at each iteration, selects an item (following different
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possible rules) from a list A of non already inserted items, and adds it to the

solution at minimum f value (i.e., which minimizes the augmentation of f ,

label 3 of Figure 2.1). This process stops when A is empty. In LAG, at each

iteration, the algorithm tries each item j of A, and for each j, tries the next p

(parameter tuned to 5, with p tested in interval [1, 10] insertions following this

possible insertion of j (look-ahead process). At the end of the iteration, the item

j that would involve the lowest cost after the next p iterations is selected and

inserted at the best position. As before, this process continues until A becomes

empty. Both processes are fast (a few seconds per run), and therefore relevant

to Renault as they are dealing with more than a thousand trucks to operate on a

daily basis. As [105] show that LAG is the most efficient greedy heuristic, only

the latter is used for comparison purposes, and it performs restarts as long as

the time limit T is not reached. When T is reached, the best generated solution

is returned.

Table 2.2: Results on the (A) instances

ID f⋆ LAG gap TS gap time TS + DIV gap time GA gap time

1 11,820 11,820 0.00% 11,939.20 1.01% 1,515.70 11,873.00 0.45% 936.57 11,872.20 0.44% 641.96

2 13,510 13,670 1.18% 13,510.00 0.00% 444.93 13,510.00 0.00% 39.60 13,510.00 0.00% 69.12

3 13,950 14,090 1.00% 13,974.00 0.17% 1,267.58 13,964.00 0.10% 1,685.37 13,950.00 0.00% 414.23

4 13,048 13,068 0.15% 13,074.20 0.20% 1,475.82 13,051.00 0.02% 1,161.32 13,048.00 0.00% 171.13

5 13,372 13,372 0.00% 13,372.00 0.00% 721.31 13,372.00 0.00% 36.14 13,372.00 0.00% 736.85

6 13,192 13,230 0.29% 13,208.20 0.12% 1,011.17 13,192.00 0.00% 535.09 13,192.00 0.00% 156.91

7 13,012 13,012 0.00% 13,111.00 0.76% 1,049.59 13,110.00 0.75% 29.11 13,110.00 0.75% 0.00

8 13,950 13,950 0.00% 13,998.40 0.35% 2,249.02 13,965.00 0.11% 306.06 13,967.00 0.12% 1,273.15

9 13,110 13,170 0.46% 13,189.00 0.60% 948.03 13,170.00 0.46% 371.21 13,140.00 0.23% 1,710.92

10 14,290 14,310 0.14% 14,298.00 0.06% 1,855.08 14,290.00 0.00% 178.48 14,290.00 0.00% 131.61

AVG 0.32% 0.33% 1,253.82 0.19% 527.89 0.15% 530.59

Table 2.2 shows the results on the (A) instances. The first column (ID) gives the

instances identifier. The second column (f⋆) provides the best found solution

returned by any of the algorithms (i.e., the best found solution can be achieved

on a run of an algorithm, but its average could be higher, thus the value of f⋆

can be lower than all the results provided for this instance). Column three and

four respectively gives the best results returned by LAG and the corresponding

percentage gap with f⋆. The next three columns provide the average (over

ten runs) result found by TS, the corresponding gap with f⋆, and finally the

average time (in seconds) to reach the best solution. The next columns provide

the same information for the other methods (TS with diversification and GA).

The last row provides averaged values for each corresponding gap and time. For

TS, TS +DIV and GA, a time lower than T ′ indicates that the best solution
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was found while performing INIT . Note that no time is given for LAG as

it is a restarting procedure. Thus, its best solution within T seconds can be

generated at any time. On average, GA tends to perform best on this kind of

instances, not far from TS +DIV . LAG and TS show similar performances,

but TS needs more time to reach its best solution compared to TS +DIV and

GA. The diversification ability associated with GA seems to pay back, as it

gives very good results with a competitive computing time. The diversification

mechanism of TS also shows interesting improvements.

Table 2.3: Results on the (B) instances

ID f⋆ LAG gap TS gap time TS + DIV gap time GA gap time

11 13,295 13,295 0.00% 13,295.00 0.00% 1,534.66 13,295.00 0.00% 4.65 13,295.00 0.00% 23.19

12 13,325 13,325 0.00% 13,325.00 0.00% 650.61 13,325.00 0.00% 11.92 13,325.00 0.00% 12.98

13 12,600 12,600 0.00% 12,600.00 0.00% 1.01 12,600.00 0.00% 0.14 12,600.00 0.00% 0.00

14 12,902 12,916 0.11% 12,912.20 0.08% 1,652.50 12,904.00 0.02% 941.47 12,906.00 0.03% 573.16

15 13,660 13,660 0.00% 13,719.60 0.44% 1,335.28 13,716.00 0.41% 765.21 13,716.00 0.41% 1,152.94

16 12,350 12,350 0.00% 12,390.40 0.33% 1,534.97 12,350.00 0.00% 653.06 12,350.00 0.00% 99.43

17 13,160 13,160 0.00% 13,232.00 0.55% 1,194.06 13,220.00 0.46% 676.90 13,208.00 0.36% 1,037.55

18 12,590 12,642 0.41% 12,614.00 0.19% 1,739.00 12,590.00 0.00% 797.56 12,637.00 0.37% 527.58

19 14,040 14,040 0.00% 14,040.00 0.00% 1,005.18 14,040.00 0.00% 115.69 14,040.00 0.00% 120.15

20 13,010 13,010 0.00% 13,037.00 0.21% 554.08 13,010.00 0.00% 1,337.56 13,010.00 0.00% 381.74

AVG 0.05% 0.18% 1,120.13 0.09% 530.42 0.12% 392.87

Table 2.3 shows the results on the (B) instances. LAG shows similar perfor-

mances compared to more sophisticated metaheuristics, such as TS +DIV .

Here, the look-ahead mode seems to provide enough knowledge of the impacts

of each insertion, and provide interesting results. GA seems to obtain promising

results (e.g., close to the values of LAG), but sees its average gap value raising

only because of instances 15, 17, and 18. These three instances are the ones

with an important number of items. It tends to prove that TS, TS +DIV and

GA are in general less competitive when the number of items is raising up (but

exceptions can occur, see for example instances 2 and 3).

For all the methods, Table 2.4 shows similar average performances on the (C)

instances. The only instance without a zero-value gap is the number 25, which

is the instance with the biggest number of items (44 items) in this set. For this

instance, TS, TS +DIV and GA show the same gap, which are approximately

half the gap of LAG. On the one hand, these results tend to show that with

a large number of items, the performances of the algorithms decrease when the

number of items is important. On the other hand, these results show that with

a single class, all the algorithms are competitive. Note however that GA is much
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Table 2.4: Results on the (C) instances

ID f⋆ LAG gap TS gap time TS + DIV gap time GA gap time

21 12,675 12,675 0.00% 12,675.00 0.00% 111.81 12,675.00 0.00% 0.55 12,675.00 0.00% 0.00

22 13,370 13,370 0.00% 13,370.00 0.00% 0.18 13,370.00 0.00% 0.24 13,370.00 0.00% 0.00

23 12,800 12,800 0.00% 12,800.00 0.00% 524.33 12,800.00 0.00% 4.86 12,800.00 0.00% 0.00

24 14,060 14,060 0.00% 14,060.00 0.00% 219.81 14,060.00 0.00% 4.92 14,060.00 0.00% 0.00

25 13,414 13,544 0.97% 13,473.20 0.44% 1,048.02 13,475.20 0.46% 1,220.49 13,474.00 0.45% 0.00

26 12,634 12,634 0.00% 12,634.00 0.00% 242.20 12,634.00 0.00% 30.21 12,634.00 0.00% 58.03

27 13,300 13,300 0.00% 13,300.00 0.00% 0.02 13,300.00 0.00% 0.02 13,300.00 0.00% 0.00

28 13,792 13,792 0.00% 13,792.00 0.00% 0.79 13,792.00 0.00% 0.62 13,792.00 0.00% 0.00

29 12,530 12,530 0.00% 12,531.00 0.01% 814.99 12,530.00 0.00% 2.02 12,530.00 0.00% 0.00

30 12,975 12,975 0.00% 12,975.00 0.00% 38.51 12,975.00 0.00% 1.28 12,975.00 0.00% 0.00

AVG 0.10% 0.04% 300.07 0.05% 126.52 0.04% 5.80

quicker on these instances, with an average time of 5.8. Note that instance 26

has an average time much larger than the other ones, which can be explained

because of its much larger standard deviation over the dimensions of the items

(which is 485, versus 330 for the other instances of this set). Thus, instance 26

is more challenging to load in an efficient way. Again, the diversity provided

by the population seems to pay off, as the average times are negligible on the

other nine instances (a value of 0.00 indicates that the best value was found

during INIT , and very small time values were rounded to 0.00 due to the two

significant digits).

Table 2.5: Results on the (D) instances

ID f⋆ LAG gap TS gap time TS + DIV gap time GA gap time

31 13,220 13,304 0.64% 13,317.90 0.74% 2,021.19 13,277.00 0.43% 2,255.11 13,297.40 0.59% 3,036.93

32 13,416 13,518 0.76% 13,498.30 0.61% 2,070.64 13,462.80 0.35% 1,813.51 13,439.20 0.17% 1,922.99

33 13,650 13,780 0.95% 13,712.00 0.45% 1,538.84 13,695.00 0.33% 1,671.72 13,674.00 0.18% 1,693.30

34 13,299 13,335 0.27% 13,318.00 0.14% 1,613.95 13,306.00 0.05% 1,398.05 13,303.20 0.03% 706.30

35 13,684 13,684 0.00% 13,684.00 0.00% 829.54 13,684.00 0.00% 193.45 13,684.00 0.00% 290.08

36 14,000 14,000 0.00% 14,000.00 0.00% 1.88 14,000.00 0.00% 2.98 14,000.00 0.00% 0.00

37 13,388 13,544 1.17% 13,497.30 0.82% 1,768.86 13,458.30 0.53% 2,021.53 13,407.80 0.15% 1,109.25

38 13,291 13,372 0.61% 13,328.10 0.28% 1,338.26 13,320.00 0.22% 2,180.31 13,296.60 0.04% 1,041.22

39 13,380 13,380 0.00% 13,413.00 0.25% 2,057.55 13,427.20 0.35% 2,090.85 13,413.00 0.25% 1,820.81

40 13,318 13,410 0.69% 13,391.30 0.55% 1,802.11 13,356.00 0.29% 1,846.37 13,398.80 0.61% 2,223.43

AVG 0.51% 0.38% 1,504.28 0.25% 1,547.39 0.20% 1,384.43

The results on the (D) instances are presented in Table 2.5. The testbed used in

this paper has greatly more computation power compared to the testbed previ-

ously used by Renault, and it is interesting to see that some instances can now

be solved by LAG. This instance set was selected to measure the improvement

potential of advanced metaheuristics (namely TS, TS +DIV and GA) over

more simpler heuristics (such as LAG). Note that the truck length is usually

of 13,400mm, which is the case of instance 40. For this instance, LAG was not
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able to solve the instance in one hour. On the opposite, TS, TS +DIV and GA

were all three able to find a feasible solution. Thus, sophisticated metaheuris-

tics could be tried when LAG is close but not able to solve an instance. The

instances included in this set have a relatively low value for m but interestingly,

high values for n (which is usually a sign of poor results for the metaheuristics

presented here). Even here, the results provided show very good performances

for TS +DIV and GA for comparable required computation times.

Table 2.6: Average performances of the algorithms

LAG TS TS + DIV GA

Average gaps on the 40 instances set 0.25% 0.23% 0.14% 0.13%

Average gaps on the 597 instances set 0.19% 0.23% 0.13% 0.09%

Average times on the 40 instances set 1,044.58 683.05 578.42

Average times on the 597 instances set 855.22 635.87 574.82

Number of solved instances on the 597 instances set 350 347 347 350

To summarize the performances of the algorithms, Table 2.6 presents the average

gaps and times of the algorithms on the set of 40 instances and on the full set

of 597 instances. On the set of 40 instances, averages are calculated based

on the results of Tables 2.2, 2.3, 2.4, and 2.5. On the set of 597 instances,

results are presented with a single one-hour run per instance. Not surprisingly,

GA shows the best average gap, followed by TS +DIV , LAG and TS. The

four algorithms provide similar results when comparing the 597 instances set

and the 40 instances set, which show the relevance of the 40 instances set for

benchmarking purposes. Note that GA requires as well the smallest average

times to perform best. This method is then well advised both for performance

and time constraints. TS +DIV proves that the diversification procedure, even

if it is really simple to implement, improves significantly the performances of TS.

TS shows on average similar performances to LAG, and is only overpowered by

LAG when dealing with the (B) instances. The last line provides the number

of feasible loadings for each algorithm (i.e., instances for which f ≤ 13,400,

which means that all the items fit in the truck). Note that the number of solved

instances for LAG and GA are equivalent, even if they do not solve the same

instances on the complete set. These results are used in Section 2.6 to show

that even if they are both able to solve the same amount of instances, a relevant

combination of different algorithms leads to better results.
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Table 2.7: Exact method vs (meta)heuristics

ID OPL LAG TS TS + DIV GA

1 11,860 0.34% -0.67% -0.11% -0.10%

2 13,510 -1.18% 0.00% 0.00% 0.00%

3 NaN NaN NaN NaN NaN

4 13,058 -0.08% -0.12% 0.05% 0.08%

5 13,352 -0.15% -0.15% -0.15% -0.15%

6 12,870 -2.80% -2.63% -2.50% -2.50%

7 13,050 0.29% -0.47% -0.46% -0.46%

8 NaN NaN NaN NaN NaN

9 13,170 0.00% -0.14% 0.00% 0.23%

10 14,300 -0.07% 0.01% 0.07% 0.07%

11 13,295 0.00% 0.00% 0.00% 0.00%

12 13,325 0.00% 0.00% 0.00% 0.00%

13 12,600 0.00% 0.00% 0.00% 0.00%

14 12,900 -0.12% -0.09% -0.03% -0.05%

15 NaN NaN NaN NaN NaN

16 12,350 0.00% -0.33% 0.00% 0.00%

17 NaN NaN NaN NaN NaN

18 12,636 -0.05% 0.17% 0.36% -0.01%

19 NaN NaN NaN NaN NaN

20 13,040 0.23% 0.02% 0.23% 0.23%

21 12,675 0.00% 0.00% 0.00% 0.00%

22 13,370 0.00% 0.00% 0.00% 0.00%

23 12,800 0.00% 0.00% 0.00% 0.00%

24 14,090 0.21% 0.21% 0.21% 0.21%

25 NaN NaN NaN NaN NaN

26 12,634 0.00% 0.00% 0.00% 0.00%

27 13,300 0.00% 0.00% 0.00% 0.00%

28 13,792 0.00% 0.00% 0.00% 0.00%

29 12,530 0.00% -0.01% 0.00% 0.00%

30 12,975 0.00% 0.00% 0.00% 0.00%

31 13,500 1.45% 1.35% 1.65% 1.50%

32 13,476 -0.31% -0.17% 0.10% 0.27%

33 NaN NaN NaN NaN NaN

34 13,406 0.53% 0.66% 0.75% 0.77%

35 13,686 0.01% 0.01% 0.01% 0.01%

36 14,000 0.00% 0.00% 0.00% 0.00%

37 13,758 1.56% 1.89% 2.18% 2.55%

38 13,562 1.40% 1.72% 1.78% 1.96%

39 NaN NaN NaN NaN NaN

40 13,519 0.81% 0.94% 1.21% 0.89%
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Table 2.7 presents the results of the exact method (see Section 2.2.2) compared

to the different solution methods. The exact method was implemented in the

OPL modeling language, using CPLEX 12.5 as the underlying solver. A time

limit of 10 hours was given to CPLEX to tackle each instance. The OPL results

are compared to the best values of LAG, and to the average values for the other

methods. A NaN value indicates that the exact method was not able to return

a feasible solution, which often happens if the number of items is important.

We can observe that CPLEX failed on 8 instances (with n ranging from 30

to 44). CPLEX was able to optimally solve only instances 13 and 27, and to

propose feasible upper bounds for 30 instances (with n ranging from 16 to 38).

Instance 13 (with n = 13 items and m = 4 classes) was solved in 461 seconds

whereas instance 27 (with n = 11 and m = 1) was solved in 24,066 seconds.

This seems to indicate that CPLEX can optimally solve instances with more

items if the number of classes is larger (which is straightforward as the search

can be split proportionally to the number of classes).

A positive gap means that an algorithm performs better and a negative gap

means that the upper bound returned by OPL is better than the best found

solution of all the solution methods. The average gaps on the forty instances are

0.06%, 0.07%, 0.17% and 0.17% for LAG, TS, TS +DIV , andGA, respectively.

The exact method could be used if enough computational time is available or

to solve a specific important instance. Note however that as the exact method

needs hours to complete, it is not appropriate for Renault.

To further compare the performances of the metaheuristics, Figure 2.5 present

the evolution of the average objective function best value for each algorithm

over the 40 instances and the ten runs. The horizontal line is the length of a

truck. GA tends to perform best and has the lowest objective function curve

over time. The bumps of the GA curve are explained by the fact that often a

generation requires more than a minute, and thus the average for each minute

takes into account only runs which have a value for the corresponding minute.

TS and TS +DIV shows similar performances, but TS +DIV still improves

TS values, which again shows the relevance of the diversification procedure.
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Figure 2.5: Evolution of the best objective function value over time, for each
algorithm

2.6 Steering strategies

An extension is now proposed, which consists in testing different steering strate-

gies when, instead of having T seconds to tackle each instance, one has to tackle

the full set of instances before time T is reached.

Having a time T to tackle a full set U = {u1, u2, . . . , uv} of truck instances

points out the question of knowing when to stop the search on a certain in-

stance to tackle the next one. To answer this question, different strategies are

first described and then tested with exposed results. In the following, let T ′

represents the current time.

The first strategy, called fair strategy (FS), works as follows: a time T
v
is given

to LAG to tackle each instance, as this method is very fast and usually gets

satisfying results. A second strategy, called fair strategy with genetic (FSG), is

an extension of FS. It starts with a procedure called LAGSORT , which consists

in giving a time 1
3 ·

T
v
per instance to LAG (i.e., a total time of T

3 is provided to

test all the instances). Each time an instance ui is solved (i.e., the loading fits
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in the truck), it is removed from U and moved to a set P of solved instances.

After this procedure, during a time of
T− 1

3
·T
v

|U| per instance, GA is used to tackle

the remaining instances (i.e., the ones that have not been previously solved by

LAG), and using as initial solutions the best solution provided by LAGSORT .

Renault pointed out an important goal of this problem which is trying to solve

the largest number of trucks, regardless of the solution quality (i.e., as soon as

f ≤ 13,400mm, the instance is considered as solved and keeping minimizing f

is irrelevant. This stopping criterion seems the most straightforward, but for

benchmarking purposes, we decided to not include it in both FS and FSG).

Thus, a third steering algorithm is then proposed, called fit in strategy (FIS).

First, as for FS, LAGSORT is performed. After this first phase, the algorithm

tackles the next instance ui ∈ U using GA for a maximum time of Tui
= T−T ′

|U| .

GA moves to the next instance ui+1 of U if the time Tui
is reached or when

the loading fits in the truck. Each time an instance ui is solved or the time

Tui
dedicated to it is reached, ui is removed from U and moved to P . As U is

dynamically updated, so is the time dedicated to an instance. If instance ui is

given a time limit Tui
and is solved before Tui

is reached, then the next instance

ui+1 of U has a time Tui+1
> Tui

, and Tui+1
= Tui

otherwise. An extended

version of this strategy, called extended fit it strategy (EFIS), performs a sorting

of the instances according to the number n of items in an increasing fashion,

after LAGSORT has been performed (thus, only the instances of U are sorted).

Therefore, GA has then more chance to be able to solve the first instances of U

and spare some interesting time for the next ones, which have larger n values.

The next strategy, called sort and perform (SP ), first uses LAGSORT (but for

which LAG is stopped if the loading fits in the truck). Then for a maximum time

Tui
= 1

2 ·
T−T ′

|U| for each instance ui ∈ U , TS (without diversification) is used to

tackle as many instances as possible (again, TS can move to the next instance if

it is able to solve the instance before the time limit). In addition, the instances

that were not solved but which have a gap of more than σ% (parameter tuned

to 2, with σ tested in interval [1, 30]) between fi (best encountered value of f

for instance ui) and Lt (length of the truck) are removed from U and added to

P , as they are likely to be unsolvable. The remaining instances in U are then

sorted (in a negligible computing time) in an increasing order of the remainder

fi − Lt, and then the TS (without diversification) is performed on each ui ∈ U

for a time Tui
= 1

2 · T−T ′

|U| . Again, TS can move directly to the next instance
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ui+1 ∈ U if it has been able to solve an instance ui before time Tui
is reached. In

SPG, SP is used but GA is used instead of TS for the two last phases. Finally,

in SPTG, SP is used, where the second phase is performed by TS and the last

phase by GA.

Please note that for every strategy that requires GA, N is set to 5 instead of

10, due to shorter time limits (when compared to the experimental conditions

of Section 2.5).

Table 2.8: Results of the steering strategies

Strategy Number of solved instances

FS 336

FSG 338

FIS 341

EFIS 341

SP 340

SPG 338

SPTG 346

Results are provided in Table 2.8 for a time limit of T = 1791 minutes (i.e., an

average of 3 minutes for each of the 597 instances). For comparison purposes

only, note that 328 instances are solved by LAG when one minute is allocated

to each instance. FS solved 336 instances. Thus, eight instances are solved in

the two additional minutes allocated to FS. When GA is used in FSG, two

additional instances can be solved compared to FS. FIS shows the relevance

of moving to the next instance when an instance is solved, which save some

computing time for the remaining instances. Interestingly, EFIS does not

provide any improvement over FIS. This is probably due to the fact that the

prior sorting regarding the number n of items in each instance is not relevant for

the remaining instances. The last three steering strategies, namely SP , SPG

and SPTG, show the relevance of the combination of two different methods.

Using together TS and GA shows the best results as it can solve up to 346

instances. Note that without steering techniques, LAG is given 10 minutes per

instance to be able to solve 346 instances. Thus, LAG requires a total time of

5970 minutes (597 · 10), which is almost 100 hours. In contrast, SPTG requires

1135 minutes (597·1+(597−328)·2), which is almost 19 hours. Therefore, SPTG

is more than five times faster compared to LAG without steering strategy. This

shows the relevance of using advanced steering strategies when having a hard
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deadline to tackle all the instances. Experiments show that on the full set of

597 instances, almost 250 instances are not solvable (i.e., f > 13,400mm). In

Section 2.5, 350 instances only are solved by GA and LAG with a time limit

of T = 60 minutes per instance (which is a total time of 597 hours). Thus 346

instances in 19 hours seems an interesting result and shows the relevance of

the more refined steering strategies. Such a result is relevant from a practical

standpoint: Renault has now insights to improve their approach when dealing

with a complete set of instances with a hard time limit.

2.7 Conclusion

In this paper, we have investigated a practical application faced by the French

car manufacturer Renault on a daily basis. We proposed and compared a MILP-

based approach and various metaheuristics (a tabu search with an optional di-

versification mechanism, as well as an hybrid genetic algorithm). To benchmark

the different algorithms, we extracted a relevant set Z of 40 instances from the

597 real instances provided by Renault. We compared the Renault algorithms to

the proposed metaheuristics on the set Z and showed that the genetic algorithm

is the most powerful and fast algorithm, even when compared to refined and

well-tuned greedy algorithms with look-ahead process. The conclusions remain

unchanged when comparing the methods on the full set of 597 instances. Fur-

thermore, we proposed an extension where a total time T is allocated to tackle

all the instances. A steering strategy involving a combination of greedy algo-

rithms, tabu search and genetic metaheuristics leads to the best results. This

strategy was proved to be five time faster than working with the best Renault

algorithm without using a steering strategy.
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This paper analyzes the impact of vehicle tracking devices, such as global posi-

tioning systems, on a vehicle routing problem with time windows in the presence

of dynamic customer requests and dynamic travel times. It is empirically demon-

strated that substantial improvements are achieved over a previously reported

model which does not assume such tracking devices. We also analyze how the

system handles dynamic perturbations to the travel times that lead to earliness

or lateness in the planned schedule.
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3.1 Introduction

Dynamic vehicle routing is attracting a growing attention in the research com-

munity. In these problems, some data are not known in advance, but is rather

revealed in real-time while the routes are executed. Dynamically occurring cus-

tomer requests have often been considered, but also dynamic customer demands

and dynamic travel times. Since our work deals with dynamic customer requests

and dynamic travel times, we provide a non exhaustive review of these variants

in the following. Note that general considerations as well as exhaustive sur-

veys on different types of dynamic vehicle routing problems can be found in

[44, 96, 102].

In [41], the authors propose a parallel tabu search heuristic for a vehicle routing

problem with soft time windows in the presence of dynamic customer requests.

In this work, a central dispatch office manages the planned routes. Furthermore,

the vehicles are not aware of their planned routes and are informed of their next

destination only when they have reached their current customer location. The

optimization procedure runs in background and is interrupted when a vehicle

reaches a customer or when a new customer request is received. At this point,

the best known solution is returned and updated, based on the new information

received, and a new optimization task is launched on the updated solution. An

adaptive memory is also combined with the parallel tabu search to maintain a

pool of interesting solution alternatives. It is shown that this algorithm improves

over simple greedy heuristics when the optimization tasks can run long enough

before they are interrupted. This work was later extended in [40] to address

a courier service application where each new customer request is made of a

pick-up and a delivery location, with a precedence constraint between the two

locations.

The impact of diversion has also been studied in the literature. It consists in

diverting a vehicle to a newly occurring customer request, close to the vehi-

cle’s current location, while en route to another destination. In [61], diversion

is integrated within the tabu search heuristic reported in [41], and is shown to

provide substantial improvements. Diversion is also considered in [48] where two

different approaches are compared. The first approach, called sample-scenario

planning, provides high-quality solutions, but at the expense of large computa-
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tion times. At each step, a sample of likely-to-occur future customer requests

is generated to obtain a number of scenarios. Robust planned routes are then

computed based on these scenarios. The second method, called anticipatory-

insertion heuristic, incorporates information about expected future customer

requests when each new request is inserted into the current planned routes.

As illustrated by the last method, the myopy of methodologies developed for

static problems can be alleviated by exploiting any probabilistic knowledge

about the occurrence of future customer requests, either implicitly or explic-

itly. Different approaches are based on waiting and relocation strategies. In

[12], for example, the vehicles can either wait at their current customer location

or at any other site, to answer customer requests that are likely to occur in their

vicinity. A similar idea is also found in [63]. Here, dummy customers in the

planned routes stand for future, likely-to-occur, customer requests which are

replaced by true requests when they occur. Another approach reported in the

literature uses a short-term and a long-term objective, where the latter tends

to introduce waiting times in the planned routes to facilitate the inclusion of

future requests [86].

Dynamic travel times, where times can change due to road congestion, have

also raised the attention of the research community. In [35], for example, a

traffic management system forecasts the travel times, based on road conditions,

and transmits this information to the dispatch office. The latter then takes

appropriate actions in the context of a pickup and delivery problem, assuming

that the communication between the dispatch office and the drivers is possible at

all time. The authors also describe a general framework to account for dynamic

travel times and report results based on traffic information from the city of

Berlin, Germany.

The authors in [101] consider a vehicle routing problem with time windows

and dynamic travel times. The latter have three different components: static

long-term forecasts (often referred to as time-dependent travel times in the lit-

erature), short-term forecasts, where the travel time on a link is modified with

a random uniform value to account for any new information available when a

vehicle is ready to depart from its current location, and dynamic perturbations

caused by unforeseen events that might occur while traveling on a link (e.g.,

an accident causing sudden congestion). A modification to a planned route is
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only possible when the vehicle is at a customer location. Hence, a planned

route cannot be reconsidered while the vehicle is traveling on a link between

two customer locations. An extension to this model is proposed in [77]. In this

work, the position of each vehicle can be obtained when a vehicle reaches its

lateness tolerance limit or when a new customer request occurs. Based on this

information, the planned route of each vehicle is reconsidered, including the

possibility of diversion (i.e., redirecting a vehicle en route to its current desti-

nation). The results show that the setting of an appropriate lateness tolerance

limit can provide substantial improvements. Here, we propose a further exten-

sion by assuming that the position of each vehicle is known at all time. This

assumption allows the system to detect perturbations to the travel times and

take appropriate actions much earlier.

This paper is organized as follows. A description of the problem is provided in

Section 3.2. Then, Section 3.3 describes the two models in [77, 101] and explain

the extension proposed here. Section 3.4 introduces travel time perturbations

that lead to earliness in the planned schedule. The results obtained with the

model in [77] and the new extension are then compared in Section 3.5. Finally,

Section 3.6 concludes the paper and proposes future research avenues.

3.2 Problem description

The description of the problem is based on [77] where a fleet of vehicles performs

routes, starting from and ending at a central depot, to collect goods at customer

locations. Each customer must be visited exactly once by a vehicle within a

(soft) time window. Some customer requests are said to be static, because they

are known in advance and can be used to create initial planned routes. Other

requests occur dynamically through the day and must be incorporated in real-

time into the current solution. The ratio between the number of static requests

and the total number of requests (static plus dynamic) is known as the degree

of dynamism and is denoted dod in the following [79]. Additional details on this

topic can be found in [96].

Formally, let us consider a complete undirected graph G = (V,E) with a set

of vertices V = {0, 1, 2, . . . , n}, where vertex 0 is the depot, and a set of edges
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E. Each edge (i, j) ∈ E is characterized by a travel time tij . Also, each vertex

i ∈ V \ {0} has a time window [ei, li]. A vehicle can arrive before the lower

bound ei but must wait to start the service. Conversely, a vehicle can arrive

after the upper bound li, but a (linear) penalty is incurred in the objective. We

assume that K vehicles of virtually infinite capacity are available. Each vehicle

performs a single route which must end before an upper bound l0, otherwise

another penalty is incurred in the objective.

The objective function f takes into account (1) the travel time, (2) the sum of

lateness at customer locations and (3) the lateness at the depot. Denoting tik

the arrival time of vehicle k at customer i ∈ V \ {0} (assuming that customer

i is served by vehicle k) and by tk0 the return time of vehicle k at the depot 0,

the objective can be written as:

f(S) =
∑

k∈K

f(Sk)

=
∑

k∈K

(

α

mk
∑

p=1

tikp−1,i
k
p
+β

mk−1
∑

p=1

max{0, tikp−1
−likp−1

}+γmax{0, tk0 − l0}

)

(3.1)

where S =
⋃

k∈K Sk represents a solution (a set of routes) and Sk = {ik0 , i
k
1 , . . . , i

k
mk

}

is the route of vehicle k ∈ K, with ik0 = ikmk
= 0. The weights α, β and γ are

used to put more or less emphasis on travel time or lateness.

With regard to the static, time-dependent, component of the travel time, we do

as in [62], we split the operations day in three time periods for the morning, lunch

time and afternoon. With each period is associated a coefficient that multiplies

the average travel time (namely, 1.25 for the morning, 0.5 for the lunch time,

and 1.25 for the afternoon. Therefore, morning and afternoon coefficients induce

that there is important traffic as people are going or leaving their work, and

lunch time is a rather low traffic condition due to people having lunch breaks).

To guarantee that a vehicle leaving earlier from some customer location also

arrives earlier at destination, which is known as the FIFO property, the travel

times are adjusted when a boundary between two time periods is crossed.

The travel times also suffer dynamic perturbations due, for example, to unex-

pected congestion. A dynamic perturbation is thus included based on a normal

probability law with mean 0 and different standard deviations σ. Perturbations
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with negative values, leading to earliness, are reset to 0 in the first implemen-

tation, so that only lateness in the planned schedule can occur (as it is done in

[77, 101]). In a second implementation, perturbations with negative values are

also considered.

3.3 Models

Three related models are presented in this section. The third model is an

extension of the two previous ones.

3.3.1 Model 1

In Model 1 [101], a central dispatch office manages the planned route of each

vehicle. It is assumed that communication between the drivers and the dispatch

office takes place only at customer locations. When a driver has finished serving

a customer, he communicates with the dispatch office to know his next desti-

nation. Hence, the drivers are not aware of their planned route, but only of

the next customer to be served. The static requests are first used to construct

initial routes through an insertion heuristic where, at each iteration, a customer

is selected and inserted at the best possible place in the current routes (i.e.,

with minimum increase in the objective value). At the end, a local search-based

improvement procedure is triggered using CROSS exchanges [124], where se-

quences of customers are moved from one route to another. Finally, another

local search-based improvement procedure is applied to each individual route,

based on the relocation of each customer. Whenever a new dynamic request

is received, the same insertion and reoptimization procedures are applied to

update the planned routes.

Since travel times are dynamic, a lateness tolerance limit TL is defined, which is

the maximum acceptable delay to a vehicle’s planned arrival time at its current

destination before some reassignment action is considered. For example, if we

assume that sk is the current destination of vehicle k and its planned arrival

time is tsk , then tsk + TL defines the tolerance time limit TTLk of vehicle k.
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That is, if vehicle k has not reached customer sk at time TTLk, sk is removed

from its planned route and inserted in the planned route of some other vehicle

l (note that vehicle k is not aware of this change and will continue toward sk,

as communication between the dispatch office and vehicles only take place at

customer locations). If it happens that vehicle k still reaches sk before vehicle

l and while l is en route to sk, then vehicle k serves sk, but vehicle l will only

know when reaching sk. A major drawback of this model thus relates to the

limited communication scheme between the dispatch office and the vehicles.

3.3.2 Model 2

In [77], Model 1 was extended by adding diversion to allow any vehicle to be

redirected to another customer, while en route to its current destination (if it

provides some benefit with regard to the objective). When (a) a new customer

request is received or (b) some vehicle k has reached its tolerance time limit,

it is assumed that the dispatch office can obtain the current location of each

vehicle to evaluate the benefits of a diversion. In case (a), a pure diversion of

vehicle k to serve the newly occurring customer request is considered whereas,

in case (b), the current destination of vehicle k is reassigned to another vehicle

l 6= k. Vehicle k is then redirected to the customer that immediately follows

(what was) its current destination in the planned route. Figure 3.1 illustrates

these two cases. In Figure 3.1 (a), a new customer request s occurs while vehicle

k is located at position x between vertices ikp−1 and ikp. In this case, vehicle k

will serve s before ikp if it is beneficial to do so. In Figure 3.1 (b), vehicle k has

reached its tolerance time limit. Thus, its current destination s = ikp is removed

from its planned route and is reassigned to another vehicle l, while vehicle k is

redirected to ikp+1. The results reported in [77] show that Model 2 significantly

outperforms Model 1. Also, empirical results demonstrated that the best TL

value is 0. That is, an appropriate action must be considered as soon as a

perturbation to the planned schedule is detected.
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Figure 3.1: Diversion and reassignment actions

3.3.3 Model 3

The new model proposed here extends Model 2 by assuming that the position

of each vehicle is known at all time, not only when the two types of situations

described above for Model 2 occur. To this end, we first assume that the dynamic

perturbation component of the travel time is distributed uniformly along a link.

Then, as soon as it is impossible for vehicle k to arrive at its current destination

at time TTLk, a reassignment action is considered. For example, let us assume

that vehicle k departs from i to j at time t, with a travel time tij = 5 and a

dynamic perturbation ∆tij = 5. That is, the vehicle is planned to arrive at j at

time t+5, but will in fact arrive only at time t+10. If TL = 0, then TTLk = t+5

and Model 2 will consider a reassignment at time t+5 when it is observed that

vehicle k has not yet reached j. On the other hand, by tracking the current

position of each vehicle, Model 3 can detect the problem much earlier. For

example, at time t+1, vehicle k has still to cover 9
10 of the distance, so that the

planned arrival time at location j could be updated to t + 1 + 9
10 · 5 = t + 5.5

(assuming no more perturbation on the remainder of the link) which already

exceeds TTLk. This assumption holds if we assume the availability of tracking

devices, which are now widely available at competitive prices, as well as a mobile
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network coverage of the service area (note that preliminary results regarding this

model have been presented in [107]).

3.4 Earliness

As stated earlier, only positive perturbations to the travel times that lead to

lateness in a vehicle schedule were considered in [77], by resetting any negative

value to 0. Negative perturbation values, leading to earliness in a vehicle sched-

ule (i.e., the vehicle will arrive earlier than expected at its current destination)

have been tested here for both Models 2 and 3. If some vehicle l is late, then

the earliness in the schedule of another vehicle k will automatically be exploited

by the optimization procedure. That is, the current destination of vehicle l will

likely be transferred to vehicle k. The benefits of Model 3 over Model 2 in this

situation are the same as those mentioned for positive perturbation values: it

will be possible to detect the earliness and lateness in the vehicle schedules be-

fore the vehicles reach their current destination and, consequently, react more

promptly. Figure 3.2 illustrates this capability. In the figure, vehicle k is cur-

rently traveling between customers ikp−1 and ikp and is ahead of its schedule.

Similarly, another vehicle l is traveling between customers ilp−1 and ilp and is

late. Then, vehicle k can be redirected to ilp and vehicle l to ilp+1 while both

vehicles are en route.

3.5 Computational results

Tests were performed on a 3.4 GHz Intel Quad-core i7 with 8 GB of DDR3

RAM memory. The Euclidean 100-customer Solomon’s benchmark instances

[121] were used to compare Models 2 and 3. Any dynamic customer request i

was set to occur at time ei · r, where ei is the lower bound of the time window

at customer i and r is a random number between 0 and 1. Parameters α, β and

γ were set to 1 in the objective. For these experiments, only the three classes

of instances R2, C2 and RC2 with 11, 8 and 8 instances, respectively, were

considered due to their large time horizon which allows for many customers
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Figure 3.2: Integrating earliness into the model

per route. Note that customers are randomly generated in R2, clustered in

C2 or both clustered and randomly generated in RC2. Note also that the

computing times are not commented given that the optimization takes place

within a fraction of a second.

Tables 3.1 to 3.3 show the results on classes R2, C2, and RC2 respectively, for

various tolerances TL and σ values in Euclidean units (where σ is the variance

of the dynamic perturbations to the travel times). Each entry in these tables

correspond to the average objective value over ten runs, using ten different seeds,

and over each instance of a given class. There is also a pair of numbers between

parentheses: the first number is the average number of times a reassignment

action was considered (per instance) and the second number is the percentage

of reassignments that were undertaken because they proved to be beneficial.

The last row with TL = 1000 · σ is an extreme case where no action is taken.

That is, the planned routes are followed whatever the perturbation. The degree

of dynamism dod was set to 0.5 and only lateness with regard to the current

schedule was allowed (i.e., negative perturbations to the travel times were reset

to 0).

These results indicate that small TL values lead to better results, with the best

value being TL = 0 in all cases. In other words, a reactive action should be

considered as soon as a perturbation to the current schedule is detected. This
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Table 3.1: Results of Model 3 on class R2

TL σ = 1 σ = 4 σ = 16 σ = 32

0
1548.57
(52.76,8.86%)

2099.08
(54.65,15.77%)

4779.91
(67.24,45.86%)

7322.89
(77.35,65.35%)

0.5 · σ
1595.78
(31.95,8.14%)

2233.27
(32.64,13.59%)

6283.63
(35.56,39.72%)

13491.44
(36.91,56.11%)

1 · σ
1623.17
(15.96,7.86%)

2288.34
(16.24,13.89%)

6641.03
(16.58,34.10%)

15201.17
(15.05,44.69%)

2 · σ
1634.21
(2.05,9.73%)

2326.33
(2.04,12.50%)

6945.38
(1.75,18.75%)

15211.18
(1.33,27.40%)

3 · σ
1640.09
(0.07,25.00%)

2335.04
(0.07,0.00%)

6925.79
(0.04,0.00%)

15260.43
(0.04,0.00%)

1000 · σ
1641.17
(0.00,-)

2335.04
(0.00,-)

6925.79
(0.00,-)

15260.43
(0.00,-)

Table 3.2: Results of Model 3 on class C2

TL σ = 1 σ = 4 σ = 16 σ = 32

0
2145.41
(51.65,6.53%)

2746.84
(51.68,7.21%)

6047.75
(53.70,12.90%)

10865.41
(58.20,26.29%)

0.5 · σ
2362.23
(31.60,7.83%)

2972.81
(31.53,8.88%)

6432.07
(32.15,13.61%)

11914.13
(32.68,25.78%)

1 · σ
2419.65
(15.80,8.39%)

3054.61
(15.75,9.52%)

6722.66
(15.48,15.51%)

12808.44
(12.50,28.60%)

2 · σ
2696.53
(2.03,11.11%)

3311.12
(2.03,9.88%)

7119.54
(1.75,18.57%)

13263.69
(0.90,33.33%)

3 · σ
2725.66
(0.10,50.00%)

3349.47
(0.10,25.00%)

7197.18
(0.10,25.00%)

13326.74
(0.00,-)

1000 · σ
2728.99
(0.00,-)

3359.17
(0.00,-)

7200.55
(0.00,-)

13326.74
(0.00,-)
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Table 3.3: Results of Model 3 on class RC2

TL σ = 1 σ = 4 σ = 16 σ = 32

0
1515.47
(52.03,6.78%)

1878.14
(53.98,13.06%)

3975.85
(63.75,36.39%)

6205.70
(73.58,56.81%)

0.5 · σ
1547.14
(31.58,6.25%)

1952.08
(32.45,11.86%)

4815.76
(34.40,30.31%)

10187.55
(34.33,47.20%)

1 · σ
1572.37
(15.85,4.73%)

2006.65
(16.03,10.30%)

5313.23
(15.38,27.80%)

11370.48
(13.75,36.91%)

2 · σ
1590.77
(1.98,3.80%)

2037.86
(1.98,7.59%)

5490.76
(1.88,13.33%)

11641.22
(1.25,26.00%)

3 · σ
1591.66
(0.10,0.00%)

2041.68
(0.10,0.00%)

5495.05
(0.10,25.00%)

11685.73
(0.08,66.67%)

1000 · σ
1591.66
(0.00,-)

2041.68
(0.00,-)

5501.21
(0.00,-)

11734.49
(0.00,-)

observation is in line with the results reported in [77]. Also, the percentage

of reassignments that provide an improvement increases with σ. This is not

surprising, given that the current plan is likely to be improved when large per-

turbations are encountered.

Table 3.4 shows the objective values as well as the percentage of improvement of

Model 3 over Model 2 when dod ranges from 0.1 to 0.9 with TL = 0. Although

we show only these results, additional experiments with other TL values led

to the same observation, namely, that Model 3 is clearly superior to Model 2

due to its ability to detect perturbations to the current plan much earlier. The

improvement is quite substantial in the case of R2 and RC2, and can even reach

30% for large σ values. The results are less impressive in the case of C2 (Model

3 is even worse than Model 2 for dod = 0.9 and σ = 16). This observation can

be explained by the geographical clustering of customers which seriously limits

the benefit of redirecting a vehicle, for example to serve a distant customer in

another cluster. Table 3.5 summarizes the improvements obtained over all dod

values for each class of instances, as well as over all classes of instances.
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Table 3.4: Improvement of Model 3 over Model 2 with TL = 0 for different dod
values

dod σ = 1 σ = 4 σ = 16 σ = 32

0.1
R2 Model 2

Model 3

% Imprv.

1183.59

1168.82

1.26%

1653.41

1598.71

3.42%

4827.73

4097.30

17.83%

8606.15

6545.20

31.49%
C2 Model 2

Model 3

% Imprv.

1195.68

1171.77

2.04%

1536.89

1533.58

0.22%

4073.00

3920.30

3.89%

8578.14

8230.87

4.22%
RC2 Model 2

Model 3

% Imprv.

1267.60

1259.96

0.61%

1557.40

1524.96

2.13%

4002.04

3512.06

13.95%

7499.71

5805.93

29.17%

0.3
R2 Model 2

Model 3

% Imprv.

1381.69

1346.87

2.59%

1933.86

1853.73

4.32%

5334.02

4520.57

17.99%

9228.19

7097.35

30.02%
C2 Model 2

Model 3

% Imprv.

1645.09

1642.23

0.17%

2014.47

1970.29

2.24%

5269.25

5103.47

3.25%

9705.95

9466.89

2.53%
RC2 Model 2

Model 3

% Imprv.

1460.75

1442.85

1.24%

1857.16

1775.30

4.61%

4521.94

3815.26

18.52%

8105.48

6338.51

27.88%

0.5
R2 Model 2

Model 3

% Imprv.

1604.03

1548.57

3.58%

2245.95

2099.08

7.00%

5891.80

4779.92

23.26%

9636.36

7322.89

31.59%

C2 Model 2

Model 3

% Imprv.

2193.26

2145.41

2.23%

2769.02

2746.84

0.81%

6221.36

6047.76

2.87%

11652.32

10865.42

7.24%
RC2 Model 2

Model 3

% Imprv.

1551.26

1515.47

2.36%

1949.16

1878.14

3.78%

4621.90

3975.86

16.25%

8426.49

6205.70

35.79%

0.7
R2 Model 2

Model 3

% Imprv.

2014.79

1932.65

4.25%

2823.41

2599.74

8.60%

6553.96

5292.18

23.84%

10366.10

8037.42

28.97%
C2 Model 2

Model 3

% Imprv.

2444.12

2340.94

4.41%

2806.64

2790.25

0.59%

6075.49

5809.04

4.59%

11937.20

10929.91

9.22%
RC2 Model 2

Model 3

% Imprv.

1805.32

1747.96

3.28%

2343.49

2185.97

7.21%

5311.32

4708.65

12.80%

9153.11

6948.25

31.73%

0.9
R2 Model 2

Model 3

% Imprv.

2182.42

2044.20

6.76%

2994.81

2769.36

8.14%

6961.94

5728.86

21.52%

11386.24

8902.86

27.89%
C2 Model 2

Model 3

% Imprv.

3498.62

3414.02

2.48%

4337.93

4216.22

2.89%

8702.07

8941.81

-2.68%

15191.83

14441.63

5.19%
RC2 Model 2

Model 3

% Imprv.

2097.39

2008.42

4.43%

2782.93

2554.65

8.94%

6743.54

5759.39

17.09%

10730.58

8285.90

29.50%
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Table 3.5: Improvement of Model 3 over Model 2 with TL = 0 over all dod
values

σ = 1 σ = 4 σ = 16 σ = 32

R2 3.69% 6.30% 20.89% 29.99%

C2 2.27% 1.35% 2.38% 5.68%

RC2 2.38% 5.33% 15.72% 30.81%

Overall 2.78% 4.33% 13.00% 22.16%

Tables 3.6 to 3.8 are similar to Tables 3.1 to 3.3 and report the results of Model

3 for various tolerance TL and σ values with dod = 0.5 when negative pertur-

bations to the travel times are allowed (leading to earliness in the schedule).

Tables 3.9 and 3.10 are also similar to Tables 3.4 and 3.5 and report the im-

provement of Model 3 over Model 2 with TL = 0 for dod values between 0.1

and 0.9 when negative perturbations are allowed. Not surprisingly, the trends

are the same as those observed previously but are somewhat accentuated, in

particular for large σ values.
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Table 3.6: Results of Model 3 on class R2 including negative perturbations

TL σ = 1 σ = 4 σ = 16 σ = 32

0
1408.23
(53.13,8.80%)

1576.70
(54.82,14.23%)

2951.06
(66.20,42.85%)

4156.69
(76.67,62.81%)

0.5 · σ
1451.92
(32.22,7.62%)

1675.40
(32.73,12.89%)

4164.83
(35.77,38.81%)

9962.26
(37.57,55.17%)

1 · σ
1474.64
(16.20,7.58%)

1719.48
(16.35,14.17%)

4840.45
(16.71,34.33%)

12027.22
(15.36,45.03%)

2 · σ
1488.51
(2.12,8.58%)

1753.46
(2.10,10.82%)

5176.51
(1.90,25.36%)

12765.64
(1.39,40.52%)

3 · σ
1490.47
(0.13,14.29%)

1761.16
(0.12,15.38%)

5160.00
(0.09,10.00%)

12485.61
(0.07,12.50%)

1000 · σ
1491.05
(0.00,-)

1762.37
(0.00,-)

5161.13
(0.00,-)

12489.44
(0.00,-)

Table 3.7: Results of Model 3 on class C2 including negative perturbations

TL σ = 1 σ = 4 σ = 16 σ = 32

0
2208.83
(52.21,6.22%)

2480.35
(52.43,7.20%)

4934.58
(54.14,12.65%)

8706.28
(57.91,24.15%)

0.5 · σ
2349.66
(31.93,7.01%)

2593.29
(32.06,8.38%)

5153.91
(32.63,13.26%)

9852.66
(32.64,24.01%)

1 · σ
2433.25
(15.90,8.18%)

2697.11
(15.95,9.01%)

5550.78
(15.54,14.88%)

10736.38
(12.54,26.32%)

2 · σ
2592.38
(2.09,10.18%)

2877.84
(2.08,12.65%)

5923.32
(1.73,21.01%)

11454.67
(0.89,29.58%)

3 · σ
2639.34
(0.14,27.27%)

2932.43
(0.14,9.09%)

5999.76
(0.11,22.22%)

11449.34
(0.04,0.00%)

1000 · σ
2638.97
(0.00,-)

2933.91
(0.00,-)

6018.05
(0.00,-)

11449.34
(0.00,-)
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Table 3.8: Results of Model 3 on class RC2 including negative perturbations

TL σ = 1 σ = 4 σ = 16 σ = 32

0
1444.06
(53.05,7.28%)

1570.02
(54.51,12.27%)

2602.30
(65.19,37.03%)

3583.52
(74.21,55.47%)

0.5 · σ
1472.57
(32.01,6.44%)

1630.52
(32.78,11.94%)

3387.50
(34.94,30.88%)

7333.01
(34.93,48.21%)

1 · σ
1489.27
(15.96,6.50%)

1669.12
(16.15,12.00%)

3931.03
(15.61,29.78%)

8636.15
(13.38,39.81%)

2 · σ
1503.83
(2.06,8.48%)

1712.14
(2.10,16.07%)

4122.88
(1.83,24.66%)

9111.62
(1.39,28.83%)

3 · σ
1508.63
(0.14,0.00%)

1722.23
(0.14,0.00%)

4150.32
(0.14,18.18%)

9185.94
(0.05,25.00%)

1000 · σ
1508.63
(0.00,-)

1722.23
(0.00,-)

4145.58
(0.00,-)

9184.10
(0.00,-)

Finally, Figure 3.3 illustrates the average objective values of Models 2 and 3

with TL = 0 and dod = 0.5 for a large number of σ values taken between 1 and

32 using the instances of class RC2. In this figure, negative perturbations to

the travel times are allowed. This figure clearly shows that the gap between the

two models sharply increases with σ.
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Table 3.9: Improvement of Model 3 over Model 2 with TL = 0 for different dod
values, including negative perturbations

dod σ = 1 σ = 4 σ = 16 σ = 32

0.1
R2 Model 2

Model 3

% Imprv.

1093.38

1082.36

1.02%

1238.16

1208.02

2.50%

3091.47

2531.94

22.10%

5400.52

3723.15

45.05%
C2 Model 2

Model 3

% Imprv.

1180.54

1167.54

1.11%

1361.29

1343.24

1.34%

3160.62

3095.66

2.10%

6975.13

6527.79

6.85%
RC2 Model 2

Model 3

% Imprv.

1205.74

1199.42

0.53%

1322.11

1300.70

1.65%

2749.25

2298.89

19.59%

4765.88

3178.00

49.96%

0.3
R2 Model 2

Model 3

% Imprv.

1255.76

1229.63

2.12%

1445.00

1377.47

4.90%

3417.23

2679.75

27.52%

5638.62

3874.91

45.52%
C2 Model 2

Model 3

% Imprv.

1626.13

1607.29

1.17%

1767.72

1735.47

1.86%

3902.18

3651.05

6.88%

7793.65

7159.94

8.85%
RC2 Model 2

Model 3

% Imprv.

1372.78

1356.16

1.23%

1541.12

1481.81

4.00%

3208.57

2532.72

26.68%

5321.58

3579.10

48.68%

0.5
R2 Model 2

Model 3

% Imprv.

1454.72

1408.23

3.30%

1668.62

1576.70

5.83%

3741.13

2951.06

26.77%

5996.84

4156.69

44.27%
C2 Model 2

Model 3

% Imprv.

2269.21

2208.83

2.73%

2496.09

2480.35

0.63%

5110.58

4934.58

3.57%

9508.50

8706.28

9.21%
RC2 Model 2

Model 3

% Imprv.

1478.08

1444.06

2.36%

1634.76

1570.02

4.12%

3338.04

2602.30

28.27%

5278.44

3583.52

47.30%

0.7
R2 Model 2

Model 3

% Imprv.

1803.15

1728.48

4.32%

2053.27

1909.71

7.52%

4159.67

3264.42

27.42%

6545.16

4409.19

48.44%
C2 Model 2

Model 3

% Imprv.

2310.80

2217.70

4.20%

2422.14

2336.18

3.68%

4852.43

4573.30

6.10%

9672.17

8745.50

10.60%
RC2 Model 2

Model 3

% Imprv.

1669.42

1625.96

2.67%

1853.11

1747.68

6.03%

3614.90

2805.90

28.83%

5818.96

3807.39

52.83%

0.9
R2 Model 2

Model 3

% Imprv.

1965.55

1861.09

5.61%

2283.00

2099.15

8.76%

4631.17

3610.27

28.28%

7386.65

4990.11

48.03%
C2 Model 2

Model 3

% Imprv.

3323.86

3261.67

1.91%

3621.42

3446.48

5.08%

6403.54

6610.18

-3.13%

12274.79

11123.78

10.35%
RC2 Model 2

Model 3

% Imprv.

2112.12

2016.67

4.73%

2381.04

2195.41

8.46%

5101.59

3943.92

29.35%

7644.64

5532.53

38.18%
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Table 3.10: Improvement of Model 3 over Model 2 with TL = 0 over all dod
values, including negative perturbations

σ = 1 σ = 4 σ = 16 σ = 32

R2 3.28% 5.90% 26.42% 46.26%

C2 2.22% 2.52% 3.10% 9.17%

RC2 2.30% 4.85% 26.55% 47.39%

Overall 2.60% 4.42% 18.69% 34.28%
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Figure 3.3: Average objective values of Models 2 and 3 on class RC2 with
TL = 0, dod = 0.5 and different σ values
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3.6 Conclusion

This paper has investigated the impact of on-line vehicle tracking devices on

solution quality for a dynamic vehicle routing problem with time windows. The

dynamic characteristics relate to the occurrence of new customer requests and

perturbations to the travel times. We empirically demonstrated that a reactive

action should be contemplated as soon as a perturbation is detected in the cur-

rent planned routes. Our model was also shown to be robust and to behave well

under different degrees of dynamism. It also proved to be significantly superior

to another model where the location of each vehicle is only known at specific

moments during the operations day. In the future, we plan to investigate the

impact of other probability distributions to model the travel time perturbations.

We also want to consider other ways to distribute a perturbation to the travel

time along a link.
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Chapter 4

Three-level inventory

deployment for a luxury

watch company facing

various perturbations

Jean Respen - University of Geneva, Switzerland

Nicolas Zufferey - University of Geneva, Switzerland

Philippe Wieser - EPFL, Switzerland

A well-known Swiss watch brand, active in the top-end luxury market, is facing a

complex inventory deployment problem where watches of different models (more

than 100 different models) must be dispatched first to wholesalers to finally

reach the shops where clients come in. Along the way, different perturbations

are expected at three levels (production plan, demand, and dispatching), and

accurate reactions must be taken to fit to these uncertainties. An exact method

is proposed to model the problem without perturbations. Solution methods

are proposed to solve realistic instances, where the exact method in not able

to provide solutions in a fair amount of time. Results show the relevance of

95
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the methods and the robustness of the solutions. Managerial insights are also

given.

4.1 Introduction

In this paper, a well-known Swiss watch brand (denoted SWB), which is active

in the luxury industry, is facing a multi-level inventory deployment problem

(called (P)), where watches (called items) of different models (called products)

are produced, and must be sent to the final shops while satisfying various con-

straints. Inventory deployment is often regarded as a very complex problem by

companies, as different constraints and perturbations often raise along the dif-

ferent levels (i.e., from the production to the final clients), and the dispatching

system must react accordingly. Here, the supply chain is composed of three dif-

ferent levels, namely a single factory, the wholesalers and the final destinations,

which are the shops where the goods are sold to the clients. The factory is

the only place where the goods are produced. For each considered geographical

region, there exists at least one wholesaler which then delivers to its associated

set of shops. A shop can only order the items to its single wholesaler. As far

as SWB is concerned, the shops are the final points of interest, and the final

client, who actually buys an item, is not integrated in the system as the shops

are often not owned by SWB . Thus, in the following, the customers of SWB

are the wholesalers, and the clients are the persons actually buying the items

at the shops level. Unfortunately, in (P), three different perturbations are en-

countered along the supply chain: first at the production plan level, then at

the dispatching level (wholesalers), and finally on the demand (i.e., the actual

demand is different from the forecasted demand). These perturbations are re-

spectively due to the suppliers, the behaviors of the wholesalers (on which SWB

has not a total control), and the behaviors of the clients. (P) is new and there

is no literature on it.

As the watches produced by SWB are expensive, the suppliers have a key role,

because the raw material used to produce the luxury items is expensive and

rare. Thus, there is no long list of suppliers which can provide the raw material.

The number of products and the number of items yearly produced are both

increasing with the demand, which makes the plant reach its production capacity
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limit. From a SWB perspective, the client wants his/her watch when he/she

has decided to buy it, not later. Thus a perturbation of the production plan due

to suppliers has a strong impact and is hard to manage, as every item that is

not produced due to unreliable suppliers must be produced later, and therefore

disturbs the production plan of the following weeks.

The planning horizon is a year, and the time unit is a week. (P) is a three-level

inventory deployment problem, where the main decision to make is the number

of items of each product to send (from the plant) to each shop on a per week

basis. A solution is an aggregation of these numbers for a whole year. The

objective function involves three different components: shortages, rarity and

inventory. Most of the literature involves only two levels. There is no literature

dealing with such a complex problem (P) with unreliable behaviors of suppliers,

wholesalers and clients. Moreover, the perturbation on the production plan can

result in an unfeasible solution, and thus a specific repair procedure is requested.

This paper aims at proposing dedicated solution methods and a simulator to

improve the quality of the inventory deployment of SWB . The simulator is used

to evaluate the quality of a solution according to the above described random

events, and is helpful to conduct a sensitivity analysis, allowing to identify

the key parameters. One of the proposed solution methods shows that the

use of relevant distance functions can be very powerful for tackling (P), where

exact methods are not appropriate on realistic instances. The best method

is a matheuristic, which combines the accuracy of an exact method with the

speed of a heuristic. Finally we highlight some managerial insights, as solution

methods are effective but are not affected by the intuition or the knowledge of

the involved decision makers.

The paper is organized as follows. In Section 4.2, an exhaustive literature review

is provided. In Section 4.3, the three different perturbations faced by SWB are

first exposed, then a formal description of (P) is proposed, and finally an ILP

(integer linear programming) formulation in depicted. Section 4.4 describes

the different solution methods used to provide a solution S, and the simulator

designed to evaluate the quality of a solution S. The experiments are presented

in Section 4.5. Section 4.6 concludes the paper and identifies possible future

works.
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4.2 Literature review

As explained in [49], the Swiss industry lost control on the watch industry in the

90’s, due to the different actors gaining power in the technological field. But,

as of today, Swiss luxury watches are selling in an increasing fashion each year

[93], which shows how the Swiss luxury industry was able to overcome its past

drawbacks to return to expansion. Switzerland is not the only country facing

luxury expansion. In [19], the authors state that in Italy, the luxury segment

was worth 26 billion euros per year in 2006, and is increasing. The paper aims at

investigating 12 luxury Italian firms of different luxury segments, to define the

behaviors of each segment in the supply chain strategies. Extending the previous

paper, the authors of [20] propose to derive different clusters of companies, and

identify which supply chain strategy is applied in each cluster. In [21], a study

is proposed on how luxury companies are adept of pretending to sell rare and

exclusive products, even if the quantity of each product is so important that it

does not belong to rarity anymore.

Usually, the actors of the Swiss watch industry started with a small family-sized

company and gained world-class profits, focusing on the products and having

only basic knowledge of the supply chain management. This trend tends now

to be reversed and many companies are trying to optimize their supply chain

systems. In [58], a two-level assembly problem is tackled using a multi-objective

approach based on genetic algorithms. Uncertainties appear in lead times and

the main objective is to maximize the service level from the client point of

view. In [116], a known demand and uncertain lead times are expected, where

the perturbations of the lead times depend on the season. In such a situation,

heuristics are proposed and their performances are analyzed. Extending the

previous paper, perturbations on the lead times are again expected in [117], but

the company faces a planned shutdown period. Simulation is used to assess the

quality of the proposed solution methods.

As also discussed in the above papers, to correctly assess the quality of the

models and methods, simulation has to be used. With regard to simulation,

different interesting surveys can be found in [5, 69, 125]. A reverse problem is

tackled in [65], where defective products must be brought back to the factory

from the client level. The simulator is used to assess the robustness of the



4.3. PRESENTATION OF PROBLEM (P) 99

presented model. A simulator is used in [29] to tackle an inventory deployment

problem using a genetic algorithm. The robustness of the algorithm is tested

with different supply chain settings.

In [81], a multi-level inventory management problem is tackled, where suppli-

ers, warehouses and retailers are considered, and transportation costs are en-

countered. Centralized and decentralized ordering models are assessed through

numerical experiments. A two-level inventory problem with one warehouse and

many retailers is proposed in [36], where the retailers face different compound

Poisson demand processes, and the facilities apply order-up-to-S replenishment

policies. A very similar problem is proposed in [3], where simple recursive pro-

cedures are proposed to evaluate the shortage costs. In [4], distribution systems

with stochastic demands are analyzed using simulation. Advantages of echelon

stock [24] and installation stock [70, 87] are assessed. In [114], a mathemat-

ical formulation is presented for a capacity constrained multistage inventory

and production control problem. Numerical experiments for a trivial version

of the problem are presented, and links among other problems are proposed

(e.g., Kanban [7], Cover-Time planning [113]). In [127], three different inven-

tory strategies are designed for a two-level inventory deployment problem, and

managerial insights are provided. In [122], the authors propose methods to

assess the performance of different multi-level inventory strategies.

In [85], an interesting survey is proposed on facility location and supply chain

management, in addition to recent advances in optimization techniques for these

problems and for inventory deployment. Finally, a compelling survey can be

found in [97], where algorithms and systems are discussed, whereas [129] pro-

poses general guidelines on metaheuristics to efficiently design them depending

on the encountered problem.

4.3 Presentation of problem (P)

In this section, the different perturbation types are first explained, followed by

a formal problem description of (P), and finally an ILP model.
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4.3.1 Perturbations

As explained earlier, the complex process of conceiving watches suffers multiple

uncertainties. Three different perturbations are exposed, namely: perturbations

on the demand, perturbations on the production plan, and finally perturbations

on the dispatching of the items at the wholesalers’ level. The intervals in which

the perturbations parameters belong to are set thanks to the SWB deep knowl-

edge of their supply chain. The sensitivity analysis performed in Section 4.5

will assess the robustness of such assumptions.

Perturbations on the demand

There is obviously a gap between the forecasted and the actual demands en-

countered at the shops’ level. For SWB , the clients are wealthy persons, who

wants the item at the time they decide to buy it. A relevant way to model

this behavior is to use a normal distribution with different means and standard

deviations. Thus, each shop has its own mean and standard deviation for each

product, used to generate the demand for each week. The means and standard

deviations are set with the help of SWB , to accurately reflect the reality.

Perturbations on the production plan

For various reasons (suppliers being unreliable, problems in raw material deliv-

eries, etc.), two different types of perturbation on the production plan can occur

every week. The first one sees some products being not produced at all (because

the associated raw material was not delivered), whereas the second sees some

items of some products being not produced (as the production was slower than

expected). Let p̂it be the planned number of items of product i to produce at

week t, and pit be the corresponding actual number (i.e., with the perturbation).

Each week, a maximum of δ1 percent of models are not produced, due to non

deliveries from suppliers (i.e., pit = 0 for these models, instead of pit = p̂it).

The perturbation affects two weeks, and the corresponding production must be

performed later. Thus pit = pit+1 = 0, and from a practical standpoint, we
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assume pit+2 = p̂it+2+p̂it+p̂it+1. SWB proposes that δ1 belongs to interval [5, 15].

On the remaining 1−δ1 percent of the models (i.e., the ones which are produced),

each model has δ2 percent of risk to be slowed down. Slowed down means that at

most δ3 percent of p̂it is not produced at week t but at week t+1. At the end of

week t, the total number of items not produced due to slowed down performances

is Qt = P̂t − Pt, where P̂t =
∑

i p̂
i
t and Pt =

∑

i p
i
t. On the total number P̂t of

items expected to be produced at week t, a given threshold of ε percent of items

are allowed to be slowed down, meaning that if Qt ≤ ε · P̂t, then the factory

does not take any action. But if Qt > ε · P̂t, then Ct = Qt − ε · P̂t watches must

be compensated (meaning that items of different models are produced instead

of planned ones) with the following rule: models which are not slowed down

at week t and planned at week t + 1 are eligible for compensation, and the

models which were not expected to be produced at week t (i.e., p̂it = 0), but are

expected to be produced at week t+1, can be eligible for compensation as well.

For the eligible models, some watches (randomly selected, one at a time) have

to be produced at week t, until quantity Ct is fulfilled, as explained further in

Subsection 4.4.2. SWB proposes the following intervals for the above discussed

parameters: δ2 ∈ [45, 55], δ3 ∈ [5, 15], ε ∈ [5, 15].

Perturbations on the dispatching from the wholesalers

As shown in Figure 4.1, the supply chain network linking the factory, the dif-

ferent wholesalers (WS) and the shops is a three-level inventory model. The

wholesalers belong to SWB , and are the only customers regarding SWB . It is

expected that the different wholesalers manage the received inventory and de-

liver items to their corresponding shops in a reliable manner, but unfortunately

perturbations occur. The perturbation which can happen is the following: SWB

estimates a target inventory for each final shop, and sends the corresponding

items to the associated wholesaler. Each shop j has a priority wj and let wmax

be the largest possible priority (i.e., the priority of the more important shops).

Any wholesaler can perturb the SWB estimations by sending the items dedi-

cated to a given shop j to a different shop j′. SWB assumes that δ4 percent of

the items does not go to the expected shop. On these δ4, δ5 percent would go to

a shop with a lower priority. SWB proposes to use δ4 ∈ [30, 50] and δ5 ∈ [60, 80].
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Factory
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Shop

Shop

Shop

Shop

Shop
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Shop

Shop
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Figure 4.1: Inventory deployment network

4.3.2 Formal description

To deeply understand (P), we first propose a formal description, followed by

an exact method which could be used to solve (P) without perturbation. N

models (i.e., products) are produced in the factory. The number of weeks in a

year is W . Each week t, pit items of model i arrive to the different wholesalers

around the world (i.e., all items are sent every week, none are kept in the factory

inventory). J shops must be supplied by the different wholesalers, and each shop

j is associated with exactly one wholesaler mj (thus, there can be different j, j′

for whichmj = mj′). The total number of wholesalers isM . Let I
i,mj

t be the on-

hand inventory of wholesaler mj regarding model i at week t. Each wholesaler

delivers to its shops and tries to empty its inventory. Let x̂i,j
t be a decision

variable describing the number of items of model i supposed to arrive at shop

j at week t from the corresponding wholesaler mj. As explained in Subsection

4.3.1, each variable x̂i,j
t suffers a perturbation, and let xi,j

t be the corresponding

variable with the perturbation. In other words, x̂i,j
t (resp. xi,j

t ) is an expected

(resp. actual or observed) value. Moreover, a lead time of Lmj
weeks occurs

from the plant to the wholesaler mj . Another lead time of L
mj

j weeks is then

required to reach the shop j from the corresponding wholesaler mj . For each

week t, a demand d̂i,jt is forecasted for model i at shop j, and is subject to the

perturbation depicted in Subsection 4.3.1. Thus, let di,jt be the corresponding

actual demand. As soon as the items xi,j
t reaches the shop j, the corresponding

on-hand inventory of shop j is updated: Ii,jt = max(0, Ii,jt−1 − di,jt−1 + xi,j
t ) (we

also have the expected updating: Îi,jt = max(0, Îi,jt−1 − d̂i,jt−1 + x̂i,j
t )). Thus, the
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inventory at period t is set as the inventory at period t − 1 augmented by the

number of delivered items and decreased by the demand at period t − 1. A

solution Ŝ can be denoted Ŝ = (Ŝ1, Ŝ2, . . . , Ŝt, . . . , ŜW ), which is a per week

list of Ŝt’s, where Ŝt = (Ŝ1
t , Ŝ

2
t , . . . , Ŝ

i
t , . . . , Ŝ

N
t ) is the corresponding solution

for week t for each product i. Ŝi
t = (x̂i,1

t , x̂i,2
t , . . . , x̂i,j

t , . . . , x̂i,J
t ) is a vector of

decision variables for each shop j, each week t and each product i.

The overall objective function f involves three different components f1, f2 and

f3 to minimize in a lexicographic order (i.e., no deterioration on fi can be

compensated by improvements on fi+1), as motivated in [123]. f1 is the expected

shortage penalty of item i at week t in shop j, which happens if Îi,jt < d̂i,jt . Let

B̂i,j
t = max(0, d̂i,jt − Îi,jt ) be the expected shortage quantity of model i at week

t in shop j, and v̂i,jt be a binary value which is 0 if x̂i,j
t > 0, and 1 otherwise.

Then, f1 can be described as in Equation (4.1). It is the sum of the shortage

penalties, where a shortage which has started a long time ago costs more than

a recent shortage. SWB assumes that if a watch of model i, which is assumed

to be in shortage, arrives in a shop j at week t, then the considered shortage

penalty is reset to 0 from that time period, even if the demand is above the

resulting on-hand inventory.

f1 =
J
∑

j=1

wj

W
∑

t=1

t−1
∑

t′=1

(t− t′)
N
∑

i=1

B̂i,j
t′ · v̂i,jt (4.1)

Let ŷi,jt = 1 if Îi,jt = 0, and ŷi,jt = 0 otherwise. Objective f2 is described in

Equation (4.2), which is a measure of the rarity of each model i in each shop j

for each week t.

f2 =
1

J ·W ·N
·

W
∑

t=1

J
∑

j=1

N
∑

i=1

ŷi,jt (4.2)

The last objective f3 is described in Equation (4.3), which is a weighted inven-

tory penalty.

f3 =

J
∑

j=1

[(wmax + 1)− wj ]

[

W
∑

t=1

N
∑

i=1

Îi,jt

]

(4.3)

To ensure a better understanding of the components involved in the objective

function, we now propose an example. Consider an instance with J = 1 shop
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(with w1 = 1 and thus wmax = 1), N = 1 product, W = 4 weeks, and the

initial inventory at the shop is empty (i.e., Î1,10 = 0). Furthermore, consider

solution Ŝ given by x̂1,1 = (1, 2, 0, 3). Assume that the forecasted demand is

d̂1,1 = (1, 3, 0, 1). Thus, f1 = 0 + 1 + 2 + 0 = 3, as the shortage of week 2 costs

double at week 3, and is reset to 0 in week 4 as a unit of this product reaches

the shop. We can easily compute that f2 = ( 1
1·1·4 ) · (1 + 1 + 1 + 0) = 3

4 and

f3 = (2 − 1) · (0 + 0 + 0 + 2) = 2.

4.3.3 Exact model

f1 contains the multiplication of two decision variables, and is thus nonlinear.

In order to use a linear solver, such as CPLEX or Gurobi, and to benchmark

our results, we propose now a linear model for (P), which necessitates a slight

modification of f1 to be linearized as proposed in Equation (4.4). f ′
1 is based

on f1 but does not reset the penalty if at least one item arrives at week t.

Therefore, it is a relevant approximation of the shortage penalty.

f ′
1 =

J
∑

j=1

wj

W
∑

t=1

t−1
∑

t′=1

(t− t′)

N
∑

i=1

B̂i,j
t′ (4.4)

Let α, β and γ be the coefficients which guarantee the lexicographic approach.

The objective function can then be formulated in Equation (4.5). The con-

straints are given in Equations (4.6) to (4.10).

min f = α · f1 + β · f2 + γ · f3 (4.5)

B̂i,j
t ≥ d̂i,jt − Îi,jt ∀ t, i, j (4.6)

Îi,jt ≥ 1− ŷi,jt ∀ t, i, j (4.7)

Îi,jt ≥ Îi,jt−1 − d̂i,jt−1 + x̂i,j
t ∀ t, i, j (4.8)

∑

j

x̂i,j
t ≤ p̂i

t−Lmj
−L

mj

j

+
∑

j

Î
i,mj

t−L
mj

j

∀ t, i (4.9)

x̂i,j
t , B̂i,j

t , Îi,jt ∈ N ∀ t, i, j (4.10)

Constraints (4.6) ensure a correct shortage computation by setting B̂i,j
t above

d̂i,jt − Îi,jt . Thanks to the minimization of f , this replaces the formulation of
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B̂i,j
t = max(0, d̂i,jt − Îi,jt ). Constraints (4.7) and (4.8) ensure a correct inventory

computation. The inventory is updated using d̂i,jt−1 and x̂i,j
t , and is used to set

ŷi,jt correctly (ŷi,jt = 1 if Îi,jt = 0, and using the minimization of f , ŷi,jt = 0

otherwise). Constraints (4.9) ensure that non existent items are not created.

Finally, Constraints (4.10) ensure that x̂i,j
t , B̂i,j

t and Îi,jt are not below 0.

4.4 Solution methods and simulator

To evaluate the actual value of a solution, it is mandatory to develop a simulator.

The input data is the solution, the production plan, the initial inventories (at

each shop and each wholesaler, for each product), and the forecasted demand.

As shown in Figure 4.2, a solver is first used to provide a solution S, which is

then evaluated with the simulator. At the end, a manager of SWB can modify

and evaluate again the provided solution, based on his/her expertise and the non

modeled elements. To produce a solution, two types of methods are available

in the solver: various constructive heuristics and the exact model (proposed in

Subsection 4.3.3) using CPLEX. Unfortunately, the exact model is limited to

instances with up to N = 24 models of watches, J = 30 shops and M = 4

wholesalers, due to exponential solving times. Therefore, for realistic instances,

only heuristics are able to produce solutions in a fair amount of time. Note that

there is no uncertainty in the solver. Therefore, all the data is deterministic

at that stage. Only the simulator deals with random events by adding the

disturbances proposed in Subsection 4.3.1.

C���� o� ����r�	r
�

Figure 4.2: Sketch of the decision analysis tool

An appropriate time-limit to get a solution (including its simulation), regardless
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of the method, was set to 30 minutes by SWB . Therefore, it forbids the use of

advanced metaheuristics which would require more time to perform well. We will

see in Subsection 4.4.3 that a simulation requires roughly three minutes on the

used computer. For these reasons, constructive methods are very appropriate

to tackle (P).

In the remaining part of this section, three solution methods are proposed in

Subsection 4.4.1, the simulator is presented in Subsection 4.4.2, and important

computing time aspects are discussed in Subsection 4.4.3.

4.4.1 Solution methods

We design three solution methods, which rely on a population of pop (parameter)

solutions and use a constructive heuristic called SmartPriorityGreedy (denoted

SPG) as an underlying method. SPG is depicted in Algorithm 5, where Ai,w
t

is a set that contains all the shops with priority w that have a strictly positive

demand for week t and model i, and A contains all the shops with the highest

priority wmax (regardless of the demand). For each week t and each model i,

the available items are the sum of the produced items in the factory and the

items available at the wholesalers’ level. At each step, the algorithm attributes

one item to a shop. After intensive tests, the most efficient method (according

to speed and results’ quality) consists in randomly selecting the shop to which

an item is assigned in the considered set Ai,w
t . Using more advanced methods

(using f1, f2 and f3 for example) dramatically slows down the overall process,

without improving the quality of the solutions. As an example, on an instance

with N = 143, W = 47, J = 192 and M = 9, a method which computes f1, f2

and f3 at each step to attribute the best item to the best shop requires more

than 15 hours to return a solution! Here, the efficiency of SPG consists in

dealing with the Ai,w
t ’s. As f1 and f3 are very influenced by the weights of the

shops, creating the Ai,w
t ’s allows to very quickly and efficiently minimize these

objectives. If all the demands of model i of all the shops have been fulfilled

for the considered week t, the last phase of SPG is triggered (see the last part

of step (3c) in Algorithm 5). This phase consists in attributing the remaining

items to the shops with priority wmax.
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Algorithm 5 SmartPriorityGreedy (SPG)

Input: production plan, forecasted demand, inventory levels (at both shops’
and wholesalers’ levels), shops’ priorities, set A

For each week t and each model i, do

1. Compute the sets Ai,w
t (for each w).

2. Select the set Ai,w
t with the highest priority w as the current set C.

3. For each available item, do

(a) Assign the item to a randomly chosen member of C.

(b) If a member of C has its demand fulfilled, remove it from C.

(c) If C = ∅, go to step (2), except if all the Ai,w
t ’s have been emptied,

set C = A.

Output: inventory deployment solution S.

The first solution method, called BestSolution (denoted BS ), generates a set of

pop solutions using SPG, and returns the best one (according to f). Follow-

ing this method, BestSolutionSimulated (denoted BSS ) generates a set of pop

solutions with SPG, simulates the k (parameter) best ones (according to f),

and finally returns the solution with the best simulated value. Finally, BestSo-

lutionSimulatedClique (denoted BSSC ) is a matheuristic [17].

To properly understand BSSC , let us first introduce a distance function dist(Ŝ1, Ŝ2)

which returns the distance between two solutions Ŝ1 and Ŝ2. dist(Ŝ1, Ŝ2) =
∑

t,i,j wj · λ
i,j
t , assuming that x̂i,j

t (Ŝ) is the value of x̂i,j
t in solution Ŝ, and λi,j

t

is set as in Equation (4.11). Therefore, this distance function assumes that two

solution components are distant if one is zero and the other is strictly positive

(regardless of the amplitude of the positiveness), which is relevant in the context

of SWB , which wants at least one item of each product available in each shop.

λi,j
t =

{

1 if
[

(x̂i,j
t (Ŝ1) = 0) and (x̂i,j

t (Ŝ2) > 0)
]

or if
[

(x̂i,j
t (Ŝ2) = 0) and (x̂i,j

t (Ŝ1) > 0)
]

0 otherwise

(4.11)

Let G = (V,E) be a graph with vertex set V and edge set E. A clique C of G is a

subset of V such that its vertices are pairwise adjacent. In addition, let w(v, v′)
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be the weight associated with edge (v, v′) ∈ E. We define here the weight w(C)

of a clique C by 1
2 ·
∑

v,v′∈C w(v, v′). 1
2 ensures that the weights are not counted

twice. Further, the k-clique with maximum weight problem consists in searching

the clique C of size k in G which maximizes w(C). Surveys on graph theory

and cliques can be found in [18, 95, 111]. This problem can be exactly solved

with an integer linear program (ILP) using CPLEX. Let xv = 1 if vertex v ∈ C,

and xv = 0 otherwise. Let yv,v′ = 1 if xv = xv′ = 1, and yv,v′ = 0 otherwise.

The ILP model is given in Equations (4.12-4.15). Constraints (4.13) and (4.14)

are used to compute correctly the value of yv,v′ , and Constraints (4.15) ensure

that the clique size is k.

max
∑

(v,v′)∈E

w(v, v′) · yv,v′ (4.12)

xv + xv′ − 1 ≤ yv,v′ ∀ v, v′ (4.13)

2 · yv,v′ ≤ xv + xv′ ∀ v, v′ (4.14)
∑

v

xv = k (4.15)

BSSC starts by generating a set of pop solutions with SPG, then builds a set

B with the best b (parameter) generated solutions, and on this set, computes

distance between each pair of solutions. The above ILP clique problem is then

solved to optimality with CPLEX (a vertex v represents a solution Sv ∈ B and

w(v, v′) = dist(Sv, Sv′)). It finally simulates only the k solutions associated

with the provided clique. At the end, BSSC returns the solution with the

best simulated value. The clique approach used in BSSC allows to select the

solutions that differ the most with respect to their structures. In addition to

being efficient, this technique allows decision makers to select a solution among

highly different solutions.

4.4.2 Simulator

The simulator returns a value f(S) for a solution S after having added the

different perturbations to the corresponding solution without perturbation Ŝ

(as explained in Subsection 4.3.1) in that order: generate the demand, perturb

the production plan and the dispatching. Algorithm 6 proposes a sketch of the

different simulation steps. After the second step, which perturbs the production
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plan, the solution Ŝ could possibly not be feasible anymore, as the p̂it’s could

be different from the pit’s (i.e., some items are unfortunately not produced,

and others are produced in counterpart). Thus, a repairing step is performed,

which ensures that the resulting solution remains feasible. To repair a solution,

f j = α · f j
1 + β · f j

2 + γ · f j
3 is computed for each shop j, and the resulting

f j’s are sorted in increasing fashion. If for a given week, a x̂i,j
t has to be

reduced (because of the production plan perturbations, some watches do not

exist anymore), then they are one by one removed from the shops with the

smallest f j value. On the opposite, if some items must be added (because of

the compensation production), then they are added one by one to the shops

with the largest f j value. A pseudo-code of the repair procedure is proposed in

Algorithm 7. Note that even after the perturbations on the dispatching, solution

S remains feasible because the same set of watches is managed.

At the very end, the simulator returns a value f(S) for the input solution

Ŝ. To properly assess the operating mode of the simulator, let us propose a

small example. Assume that an instance involves one product, two weeks, one

wholesaler, and two shops (with w1 = 2, w2 = 1, and thus wmax = 2). All

initial inventories are empty, and all the lead times are zero. The production

plan is p̂1 = (2, 3) and the forecasted demand d̂1,1 = (1, 3) and d̂1,2 = (1, 1).

The solver, based on the expected production plan and demand, proposes a

solution Ŝ with x̂1,1 = (1, 3) and x̂1,2 = (1, 0), as it fulfills in priority the

demand for the first shop. Then, the demand is generated as d1,1 = (1, 2)

and d1,2 = (2, 1), whereas the production plan is generated as p1 = (3, 3) (we

produce more than expected, due to a perturbation which occurred before the

current events). The solution then needs to be repaired, and the system returns

a modified solution x̂1,1 = (1, 2) and x̂1,2 = (2, 1), which is optimal. But

the behavior of the wholesaler perturbs the solution such that x1,1 = (1, 3) and

x1,2 = (2, 0). Finally the objective function is computed as f(S) = 1+ 1
4+1 = 9

4

(using α = β = γ = 1).

In order to be robust, sim (parameter) runs of the above described simulator are

performed with solution Ŝ as input. The value f(S) is then the average value

over the sim runs. Let fsim(S) be the average value of f(S) after sim runs

of the simulator. Parameter sim was tuned such that fsim(S) and fsim−1(S)

differ by less than 1h. After intensive tests on various instances, we have set
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sim = 40.

Algorithm 6 Sketch of the simulator

Input: a solution Ŝ, the forecasted demands and the corresponding normal
distributions, the inventories of the wholesalers and shops, the production plan,
the shops’ priorities.

1. Generate the demands (using a normal distribution) for each
shop/model/week.

2. Perturb the production plan.

3. If Ŝ is not feasible, perform the repair procedure (see Algorithm 7).

4. Perturb the dispatching (i.e., generate S from Ŝ).

5. Compute f(S).

Output: f(S).

Algorithm 7 Repair procedure

Input: a non feasible solution Ŝ, the perturbed production plan.

For each week t and each product i do

1. Get the number of watches Ei
t = pit − p̂it that does not fit the perturbed

production plan.

2. If Ei
t < 0, remove watches (one by one) from the shops with the lowest f j

value (i.e., reduce some x̂i,j
t values to generate the corresponding xi,j

t ).

3. If Ei
t > 0, add watches (one by one) to the shops with the highest f j value

(i.e., augment some x̂i,j
t values to generate the corresponding xi,j

t ).

Output: a repaired solution S (feasible).

4.4.3 Computing time considerations

Remind that the time limit allowed by SWB is 30 minutes. A typical instance

of SWB contains 47 weeks, between 7 and 9 wholesalers, between 160 and

250 shops, and between 100 and 200 models (these intervals are voluntarily
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consequent, to respect a SWB non-disclosure agreement). SPG requires half

a second to get a solution. A complete simulation (i.e., sim = 40 runs of the

simulator on one solution) requires around three minutes.

Based on such constraining time considerations, preliminary experiments lead

to the following parameter setting: pop = 100, b = 25, and k = 5. With

such values, CPLEX requires about 5 minutes to optimally solve the ILP clique

problem (see Equations (4.12) to (4.15)). BSS and BSSC need between 20 and

30 minutes to complete, whereas BS requires only 15 seconds.

4.5 Results

Tests were performed on an Intel Quad-core i7 @ 3.4 GHz with 8 GB DDR3

of RAM memory. Subsection 4.5.1 describes the instances used to evaluate the

quality of the different solution methods. Subsection 4.5.2 shows the experi-

ments on the realistic instances, whereas Subsection 4.5.3 discusses the results

of the exact method proposed in Subsection 4.3.3. Subsection 4.5.4 conducts

a sensitivity analysis of the perturbation parameters. Finally, Subsection 4.5.5

highlights some managerial insights.

4.5.1 Generation of the instances

Based on the various data provided by SWB , we have developed an instance

generator, which is able to quickly generate some realistic instances. An instance

is composed of the following parameters: the number N of models, the number

W of weeks in a year, the number J of shops, the number M of wholesalers,

the perturbation parameters (δ1, δ2, δ3, δ4, δ5 and ε), the production plan, the

demand (following a normal distribution with mean 0 and standard deviation σ),

the lead times (from the factory to the wholesalers, and from the wholesalers to

the shops), the shop priorities, the links wholesalers-shops, the inventory levels

at the wholesalers and at the shops. The parameters were reasonably fixed after

discussions with SWB . In the reference instance, we use N = 143, W = 47,

J = 192, M = 9, wmax = 3, δ1 = 10, δ2 = 50, δ3 = 10, δ4 = 40, δ5 = 70, ε = 10.
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We have generated a total of 112 instances around the reference instance by

varying δ1, δ2, δ3, δ4, δ5 and ε.

4.5.2 Results on realistic instances

Table 4.1 shows the results for the three solution methods when δ1, δ2, δ3, δ4,

δ5, and ε vary, and σ = 2 (larger values of σ are totally not realistic for SWB).

Two different values are presented for each parameter, the first is lower than the

reference value, and the second is the reference value. The goal is to compare

the performances of the algorithms and the impact of lower perturbations on the

objectives. The first six columns give the values of each parameter. The seventh

column, called f⋆
1 , is the best f1 value returned by one of the algorithm on the

considered instance. The same applies for the next two columns regarding f2

and f3. Starting at column ten, the next three columns show the gaps between

the f⋆
i ’s and the fi’s for method BS . The same information is then given for BSS

and BSSC . The last two rows show the number of times that the corresponding

algorithm found a gap of zero, followed by the average values of the different

gaps (provided in h). Note that the first row is the instance with the lowest

perturbations, and the last row shows the instance with the largest perturbations

(which is the reference instance).

The results shows that BSSC outperforms BSS on both f1 and f3, whereas BS

is significantly overpowered by both BSS and BSSC . Regarding f2, BSS finds

zero gaps 29 times, versus 15 times for BSSC , but the gaps for BSSC are so

small when BSS finds zero gaps that no conclusion can come out. Moreover, as

f1 has the priority over f2, it is not surprising that if BSSC beats BSS on f1,

then BSS can sometimes outperform BSSC on f2. When comparing the last

row, the averages over the complete set of instances clearly show that BSSC is

the most efficient method, as it shows the lower percentages for f1 and f3, and

very low gaps for f2.

Regarding the impact of a single parameter variation (for example δ1 ∈ {5, 10}),

and leaving the other parameters unchanged, we can see that the impacts on

f1 and f3 are significant, but not on f2. The reasons to this are detailed in

Section 4.5.4. The parameters that induce the greater reductions on f1 and
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f3 are obviously δ4 and δ5. Both parameters are used when encountering the

perturbations involved by the wholesalers’ behaviors. The improvements are

such that it would be very important for SWB to reduce the perturbations by

either finding more reliable suppliers (for δ1, δ2, δ3) or by having a better control

on the wholesalers (for δ4, δ5). To properly assess the impact of such reductions,

Subsection 4.5.4 proposes a more detailed sensitivity analysis.

To measure the impact of the perturbation parameters on a solution Ŝ, we

propose to use Dist(Ŝ, S) =
∑

t,i,j λ
i,j
t , with λi,j

t defined as in Subsection 4.4.1.

Function Dist measures the structural difference between the expected solution

Ŝ and the actual solution S (after simulation). To better capture the impact of

the perturbations, we propose to compute such a distance value for each priority

level. More precisely, at the end of each single run of the simulation, the distance

difference (in %) between Ŝ and the returned actual solution is computed for

each priority level (i.e., each gap is divided by Jw ·W ·N , where Jw is the number

of shops with priority w). These gaps are then averaged over the sim runs. Such

a test was performed 100 times on two different instances and the results are

averaged for each priority level. The used instances are (δ1, δ2, δ3, δ4, δ5, ǫ) ∈

{(5, 40, 5, 30, 60, 5), (10, 50, 10, 40, 70, 10)} (i.e., the instances with the smallest

and largest perturbations, respectively). The resulting gaps are presented with

the notation (w1,w2,w3), where wi is the gap corresponding to the shops with

priority i. The obtained gaps are (2.92%, 3.11%, 3.69%) for the least perturbed

instance, and (3.15%, 3.50%, 4.49%) for the reference instance. As an example,

the shops with priority 3 have a gap of 4.49% on the reference instance. The

results show that the larger gaps concern the most important shops, which is

consistent as such shops are the least represented in the distribution network.

4.5.3 Results on smaller instances

To ensure that our algorithms are reliable, we propose to conduct a compari-

son with the exact ILP method (see Subsection 4.3.3) tested with AMPL and

CPLEX 12.5. The ILP is compared with BSSC (which also uses f ′
1 as the first

objective, instead of f1) on 25 different instances, with W = 47 (as we cannot

change the number of weeks in a year). CPLEX is tested with a time limit of 3

hours per objective and a memory limit of 7 GB. Note that the memory limit
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Table 4.1: Results (percentage gaps) on realistic instances

δ1 δ2 δ3 δ4 δ5 ε f⋆
1 f⋆

2 f⋆
3 BSf1 BSf2 BSf3 BSSf1 BSSf2 BSSf3 BSSCf1 BSSCf2 BSSCf3

5 40 5 30 60 5 93,856,809.67 103.84 6,426,820.70 0.42% 0.12% 0.04% 0.00% 0.00% 0.53% 0.11% 0.04% 0.00%

5 40 5 30 60 10 93,611,706.42 104.04 6,393,880.08 0.00% 0.13% 0.00% 0.66% 0.00% 0.33% 0.24% 0.00% 0.70%

5 40 5 30 70 5 104,748,487.28 103.00 8,210,743.70 0.00% 0.00% 0.18% 0.08% 0.05% 0.07% 0.11% 0.02% 0.00%

5 40 5 30 70 10 104,160,132.28 103.05 8,188,112.60 0.26% 0.00% 0.00% 0.00% 0.04% 0.53% 0.66% 0.15% 0.88%

5 40 5 40 60 5 104,584,290.88 100.48 9,127,778.05 1.29% 0.14% 0.00% 0.25% 0.00% 0.20% 0.00% 0.11% 0.29%

5 40 5 40 60 10 104,521,898.40 100.56 9,044,377.57 1.00% 0.00% 1.10% 0.49% 0.02% 0.00% 0.00% 0.03% 0.74%

5 40 5 40 70 5 118,030,025.88 100.49 11,122,331.10 0.47% 0.09% 0.07% 0.03% 0.04% 0.39% 0.00% 0.00% 0.00%

5 40 5 40 70 10 117,299,231.35 100.42 11,082,133.78 1.24% 0.00% 1.12% 0.82% 0.06% 1.03% 0.00% 0.31% 0.00%

5 40 10 30 60 5 94,229,919.08 103.87 6,400,873.60 0.12% 0.18% 1.46% 0.00% 0.00% 0.92% 0.20% 0.15% 0.00%

5 40 10 30 60 10 93,813,698.90 103.90 6,434,238.35 0.44% 0.10% 0.00% 0.00% 0.00% 0.28% 0.32% 0.02% 0.84%

5 40 10 30 70 5 104,678,949.62 102.99 8,241,697.45 0.33% 0.00% 0.00% 0.32% 0.07% 0.46% 0.00% 0.05% 0.49%

5 40 10 30 70 10 104,376,624.28 102.87 8,229,631.92 0.82% 0.00% 0.48% 0.61% 0.24% 0.26% 0.00% 0.06% 0.00%

5 40 10 40 60 5 104,522,811.25 100.53 9,098,167.30 0.58% 0.00% 0.46% 0.42% 0.11% 0.29% 0.00% 0.14% 0.00%

5 40 10 40 60 10 104,718,207.03 100.62 9,051,360.93 0.32% 0.00% 0.00% 0.00% 0.06% 0.72% 0.10% 0.02% 0.90%

5 40 10 40 70 5 117,686,732.45 100.35 11,145,245.72 0.36% 0.17% 0.00% 0.21% 0.00% 0.38% 0.00% 0.13% 0.00%

5 40 10 40 70 10 117,642,362.15 100.46 11,148,556.55 0.00% 0.00% 0.00% 0.27% 0.02% 0.16% 0.29% 0.01% 0.21%

5 50 5 30 60 5 93,974,135.67 103.95 6,444,403.80 0.03% 0.07% 0.21% 0.00% 0.00% 0.05% 0.17% 0.04% 0.00%

5 50 5 30 60 10 94,002,498.80 103.86 6,443,839.08 0.35% 0.14% 0.00% 0.00% 0.00% 0.38% 0.45% 0.11% 0.57%

5 50 5 30 70 5 104,492,704.28 103.09 8,241,887.65 0.00% 0.08% 0.49% 0.25% 0.03% 0.00% 0.32% 0.00% 0.09%

5 50 5 30 70 10 103,862,333.53 102.99 8,162,655.60 0.00% 0.24% 0.00% 0.53% 0.00% 1.16% 1.05% 0.24% 1.01%

5 50 5 40 60 5 105,574,759.25 100.44 9,125,329.62 0.10% 0.00% 0.68% 0.00% 0.10% 0.49% 0.08% 0.18% 0.00%

5 50 5 40 60 10 104,700,360.65 100.56 9,070,600.65 0.04% 0.00% 0.00% 0.79% 0.05% 0.55% 0.00% 0.09% 0.35%

5 50 5 40 70 5 117,369,288.78 100.43 11,145,628.20 0.58% 0.07% 0.00% 0.40% 0.00% 0.24% 0.00% 0.02% 0.45%

5 50 5 40 70 10 116,791,994.05 100.37 11,100,587.30 0.51% 0.24% 0.63% 0.71% 0.00% 0.44% 0.00% 0.24% 0.00%

5 50 10 30 60 5 94,075,385.40 103.88 6,457,223.20 0.68% 0.11% 0.00% 0.41% 0.00% 0.90% 0.00% 0.27% 0.13%

5 50 10 30 60 10 93,606,039.33 103.84 6,455,417.00 0.58% 0.14% 0.02% 0.00% 0.00% 0.04% 0.52% 0.11% 0.00%

5 50 10 30 70 5 104,844,657.33 102.96 8,250,414.83 0.14% 0.07% 0.32% 0.21% 0.00% 0.24% 0.00% 0.17% 0.00%

5 50 10 30 70 10 104,136,960.10 102.93 8,248,901.70 1.19% 0.00% 0.50% 0.50% 0.08% 0.21% 0.00% 0.13% 0.00%

5 50 10 40 60 5 104,825,043.78 100.46 9,103,612.25 0.39% 0.00% 0.63% 0.00% 0.13% 0.16% 0.07% 0.19% 0.00%

5 50 10 40 60 10 105,599,244.03 100.42 9,136,612.82 0.06% 0.18% 0.09% 0.30% 0.00% 0.48% 0.00% 0.16% 0.00%

5 50 10 40 70 5 118,241,676.47 100.28 11,146,366.88 0.00% 0.26% 0.65% 0.01% 0.00% 0.88% 0.15% 0.18% 0.00%

5 50 10 40 70 10 117,588,781.15 100.39 11,113,507.18 0.25% 0.00% 0.00% 0.00% 0.13% 0.18% 0.22% 0.11% 0.21%

10 40 5 30 60 5 94,207,031.50 104.34 6,529,899.92 0.47% 0.00% 1.08% 0.00% 0.00% 0.00% 0.37% 0.03% 0.25%

10 40 5 30 60 10 94,340,721.88 104.24 6,557,394.03 0.31% 0.11% 0.31% 0.00% 0.00% 0.00% 0.15% 0.21% 0.29%

10 40 5 30 70 5 105,345,990.90 103.23 8,249,574.90 0.10% 0.00% 0.99% 0.05% 0.13% 1.41% 0.00% 0.11% 0.00%

10 40 5 30 70 10 104,650,005.45 103.35 8,269,697.12 0.53% 0.08% 0.00% 0.50% 0.13% 0.32% 0.00% 0.00% 0.16%

10 40 5 40 60 5 105,322,713.28 100.74 9,104,621.30 0.00% 0.11% 0.00% 0.23% 0.27% 0.24% 0.79% 0.00% 0.23%

10 40 5 40 60 10 105,729,258.72 100.90 9,052,801.07 0.00% 0.00% 0.00% 0.05% 0.00% 1.59% 0.24% 0.02% 0.81%

10 40 5 40 70 5 117,661,305.95 100.75 11,080,102.28 0.49% 0.15% 0.72% 0.00% 0.00% 0.00% 0.62% 0.02% 0.21%

10 40 5 40 70 10 117,698,666.75 100.61 11,088,766.53 0.97% 0.33% 0.55% 0.72% 0.00% 0.05% 0.00% 0.28% 0.00%

10 40 10 30 60 5 94,554,839.78 104.21 6,566,525.05 0.00% 0.09% 0.16% 0.06% 0.09% 0.74% 0.04% 0.00% 0.00%

10 40 10 30 60 10 94,712,670.17 104.24 6,595,042.62 0.02% 0.00% 0.39% 0.14% 0.00% 0.44% 0.00% 0.03% 0.00%

10 40 10 30 70 5 104,941,038.42 103.18 8,315,693.42 1.02% 0.23% 0.18% 0.05% 0.00% 0.00% 0.00% 0.00% 0.73%

10 40 10 30 70 10 104,981,703.83 103.33 8,312,080.92 0.28% 0.03% 0.45% 0.00% 0.06% 0.00% 0.39% 0.00% 0.18%

10 40 10 40 60 5 104,064,078.90 100.93 9,057,680.45 1.37% 0.01% 0.98% 0.00% 0.00% 0.00% 1.43% 0.00% 0.55%

10 40 10 40 60 10 104,990,602.78 100.83 9,092,775.85 1.30% 0.01% 0.84% 0.00% 0.05% 0.00% 0.68% 0.00% 1.06%

10 40 10 40 70 5 117,748,578.03 100.65 11,059,492.68 1.26% 0.20% 0.91% 0.70% 0.00% 0.71% 0.00% 0.18% 0.00%

10 40 10 40 70 10 117,612,171.58 100.50 11,066,311.35 1.38% 0.00% 1.36% 0.00% 0.16% 0.00% 0.39% 0.34% 0.65%

10 50 5 30 60 5 94,552,063.95 104.09 6,500,546.62 0.09% 0.17% 0.73% 0.07% 0.36% 0.00% 0.00% 0.00% 1.51%

10 50 5 30 60 10 94,624,449.00 104.19 6,559,273.08 0.00% 0.00% 0.00% 0.06% 0.07% 0.26% 0.13% 0.10% 0.23%

10 50 5 30 70 5 104,841,454.97 103.34 8,332,678.75 1.23% 0.00% 0.36% 0.00% 0.05% 0.00% 0.68% 0.03% 0.42%

10 50 5 30 70 10 104,644,649.20 103.26 8,311,685.03 0.92% 0.09% 0.12% 0.00% 0.12% 0.00% 0.35% 0.00% 0.53%

10 50 5 40 60 5 105,256,370.90 100.74 9,124,679.62 0.70% 0.22% 0.60% 0.64% 0.00% 0.47% 0.00% 0.28% 0.00%

10 50 5 40 60 10 104,892,459.38 100.72 9,148,605.15 1.41% 0.08% 0.00% 0.59% 0.03% 0.34% 0.00% 0.00% 0.25%

10 50 5 40 70 5 118,134,879.38 100.80 11,101,943.82 0.25% 0.14% 0.70% 0.21% 0.00% 0.91% 0.00% 0.03% 0.00%

10 50 5 40 70 10 118,136,339.90 100.75 11,154,865.12 0.89% 0.07% 0.07% 0.31% 0.00% 0.00% 0.00% 0.01% 0.67%

10 50 10 30 60 5 94,337,018.88 104.08 6,558,153.50 1.37% 0.00% 0.56% 0.65% 0.01% 1.04% 0.00% 0.44% 0.00%

10 50 10 30 60 10 94,388,692.80 104.12 6,560,253.45 0.66% 0.00% 0.36% 0.28% 0.08% 1.16% 0.00% 0.19% 0.00%

10 50 10 30 70 5 105,347,982.90 103.16 8,353,232.15 0.00% 0.17% 0.00% 0.56% 0.00% 1.01% 0.63% 0.07% 0.70%

10 50 10 30 70 10 104,673,098.12 103.26 8,288,574.45 0.72% 0.20% 0.84% 0.00% 0.18% 0.00% 0.64% 0.00% 1.53%

10 50 10 40 60 5 105,867,424.58 100.85 9,153,754.32 0.34% 0.00% 0.94% 0.47% 0.05% 0.34% 0.00% 0.22% 0.00%

10 50 10 40 60 10 105,854,191.80 100.83 9,166,580.05 0.27% 0.12% 0.00% 0.61% 0.03% 1.45% 0.00% 0.00% 0.03%

10 50 10 40 70 5 117,234,709.35 100.67 11,094,372.15 1.45% 0.21% 0.50% 0.00% 0.00% 0.00% 0.84% 0.17% 0.39%

10 50 10 40 70 10 117,928,718.10 100.79 11,107,442.60 0.66% 0.00% 0.96% 0.00% 0.17% 0.00% 0.54% 0.01% 0.12%

Number of zero gaps 11 25 21 23 29 17 30 15 27

Averages 5.23h 0.84h 3.92h 2.45h 0.53h 4.02h 2.29h 1.03h 3.01h
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has never been reached. The objectives are solved sequentially. The model is

first solved by ignoring f2 and f3. Then, f
(opt)
1 is set as a constraint and the

model is again solved minimizing f2 only. Finally, f
(opt)
2 is set as a constraint,

and the model is solved minimizing f3 only. Table 4.2 shows the results of

the exact method compared with BSSC . The first three columns indicate the

number N (resp. J , M) of models (resp. shops, wholesalers). The fourth col-

umn gives the output of ILP, where O stands for optimal (i.e., CPLEX finds

the optimal solution), and T indicates that the time-limit was reached without

getting an optimum. The next three columns give the different objective values

returned by CPLEX. A “−” means that CPLEX is not able to find an upper

bound for this objective. In this case, no further experiment is performed on

that instance. If for a given objective value, a (B) is indicated next to it, it

means that CPLEX failed to return the optimal value and returns only an up-

per bound. The last three columns give the gaps of BSSC with respect to the

results returned by CPLEX. BSSC is very competitive compared with CPLEX,

and it can sometimes find a better upper bound (i.e., negative gaps), as in the

fourth block of results. Note also that the computation time of BSSC is much

smaller. For example, BSSC requires only 580 seconds for the instance with

(N, J,M) = (50, 70, 6). For the above reasons, we can safely conclude that

BSSC is effective on small instances, and is likely to be trusted on the realistic

instances, for which CPLEX cannot even find an interesting upper bound in a

reasonable amount of time.
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Table 4.2: Results (percentage gaps) of the exact methods compared with BSSC

N J M Output f⋆
1 f⋆

2 f⋆
3 BSSC(f1) BSSC(f2) BSSC(f3)

12 15 2 O 6 5.39 25,813 0.00% 0.00% 0.00%

12 15 2 O 6 6.04 27,985 0.00% 0.00% 0.00%

12 15 2 O 5 4.91 21,394 0.00% 0.00% 0.00%

12 15 2 O 6 5.43 25,454 0.00% 0.00% 0.00%

12 15 2 O 7 5.05 26,345 0.00% 0.00% 0.00%

24 30 4 O 69 7.18 98,426 0.00% 0.00% 0.00%

24 30 4 O 65 6.98 91,945 0.00% 0.00% 0.00%

24 30 4 O 81 6.75 93,443 0.00% 0.00% 0.00%

24 30 4 O 56 6.87 101,434 0.00% 0.00% 0.00%

24 30 4 O 61 6.04 91,343 0.00% 0.00% 0.00%

30 50 4 T 131 10.13 (B) - 0.00% 0.00% -

30 50 4 T 133 10.34 (B) - 0.00% 0.00% -

30 50 4 T 145 11.23 (B) - 0.00% 0.00% -

30 50 4 T 112 11.24 (B) - 0.00% -0.05% -

30 50 4 T 131 11.34 (B) - 0.00% 0.02% -

50 70 6 T 440 (B) - - 0.00% - -

50 70 6 T 453 (B) - - 0.00% - -

50 70 6 T 398 (B) - - -0.03% - -

50 70 6 T 343 (B) - - -0.01% - -

50 70 6 T 459 (B) - - 0.00% - -

60 80 7 T - - - - - -

60 80 7 T - - - - - -

60 80 7 T - - - - - -

60 80 7 T - - - - - -

60 80 7 T - - - - - -

4.5.4 Sensitivity analysis

In this subsection, a deeper sensitivity analysis of the perturbation parameters

is conducted. Figures 4.3 to 4.8 show a wider variation of each perturbation

parameter, (for δ1, δ2, δ3, δ4, δ5 and ε, respectively). For each figure, the other

involved parameters are set to the reference values.

Figure 4.3 shows that δ1 has an impact on both f1 and f2 (as f1 decreases by

almost 1% if δ1 decreases by 4%). Finding more reliable suppliers could lead to

such a δ1 reduction. Figures 4.4 and 4.5 show that the fi’s are steady even if

δ2, δ3 and ε are significantly reduced. Therefore, these three parameters do not

play a crucial role in the supply chain. On the opposite, Figures 4.6 and 4.7

show that both δ4 and δ5 are the most sensitive parameters, as they significantly

reduce f1 and f3 (even if in Figure 4.6, it leads to a small augmentation of f2).
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This is due to the wholesalers, which are likely to sacrifice the considered shop

and favor higher priority shops. More precisely, as the shops with the lowest

priority are the most present, the watches will rather reach shops of priority 2

or 3, and therefore decrease f1 and f3 (as shortages are less penalized if more

watches arrive, and shops of higher priorities are less penalized on inventories).

Therefore, f2 increases for the shops of lower priorities, which are more present.

These conclusions, regarding the wholesalers, were acknowledged by SWB.
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Figure 4.3: Sensitivity analysis on δ1

4.5.5 Managerial insights

The three solution methods used to tackle the problem faced by SWB are de-

signed such that the best simulated solution is returned. But sometimes, due to

other information, the decision-makers could decide to select another solution,

which is not necessarily the best one, but could be another one based on intuition

and experience. In this context, Table 4.3 proposes, using BSSC , to simulate

and return the values of the k best solutions, such that a decision-maker can

select one among k = 5 different solutions.

Moreover we propose a new measure rob, which is a robustness indicator of

a simulation, defined as the standard deviation of f over the sim runs. In

realistic conditions, the lower rob(Ŝ) is, the higher is the probability that, if Ŝ
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Figure 4.4: Sensitivity analysis on δ2
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Figure 4.5: Sensitivity analysis on δ3
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Figure 4.6: Sensitivity analysis on δ4
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Figure 4.8: Sensitivity analysis on ε

is used for multiple consecutive years, the corresponding actual solutions (with

perturbations) are similar to each others. Moreover, it results in a good control

on the costs.

In Table 4.3, solution S3 has the best f1 value (as the indicated gap is 0), but

it has a rather high rob value. The manager could decide to sacrifice 0.25%

on f1 and select solution S4, which has the lowest f3 value and a much better

rob value. Alternatively, he/she could select solution S2 by sacrificing 0.05%

on f1 and get the best proposed values of f2 and rob. This example is used to

show that a manager could decide to sacrifice a small gap on one top objective

and favor a lower level objective on the robustness indicator. Depending on

the situation, the manager could also decide to select the solution with the

lowest rob value, even if it is outperformed on the other objectives by the other

provided solutions. In any case, the provided five solutions are competitive, as

they are the most promising among the pop = 100 solutions.
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Table 4.3: Management insights using BSSC

Objective S1 S2 S3 S4 S5

f1 1.31% 0.05% 0.00% 0.25% 0.87%

f2 0.04% 0.00% 0.12% 0.01% 0.18%

f3 1.58% 0.63% 0.75% 0.00% 1.25%

rob 11.08% 0.00% 16.22% 9.34% 18.33%

4.6 Conclusion and future works

In this paper, we propose a relevant and complex problem (P) faced by a well-

known Swiss watch brand. We propose powerful solution methods to tackle

(P), and showed the superiority of the proposed matheuristic compared with

standard heuristics. Moreover, we highlight the most sensitive parameters on

which luxury companies should focus on. Finally we propose managerial in-

sights, which allow decision makers to select a solution not only based on its

quality. Future works include modeling a more complete problem, which inte-

grates more types of perturbations. Moreover, SWB could evaluate and opti-

mize an integrated supply chain where suppliers, production and dispatching

would be centralized in a common system. This would allow SWB to reduce

the perturbation parameters by gaining control over the complete supply chain.
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General conclusion

In opposition to regular PhD thesis, where a single subject is deeply discussed,

this thesis proposes four different topics. Each topic is relevant to a problem

faced by various industries. Even if the Chapters 1 and 3 were only applied

to academic instances, they show the relevance of modern academic techniques

to practical problems, such as online vehicle routing with constant position

monitoring, which becomes very familiar with the appearance of cheap GPS

devices. Techniques developed in both chapters can be easily transposed to

practical applications, and each chapter proposes such possible applications.

In Chapters 2 and 4, two complex problems were proposed by two different

companies, and are therefore completely related to practical aspects. Even if an

accurate cost saving is hard to measure (as we do not have the required private

data to compute it), outputs of both projects show that this thesis has been

interesting to both industries.

In Chapter 2, the bin-packing problem faced by Renault is so important to their

industry that they contacted us to benchmark their currently used algorithms,

in order to ensure their quality. Results show that the latter could be improved

with more advanced algorithms, such as genetic algorithms. A correct loading

is very important, as the cost of transportation of a single item can increase

significantly if the loading is inefficient. This could lead to important cost

savings in the transportation of car parts to factories. The algorithms designed

by Renault were improved thanks to our research, and are now widely used and

trusted by the company. Moreover it led to possible future works in the case a

number of instances has to be tackled jointly within a time limit.

123
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In Chapter 4, SWB contacted us for a dispatching problem, without any prior

method to tackle it. At the end of the project, at the time of exposing our results,

SWB was very satisfied to realize that the simulator is very closely reflecting the

situations they are facing daily. They intend to use the simulator and the solver

to improve their supply chain management. The simulator and the solver can

now help SWB to efficiently improve the dispatching of the items around the

globe, in addition to testing new dispatching management methods. With little

extra work, additional objectives could be added (such as cost components).

In the supply chain optimization field, only dedicated methods to tackle a single

problem are relevant. The problems and the methods exposed in this thesis,

which are either new or recent, are therefore very relevant to modern industries.

This thesis was focusing on practical applications which were tackled with state-

of-the-art academic methods. Extensive literature reviews are proposed and

modern methods are described to tackle each issue. This shows the relevance

of such a combination for current industrial problems, and the relevance of

advanced methods dedicated to specific applications.
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