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Abstract: The aim of this article is to discuss the logic and assumptions behind the concept of neural
reuse, to explore its biological advantages and to discuss the implications for the cognition of a brain
that reuses existing circuits and resources. We first address the requirements that must be fulfilled
for neural reuse to be a biologically plausible mechanism. Neural reuse theories generally take a
developmental approach and model the brain as a dynamic system composed of highly flexible
neural networks. They often argue against domain-specificity and for a distributed, embodied
representation of knowledge, which sets them apart from modular theories of mental processes. We
provide an example of reuse by proposing how a phylogenetically more modern mental capacity
(mental rotation) may appear through the reuse and recombination of existing resources from an
older capacity (motor planning). We conclude by putting arguments into context regarding functional
modularity, embodied representation, and the current ontology of mental processes.

Keywords: neural reuse; action emulation; motor planning; functional network; distributed knowl-
edge; visual agnosia; lesion studies; mental rotation; embodiment

1. Introduction

The term neural reuse describes the capacity of the brain to adapt to changing demands
by reutilizing some of its structures or resources in a new context (Figure 1). Though reuse
is a form of plasticity, it should not be taken as implying just an adaptation or strengthening
of specific brain circuits, such as when learning a new skill or increasing one’s vocabulary.
Reuse has a much broader sense, as it refers to more fundamental changes taking place
at the individual and, for some authors, the species level. Adaptations requiring neural
reuse may be triggered by environmental pressures, leading to the reattribution of neural
resources to alternative activities while remaining available for the original function. Al-
ternatively, they may be driven by individual development, stimulating the use of skills
and competencies when a child is confronted with a new problem. Neural reuse is thus a
fundamentally adaptive feature of the brain. Its result will not be just a modification of the
existent behavioral (or cognitive) repertoire, but the emergence of an entirely new capacity.
Neural reuse ultimately results in a structural reorganization of brain circuits, but also in a
new arrangement of computational operations.

This general overview anticipates a more detailed discussion of theoretical proposals
taking different perspectives. The aim of this article is to discuss the logic and assumptions
behind the concept of neural reuse, to explore its biological advantages and to demonstrate
the benefits of reuse at the cognitive level. In particular, we will discuss developmental
approaches [1], the concepts of embodied versus symbolic knowledge [2,3], the reshaping
of cortical representations through the acquisition of new capacities [4] and how distributed
processes facilitate neural reuse [5]. We will further consider how two seemingly opposite
concepts that are relevant for neural reuse (localized vs. distributed representations) can
be accommodated through interchanges between different methodological approaches.

Brain Sci. 2021, 11, 1652. https://doi.org/10.3390/brainsci11121652 https://www.mdpi.com/journal/brainsci

https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0003-4708-9201
https://orcid.org/0000-0002-7397-6835
https://doi.org/10.3390/brainsci11121652
https://doi.org/10.3390/brainsci11121652
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/brainsci11121652
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci11121652?type=check_update&version=1


Brain Sci. 2021, 11, 1652 2 of 20

Further, we will elaborate on neural reuse by proposing how a mental capacity (mental
rotation) may emerge through the recombination of existing resources. Finally, we conclude
by discussing some open issues of neural reuse and address future challenges.
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recognition of body parts, later authors emphasized the difficulty to find the precise loca-
tion of representations in specialized parts of the brain. Thus, after reviewing results from 
other studies and himself performing lesion studies on various parts of the rat brain, Lash-
ley [10] concluded that brain function depended on volume, not the precise location of the 
removed cortex. Lashley noted: ‘There is evidence of mutual dependence of parts in which 
the specialization of structures seems less important than the mere mass of functional tis-
sue. There are indications that (…) the subordinate parts are all equally capable of per-
forming the functions of the whole’ ([11], p. 34). Based on his data, he proposed the con-
cept of equipotentiality, which reflects the capacity of the intact cortex to take over any 
function from an injured brain region. Equipotentiality is not only incompatible with local 
representations, but also with other characteristics of a strongly modular view, such as 
domain-specificity and the encapsulation of computational processes. Other important 
thinkers were Geschwind, who emphasized the importance of white-matter connections 
for brain functions and thus a more dynamic view of the brain [12,13], and Edelman [14], 
who disputed the ‘unidirectional’ information processing view of brain function underly-
ing the information processing approach, according to which external inputs are fixed and 
devoid of variation. Edelman proposed that local anatomy at the level of cell groups varies 
across individuals, as it is subject to environmental variation present during individual 
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no area is shared between functions. (b) Partial area/resource sharing (A and E are shared between
two functions). (c) Strong area/resource sharing (A participates to all 5 functions, b to 3 different
functions etc.).

2. Local or Distributed: Two Views of the Structure-Function Relationship

The notion of neural reuse can be tracked down to controversies regarding brain–
behavior relationships, in particular the questions whether knowledge is distributed and
whether brain regions may specialize for a particular function. While early observations
by Broca [6], Lissauer [7], Bálint [8] or Gerstmann [9] and others suggested a high degree
of specialization of distinct brain areas for language, visual perception, arithmetic or
even recognition of body parts, later authors emphasized the difficulty to find the precise
location of representations in specialized parts of the brain. Thus, after reviewing results
from other studies and himself performing lesion studies on various parts of the rat brain,
Lashley [10] concluded that brain function depended on volume, not the precise location
of the removed cortex. Lashley noted: ‘There is evidence of mutual dependence of parts in
which the specialization of structures seems less important than the mere mass of functional
tissue. There are indications that ( . . . ) the subordinate parts are all equally capable of
performing the functions of the whole’ ([11], p. 34). Based on his data, he proposed the
concept of equipotentiality, which reflects the capacity of the intact cortex to take over any
function from an injured brain region. Equipotentiality is not only incompatible with local
representations, but also with other characteristics of a strongly modular view, such as
domain-specificity and the encapsulation of computational processes. Other important
thinkers were Geschwind, who emphasized the importance of white-matter connections for
brain functions and thus a more dynamic view of the brain [12,13], and Edelman [14], who
disputed the ‘unidirectional’ information processing view of brain function underlying
the information processing approach, according to which external inputs are fixed and
devoid of variation. Edelman proposed that local anatomy at the level of cell groups varies
across individuals, as it is subject to environmental variation present during individual
development. He also introduced the concept of reentry, a continuous signal exchange
between higher-order and lower-order levels of a neural hierarchy. His most important
concept for the current review is degeneracy, a term borrowed from biology to describe
the variable relationship between function and structure. When applied to brain function,
degeneracy reflects the capacity of structurally dissimilar brain areas to carry out similar
functions under some conditions, but different functions under other conditions. As we
will see, this is a fundamental premise of neural reuse theories. Though Edelman’s ideas
have mainly been used to describe behavior of cell populations, they were later applied to
psychophysical phenomena [15] and brain circuits or networks [16,17]. Another important
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development led to the emphasis on distributed processing as an alternative to the localized
and static input–output relationships proposed by cognitivists [18–22].

The notions of neural reuse and distributed processing have early met their adver-
saries, however. For example, after examining some of Lashley’s data, Thomas [23] con-
cluded that parietal damage had significant effects on maze performance of rats irrespective
of the volume of damage. This was a statistical argument against mass action and in favor
of (at least broadly) localized representations. From 1950 on, lesion studies of individual pa-
tients continued to provide evidence for specific impairments following focal brain damage,
such as amnesia [24,25], prosopagnosia [26], simultanagnosia [27] or finger recognition im-
pairment [28], and studies on disconnection [29] further provided evidence for functional
specialization across the hemispheres. During the same period, the logic and methodology
behind the component analysis of cognitive processes was attuned [30,31], and analyses
of processing stages such as the subtractive method were improved [32] (see also [33]).
Concepts of ‘modular function’ and ‘encapsulation’ received a rational basis [34,35], and
provided the reason why cognitive neuroscience was influenced by the ‘localist’ view well
into the era of functional imaging. As a consequence, some early findings of seemingly
‘local’ representations were interpreted as reflecting a cortical module, that is, a highly
specialized functional cortical area [36–39]. How strong and relevant the contribution of
lesion studies was, and continues to be, is exemplified by the simple fact that without
them we would not know about syndromes such as prosopagnosia, spatial neglect or even
amnesia. As we will show, however, at least for some theorists, neural reuse is entirely
incompatible with a localist and modular organization of the mind.

3. Theories of Neural Reuse

The concept of neural reuse is not conceivable without several underlying assumptions.
First, it involves an evolutionary perspective, where neural changes are triggered by
a need for adaptation to changing environments. Within an evolutionary perspective,
neural reuse is a form of exaptation, that is, the adaptation of a specific trait to serve a
new function while also maintaining its original function [40]. Here, we will address
such evolutionary aspects of neural reuse only superficially, since they are less known
and more subject to conjecture than ontogenetic aspects. Of much greater relevance
for the topics discussed in this paper is the second point: reuse is expressed during
development and maturation and is therefore dependent on neural and cognitive plasticity.
The type of plasticity that is at play contributes to a relatively consequential reshaping of
the cognitive anatomy of the brain and operates at the level of brain circuits and networks.
It is therefore more than merely a fine attunement and optimization of already existing
circuits. Importantly, it is involved in combining mental operations that are based in motor
and sensory cortices with each other and with higher-order processes grounded in the
associative cortex. A third important assumption says that neural reuse is the manifestation
of the reorganization of a complex system, which must respect principles of neural economy
and optimization. This assumption reflects the biological constraints that impose a barrier
on the brain’s energy consumption. According to the fourth premise, reuse must be subject
to internal competition and cooperation, as any change of function and its underlying
neural implementation cannot go without accompanying effects on neighboring structures
or related functions. However, reuse also requires neural synergy, since a resource must
be inserted into a new ensemble to facilitate the emergence of a new computational unit.
Finally, reuse reflects a significant amount of redundancy of neural systems, rendering
them more resistant to damage, yet more flexible and responsive to external pressures.

These assumptions are present in several theoretical currents that assume some form
of reuse. One such current assembles developmental scientists who conceive the emergence
of mental structure within what has been termed a neuroconstructivist framework. For ex-
ample, according to Karmiloff-Smith [1], cognitive processes are initially usable for different
types of inputs and gradually (through individual development) become more specialized
for a particular domain. Thus, domain-specific representations are not genetically prede-
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termined, but emerge through changing interactions with the environment. This leaves
room for different developmental trajectories, during which disorders of development
may profoundly affect the cognitive architecture. Hence, seemingly intact performance in
developmental disorders does not indicate the preservation of specific modules, but may
be achieved through an alternative cognitive organization. Neuroconstructivists criticize
the nativist view of a static, encapsulated and hard-wired mental architecture, and instead
emphasize the flexible representational capacities of the brain that are shaped through its
interaction with the environment [41].

Another group of theories are based on the idea that the same cognitive processes
are involved when we perform a particular behavior, or just imagine performing this
behavior. For example, imagining (i.e., simulating) the grasping of an object activates the
same neural structures, motor processes and cognitive representations as actually grasping
the object. While some authors have applied the simulation idea specifically to motor
cognition [42] others have gone further to explain the understanding of other people’s
actions, intentions, emotions or, more generally, internal states through simulation [43,44].
Several authors have designated mirror neurons (specialized cells of monkey premotor
cortex, which are active when a monkey performs an action or merely observes someone
else performing the action) as the neural basis for simulation [45–47]. A closely related
current is based on the idea that sensory or motor cortices retain a flexibility to serve other
than their original functions. Gallese and Lakoff [3] propose ‘neural exploitation—the
adaptation of sensory-motor brain mechanisms to serve new roles in reason and language’
(p. 456) as a fundamental characteristic of neural implementations of cognitive processes.
These authors argue that a concept such as ‘grasp’ only becomes meaningful for a mind
that knows how to grasp, has perceived and can imagine grasping. Because knowledge
structures depend on sensory and action structures (i.e., are embodied), concepts cannot
be symbolic and referential. Similar ideas about the expansion of function have been put
forward to explain functions other than language, such as attention [48]. For example, in
their premotor theory, Rizzolatti et al. [49] proposed that spatial attention has appeared by
splitting from the evolutionary older saccade programming system. Corbetta et al. [50] in
turn posit that the spatial reorienting system of attention has been exploited for perspective
taking, and thus to understand other people’s intentions.

The neuronal recycling theory aims to explain cognitive structure by giving particular
weight to interactions between genetic and cultural influences [4]. The theory posits
that the domain-specificity of the cortex is in part genetically predetermined, in that an
organization of cortical areas into motor or sensory maps is subject to inherited anatomical
constraints (such as the cortical projections of the optic radiations). Culturally transmitted
abilities must therefore find a neuronal representation in an area that has the required
computational characteristics and is sufficiently plastic to accommodate the new function.
The theory focuses on abilities that have appeared within the last couple of thousand years
and can therefore not have a genetic basis, such as reading, writing and mathematics. For
example, illiterate participants exhibit symmetrical activity in inferior-temporal cortex to
faces, while literate subjects show a bias towards stronger responses to faces in the right
hemisphere [51]. By testing participants with different degrees of literacy, the authors
could demonstrate that the acquisition of reading gradually encroached upon the face-
sensitive areas in the left hemisphere. Thus, in agreement with neuronal recycling theory, a
culturally acquired ability (reading) reshapes cortical maps by competing with a genetically
transmitted ability (face processing).

Possibly the most radical theory of neural reuse is the massive redeployment hypothesis
of Anderson [5,40,52]. Anderson starts with an argument of economy: given the excessive
energy consumption of the brain, it is more economical to reuse existing circuits than to
develop new ones. Therefore, we should ‘expect a typical brain region to support numerous
cognitive functions in diverse task categories’ ([5], p. 246). Importantly, he expects that
phylogenetically older areas should have been reused more often during evolution and
therefore participate to various cognitive functions, and more recent cognitive functions



Brain Sci. 2021, 11, 1652 5 of 20

should involve more scattered brain areas. Anderson cites evidence from functional
imaging showing that brain areas are activated by a variety of different tasks [53,54], and
that language (presumably a recent acquisition in human history) activates more distributed
and scattered brain regions than perception or attention [40]. He finds it logically invalid
to say that the brain is composed of functionally independent and completely separable
parts (i.e., modules). Consequently, he disapproves of the decompositional approach of
cognitive neuroscience (to analyze distinct parts by studying functional dissociations) and
advocates instead for a network approach: to seek for higher-order patterns in complex
networks and relate them to behavior. However, as we will see in the next section, even
network models cannot escape the discussion about the structure-function relationship,
and strong data suggest that network structures are not incompatible with some form of
functional modularity.

In sum, neural reuse theories distinguish themselves by emphasizing the interaction
between inherited characteristics of brain circuits and environmental (or cultural) pressures
requiring a new cognitive function to be accommodated within existing structures. Most
of them assume some form of exaptation, that is, the reutilization of a phylogenetically
old trait or structure in a different context. They argue against a localist view of brain
function, and some of them put into perspective the assumption that cognitive architectures
are universal.

4. Functional Networks Provide the Necessary Conditions for Neural Reuse

The contrast between a localist versus distributed view of brain function has been
accentuated when functional imaging shifted from focusing on brain activity to the ex-
amination of functional networks. We believe that the analysis of functional networks
provides a solution to this controversy by identifying different network characteristics and
important network components [55–59]. The logic of network analysis can be summarized
in the following propositions (see Figure 2):

1. The brain is organized into large-scale, highly interactive networks, whereby there
are many more short-range (local) than long-range connections [56,60,61]. This archi-
tecture maximizes efficiency while minimizing energy consumption [62].

2. Networks consist of nodes and connections, whereby some nodes (‘hubs’) are of
greater importance than others and some connections are stronger than others [63–65].
The intrinsic organization of networks enables processing information along a contin-
uum of encapsulation: they may adopt a centralized and modular state (segregation)
or become more penetrable to influences from other networks (integration; [66]). Inte-
gration and segregation of information processing are thus expressions of the current
state, not a fixed feature of networks. Note that the term ‘modular’, when applied
to networks, relates to the formation of subgroups of nodes forming a community
within a network [67].

3. A network structure appears at rest or during activity. The high degree of energy
consumption during ‘rest’ indicates that a large quantity of information processing is
intrinsic and occurs without external stimulation [68].

4. Though the spatial and temporal stability of networks is under debate [69,70], at least
some studies using task-based connectivity suggest temporal changes of node weights
and network topology over time [71–73]. There is also evidence of interindividual
variability, yet intraindividual stability of networks [69]. This corresponds to one
of Edelman’s requirements for theories of brain function, namely to explain ‘how
both perceptual and conceptual categorization can arise as a result of selection upon
preexisting variance in structure and function of the nervous system’ ([14], p. 115).

5. Focal lesions have local as well as distant effects on network function [74–77]. Distant
effects modify intrahemispheric networks or cross-hemispheric connections and may
manifest in increased or decreased activity of distant brain regions [76,78].
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an area/region of interest considered a cortical ‘hub’ (right angular gyrus, rAG). (a) Seed-to-voxel
functional connectivity identifies within- and between-hemisphere connectivity of the rAG with
frontal, temporal and medial associative cortex of both hemispheres. (b) Region-of-interest connec-
tome involving 13 right-hemispheric hubs (upper ring) and only connections involving the rAG
(lower ring). (c) Another representation of the same data as shown in (b). (d) Graph-analytic net-
work representation, where circle size is proportional to graph theory measures of degree (left) and
betweenness (right). Data from [79].

These propositions depict a much more dynamic view of brain function than what
classic lesion studies, but also early studies using functional brain mapping, have implied.
Information processing is the result of segregation and integration, whereby information
may at times be encapsulated, or be exchanged across networks. Modularity and dis-
tributed processing are thus relative—not absolute—characteristics of such a system. This
does not mean that a network cannot have a fixed architecture, but rather that the strength
of connections in a functional network may vary despite a stable network structure. Even
network function can be relatively fixed, as long as some basic operations remain avail-
able for alternative functions. Thus, a given network may be preferentially involved in a
particular function (e.g., motor programming and execution), yet some of its functional
and structural components may be reused by other networks to generate other functions.
Additionally, developmental studies indicate that motor and sensory networks appear
earlier during brain maturation than networks associated with functions such as working
memory, attention or cognitive flexibility [80–82]. The level of functional specialization of
these ‘higher-order’ networks is much less fixed, and different network configurations may
be associated with distinct functions [53,58]. Thus, networks may ‘borrow’ sub-components
for particular tasks and may contribute to what is not necessarily their primary function.
This conclusion applies particularly to higher cognitive functions, which may emerge from
the recombination (or aggregation) of several low-level operations [83].

In sum, brain networks are characterized by a high degree of functional diversity,
which provides a building stone for a highly interactive brain and neural reuse. Is this
conclusion incompatible with the main assumption of lesion studies, namely that if a lesion
produces a deficit in function X, then the damaged area must somehow be necessary for
that function? We do not think so. First, the major contribution of lesion studies has
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been the precise analysis of cognitive architecture through the identification of functional
sub-components, not the identification of specialized brain areas. These studies deal
with functional associations and dissociations, and these—not the anatomo-functional
relationships—constitute the building blocks for theoretical reasoning in cognitive neu-
ropsychology [84–86]. Second, many authors did not really bother about the precise lesion
location or even study patients with relatively diffuse brain damage [87–89]. This ap-
proach is perfectly compatible with Fodor’s description of a modular function [34], as
he merely argued that modules have a neurological substrate, but did not posit that this
substrate must be in a circumscribed area of the brain [90]. Indeed, Fodor mainly argued
for functional, not anatomical modularity. Third, what is perceived as a weak point of lesion
studies—that damage to specific brain regions may have different effects across individual
patients [16]—has been explicitly acknowledged in single-case methodology [30,31,91]. The
main assumption here is that cognitive architectures apply universally to all individuals
(for example, we all read by using the same functional components), not that the neural
implementations of these architectures must be universal. Finally, while the lesion method
undoubtedly has many problems [92,93] it is questionable whether another method may
provide a strong criterion against which the validity of a specific brain region being in-
volved in a specific function can be verified. For example, functional MRI lacks specificity
(it often reveals activations in areas that are not essential for a given task) and temporal
resolution. It is therefore not obvious to identify a region’s importance, or its contribution
to a specific cognitive process, from brain activity alone [54]. In conclusion, to understand
brain–cognition relationships, we have to confront findings from neuroimaging and lesion
studies against each other, adapt our paradigms and integrate new observations in an
iterative process [92,94]. Proceeding in this way may best benefit from the advantages of
each method. The next section will exemplify how cognitive models may benefit from such
an integration of lesion and functional imaging data.

5. Integrating Neural Data and Behavior: The Case of Visual Object Processing

The lesion approach struggles with the concept of distributed functions, and findings
of impairments following focal damage are often considered to be incompatible with
distributed processing. This was not so much of a problem as long as data on the distributed
nature of information was lacking, but became a reason of controversy with the advent
of functional imaging. We next discuss how functional imaging may complement lesion
studies to accommodate a rare neuropsychological syndrome—visual object agnosia—with
a distributed view of perceptual processing.

Since its original description by Lissauer [7], visual agnosia has been seen as a disorder
affecting distinct ‘stages’ of processing. Lissauer distinguished between ‘apperception’
(establishment of a conscious percept) and ‘association’ (access to the meaning of the
percept), while later writers trained in the Gestalt tradition particularly focused on different
grouping processes [95]. Later evidence motivated more elaborate models, consisting of
three or more computational levels thought to be arranged hierarchically, where operations
on visual primitives always precede higher-level analysis such as shape integration and
elaboration of a 3-dimensional representation [96–100]. This short overview exemplifies
the typical development of concepts and increasingly complex models when more data
from behavioral studies on healthy participants or brain injured patients become available.
In what follows, we focus on visual object agnosia, a term that refers to patients who are
capable of analyzing perceptual characteristics of an image, yet fail to ascribe meaning
to it [101]. These patients show preserved elementary perceptual processes, are able
to produce adequate copies of objects and pictures and can make detailed perceptual
judgments or differentiate between two closely similar objects [102,103]. By contrast, they
fail when asked to provide the name of a shown object, report its semantic characteristics
or communicate an associated object [104,105].

While there are differences between individual patients, it is well established that
patients with visual object agnosia may exhibit very selective deficits [106–108]. For
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example, they may show no lexical or semantic impairments when their knowledge is
tested verbally, naming objects correctly when given a definition or when allowed to touch
the item. They also easily perform associative tasks on names of objects, even though they
fail the same task when shown pictures of the same items. Based on these observations,
Teuber [109] famously characterized visual object agnosia as a disorder in which a percept
is stripped of its meaning.

While the behavioral features of visual object agnosia are relatively well accepted, the
apparent incompatibility of neuropsychological and functional imaging findings is perplex-
ing. Approximately two thirds of all patients have left inferior temporo-occipital damage,
while the rest have either bilateral or unilateral right damage [110,111]. Thus, lesion studies
suggest a dominance of the left hemisphere for the type of processing that is required
for a perceptual representation to access semantics. However, not all patients with an
inferior temporo-occipital lesion develop visual object agnosia; in fact, the disorder is quite
uncommon [112]. A further problem is that many functional imaging studies of healthy
participants report bilaterally distributed activations across large portions of the occipito-
temporal cortex [113,114]. A particularly effective technique is to compare activations to
entire objects with randomly scrambled object parts. This approach reliably generates
activations of lateral occipital cortex (LOC; [115–117]) in both hemispheres. Thus, there
seems to be a gap between clinical findings suggesting left-hemispheric dominance and
functional imaging reporting distributed activations [118]. However, this gap can be closed
when one considers findings from a few functional imaging studies examining patients
with agnosia [119–121]. For example, the intact-scrambled comparison was performed
with a patient who had developed visual object agnosia following a left occipito-temporal
lesion sparing primary visual cortex [122]. When the patient was shown faces (a relatively
preserved category), he showed no activation of his left (damaged) associative visual cortex,
but significant activation of preserved right occipito-temporal regions. However, when
watching intact versus scrambled objects, the patient exhibited no significant activation,
even though the same contrast reliably activated the bilateral LOC in all control subjects.
Thus, unilateral damage resulted in a bilateral deficit of brain activity, and this was specific
to the visual category for which the patient had a selective deficit. In addition, a later
connectivity study showed that although functional, the right-hemispheric LOC of the
patient was functionally disconnected from his left hemisphere [123].

These findings provide a viable solution of the distributed-localized controversy of
visual object perception: for a specific stimulus category focal damage may have global
effects on the visual system. This leaves open the possibility of a relative dominance,
where object processing is generally distributed, yet individuals show varying degrees of
lateralization. Such an explanation is compatible with the principles of network science,
in particular the presence of network hubs that receive high numbers of connections and
thus have privileged access to information. Damage to hub regions (such as the left LOC in
our patient) may therefore have widespread effects across the entire network. Beyond the
immediate relevance for models of object processing, the conclusion to keep in mind from
these findings is that the interaction between lesion studies and functional imaging may
accommodate both localist and distributed views of brain function.

6. A Motor Process for a Cognitive Function: The Emulation Theory of
Mental Rotation

The aim of this section is to present a concrete example of neural reuse by showing
how mental rotation may emerge as a combination of core functions relying on motor
and perceptual systems. Our theory is based on Grush’s emulation theory of mental
representation [124]. Grush argues that action control requires anticipation of the effects
an action will have on the environment, and that these effects can be computed when a
copy of the intended action is processed through a specific control device, which he terms
the emulator. The emulator processes the copy in a way similar as the effector would and
feeds its output back to the control device that has produced the action. According to
Grush, the emulator adapts and filters noise inherent in the copy of the signal it receives
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by using a Kalman filter (a device that estimates a variable or ‘model’ by using repeated
measurements, thus optimally controlling for noise and measurement error). He argues that
such a device can produce adequate models of a motor plan and can be adapted to produce
motor imagery. Conditions for the latter are that the emulator should be disconnected from
real sensory information (putting it in a mode which only considers internally generated
information), and the motor command should not affect the body. This produces a system
that disregards real sensory information and applies motor plans on generated images of
the body.

We here propose a very similar model for mental rotation. Mental rotation is the
cognitive process that allows observers to make explicit judgments about stimuli that
have been rotated away from an intrinsic axis. The primary result of mental rotation
experiments is a systematic (often linear) relationship between the rotational angle and
a reference position of the stimulus [125–127]. This relationship can be expressed with a
regression function whose slope indicates the relative speed of the mental transformation
process. While possible differences exist in mental rotation of different stimulus types
(which we will discuss later), the nearly linear relationship is a stable characteristic. Mental
rotation therefore provides a prime argument for an analogical process, suggesting that
mental representations are modal rather than symbolic.

How could a cognitive function such as mental rotation emerge from pre-existing
neural and cognitive architecture? First, we may assume that mental rotation relies on
several cognitive building blocks, amongst them perception (the target has to be identified),
mental imagery (an image has to be generated), working memory (the image has to be
maintained) and decision processes (the transformation process has to be stopped and a
decision has to be reached). Our focus here is on the mental transformation process itself,
which is not covered by either of the latter functions. We propose that an additional building
block is ‘borrowed’ from the motor system to perform the transformation operation.

In order to understand which motor process could be involved, we have to examine
the cognitive architecture of motor planning. Computational models of motor planning
distinguish between processes related to ‘what’ the object of the action is (localization
strategies, stimulus selection, application of task rules) and ‘how’ the action has to be
performed (computation of kinematics, selection of the effector, movement specification;
see Figure 3) [128–131]. It is important to note that most of these processes occur offline
and—except for the very last stages—could in principle take place without the action being
executed. The motor system is therefore prepared for mental rehearsal, or simulation.
This is made possible because control is not only achieved through feedback, but also
feedforward mechanisms that allow adjusting or interrupting motor plans quickly upon
changing target conditions [129,132–134]. If control was only based on feedback mecha-
nisms, it would not be able to predict adequately sudden changes in target parameters,
since it would constantly remain in a reactive instead of a proactive mode. A forward
model compares the predicted outcome of an action with the desired outcome [135]. As
mentioned when we introduced Grush’s emulation theory, it is created through a copy of
the motor commands at an abstract stage where motor kinematics are computed [134]. We
propose that the component of motor planning which is best prepared for rehearsal must
be located after the what-processes are concluded, but early in the stream of how-processes.
The reason is that it should be located before the effector has been selected and the ac-
tion has been initiated [136]. In analogy to Grush, we propose to call this abstract stage
motor emulation, and our theory the emulation theory of mental rotation. Figure 4 shows a
representation of our model in a box-and-arrows diagram.
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analysis of spatial task parameters and definition of a desired outcome. Red processes relate to the emulation process that
has been ‘borrowed’ (reused) from the motor system. Abstract kinematics are defined at the level of ‘command’, and a copy
of these is applied to the mental image. The decision process is shown in green.

It is challenging to imagine the type of representations that are elaborated at the
emulation stage. They should contain the action plan, formulated in terms of its general
spatial and temporal characteristics, but not a specification of the effector. A simple way
is to imagine the movement that is associated with writing the letter S. The abstract plan
defines a starting point, then a counterclockwise semi-circular movement, followed by a
similar movement in the clockwise direction. Importantly, being independent of the effector,
this abstract motor plan could be performed with the dominant or non-dominant hand,
individual fingers, each of the two feet or even the head. In each case the basic movement
characteristics would be the same, even though movement execution would differ in terms
of size, speed or smoothness. Thus, the kinematic plan has all characteristics that are
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required for mental rotation: a dynamic process defining movement onset, direction, speed
and offset. The central assertion of our theory is therefore that mental rotation emulates
the motor kinematics that would be involved if a limb was actually physically rotated.
Before discussing the implications of our propositions, we would like to add an important
specification. We previously suggested that the reused motor process should not be too
close to effector specification, in order to contain relatively pure action kinematics. This is
true for the mental rotation of non-bodily stimuli, while evidence suggests that pictures of
body parts may automatically activate the depicted effector. As a result, mental rotation of
body parts will be more effector-dependent than the rotation of non-bodily stimuli. In sum,
the theory makes the following predictions:

1. Development of mental rotation ability depends on the maturation of the motor system
and only becomes available once the child is capable of replaying actions mentally.

2. Mental rotation and motor execution produce comparable patterns of performance.
For example, the effect of rotational angle in mental rotation of hands is proportional
to its effect when subjects actually perform hand rotations. Hand positions that are
difficult or impossible to imitate produce particularly increased reaction times.

3. An overlap exists between neural structures involved in motor planning and men-
tal rotation.

4. Motor planning and mental rotation use similar resources, resulting in interference
when both are performed simultaneously.

5. Mental rotation of objects relies on the same kinematic plan as the rotation of body
parts, except for the involvement of an effector component in the latter.

Unfortunately, it is not easy to collect strong evidence for all five points; in particular,
few data are available for the first and last point. As regards development, at 2–3 months
infants produce their first directed movements (such as grasping) that, though uncoordi-
nated, are explicitly aimed at an object [43]. Some studies indicate that directed actions
might already be available at birth, but the movement is so jerky and irregular that it is dif-
ficult to tease apart the effects of inaccurate target specification and faulty execution [137].
At seven months infants adjust grasping movements (e.g., hand aperture) correctly, and
they do it even when the object is not visible [138]. This finding suggests that they use
a mental representation of object size to adapt their grasp. While infants start to rotate
objects at 22 months to fit them in appropriate holes, they can actively participate in mental
rotation experiments only when they are 4–5 years old [139,140]. Finally, the mental rota-
tion abilities of 5–6 year-old children correlate with their motor competency. These figures
thus support the first prediction of the theory.

The second point finds good support from several studies on the laterality judgment
of body parts. For example, Parsons [127] showed that for subjects holding their hands
palm-down a rotation judgment on hands that matched this position was easier than
for hands shown palm-up. In several other experiments, he showed that the time to
decision depended on the extent of biomechanical constraints imposed on a movement
that would have been necessary to produce the depicted orientation. These are strong
and robust findings that have been confirmed by several other studies [126,141,142]. A
more recent study found that the initial position of the participants’ arms (extended vs.
flexed) influenced their hand laterality judgments [143]. These studies thus reveal a direct
relationship between the trajectory through which the subject’s hand would have to be
moved and oriented to match the depicted hand and the mental transformation that the
subject performed during the task.

Regarding the third prediction, extensive functional imaging evidence shows over-
lapping activations in tasks related to motor planning and mental rotation. Unfortunately,
many studies examined motor imagery as a measure of motor planning, and this often
includes limb laterality judgment, which is itself a mental rotation task. Comparisons
between motor imagery and action execution identified common activations in the pri-
mary motor and somatosensory cortex, as well as the ventral and dorsal premotor cortex,
including the supplementary motor area (SMA; [144–146]). The limb laterality judgment
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task (i.e., identifying a body-part as belonging to the left or right side of the body) shows
stronger activation of the superior parietal lobe (SPL) and dorsal premotor cortex, while
kinesthetic imagery activates the ventral premotor cortex [147]. Several meta-analyses
of mental rotation also revealed bilateral activations of the dorsal parietal and premotor
cortex [148–150]. A closer look at studies comparing the mental rotation of body parts and
objects directly suggests some differences, with body parts generally activating more the
premotor cortex than objects, while the latter more consistently activate the SPL [151–155].
Despite this difference, when each condition is compared with the baseline, robust bilateral
premotor and parietal activations are revealed whether mental rotation involves bodily or
non-bodily stimuli [151]. However, though the functional imaging literature is rich on the
topic of mental rotation and motor planning, it is often difficult to disentangle cognitive
processes that are specifically related to kinematic plans and the transformation component
necessary for mental rotation. For this reason, though the overlapping activations suggest
recruitment of similar neural resources, a possible confound is that task-related decision
processes, visual imagery or effector selection affected previous findings.

While functional imaging generally supports the bilateral involvement of the dorsal
frontoparietal cortex in mental rotation, early lesion studies have suggested a specialization
of the right posterior cortex [156,157]. More recent studies have expanded this observation
by reporting that left anterior damage impairs the mental rotation of body parts or when
subjects use a manual strategy, while right hemisphere damage impairs performance with
objects or when participants use a visual strategy [158–160]. Unfortunately, the number
of participants with damage to specific brain areas was low in all these studies. Finally,
a study examined the effects of the inhibitory stimulation of the dorsal premotor cortex,
an area that is crucially involved in motor planning [161]. The authors found impaired
mental rotation of objects, and to a lesser degree hands, after premotor inhibition. Thus,
though the evidence from lesion or inhibition studies is relatively modest, they support
the conclusion that brain areas which crucially contribute to spatial processing and motor
planning (parietal and dorsal frontal cortex) are also involved in mental rotation.

The fourth prediction of the emulation theory is that motor planning and mental
rotation use shared cognitive resources. This prediction is supported by the observation
that manual and motor rotation times show nearly indistinguishable patterns when all
other task conditions are equal [162]. More importantly, when manual movements and
mental rotation are performed simultaneously, interference is observed for movements
executed along discordant directions [162,163]. The locus of interference has been identified
at the level of movement planning [164], which is compatible with the prediction of the
emulation theory. Another line of supporting data has been obtained with amputees or
patients with chronic pain syndromes. One study found that upper limb amputees are
slower than healthy participants when performing hand mental rotation [165], particularly
if amputation concerned their dominant hand. More interestingly, patients with severe
arm or shoulder pain were impaired both in terms of speed and accuracy in hand laterality
judgment when the depicted hand was shown at large rotational angles [142]. This finding
suggests that even though no actual arm movement was involved, patients adopted a
strategy of mentally rotating their arm to find a match with the target hand. The link
between motor planning and mental rotation appears to be so strong that even mental
rotation hurts!

The final point predicted by the theory is that the mental rotation of non-bodily and
bodily stimuli should only differ regarding the involvement of effector selection in the latter.
This point is hard to prove since it is difficult to disentangle effector selection from the
definition of kinematic plans. Though functional imaging studies show that bodily stimuli
activate the premotor cortex and some parietal regions more than non-bodily stimuli,
both stimulus types overwhelmingly share frontoparietal activations [155]. However, it
is possible that functional MRI simply lacks the temporal resolution necessary to reveal
specific activations due to kinematic planning. Using EEG, a recent study found that
mental rotation is associated with a sequence of electrophysiological processes, suggesting
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several stages of processing [166]. The study found that while early processes (<150 ms) are
characterized by pure effects of stimulus type (which is compatible with perceptual analysis
before the mental transformation starts), later processes (>300 ms) reflect the rotational
component irrespective of stimulus type [167,168] and are associated with activation of the
right parietal lobe. This finding of common neural activation during the critical period
when the mental transformation takes place supports a shared cognitive process for bodily
and non-bodily stimuli. However, though this partly supports the prediction of the theory,
more evidence is needed to distinguish the temporal stages of effector selection from the
specification of kinematics.

7. Conclusions, Limitations and Open Questions

The aim of this article was to discuss the properties and advantages of neural reuse
for theories of cognitive function. While we have focused on mental rotation, many other
examples could be mentioned that support the reuse of phylogenetically older neural
areas by more recent functions. For example, according to some authors, conceptual
representations are rooted within, or at least sustained by, brain areas originally involved
in motor and sensory functions [2,3]. There is also evidence that spatial representations in
the parietal cortex have been reused for number cognition [169], or that a part of the spatial
reorienting system is involved in social perspective taking [50]. Yet another example of
neural reuse is the interaction between emotion and action control [170,171], as emotional
stimuli may affect motor cortex excitability [172]. Finally, some studies indicate that the
human episodic memory system emerged from a spatial orienting system within the medial
temporal lobes [173]. This is only a short and non-exhaustive list of how higher—and often
culturally more modern—functions rely on original neural resources.

Though there are strong arguments for neural reuse, the concept also has several
shortcomings, which make some of our conclusions provisional. One point concerns the
temporal scale at which reuse can affect functional reorganization. As we have pointed
out previously, some theorists consider reuse to be a fundamental organizational principle
that is effective at the species level, while others focus on more individual, developmental
effects. In addition, network measures suggest even faster intraindividual adaptations
that might be observed across different tasks. Applying the term neural reuse to all these
phenomena presents the risk that it be considered a one-for-all principle that explains
any plastic change in the brain. Another problem is that it is difficult to identify the
driving force behind reuse, since it might be spontaneous, genetically determined or driven
by functional demands [174]. A further point is that there must be some biological and
functional constraints on neural reuse that have not yet been fully understood. For example,
each of the above examples of neural reuse reflect systems that have high functional
similarity (e.g., magnitude representation is reused for number representation; spatial
reorienting is reused for spatial perspective taking, etc.). The precise boundaries that
constrain the borrowing of sub-functions across functional domains must therefore further
be determined.

By focusing on mental rotation, we were much less radical and courageous than other
theorists, as even strong critics of embodiment concede that some form of embodiment may
underlie mental rotation [175]. Yet, the neural reuse framework is only in its beginnings,
and several serious questions remain to be answered before it becomes widely acceptable.
One of these questions concerns ontological aspects of cognitive functions. Cognitive
science utilizes terms to describe functions that are derived from concepts which have
their roots in different disciplines (psychology, philosophy and linguistics), are relevant
to parts of folk psychology or simply relate to subjective constructs [176–179]. The scien-
tific taxonomy used to describe functions of networks or specific processes assigned to
network nodes does not easily fit on such traditional definitions of function. A network
configuration relates more to computational outputs, data visualization and cognitive
processes that are possibly common to different tasks. We currently lack a vocabulary that
would adequately characterize ‘functions’ in the sense of a network configuration [180].
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The dilemma becomes visible in the equivocal names that are given to certain networks
(e.g., frontoparietal, control, saliency, dorsal attention, visual, etc. network) [150]. To
develop a new taxonomy of functions that does not refer to subjective constructs is a major
endeavor for cognitive science.

A second question presents, we believe, a challenge to critics of functional modular-
ity. As we have shown, the dependence of response time with rotational angle and its
correlation with actual rotational movement are well-established characteristics of mental
rotation. Simulation theories build on this or similar observations relating imagined and
performed movement. The question we would like to ask is: why does there have to be
such a dependence? Why is cognition not free to perform the task differently, for example
by ‘rotating’ faster with larger rotational angles instead of maintaining the same speed?
Additionally, why is this pattern of response so similar across different participants? The
answers appear to be obvious: because cognition cannot do otherwise and because all people
do the task in a similar way. In other words, mental rotation has at least some characteristics
that would be ascribed to a functionally modular system: it performs the task automati-
cally, always in the same way, produces always the same output and is encapsulated and
universal. This observation suggests that some form of modularity must be present in
complex systems such as the brain, even if encapsulation of information is a relative rather
than an absolute characteristic.

A final point relates to the methodological approaches used to study neural reuse.
For the last 30 years cognitive neuroscience has seen a strong shift towards functional
neuroimaging as the prevailing paradigm of study. This dominance of one paradigm is
accompanied with a tendency to disregard some shortcomings of the method, such as the
sluggishness of the blood-oxygenation response, or the difficulty to decide whether the link
between activation of a brain region and its underlying function is causal or epiphenomenal.
We believe that a combination of approaches provides an opportunity to compensate for
such weaknesses and thus to substantiate the claims and principles of neural reuse made
in this article.
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