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Abstract

Obtaining insights in the tremendous amount of data in which the Big Data era has
brought us, requires to develop specific tools, that are not only summaries of data
through classical charts and tables, but that allow full navigation and browsing of a
dataset. The proper modeling of databases can enable such navigation and we propose
in this Thesis a methodology to achieve the browsing of an information space, through its
different facets. To achieve the modeling of such an information space, co-occurrences
of data instances are built referring to a common reference type. Historically, the
co-occurrences were seen as pairwise relationships and developed as such. The move
to hypergraphs enables the possibility to take into account the multi-adicity of the
relationships, and to have a representation through the incident graph that simplifies
deeply its 2-section.
Nonetheless, representing large hypergraphs calls for a coarsening of the information by
having insights on important vertices and hyperedges. One classical way to achieve it
is to use a diffusion process over the network. Achieving it using an incident matrix is
feasible but brings us to a pitfall, as it brings us back to a pairwise relationship. Making
proper diffusion requires a tensor approach. This is well known for uniform hypergraphs,
where all the hyperedges have same cardinality, but still very challenging for general
hypergraphs. After redefining the concept of adjacency in general hypergraphs, we
propose a first e-adjacency tensor, that involves a Hypergraph Uniformisation Process
and a Polynomial Homogenization Process. This is achieved by uniformisation of the
original hypergraph by decomposing it into layers—each of them containing a uniform
hypergraph—and filling each layer with additional special vertices and merging them
together. This process requires to have as many additional vertices as the number of
layers.
In order to reduce the number of special vertices, we need to have the possibility of re-
peating a vertex when filling, which is not possible with hyperedges as they are sets. We
need multisets. It, therefore, requires a new mathematical structure, that we have intro-
duced and called hyper-bag-graph—hb-graph for short—, which is a family of multisets
of a given universe.
Co-occurrences can also have repetitions or individual weighting of their vertices inside
a given co-occurrence and hb-graphs fit to handle it. Hence, we introduce a hb-graph
framework for co-occurrence networks. We then work on diffusion on such structures,
using, in a first step, a matrix approach. Aggregating the ranking of vertices and hb-
edges of this diffusion on each of the facet of the information space is achieved by using
a multi-diffusion scheme. Since different facets might have different focus of interest,
we introduce a biased diffusion that enables a tuning on the point of emphasis on the
feature we are interested in.
Finally, coming back to e-adjacency tensor, we propose three e-adjacency tensors of hb-
graphs, that are based on different ways of filling the hb-edges. The m-uniformisation
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that is achieved is evaluated and compared to the ones achieved by hb-edge splitting,
concluding that any m-uniformisation process has an influence on the exchange-based
diffusion that we propose. Hence, we conclude that diffusion using the tensor approach
must be done in an informed manner to account for this diffusion change. We finally
discuss different possible of achieving it and present a new Laplacian that can help to
achieve it.



Résumé

À l’ère du Big Data, l’énorme quantité et la variété des données imposent, pour générer
un aperçu signifiant, de développer des outils spécifiques qui ne se réduisent pas sim-
plement à des graphiques ou à des tableaux de synthèse classiques ; ils doivent aussi
permettre une navigation complète dans le jeu de données.

La modélisation appropriée de ces données va favoriser une telle navigation. Cette Thèse
propose précisément un cadre adapté à la navigation dans tout espace d’infor- mation
multi-facettes. Cette modélisation nécessite la construction de cooccurrences d’instances
de données en se référant à un (ou des) type(s) commun(s) servant de référence. Pen-
dant très longtemps, les cooccurrences, vues comme collaborations, ont été perçues
comme des relations par paires : leur représentation était alors développée en tant que
telles. Le passage aux hypergraphes pour modéliser les réseaux de cooccurrences laisse
la possibilité de prendre en compte la multiplicité des relations. Cela permet également
d’avoir une représentation via le graphe d’incidence de l’hypergraphe, ce qui simplifie
profondément la visualisation obtenue par 2-section de l’hypergraphe.

Néanmoins, quand la taille des hypergraphes augmente, et afin de pouvoir continuer
à les visualiser convenablement, il faut un tri de l’information pour révéler au mieux
les sommets et hyper-arêtes importants du réseau. En ce domaine, une des méthodes
classiques consiste à utiliser un processus de diffusion. Une première approche réside
dans l’utilisation de la matrice d’incidence de l’hypergraphe. Mais cela comporte un
possible piège, car, en raison de sa nature matricielle, la matrice d’incidence induit
des relations par paires, soit explicitement soit implicitement. Aussi une autre ap-
proche de la diffusion est indispensable : il faut tenir compte des relations d’ordre
supérieures induites par les hyper-arêtes et donc adopter une approche tensorielle.
La diffusion tensorielle, via le Laplacien, est bien connue pour les hypergraphes uni-
formes, où toutes les hyper-arêtes ont la même cardinalité ; mais elle reste encore un
vaste champ d’études pour les hypergraphes généraux. Après avoir redéfini le concept
d’adjacence dans les hypergraphes généraux, nous proposons donc un premier tenseur
d’e-adjacence, qui implique un processus d’uniformisation de l’hypergraphe et un proces-
sus d’homogénéisation polynomiale. Aussi, afin de représenter les relations d’e-adjacence
d’un hypergraphe de manière tensorielle, on uniformise l’hypergraphe d’origine en le dé-
composant en couches d’hypergraphes uniformes, puis en remplissant chaque couche
avec des sommets n’appartenant pas à l’hypergraphe d’origine et enfin en fusionnant
ces couches. Ce processus nécessite à une unité près d’avoir autant de sommets que la
taille maximale d’une hyper-arête.

En outre, pour réduire le nombre de sommets ajoutés, tout en gardant l’interprétabi-
lité en terme d’uniformisation, il faut avoir la possibilité de répéter un sommet lors
du remplissage. Or, comme cela n’est pas envisageable avec les hypergraphes du fait
de leur définition ensembliste, cela requiert les multi-ensembles (ou multisets). En ré-
sulte la nécessité d’une nouvelle structure mathématique qui est introduite dans cette
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Thèse et appelée hyper-bag-graphes (ou hb-graphes de manière abrégée) : les hb-graphes
sont définis comme étant des familles de multi-ensembles d’un univers donné, considéré
comme l’ensemble des sommets.

C’est à la lueur de cette nouvelle structure que l’on peut dès lors proposer une modéli-
sation raffinée de l’espace d’information multi-facettes. Cela permet de tenir compte du
fait que chaque cooccurrence peut contenir des répétitions ou nécessiter une pondération
individuelle de ses sommets. Chaque facette est alors modélisée par un hb-graphe. En
découle l’importance d’une étude de la diffusion sur les hb-graphes utilisant en première
instance une approche matricielle. L’agrégation du classement des hb-arêtes obtenu
lors de la diffusion sur chacune des facettes de l’espace d’information est alors réalisée
à l’aide d’un schéma de multi-diffusion. Et, comme différentes facettes amènent à se
focaliser sur différents centres d’intérêt, nous avons introduit une diffusion biaisée : elle
permet d’ajuster l’accent mis sur la caractéristique qui nous intéresse ainsi que sur le
type de valeurs considérées comme importantes.

Enfin, pour en revenir au tenseur d’e-adjacence, trois tenseurs d’e-adjacence de hb-
graphes sont proposés, utilisant différentes manières de remplir les hb-arêtes. La m-
uniformisation utilisée est évaluée par comparaison à celle obtenue par la division d’hb-
arêtes qui avait été proposée dans un tenseur d’e-adjacence étudié antérieurement par
d’autres auteurs. La conclusion de cette évaluation est la suivante : tout processus de
m-uniformisation a une influence sur la diffusion par échanges ; mais seule celle obtenue
par addition de sommets spéciaux permet d’avoir une perturbation compréhensible sur
le classement des sommets. Par ailleurs, cette perturbation peut être évitable, mais au
prix d’un calcul moins direct des degrés des sommets. On peut alors en déduire que la
diffusion utilisant l’approche tensorielle doit être faite de manière informée de sorte à
tenir compte de ce changement de diffusion. Reste ensuite à étudier les différentes straté-
gies possibles pour réaliser cette diffusion et finalement proposer un nouveau Laplacien
tensoriel.
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Nomenclature

Hypergraphs

H = (V,E) Hypergraph of vertex set V and hyperedge set E

V = {vi : i ∈ JnK} Vertex set of a hypergraph H

E = (ej)j∈JpK Hyperedge family of a hypergraph

H(v) Star of a vertex v ∈ V

H∗ Dual of a hypergraph H

Γ (v) Neighbourhood of a vertex v ∈ V

Hw = (V,E,w) Weighted hypergraph of vertex set V , edge family E and
weight function w

oH Order of a hypergraph H

rH Rank of a hypergraph H

sH Anti-rank of a hypergraph H

[H]2 2-section of the hypergraph H

[H]I Interection graph of the hypergraph H

H1 +H2 Sum of two hypergraphs H1 and H2

H1 ⊕H2 Direct sum of two hypergraphs H1 and H2

H Incidence matrix of a hypergraph

A Adjacency matrix of a hypergraph

Aw Adjacency matrix of a weighted hypergraph

l (P) Length of a path P

d (u, v) Distance between two vertices u and v

Hb-graphs

H = (V,E) Hb-graph H of vertex set V and hb-edge family E

V = {vi : i ∈ JnK} Vertex set of a hb-graph H
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E = (ej)j∈JpK Hb-edge family of a hb-graph H, where ej are multisets
of universe V

mej or mj Multiplicity function of the hb-edge ej

mej (vi) or mij Multiplicity value of the vertex vi of the hb-edge ej

O (H) Order of a hb-graph H

H Support hypergraph of a hb-graph H

rm (H) m-rank of a hb-graph H

r (H) Range of a hb-graph H

crm (H) m-co-rank of a hb-graph H

#mH Global m-cardinality of a hb-graph H

cr (H) Co-range of a hb-graph H

h (v) Hb-star of a vertex v ∈ V

degm(v) m-degree of a vertex v ∈ V

∆m Maximal m-degree of a hb-graph H

H0 Numbered-copy-hypergraph of the hb-graph H

H̃ Dual of the hb-graph H

l (P) Length of a path P

d (u, v) Distance between two vertices u and v

General

#mAm m-cardinality of a multiset Am

JnK Integers from 1 to n

A∗m Support of the multiset Am

Am = (A,m) Multiset of universe A and multiplicity function m

M (A) Set of all multisets of universe A
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Introduction

Big Data with its five Vs implies a lot of innovative visual analytics tools to have deeper
insights into the DataSet. As the Volume of information is increasing and at the same
time the Variety is gaining in heterogeneity, new tools need to consider all the Variety
of the information space, serving it with Velocity. The Veracity of information is a big
challenge and requires different strategies: it requires not only dataset consolidation and
data linkage, but also to gain insight into datasets in order to retrieve meaningful and
genuine information.

This quest for Veracity is linked to the Value of the Data: Big Data calls for improved
mining, aggregation, linkage of data,... Different approaches exist to visualize and sum-
marize information in an information space. Datasets composed only of numerical data
appear as the easiest case: plethoric treatments exist to enhance proper visualisation
and summarization; links can often be retrieved by different methods either using classi-
cal statistic methods or more modern approaches such as neural nets and deep learning.
When coming to non-numerical data, the summarization is often left to very basic ap-
proaches such as histograms and the data interactivity is often let behind. To find
inherent links, machine learning methods can help, but they need a strong framework
to enhance the structure of the dataset. In multimedia datasets, data instances are a
blend of text, audio, image and/or video content all linked by some physical references.
Variety induces new ways to address datasets.

There are different approaches to model databases, such as the relational database
model introduced by Codd in [Cod70], based on sets and relations. A relational database
schema is shown as a hypergraph with convenient properties in [Fag83]. Graph databases
use a graph as schema and have been introduced in the 1990s as it is mentioned in
[AG08] to overcome the limitations of traditional databases for capturing the inherent
graph structure of data in various situations such as in hypertext or geographic database
systems. The Knowledge Graph1 introduced by Google in 2012 is a good example of
the inherent graph structure of data.

In [Ran45], Ranganathan exposes the concept of facets in an information space—he
introduced these concepts already in 1924. Ranganathan considers that a document
can be described by five facets, with a rule of thumbs called PMEST: Personality,
Matter, Energy, Space and Time. Personality reveals the focal subject of the document,
Matter reflects a substance or a property of the subject, Energy reflects the operation
or action done on the subject, Space is considering the geographical location and Time
the chronological and temporal situation of the subject.

The concept of multi-faceted information space can be extended to any document and
enlarge to different views of the information space within which the Dataset lives. Each
1https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html

https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
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facet of an information space can be modeled as a network of co-occurrences built on
common references as we will show in Chapter 6.

Networks of co-occurrences can be modeled with different approaches: either
co-occurrences are seen as pairwise relationships like in [New01a, New01b] or seen as
proper multi-adic relationships as it is done in [TCR10], using hypergraphs that were
introduced by Berge in [Ber73].

Hypergraphs extend graphs by considering a family of subsets of a vertex set. Hyper-
graphs naturally support multi-adicity where graphs support only 2-adicity, i.e. pairwise
relationships. If the concept of incidence of vertices to edges in a graph clearly extends
to hyperedges in hypergraphs, it does not hold for adjacency, for which the concept has
to be refined.

Different hypergraph representations exist as mentioned already in [Mäk90], some with
the subset standard using Venn or Euler diagrams—that are not scaling up prop-
erly—and some with the edge standard, consisting in transforming the hypergraph into
a graph. The edge-standard comprises two main representations: the clique represen-
tation and the extra-node representation. The clique representation, corresponds to a
graph view of the hypergraph 2-section, developing each hyperedge of the original hy-
pergraph in its combination of pairwise relationships. The extra-node representation
corresponds to the hypergraph incident graph—also called Levi graph—, each hyper-
edge being assorted with an extra-node and vertices of the hyperedge being linked to
this extra-node.

We have shown in [OLGMM17b], that visualizing hypergraphs through their incident
graph allows to diminish the cognitive load of the 2-section of the hypergraph—the
2-section being no more than the representation of a pairwise relationship. Moreover,
the 2-section of a hypergraph looses the group information: two hypergraphs can have
the same 2-section—which is in general not desirable. The incident graph is unique for
a given hypergraph. Incident graph of hypergraphs are bipartite graphs and can be
viewed as a developed version of the hypergraph: they are a lesser evil than the subset
standard representation or the 2-section graph when the hypergraph becomes larger.

When scaling up large hypergraph representations, the hypergraph visualisation gener-
ative model requires at a point a coarsening of the hypergraph, that can be achieved,
among other techniques, by enhancing diffusion over the structure.

Hypergraphs as graphs cannot be reduced to their incident graphs even if they are linked
in a one-to-one manner; the set relationship induced by the hyperedge is powerful and
regroups the information in a single object. The incidence relationships between vertices
and hyperedges in hypergraphs is modeled by a rectangular matrix. This rectangular
matrix when multiplied conveniently by its transpose represents the pairwise relationship
between vertices: it is taken as the basis for an adjacency matrix for hypergraphs;
but, this adjacency matrix reflects in fact the adjacency in the 2-section graph of the
hypergraph. Also different hypergraphs can have the same adjacency matrix which is
not desirable. Hence, a proper modeling of adjacency in a hypergraph calls for tensors
to enable the capture of the multi-adicity.

In Appendix B, we present the necessary mathematical requirements for this Thesis. It
includes all the necessary elements on hypergraphs, on multisets and, on tensors and
hypermatrices.
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Adjacency is properly defined for uniform hypergraphs since Cooper in [CD12]. But,
when tackling general hypergraphs—i.e. hypergraphs with hyperedges of various cardi-
nalities—, the concept of adjacency needs refinements in order to distinguish the fact
that vertices live together in a hyperedge and the number of vertices that are simul-
taneously adjacent. Therefore, we already introduced different concepts of adjacency
in [OLGMM17a, OLGMM18a]—reproduced in Appendix E.1—and explain why so far
these concepts were not needed with uniform hypergraphs. We then have proposed
a tensor that extends the adjacency tensor of J. Cooper to general hypergraphs. We
have emphasized on the interpretability of the construction to reach the proposed ten-
sor: it relies on a hypergraph uniformisation process, by building a uniform hypergraph
inserting different additional vertices to hyperedges in sufficient quantity.

As this number of additional vertices depends on the number of layers of uniform hy-
pergraphs contained in a general hypergraph, the idea is to simplify the process, by
allowing a vertex to occur many times to complement all the hyperedges to the same
cardinality. But hypergraphs, by nature, are families of sets and do not allow repe-
titions. This can only be made possible using multisets: they are in their simplest
formalisation, unordered list of elements, or in their more refined version, weighted
list of elements. Moreover, in some complex co-occurrence networks, naturally arises
the need to have vertex duplication, or, even, an abusively named “hyperedge-based”
weighting of vertices. To achieve these different goals, in Chapter 1, we introduce the
mathematical structure of hyper-bag-graphs (hb-graphs for short), that we define as
families of multisets of same universe, thus generalizing hypergraphs.

The next four chapters aim at studying the importance of vertices and hb-edges through-
out the network, studying the consequences of the paradigm change induced by the
introduction of the hb-graphs on varying diffusion schemes.

In Chapter 2, we propose a diffusion process that enables not only to rank the vertices
but also the hb-edges. This diffusion process is experimented on different datasets,
including textual data and image data, and uses intensively the incident matrix of the
hb-graph.

The matrix approach enhances valuable information on the co-occurrence networks mod-
eled by hb-graphs. Nonetheless, the e-adjacency can only be captured by hypermatrices.

In Chapter 3, using hb-graphs, we introduce three new e-adjacency tensors interpretable
in term of m-uniformisation of hb-graphs—extension of the uniformisation of hyper-
graphs presented in Appendix E.1. A first choice of tensor is then made on its desirable
properties for spectral analysis, and we use it for proposing a new e-adjacency tensor
for general hypergraphs.

We then draw a conclusion in Chapter 4 on the construction of these tensors by con-
sidering the different m-uniformisation processes—either found in the literature or in
our work—through the exchange-based diffusion prism and show that only vertex filling
m-uniformisation processes lead to explainable rankings of the vertices, but, anyhow,
perturb the diffusion process and, therefore, call for an informed diffusion process.

Ultimately, in chapter 5, we propose some hints to solve the diffusion on general hb-
graphs, that takes into account the necessity of having either an informed diffusion or
a new approach that takes into account the variety of multi-adic relationships induced
by the hb-edges in general hb-graphs and the redundancy and/or weight they induce.
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The following chapter—Chapter 6—pushes the thought further on co-occurrence net-
works for modeling an information space. Co-occurrences can be seen as multisets;
hence hb-graphs can model co-occurrence networks, and refine the hypergraph frame-
work approach used to model an information space as we have succinctly presented in
[OLGMM18d] by a framework using a hb-graph approach.

We then propose, in Chapter 7, a multi-diffusion process in an information space using
simultaneously the hb-graph framework presented in Chapter 6 and the exchange-based
diffusion proposed in Chapter 2, in order to aggregate the rankings obtained for the
hb-edge attached references of the different facet visualisation hb-graphs.

As the importance put on the different features can differ from one facet to the other,
we give as a complement in Appendix D.1 some biased diffusion that generalize the
one proposed already in Chapter 2: this allows to emphasize some values during the
diffusion process, and refine the facet ranking depending on its specificity.

We finish by concluding on what we realized during this Thesis and give a list of possible
research questions for future work.

Most of the chapters are based on preprints or publications that have been accepted
or in submission during the three years of our PhD. We show in Table 0.1 the list
of publications and their corresponding chapter. In Appendix A, we give a list of
conferences we participated with the kind of contribution realized. In Table 0.2, we
present the list of our contributions per chapter.

In Figure 0.1, we propose a reading help guide: Chapter 1 is the entry point and the
directed edges indicates an order of reading: A → B indicates that Chapter A should
be read before Chapter B. In this case, the reader can refer to the prerequisites placed
at the head of each chapter to know if only specific sections of Chapter A are needed.
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App.A: Mathematical
background
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e-adj. tensor

Ch.1: Hb-graphs Ch.3: Hb-graph
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(matrix approach)
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Figure 0.1.: A reading help guide.
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This chapter is based on [OLGMM18b, OLGMM18c, OLGMM19a, OLGMM19c].
In this Chapter and in Appendix C.2, we extend the work on hyper-bag-graphs (hb-
graphs for short) introduced in [OLGMM18c], and that has been extensively presented
in [OLGMM18b, OLGMM19c]. Hb-graphs extend hypergraphs by substituting families
of subsets of a vertex set by families of multisets of same universe, playing the role of the
vertex set. After their introduction, we extend to hb-graphs some of the results found
in [Bre13] for hypergraphs. The reader, not familiar with the mathematical notions at
stake in this Chapter, can refer to Appendix B: more particularly the sections concerning
hypergraphs—Section B.1—and multisets—Section B.2.
Prerequisites: Section B.1 and B.2 of Appendix B.

1.1. Motivation

There are different motivations that converge for the introduction of hb-graphs.
A very first motivation is that multisets are appropriate to enhance repetition of elements
on a given universe. In Appendix B.2.5, multisets are shown to be intensively used in
different fields as we already mentioned.
Moreover, in the case of complex co-occurrences networks, a second motivation is that
the co-occurrences themselves can require this kind of repetitions, by the way the co-
occurrences are built—such an example is given in Section C.1 of Appendix C—, or
individual weighting, naturally enhancing families of multisets on a given universe.
A third motivation for introducing hb-graphs is related to the representation of large
hypergraphs as it is presented in Section B.1.8 of Appendix B; large hypergraph repre-
sentations call for a coarsening in their generative model for enhancing a representation
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where the vertices and hyperedges are spread sufficiently over the surface of representa-
tion. One of the approach that can be taken is the coarsening by diffusion: the diffusion
can be achieved using the incident matrix, but in order to capture higher order rela-
tionships a tensor approach is required that captures the information of adjacency. If
for uniform structures, the tensors are well defined, in general hypergraphs it is still
an ongoing work. In [OLGMM17a]—reproduced in Section E.1 of Appendix E—in
order to build a tensor for general hypergraphs, we introduce a Hypergraph Uniformisa-
tion Process (HUP) for merging successively the different consecutive layers—possibly
empty—of uniform hypergraphs ordered with increasing cardinality of their hyperedge,
adding at each step one (or several if some layers are empty) different special vertex to
reach the level of uniformity of the next non-empty layer. This process has been coupled
to an iterative Polynomial Homogenization Process. In fact, the PHP could be achieved
in only one step, by adding only one variable. But, to keep an interpretation similar
to the Hypergraph Uniformisation Process, we have to get a structure that accepts the
repetition of vertices. Hence, the following researching question:

Research question 1.1. How to extend hypergraphs with family of multisets?

We start by reviewing the related work that gives a collection of elements that are
first steps toward hb-graphs, and then expose the concept of hb-graphs as a family
of multisets on a given universe; we focus on families of natural multisets on a given
universe, where elements are seen as repetition of a given element. In [GJ12], the
authors express this need in real datasets, where two physical objects can be seen “as the
same or equal, if they are indistinguishable, but possibly separate, and identical if they
physically coincide”. We revisit systematically the common definitions and properties
of hypergraphs to extend them to hb-graphs. We present in this Chapter some first
applications. The remainder of this Thesis addresses the analysis of such structures,
some applications and use-cases.

1.2. Related work

Handling structures similar to hypergraphs but having a “hyperedge-based” weighting
of vertices occur quite a few times in the literature. For instance in [BAD13], the
authors show that retrieving information from a textual dataset is improved when using
a modified random walk taking into account a “hyperedge-based” weighting of vertices
compared to the binary approach. Implicitly, multisets are behind this approach.

In [GJ12], the authors define a multiset topology by considering a collection of multisets
in the power set of a given multiset. The power set of a given multiset is defined as
the support of the power mset of an m-set that corresponds to the mset of all submsets
of that multiset (which implies redundancy). They then study the properties of these
multiset topologies. It is a strong background for our work, but multiset topologies
include all submset of a given collection in that collection. Multiset topologies have to
be seen as a potential extension of simplicial complexes, which are a particular case of
hypergraphs as exposed in [Ouv20].
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In [PZ14], the authors introduce what they call [PZ-]1multi-hypergraphs2 using multi-
sets, allowing repetitions of vertices in the hyperedges, but where two hyperedges cannot
be duplicates. [PZ-]Multi-hypergraphs are a particular case of hb-graphs as we define
them in this Chapter: we call them natural hb-graphs with no repeated hb-edge. Waiting
for the definitions given in Section 1.3, we call them temporarily PZ-multi-hypergraphs.

Definition 1.1. A PZ-multi-hypergraph
...
H is a pair (V,E) , where E is a set of multisets

of V. The elements of V are called the vertices and the elements of E are called the edges.

In [PZ14], when the hyperedges are all of same cardinality k the PZ-multi-hypergraph
is said k-uniform, and called k-multigraph3. (PZ-)Multi-hypergraphs are in fact a par-
ticular case of hb-graphs as we define in this Chapter. They define some additional
notions such as a chain in a (PZ-)multi-hypergraph, the notion of connected (PZ-)multi-
hypergraph and the notion of k-(PZ-)multi-hypergraphs.
Independently in [KPP+19]—at the same time we were introducing hb-graphs in
[OLGMM18b]—the authors consider a hypergraph where the hyperedges are multi-
sets, transforming the initial definition of hypergraphs, to extend the Cheng-Lu model
to hypergraphs, to achieve clustering via hypergraph modularity. They use a family of
multisets and define the degree of a vertex as the sum of multiplicities and the size of
a hyperedge as the sum of the multiplicities of its elements. They obtain good results
with their proposed modularity getting a smaller number of hyperedges cut compared
to the one achieved with the 2-section of the hypergraph.
In [CR19], published after [OLGMM18c], a hypergraph with hyperedge-dependent ver-
tex weights is defined by considering a quadruple H = (V,E, ω, γ) where ω is the edge
weight vector, and γ is refined in a weight γe (v) for every hyperedge e ∈ E. The au-
thors are then using implicitly multisets, but without considering the related algebra.
In a recent paper [PVAdST19], the authors introduce a continuous incident matrix for
multimedia retrieval, which is no more than our hb-graph incident matrix.

1.3. Generalities

Let V = {vi : i ∈ JnK} be a nonempty finite set.
A hyper-bag-graph or hb-graph for short over V is defined in [OLGMM18c] as a
family of msets with universe V and support a subset of V . The msets are called the
hb-edges and the elements of V the vertices.
We consider for the remainder of the Thesis a hb-graph H = (V,E), with V = {vi : i ∈ JnK}
and E = (ej)j∈JpK the family of its hb-edges.
Each hb-edge ej ∈ E is of universe V and has a multiplicity function associated to it:
mej : V → W where W ⊆ R+. When the context is clear the notation mj is used for
mej and mij for mej (vi) .
1[...] is used in italic as abbreviation for [Thesis Author’s Note: ...]
2Multi-hypergraph is in fact polysemic: multi-hypergraphs originally represent hypergraphsH = (V,E)
where the repetition of hyperedges is authorized in E i.e. E is considered as a family [Bre13] or a
multiset [CF88], which is the direct extension of multi-graph.

3It is also a polysemy: in [Maj87] k-multigraphs are multi-graphs—where multiple edges between a
couple of vertices can occur—which are also k-graphs—i.e. graphs that are k-regular.
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A hb-graph is said to be with no repeated hb-edge if:

∀j1 ∈ JpK ,∀j2 ∈ JpK : ej1 = ej2 ⇒ j1 = j2.

A hb-graph where each hb-edge is a natural mset is called a natural hb-graph.
The empty hb-graph is the hb-graph with an empty set of vertices. A trivial hb-
graph is a hb-graph with a non empty set of vertices and an empty family of hb-edges.
For a general hb-graph, every hb-edge has to be seen as a weighted system of vertices,
where the weights of each vertex are hb-edge dependent. In a natural hb-graph, the
multiplicity function can be viewed as a duplication of the vertices.
In [PZ14], the authors have introduced what they call abusively multi-hypergraphs
where the hyperedge set is composed of multisets of vertices. It corresponds to natural
hb-graphs with no repeated hb-edges, name that we keep, as multi-hypergraphs are
hypergraphs where the subsets of vertices the hyperedges correspond to can be repeated,
i.e. constitute either a multiset of subsets of vertices [CF88] or a family of subsets of
vertices [Bre13].

The order of a hb-graph H—written O (H)—is given by: O (H) ∆= ∑
i∈JnK

max
e∈E

(me (vi)) .

The size of a hb-graph corresponds to the number of its hb-edges.
If ⋃

j∈JpK
e?j = V, then the hb-graph is said with no isolated vertices. Otherwise, the

elements of V \ ⋃
j∈JpK

e?j are called the isolated vertices. They correspond to elements

of hb-edges with zero-multiplicity for all hb-edges.
A hypergraph is a natural hb-graph where the vertices of the hb-edges have multiplicity
one for any vertex of their support and zero otherwise.
The support hypergraph of a hb-graph H = (V,E) is the hypergraph whose vertices
are the ones of the hb-graph and whose hyperedges are the support of the hb-edges. We
write H

∆= (V,E) with E ∆= (e?)e∈E , the support hypergraph of H.
We note that given a hypergraph H, an infinite set CH of hb-graphs can be generated
that all have this hypergraph as support. A hb-edge family is attached to each of the
hb-graphs in CH : each hb-edge support corresponds at least to one hyperedge in H and,
reciprocally, each hyperedge of H is at least the support of one hb-edge per hb-graph of
CH. The unicity of the correspondence is ensured only for hypergraphs and hb-graphs
without repeated hyperedges.
In this case, an equivalence relationR can be defined that puts in relation two hb-graphs
if they have same hypergraph as hb-graph support. Hence, considering the quotient of
the set of all hb-graphs with no-repeated hb-edges by R, it is isomorph to the set of
hypergraphs with no-repeated hyperedge.

The m-rank of a hb-graph—written rm (H)—is by definition4: rm (H) ∆= max
e∈E

#me.

The rank of a hb-graph H—written r (H)—is the rank of its support hypergraph H.

The m-co-rank of a hb-graph—written crm (H)—is by definition:crm (H) ∆= min
e∈E

#me.

4see Section B.2.1 for the definition of the notation #me.
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The co-rank of a hb-graph H—written cr (H)—is the co-rank of its support hypergraph
H.

The global m-cardinality of a hb-graph H—written #mH—is the sum of the m-
cardinality of its hb-edges.

A hb-graph is said k-m-uniform if all its hb-edges have the same m-cardinality k.

A hb-graph is said k-uniform if its support hypergraph is k-uniform.

Proposition 1.1. A hb-graph H is k-m-uniform, if and only if: rm (H) = crm (H) = k.

We can still refer for vertices of a hb-graph H = (V,E) to the degree of v ∈ V
written deg (v) = d(v): it corresponds to the degree of the same vertex in the support
hypergraph H. The maximal degree of a hb-graph H is written ∆ and corresponds to
the maximal degree of the support hypergraph H.

Nonetheless, in hb-graphs, due to the multiplicity function attached to each hb-edge,
we can consider another kind of degree. To complete its proper definition, we define the
hb-star h (v) of a vertex v ∈ V as the multiset: h(v) ∆=

{
eme(v) : e ∈ E ∧ v ∈ e?

}
. The

support of h(v) is exactly the star of this vertex in the support hypergraph H and the
cardinality of h?(v) is exactly the degree of v.

The m-degree of a vertex v ∈ V of a hb-graph H is then defined as the m-cardinality
of the hb-star attached to this vertex:

degm(v) ∆= #mh(v).

We also consider the maximal m-degree of a hb-graph H; we write it:

∆m
∆= max

v∈V
degm(v).

A hb-graph having all its hb-edges of the same m-degree k is said m-regular or k-m-
regular. A hb-graph is said regular if its support hypergraph is regular.

It is immediate that:

Proposition 1.2. For any vertex v ∈ V of a natural hb-graph: d(v) 6 dm(v) 6 ∆m.

This property is not true for non-natural hb-graphs.

Proposition 1.3. If a hb-graph with a non-negative multiplicity function range is such
that: d(v) = dm(v) for all its vertices, then this hb-graph is a hypergraph.

We define now the dual of a hb-graph H = (V,E) as the hb-graph H̃
∆=
(
Ṽ , Ẽ

)
such

that its set of vertices Ṽ ∆= {ṽj : j ∈ JpK} is in bijection f : E → Ṽ with the family of
hb-edges E of H such that:

∀ṽj ∈ Ṽ , ∃!ej ∈ E : ṽj = f (ej) .
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And its family of hb-edges Ẽ
∆= (ẽi)i∈JnK is in bijection g : V → Ẽ such that g (vi) = ẽi

for all i ∈ JnK, where:

ẽi
∆=
{
ṽj
mej (vi) : j ∈ JpK ∧ ṽj = f (ej) ∧ vi ∈ e?j

}
.

We summarize some dualities between a hb-graph and its dual in Table 1.1.

H H̃
Vertices vi, i ∈ JnK ṽj = f (ej) , j ∈ JpK
Hb-edges ej , j ∈ JpK ẽi = g (vi) , i ∈ JnK

Multiplicity vi ∈ ej with mej (vi) ṽj ∈ ẽi with mei (vj)
dm (vi) #mẽim-degrees vs m-cardinality #mei dm (ṽj)

k-m-uniform k-m-regularm-uniformity vs m-regularity
k-m-regular k-m-uniform

Table 1.1.: Dualities between a hb-graph and its dual.

1.4. Additional concepts for natural hb-graphs

1.4.1. Numbered copy hypergraph of a natural hb-graph

In natural hb-graphs, hb-edge multiplicity functions have their range which is a subset
of N. The vertices in a hb-edge with multiplicity strictly greater than 1 can be seen as
copies of the original vertex.
Indexing the copies of the original vertex makes them seen as “numbered” copies. We
consider a vertex vi belonging to two hb-edges ej1 and ej2 of the hb-graph H = (V,E) ,
with a multiplicitymej1

in ej1 andmej2
in ej2 . Then ej1∩ej2 holds min

(
mej1

(vi) ,mej2
(vi)

)
copies: by convention, the ones “numbered” from 1 to min

(
mej1

,mej2

)
. The remain-

ing copies will be either in ej1 xor ej2 depending on which multiset has the highest
multiplicity for vi.
More generally, we define the numbered-copy set of a natural multiset Am = {xmii : i ∈ JnK}
as the copy-set Ăm

∆=
{

[xi j ]mi : i ∈ JnK
}

where: [xi j ]mi is a shortcut to indicate the
numbered copies of the original element xi: xi 1 to ximi and j is designated as the copy
number of the element xi.
We define the maximum multiplicity function of H as the function m : V → N
such that for all v ∈ V : m(v) ∆= max

e∈E
me(v) and consider the numbered-copy-set

V̆
∆=
{

[vi j ]m(vi) : i ∈ JnK
}
of the multiset

{
v
m(vi)
i : i ∈ JnK

}
.

Then each hb-edge ek =
{
v
mk ij
ij

: j ∈ JkK ∧ ij ∈ JnK
}
is associated to a copy-set / equiv-

alency relation < ek 0, ρk > which elements are in V̆ with the smallest copy numbers
possible for any vertex in ek. The hypergraph H0

∆=
(
V̆ , E0

)
where E0

∆= (ek 0)k∈JpK is
called the numbered-copy-hypergraph of H.
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Proposition 1.4. A numbered-copy-hypergraph is unique for a given hb-graph.

Proof. It is immediate by the way the numbered-copy-hypergraph is built from the
hb-graph.

Allowing duplicates to be numbered prevents ambiguities; nonetheless, it has to be seen
as a conceptual approach since duplicates are entities that are actually not discernible.

1.4.2. Paths, distance and connected components

Defining a path in a hb-graph is not straightforward due to vertex duplication. We
define two concepts of m-paths. The first imposes to the duplicate of a vertex inside
a path to occur strictly at the intersection of two consecutive hb-edges. The second
relaxes this hypothesis by allowing the vertex to be any duplicate in the union of two
consecutive hb-edges—with of course one of the duplicate in the intersection.

More precisely, a strict m-path vi0ej1vi1 . . . ejsvis in a hb-graph H from a vertex u to a
vertex v is a vertex / hb-edge alternation with s hb-edges ejk such that: ∀k ∈ JsK , jk ∈
JpK and s+ 1 vertices vik with ∀k ∈ {0} ∪ JsK , ik ∈ JnK and such that vi0 = u, vis = v,
u ∈ ej1 and v ∈ ejs and that for all k ∈ Js− 1K, vik ∈ ejk ∩ ejk+1 .

A large m-path vi0ej1vi1 . . . ejsvis in a hb-graph H from a vertex u to a vertex v is a
vertex / hb-edge alternation with s hb-edges ejk such that: ∀k ∈ JsK , jk ∈ JpK and s+ 1
vertices vik with ∀k ∈ {0} ∪ JsK , ik ∈ JnK and such that vi0 = u, vis = v, u ∈ ej1 and
v ∈ ejs and that for all k ∈ Js− 1K, vik ∈ ejk ∪ ejk+1 and that there exists a copy of vik
in ejk ∩ ejk+1 .

The length of a m-path from u to v is the number of hb-edges it traverses; given
a path P, we write l (P) its length. It holds that if P = vi0ej1vi1 . . . ejsvis , we have
whatever the path is—strict or large—: l (P) = s.

In a path P = vi0ej1vi1 . . . ejsvis , the vertices vik , k ∈ Js− 1K are called the interior
vertices of the m-path and vi0 and vis are called the extremities of the m-path.

If the extremities are different copies of the same object, then the m-path is said to be
an almost cycle. If the extremities designate exactly the same copy of one object, the
m-path is said to be a cycle.

Proposition 1.5. 1. For a strict m-path, there are ∏
k∈Js−1K

mejk∩ejk+1
(vik) possibil-

ities of choosing the interior vertices along a given m-path vi0ej1vi1 . . . ejsvis and

mej1
(vi0)

( ∏
k∈Js−1K

mejk∩ejk+1
(vik)

)
mejs (vis)possible strict m-paths in between the

extremities.

2. For a large m-path, there are ∏
k∈Js−1K

mejk∪ejk+1
(vik) possibilities of choosing the in-

terior vertices along a given m-path vi0ej1vi1 . . . ejsvis and

mej1
(vi0)

( ∏
k∈Js−1K

mejk∪ejk+1
(vik)

)
mejs (vis) possible large m-paths in between the

extremities.
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3. As large m-paths between two extremities for a given sequence of interior vertices
and hb-edges include strict m-paths, we often refer as m-paths for large m-paths.

4. If an m-path exists from u to v, then an m-path also exists from v to u.

Proof. All these results come directly of combinatorics over the multisets involved in
the different paths.

An m-path vi0ej1vi1 . . . ejsvis in a hb-graph corresponds to a unique path in the hb-graph
support hypergraph called the support path.

Proposition 1.6. Every m-path vi0ej1vi1 . . . ejsvis traversing the same hb-edges and
having similar vertices as intermediate and extremity vertices share the same support
path.

Proof. The common support path is then vi0e?j1vi1 . . . e
?
jsvis .

The notion of distance is similar to the one defined for hypergraphs.

The hb-graph distance d (u, v) between two vertices u and v of a hb-graph is the
length of the shortest m-path between u and v, if there exists, that can be found in the
hb-graph. In the case where there is no path between the two vertices, they are said
disconnected, and we set: d (u, v) = +∞. A hb-graph is said connected if its support
hypergraph is connected, disconnected otherwise.

A connected component of a hb-graph is the maximal mset of vertices for which
there exists a m-path in between every pair of vertices of the mset in the hb-graph.

Proposition 1.7. A connected component of a hb-graph is a connected component of
one of its copy hypergraph.

The diameter of a hb-graph H—written diam (H)—is defined as:

diam (H) ∆= max
u,v∈V

d(u, v).

1.4.3. Adjacency

In [OLGMM18a], we have introduced different concepts of adjacency for hypergraphs.
We extend here those concepts to hb-graphs, with some refinements.

We consider a hb-graph H = (V,E), a positive integer k and k vertices not necessarily
distinct belonging to V . We write Vk,m the mset consisting of these k vertices with
multiplicity function m.

The k vertices of Vk,m are said k-adjacent in H if there exists e ∈ E such that Vk,m ⊆ e.

Considering a hb-graph H of m-rank k = rm (H), the hb-graph cannot handle any k-
adjacency for k strictly greater than rm (H). This maximal k-adjacency is called the
k-adjacency of H.
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We consider now a hb-edge e of a hb-graph H. The vertices in the support of e are said
e?-adjacent. For natural hb-graphs, we say that the vertices with nonzero multiplicity
in a hb-edge are e-adjacent.
We can remark that e?-adjacency does not support redundancy of vertices while e-
adjacency in natural hb-graphs allows it. e-adjacency in natural hb-graphs takes into
account the multiplicity of the different vertices, which is not the case of e?-adjacency.
In a non-natural hb-graph, the vertices in the support of hb-edges with multiplicity
different from 1 cannot be seen as copies of one another, hence only the e?-adjacency is
valid for this kind of hb-graphs.
Two hb-edges are said incident if the intersection of their respective support is not
empty.

1.4.4. Sum of two hb-graphs

Let H1 = (V1,E1) and H2 = (V2,E2) be two hb-graphs.
The sum of two hb-graphs H1 and H2 is the hb-graph, written H1 + H2, that has:

• V1 ∪ V2 as vertex set;
• E1 + E2 as hb-edge family: hb-edges are obtained from the hb-edges of E1 (re-

spectively E2) with the same multiplicity for vertices of V1 (respectively V2) but
such that for each hb-edge in E1 (respectively E2) the universe is extended to
V1∪V2 and the multiplicity function is extended such that ∀v ∈ V2\V1 : m (v) = 0
(respectively ∀v ∈ V1\V2 : m (v) = 0);

• H1 + H2
∆= (V1 ∪ V2,E1 + E2) .

This sum is said direct if E1 + E2 does not contain any new pair of repeated hb-edge
other than the ones already existing in E1 and in E2, and that E1 and E2 do not have
any common hb-edges. In this case, the sum is written H1 ⊕ H2 and called the direct
sum of the two hb-graphs H1 and H2.

1.4.5. An example

Example 1.4.1. We consider H = (V,E), with V = {v1, v2, v3, v4, v5, v6, v7} and, E =
{e1, e2, e3, e4} with: e1 =

{
v2

1, v
2
4, v

1
5
}
, e2 =

{
v3

2, v
1
3
}
, e3 =

{
v1

3, v
2
5
}
and e4 =

{
v1

6
}
.

It holds:

e1 e2 e3 e4 dm (vi) max
{
mej (vi)

}
v1 2 0 0 0 2 2
v2 0 3 0 0 3 3
v3 0 1 1 0 2 1
v4 2 0 0 0 2 2
v5 1 0 2 0 3 2
v6 0 0 0 1 1 1
v7 0 0 0 0 0 0

#mej 5 4 3 1
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Therefore, the order of H is O (H) = 2 + 3 + 1 + 1 + 2 + 1 + 0 = 10 and its size is |E| = 4.
v7 is an isolated vertex.
e1 and e3 are incident as well as e3 and e2. e4 is not incident to any hb-edge.
v1, v4 and v5 are e?-adjacent as they are together in e?1.

v2
1, v2

4 and v1
5 are e-adjacent as they are together with the corresponding multiplicities

in e1.

The dual of H is the hb-graph: H̃ =
(
Ṽ , Ẽ

)
with:

• Ṽ = {e1, e2, e3, e4} with f (ei) = ei for i ∈ J4K ;
• Ẽ = {v1, v2, v3, v4, v5, v6, v7} with: v1 = v4 =

{
e2

1
}

; v2 =
{
e3

2
}

; v3 =
{
e1

2, e
1
3
}

;
v5 =

{
e1

1, e
2
3
}

; v6 =
{
e1

4
}

; v7 = ∅.
H̃ has duplicated hb-edges and one empty hb-edge.

(a) Multipartite representation of a
hb-graph.

(b) Multipartite representation of its
dual.

v1

v5

v4

v2

v3

v7

v6

e1 e2

e3

e4

e1

e2

e3

e4

v1 v4

v5

v3

v2

v7

v6

Figure 1.1.: Hb-graph (a) and its dual (b) given in Example 1.4.1 in their multipartite
graph representation with in superposition the corresponding support hypergraph in
the Euler representation.

1.4.6. Hb-graph representations

Representing hb-graphs can be thought along the two main standards found for
hypergraphs as presented in Section B.1.8 of Appendix B and introduced in [Mäk90]:
the subset standard and the edge standard. But both representations have to be adapted
to support multisets.

1.4.6.1. Subset standard

In the subset standard for hypergraphs, a contour line is drawn to surround the vertices
of a hyperedge. Each hyperedge is then represented using these contour lines. Depend-
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ing on how their intersection is represented, we obtain a Venn diagram or an Euler
diagram representation of the hypergraph. A Venn diagram systematically represents
each possible intersection between hyperedges, while an Euler diagram addresses only
the intersections that are needed for the representation. Hence, the Euler diagram is
often preferred as this representation scales up a bit better than the Venn diagram does;
but neither representations scale up to large hypergraphs.
When moving to multisets, a contour line is also drawn around the vertices that are now
duplicated. In [Rad15], two Venn diagram representations of multisets are proposed for
the representation of 2 and 3 multisets: a simplified representation where the parts are
not disjoint and a complex representation where the parts are disjoint. Scaling up the
number of multisets seems to be hard to achieve. Euler representation of multisets can
be based on this work: a simplified and a complex representation can be drawn to depict
only the parts needed to be represented. It simplifies the Venn representation and helps
to scale up to somewhat larger hb-graphs.

1.4.6.2. Edge standard

For hypergraphs, there are two main representations in the edge standard: the clique
representation and the extra-node representation, as presented in Section B.1.8. The
clique representation transforms the hypergraph in its 2-section graph joining every pair
of vertices of a hyperedge by an edge, while the extra-node representation corresponds to
the incident graph—also called Levi graph—which is the graph obtained by representing
each hyperedge as an extra-vertex and joining it to each vertex of the corresponding
hyperedge.
For hb-graphs, the 2-section graph is always representable by considering each hb-edge
support: but the quantity of information to display as well as its quality is not optimal
in this representation.
Hence, we propose other alternatives based on the extra-node representation. Each hb-
edge is represented by an extra-node. For natural hb-graph a first representation called
the extra-node multipartite representation is achieved by joining each vertex of
the hb-edge to the extra node with a number of edges that corresponds to the vertex
multiplicity—which can be considered as a multipartite version of the incident graph of
the hb-graph that takes into account the multiplicity of vertices through the number of
edges linking the vertex to the extra-node representing the hb-edge. This representation
does not fit for non-natural hb-graphs; moreover, it is hard to scale up when the values
of multiplicities increase. We give an example of such a representation in Figure 1.1
using the hb-graph and its dual given in Example 1.4.1.
For hb-graphs with non-negative multiplicity ranges, we propose a second representa-
tion based on the extra-node representation of the support hypergraph, but where the
thickness of the edges linking the vertices of the hb-edge with its extra-node are propor-
tional either directly to the multiplicity (absolute version) or to the relative multiplicity
of the vertex in the hb-edge (unnormalized version).
The relative multiplicity of a vertex vi in a hb-edge ej is defined as:

mr ej (vi)
∆=
mej (vi)
#mej

.
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We introduce the normalised relative multiplicity of a vertex vi ∈ ej in the hb-graph
as:

mnr ej (vi)
∆=
mej (vi)
#mej

× m (vi)
M

where m (vi)
∆= max

e∈E
(me (vi)) and M

∆= max
v∈V

(m (v)) . This provides an other extra-
node representation where the edge thickness is proportional to the normalised relative
multiplicity. This representation gives a direct view of the importance of each vertex
contribution to a hb-edge compared to other hb-edges.

If the hb-graph has some multiplicity function with both negative and positive values,
the former representations can be adapted by using different shapes for the edges linking
the extra-node to the vertices of the hb-edges.

1.4.7. Incidence matrix of a hb-graph

A multiset is well defined by its universe and its multiplicity function. It can be repre-
sented by the vector representation of the multiset.

Hb-edges of a given hb-graph have the same universe. Let n and p be two positive
integers and, H = (V,E) be a non-empty hb-graph with vertex set V = {vi : i ∈ JnK}
and E = (ej)j∈JpK. We define the incidence matrix of the hb-graph H as the matrix
H :

H
∆= [mj (vi)]i∈JnK

j∈JpK
.

This incidence matrix is intensively used in [OLGMM18c] to formalize the diffusion by
exchanges in hb-graphs.

Proposition 1.8. Any non-negative matrix with real coefficients is the incident matrix
of an hb-graph.

Any non-negative matrix with integer coefficients is the incident matrix of a natural
hb-graph.

1.5. Some (potential) applications

Potentially, all the applications that have been cited for hypergraphs in [Ouv20] can
be refined using hb-graphs either general or natural; it includes applications involving
collection of multisets, with multisets such as bags of words and bags of visual words or
such as the ones cited in Appendix B.2.5. We will propose as application in Chapter 3
an e-adjacency tensor for general hb-graphs, deducing as a particular case the one of a
general hypergraph. We will also develop a diffusion process on hb-graphs in Chapter
2, with applications in information and image retrieval. In Chapter D.1, we present
an other application using hb-graphs, that refines the hypergraph framework given in
Chapter 6. We present here other possible applications such as the prime decomposition
representation, the problem of hb-graph transversals, and networks. These applications
are not the only ones, as many other use multisets, or, for some of them, collection of
multisets and, hence, are potential applications for hb-graphs.
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1.5.1. Prime decomposition representation and elementary operations on
hb-graphs

In [Cor04], a natural number network based on common divisors of two vertices is
proposed to replace the search for real scale-free networks by the generation of a deter-
ministic network that is also scale-free. Degrees of vertices are studied as well as the
clustering coefficient and the average distance of vertices in the graph. Some topological
properties of such networks are addressed in [ZWHC06]. In [FCS12], the authors study
the page rank of an integer network built using a directed graph where the vertices are
labeled by non-negative integers; an edge links two vertices m and n if m divides n, m
being different of 1 and n, with a weight k corresponding to the maximal k such that
mk divides n, i.e. the valuation of m in n. All these approaches are built using graphs
and pairwise relationships.

As already mentioned, multisets can be used for prime decomposition ([Bli88]). In par-
ticular, multisets are intensively used in [Tar14] to achieve primality decomposition of
numbers and to achieve product, division, gcd and lcd of numbers. Using hb-graphs,
we can revisit some of the results of [Tar14], and have a visual representation of si-
multaneous decomposition of numbers interpretable in term of elementary operations
that transform a hb-graph representation into another one. It should also induce some
refinement of results obtained with graphs since multisets handle not solely the multi-
adic relationships that could have been achieved using sets, but also the hb-edge based
weighting of the divisors.

We focus on the prime decomposition of numbers. Considering the set P of prime
numbers, any positive integer n greater or equal to 2 can be decomposed into a product
of prime numbers: pi1 with multiplicity mn (i1) to pin with multiplicity mn (in) . This
decomposition is then uniquely described by the multiset: en =

{
p
mi1
i1

, ..., p
min
in

}
. The

prime decomposition hb-graph HP
∆= (P,E) , is the hb-graph of universe P and of hb-

edges E
∆= (en)n∈N\{0,1} that correspond to the prime decomposition of the integers

greater than 2. It contains all the possible natural multisets composed of elements of P.
To represent this hb-graph, each extra-node is labeled by the corresponding number n
which decomposition in prime numbers constitutes the multiset en =

{
p
mi1
i1

, ..., p
min
in

}
.

We consider a subset A of the hb-edges of HP and write HA
∆= (P, A) the sub-hb-graph

of HP associated to A. We also consider elementary operations on the multipartite
extra-node representation of the natural hb-graphs constructed to switch between the
decomposition involved by the two integers and the prime decomposition of the results.
We observed that these elementary operations are similar to the elementary operations
involved in the graph edit distance [GXTL10], albeit the fact that, with extra-nodes,
some supplementary operations are possible: deletion of an edge, relabeling of an extra-
node, deletion of an extra-node, merging of two extra-nodes.

The decomposition in primes of the product mn of two integers m and n is represented
by a hb-edge emn of HP which is such that emn = em ] en. The multi-partite extra-node
representation of H{emn} is obtained from the one of H{em,en} by merging the two extra-
nodes n and m of the en and em representations, while keeping all the existing edges of
their respective representation. This is illustrated on an example in Figure 1.2.
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7 5 2

3

945 900

7 5

32

945× 900

Figure 1.2.: Finding the prime decomposition of mn from the decomposition of m and
n with m = 900 and n = 945.

If we suppose that m divides n, then the decomposition of n÷m in primes is stored in
a hb-edge en÷m such that en÷m = en\em. The multipartite extra-node representation of
H{en÷m} is obtained from the one of H{em,en} by deleting all edges in the representation
of em and in the same quantities the corresponding edges in the representation of en
and relabeling the extra-node of en to be the one of en÷m.

The decomposition in primes of the greater common divider of two integers m and n is
stored in egcd(m,n) = em∩ en. The representation of H{egcd(m,n)} is obtained from the one
of H{em,en} by deleting any edge from one vertex in e∗m to the extra-node representing em
that is greater in quantity than the one linking this vertex to the extra-node representing
en and reciprocally. The final representation is obtained by deleting one of the remaining
extra-node vertex and its connected edges and relabeling the other extra-vertex with
gcd (m,n) . It is illustrated in Figure 1.3.

7 5 2

3

945 900

5

3

gcd (945, 900)

Figure 1.3.: Finding the prime decomposition of gcd (m,n) from the decomposition of
m and n with m = 900 and n = 945.

The decomposition in primes of the least common multiple of two integers m and n is
stored in elcm(m,n) = em∪ en. The representation of H{elcm(m,n)} is obtained from the one
of H{em,en} by deleting any edge from one vertex in e∗m to the extra-node representing em
that is greater in quantity than the one linking this vertex to the extra-node representing
en and reciprocally. The final representation is obtained by deleting one of the remaining
extra-node vertex and its connected edges and relabeling the other extra-vertex with
lcm (m,n) . It is illustrated in Figure 1.4.
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7 5 2

3

945 900

7 5

32

lcm (945, 900)

Figure 1.4.: Finding the prime decomposition of lcm (m,n) from the decomposition of
m and n with m = 900 and n = 945.

We can then formulate the property:

mn = gcd(m,n)× lcm (m,n)

by using the hb-graphs H{emn} and H{egcd(m,n),elcm(m,n)}.

It holds: emn = egcd(m,n) ] elcm(m,n), which can be written: emn = (em ∩ en)] (em ∪ en) ,
which can be easily observed on the results shown in Figure 1.2 and Figure 1.5.

7 5

32

lcm (945, 900) gcd (945, 900)

7 5

32

lcm (945, 900)
×

gcd (945, 900)

Figure 1.5.: Illustrating the property lcm (m,n)× gcd (m,n) = mn with m = 900 and
n = 945.

It follows that any connected natural hb-graph can be attached to a number by labeling
vertices with prime numbers and multiplying successively the hb-edges by this number:
in some way it makes a summary of this hb-graph. Finding the prime labeling such that
the number the natural hb-graph represents is minimal is a NP-hard problem.
Reciprocally, being given a number we can use its decomposition to create a collection
of hb-graphs that have this number as overall representation.

1.5.2. Graph pebbling and families of multisets

In [BBCH03], the authors use families of multisets to enounce analogs of two theorems
on graph pebbling for multisets and improve some bounds on the random pebbling
threshold for sequence of paths in graphs. The authors consider a pebbling problem on
graphs in the following variant: from an initial pebble distribution on graph vertices,
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they consider a vertex with two pebbles and move one of the pebbles to an adjacent
vertex, with the aim of repeating the operation until only one pebble is remaining on a
predetermined root vertex. All the configurations are not always solvable depending on
the number of pebbles distributed.

A classical variant of the pebble problem consists in moving labeled pebbles on a graph
from a given configuration to an other one with a constraint on the maximal number of
pebbles that can be found on a vertex at any time. Pebble motion problems have ap-
plications in multi-robot motion planning and network routing. Famous pebble motion
problems are sliding puzzles like the 15-puzzle. An other variation of a pebble problem
has been used in [ST09] to characterize the sparsity of hypergraphs. In [BS17], the au-
thors use the former work to extract rigidity and flexibility information of bio-molecules
using a phased pebble-game on a multi-graph that reflects the mechanical model of the
atom-bond network.

One can, therefore, consider another variation of these problems solving some natural
hb-graph pebbling problems, such that pebbles occupy vertices of natural hb-graphs
with allocated resources, that depends on the hb-edges the pebbles are coming from.
This game would take into account the constraints that are depending on the hb-edge
itself to allocate resources on one of its vertex.

1.5.3. Chemical reaction networks and hb-graphs

As mentioned in [CTTV15], chemical reaction network (CRN for short) theory is at
the confluence of computer science and the study of interactions in natural sciences
and chemistry; it is also used as model for natural programming. CRN theory focuses
on the kinetic of the various components involved in the reactions. The authors in
[Gun03] use sets of multisets to model complexes of species; chemical reactions occur
on complexes transforming a complex into another complex. Each chemical reaction
is associated to a rate. The complexes of the chemical reaction network constitute a
hb-graph of universe the entities and where the hb-edges represent the complexes. The
reactions can be seen as morphisms on this hb-graph, that are pondered with a rate.
In [CTTV15], the authors focus on the kinetic of such networks with semantics based
on ordinary differential equations. In [LSP16], the states of the CRN are viewed as
multisets of species. Hence the reactions reflect the possibility to go from one state to
another. Succession of reactions are called traces and valid traces are the ones that are
possible, i.e. with sufficient reactant at each step.

A reaction can be seen as a replacement rule in the current multiset that is possible
only if all its reactants are present in sufficient quantity in the hb-edge. Using directed
hb-graphs over a universe, with a source and a target in each hb-edge, the reactions are
viewed as directed hb-edges such that source and target are not overlapping multisets. A
trace is a transversal of the hb-graph of states by directed hb-edges such that each source
of the reaction is a submset of the current state and the target state is a submset of the
new state, where the new state is written using operation on multisets: Sf = (Si\R)]P ,
where R|P is the directed hb-edge of the reaction, Sf represents the final state and Si
the initial state.
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1.5.4. Multiset cover problems and hb-graph transversals

Set cover problems consist in covering a given set U with a set of subsets which union
corresponds to the initial set U , using a minimum amount of those subsets: it is an NP-
complete problem listed in Karp’s NP complete problems in [Kar72]. Different flavors
of this problem exist: some of them impose a covering of maximal size, some give a cost
to each subset or impose a maximal number of repetitions, imposing to each subset to
have a maximal covering capacity that should not be exceeded.
In [RV93], the authors study the multiset multicover problem, similar to the set cover
problem, replacing subsets by sub-multisets to cover a multiset of N elements. They
see the multisets as copy-sets and adapt the parallel algorithm given in the case of sets
to give an approximation of the solution of the problem using a greedy multiset cover
algorithm. In [HYLW09], the authors describe a multiset multicover problem and give
an exact algorithm to solve it in both cases i.e. without and with multiplicity constraints
on the number of times the submset can be picked up. Multisets are viewed as copy-sets
and transformed as such.
The problem of hypergraph vertex covering, or known also as the problem of hypergraph
transversal is a well studied NP-hard problem—see for instance [EG95] that gives also
applications in database and model-based diagnosis. It consists in finding a minimal set
of vertices that intersects each hyperedge. This is equivalent to the set cover problem as
it is shown in [Hal02] by considering the dual hypergraph: the set to cover is constituted
in this case of the—non-repeated—hyperedges and the subsets that are at the basis of
the covering corresponds to the dual hypergraph hyperedges, which contain the incident
original hypergraph hyperedges of each vertex. In [SK12], the authors propose an ap-
proximation algorithm to handle hypergraph cover with hard capacities, which is seen
as analogous to consider set systems with constrained belongings. Hypergraph mini-
mal transversal is fruitful in data mining. A recent application occurs in the frequent
item-set hiding problem in [SVK16] and security in [RKS17].
Hence, for hb-graphs the problem of vertex covering can be seen as an extension of
the hypergraph transversal problem to a minimal multiset of vertices that intersect
each hb-edge and is similarly equivalent to the multiset cover problem by considering
the dual hb-graph: the multiset to cover is the one of the hb-edges and the family of
multisets used for the covering corresponds to the dual hb-edges, attached to each vertex
of the original incident hb-edges. This kind of problems can be linked to constrained
optimization problems of fuzzy relational equations [HF11] and relates to set cover
problems as it is mentioned in [CW02] and in [Mar05].

1.5.5. Networks

1.5.5.1. Computer networks

Byzantine-fault problems often consider some multisets for representing the information
collected by one agent in the network as in [MHVG15]. In [Geo17], multisets are used
to model beliefs of agents and also desirable believes.
Hb-graphs can definitively model this kind of interaction between agents, even giving a
way to encode additional information that sets cannot capture.
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1.5.5.2. Neural networks

In [XHLJ18], the authors use multisets in graph neural networks, to focus on the neigh-
borhood. In graph neural networks, the aim is to learn the graph through the neural
network by a recursive neighborhood aggregation, where the information of the neigh-
borhood of the node contained in different vectors is aggregated to create its own feature
vector. The authors propose to model this neighborhood using multisets combined with
some convenient function.

Hypergraph neural networks that encode higher order relationships are proposed in
[FYZ+19] and are shown to overtake classical methods.

Learning hb-graph through neural networks can, therefore, open up a wide range of
applications, since it could also capture the multiplicity of elements.

1.6. Further comments on hb-graphs

Shifting to hb-graphs is not only a change in modeling for visualisation: it is also a
means to refine any network in which hb-edge-based individual weighting of vertices is
required. Natural hb-graphs constitute a new category, as it is shown in Appendix C.2.

We have already shown in [OLGMM18c] that diffusion by exchange in hb-graphs—as
it will be presented in Chapter 2—provides a fine ranking not only of vertices but also
of hb-edges. We think that extending the definitions of hb-graphs to support negative
multiplicities or even complex values could open the door to yet a wider variety of
applications.

We can foresee many applications of hb-graphs, as they give the best of several worlds:
multisets, sets, graphs, and, also, as we will see in the Chapter 3, algebraic and polyno-
mial approaches. Natural hb-graphs support the duplication of elements, while general
hb-graphs allow the weighting of elements in a refined manner with respect to hyper-
graphs.
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This chapter is based on [OLGMM19a], which is an extension of [OLGMM18c].

Prerequisites: Section 1.3.

2.1. Motivation

Highlighting important information in networks is commonly achieved using random
walks. In 1905, Pearson was using the idea of random walk to model a population of
mosquitoes in a forest; previously, Rayleigh studied acoustic waves using random walks.
The term itself was introduced by Polya during the 1920s. A random walk is a stochastic
process related to a Markov chain. A random walk is a succession of steps, of eventually
constant length, executed in a random manner regarding the direction and the length
of the walk. Constrained to a network structure, the random walker is supposed to
randomly move from a vertex to a neighborhood vertex.

Random walks, by the phenomena involved, are tied up to diffusion over the structure,
and have been largely used to retrieve centrality of information in graphs. Random
walks have had a revival of interest since the raise of Internet. They are at the origin
of the PageRank algorithm developed by Google to rank websites [PBMW99].

Random walks on hypergraphs and diffusion have also been well studied since [ZHS07];
in [BAD13], the authors show that the weighting of vertices at the level of the hyperedges
in a hypergraph provides better information retrieval. These two approaches—[ZHS07,
BAD13]—mainly focus on vertices. But, more generally, as hb-edges of a hb-graph are
linked to references that can be used as pivots in between the different facets as shown
in Chapter 6, it is also interesting to highlight important hb-edges. Hence, the following
research question:
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Research question 2.1. Can we find a diffusion process that not only ranks vertices
but also ranks hb-edges in hb-graphs?

We start by reviewing existing work, and propose a model of diffusion on the hb-graph,
that is exchange-based: this process requires two-phase steps. We then evaluate this
framework with generated data and apply it to two real data frameworks, one based on
queries over Arxiv database.

2.2. Related work

Random walks are largely used to evaluate the importance of vertices in networks, either
seen as graphs or as hypergraphs. In [Lo93], a survey is achieved on random walks on
graphs; it includes connections with eigenvalues of the adjacency matrix of graphs as
well as estimates on important features such as access time and cover time. Random
walks are closely related to diffusion processes.

Diffusion kernels have been introduced in [KL02]: they are shown to be efficient on dif-
ferent kinds of graphs. In [BN03], the authors build a neighboring weighted graph using
a truncated heat kernel to weight the proximity of two vertices, and achieve nonlinear
dimensionality reduction preserving the local properties. In [MYLK08], the authors
use a heat diffusion process for marketing candidates selection in social networks, and,
in [MKL11], for mining web graphs for recommendations. In [TDKF17], the authors
uses a sum of heat diffusion processes to learn about the hidden graph structure. The
interested reader can refer to the extensive survey on random walks and diffusion over
networks done in [MPL17].

In [ZHS07], a random walk on a hypergraph is defined by choosing a hyperedge ej with
a probability proportional to we (ej) , and within that hyperedge a vertex is randomly
chosen using a uniform law. The probability transition from a vertex vi1 to a vertex vi2
is:

p(vi1 , vi2) =
∑
j∈JpK

we (ej)
hi1j
di1
× hi2j

δj
,

where δj = deg (ej) , j ∈ JpK is the degree of a hyperedge defined in [ZHS07] as its
cardinality. This random walk has a stationary state which is shown to be π = (πi)i∈JnK

with πi = di
volV for i ∈ JnK—[DB14]. This process differs from the one we propose: our

diffusion process is done in successive steps on vertices and hyperedges from a random
initial vertex.

In [BAD13], the authors define a random walk for weighted hypergraphs using weight
functions both for hyperedges and vertices: for each vertex, a vector of weights is built
making weights of vertices hyperedge-based; a random walk similar to the one above is
then built that takes into account the vertex weight. The evaluation is performed on a
hypergraph built from a public dataset of computer science conference proceedings; each
document is seen as a hyperedge that contains keywords; hyperedges are weighted by
citation score and vertices of a hyperedge are weighted with a tf-idf score. In [BAD13],
the authors show that a random walk on the (double-) weighted hypergraph enables
vertex ranking with higher precision than random walks using unweighted vertices.
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This process differs also from our proposal: our process not only enables simultaneous
alternative updates of vertices and hb-edges values but also provides hb-edge ranking.
We also introduce a new theoretical framework to perform our diffusion process.
Random walks relate to diffusion processes. Diffusion processes are extensively used for
information retrieval: [DB13] is an extensive survey on the subject. More particularly,
random walks are used with hypergraphs for image matching—[LCL11]. Higher order
random walks in hypergraph are built in [LP11], where a generalised Laplacian attached
to the graphs generated from these random walks is constructed. In [GMM+13], the
authors propose a co-occurrence based diffusion for expert search on the web: the model
uses the heat diffusion over a heterogeneous co-occurrence network—composed of co-
occurrences of persons and keywords—that is reduced to its 2-section when enabling the
diffusion, considering hyperedge-based weighting of vertices, i.e. a hb-graph structure.
They achieve good performances on retrieval of the experts on ground truth datasets. In
[MSCM16], the authors propose a multi-scale hypergraph framework for image annota-
tion, that exploits the eigenvalues of the hypergraph Laplacian matrix in the definition
of the heat kernel. This latter includes a parameter to tune the scale of propagation of
the labels in order to solve the problem of class imbalance in the data.

2.3. Exchange-based diffusion in hb-graphs

Diffusion processes result in homogenising information over a structure; an initial stroke
is done on a vertex that propagates over the network structure. This propagation is often
modeled by a random walk on the network. Random walks in hypergraphs rank vertices
by the number of times they are reached, and this ranking is related to the network
structure itself. Several random walks with random choices for the starting vertex are
needed to achieve a ranking by averaging. Moreover, to avoid loops, teleportation of
vertices is needed.
We consider a weighted hb-graph H = (V,E, we) with |V | = n and |E| = p; we write H
the incidence matrix of the hb-graph.
At time t, we set a distribution of values over the vertex set:

αt :
{

V → R
vi 7→ αt (vi)

.

and a distribution of values over the hb-edge set:

εt :
{

E→ R
ej 7→ εt (ej)

.

We write PV,t = (αt (vi))i∈JnK the row state vector of the vertices at time t and PE,t =
(εt (ej))j∈JpK the row state vector of the hb-edges.

The initialisation is done such that ∑
vi∈V

α0 (vi) = 1 and the information value is con-

centrated uniformly on the vertices at the beginning of the diffusion process and, con-
sequently, each hb-edge has a zero value associated to it. Writing αref = 1

|V |
, we set for

all vi ∈ V : α0 (vi) = αref and for all ej ∈ E, ε (ej) = 0.
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t t+ 1
2 t+ 1

vertices to hb-edges hb-edges to vertices

vertices vi at
αt (vi) δεt+ 1

2
(ej | vi)

ej reaches
εt+ 1

2
(ej)

δαt+1 (vi | ej)

vi reaches
αt+1 (vi)

hb-edges

Figure 2.1.: Diffusion by exchange: principle, with:
δεt+ 1

2
(ej | vi)

∆= mj (vi)we (ej)
dw,vi

αt (vi) and δαt+1 (vi | ej)
∆= mj (vi)

#mej
εt+ 1

2
(ej) .

We consider an iterative process with two-phase steps. At every step, the first phase
starts at time t and ends at t+ 1

2 , followed by the second phase between time t+ 1
2 and

t+ 1. This iterative process is illustrated in Figure 2.1 that preserves the overall value
held by the vertices and the hb-edges, meaning that we have at any t ∈

{1
2k : k ∈ N

}
:

∑
vi∈V

αt (vi) +
∑
ej∈E

εt (ej) = 1.

During the first phase between time t and t + 1
2 , each vertex vi of the hb-graph

shares its value αt (vi) hold at time t with the hb-edges it is connected to.
In an unweighted hb-graph, the fraction of αt (vi) given by vi of m-degree dvi = degm (vi)

to each hb-edge is mj (vi)
degm (vi)

, which corresponds to the ratio of the multiplicity of the
vertex vi due to the hb-edge ej over the total m-degree of hb-edges containing vi in their
support.
In a weighted hb-graph, each hb-edge has a weight we (ej) . The value αt (vi) of vertex
vi is shared by accounting not only the multiplicity of the vertices in the hb-edge but
also the weight we (ej) of a hb-edge ej .

The weights of the hb-edges are stored in a column vector:

wE = (we (ej))>j∈JpK .

We also consider the weight diagonal matrix:

WE = diag
(
(we (ej))j∈JpK

)
.

We introduce the weighted m-degree matrix:

Dw,V = diag
(
(dw,vi)i∈JnK

)
= diag (HwE) .

where dw,vi is called the weighted m-degree of the vertex vi. It is:

dw,vi = degw,m (vi) =
∑
j∈JpK

mj (vi)we (ej) .
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The contribution of vertex vi to the value εt+ 1
2

(ej) attached to hb-edge ej of weight
we (ej) is:

δεt+ 1
2

(ej | vi)
∆= mj (vi)we (ej)

dw,vi
αt (vi) .

It corresponds to the ratio of weighted multiplicity of vertex vi in ej over the total
weighted m-degree of the hb-edges where vi is in the support.

We remark that if vi /∈ e?j :
δεt+ 1

2
(ej | vi) = 0.

And the value εt+ 1
2

(ej) is calculated by summing over the vertex set:

εt+ 1
2

(ej) =
∑
i∈JnK

δεt+ 1
2

(ej | vi) .

Hence, we obtain:
PE,t+ 1

2
= PV,tD

−1
w,VHWE. (2.1)

The value given to the hb-edges is subtracted to the value of the corresponding vertex,
hence for all i ∈ JnK:

αt+ 1
2

(vi) = αt (vi)−
∑
j∈JpK

δεt+ 1
2

(ej | vi) .

Claim 2.1 (No information on vertices at t+ 1
2). It holds:

∀i ∈ JnK : αt+ 1
2

(vi) = 0.

Proof. For all i ∈ JnK :

αt+ 1
2

(vi) = αt (vi)−
∑
j∈JpK

δεt+ 1
2

(ej | vi)

= αt (vi)−
∑
j∈JpK

mj (vi)we (ej)
dw,vi

αt (vi)

= αt (vi)− αt (vi)

∑
j∈JpK

mj (vi)we (ej)

dw,vi

= 0.

Claim 2.2 (Conservation of the information of the hb-graph at t+ 1
2). It holds:∑

vi∈V
αt+ 1

2
(vi) +

∑
e∈E

εt+ 1
2

(e) = 1.
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Proof. We have:∑
vi∈V

αt+ 1
2

(vi) +
∑
e∈E

εt+ 1
2

(e) =
∑
ej∈E

εt+ 1
2

(ej)

=
∑
ej∈E

∑
i∈JnK

δεt+ 1
2

(ej | vi)

=
∑
ej∈E

∑
i∈JnK

mj (vi)we (ej)
dw,vi

αt (vi)

=
∑
i∈JnK

αt (vi)

∑
ej∈E

mj (vi)we (ej)

dw,vi

=
∑
i∈JnK

αt (vi)

= 1.

During the second phase which starts at time t + 1
2 , the hb-edges share their

values across the vertices they hold taking into account the vertex multiplicities in the
hb-edge.

The contribution to αt+1 (vi) given by a hb-edge ej is proportional to εt+ 1
2
in a factor

corresponding to the ratio of the multiplicity mj (vi) of the vertex vi to the hb-edge
m-cardinality:

δαt+1 (vi | ej)
∆= mj (vi)

#mej
εt+ 1

2
(ej) .

The value αt+1 (vi) is then obtained by summing on all values associated to the hb-edges
that are incident to vi :

αt+1 (vi) =
∑
j∈JpK

δαt+1 (vi | ej) .

Writing DE = diag
(
(#mej)j∈JpK

)
the diagonal matrix of size p× p, it comes:

PE,t+ 1
2
D−1

E H> = PV,t+1. (2.2)

The values given to the vertices are subtracted to the value associated to the corre-
sponding hb-edge. Hence, for all j ∈ JpK :

εt+1 (ej) = εt+ 1
2

(ej)−
∑
i∈JnK

δαt+1 (vi | ej) .

Claim 2.3 (The hb-edges have 0 value at t+ 1). It holds:

εt+1 (ej) = 0.
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Proof. For all i ∈ JpK :

εt+1 (ej) = εt+ 1
2

(ej)−
∑
i∈JnK

δαt+1 (vi | ej)

= εt+ 1
2

(ej)−
∑
i∈JnK

mj (vi)
#mej

εt+ 1
2

(ej)

= εt+ 1
2

(ej)

1−

∑
i∈JnK

mj (vi)

#mej


= 0.

Claim 2.4 (Conservation of the information of the hb-graph at t+ 1). It holds:∑
vi∈V

αt+1 (vi) +
∑
ej∈E

εt+1 (ej) = 1.

Proof. ∑
vi∈V

αt+1 (vi) +
∑
e∈E

εt+1 (e) =
∑
vi∈V

αt+1 (vi)

=
∑
vi∈V

∑
j∈JpK

δαt+1 (vi | ej)

=
∑
vi∈V

∑
j∈JpK

mj (vi)
#mej

εt+ 1
2

(ej)

=
∑
j∈JpK

εt+ 1
2

(ej)

∑
vi∈V

mj (vi)

#mej

=
∑
j∈JpK

εt+ 1
2

(ej)

= 1.

Regrouping (2.1) and (2.2):

PV,t+1 = PV,tD
−1
w,VHWED

−1
E H>. (2.3)

It is valuable to keep a trace of the intermediate state PE,t+ 1
2

= PV,tD
−1
w,VHWE as it

records the importance of the hb-edges.
Writing T = D−1

w,VHWED
−1
E H>, it follows from 2.3

PV,t+1 = PV,tT. (2.4)

Claim 2.5 (Stochastic transition matrix). T is a square row stochastic matrix of di-
mension n.
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Proof. Let consider: A = (aij)i∈JnK
j∈JpK

= D−1
w,VHWE ∈ Mn,p and B = (bjk)j∈JpK

k∈JnK
=

D−1
E H> ∈Mp,n.

A and B are non-negative rectangular matrices. Moreover:

aij = mj (vi)we (ej)
dw,vi

and, it holds:
∑
j∈JpK

aij =

∑
j∈JpK

mj (vi)we (ej)

dw,vi
= 1.

bjk = mj (vk)
#m (ej)

and it holds:

∑
k∈JnK

bjk =

∑
k∈JnK

mj (vk)

#mej
= 1.

We have PV,t+1 = PV,tAB where AB =
( ∑
j∈JpK

aijbjk

)
i∈JnK
k∈JnK

.

It yields: ∑
k∈JnK

∑
j∈JpK

aijbjk =
∑
j∈JpK

aij
∑
k∈JnK

bjk

=
∑
j∈JpK

aij

= 1.

Hence AB is a non-negative square matrix with its row sums all equal to 1: it is a row
stochastic matrix.

Claim 2.6 (Properties of T). Supposing that the hb-graph is connected, the exchange-
based diffusion matrix T is aperiodic and irreducible.

Proof. This stochastic matrix is aperiodic, due to the fact that any vertex of the hb-
graph retrieves a part of the value it has given to the hb-edge, hence tii > 0 for all
i ∈ JnK.
Moreover, as the hb-graph is connected, the matrix is irreducible as every state can be
joined from any other state.

Claim 2.7. The sequence (PV,t)t∈N , with PV,t = (αt (vi))i∈JnK , in a connected hb-graph
converges to the state vector πV such that:

πV =

 dw,vi∑
k∈JnK

dw,vk


i∈JnK

.
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Proof. We denote by π an eigenvector of T = (cik) i∈JnK
k∈JnK

associated to the eigenvalue 1.

We have πT = π.

Let consider u = (dw,vi)i∈JnK .

We have:

(uT )k =
∑
i∈JnK

dw,vicik

=
∑
i∈JnK

dw,vi
∑
j∈JpK

mj (vi)we (ej)
dw,vi

× mj (vk)
#m (ej)

=
∑
j∈JpK

∑
i∈JnK

mj (vi)we (ej)×
mj (vk)
#m (ej)

=
∑
j∈JpK

we (ej)mj (vk)

∑
i∈JnK

mj (vi)

#m (ej)

=
∑
j∈JpK

we (ej)mj (vk)

= dw,vk = uk.

Hence, u is a non-negative eigenvector of T associated to the eigenvalue 1.

For a connected hb-graph, when we iterate over the stochastic matrix T which is ape-
riodic and irreducible, we are then ensured to converge to a stationary state: this
stationary state is the probability vector associated to the eigenvalue 1. It is unique
and is equal to αu such that ∑

k∈JnK
αuk = 1.

We have α = 1∑
k∈JnK

dw,vk
and hence the result.

Claim 2.8. The sequence
(
PE,t+ 1

2

)
t∈N

, with PE,t+ 1
2

=
(
εt+ 1

2
(ej)

)
j∈JpK

, in a connected
hb-graph converges to the state vector πE such that:

we (ej)×#m (ej)∑
k∈JnK

dw,vk


j∈JpK

.

Proof. As PE,t+ 1
2

= PV,tD
−1
w,VHWE and that lim

t→+∞
PV,t = πV , the sequence

(
PE,t+ 1

2

)
t∈N

converges towards a state vector πE such that: πE = πVD
−1
w,VHWE.
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We have:

πE =

∑
i∈JnK

dw,vi∑
k∈JnK

dw,vk
× mj (vi)× we (ej)

dw,vi


j∈JpK

=

∑
i∈JnK

mj (vi)× we (ej)∑
k∈JnK

dw,vk


j∈JpK

=

we (ej)×
∑
i∈JnK

mj (vi)∑
k∈JnK

dw,vk


j∈JpK

=

we (ej)×#m (ej)∑
k∈JnK

dw,vk


j∈JpK

.

All components are non-negative and we check that the components of this vector sum
to one:

∑
j∈JpK

πE,j =

∑
j∈JpK

we (ej)×
∑
i∈JnK

mj (vi)∑
k∈JnK

dw,vk

=

∑
i∈JnK

∑
j∈JpK

we (ej)×mj (vi)∑
k∈JnK

dw,vk

=

∑
i∈JnK

dw,vi∑
k∈JnK

dw,vk

= 1.

These two claims show that this exchange-based process ranks vertices by their weighted
m-degree and hb-edges by their weighted m-cardinality.

We have gathered the two-phase steps of the exchange-based diffusion process in Al-
gorithm 2.1. The time complexity of this algorithm is O (T (dHn+ rHp)) where dH =
max
vi∈V

(di) is the maximal degree of vertices in the hb-graph and rH = max
ej∈E

∣∣∣e?j ∣∣∣ is the
maximal cardinality of the support of a hb-graph. Usually, dH and rH are small com-
pared to n and p. Algorithm 2.1 can be refined to determine automatically the number
of iterations needed, fixing an accepted error to ensure convergence on the values of the
vertices and storing the previous state.
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Algorithm 2.1 Exchange-based diffusion algorithm.
Given:

A hb-graph H = (V,E, we) with |V | = n and |E| = p
Number of iterations: T

Initialisation:
For all vi ∈ V : αi := 1

n
For all ej ∈ E : εj := 0

DiffuseFromVerticesToHbEdges():
For j := 1 to p:
εj := 0
For vi ∈ e?j :

εj := εj + mj (vi)we (ej)
dw,m (vi)

αi

DiffuseFromHbEdgesToVertices():
For i := 1 to n:
αi := 0
For ej such that vi ∈ e?j :

αi := αi + mj (vi)
#mej

εj

Main():
Calculate for all i : dw,m (vi) and for all j : #mej
For t = 1 to T :

DiffuseFromVerticesToHbEdges()
DiffuseFromHbEdgesToVertices()

2.4. Results and evaluation

We validate the approach taken on random hb-graphs and then we apply it to process
the results of Arxiv querying and on an image dataset.

2.4.1. Validation on random hb-graphs

This diffusion by exchange process has been validated on two experiments: the first
experiment generates a random hb-graph to validate our approach and the second com-
pares the results to a classical random walk on the hb-graph.
We built a random unweighted hb-graph generator. The generator makes it possible
to construct a hb-graph with inter-connected sub-hb-graphs; those sub-hb-graphs can
be potentially disconnected leading to multiple connected components. We restricted
ourselves in the experiments to connected hb-graphs. A single connected component
is built by choosing the number of intermediate vertices that link the different sub-hb-
graphs together. As it is shown in Figure 2.2, we generate Nmax vertices. We start by
building each sub-hb-graph, called group, individually and then interconnect them. Let
k be the number of groups. A first set V0 of interconnected vertices is built by choosing
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N0 vertices out of the Nmax. The remaining Nmax−N0 vertices are then separated into k
subsets (Vj)j∈JkK . In each of these k groups Vj , we generate two subsets of vertices: a first
set Vj,1 of Nj,1 vertices and, a second set Vj,2 of Nj,2 vertices with Nj,1 � Nj,2, j ∈ JkK .
The number of hb-edges to be built is adjustable: their number is shared between the
different groups. The m-cardinality #m (e) of a hb-edge is chosen randomly below a
maximum tunable threshold. The Vj,1 vertices are considered as important vertices and
must be present in a certain number of hb-edges per group; the number of important
vertices in a hb-edge is randomly fixed below a maximum number. The completion of
the hb-edge is done by choosing vertices randomly in the Vj,2 set. The random choice
made into these two groups is tuned to follow a power law distribution. It implies that
some vertices occur more often than others. Interconnection between the k components
is achieved by choosing vertices in V0, and inserting them randomly into the hb-edges
built.

Nmax vertices are generated

V0 V1 Vj VjVk

Nj,1
important vertices

Nj,2
remaining vertices

N0 interconnected vertices Nmax −N0 vertices in k groups

Nj,1 � Nj,2

Figure 2.2.: Random hb-graph generation principle.

We apply the exchange-based diffusion process on this generated hb-graph: after a
few iterations, we visualize the hb-graph to observe the evolution of the vertex values
using a gradient coloring scale. We also take advantage of the first phase of each step
to highlight hb-edges in the background, and show hb-edge importance using another
gradient coloring scale.
To get proper evaluation and show that vertices with the highest α-values correspond
to the important vertices of the network—in the sense of being central for the connec-
tivity—, we compute the eccentricity of vertices from a subset S of the vertex set V to
the remaining V \S of the vertices. The eccentricity of a vertex in a graph is the length
of a maximal shortest path between this vertex and the other vertices of this graph:
extending this definition to hb-graphs is straightforward. If the graph is disconnected,
then each vertex has infinite eccentricity.
For the purpose of evaluation, in this Thesis, we define a relative eccentricity as the
length of a maximal shortest path starting from a given vertex in S and ending with any
vertices of V \S. The relative eccentricity is calculated for each vertex of S provided that
it is connected to vertices of V \S; otherwise, it is set to −∞. The concept of relative
eccentricity is illustrated in Figure 2.3.
For the vertex set V, the subset used for relative eccentricity is built by using a threshold
value sV : vertices with α value above this threshold are gathered into a subset AV (sV )
of V. We consider BV (sV ) ∆= V \AV (sV ) , the set of vertices with α values below this
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V

S V\S

v0

Figure 2.3.: Relative eccentricity: finding the length of a maximal shortest path in the
hb-graph starting from a given vertex v0 of S and finishing with any vertex in V \S.

threshold. We evaluate the relative eccentricity of each vertex of AV (sV ) to vertices of
BV (sV ) in the support hypergraph of the corresponding hb-graph.

Assuming that we stop iterating at time T, we let sV vary from 0 to the value αT,max
∆=

max
v∈V

(αT (v))—obtained by iterating the algorithm on the hb-graph—in incremental
steps and while the eccentricity is kept above 0. In order to have a ratio, we calculate:

rV
∆= sV
αref

where αref is the reference normalised value used for the initialisation of the α value
of the vertices of the hb-graph H. This ratio has values increasing by steps from 0 to
αT,max
αref

.

We show the results obtained in Figure 2.4 on two plots. The first plot corresponds
to the maximal length of the path between vertices of AV (sV ) and vertices of BV (sV )
that are connected according to the ratio rV = sV

αref
: this path length corresponds to

half of the length of the path observed in the extra-vertex graph representation of the
hb-graph support hypergraph as in between two vertices of V there is an extra-vertex
that represents the hb-edge (or the support hyperedge). The second curve plots the
percentage of vertices of V that are in AV (sV ) in function of rV . When rV increases,
the number of elements in AV (sV ) naturally decreases while they get closer to the
elements of BV (sV ) , marking the fact that they are central.

Figure 2.5 and Figure 2.6 show that high values of αT (v) correspond to vertices that
are highly connected either by degree or by m-degree.

A similar approach is taken for the hb-edges. Assuming that the diffusion process stops
at time T , we use the εT− 1

2
function to partition the set of hb-edges into two subsets

for a given threshold sE : the subset AE (sE) of the hb-edges that have ε values above
the threshold, and BE (sE) the one gathering hb-edges that have ε values below sE.

sE varies from 0 to εT− 1
2 ,max = max

e∈E

(
εT− 1

2
(e)
)
by incremental steps while keeping the

eccentricity above 0, first of the two conditions achieved. In the hb-graph representation,
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Figure 2.4.: Maximum path length and percentage of vertices in AV (s) over vertices
in V vs ratio rV .

each hb-edge corresponds to an extra-vertex. Each time, we evaluate the length of the
maximal shortest path linking one vertex of AE (sE) to one vertex of BE (sE) for the
connected vertices in the hb-graph support hypergraph incident graph: the length of
the path corresponds to half of the one obtained from the graph for the same reason
than before.

We define the ratio:
rE

∆= sE
βref

where βref
∆= 1
|E|

that corresponds to the normalised value that would be used in the
dual hb-graph to initialize the diffusion process. In Figure 2.7, we observe for the hb-
edges the same trend than the one observed for vertices: the length of the maximal
shortest path between a hb-edge of AE (sE) and any hb-edge of BE (sE) decreases as the
ratio rE increases, while the percentage of hb-edges in AE (sE) over E decreases.

Figure 2.8 shows the high correlation between the value of ε(e) and the cardinality of e;
Figure 2.9 shows that the correlation between value of ε(e) and the m-cardinality of e
is even stronger.

The number of iterations needed to have a significant convergence depends on the initial
conditions; we tried different initializations, either uniform, or applying some strokes
on a different number of nodes. We observed that the more uniform the information
on the network is, the less number of iterations for convergence is needed. No matter
the configuration, the most important vertices in term of connectivity are always the
most highlighted. Figure 2.10 and in Figure 2.11 depict the convergence observed on a
uniform initial distribution as described in the former section. In Figure 2.10, we can see
how the α-values, as observed in Figure 2.5, reflect the m-degree of the vertex they are
associated to: 200 iterations is far enough to rank the vertices by m-degree. In Figure
2.11, we can observe an analogous phenomena with the ε-value associated to hb-edges
that reflect the m-cardinality of the hb-edges. Again 200 iterations are sufficient to
converge in studied cases.
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Figure 2.5.: Alpha value of vertices at step 200 and degree of vertices.
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Figure 2.6.: Alpha value of vertices at step 200 and m-degree of vertices.

The number of iterations needed to converge depends on the structure of the network.
In the transitory phase, the vertices need to exchange with the hb-edges; the process
requires some iterations before converging and its behavior depends on the node con-
nectivity and the hb-edge composition. It remains as an open question to investigate on
this transitory phase to have more indications on the way the ε and the α-values vary.
We show an example of exchange-based diffusion on a lab-generated hb-graph in Figure
2.12 (a) and on its support hypergraph in Figure 2.12 (b). The vertices are colored
depending on the value of the ratio:

cα (v) ∆= αT (v)
αref

using the scale of colors on the right. Vertices with near zero cα (v) values—i.e. low
αT (v) values compared to αref—are dark bluish colored; on the opposite, with high
cα (v) values—i.e. with high αT (v) values compared to αref—are yellowish colored; when
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Figure 2.7.: Path maximum length and percentage of vertices in AE(s) vs ratio.
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Figure 2.8.: Epsilon value of hb-edge at stage 199+1
2 and cardinality of hb-edge.

cα (v) is close to 1, the vertices are colored in a close turquoise. The hb-edges are colored
with the left gradient color scale according to the value of the ratio:

cε (v) ∆=
εT− 1

2
(v)

εnorm

where εnorm (e) ∆= ∑
v∈e?

me (v)
degm (v)αref. εnorm (e) corresponds to the value the hb-edge e

should have in reference to the fraction of αref given by each vertex and depending
on the fraction of its multiplicity versus its m-degree in the hb-edge. Hb-edges are
colored using cε (e) : when this ratio is close to 0—i.e. when the hb-edges have low
εT− 1

2
(v) compared to εnorm (e)—hb-edges are colored in a blueish hue; when this ratio

is high—i.e. when the hb-edges have high εT− 1
2

(v) compared to what was expected
with εnorm (e)—they are colored in a reddish hue. It is worth mentioning that diffusing
only on the support hypergraph of a hb-graph highlights only nodes that are highly
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Figure 2.9.: Epsilon value of hb-edge at stage 199+1
2 and (m-)cardinality of hb-edge.

connected inside a group, the ones being at the intersection of the different groups have
less importance in this case. The diffusion on the hb-graph captures the centrality of
these vertices that are peripheral to the groups and central for the connectivity of the
hb-graph itself. Hence, taking the multiplicities into account brings valuable information
on the network and on the centrality of some vertices.
To compare our exchange-based diffusion process to a baseline, we consider a classical
random walk. In this classical random walk, the walker who is on a vertex v chooses
randomly an incident hb-edge with a uniform probability law, and, when the walker is on
a hb-edge e, he chooses a vertex inside the hb-edge randomly with a uniform probability
law. We let the possibility of teleportation between vertices using a tunable parameter
γ : 1− γ represents the probability to be teletransported. We choose γ = 0.85, which is
a classical value used with teleportation. We count the number of passages of the walker
through each vertex and each hb-edge. We stop the random walk when the hb-graph is
fully explored. We iterate N times the random walk, N varying.
To improve the results with the classical random walk, we propose a modified biased
random walk on the hb-graphs—described in Algorithm 2.2—with random choice of the
hb-edge when the walker is on a vertex v with a distribution of probability:(

we (ei)mi (v)
degw,m (v)

)
i∈JpK

and, a random choice of the vertex when the walker is on a hb-edge e with a distribution
of probability: (

me (vi)
#m (e)

)
i∈JnK

.

We keep the possibility of teleportation as it is done in the classical random walk.
Similarly to the classical random walk, we count the number of passages of the walker
through each vertex and each hb-edge. We also stop the random walk when the hb-
graph is fully explored. We iterate N times the random walk with various values of N.
Assigning a multiplicity of 1 to every vertex and a weight of 1 to every hb-edge—with
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Algorithm 2.2 Modified random walk in hb-graphs.
Given:

A hb-graph H = (V,E, we) with |V | = n and |E| = p
Number of Random walks: TRW
A teleportation threshold: γth

Initialisation:
∀v ∈ V : nV (v) := 0
∀e ∈ E : nE (e) := 0
Q := deep copy (V )
v0 := random (v ∈ Q)
nV (v0) := 1
Q := Q\ {v0}

OneRW():
While Q 6= ∅:
γrand := random ([0; 1] ,weight = uniform)
if γrand < γth :

# Visit of incident edges

ec := random

e ∈ E : vc ∈ e?,weight =
(
we (ej)mej (v0)

degwe,m (v0)

)
ej∈E


nV (ec) := nV (ec) + 1
# Choice of the next vertex

v0 := random
(
v ∈ V : v ∈ e?c ,weight =

(
mec (v)
#m (ec)

)
v∈V

)
If v0 ∈ Q :
Q := Q\ {v0}

nV (v0) := nV (v0) + 1
else:

# Case of teleportation

v0 := random
(
v ∈ V : v ∈ e?c ,weight =

(
mec (v)
#m (ec)

)
v∈V

)
Q := Q\ {v0}
nV (v0) := nV (v0) + 1

Main():
For i := 0 to TRW :

OneRW()
∀v ∈ V : nV (v) := nV (v)

TRW

∀e ∈ E: nE (e) := nE (e)
TRW
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Figure 2.10.: Alpha value convergence of the vertices vs number of iterations. The
plots are m-degree-based with gradient coloring.

the vertex degree and the hb-edge cardinality instead of the multiplicity—retrieves the
classical random walk from the modified random walk.

0 100 200 300 400 500 600
Rank in diffusion process

0

100

200

300

400

500

600

Ra
nk
 u
sin
g 
ra
nd
om
 w
al
ks

number of iterations: 1000
correlation: 0.952

Diffusion vs modified random walk by number of vertex visits

Figure 2.13.: Comparison of the rank obtained by a thousand modified random walks
after total discovery of the vertices in the hb-graph and the rank obtained with 200
iterations of the exchange-based diffusion process.
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Figure 2.11.: Epsilon value convergence of hb-edges vs number of iterations. The plots
are m-cardinality-based colored using gradient colors.
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Figure 2.14.: Comparison of the rank obtained by a thousand modified random walks
after total discovery of the vertices in the hb-graph and m-degree of vertices.
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Figure 2.15.: Comparison of the rank obtained by a thousand modified random walks
after total discovery of the vertices in the hb-graph and degree of vertices.

Figure 2.13 shows that there is a good correlation between the rank obtained by a
thousand modified random walks and two hundreds iterations of our diffusion process,
especially for the first hundred vertices of the network, which is generally the ones that
are targeted. The lack of correlation between the rank obtained by the random walk
with the degree of the vertices and the m-degree of vertices as shown respectively in
Figure 2.14 and Figure 2.15 is mainly due to the vertices with low m-degrees / degrees.
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Figure 2.16.: Comparison of the rank obtained by a thousand classical random walks
after total discovery of the vertices in the hb-graph and rank obtained with 200
iterations of the exchange-based diffusion process.
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Figure 2.17.: Comparison of the rank obtained by a thousand classical random walks
after total discovery of the vertices in the hb-graph and m-degree of vertices.
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Figure 2.18.: Comparison of the rank obtained by a thousand classical random walks
after total discovery of the vertices in the hb-graph and degree of vertices.

We can remark in Figure 2.16 that the correlation is a bit lower with a thousand classical
random walks due to the fact that there are more vertices that are seen as differently
ranked in between the two approaches. In Figure 2.17, we can see that the ranks in the
classical random walk rely more on the degree than on the m-degree as shown in Figure
2.18, especially for vertices with small (m-)degrees; but there is still a bad classification
for lower (m-)degree vertices.

We have compared the three methods from a computational time perspective; the results
are shown in Table 2.1. The diffusion process is clearly faster; the modified random walk,
essentially due to the overhead due to the large number of divisions, takes longer than
the classical random walk. A lot of optimization can be foreseen to make this modified
random walk run faster. The random walks can be easily parallelized; it is also the case
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|E| |V | k N1 N0 Type of algorithm 100 200 500 1000
55 106 1 5 5 classical random walk 0.40 ± 0.05 0.78 ± 0.07 1.92 ± 0.10 3.82 ± 0.14
55 106 1 5 5 diffusion 0.05 ± 0.02 0.08 ± 0.02 0.20 ± 0.04 0.39 ± 0.06
55 306 1 5 5 modified random walk 0.71 ± 0.06 1.43 ± 0.09 3.56 ± 0.17 7.12 ± 0.23
55 132 3 5 5 classical random walk 0.49 ± 0.05 0.96 ± 0.06 2.36 ± 0.08 4.71 ± 0.12
55 132 3 5 5 diffusion 0.05 ± 0.02 0.09 ± 0.02 0.21 ± 0.04 0.42 ± 0.05
55 132 3 5 5 modified random walk 0.89 ± 0.06 1.77 ± 0.09 4.43 ± 0.13 8.85 ± 0.19
55 91 5 5 5 classical random walk 0.30 ± 0.04 0.59 ± 0.05 1.44 ± 0.06 2.85 ± 0.07
55 91 5 5 5 diffusion 0.04 ± 0.02 0.07 ± 0.02 0.16 ± 0.03 0.31 ± 0.04
55 91 5 5 5 modified random walk 0.55 ± 0.05 1.09 ± 0.06 2.71 ± 0.09 5.42 ± 0.14
305 534 1 5 5 classical random walk 4.05 ± 0.16 8.07 ± 0.26 20.10 ± 0.45 40.17 ± 0.85
305 534 1 5 5 diffusion 0.29 ± 0.06 0.57 ± 0.08 1.35 ± 0.09 2.64 ± 0.10
305 534 1 5 5 modified random walk 6.86 ± 0.28 13.71 ± 0.41 34.16 ± 0.75 68.28 ± 1.21
305 491 3 5 5 classical random walk 3.51 ± 0.13 6.98 ± 0.21 17.39 ± 0.38 34.77 ± 0.70
305 491 3 5 5 diffusion 0.27 ± 0.05 0.53 ± 0.09 1.25 ± 0.11 2.43 ± 0.11
305 491 3 5 5 modified random walk 6.02 ± 0.22 12.03 ± 0.41 30.10 ± 0.73 60.23 ± 1.34
305 499 5 5 5 classical random walk 3.31 ± 0.15 6.58 ± 0.20 16.38 ± 0.34 32.72 ± 0.51
305 499 5 5 5 diffusion 0.24 ± 0.04 0.47 ± 0.06 1.12 ± 0.06 2.18 ± 0.08
305 499 5 5 5 modified random walk 5.86 ± 0.26 11.70 ± 0.37 29.26 ± 0.58 58.51 ± 0.89

Table 2.1.: Time taken for doing 100, 200, 500 and 1000 iterations of the diffusion
algorithm and 100, 200, 500 and 1000 classical and modified random walks on different
hb-graphs.

for the diffusion process. The number of iterations in the diffusion process can also be
optimized. These issues will be addressed in future work.

2.4.2. Two use cases

2.4.2.1. Application to Arxiv querying

We used the standard Arxiv API1 to perform searches on Arxiv database. When per-
forming a search, the query is transformed into a vector of words which is the basis
for the retrieval of documents. The most relevant documents are retrieved based on a
similarity measure between the query vector and the word vectors associated to indi-
vidual documents. Arxiv relies on Lucene’s built-in Vector Space Model of information
retrieval and the Boolean model2. The Arxiv API returns the metadata associated to
the document with highest scores for the query performed.

This metadata, filled by the authors during their submission of a preprint, contains
different information such as authors, Arxiv categories and abstract.

We process these abstracts using TextBlob, a Python natural language processing li-
brary3 and extract the nouns using the tagged text.

Nouns in the abstract of each document are scored with TF-IDF, the Term Frequency-
Invert Document Frequency, defined as:

TF-IDF (x, d) ∆= TF(x, d)×IDF(x, d)
1https://arxiv.org/help/api/index
2https://lucene.apache.org/core/2_9_4/scoring.html
3https://textblob.readthedocs.io/en/dev/

https://arxiv.org/help/api/index
https://lucene.apache.org/core/2_9_4/scoring.html
https://textblob.readthedocs.io/en/dev/
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with TF(x, d) the relative frequency of x in d and IDF (x, d) the invert document fre-
quency.
Writing nd the total number of terms in document d and nx the number of occurrences
of x :

TF(x, d) ∆= nx
nd

and, writing N the total number of documents and nx∈d the number of documents
having an occurrence of x, we have:

IDF (x, d) ∆= log10

(
N

nx∈d

)
.

Scoring each noun in each abstract of the retrieved documents generates a hb-graph HQ
of universe the nouns contained in the abstracts. Each hb-edge contains a set of nouns
extracted from a given abstract with a multiplicity function that represents the TF-IDF
score of each noun.
The exchange-based diffusion process is applied to the hb-graph HQ. We show two
typical examples on the same query of the first 50 results in Figure 2.19 (a) and of the
first 100 results in Figure 2.19 (b). The number of iterations needed to have convergence
is less than 10 in these two cases; with 500 results, around 10 iterations are needed for
all hb-edges, but for one, where 30 iterations are needed.
As the hb-edges correspond to documents in Arxiv database, we compare the central
documents obtained in the results of the queries: we observe that the ranking obtained
based on the ε49+ 1

2
differs significantly from the ranking by pertinence given by Arxiv

API. In the exchange-based diffusion, the ranking sorts documents depending on their
word weights and their centrality as we have seen in the experimental part on random
hb-graphs.
Moreover, we have observed that when the number of results retrieved increases the top
5 (respectively top 10) documents—out of the documents retrieved— can sometimes
change drastically depending on the retrieval of new documents that are more central
with relation to the words they contain. If the gap seems small with a few documents
retrieved, this gap increases as the number of documents increases. The increasing
number of results reveals the full theoretical hb-graph obtained from the whole dataset
performing the querying, and hence, reveals central subjects in this dataset. Hence the
diffusion process can allow to highlight the importance of documents by considering
central subjects in the processing of the query results.

2.4.2.2. Application to an image database

We have applied the exchange-based diffusion to a database of images. We have used
a hb-graph modeling of the objects detected on individual images to build a network
of co-occurrences. Each image has been processed using a Retina neural network to
label the objects it contains, and each object is then counted in its own category. The
database used is the 2014 training set of the COCO dataset4 [LMB+14]. The use of a
pre-trained Retina net5 allows to give bounding boxes corresponding to concepts, with a
4http://cocodataset.org/#home.
5https://github.com/fizyr/keras-retinanet

http://cocodataset.org/#home
https://github.com/fizyr/keras-retinanet
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probability associated to them. A threshold of 0.5 is chosen—as proposed by the library
developer—below which the bounding box is rejected. Hence, each image is associated
to its concepts and their multiplicity.

Out of this association, two hb-graphs can be build. First, a hb-graph of images HIm,
where the vertex set is constituted of the different concepts—objects—that the image
holds and where a hb-edge is related to an image, regrouping the different concepts with
their respective multiplicity. The second hb-graph is the hb-graph of concepts HCo : the
vertex set corresponds to the image set, and a hb-edge regroups the images holding the
concept with a multiplicity that corresponds to the number of times the corresponding
concept occurs in the image. These two hb-graphs are dual one of the other. We now
focus on the hb-graph of images.

We randomly select 200 images of the COCO 2014 training dataset, building the orig-
inal image hb-graph. To ensure connectivity, we focus on the first main component
of the original image hb-graph. This component is designated as the hb-graph in the
remainder. We then enhance the diffusion on this connected hb-graph. A typical re-
sult is presented in Figure 2.20: the concepts are the vertices, the images represent the
extra-vertices corresponding to the hb-edges. The coloration of vertices—i.e. the nodes
of the concepts— and of hb-edges—i.e. the extra-nodes representing images— is the
same than the one used in Figure 2.12. The closer to red the images are, the more
central to the sample drawn they are; hence, these images can potentially be used to
make a summary of this sample.

2.5. Future work and Conclusion

The results obtained by using hb-graph highlight the possibility of using hb-edges for
analyzing networks; they confirm that vertices are highlighted due to their connectivity.
The highlighting of the hb-edges has been achieved by using the intermediate step of our
diffusion process. Different applications can be thought in particular in the search of
tagged multimedia documents for refining the results and scoring of documents retrieved.
Using tagged documents ranking by this means could help in creating summary for vi-
sualisation. Our approach is seen as a strong basis to refine the approach of [XDYF16].
This approach can also be viewed as a means to make query expansion and disambigua-
tion by using additional high scored words in the network and a way of making some
recommendation based on the scoring of a document based on its main words. We have
also proposed a generalization of this approach in Appendix Section D.1 using vertex
and hb-edge abstract information functions and biased probability transition.
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(a) Exchange-based diffusion on the hb-graph

(b) Exchange-based diffusion on the hb-graph support

Figure 2.12.: Exchange-based diffusion in a hb-graph (a) and its support hypergraph
(b) after 200 iterations of Algorithm 2.1: highlighting important hb-edges. Simulation
with 848 vertices (chosen randomly out of 10 000) gathered in 5 groups of vertices
(with 5, 9, 14, 16 and 9 important vertices and 2 important vertices per hb-edge), 310
hb-edges (with cardinality of support less or equal to 20), 10 vertices in between the
5 groups. Extra-vertices have square shape and are colored with the hb-edge color
scale.
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Sub-figure (a): 50 most relevant articles have been retrieved with 100 iterations.
Top 10: 1: multimedium; 2: video; 3: search; 4: retrieval; 5: image; 6: indexing; 7: paper; 8: index; 9:

method; 10: system;

Sub-figure (b): 100 most relevant articles have been retrieved with 100 iterations.
Top 10: 1: paper; 2: index; 3: multimedium; 4: image; 5: method; 6: video; 7: retrieval; 8:

performance; 9: indexing; 10: system;

Figure 2.19.: Querying Arxiv. The search performed is “content-based multimedia
indexing” for which (a) 50 most—respectively (b) 100 most—relevant articles have
been retrieved.
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Figure 2.20.: Exchange-based diffusion on the sub-hb-graph first component with 177
images of a hb-graph of 200 images of the COCO 2014 training dataset.
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This chapter is based on [OLGMM18b, OLGMM19a, OLGMM19c].

Prerequisites: Sections 1.3 and 1.4, Appendix B—particularly Section B.3—, and
possibly Appendix Section E.1.4.

3.1. Motivation

In [OLGMM17a, OLGMM18a]—reproduced in Appendix Section E.1—we have pre-
sented a first e-adjacency tensor for general hypergraphs. Its construction has been
achieved by involving a Hypergraph Uniformisation Process, coupled to a Polynomial
Homogenization Process. The Uniformisation requires the addendum of several special
vertices, one per layer of the hypergraph decomposition.

Nonetheless, in Chapter 1, one of the motivations for the introduction of hb-graph was
that hb-graphs are a way of reducing the number of variables used in the Polynomial
Homogenization Process, while keeping the Uniformisation of the Structure interpretable
in term of m-uniformisation of hb-graphs.

Research question 3.1. Which e-adjacency tensor(s) can we build for general hb-
graphs?

In this chapter, we mostly rely on the related work presented in [OLGMM17a]. We then
present our expectations on the desirable properties the e-adjacency tensors of general
hb-graphs should have and present three possible solutions. After discussing their prop-
erties, we justify the choice for the best candidate, and apply it to the particular case
of general hypergraphs. This choice will be refined in Chapter 4.
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3.2. Related work

In addition to the related work presented in Appendix Section E.1 for general hy-
pergraphs, we found, after having developed the whole theory on hb-graphs, [PZ15].
Nonetheless, as it is a strong anteriority, we mention it here.

A [k-]adjacency tensor for k-PZ-multigraphs—i.e. k-m-uniform natural hb-graph
with no repeated hb-edge—is defined as follow:

Definition 3.1. Let
...
Hk = (V,E) be a k-PZ-multigraph on a finite set of vertices V =

{vi : i ∈ JnK} and a set of edges E = (ej)j∈JpK .

The [k-]adjacency tensor of a k-PZ-multigraph is the symmetric tensor A ...
Hm
∈ Tk,n

of CHR A ...
Hk

= (ai1,...,ik)i1,...,ik∈JnK such that:

ai1,...,ik =


mj1 ! . . .mjs !

(m− 1)! , if {{vi1 , ..., vim}} =
{
v
mj1
j1

, ..., v
mjs
js

}
∈ E;

0, otherwise.

The authors then study some spectral properties of k-PZ-multigraph. However, the
subject of general natural hb-graphs remains to be tackled.

3.3. e-adjacency tensor of a natural hb-graph

Postulate 3.1. In this section, we consider only natural hb-graphs with no repeated
hb-edge.

To build the e-adjacency tensor A (H) of a natural hb-graph H = (V,E) without repeated
hb-edge—of vertex set V = {vi : i ∈ JnK} and hb-edge set E = (ej)j∈JpK—, we take
an approach similar to Appendix Section E.1 using the strong link between cubical
symmetric tensors and homogeneous polynomials.

3.3.1. Expectations for the e-adjacency tensor

We formulate the expected properties for the e-adjacency tensor of a natural hb-graph we
want to construct. For general hypergraphs, we have insisted on the interpretation of the
construction using a Hypergraph Uniformisation Process: that has required the filling
of the hyperedges with additional and two-by-two different vertices since hyperedges
cannot have duplicated elements.

As natural hb-graphs “naturally” allow vertices to be duplicated, we can think of differ-
ent ways of filling the hb-edges with additional vertices. We have chosen three of them:
the straightforward approach, the silo approach and the layered approach—as it was
already done for the layered approach for general hypergraphs in Appendix Section E.1.

We first give some expected properties of such a tensor, some of them being more
qualitative than quantifiable.
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Expectation 3.1. The e-adjacency tensor should be non-negative, symmetric and its
generation should be as simple as possible.

Since non-negative symmetric hypermatrices can be described with a small number of
values, a hb-edge is representable with only one tuple of indices and their corresponding
coefficient, the other coefficients of the tensor being obtained by permuting the indices of
the first one while the same value is kept. Moreover, in the spectral theory, symmetric
non-negative nonzero tensors ensure interesting properties as their spectral radius is
positive [QL17]; furthermore, there is at most one H-eigenvalue that corresponds to the
spectral radius with a positive Perron H-eigenvector.

Expectation 3.2. The tensor should be globally invariant to vertex permutation in the
original hb-graph.

By globally invariant, we mean that a permutation of rows on each face of the hyper-
matrix follows the same permutation than the one involved in the vertex permutation.
We do not expect the special vertices added for the filling of the hb-edges to follow the
same rule.

Expectation 3.3. The e-adjacency tensor should induce a unique reconstruction of the
hb-graph it is originated from.

The e-adjacency tensor should describe the hb-graph in a unique way up to a permu-
tation of indices, so that no two hb-graphs have the same e-adjacency tensor unless
they are isomorphic. This is a strong requirement as it enforces the addition of special
vertices even for k-m-uniform hb-graphs, where k-adjacency corresponds to k-adjacency.
Hence, the special vertices will be systematically generated and added to the final tensor
in order to meet this expectation.

Expectation 3.4. Given the choice of two representations the one that can be de-
scribed with the least possible number of elements should be chosen. Then the sparsest
e-adjacency tensor should be chosen.

It forces the hypermatrix to be easily describable before ensuring the lowest sparsity
possible. The fact that the hypermatrix is symmetric will help.

Expectation 3.5. The e-adjacency tensor should allow direct retrieval of the vertex
degrees.

This is required for all k-adjacency tensors of uniform hypergraphs. It is also the case
for the e-adjacency tensors of [SZB19, BCM17] and for the first e-adjacency tensor we
built for general hypergraphs.

3.3.2. Elementary hb-graph

A hb-graph that has only one non repeated hb-edge in its hb-edge family is called an
elementary hb-graph.
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Claim 3.1. Let H = (V,E) be a hb-graph with no repeated hb-edge.

Then:
H =

⊕
e∈E

He

where He = (V, (e)) is the elementary hb-graph associated to the hb-edge e.

Proof. Let e1 ∈ E and e2 ∈ E. As H is with no repeated hb-edge, e1 +e2 does not contain
any new pairs of repeated elements. Thus He1 + He2 is a direct sum and can be written
He1 ⊕ He2 .

A straightforward iteration over elements of e ∈ E leads to the result.

We need first to define the k-adjacency hypermatrices for an elementary hb-graph and
for a m-uniform hb-graph.

3.3.3. Normalised k-adjacency tensor of an elementary hb-graph

We consider an elementary hb-graph He = (V, (e)) where V = {vi : i ∈ JnK} and e a mul-
tiset of universe V and multiplicity function m. The support of e is e? = {vj1 , . . . , vjk}
by considering, without any loss of generality: 1 6 j1 < . . . < jk 6 n.

e is the multiset: e =
{
v
mj1
j1

, . . . , v
mjk
jk

}
where mj = m (vj) .

The normalised hypermatrix representation of e, written Qe, describes uniquely the
mset e. Thus the elementary hb-graph He is also uniquely described by Qe as e is its

unique hb-edge. Qe is of rank r = #me =
k∑
j=1

mj and dimension n.

Hence, the definition:

Definition 3.2. Let H = (V, (e)) be an elementary hb-graph with V = {vi : i ∈ JnK}
and e the multiset

{
v
mj1
j1

, . . . , v
mjk
jk

}
of m-rank r = #me, universe V and multiplicity

function m.

The normalised k-adjacency hypermatrix of an elementary hb-graph He is
the normalised representation of the multiset e, i.e. the symmetric hypermatrix Qe

∆=
(qi1...ir)i1,...,ir∈JnK of rank r and dimension n where the only nonzero elements are:

q
σ

(
j
mi j1
1 ,...,j

mi jk
k

) = mij1 ! . . .mijk !
(r − 1)!

where σ ∈ SJrK
1.

In an elementary hb-graph, k-adjacency corresponds to #me-adjacency. This hyperma-
trix encodes the k-adjacency of an elementary hb-graph.
1SJrK designates the set of permutations on JrK.
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3.3.4. Hb-graph polynomial

Homogeneous polynomial associated to a hypermatrix:

With an approach similar to Appendix Section E.1 where full details are given, let
e1, . . . , en be the canonical basis of Rn.
(ei1 ⊗ . . .⊗ eik)i1,...,ik∈JnK is a basis of L0

k (Kn) , where ⊗ is the Segre outerproduct.

A tensor Q ∈ L0
k (Kn) is associated to a hypermatrix Q = (q i1...ir)i1,...,ir∈JnK by writing

Q as:
Q =

∑
i1,...,ir∈JnK

q i1...irei1 ⊗ . . .⊗ eir .

Q is called the canonical hypermatrix representation (CHR for short) of Q.
Considering n variables zi attached to the n vertices vi and z = ∑

i∈JnK
ziei, the multilinear

matrix product (z, . . . , z) .Q = (z)[r] . Q is a polynomial P (z0)2:

P (z0) =
∑

i1,...,ir∈JnK

q i1...irzi1 . . . zir

of degree r.

Elementary hb-graph polynomial:

Let He = (V, (e)) be an elementary hb-graph with V = {vi : i ∈ JnK} and e the multiset{
v
mj1
j1

, . . . , v
mjk
jk

}
of m-rank r = #me, universe V and multiplicity function m.

Using the normalised k-adjacency hypermatrix Qe = (q i1...ir)i1,...,ir∈JnK , which is sym-
metric, we can write the reduced version of its attached homogeneous polynomial Pe :

Pe (z0) = r!
mj1 ! . . .mjk !qj

mj1
1 ...j

mjk
k

z
mj1
j1

. . . z
mjk
jk

= #me z
mj1
j1

. . . z
mjk
jk

.

Hb-graph polynomial:

Considering a hb-graph H = (V,E) with no-repeated hb-edge, with V = {vi : i ∈ JnK}
and E = (ei)i∈JpK .

This hb-graph can be summarized by a polynomial of degree rH = max
e∈E

#m (e) :

P (z0) ∆=
∑
i∈JpK

ceiPei (z0)

=
∑
i∈JpK

cei
ri!

mij1 ! . . .mijki
!qjmi j11 ...j

mi jki
ki

z
mij1
j1

. . . z
mijki
jki

=
∑
i∈JpK

cei#mei z
mij1
j1

. . . z
mijki
jki

2Where: z0 = (z1, ..., zn)
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where cei is a technical coefficient. P (z0) is called the hb-graph polynomial. The
choice of cei will be further made in Section 3.3.8 in order to retrieve the m-degree of
the vertices from the e-adjacency tensor.

3.3.5. k-adjacency hypermatrix of a m-uniform natural hb-graph

We now extend to m-uniform hb-graphs the k-adjacency hypermatrix obtained in the
case of an elementary hb-graph.

In the case of a r-m-uniform natural hb-graph with no repeated hb-edge, each hb-
edge has the same m-cardinality r. Hence, the k-adjacency of a r-m-uniform hb-graph
corresponds to r-adjacency where r is the m-rank of the hb-graph. The k-adjacency
tensor of the hb-graph has rank r and dimension n. The elements of the k-adjacency
hypermatrix are: ai1...ir with i1, . . . , ir ∈ JnK.

The associated hb-graph polynomial is homogeneous of degree r.

We obtain the definition of the k-adjacency tensor of a r-m-uniform hb-graph by sum-
ming the k-adjacency tensor attached to each hb-edge with a coefficient ci equals to 1
for each hb-edge.

Definition 3.3. Let H = (V,E) be a hb-graph with V = {vi : i ∈ JnK}.

The k-adjacency hypermatrix of a r-m-uniform hb-graph H = (V,E) is the
hypermatrix AH = (ai1...ir)i1,...,ir∈JnK defined by:

AH
∆=
∑
i∈JpK

Qei

where Qei is the k-adjacency hypermatrix of the elementary hb-graph associated to the
hb-edge ei =

{
v
mij1
j1

, . . . , v
mijki
jki

}
∈ E.

The only non-zero elements of Qei are the elements with indices obtained by permutation
of the elements of the multiset

{
j
mij1
1 , . . . , j

mijki
ki

}
and are all equal to:

mij1 ! . . .mijki
!

(r − 1)! .

This definition corresponds to the definition given by [PZ15], which is a symmetrized
version of the one given in [PZ14].

We can remark that when a r-m-uniform hb-graph has 1 as vertex multiplicity for
any vertices in each hb-edge support of all hb-edges, then this hb-graph is a r-uniform
hypergraph: in this case, we retrieve the result of the degree-normalized tensor defined
in [CD12].

Claim 3.2. The m-degree of a vertex vj in a r-m-uniform hb-graph H of the k-adjacency
hypermatrix is:

degm (vj) =
∑

j2,...,jr∈JnK

ajj2...jr .
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Proof. ∑
j2,...,jr∈JnK

ajj2...jr has non-zero terms only for the corresponding hb-edges ei con-

taining vj . Such a hb-edge is described by:

ei =
{
v
mi j
j , v

mi l2
l2

, . . . , v
mi lki
lki

}
.

It means that the multiset {{j2, . . . , jr}} corresponds exactly to the multiset:

{
jmi j−1 , l

mi l2
2 , . . . , l

mi lki
ki

}
.

For each ei such that vj ∈ ei, there are (r − 1)!
(mi j − 1)!mi l2 ! . . .mi lki

! possible permutations

of the indices j2 to jl and:

ajj2...jr =
mi j !mi l2 ! . . .mi lki

!
(r − 1)! .

Also: ∑
j2,...,jr∈JnK

ajj2...jr =
∑

i∈JpK : vj∈ei

mi j = degm (vj) .

3.3.6. Elementary operations on hb-graphs

In Appendix Section E.1, we describe two elementary operations that are used in the
hypergraph uniformisation process. We describe here similar operations for hb-graphs.

Operation 3.3.1. Let H = (V,E) be a hb-graph.
Let w1 be a constant weighted function on hb-edges with constant value 1.
The weighted hb-graph H1

∆= (V,E, w1) is called the canonical weighted hb-graph
of H.
The application φcw : H 7→ H1 is called the canonical weighting operation.

Operation 3.3.2. Let H1 = (V,E, w1) be a canonical weighted hb-graph.
Let c ∈ R++. Let wc be a constant weighted function on hb-edges with constant value
c.
The weighted hb-graph Hc

∆= (V,E, wc) is called the c-dilated hb-graph of H.
The application φc-d : H1 7→ Hc is called the c-dilatation operation.
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Operation 3.3.3. Let Hw = (V,E, w) be a weighted hb-graph. Let y be a vertex that is
not in V. The y-complemented hb-graph of Hw is the hb-graph Hyc

∆= (Vyc ,Eyc , wyc)
where:

• Vyc
∆= V ∪ {y} ;

• Eyc
∆= (ξ (e))e∈E where the map ξ : E → M (Vyc) is such

that for all e ∈ E, ξ (e) ∆=
{
xmξ(e)(x) : x ∈ Vyc

}
∈ M (Vyc) with

mξ(e)(x) ∆=
{
me(x) if x ∈ e?;
rH −#me if x = y;

• the weight function wyc is such that ∀e ∈ E: wyc (ξ(e)) ∆= w(e).

The application φy-c : Hw 7→ Hyc is called the y-complemented operation.

Operation 3.3.4. Let Hw = (V,E, w) be a weighted hb-graph. Let y be a vertex that
is not in V. Let α ∈ R++. The yα-vertex-increased hb-graph of Hw is the hb-graph
H+
w+

∆=
(
V +,E+, w+) where:

• V + ∆= V ∪ {y} ;

• E+ ∆= (φ (e))e∈E where the map φ : E → M
(
V +) such that

for all e ∈ E, φ (e) ∆=
{
xmφ(e)(x) : x ∈ V +

}
∈ M

(
V +) with

mφ(e)(x) ∆=
{
me(x) if x ∈ e?;
α if x = y;

• the weight function is w+ is such that ∀e ∈ E: w+ (φ(e)) ∆= w(e).

The application φyα-v : Hw 7→ H+
w+ is called the yα-vertex-increasing operation.
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Operation 3.3.5. The merged hb-graph Ĥŵ
∆=
(
V̂ , Ê, ŵ

)
of a family (Hi)i∈I of

weighted hb-graphs with ∀i ∈ I : Hi = (Vi,Ei, wi) is the weighted hb-graph where:

• V̂
∆= ⋃
i∈I

Vi;

• Ê
∆= (ψ (e))e∈∑

i∈I
Ei

a where the map ψ : ∑
i∈I

Ei → M
(
V̂
)

such that for all

e ∈
∑
i∈I

Ei, ψ (e) ∈ M
(
V̂
)

and is the multiset
{
xmψ(e)(x) : x ∈ V̂

}
, with

mψ(e)(x) ∆=
{
me(x) if x ∈ e?;
0 otherwise;

• ∀e ∈ Ei, ŵ(e) ∆= wi(e).

The application φm : (Hi)i∈I 7→ Ĥ is called the merging operation.
a∑
i∈I

Ei is the family obtained with all elements of each family Ei.

Operation 3.3.6. Decomposing a hb-graph H = (V,E) into a family of hb-graphs
(Hi)i∈I , where Hi = (V,Ei) such that H = ⊕

i∈I
Hi is called a decomposition operation

φd : H 7→ (Hi)i∈I .

The direct sum of two hb-graphs appears as a merging operation in one way and as a
decomposition operation in the other. For a given hb-graph, different decomposition
operations exist. Nonetheless, the decomposition in elementary hb-graph is unique as
well as the decomposition in m-uniform hb-graphs representing the different levels of
m-uniformity in that hb-graph.

We now focus on the preservation of e-adjacency through these different operations, as
it is fundamental to ensure the soundness of the constructed hypermatrix.

Definition 3.4. Let H = (V,E) and H′ = (V ′,E′) be two hb-graphs.

Let φ : H 7→ H′.

φ is said preserving e-adjacency if vertices of V ′ that are e-adjacent in H′ and also
in V are e-adjacent in H.

φ is said preserving exactly e-adjacency if vertices that are e-adjacent in H′ are
e-adjacent in H and reciprocally.

We can extend these definitions to ψ : (Hi)i∈I 7→ H′.

Definition 3.5. Let (Hi)i∈I be a family of hb-graphs with ∀i ∈ I, Hi = (Vi,Ei) and
H′ = (V ′,E′) a hb-graph.

Let consider ψ : (Hi)i∈I 7→ H′.

ψ is said preserving e-adjacency if vertices that are e-adjacent in H′, restricted to
the ones that belong to V = ⋃

i∈I
Vi, are e-adjacent vertices in exactly one of the Hi, i ∈ I.
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ψ is said preserving exactly e-adjacency if vertices that are e-adjacent in H′ are
e-adjacent in exactly one of the Hi, i ∈ I and reciprocally.

We can extend these definitions to ν : H 7→ (Hi)i∈I .

Definition 3.6. Let (Hi)i∈I be a family of hb-graphs with ∀i ∈ I, Hi = (Vi,Ei) and
H = (V,E) a hb-graph.

Let consider ν : H 7→ (Hi)i∈I .

ν is said preserving e-adjacency if vertices that are e-adjacent in one of the Hi, i ∈ I,
restricted to the ones that belong to V, are e-adjacent in H.

ν is said preserving exactly e-adjacency if vertices that are e-adjacent in one of the
Hi, i ∈ I are e-adjacent in H and reciprocally.

The two following claims have immediate proofs.

Claim 3.3. Let H = (V,E) be a hb-graph.

The canonical weighting operation, the c-dilatation operation, the merging operation
and, the decomposition operation preserve exactly e-adjacency.

The y-complemented operation and the yα-vertex-increasing operation preserve
e-adjacency.

Claim 3.4. The composition of two operations which preserves (respectively exactly)
e-adjacency preserves (respectively exactly) e-adjacency.

The composition of two operations where one preserves exactly e-adjacency and the other
preserves e-adjacency preserves e-adjacency.

3.3.7. Processes involved for building the e-adjacency tensor

In a general natural hb-graph H, hb-edges do not have the same m-cardinality: the rank
of the k-adjacency tensor of the elementary hb-graph associated to each hb-edge depends
on the m-cardinality of the hb-edge. As a consequence, the hb-graph polynomial is no
more homogeneous. Nonetheless, techniques to homogenize such a polynomial are well
known.

We introduce here the hb-graph m-uniformisation process (Hm-UP for short) which
transforms a given hb-graph of m-rank rH into a rH-m-uniform hb-graph written H :
this uniformisation can be mapped to the homogenization of the attached polynomial
of the original hb-graph, called the polynomial homogenization process (PHP).

The Hm-UP can be achieved by different means of filling the not-at-the-level hb-edges
so they reach a m-rank of rH :

• straightforward m-uniformisation levels directly all hb-edges by adding a Null
vertex Y1 with a multiplicity being the difference between the hb-graph m-rank
and the hb-edge m-cardinality. It is achieved by considering the Y1-complemented
hb-graph of H.
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• silo m-uniformisation processes each of the m-uniform sub-hb-graphs obtained
by gathering all hb-edges of a given m-cardinality r in a single sub-hb-graph,
which is then Y rH−r

r -vertex-increased. A single rH-m-uniformized hb-graph is then
obtained by merging them.

• layered m-uniformisation processes m-uniform sub-hb-graphs of increasing m-
cardinality by successively adding a vertex and merging it to the sub-hb-graph
of the above layer. The layered homogenization process applied to hypergraphs
was explained with full details in Appendix Section E.1; it involves two-phase step
iterations based on successive

{
Y 1
k

}
-vertex-increased hb-graphs and merging with

the dilated weighted hb-graph of the next layer.
All the hb-graph m-uniformisation process and constructed tensors are illustrated on an
example given in Section 3.3.12.

3.3.8. On the choice of the technical coefficient cei

To comply to the expectations, the technical coefficient cei has to be chosen such that
by using the elements of the e-adjacency hypermatrix A = (ai1...ir)i1,...,ir∈JnK , one can
retrieve:

1. the m-degree of the vertices: ∑
i2,...,ir∈JnK

aii2...ir = degm (vi) ;

2. the number of hb-edges |E|.
Similarly to Appendix Section E.1, we consider a hb-graph H = (V,E) that we decom-
pose in a family of r-m-uniform hb-graphs (Hr)r∈JrHK .

We consider R the equivalency relation defined on the family of hb-edges E of H :

eRe′ ⇔ #me = #me
′.

E/R is the set of classes of hb-edges of same m-cardinality. The elements of E/R are
the sets:

Er = {e ∈ E : #me = r} .

Considering R = {r : Er ∈ E/R} , we set Er = ∅ for all r ∈ JrHK \R.
For all r ∈ JrHK , Hr = (V,Er) is r-m-uniform.
It holds: E = ⋃

r∈JrHK
Er and Er1 ∩ Er2 = ∅ for all r1 6= r2, hence (Er)r∈JrHK constitutes a

partition of E which is unique from the way it has been defined.
Hence:

H =
⊕
r∈JrHK

Hr.

Each of these r-m-uniform hb-graph Hr, where the k-adjacency is achieved by r-adjacency,
can be associated to a k-adjacency tensor Ar viewed as a hypermatrix AHr =

(
a(r)i1...ir

)
of order r, hyper-cubic and symmetric of dimension |V | = n.

We write:
(
ai1...irH

)
i1,...,irH∈Jn1K

the e-adjacency hypermatrix associated to H where
n1 = n + nA, nA corresponds to the number of different special vertices added to the
hb-edges. nA depends on the way the hypermatrix is built:
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• nA = 1 for the straightforward process;
• nA = rH − 1 for the silo process;
• nA = rH − 1 for the layered process.

For a given r ∈ JrHK , the number of hb-edges in Hr is given by summing the elements
of AHr :

∑
i1,...,ir∈JnK

a(r)i1...ir =
n∑
i=1

∑
i2,...,ir∈JnK

a(r)ii2...ir

=
n∑
i=1

degm (vi)

= r |Er| .

In the m-uniformized hb-graph of H, the number of hb-edges can also be calculated
using: ∑

i1,...,irH∈Jn1K

ai1...irH = rH |E| .

As:

|E| =
rH∑
r=1
|Er|

=
rH∑
r=1

1
r

∑
i1,...,ir∈JnK

a(r)i1...ir ,

it follows:
∑

i1,...,irH∈Jn1K

ai1...irH =
rH∑
r=1

rH
r

∑
i1,...,ir∈JnK

a(r)i1...ir .

Also, choosing for all i ∈ JpK: cei = rH
r

where r = #mei, we write for all r ∈ JrHK :

cr
∆= rH

r
.

cr is the technical coefficient for the corresponding layer of level r of the hb-graph H.

3.3.9. Straightforward approach

Straightforward m-uniformisation:

We first decompose H = ⊕
r∈JrHK

Hr as seen in Section 3.3.8.

We then transform each Hr, r ∈ JrHK into a canonical weighted hb-graph Hr,1 that is
dilated with the help of the dilatation coefficient cr to obtain the cr-dilated hb-graph
Hr,cr .
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This family (Hr,cr) is then merged into the hb-graph:

Hw,d =
⊕
r∈JrHK

Hr,cr .

To get a m-uniform hb-graph, we finally generate a vertex Y1 /∈ V and apply to Hw,d
the Y1-complemented operation to obtain HY c1 ,d = Hstr the Y1-complemented hb-graph
of Hw,d. Hstr is called the straightforward m-uniformized hb-graph of H.

The different steps are summarized in Figure 3.1.

H

(
...
...
...
.

Hr
φd Hr,1

φcw φc-d Hr,cr

specific

...

...

...

.)
r∈rH

φm Hw,d
φY1-c

Hstr

Figure 3.1.: Operations on the original hb-graph for its m-uniformization in the
straightforward approach. Parenthesis with vertical dots indicate parallel operations.

Claim 3.5. The transformation φs : H 7→ Hstr preserves e-adjacency.

Proof. φs = φy1-c ◦ φm ◦
(
...
...
...
.
φc-d ◦ φcw

...

...

...

.)
◦ φd.

3

All these operations either preserve e-adjacency or preserve exactly e-adjacency. Also,
by composition, φs preserves e-adjacency.

Straightforward homogenization:

In order to homogenize the hb-graph polynomial, we introduce an additional variable
y1 that corresponds to the additional vertex Y1 used during the Hm-UP.

The normalised k-adjacency hypermatrix of the elementary hb-graph corresponding to
the hb-edge ei =

{
v
mij1
j1

, . . . , v
mijki
jki

}
is Qei of rank ρi = #mei and dimension n.

The corresponding reduced polynomial is:

Pei (z0) = ρiz
mij1
j1

. . . z
mijki
jki

.

To transform this polynomial of degree ρi into a polynomial of degree rH, we have to
multiply the former by ymi n+1

1 where mi n+1 = rH − ρi. This corresponds to adding the
vertex Y1 with multiplicity mi n+1.

3

(
...
...
...
.

...

...

...

.)
... ∈ ...

indicates parallel operations on each member of the family as specified in index of

the right parenthesis.
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The term Pei (z0) with the attached tensor Pei of rank ρi and dimension n is transformed
in4:

Rei (z1) = Pei (z0) ymi n+1
1 = ρiz

mij1
j1

. . . z
mijki
jki

y
mi n+1
1

with the attached tensor Rei of rank rH and dimension n+ 1.

The CHR of the tensor Rei is the hypermatrix Rei =
(
ri1...irH

)
. The elements that are

non-zero in Rei have all the same value:

ρstr,ei = ρi
mij1 ! . . .mijki

!mi n+1!
rH! .

The indices of the non-zero elements of Rei are obtained by permutation of the elements
of the multiset: {

j
mij1
1 , . . . , j

mijki
ki

, (n+ 1)mi n+1
}
.

The number of possible permutations is:

rH!
mij1 ! . . .mijki

!mi n+1! .

The hb-graph polynomial P (z0) = ∑
i∈JpK

ciPei (z0) is transformed into a homogeneous

polynomial:
R (z1) =

∑
i∈JpK

ciRei (z1) =
∑
i∈JpK

ciz
mij1
j1

. . . z
mijki
jki

y
mi n+1
1

representing the straightforward m-uniformized hb-graph Hstr of H with attached hyper-
matrix R =

p∑
i=1

ceiRei where cei = rH
ρi

= rH
#mei

. This provides a direct homogenization
of the whole hb-graph polynomial.

Definition 3.7. The straightforward e-adjacency tensor Astr,H of a hb-graph
H = (V,E) is the tensor of CHR Astr,H defined by:

Astr,H
∆=
∑
i∈JpK

ceiRei .

where for ei =
{
v
mij1
j1

, . . . , v
mijki
jki

}
∈ E :

cei = rH
#mei

is the dilatation coefficient and where Rei =
(
ri1...irH

)
is the hypermatrix whose elements

have only two possible values, 0 and:

ρstr,ei =
mij1 ! . . .mijki

!mi n+1!
rH! #mei

with mi n+1 = rH −#mei. The indices of the non-zero elements of Rei are obtained by
permutation of the elements of the multiset:{

j
mij1
1 , . . . , j

mijki
ki

, (n+ 1)mi n+1
}
.

4zk = (z1, ..., zn, y1, ..., yk) for k ∈ JrH − 1K
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Remark 3.3.1. In practice, writing Astr,H =
(
al1···lrH

)
, the element of Astr,H of indices

l1, · · · , lrH such that:

{{
l1, · · · , lrH

}}
=
{
j
mij1
1 , ..., j

mijki
ki

, [n+ 1]mi n+1
}
,

corresponding to a hb-edge ei =
{
v
mij1
j1

, ..., v
mijki
jki

}
of the original hb-graph H, is:

al1...lrH =
mij1 ! . . .mijki

!mi n+1!
(rH − 1)! .

3.3.10. Silo approach

Silo m-uniformisation:

The first steps are similar to the straightforward approach.

The hb-graph H is decomposed in layers H = ⊕
r∈JrHK

Hr as described in Section 3.3.8.

Each Hr, r ∈ JrHK is canonically weighted and cr-dilated to obtain Hr,cr .

We generate rH − 1 new vertices Yi /∈ V, i ∈ JrH − 1K.

We then apply to each Hr,cr , r ∈ JrH − 1K the Y rH−r
r -vertex-increasing operation to

obtain H+
r,cr the Y

rH−r
r -complemented hb-graph for each Hr,cr , r ∈ JrH − 1K. The family(

H+
r,cr

)
r∈rH

is then merged using the merging operation to obtain the rH-m-uniform

hb-graph Ĥŵ = Hsil. Hsil is called the silo m-uniformized hb-graph of H.

The different steps are summarized in Figure 3.2.

H

(
...
...
...
.

Hr
φd Hr,1

φcw φc-d Hr,cr

specific
φ
Y
rH−r
r -v H+

r,cr
...
...
...
.)
r∈rH

φm
Hsil

Figure 3.2.: Operations on the original hb-graph for its m-uniformisation in the silo
approach. Parenthesis with vertical dots indicate parallel operations.

Claim 3.6. The transformation φs : H 7→ Hsil preserves e-adjacency.

Proof. φs = φm ◦
(
...
...
...
.
φ
y
rH−r
r -v ◦ φc-d ◦ φcw

...

...

...

.)
◦ φd.

The operations involved in φs either preserve e-adjacency or preserve exactly e-adjacency:
also, by composition, φs preserves e-adjacency.
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Silo homogenization:

In this homogenization process, we suppose that the hb-edges are sorted by m-cardinality.

During the silo uniformisation, we added rH − 1 vertices Y1 to YrH−1 into the universe,
i.e. the vertex set. These vertices correspond to rH − 1 additional variables respectively
y1 to yrH−1 that we introduced to homogenize the hb-graph polynomial.

The normalised k-adjacency hypermatrix of the elementary hb-graph corresponding to
the hb-edge ei =

{
v
mij1
j1

, . . . , v
mijki
jki

}
is Qei of rank ρi = #mei and dimension n.

The corresponding reduced polynomial is:

Pei (z0) = ρiz
mij1
j1

. . . z
mijki
jki

attached to tensor Pei has for degree the m-cardinality of the hb-edge ei, i.e. #mei. To
transform it into a polynomial of degree rH, we use the additional variable y#mei with
multiplicity mi#mei = rH −#mei.

The term Pei (z0) attached to tensor Pei of rank #mei and dimension n is transformed
in:

Rei (z#mei
) = Pei (z0) ymi n+#mei

#mei

with attached tensor Rei of rank rH and dimension n+ 1.

The CHR of the tensor Rei is the hypermatrix Rei =
(
ri1...irH

)
. The elements of Rei

that are non-zero elements have all the same value:

ρsil,ei = ρi
mij1 ! . . .mijki

!mi n+#mei !
rH!

with mi n+#mei = rH −#mei. The indices of the non-zero elements of Rei are obtained
by permutation of the multiset:{

j
mij1
1 , . . . , j

mijki
ki

, [n+ #mei]mi n+#mei

}
.

P is transformed into a homogeneous polynomial:

R (zrH−1) =
∑
i∈JpK

ciRei (z#mei
) =

∑
i∈JpK

ciz
mij1
j1

. . . z
mijki
jki

y
mi n+#mei
#mei

representing the silo m-uniformized hb-graph Hsil of H with attached hypermatrix R =∑
i∈JpK

ceiRei where:

cei = rH
ρi

= rH
#mei

.

Definition 3.8. The silo e-adjacency tensor Asil,H of a hb-graph H = (V,E) is
the tensor of CHR Asil,H

∆=
(
ai1...irH

)
i1,...,irH∈JnK

defined by:

Asil,H
∆=
∑
i∈JpK

ceiRei
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and where for ei =
{
v
mij1
j1

, . . . , v
mijki
jki

}
∈ E :

cei = rH
#mei

is the dilatation coefficient and Rei =
(
ri1...irH

)
is the hypermatrix whose elements have

only two possible values, 0 and:

ρsil,ei =
mij1 ! . . .mijki

!mi n+#mei !
rH! #mei

with mi n+#mei = rH −#mei.

The indices of the non-zero elements of Rei are obtained by permutation of the elements
of the multiset: {

j
mij1
1 , . . . j

mijki
ki

, [n+ #mei]mi n+#mei

}
.

Remark 3.3.2. In this case:

Asil,H =
∑

r∈JrHK

cr
∑

ei∈{e:#me=r}
Rei

where cr = rH
r
.

Remark 3.3.3. In practice, writing Asil,H =
(
al1···lrH

)
, the element of Asil,H of indices

l1, · · · , lrH such that:
{{
l1, ..., lrH

}}
=
{
j
mij1
1 , ..., j

mijki
ki

, [n+ #mei]mi n+#mei

}
,

corresponding to a hb-edge ei =
{
v
mij1
j1

, ..., v
mijki
jki

}
of the original hb-graph H, is:

al1...lrH =
mij1 ! . . .mijki

!mi n+#mei !
(rH − 1)! .

3.3.11. Layered approach

Layered uniformisation:

The first steps are similar to the straightforward approach.

The hb-graph H is decomposed into layers H = ⊕
r∈JrHK

Hr as described in Section 3.3.8.

Each Hr, r ∈ JrHK is canonically weighted and cr-dilated to obtain Hr,cr .

We generate rH − 1 additional different vertices Yi /∈ V, i ∈ JrH − 1K and write Vs =
{Yi : i ∈ JrH − 1K} .

A two-phase steps iteration is considered: the inflation phase (IP) and the merging
phase (MP). At step k = 0, K0 = H1,c1 and no further action is made but increasing k
by 1. At step k > 0, the input is the k-m-uniform weighted hb-graph Kk obtained from
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the previous iteration. In the IP, Kk is transformed into K+
k the Y 1

k -vertex-increased
hb-graph, which is (k + 1)-m-uniform.

The MP merges the hypergraphs K+
k and Hk+1,ck+1 into a single (k + 1)-m-uniform

hb-graph K̂ŵ.

We iterate by increasing k by 1, while k < rH.When k reaches rH, we stop iterating and
the last K̂ŵ obtained, written Hlay is called the layered m-uniformized hb-graph of H.

The different steps are summarized in Figure 3.3.

H

(
...
...
...
.

Hr
φd Hr,1

φcw φc-d Hr,cr

specific

...

...

...

.)
r∈rH

Iterative phase

Initialisation

Kk K+
k

φY 1
k
−v

Hk+1,ck+1 k < rH?φm

yes

no

k := k + 1

Hlay

k > 0?

K0 = H1,c1

k := 0

no

yes

Figure 3.3.: Operations on the original hb-graph for its m-uniformisation in the layered
approach. Parenthesis with vertical dots indicate parallel operations.

Claim 3.7. The transformation φs : H 7→ Hlay preserves e-adjacency.

Proof. φs = ψ◦
(
...
...
...
.
φc-d ◦ φcw

...

...

...

.)
◦φd, where ψ is called the iterative layered operation that

converts the family obtained by
(
...
...
...
.
φc-d ◦ φcw

...

...

...

.)
◦φd and transforms it into the VS-layered

m-uniform hb-graph of H.

All the operations φc-d, φc-w and φd either preserve e-adjacency or preserve exactly
e-adjacency, and so forth by composition.

The iterative layered operation preserves e-adjacency as the operations involved are in-
dividually preserving e-adjacency and that the family of hb-graphs at the input contains
hb-edge families that are totally distinct.

Also, by composition, φs preserves e-adjacency.
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Layered homogenization:

The idea is to sort the hb-edges as in the silo homogenization and consider also rH − 1
additional vertices Y1 to YrH−1 into the universe, corresponding to rH − 1 additional
variables respectively y1 to yrH−1.

But in this case, these vertices are added successively to each hb-edge to fill them so
they reach all the same m-cardinality rH: a hb-edge of initial cardinality #me will be
filled with elements Y#me to YrH−1. This corresponds to adding the k-m-uniform sub-
hb-graph Hk with the k + 1-m-uniform sub-hb-graph Hk+1 by filling the hb-edge of Hk
with the additional vertex Yk to get a homogenized k + 1-m-uniform sub-hb-graph of
the homogenized hb-graph H.

The normalised k-adjacency hypermatrix of the elementary hb-graph corresponding to
the hb-edge ei =

{
v
mij1
j1

, . . . , v
mijki
jki

}
is Qei of rank ρi = #mei and dimension n. The

corresponding reduced polynomial is:

Pei (z0) = ρiz
mij1
j1

. . . z
mijki
jki

of degree #mei.

All the hb-edges of same m-cardinality belongs to the same layer. In order to transform
all the hb-edges of m-cardinality #mei into hb-edges of m-cardinality #mei + 1, we fill
them with the corresponding element Y#mei .

In this case, the polynomial Pei (z0) is transformed into:

R(1)ei (z#mei
) = Pei (z0) y1

#mei

of degree #mei + 1.

Iterating over the layers, the original hb-edge ei is successively filled with additional
vertices Yi, with i ∈ J#mei; rH − 1K , and the polynomial Pei (z0) is transformed into the
polynomial:

R(rH−#mei)ei (zrH−1) = Pei (z0) y1
#mei . . . y

1
rH−1

of degree rH.

The polynomial Pei (z0) with attached tensor Pei of rank #mei and dimension n is
transformed in:

R(rH−#mei)ei (zrH−1) = Rei (z0) y1
#mei . . . y

1
rH−1

with attached tensor R(rH−#mei)ei of rank rH and dimension n+ rH − 1.

The CHR of the tensor R(rH−#mei)ei is the hypermatrix:

R(rH−#mei)ei
=
(
r(rH−#mei) i1...irH

)
.

The elements of R(rH−#mei)ei
have only two possible values, 0 and:

ρlay,(rH−#mei)ei = ρi
mij1 ! . . .mijki

!
rH! .
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The indices of the non-zero elements of R(rH−#mei)ei
are obtained by permutation of

the elements of the multiset:{
j
mij1
1 , . . . , j

mijki
ki

, [n+ #mei]1 , . . . , [n+ rH − 1]1
}
.

And P is transformed into a homogeneous polynomial:

R (zrH−1) =
∑
i∈JpK

ciR(rH−#mei)ei (zrH−1)

=
∑
i∈JpK

ciρiz
mij1
j1

. . . z
mijki
jki

y1
#mei . . . y

1
rH−1

representing the layered m-uniformized hb-graph Hlay with attached hypermatrix:

R =
∑
i∈JpK

ceiR(rH−#mei)ei
,

where:
cei = rH

ρi
= rH

#mei
.

Definition 3.9. The layered e-adjacency tensor Alay,H of a hb-graph H = (V,E)
is the tensor of CHR Alay,H

∆=
(
ai1...irH

)
i1,...,irH∈JnK

defined by:

Alay,H
∆=
∑
i∈JpK

ceiR(rH−#mei)ei

where for ei =
{
v
mij1
j1

, . . . , v
mijki
jki

}
∈ E :

cei = rH
#mei

is the dilatation coefficient and R(rH−#mei)ei
=
(
r(rH−#mei)i1...irH

)
is the hypermatrix

whose elements have only two possible values 0 and:

ρlay,(rH−#mei)ei =
mij1 ! . . .mijki

!
rH! #mei.

The indices of the non-zero elements of R(rH−#mei)ei
are obtained by permutation of

the elements of the multiset:{
j
mij1
1 , . . . , j

mijki
ki

, [n+ #mei]1 , . . . , [n+ rH − 1]1
}
.

Remark 3.3.4. Alay,H can also be written:

Alay,H =
∑

r∈JrHK

cr
∑

ei∈{e:#me=r}
Rei ,

where cr = rH
r
.
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Remark 3.3.5. In practice, writing Alay,H =
(
al1···lrH

)
, the element of Alay,H of indices

l1, · · · , lrH such that:{{
l1, · · · , lrH

}}
=
{
j
mij1
1 , ..., j

mijki
ki

, [n+ #mei]1 , . . . , [n+ rH − 1]1
}
,

corresponding to a hb-edge ei =
{
v
mij1
j1

, ..., v
mijki
jki

}
of the original hb-graph H, is:

al1...lrH =
mij1 ! . . .mijki

!
(rH − 1)! .

3.3.12. Examples related to e-adjacency hypermatrices for general
hb-graphs

We illustrate the different construction of e-adjacency hypermatrices for general hb-
graphs by a common example.

Example 3.3.1. Given the following hb-graph: H = (V,E) where: V = {v1, v2, v3, v4, v5, v6}
and E = {e1, e2, e3, e4} with: e1 =

{
v2

1, v
2
2, v3

}
, e2 = {v1, v4, v5, v6} , e3 =

{
v1, v

2
4
}
and

e4 = {v1} .

The hb-graph given in Example 3.3.1 is represented in Figure 1.1.

v3

v2

v1 v4

v6 v5

e1

e2

e3

e4

Figure 3.4.: Example of hb-graph for m-uniformisation principle

We show on this hb-graph how the filling is achieved depending on the filling option
chosen. We have ordered the hb-edges in the order of increasing m-cardinality from
bottom to top.

3.3.12.1. Layered filling option

In the layered filling approach, the different layers are filled with one or several vertices
in order to reach the m-cardinality level of the m-uniform hb-graph next layer, in order
to merge the filled layer and the reached level of m-uniformity layer. The special vertices
are all different and written y1 to y4 as it is shown in Figure 3.5.
As the m-rank of the hb-graph is 5, the layered e-adjacency hypermatrix is of rank
5. There are 6 vertices and 4 additional special vertices, hence the dimension of the
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e1 : v1 v1 v2 v2 v3

e2 : v1 v4 v5 v6

e3 : v1 v4 v4

e4 : v1

e1 : v1 v1 v2 v2 v3

e2 : v1 v4 v5 v6

e3 : v1 v4 v4

e4 : v1 y1

e1 : v1 v1 v2 v2 v3

e2 : v1 v4 v5 v6

e3 : v1 v4 v4

e4 : v1 y1 y2

e1 : v1 v1 v2 v2 v3

e2 : v1 v4 v5 v6

e3 : v1 v4 v4 y3

e4 : v1 y1 y2 y3

e1 : v1 v1 v2 v2 v3

e2 : v1 v4 v5 v6 y4

e3 : v1 v4 v4 y3 y4

e4 : v1 y1 y2 y3 y4

Layered filling: fill and merge

Figure 3.5.: Layered filling on the example of Figure 3.4

hypermatrix is 10, the place 1 to 6 storing the information for v1 to v6 in this order
and the places 7 to 10 the information for y1 to y4. We write the layered e-adjacency
hypermatrix Alay = (alay i1i2i3i4i5)∀j∈J5K:ij∈J10K .

Considering all permutations of the indices σ ∈ S5, we have:

• e1 stored in all the elements: alayσ(1 1 2 2 3) of value 1
6 .

• e2 stored in all the elements: alayσ(1 4 5 6 10) of value 1
24 .

• e3 stored in all the elements: alayσ(1 4 4 9 10) of value 1
12 .

• e4 stored in all the elements: alayσ(1 7 7 7 7) of value 1.
• The other elements of Alay are equal to zero.

3.3.12.2. Silo filling option

In the silo approach, the different layers of m-uniformity are filled up to the m-range
of the hb-graph with different special vertices that depend only on the layer of m-
uniformity, as it is shown in Figure 3.6.

e1 : v1 v1 v2 v2 v3

e2 : v1 v4 v5 v6

e3 : v1 v4 v4

e4 : v1

e1 : v1 v1 v2 v2 v3

e2 : v1 v4 v5 v6

e3 : v1 v4 v4

e4 : v1 y1 y1 y1 y1

e1 : v1 v1 v2 v2 v3

e2 : v1 v4 v5 v6

e3 : v1 v4 v4 y3 y3

e4 : v1 y1 y1 y1 y1

e1 : v1 v1 v2 v2 v3

e2 : v1 v4 v5 v6 y4

e3 : v1 v4 v4 y3 y3

e4 : v1 y1 y1 y1 y1

Silo filling

Figure 3.6.: Silo filling on the example of Figure 3.4

As the m-rank of the hb-graph is 5, the silo e-adjacency hypermatrix is of rank 5. There
are 6 vertices and 4 additional special vertices, hence the dimension of the hypermatrix
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is 10, the place 1 to 6 storing the information for v1 to v6 in this order and the places
7 to 10 the information for y1 to y4. We write the layered e-adjacency hypermatrix
Asil = (asil i1i2i3i4i5)∀j∈J5K:ij∈J10K .

Considering all permutations of the indices σ ∈ S5, we have:

• e1 stored in all the elements: asilσ(1 1 2 2 3) of value 1
6 .

• e2 stored in all the elements: asilσ(1 4 5 6 10) of value 1
24 .

• e3 stored in all the elements: asilσ(1 4 4 9 9) of value 1
6 .

• e4 stored in all the elements: asilσ(1 7 7 7 7) of value 1.

• The other elements of Asil are equal to zero.

3.3.12.3. Straightforward filling option

In the straightforward approach, all the hb-edges are filled up to reaching a m-cardinality
corresponding to the hb-graph m-range as it is shown in Figure 3.7.

e1 : v1 v1 v2 v2 v3

e2 : v1 v4 v5 v6

e3 : v1 v4 v4

e4 : v1

e1 : v1 v1 v2 v2 v3

e2 : v1 v4 v5 v6 y1

e3 : v1 v4 v4 y1 y1

e4 : v1 y1 y1 y1 y1

Straightforward filling

Figure 3.7.: Straightforward filling on the example of Figure 3.4

As the m-rank of the hb-graph is 5, the straightforward e-adjacency hypermatrix is
of rank 5. There are 6 vertices and 1 additional special vertex, hence the dimension
of the hypermatrix is 7, the place 1 to 6 storing the information for v1 to v6 in this
order and the place 7 to y1. We write the layered e-adjacency hypermatrix Astr =
(astr i1i2i3i4i5)∀j∈J5K:ij∈J7K .

Considering all permutations of the indices σ ∈ S5, we have:

• e1 stored in all the elements: astrσ(1 1 2 2 3) of value 1
6 .

• e2 stored in all the elements: astrσ(1 4 5 6 7) of value 1
24 .

• e3 stored in all the elements: astrσ(1 4 4 7 7) of value 1
6 .

• e4 stored in all the elements: astrσ(1 7 7 7 7) of value 1.

• The other elements of Astr are equal to zero.
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3.4. Results on the constructed tensors

We recall that each of the tensors obtained is of rank rH and of dimension n+nA where
nA is:

• in the straightforward approach: nA = 1;
• in the silo approach: nA = rH − 1;
• and, in the layered approach: nA = rH − 1.

3.4.1. Fulfillment of the expectations

We revisit the expectations formulated in Section 3.3.1 and prove that they are all met.

Guarantee 3.1. The e-adjacency tensor should be non-negative, symmetric and its
generation should be as simple as possible.

Proof. The tensors that have been built are all non-negative and symmetric. Their
generation mostly depends on the content of the hb-edges. Only the layered approach
has a more complex generation process; however, it is retained, as it is the only possible
approach that keeps hypergraph interpretability via Hm-UP without needing hb-graphs
for general hypergraphs.

Guarantee 3.2. The tensor should be globally invariant to vertex permutation in the
original hb-graph.

Proof. Let H = (V,E) be a hb-graph with vertex set V = {vi : i ∈ JnK} and E =
(ej)j∈JpK .We do the proof only for the straightforward tensor, since the other proofs are
similar.
Let consider a permutation π ∈ Sn, that corresponds to a relabeling of the vertices from
the universe of the original hb-graph. Applying this relabeling to the content of the
hb-edge:

ej =
{
v
mj i1
i1

, ..., v
mj ij
ij

}
transforms it into:

ej =
{
v
mj i1
π(i1) , ..., v

mj ij
π(ij)

}
.

The original hb-edge was stored in the elements of the form:

a
i
mj i1
1 ...i

mj ij
j (n+1)rH−#mej

and the ones obtained by permutation of the indices.
It follows that the relabeled hb-graph will have its elements stored in:

a
π(i1)mj i1 ...π(ij)

mj ij (n+1)rH−#mej

and all the ones obtained by permutation of the elements of:{
π (i1)mj i1 , ..., π (ij)mj ij , (n+ 1)rH−#mej

}
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This corresponds to a permutation of the elements in the tensor according to the rela-
beling: the two tensors differ only by a reshuffling of the indices due to the permutation
π, which means that the constructed tensor is globally invariant to a relabeling in the
original hb-graph.

Guarantee 3.3. The e-adjacency tensor should induce a unique reconstruction of the
hb-graph it is originated from.

Proof. From the way the elements have been constructed, there is a one-to-one mapping
between the hb-edge and the ordered indices of the coefficient in the tensor. From these
indices, the hb-graph can be reconstructed with no ambiguity.

Guarantee 3.4. Given the choice of two representations the one that can be described
with the least possible number of elements should be chosen. Then the sparsest e-
adjacency tensor should be chosen.

Proof. The straightforward tensor requires only one additional element to capture the
information. The three representations are anyway economic as only one element each
time needs to be described in the hypermatrix for a given hb-edge, the others being
obtained by permutation of its indices.

Guarantee 3.5. The e-adjacency tensor should allow direct retrieval of the vertex de-
grees.

Proof. The proof will be given in the next Section.

3.4.2. Information on hb-graph

3.4.2.1. m-degree of vertices

We built the different tensors such that the retrieval of the vertex m-degree is possible;
the null vertex(-ices) added during the Hm-UP give(s) additional information on the
structure of the hb-graph.

Claim 3.8. Let us consider for j ∈ JnK, a vertex vj ∈ V.

Then for each of the e-adjacency tensors built, it holds:∑
j2,...,jrH∈Jn+nAK

ajj2...jrH =
∑

i : vj∈ei
mi j = degm (vj) .
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Proof. For j ∈ JnK ,
∑

j2,...,jrH∈Jn+nAK
ajj2...jrH has non-zero terms only for the correspond-

ing hb-edges of the original hb-graph ei containing vj . Such a hb-edge is described by
ei =

{
v
mi j
j , v

mi l2
l2

, . . . , v
mi lk
lk

}
. This means that the multiset

{{
j2, . . . , jrH

}}
corresponds

exactly to the multiset
{
jmi j−1, l

mi l2
2 , . . . , l

mi lk
k

}
.

In the straightforward approach, for each ei such that vj ∈ ei, there are:

(rH − 1)!
(mi j − 1)!mi l2 ! . . .mi lk !mi n+1!

possible permutations of the indices j2 to jrH and:

ajj2...jrH = mi j !mi l2 ! . . .mi lk !mi n+1!
(rH − 1)! .

In the silo approach, for each ei such that vj ∈ ei, there are:

(rH − 1)!
(mi j − 1)!mi l2 ! . . .mi lk !mi n+#mei !

possible permutations of the indices j2 to jrH and:

ajj2...jrH = mi j !mi l2 ! . . .mi lk !mi n+#mei !
(rH − 1)! .

In the layered approach, for each ei such that vj ∈ ei, there are:

(rH − 1)!
(mi j − 1)!mi l2 ! . . .mi lk !

possible permutations of the indices j2 to jrH which have all the same value equal to:

ajj2...jrH = mi j !mi l2 ! . . .mi lk !
(rH − 1)! .

So, whatever the approach taken is, it holds:∑
j2,...,jrH∈JnK

ajj2...jrH =
∑

i : vj∈ei
mi j = degm (vj) .

3.4.2.2. Additional vertex information

The additional vertices carry information on the hb-edges of the hb-graph: the infor-
mation carried depends on the approach taken.

Claim 3.9. The layered e-adjacency tensor allows the retrieval of the distribution of
the hb-edges.
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Proof. For j ∈ JnAK: ∑
j2,...,jrH∈Jn+nAK

an+jj2...jrH

has non-zero terms only for the corresponding hb-edges of the m-uniformized hb-graph
ei containing vj . Such a hb-edge is described by5:

ei =
{
vmi kk : k ∈ Jn+ nAK

}
.

This means that the multiset: {{
j2, . . . , jrH

}}
corresponds exactly to the multiset:{

(n+ j)mi n+j−1
}

+ {kmi k : k ∈ Jn+ nAK ∧ k 6= j} .

The number of possible permutations of elements in this multiset is:

(rH − 1)!
(mi n+j − 1)! ∏

k∈JnK
mi k!

∏
k∈Jn+1;n+nAK

k 6=j

mi k!

and the elements corresponding to one hb-edge are all equal to:∏
k∈JnAK

mi k!

(rH − 1)! .

Thus: ∑
j2,...,jrH∈Jn+nAK

an+jj2...jrH =
∑

j2,...,jrH∈JnK

mi n+j = degm (Yj) .

The interpretation differs between the different approaches.

For the silo approach:

There is one added vertex in each hb-edge. The silo of hb-edges of m-cardinality ms

(ms ∈ JrH − 1K) is associated to the null vertex Yms . The multiplicity of Yms in each
hb-edge of the silo is rH −ms.

Hence:
degm (Yj)
rH −ms

= |{e : #me = ms}| .

The number of hb-edges in the silo ms is then deduced by the following formula:

|{e : #me = ms}| = |E| −
∑

ms∈JrH−1K

degm (Yj)
rH −ms

.

For the layered approach:

The vertex Yj corresponds to the layer of level j added to each hb-edge with m-
cardinality less or equal to j with a multiplicity of 1.
5With the convention, that for j ∈ JnAK:vn+j = yj
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Also:
degm (Yj) = |{e : #me 6 j}| .

Hence, for j ∈ J2; rH − 1K:
|{e : #me = j}| = degm (Yj)− degm (Yj−1) .

It yields:
|{e : #me = 1}| = degm (Y1)

and:
|{e : #me = rH}| = |E| − degm

(
YrH−1

)
.

For the straightforward approach:
In a hb-edge of m-cardinality j ∈ JrH − 1K, the vertex Y1 is added with multiplicity
rH − j. The number of hb-edges with m-cardinality j can be retrieved by considering
the elements of Astr,H of index (n + 1)i1 . . . irH−1 where 1 6 i1 6 ... 6 ij 6 n and
ij+1 = . . . = irH−1 = n+ 1 and the elements with indices obtained by permutation.
It follows for j ∈ JrH − 1K :

|{e : #me = j}| = |{e : Y1 ∈ e ∧me (Y1) = rH − j}|
=

∑
i1,...,irH−1∈Jn+1K
|{ik=n+1}|=rH−j−1

an+1i1...irH−1 .

The terms an+1i1...irH−1 of this sum are non-zero only for the corresponding hb-edges e
of the m-uniformized hb-graph having Y1 with multiplicity rH − j in it. Such a hb-edge
is described by:

ei =
{
vmi kk : 1 6 k 6 n

}
+
{
Y
rH−j

1

}
.

It means that the multiset: {{
i1, . . . , irH−1

}}
corresponds exactly to the multiset:

{kmi k : k ∈ JnK}+
{
n+ 1rH−j−1

}
.

The number of possible permutations in this multiset is:
(rH − 1)!∏

k∈JnK
mi k! (rH − j − 1)!

and the elements corresponding to one hb-edge are all equal to:∏
k∈JnK

mi k!× (rH − j)!

(rH − 1)! .

Hence:
1

rH − j
∑

i2,...,irH∈Jn+1K
|{ik=n+1:k∈J2;rHK}|=rH−j−1

an+1i2...irH = |{e : #me = j}| .

The number of hb-edges of m-cardinality rH can be retrieved by:
|{e : #me = rH}| = |E| −

∑
j∈JrH−1K

|{e : #me = j}| .
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3.4.3. First results on hb-graph spectral analysis

Let H = (V,E) be a general hb-graph of e-adjacency tensorAH of CHR AH =
(
ai1...ikmax

)
of order kmax and dimension n+ nA.

We write dm,i = degm (vi) if i ∈ JnK and dm,n+i = degm (Yi) if i = n+ j, j ∈ JnAK .

In the e-adjacency hypermatrix AH, the diagonal entries are no longer equal to zero. As
all elements of AH are non-negative real numbers, and as we have shown in the previous
Section that: ∑

i2,...,im∈Jn+nAK

aii2...irH =
{
dm,i if i ∈ JnK
dm,n+j if i = n+ j, j ∈ JnAK ,

it follows:

Claim 3.10. The e-adjacency tensor AH of a general hb-graph H = (V,E) has eigen-
values λ of its CHR AH such that:

|λ| 6 max (∆m,∆?
m) (3.1)

where ∆m = max
i∈JnK

(dm,i) and ∆?
m = max

i∈JnAK
(dm,n+i) .

Proof. From:
∀i ∈ J1, nK ,

(
Axm−1

)
i

= λxm−1
i , (3.2)

since aii2...imare non-negative real numbers, it holds for all λ that:

|λ− ai...i| 6
∑

i2,...,im∈Jn+nAK
δii2...im=0

aii2...im . (3.3)

Considering the triangular inequality, it follows:

|λ| 6 |λ− ai...i|+ |ai...i| . (3.4)

Combining 3.3 and 3.4 yield:

|λ| 6
∑

i2,...,im∈Jn+nAK
δii2...im=0

aii2...im + |ai...i| . (3.5)

But, irrespective of the approach taken, if {irH} is an hb-edge of the hb-graph, then:

|ai...i| = rH

otherwise:
|ai...i| = 0

and, thus, writing ∆m = max
i∈JnK

(degm (vi)) and ∆?
m = max

i∈JnAK
(degm (Ni)) and, using 3.5

and dm,i = ∑
i2,...,im∈Jn+nAK

δii2...im=0

aii2...im + ai...i yield:

|λ| 6 max (∆m,∆?
m) .
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Remark 3.4.1. In the straightforward approach:

∆?
m = degm (N1)

=
∑

j∈JrH−1K

(rH − j) |{e : #me = j}| .

In the silo approach:

∆?
m = max

j∈JrH−1K
(degm (Nj))

= max
j∈JrH−1K

((rH − j) |{e : #me = j}|) .

In the layered approach:

∆?
m = max

j∈JrH−1K
(degm (Nj))

= max
j∈JrH−1K

(|{e : #me 6 j}|)

= |{e : #me 6 rH − 1}| .

The values of ∆m are independent of the approach taken.

3.4.4. Categorization of the constructed tensors

3.4.4.1. Classification of the tensors built

The hypermatrices constructed in the three approaches are symmetric and non-negative.
This ensures that these hypermatrices have their spectral radius ρ (A) which is an H+-
eigenvalue of A. Hence, ρ (A) is associated to a non-negative eigenvector—i.e. all the
components of the vector are non-negative.

In [PZ14], a uniform hypergraph tensor is shown to be weakly irreducible, if and only
if the hypergraph is connected. In the case of e-adjacency tensors, this result does not
hold.

Nonetheless, we can claim the following results:

Claim 3.11. Let H = (V,E) be a hb-graph which is not m-uniform and where ⋃
e∈E

e? = V.

If H is connected, then its straightforward e-adjacency tensor is weakly irreducible.

Proof. This proof combines arguments of [PZ14], with arguments of [QL17] on weak
irreducibility of the adjacency tensor of a uniform hypergraph, and some specific argu-
ments related to the e-adjacency tensors we use for hb-graphs.

Let H = (V,E) be a hb-graph which is not m-uniform and where ⋃
e∈E

e? = V.

We are going to prove the converse of this claim. Suppose that the straightforward
e-adjacency tensor Astr,H of CHR Astr,H ∈ TrH,n+1 is weakly reducible, it means that
the associated graph G (Astr,H) is not strongly connected, and, hence, its matrix repre-
sentation AG(Astr,H) = (αij) is reducible.
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As Astr,H is symmetric, its associated graph G (Astr,H) is bidirectional and AG(Astr,H) =
(αij) is symmetric.

This means that there exists a nonempty proper subset J of Jn+ 1K such that ∀i ∈
J, ∀j ∈ Jn+ 1K \J : αij = 0.

As H is not m-uniform, J cannot be reduced to the singleton {n+ 1} since the special
vertex has to be linked to vertices of the hb-edges of m-cardinality value less than the
maximal m-rank.

For symmetric reasons, J cannot be JnK , otherwise, it would mean that the special
vertex n+ 1 is isolated, which is not possible as the hb-graph is not m-uniform.

Thus, there exists at least one i1 ∈ J which represents an original vertex of H such that
ai1i2...irH = 0 when at least one of the indices i2, ..., irH is in Jn+ 1K \J . In these rH − 1
indices, at least one corresponds to an original vertex of H.

It indicates in this case that the group of original vertices of H represented in J are
disconnected from the original vertices that are in Jn+ 1K \J . Hence the hb-graph is
disconnected.

With: ⋃
e∈E

e? = V, we require that there is no unused vertices in the universe.

If the hb-graph is m-uniform and connected, the straightforward e-adjacency tensor
Astr,H is weakly reducible as the additional vertex is not used and hence is isolated in
the associated graph ofAstr,H. In this case, one can use Astr,H|JnK the principal sub-tensor
of Astr,H related to JnK which is weakly irreducible. As Astr,H|JnK is weakly irreducible,
it is strictly non-negative and, the Astr,H is a non-trivially non-negative tensor, which
means by using the theorem from [QL17] that Astr,H has a positive eigenvalue and hence
ρ (Astr,H) > 0.

Non-negative tensor weak irreducibility is a desirable property as it ensures that the
tensor has a unique positive Perron vector (up to a multiplicative constant) associated
to its spectral positive radius ρ (A) . In this case, the algorithms to calculate the Perron
vector converge.

To ensure weak irreducibility, we could transform the straightforward e-adjacency tensor
in such a way that its associated graph is always strongly connected. It is sufficient to
add the special vertex to each of the hb-edges: in this case, it will force the associated
graph to be connected, albeit the spectral radius upper-bound to be increased to the
maximum between the maximal m-degree and the number of hb-edges.

Moreover:

Claim 3.12. The three e-adjacency tensors built for hb-graphs are non-trivially non-
negative tensors when the hb-graph is connected and the union of the support of hb-edges
covers the vertex set.

Proof. We already know that for a connected hb-graph which is not m-uniform, the
straightforward e-adjacency tensor is weakly irreducible, hence non-trivially non-negative.
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For a m-uniform hb-graph, the principal sub-tensor of Astr,H composed of its first n in-
dices is weakly irreducible, hence strictly non-negative. The proof is similar to the one
of [PZ14] and [QL17] for hypergraphs.

We have already explained in [OLGMM18b] how a hb-graph H = (V,E) can be decom-
posed in layers by considering Ek = {e ∈ E, ]me = k} and the hb-graphs Hk = (V,Ek)
to obtain H = ⊕

k∈JrHK
Hk.

For the silo e-adjacency tensor, the principal sub-tensor to be considered is the one
obtained using J = JnK ∪ {n+ k : k ∈ JrH − 1K ∧ Ek 6= ∅} . Asil,H|J is then weakly ir-
reducible, hence strictly non-negative. The tensor Asil,H is, therefore, a non-trivially
non-negative tensor.

For the layered e-adjacency tensor Alay,H, we consider the principal sub-tensor Alay,H|K
where K = JnK ∪ {n+ k : k ∈ Jkmin, rH − 1K} with kmin = min {k : Ek 6= ∅} . This prin-
cipal sub-tensor is weakly irreducible as the hb-graph is connected, hence strictly non-
negative. Therefore, the tensor Alay,H is non-trivially non-negative.

As a consequence the spectral radii of these tensors are positive.

3.4.4.2. Connected components and uniformisation process

The uniformisation process used to built the three tensors leads to the addition of some
vertices to the hb-edges; while it does not change the number of hb-edges and the degree
of the vertices that are in the original hb-graph, it has an impact on the connectivity of
the uniform hb-graph compared to the original one.

Nonetheless, to address this problem, it is always possible to consider each connected
component of the original hb-graph separately and build a tensor for each of these
connected components. In this case, the number of connected components remains
unchanged, even if we modify the internal connectivity of a connected component with
the added vertices.

So we can always suppose that we address only connected hb-graphs.

3.5. Evaluation and first choice

3.5.1. Evaluation

We have put together some key features of the e-adjacency tensors proposed in this
Thesis: the straightforward approach tensor Astr,H, the silo approach tensor Asil,H and
Alay,H for the layered approach.

The CHR of the constructed tensors have all same order rH. Asil,H and Alay,H dimensions
are rH − 2 bigger than Astr,H (n − 2 in the worst case). Astr,H has a total number of

elements (n+ 1)rH
(n+ rH − 1)rH times smaller than the two other tensors.



3.5. Evaluation and first choice 87

Elements of Astr,H—respectively Asil,H—are repeated 1
nj !

—respectively 1
nj k!

—times
less than elements of Alay,H. The total number of non-zero elements filled for a given
hb-graph in Astr,H and Asil,H are the same and is smaller than the total number of
non-zero elements in Alay,H.

Since whatever the approach taken, the tensors are symmetric, a unique value is needed
to fully describe an hb-edge; moreover, this value depends only on the hb-edge compo-
sition as well as the number of elements to be filled.

All tensors are symmetric and allow the reconstruction of the hb-graph from these
elements.

Node’s degrees can be retrieved as it has been shown previously. Additional information
on individual hb-edges is easier to retrieve with the silo and the layered approach.

3.5.2. First choice

Insofar, as the straightforward tensor is weakly irreducible for non m-uniform connected
hb-graph and, as this is a sufficient desirable property to choose it, even if this choice is
at the price of less practicability to retrieve information on hb-edges, we take Astr,H for
definition of the e-adjacency tensor of a hb-graph. The information on the shape of the
hb-edges is preserved through the added special vertex, which enhances the retrieval of
information on the hb-edge cardinality.

3.5.3. Hypergraphs and hb-graphs

Hypergraphs are particular case of hb-graphs and, hence, the e-adjacency tensor defined
for hb-graphs can be used for hypergraphs. Since the multiplicity function for vertices
of a hyperedge seen as hb-edge has its values in {0, 1}, the e-adjacency tensor elements
differ only by a factorial number due to the cardinality of the hyperedge.

The definition that is retained for the e-adjacency tensor of a hypergraph is:

Definition 3.10. The e-adjacency tensor of a hypergraph H = (V,E) having maximal
cardinality of its hyperedges kmax is the tensor AH of CHR:

AH
∆=
(
ai1...irH

)
16i1,...,irH6n

defined by:
AH

∆=
∑
i∈JpK

ceiRei

and where for ei =
{
vj1 , . . . , vjki

}
∈ E, cei = kmax

ki
is the dilatation coefficient and

Rei =
(
ri1...irH

)
is the associated tensor to ei, having all non-zero elements of same

value. The non-zero elements of Rei are:

rj1...jki (n+1)kmax−ki = (kmax − ki)!
kmax! ki
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and all the ones whose indices are obtained by permutation of:

j1 . . . jki (n+ 1)kmax−ki .

In practice, writing AH =
(
al1...lkmax

)
, the element of AH of indices l1, · · · , lkmax such

that: {{
l1, · · · , lrH

}}
=
{
j1, ..., jki , [n+ 1]kmax−ki

}
,

corresponding to a hyperedge ei =
{
vj1 , ..., vjki

}
of the original hypergraph H, is:

al1...lrkmax
= (kmax − ki)!

(kmax − 1)! .

Remark 3.5.1.

As in [OLGMM17a] we compare the e-adjacency tensors obtained by [BCM17] and by
[SZB19] with the one chosen in this Thesis. The results are presented in Table 3.2.

3.6. Further comments

Extending the concept of hypergraphs to support multisets and introducing hb-graphs
have allowed us to define a systematic approach for building the e-adjacency tensor of
a hb-graph. Conversely, as hypergraphs appear as particular case of hb-graphs, the e-
adjacency tensors are applicable to general hypergraphs. Hb-graphs are a good modeling
framework for many real problems and have induced already some nice refinements in
existing work.

The tensor constructed in [BCM17] can be seen as a transformation of the hypergraph
H = (V,E) into a weighted hb-graph HB = (V,E′, we): with the same vertex set but
with hb-edges obtained from the hyperedges of the original hypergraph such that for a
given hyperedge all the hb-edges having this hyperedge as support are considered with
multiplicities of vertices such that it reaches kmax.

We still have to analyze the behavior of our constructed e-adjacency tensor with regard
to the diffusion process. The fact that information on hb-edges for hb-graphs and,
therefore, for hyperedges in hypergraphs are stored in the e-adjacency tensor should
provide a nice explanation of the role of the variety of hb-edge m-cardinality.
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Astr,H Asil,H Alay,H
Hypermatrix
representation

Astr,H Asil,H Alay,H

Order rH rH rH
Dimension n+ 1 n+ rH − 1 n+ rH − 1

Total number of
elements

(n+ 1)rH (n+ rH − 1)rH (n+ rH − 1)rH

Total number of
elements potentially
used by the way the

tensor is build

(n+ 1)rH (n+ rH − 1)rH (n+ rH − 1)rH

Number of repeated
elements per

hb-edge
ej =

{
v
mji1
i1

, . . . , v
mjij
ij

}

rH!
mji1 ! . . .mjij !nj !

with
nj = rH −#mej

rH!
mji1 ! . . .mjij !njk!

with
njk = rH −#mej

rH!
mji1 ! . . .mjij !

Number of elements
to be filled per
hb-edge of size s

before permutation

Constant
1

Constant
1

Constant
1

Number of elements
to be described to
derived the tensor
by permutation of

indices

|E| |E| |E|

Value of elements
corresponding to a

hb-edge

Dependent of
hb-edge

composition
mji1 ! . . .mjij !nj !

(rH − 1)!

Dependent of
hb-edge

composition
mji1 ! . . .mjij !njk!

(rH − 1)!

Dependent of
hb-edge

composition
mji1 ! . . .mjij !

(rH − 1)!
Symmetric Yes Yes Yes

Reconstructivity
Straightforward:
delete special

vertices

Straightforward:
delete special

vertices

Straightforward:
delete special

vertices
Nodes degree Yes Yes Yes

Information on
hb-edges

Yes, but not
straightforward Yes Yes

Spectral analysis

Special vertex
increases the

amplitude of the
bounds

Special vertices
increase the

amplitude of the
bounds

Special vertices
increase the

amplitude of the
bounds

Interpretability in
term of hb-graph
m-uniformisation

Yes Yes Yes

Table 3.1.: Evaluation of the hb-graph e-adjacency tensor depending on construction.

Astr,H refers to the e-adjacency tensor built with the straightforward approach.
Asil,H refers to the e-adjacency tensor built with the silo approach.
Alay,H refers to the e-adjacency tensor built with the layered approach.
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BH SH AH
Hypermatrix
representation

BH SH AH

Order kmax kmax kmax
Dimension n n n+ 1

Total number of
elements

nkmax nkmax (n+ 1)kmax

Total number of
elements potentially
used by the way the

tensor is build

nkmax nkmax (n+ 1)kmax

Number of non-zero
elements for a given

hypergraph

kmax∑
s=1

αs |Es| with
αs =

ps (kmax) kmax!
k1!...ks!

kmax∑
s=1

s! |Es|

kmax∑
s=1

αs |Es| with

αs = kmax!
(kmax − s)!

Number of repeated
elements per hyperedge

of size s

kmax!
k1!...ks!

s kmax!
(kmax − s)!

Number of elements to
be filled per hyperedge

of size s before
permutation

Varying
ps (kmax) =(
kmax − 1
s− 1

)
Varying s if
prefix is

considered as
non-permuting

part

Constant
1

Number of elements to
be described to derived

the tensor by
permutation of indices

kmax∑
s=1

ps (kmax) |Es|
kmax∑
s=1

s |Es| |E|

Value of elements
corresponding to a

hyperedge

Dependent of
hyperedge
composition

s

αs

Dependent of
hyperedge
composition

1
(s− 1)!

Dependent of
hyperedge size

(kmax − s)!
(kmax − 1)!

Symmetric Yes No Yes

Reconstructivity Need computation of
duplicated vertices

Need
computation of

duplicated
vertices

Straightforward:
delete special

vertices

Nodes degree Yes Yes Yes

Hyperedge cardinality Not straightforward Not
straightforward Yes

Spectral analysis Yes Yes

Special vertices
increase the

amplitude of the
bounds

Interpretability in term
of hypergraph /

hb-graph
(m-)uniformisation

No / No No / No No / Yes

Table 3.2.: Evaluation of the hypergraph e-adjacency tensor.

BH designates the adjacency tensor defined in [BCM17].
SH designates the adjacency tensor defined in [SZB19].

AH refers to the e-adjacency tensor as defined in this Thesis.
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4.1. Motivation

An expectation that has not been formulated while constructing the e-adjacency tensors,
as we wanted to expand the current adjacency tensors for uniform hypergraphs, is an
expectation on the diffusion process.

Expectation 4.1. The construction of the e-adjacency tensor should have minimal
impact on the matrix exchange-based diffusion process of a connected hb-graph.

As we need a hb-graph m-uniformisation to allow the storing of the elements in a single
cubical tensor, we transform the original hb-graph H of incident matrix H of dimension
n × p in a m-uniform hb-graph H(m) of incident matrix H(m) of dimension (n+ nA) p
where nA is the number of special vertices added during the m-uniformisation process.
The matrix exchange-based diffusion process on a hb-graph depends on the incident
matrix of the hb-graph. Considering the stationary states for vertices and hb-edges,
we can measure the similarity between the two diffusions by considering the state of
the vertices / hb-edges of the original hb-graph and the state of the vertices / hb-edges
in the m-uniformized hb-graph. Let πV (respectively πV (m)) be the stationary state of
vertices and πE (respectively πE(m)) the stationary state of the hb-edges of the original
hb-graph (respectively of the m-uniformized hb-graph).
We can reformulate mathematically the problem by finding, if there exists, an e-adjacency
tensor T0 ∈ Sm,n ∩Nm,n such that:

T0 = argmin
T ∈Sm,n∩Nm,n

(
d
(
πV , πV (m)[n]

)
+ d

(
πE, πE(m)

))
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where πV (m)[n] is the truncated vector πV (m) to its first n coordinates (the ones repre-
senting the states of the original vertices) and d (·, ·) is a distance, such as the Euclidean
distance.

If this problem is tractable, which is in fact an open question, finding its solution is
definitively NP-hard. Evaluating the impact on the diffusion at the end of the construc-
tion of the proposed tensors is then already a first step.

Research question 4.1. What is the impact of the Hb-graph m-Uniformisation Process
on the diffusion process?

4.2. Impact of the m-uniformisation process on the
exchange-based diffusion

We consider a connected unweighted hb-graph H = (V,E) with no repeated hb-edges,
incident matrix H and m-rank rH. We now focus on the impact of the m-uniformisation
process on the exchange-based diffusion that is involved, i.e. the formalization of the
stable states for the m-uniformized hb-graphs obtained during the construction of the
tensors.

In Chapter 3, we built the e-adjacency tensors by m-uniformizing the original hb-graph
with the addition of special vertices to the hb-edge universe and the filling of the hb-edges
with sufficient multiplicities on these vertices. We call this approach the additional
vertices filling m-uniformisation approach.

An other approach, taken in [BCM17] and [SZB19], was to share the elements in between
free places of the built tensor, i.e. elements of the tensor having repeated indices: this
process can be assimilated to adding hb-edges to the corresponding hypergraph, viewed
as a hb-graph. The original hb-graph is m-uniformized by splitting hb-edges that are not
complete (in the sense that they have a m-cardinality strictly less than the m-rank of the
original hb-graph) into multiple copies of these hb-edges and filling them by repeating
the original vertices in different ways depending on the approach. We call this approach
the hb-edge splitting m-uniformisation approach.

Both approaches have a potential impact on the exchange-based diffusion since the orig-
inal structure is modified. A third approach would consist in using a combination of the
two previous ones. Nonetheless, as this approach potentially combines the drawbacks,
and particularly increases the number of hb-edges, we do not think it is worth consid-
ering it, since the additional vertices filling m-uniformisation approach does not require
any increase of the number of vertices.

4.2.1. Additional vertices filling m-uniformisation approach

We formulate the calculus for the general case.

We write Hproc
∆= (Vproc,Eproc, wproc) the hb-graph obtained by additional vertices filling

m-uniformisation process of the original hb-graph and write its incident matrix Hproc ∈
M(n+nproc),p. We have: Vproc = V ∪ {yi : i ∈ JnprocK} .
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The hb-edges eproc,j ∈ Eproc of Hproc are obtained from those of H for all j ∈ JpK by
considering the fusion: eproc,j

∆= ej ⊕
{{
y
mn+k, j
k : k ∈ JnprocK

}}
where the multiplicity

mn+k, j depends only on the m-uniformisation process and on the m-cardinality of the
original hb-edge ej . The multiplicities and weights are given in Table 4.1 for the different
m-uniformisation processes presented in Chapter 3.

m-uniformisation
process

nproc mn+k, j wproc (eproc,j)

straightforward 1 mn+1, j = rH −#mej
rH

#mej

silo rH − 1 mn+k, j =
{
rH −#mej if k = #mej

0 otherwise
rH

#mej

layered rH − 1 mn+k, j =
{

1 if k ∈ J#mej ; rH − 1K
0 otherwise

rH
#mej

Table 4.1.: Number and multiplicity of special vertices and weights introduced for the
three m-uniformisation process introduced in Chapter 3, with: k ∈ JnprocK , j ∈ JpK .

The incident matrix of Hproc is Hproc
∆= (hproc, ij)i∈Jn+nprocK

j∈JpK
, where:

∀i ∈ Jn+ nprocK , ∀j ∈ JpK : hproc, ij
∆= mij .

The hb-edge weights correspond to those given during the m-uniformisation process,
written for all j ∈ JpK: wproc (eproc,j) .
We deduce the stable states in the exchange-based diffusion process on the m-uniformized
hb-graph Hproc.

For the stable state of vertices:

Proposition 4.1. Writing πVproc =
(
πVproci

)
i∈Jn+nprocK the stable state of the exchange-

based diffusion on Hproc, it holds for all i ∈ Jn+ nprocK :

πVproci
∆= Dw,H,proc

∑
j∈JpK

wproc (eproc,j)
rH

mij

with:

Dw,H,proc
∆= rH

 ∑
k∈Jn+nprocK

dw,vk

−1

that depends only on the m-uniformisation process on the original hb-graph structure.

Proof. We have:πVproc =
(
πVproci

)
i∈Jn+nprocK .

Hence, we have for all i ∈ Jn+ nprocK, as shown in Chapter 2:

πVlayi = dw,vi∑
k∈Jn+rH−1K

dw,vk
,
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where, for i ∈ Jn+ nprocK : dw,vi = ∑
j∈JpK

mij
wproc (eproc,j)

rH
.

Writing: Dw,H,proc = rH

( ∑
k∈Jn+nprocK

dw,vk

)−1

the result follows.

In the three m-uniformisation processes considered in Table 4.1, the weights attached
to the hb-edges of the m-uniformized hb-graphs are for all j ∈ JpK given by:

wproc (eproc,j) = rH
#mej

.

With this weighting, it holds: πVproci = Dw,H,proc
∑
j∈JpK

mij

#mej
.

Hence, the stable state of vertices depends on the relative multiplicity compared to the
m-cardinality of the hb-edges: thus, the more isolated a vertex in a hb-edge, the higher
the ranking of this vertex.

Remark 4.2.1. We introduced the technical coefficient in the Hm-UP to preserve the
number of hb-edges. Keeping this coefficient at a constant value c—and in particular to
1—independently of the hb-edge—i.e. for all j ∈ JpK : wproc (eproc,j) = c—, we have:

πVproci = Dw,H,procc
∑
j∈JpK

mij ∝ degm (vi)

This means that the ranking of the vertices achieved in the exchange-based diffusion is
preserved in this case (at the cost of having more difficulties to retrieve the m-degree of
vertices from the e-adjacency tensor).
All other weightings of the original hb-edges have a potential influence on the ranking
of vertices during the diffusion process.

To compare the vertex stable state obtained with the m-uniformized hb-graph and the
original hb-graph, one can compute the distance between these two stable states. It is
given by:

Proposition 4.2.

d
(
πV ,

(
πVproci

)
i∈JnK

)
=

√√√√√∑
i∈JnK

∑
j∈JpK

( 1
#mH

− Dw,H,procwproc (eproc,j)
rH

)
mij

2

.

Proof. Immediate as: d
(
πV ,

(
πVproci

)
i∈JnK

)2
= ∑

i∈JnK

(
πV i − πVproci

)2
.

Also, the perturbation of diffusion in the m-uniformized hb-graph is dependent on the
shape of the original hb-graph and from how far away it is from m-uniformity.
Other features such as the Kendall’s tau or the scaled Spearman footrule coefficients
can be calculated to compare the rankings obtained from the two diffusions.
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For the stable state of the hb-edges:

Proposition 4.3. Writing πEproc =
(
πEprocj

)
j∈JpK

the stable state of hb-edges in the
exchange-based diffusion on Hproc, we have for all j ∈ JpK :

πEprocj = Dw,H,procwproc (eproc,j) .

Proof. πEprocj = wproc (eproc,j)×#m (eproc,j)∑
k∈Jn+nprocK

dw,vk
= wproc (eproc,j)× rH∑

k∈Jn+nprocK
dw,vk

= Dw,H,procwproc (eproc,j) .

The stable state no longer reflects the m-cardinality of the hb-edge.

Remark 4.2.2. Again the stable state of the diffusion for the hb-edges is highly disrupted
by the weights of the Hm-UP process. If these weights are put equal to 1, it holds for
all j ∈ JpK : πEprocj = 1

p
which implies that the diffusion is non discriminative on the

hb-edges.

4.2.2. Hb-edge splitting m-uniformisation approach

We do not formulate systematically the approach but, instead, give the outlines and
focus on the m-uniformisation process induced by the tensor proposed in [BCM17] for
a general hypergraph H = (V,E) of rank rH.

In Appendix Section E.1, for the tensor proposed in [BCM17], we have noticed that
hyperedges of lower cardinality than the rank rH are stored in elements of repeated
indices of the e-adjacency tensor with rank rH and dimension |V | . To keep the tensor
symmetric, all the s-compositions of rH in s = #ej elements have to be considered
and from there all the combinations of indices reflecting the s-composition. Hence, the
process cannot be interpreted in term of hypergraph uniformisation since the vertices
must be repeated and it requires a hb-graph m-uniformisation process: we propose this
interpretation in this Section.

We have also mentioned that in the tensor proposed in [BCM17] a given hyperedge
ej = {vl1 , ..., vls} is stored through a set of elements of the e-adjacency tensor of rank
rH and dimension n = |V | whose indices corresponds to permutations of the different
multisets

{{
lkii , i ∈ JsK

}}
such that: ∀i, ki > 1 and ∑

i∈JsK
ki = rH.

Hence, taking a hb-graph m-uniformisation interpretation means that the hyperedge ej
considered as a hb-edge is transformed into a collection of hb-edges of universe V. To
refine this interpretation, we consider P#ej (rH) the set of compositions of rH in #ej
elements defined by:

P#ej (rH) ∆=

(ki)i∈J#ejK : ∀i ∈ J#ejK , ki > 1 ∧
∑

i∈J#ejK
ki = rH

 .
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Indexing the elements of P#ej (rH) with a bijective mapping:

ψ :
q
#P#ej (rH)

y
→ P#ej (rH) ,

we associate a family of hb-edges
(
eproc,(j,pj)

)
pj∈

r
#P#ej (rH)

z to ej such that for all pj ∈
q
#P#ej (rH)

y
:

eproc,(j,pj)
∆=
{{

v
kij
lj

: ψ (pj) =
(
klj

)
lj∈J#ejK

}}
,

considering that ej =
{
vl1 , · · · , vl#ej

}
.

We write:

mi(j,pj)
∆=
{
klj if ∃lj : vlj ∈ ej ∧ vi = vlj ;
0 otherwise.

Hence, the initial hypergraph H is transformed into a hb-graph

Hproc = (Vproc,Eproc, wproc)

obtained by a hb-edge splitting m-uniformisation process, of incident matrix

Hproc ∈Mn,pproc .

We have Vproc = V. An original hb-edge ej is split into #P#ej (rH) hb-edges eproc,j,k.
Thus, the hb-edge family of the hb-edge splitting hb-graph is:

Eproc
∆=
((

eproc,(j,pj)
)
pj∈

r
#P#ej (rH)

z

)
j∈JpK

.

For j ∈ JpK ∧ pj ∈
q
#P#ej (rH)

y
, wproc

(
eproc,(j,kj)

)
= #ej .

In order to build the incident matrix of Hproc, we re-index Eproc by considering the
bijective mapping:

φ :


JpK×

t ∑
k∈JpK

#P#ek (rH)
|

→

t ∑
k∈JpK

#P#ek (rH)
|

(j, pj) 7→
∑

k∈Jj−1K
#P#ej (rH) + pj

.

Hproc = (hil) is built using the multiplicities of the different vertices for i ∈ JnK ,

l ∈

t ∑
k∈JpK

#P#ek (rH)
|

:

hil = miφ−1(l).

For the stable state of vertices:

Proposition 4.4. Writing πVproc
∆=
(
πVproci

)
i∈JnK the stable state of the exchange-based

diffusion on Hproc, it holds for all i ∈ JnK :

πVproci
∆= Dw,H,proc

∑
l∈

u

v
∑
k∈JpK

#P#ek (rH)

}

~

wproc
(
eproc,φ−1(l)

)
rH

miφ−1(l)
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with Dw,H,proc
∆= rH

( ∑
k∈JnK

dw,vk

)−1

that depends only on the m-uniformisation process

on the original hb-graph structure.

Proof. We have:
πVproc =

(
πVproci

)
i∈JnK .

Hence, we have for all i ∈ JnK , as shown in Chapter 2:

πVproci = dw,vi∑
k∈JnK

dw,vk
,

where, for i ∈ JnK :

dw,vi =
∑

l∈

u

v
∑
k∈JpK

#P#ek (rH)

}

~

wproc
(
eproc,φ−1(l)

)
rH

miφ−1(l).

Writing: Dw,H,proc = rH

( ∑
k∈JnK

dw,vk

)−1

the result follows.

We can remark that now the stable state of the diffusion on the m-uniformized hb-graph
is dependent on the way the hyperedges are split and filled. The relationship with the
initial diffusion is no more straightforward, and the m-uniformisation process disturbs
the diffusion process in a way that seems difficult to be interpreted.

For the stable state of the hb-edges:

Proposition 4.5. Writing πEproc =
(
πEprocl

)
l∈

u

v
∑
k∈JpK

#P#ek (rH)

}

~
the stable state of hb-

edges in the exchange-based diffusion on Hproc, we have for all l ∈
t ∑
k∈JpK

#P#ek (rH)
|

:

πEprocl = Dw,H,procwproc
(
eproc,φ−1(l)

)
.

Proof.

πEprocl =
wproc

(
eproc,φ−1(l)

)
×#m

(
eproc,φ−1(l)

)
∑

k∈JnK
dw,vk

=
wproc

(
eproc,φ−1(l)

)
× rH∑

k∈JnK
dw,vk

= Dw,H,procwproc
(
eproc,φ−1(l)

)
.
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Writing φ−1 (l) = (j, kj) where j ∈ JpK, we have: wproc
(
eproc,φ−1(l)

)
= #ej . Hence, the

stable state of the hb-edges reflects the m-cardinality of the original hb-graph, i.e. the
cardinality of the hyperedges of the original hypergraph.

4.3. e-adjacency tensors require compromises

We start by giving some lemma:

Lemma 4.1. A splitting hb-edge m-uniformisation process with no additional vertices
preserves only the e?-adjacency of the original non m-uniform hb-graph.

Proof. As the hb-graph H = (V,E) is non m-uniform, there exists a hb-edge e ∈ E such
that #me < rH. As there are no additional vertices added during the m-uniformisation,
the hb-edge is filled only by additional vertices of its support. The multiplicity of the
corresponding vertices is therefore changed compared to the original multiplicity, thus
the e-adjacency is not preserved and only the e?-adjacency is preserved.

Lemma 4.2. Preserving globally e-adjacency in a m-uniformisation process of a non
m-uniform hb-graph requires at least one additional vertex.

Proof. Either we extend the number of hb-edges by a splitting process, and, as seen in
the previous lemma, additional vertices are required, in order to keep the multiplicity of
existing vertices and to allow the global preservation of e-adjacency. Or we add one or
more special vertices to fill the hb-edges of m-cardinality s < rH up to a m-cardinality
of rH, while preserving the multiplicity of the vertices of the original hb-graph and thus
the e-adjacency.

The presence of the additional vertices avoids to disturb the global e-adjacency, even if
the strict e-adjacency is not preserved.

Remark 4.3.1. The preservation of e?-adjacency in a m-uniformisation process is not
sufficient to preserve the stable state of vertices in the exchange-based diffusion of a
connected hb-graph.

Proof. If it was the case, it would mean that both a hb-graph and its support hyper-
graph, that have same e?-adjacency would lead to the same exchange-based diffusion
process, which is not always the case, even for a connected m-uniform hb-graph having
a uniform hypergraph as support, as the former is taking into account the multiplicities
and the latter not.



4.3. e-adjacency tensors require compromises 99

v4

v3

v2

v5 v1

e4

e2

e3

e1

Figure 4.1.: Representation of the 5-m-uniform hb-graph H = (V,E) with V =
{vi : i ∈ J5K} and E = (ej)j∈J4K, where: e1 =

{{
v2

1, v
2
2, v

1
5
}}
, e2 =

{{
v1

2, v
2
3, v

2
4
}}
,

e3 =
{{
v1

2, v
2
3, v

2
5
}}

and e4 =
{{
v1

2, v
3
3, v

1
4
}}
.

For instance, we consider the 5-m-uniform hb-graph H = (V,E) as represented in Figure
4.1 , with V = {vi : i ∈ J5K} and E = (ej)j∈J4K, where: e1 =

{{
v2

1, v
2
2, v

1
5
}}
, e2 ={{

v1
2, v

2
3, v

2
4
}}
, e3 =

{{
v1

2, v
2
3, v

2
5
}}

and e4 =
{{
v1

2, v
3
3, v

1
4
}}

of incident matrix:

H =


2 0 0 0
2 1 1 1
0 2 2 3
0 2 0 1
1 0 2 0


brings to the stable state of the vertices: πV = 1

20
(

2 5 7 3 3
)ᵀ

while the support
hypergraph H = (V,E) of H of incident matrix:

H =


1 1 0 0
1 1 1 1
0 1 1 1
0 1 0 1
1 0 1 0


leads to the stable state for the vertices: πV = 1

13
(

2 4 3 2 2
)ᵀ

which leads to
an inversion of ranking between the vertices v2 and v3, and to tie v1, v4 and v5.

Theorem 4.1. There is no Hm-UP process that preserves both e-adjacency of the orig-
inal hb-graph and preserves the exchange-based diffusion simultaneously on vertices and
hb-edges.
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Proof. Suppose that such a process exists, then it transforms the original hb-graph
of incident matrix H into a m-uniformized hb-graph of incident matrix Hproc having
similar stable states of exchange-based diffusion i.e. stable states that rank vertices and
hb-edges similarly to the diffusion on the original hb-graph while preserving e-adjacency
in the m-uniformized hb-graph.

The strict e-adjacency preservation excludes the hb-edge splitting m-uniformisation ap-
proach without additional vertex where initial hb-edges are split and filled with different
vertices of the original universe, thus modifying the e-adjacency of the vertices, preserv-
ing only the e?-adjacency (see lemma).

In the other m-uniformisation approach, the hb-edges are filled with additional vertices
in multiplicity sufficient such that each hb-edge is filled to have a m-cardinality equal
to the m-rank. This approach preserves the e-adjacency at least globally for the hb-
edges that have a m-cardinality lower than the m-rank and strictly for the ones that are
already at the upper value of m-cardinality.

In this last approach, the added vertices, called special vertices, do not modify the m-
degree of the existing vertices but only the m-cardinality of the hb-edges of the original
hb-graph. Two cases can occur: the first case consists in achieving the m-uniformisation
without weighting the hb-edges, and, hence, the stable state in the m-uniformized hb-
graph differs for the original vertices only with a multiplicative constant (as we have
shown in the Section 4.2.1). The stable state of the hb-edges differs from the original
hb-graph due to the m-uniformisation. The second case consists in weighting the hb-
edges; in this case if the weighting is hb-edge dependent the stable state of the vertices
can also be modified in the m-uniformized hb-graph compared to the original hb-graph.
For the hb-edges, the same effect occurs than in the unweighted case. Hence the result.

Nonetheless, in the unweighted version of the additional vertices filling m-uniformisation
approach, the stable state of hb-edges can be adjusted to use only the stable state vertices
of the original hb-graph. In this case, the original state can be retrieved—at the cost of
having difficulties to retrieve the degree of vertices in the constructed tensor.

4.4. Further comments

We have shown in this Chapter that whatever the m-uniformisation approach taken,
it has an impact on the exchange-based diffusion either at the vertex level or (non
exclusive) at the hb-edge level. The additional vertices filling m-uniformisation approach
can bring to the same ranking than the original hb-graph at the cost of having more
troubles to handle the m-degree of the vertices. If we keep the proposed tensors, then
we have to keep in mind that the diffusion process has to be informed of this deformed
structure.
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5.1. Motivation

So far, we have used the incident matrix to enhance diffusion on hb-graphs. Build-
ing an e-adjacency tensor for general hb-graphs and analyzing the impact of the m-
uniformisation has led us to the conclusion that the m-uniformisation process impacts
the diffusion process. Hence, the necessity to have either an informed diffusion or to
have a diffusion that operates at the individual levels of the layered decomposition of
an hb-graph.

In this Chapter, we want to address the following research question:

Research question 5.1. How to enable a tensor-based diffusion in general hb-graphs?

We start by giving in Section 5.2 the related work and mathematical background on
diffusion over networks, seen as graphs or hypergraphs. We then propose in Section 5.3
different lines of thoughts to tackle the problem of diffusion in general hb-graphs.

5.2. Related work

Diffusion kernels for graphs have been proposed in [KL02] linking them to exponential
kernels and stochastic processes on graphs, as well as lazy random walks. In [BN03], the
authors study the Laplace Beltrami operator on differentiable functions on a manifold
and show the tight link with the heat flow. In [LL05], diffusion kernels are introduced
that exploit the geometric structure of statistical models, particularly the multinomial
kernel which allows to learn from discrete data; it is applied to some text corpus.
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5.2.1. Operators

Definitions and results of this section are based on [Kat13], which is a reference book on
operators. Originally, operators refer to transformations that manipulate functions and
give back functions. Some people are restricting to transformations on a same space.
An operator O : E → F is a mapping between two topological vector spaces E and F
with scalars in a field K.
An operator O : E → F is linear if:

∀ (λ, µ) ∈ K2, ∀ (f1, f2) ∈ E2, O (λf1 + µf2) = λO (f1) + µO (f2) .

In practice, the operator can be defined on a subspace D of E called definition domain
of the operator.
The rank of an operator O : E → F is the dimension of O(E).
The kernel of O is the pre-image of 0F .
In finite dimension, it holds rank (O) + dim (Ker (O)) = dim (E) . In finite dimension, a
linear operator is uniquely represented by a matrix.
The linear sum of two operators is an operator.

5.2.2. Diffusion operators

The results of this section are based on the attached reference1.
A diffusion operator L on Rn is defined as a differential operator that can be written:

L =
∑

i,j∈JnK

σij (x) ∂2

∂xi∂xj
+
∑
i∈JnK

bi (x) ∂

∂xi

where bi and σij are continuous functions on Rn and such that for all x ∈ Rn :
(σij (x))i,j∈JnK is a symmetric and non-negative matrix.

The Laplace operator ∆ = ∑
i∈JnK

∂2

∂x2
i

on Rn is a diffusion operator.

The author shows that diffusion operators satisfy a maximum principle:

Proposition 5.1. Maximum principle for diffusion operators
Let f : Rn → R be a smooth function (such that f ∈ C∞ (Rn)) that reaches a local
minimum at x. If L is a diffusion operator, then Lf(x) > 0.

Reciprocally, combined with linearity, the maximum principle characterizes a diffu-
sion operator.

Theorem 5.1. Let L : C∞ (Rn) → C0 (Rn) be an operator such that L is linear and
such that if f ∈ C∞ (Rn) has a local minimum at x, Lf(x) > 0.
Then L is a diffusion operator.
1https://fabricebaudoin.wordpress.com/2013/06/21/lecture-1-diffusion-operators/

https://fabricebaudoin.wordpress.com/2013/06/21/lecture-1-diffusion-operators/
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This theorem is a particular case of the Courrège’s theorem given in [Cou65] that gives
the necessary and sufficient condition for a linear operator to satisfy the positive max-
imum principle; an operator A : C∞c (Rn) 7→ C (Rn) is said to satisfy the positive max-
imum principle, if for any function f of the space of smooth and compact supported
functions C∞c (Rn) that has a global maximum and, that is non-negative in x, then
Af(x) is non-negative.

5.2.3. Diffusion processes in graphs

In [FW93], the authors study different classical stochastic processes leading to diffusion
processes on graphs, by studying diffusion in narrow tubes: each time they give the
associated second-order differential operator associated to the diffusion process.

In [Mer95], a full survey on graph Laplacian is realized. For small vibrations, the
oscillations of a point on the membrane are approximately vertical, and depends only
on the place on the drum and the time, i.e. z = f (x, y, t) with f ∈ C2 (R2) and the

equation of the movement is given by the wave equation ∂2f

∂t2
= c2∆f, where ∆ is the

Laplacian operator on R2, as it has been defined in the previous section.

If ∂
2f

∂t2
is supposed to be oppositely proportional to the vertical move, i.e. ∂

2f

∂t2
= −kf,

we have ∆f = − k
c2 f.

Forgetting time, and considering a square grid of unit size h around (x, y) , i.e. taking
finite differences, we have:

f (x+ h, y) = f (x, y) + h
∂f

∂x
(x, y) + h2∂

2f

∂x2 (x, y) + o
(
h2
)
. (5.1)

We can also write:

f (x− h, y) = f (x, y)− h∂f
∂x

(x, y) + h2∂
2f

∂x2 (x, y) + o
(
h2
)
. (5.2)

By summing of (5.1) with (5.2) and rearranging, it holds that:

∂2f

∂x2 (x, y) ≈ 1
h2 (f (x+ h, y) + f (x− h, y)− 2f (x, y)) . (5.3)

Similarly:
∂2f

∂y2 (x, y) ≈ 1
h2 (f (x, y + h) + f (x, y − h)− 2f (x, y)) . (5.4)

Globally, gathering (5.3) with (5.4), we have:

∆f ≈ 1
h2 (f (x+ h, y) + f (x− h, y) + f (x, y + h) + f (x, y − h)− 4f (x, y)) .

It means that the Laplacian, close to (x, y) is the sum of the difference of values in
between the neighbor values and the point itself.
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Coming back to the grid and taking h = 1, it holds that the Laplacian of the 5 points
on the grid is:

L =


4 −1 −1 −1 −1
−1 1 0 0 0
−1 0 1 0 0
−1 0 0 1 0
−1 0 0 0 1


that corresponds to the matrix view of the operator ∆.
Generalizing the concept for a graph, it becomes natural to define the Laplacian of a
graph as L ∆= D −A with D = diag

(
(di)i∈JnK

)
with di the degree of the vertex vi and

A = (aij)i,j∈JnK the adjacency matrix of the graph.
Coming back to the oscillating membrane, it holds:

4f (x, y)− f (x+ h, y)− f (x− h, y)− f (x, y + h)− f (x, y − h) = kh2

c2 f (x, y)

Writing µ = kh2

c2 , µ appears to be an eigenvalue of ∆, and solving ∆f = µf is equivalent
to finding the eigenpairs of the Laplacian operator. Hence, the problem reduces to
finding eigenpairs of L on the grid of finite elements.
A lot of work has been done on the eigenvalues of the Laplacian and connecting these
eigenvalues to different features of the graph. The interested reader can refer to [Mer95].

5.2.4. Diffusion processes in hypergraphs

There are two kinds of approaches to define a Laplacian for hypergraph: the matrix and
the tensor approach. The matrix approach relies more or less on the adjacency matrix
of a hypergraph, which is a pairwise view of the hypergraph and focuses on extending
the properties obtained for the graph Laplacian to the hypergraph Laplacian. In the
random walks, the transition matrix are expressed using the incident matrix decorated
by additional matrices depending on the way the hypergraph is viewed as a graph.

5.2.4.1. Matrix Laplacians

Mainly three different approaches exist to define matrix Laplacians. The first approach
consists in using the adjacency matrix of the hypergraph. The second approach consists
in using the incident matrix. The third one relies on random walks achieved on the
hypergraph to approximate the Laplacian. Whatever the method taken, as matrices
are used, there is an underlying pairwise approach, either directly when considering the
adjacency matrix, or indirectly with the incident matrix or with random walks. We
have gathered in Table 5.1 the different methods.
In [Chu93], a Laplacian based on homological considerations is introduced: the Lapla-
cian of a k-uniform hypergraph is defined as the matrix L ∆= D −A+ ρ (K + (k − 1) I)
where ρ = d

n
with d corresponding to the average degree, n being the number of vertices

of the hypergraph, D the diagonal matrix constituted of the degree of the vertices, A
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Adjacency matrix Incident matrix
Hypergraph as a graph [ZSC99] [Rod03]
Homological approach [Chu93]

Simple [ZHS07][CR19]Random walk based Higher-order [LP11]

Table 5.1.: Ways of defining matrix Laplacian of a hypergraph.

the adjacency matrix with coefficients corresponding to the binary presence of two given
vertices in one hyperedge, K the matrix associated to the complete graph and I the
identity matrix. This Laplacian is viewed as a self-adjoint operator.

An other matrix approach was introduced in [ZSC99] where the hypergraph is viewed
in its 2-section. The Laplacian of the hypergraph is built from the adjacency matrix
of the 2-section of the hypergraph, considering its adjacency matrix A = (aij) where
aij corresponds to the weight of the edge between vertex vi and vj having the vertices
vi and vj in common. The Laplacian degree is defined as δl (vi)

∆= ∑
j∈JnK

aij and the

Laplacian is defined as L ∆= D −A, where D ∆= diag
(
(δl (vi))i∈JnK

)
.

In [Rod03], the authors take a similar approach, several bounds are then given on
different hypergraph features. This approach is more geometric in the sense that the
hypergraph is seen as a multipartite graph or a weighted graph.

In [ZHS07], the approach is pairwise based using a Laplacian matrix defined from the
degree normalised adjacency matrix. This approach is deeply based on the transition
matrix of a random walk defined on the hypergraph: being on a vertex, a random
incident hyperedge is chosen proportionally to the hyperedge weights and then a vertex
is chosen uniformly at random. Defining the matrix Θ ∆= D

− 1
2

v HWD−1
e HTD

− 1
2

v and the
Laplacian matrix as ∆ ∆= I −Θ enhance a spectral partition of the hypergraph.

In [LP11], the authors start by classifying the two types of approaches taken by previous
authors to define a Laplacian for hypergraphs. Either the previous authors have a
geometric / homological point of view by considering the self-joint operator on the
function of the vertices, like it has been done for graphs in [Chu93] or they consider a
symmetrization of the transition matrix of the random walk performed on a graph based
structure. They introduce high-order random walks and define from them generalized
Laplacian matrices on hypergraphs.

In [CR19], the authors propose a hypergraph Laplacian corresponding to a symmetriza-
tion of the random probability transition similar to the modified random walk we pro-
posed in Chapter 2. The hypergraph has hyperedge-based weighting of the vertices, i.e.
is a hb-graph. Writing P the probability transition matrix and π the stationary state,

they define a Laplacian as L ∆= π− πP + P Tπ

2 using a weighted directed graph that is a
directed 2-section of the hb-graph adding double edges between any vertices and loops
on every vertices. Nonetheless, as it is a matrix representation of a 2-section, it remains
an approximation of an ideal non-linear Laplacian.
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5.2.4.2. Tensor Laplacians

In [LQY13], the authors introduce a Laplacian tensor for m-uniform hypergraph by
considering for a hypergraph H = (V,E) a polynomial fH (x) ∆= ∑

i∈JnK

∑
j∈JnK

δij (xi − xj)m

where

δij
∆=
{

1 if i < j ∧ ∃el ∈ E : vi ∈ el ∧ vj ∈ el
0 otherwise.

The authors define the Laplacian tensor L as Lxm
∆= fH (x) and the associated

characteristic tensor of the hypergraph as C = −L. They then focus on m-uniform
hypergraphs with m even: the maximum Z-eigenvalue of C is shown to be 0 and they
show that the corresponding eigenspace has for dimension the number of connected
components in the hypergraph. They also use the second maximal Z-eigenvalue to
give a bound on the bi-partition width of a hypergraph—the bi-partition width is the
minimal number of hyperedges that has to be cut such that the vertex set is cut in two
equal or one-unity difference parts.

In [Qi14], the Laplacian tensor of a uniform hypergraph is simply defined as:
L ∆= D − A and the signless Laplacian as L ∆= D + A where D is the diagonal tensor
composed of the degrees of the vertices. H-, H+- and H++-eigenvalues of these tensors
are then studied. An interesting definition is the one for a hyperedge ej = {vi1 , ..., vik}
of a k-uniform hypergraph of a k-th order n-dimensional symmetric tensor L (ej) such
that for x ∈ Cn :

L (ej)xk =
∑
l∈JkK

xkil − kxi1 ...xik .

In this case, we have: Lxk = ∑
ej∈E

L (ej)xk.

This link between Laplacian tensor and multivariate polynomial is used in [DWL19] for
studying the Laplacian of general hypergraphs. As defined similarly to the e-adjacency
tensor of [BCM17], this polynomial is of degree rH.

In [HQ15], the normalised signed Laplacian of a k-uniform hypergraph is defined as
L ∆= I − A where A is the eigenvalue normalized k-adjacency tensor defined in Section
E.1.3.2. The remaining work focuses on studying the H- and H+-eigenvalues of this
normalised Laplacian.

In [BCM17], two signed Laplacians are defined for general hypergraphs, one unnor-
malized and one normalized: they are direct generalizations to general hypergraphs of
the unnormalized version of [Qi14] and the normalized version of [HQ15] for uniform
hypergraph.

We can note that none of these works are focusing on the diffusion process that is behind
the definition of the Laplacian.

5.2.4.3. Hypergraph Laplacian and diffusion process

In two successive papers, [CLTZ18] and [CTWZ19], the authors study a diffusion process
on hypergraphs. In [CLTZ18], the diffusion process sends the flow of information from
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vertices with maximal density in the hyperedge to the one with minimal density. In
[CTWZ19], this diffusion process is refined: the flow of information goes from vertices
with higher density to vertices of the hyperedge with lower density using a mediator that
relays this information to the lower density vertices. In both papers, they consider the
diffusion operator linked to the diffusion process and deduce some spectral properties.
A vertex acts as mediator depending on a parameter that is hyperedge dependent and
transmits only a difference of flow depending on the minimum and maximal values of
the density of the other vertices in the hyperedge.
The Laplacian associated to this diffusion is defined as the operator Lw on the density
f ∈ Rn, where n is the number of vertices such that Lwf = −df

dt
. Spectral properties

of this Laplacian are then studied. This approach keeps a kind of pairwise relationship,
diffusing the information only between higher density vertices and the lower ones.

5.3. A diffusion operator for general hb-graphs

As we have seen in Chapter 2, whatever the approach taken, the diffusion is disturbed
by the m-uniformisation process involved to store the information into a symmetrical
cubic tensor. In this Section, we propose different hints to handle this problem.

5.3.1. Global exchange-based diffusion

We start by giving here an extension of the exchange-based diffusion proposed in Chapter
2 using the e-adjacency tensor built in Chapter 3.
We consider for the moment a connected non-uniform unweighted hb-graph H = (V,E)
with |V | = n and |E| = p; we write A its e-adjacency tensor defined in Chapter 3.
At time t, we set a distribution of values over the vertex set: αt : V ∪ Vs → R.

We write PV,t = (αt (vi))i∈Jn+1K the column state vector of the vertices at time t, in-
cluding the special vertex added in the m-uniformisation process. The initialisation is
similar to the one done in Chapter 2.
Using the e-adjacency tensor proposed in Chapter 3, the information between vertices
can be shared directly from one vertex to another group of vertex by using this tensor.
In this approach, the state at time t + 1 of the vertices is retrieved using the state at
time t, using the multilinear matrix multiplication:

λP
[rH−1]
V,t+1 = AP

rH−1
V,t .

The left part is due to the fact that we want to keep homogeneity of the dimension—like
it is achieved in dimensional equations in physics—and the presence of the coefficient is
due to a normalisation that has to take place. Searching the stable state of this equation
is then equivalent to finding the H-eigenvectors of A associated to the eigenvalue λ. It
also imposes to consider that the diffusion is the one of the m-uniformized structure,
which we know it is far from being perfect from Chapter 4.
The intermediate state of the hb-edges cannot be retrieved in this case; however, it is
always possible, either to consider the dual of the hb-graph and its e-adjacency tensor
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(in this case the vertices correspond to the original hb-graph) or to use the incident
matrix as it was done in Chapter 2.

5.3.2. Taking into account the different layers of uniformity.

5.3.2.1. Tensor approach

Keeping in mind that the diffusion is disturbed for general non-uniform hb-graphs, we
can start by keeping the previous approach of tensor Laplacians.

We consider as usual a hb-graph H = (V,E) with vertex set V = {vi : i ∈ JnK} and
hb-edge family E = (ej)j∈JpK .

Similarly to the approach taken for uniform hypergraph, we define the Laplacian hy-
permatrix as:

L
∆= D −A

where D corresponds to the diagonal hypermatrix of the m-degrees of vertices of order
rH, including the one(s) added in the m-uniformisation process. More formally, D is a
hypermatrix of order rH and dimension n+ nA, with nA the number of added vertices
during the m-uniformisation process, defined by:

D
∆= diag

(
(dmi)i∈Jn+nAK

)
with for i ∈ Jn+ nAK : dmi

∆= degm (vi) .

Let us consider as in Chapter 3, the attached variable xi to the vertex vi with i ∈ JnK
and yi the variable attached to the special vertex Yi with i ∈ JnAK . We consider znA =
(zi)i∈Jn+nAK such that: zi = xi for i ∈ JnK and zn+i = yi for i ∈ JnAK .

We define the m-uniformized L-polynomial2 as:

Lm-u (znA) ∆=
∑

i∈Jn+nAK

diz
rH
i −

∑
i1,...,irH∈Jn+nAK

ai1...irH

∏
j∈JrHK

zij .

It holds:
LzrHnA = Lm-u (znA) .

The impact of the m-uniformisation on this Laplacian relies on the exponent of the
variables in the degree part and in the coefficients of the built tensor, as well as the
additional variables induced by the m-uniformisation.

5.3.2.2. Polynomial approach

A-, D-, L- and Q-polynomials We now consider the decomposition of H = (V,E) in
different layers of m-uniform hb-graphs using the decomposition operation 3.3.6.
2We cannot use the term Laplacian polynomial as this is reserved for the characteristic polynomial of
the Laplacian matrix for graphs.
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We define Ek
∆= (e : e ∈ E ∧#me = k) as the family of hb-edges of H of m-cardinality k,

eventually empty, for k ∈ JrHK and consider, for all k ∈ JrHK, the k-m-uniform hb-graph
Hk

∆= (V,Ek) . It holds: H = ⊕
k∈JrHK

Hk.

Each of the k-m-uniform hb-graph Hk is associated to a k-adjacency tensor Ak of order
k and dimension n.

The corresponding signed Laplacian is: Lk
∆= Dk−Ak where Dk = diag

((
dm(k)i

)
i∈JnK

)
where for k ∈ JrHK and i ∈ JnK, dm(k)i corresponds to the m-degree of the vertex i in
the k-th hb-graph Hk.

The unsigned Laplacian is:Lk
∆= Dk + Ak.

We then define, for each k ∈ JrHK , four polynomials, with z0 = (z1, ..., zn) as defined in
Section 5.3.2.1:

• Dk (z0) ∆= ∑
i∈JnK

dm(k)iz
k
i ;

• Ak (z0) ∆= ∑
i1,...,ik∈JnK

a(k)i1...ik
∏

j∈JkK
zij ;

• Lk (z0) ∆= Dk (z0)−Ak (z0) ;

• Qk (z0) ∆= Dk (z0) +Ak (z0) .
and we define four families of polynomials for a general hb-graph H as:

• the D-polynomial family: Dw (z0) ∆= ∑
k∈JrHK

wkDk (z0) ;

• the A-polynomial family: Aw (z0) ∆= ∑
k∈JrHK

wkAk (z0) ;

• the L-polynomial family: Lw (z0) ∆= Dw (z0)−Aw (z0) ;

• the Q-polynomial family: Qw (z0) ∆= Dw (z0) +Aw (z0) .
where the coefficients w = (wk)k∈JrHK are weights given to each layer potentially with
different values.

Remark 5.3.1. Using here the k-adjacency hypermatrix defined in Section 3.3.5, we
can formulate the reduction of Ak (z0) as:

Ak (z0) ∆=
∑

ej∈Ek

ej=
{
v
mji1
i1

,...,v
mjikj
ikj

} k
∏
l∈JkjK

z
mjil
il

.

Remark 5.3.2. Different strategies can be foreseen for weights. The first approach
consists in choosing w = (1)k∈JrHK: this puts on an equal footing every hb-edge, whatever
its m-cardinality.
If we want to have a polynomial that is similar in a sense to the m-uniformized Laplacian
tensor polynomial, the choice of w = (ck)k∈JrHK is the most relevant.
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A family of Laplacian hypermatrices Whatever the weights chosen, an homogenized
hb-graph L-polynomial can be obtained directly from the L-polynomial by considering:

Lhw (z1) ∆= y
rH
0 Lw

(
z0
y0

)
.

In this case, we can store the information into a hypermatrix, which is a layered
Laplacian: Lhw defined as:

Lhwz
rH
1

∆= Lhw (z1) .

The same can be done with the Q-, D- and A- polynomials, defining:

• Qhw: Qhwz
rH
1

∆= Qhw (z1) with Qhw (z1) ∆= y
rH
0 Qw

(
z0
y0

)

• Ahw: Ahwz
rH
1

∆= Ahw (z1) with Ahw (z1) ∆= y
rH
0 Aw

(
z0
y0

)

• Dhw : Dhwz
rH
1

∆= Dhw (z1) with Dhw (z1) ∆= y
rH
0 Dw

(
z0
y0

)
.

The advantage of these layered Laplacians (signed and unsigned) is that they take into
account each of the layers of m-uniformity contained in the hb-graph.

Some remarks on the polynomials There are two parts in a L-polynomial of a general
hb-graph: one that is related to the vertex degrees in the different layers corresponding
to the D-polynomial and the second part to the adjacency in the layers of the hb-graph
and corresponding to the A-polynomial. Having a good comprehension of the role of
each part is fundamental.

These polynomials, and particularly the A-polynomial, opens the door to all the results
on multivariate polynomials. Particularly, it could be used for hb-graph reduction using
the well-known techniques for multivariate polynomials3, and to define and find normal
forms of a set of hb-graphs, i.e. hb-graphs that cannot be reduced to a given set of
hb-graphs.

A-polynomial for hypergraphs are already used, without the m-cardinality coefficient
for searching hypergraph extremal problems, i.e. determining the maximal number of
hyperedges a hypergraph should have to prevent a forbidden sub-hypergraph to occur;
in this case, the Lagrangian used is defined as the polynomial sum of the hb-edge
monomials.

We conjecture that finding the stationary state of the exchange-based diffusion for a
connected hb-graph as we have done in Chapter 6 with a matrix approach can be
reformulated here as the search for the value closest to zero of the L-polynomial under
the constraints that ∑

i∈JnK
zi = 1, with for all i ∈ JnK : 0 < zi 6 1 and with equi-weights.

We then transform the problem into a constrained optimization problem, where a lot of
techniques are available.

3https://www.usna.edu/Users/cs/roche/courses/cs487/mvpoly.pdf

https://www.usna.edu/Users/cs/roche/courses/cs487/mvpoly.pdf
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5.3.2.3. First properties of the layered Laplacian hypermatrix

Elements of the layered Laplacian hypermatrix We write:

Ak =
(
a(k)i1...ik

)
i1,...,ik∈JnK

.

The non-zero elements of Ak correspond to hb-edges of H of m-cardinality k. Such an
hb-edge ei =

{
v
mij1
j1

, . . . , v
mijki
jki

}
∈ Ek is stored in Ak—as we have already mentioned it

in Section 3.3.3—in k!
mij1 ! . . .mijl !

elements:

a
(k)σ

(
j
mi j1
1 ,...,j

mi jl
l

) = mij1 ! . . .mijl !
(k − 1)!

where σ ∈ SJkK
4.

Hence, the total value of the elements of Ak associated to ei =
{
v
mij1
j1

, . . . , v
mijki
jki

}
∈ Ek

is k.
When coming to Ahw =

(
ai1...irH

)
i1,...,irH∈Jn+1K

, the only non-zero elements which are

the ones corresponding to ei have to be stored in nei = rH!
mij1 ! . . .mijl ! (rH − k)! elements,

considering that the missing indices will correspond to rH − k times the n+ 1-th place,
i.e. the special vertex place.
It holds:

a
σ(rH)

(
j
mi j1
1 ,...,j

mi jl
l

[n+1]rH−k
) = k

nei
,

i.e.:
a
σ(rH)

(
j
mi j1
1 ,...,j

mi jl
l

[n+1]rH−k
) = 1(

rH
k

) × a
(k)σ(k)

(
j
mi j1
1 ,...,j

mi jl
l

)
where σ(i) ∈ SJiK, with i = k or rH.

The non-zero elements of Dk =
(
d(k)i1...ik

)
i1,...,ik∈JnK

corresponds to elements of the
diagonal. It holds, for i ∈ JnK :

d(k)ik = dm(k)i.

In Dhw =
(
di1...irH

)
i1,...,irH∈Jn+1K

, d(k)ik is stored in the elements with indices that are

obtained by permutation of the elements of the multiset of indices
{
ik, [n+ 1]rH−k

}
,

i.e. in one of the
(
rH
k

)
elements dσ(rH)(ik[n+1]rH−k).

Hence:
dσ(rH)(ik[n+1]rH−k) = 1(

rH
k

)d(k)ik .

4SJkK designates the set of permutations on JkK.
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The only non-zero elements of Dhw have indices in
{
ik, [n+ 1]rH−k

}
for k ∈ JrHK .

We write Lhw =
(
li1...irH

)
i1,...,irH∈Jn+1K

.

It holds:
li1...irH = di1...irH − ai1...irH .

and similarly, writing Qhw =
(
qi1...irH

)
i1,...,irH∈Jn+1K

.

It holds:
qi1...irH = di1...irH + ai1...irH .

Remark 5.3.3. The diagonal of Dhw and Lhw have always a non-zero element; other-
wise, the m-rank would not be rH.

Remark 5.3.4. When the hb-graph is a uniform hypergraph, we retrieve the classical
Laplacian: in this case, there are only zero elements on the n+ 1-th component of each
face. The classical Laplacian for a uniform hypergraph is then retrieved by extracting
the first n-th components of each face.

Remark 5.3.5. The L-polynomial attached to the hb-graph can be retrieved from Lhw

by considering Lhwz
rH
1 with y0 = 1.

The same occurs with A-, Q- and D-polynomials.

Some additional comments on the layered Laplacian hypermatrix If the hb-graph is
m-uniform, the elements of the n+1-th row of each face of the layered Laplacian hyper-
matrix contain only zero elements, i.e. the layered Laplacian reduces by withdrawing
those rows to the Laplacian that would have been obtained directly derived from the
k-adjacency hypermatrix as defined by [CD12].

This layered hypermatrix is symmetric and methods included in [QL17] to study such
hypermatrices are available.

We keep as remaining research questions the following—non-exhaustive—research ques-
tions:

• What are the links between the hb-graph layered Laplacian eigenvalues and the
hb-graph features such as the algebraic connectivity?

• How do we define the algebraic connectivity for hb-graphs?

• How does the diffusion process based on this layered Laplacian evolve with time?

• How can we use this layered Laplacian for clustering?

• Can we evaluate the perturbation on the exchange-based diffusion from the L-
polynomial before uniformisation?
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This chapter is based on [OLGMM18d] and on [OLGMM19b], which has been accepted
to SOFSEM 2020 as [OLGMM20].
Prerequisites: Section 1.3.

6.1. Motivation

Having insight into non-numerical data calls for the gathering of instances: classically
(multi-entry) frequency arrays of occurrences are used. To get further insight into data
instances of a given type, one can regroup them using their links to instances of another
type—used as reference. It generates a family of co-occurrences that can be viewed
as a facet of the information space. Navigating across the different facets is achieved
by iterating this process between different types of interest while keeping the same
reference type: any of these types can be used as a reference. For instance, in scientific
publications, different information are linked in an article: the article reference, the
authors, the main keywords... All this metadata can potentially give insights into the
information space and can be chosen as reference to build co-occurrences. Choosing as
reference for instance the article reference, facets depict co-occurrence networks, either
of homogeneous type, such as co-authors or co-keywords, or of heterogeneous types, i.e.
combining multiple types together.
We have presented a first model using hypergraphs in [OLGMM18d]. But, as co-
occurrences can potentially contain repetitions or require an individual weighting: mod-
eling them requires multisets instead of sets.
Hb-graphs, by definition, introduce a potential refinement for storing information, and
thus open up refined visualizations and processings. This observation brings us to the
research question of this Chapter:

Research question 6.1. Are hb-graphs pertinent to achieve interactive navigation and
visualisation of facets in an information space?
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We start by giving the related work that motivates this approach, before fixing the
assumptions and expectations on the framework. We then propose a mathematical
model, that we evaluate based on our expectations. We use a publication dataset as a
breadcrumb trail example.

6.2. Related work

Discovering knowledge in an information space requires to gather meaningful informa-
tion, either hierarchically or semantically organized. Semantic provides support to the
definition of facets within an information space [Ran62].

The idea of visualizing search query results using graphs has been soon exposed in
[CK97]. There are several proposals in the literature to explore large datasets by using
graph—possibly multipartite—representations instead of the verbatim presentation.

In [vHP09], the authors present an interaction model to allow the user to interact directly
with the local context graph of a topic of interest: they extend to graphs the degree of
interest introduced in [Fur86] for fish eye visualisation to focus on the vertices that are
close enough from the subject the surfer is looking for taking into account the a priori
degree of interest and the distance to the a priori, but also the user interest. The surfer
performs a query and retrieves a list of subjects in a verbatim mode. The a priori is
performed from the initial query, and the dragging of one of the subject to the graph
part of the visualisation marks the user interest and the local context graph is built.
Faceted search is also enabled when it is possible. The graph is based on this degrees
of interest.

Previous approaches using a reference to articulate the different facets of an information
space exist. In [NJY+10], the authors present a 2D multifaceted representation of an
information space by using multi-relational graph combined with an optimized density
map to highlight patterns and switching between the different facets. The facets are
considered as classes of entities: the entities are interconnected using a similarity graph
of the extracted entities. Facets are then superposed to reach a global facet visualisation.
Similar entities are regrouped using an optimized density map. It is applied to two
studies, one on HIV infection and the other one on Diabetes. It allows to visualize
global and local relations. There is interactivity and filtering.

In [DRRD12], the authors give the possibility to change of reference between three facets
simultaneously shown by using one of them as a pivot; this pivot makes the connection
between a facet and the two others, but is limited to a small amount of pivots to
be visualized at the same time. In [JCCB13], an interactive exploration of implicit
and explicit relations in faceted datasets is proposed. The space of visualisation is
shared between different metadata with cross findings between metadata, partitioning
the space in categories. In [ADLGP17], the authors propose a visual analytics graph-
based framework that reveals this information and facilitates knowledge discovery. It
provides insights into different facets of an information space based on user-selected
perspectives. The dataset is stored as a labeled graph in a graph database. Choosing a
perspective as reference and a facet as dimension, paths of the labeled graph are retrieved
with the same dimension extremities going through reference vertices. Visualisation
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comes in the form of navigable node-link graphs: edges materialize common references
between vertices and are seen as pairwise collaboration between two vertices.

[TCR10] shows how the keeping of multi-adic relationships can help in gaining under-
standing in the network evolution. In [OLGMM17b], we have shown the interest of
using hypergraphs to simplify the visualisation of co-occurrence networks.

In this chapter, we provide the elements for a hb-graph-based framework that supports
interactions between the different facets of an information space for optimal knowledge
discovery. The dataset—mostly textual—refers to physical entities with unique individ-
ual references. Data instances are attached to metadata instances. We suppose that
there is no metadata instance that does not have a data instance attached to it.

6.3. Modeling co-occurrences in datasets

Starting by giving the axioms and postulates needed for the framework, we then for-
mulate the expectations on the framework. After giving the mathematical model, we
check that the expectations are fulfilled. We finally give an example of implementation
of the framework.

6.3.1. Axioms and postulates on the information space

We consider an information space, constituted of physical entities. Physical entities
are described by metadata to which correspond data instances stored in a database.
Metadata instances have types that are numerical, textual, or others such as pointers
to images or videos or sound records. Metadata can be grouped by kinds. For instance,
in a publication database, the physical entity corresponds to a publication, which has
a publication id, and some attached metadata such as organizations, keywords,... In a
company database, the physical entity would be the company, with a company id, and
some attached metadata such as economic activity, number of employees, countries,
suppliers,...

We formulate the following axioms—in the sense of common propositions considered
as universally true—and postulates—in the sense of common propositions that capture
the specificity of a structure, that are discussable, but asserted here as true—on the
information space and we will work in this shaped information space.

Axiom 6.1. The information space is constituted of physical entities that are described
by metadata and data.

This is a strong axiom that is needed to ensure a navigable schema: the physical entities
ensure the link between the different facets of the information space.

Axiom 6.2. Each physical entity has a unique identification.

This assumption is linked to the previous one and ensures that we do not have duplicated
information.
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Axiom 6.3. The types associated to metadata can be of varied sorts: numerical, textual,
links, pointers to resources,...

This axiom is not restrictive in fact, as it allows data to be of various types.

Postulate 6.1. A facet of the information space is the simultaneous choice of:

• one or multiple types of the metadata used to build co-occurrences of this(these)
metadata type(s), called visualisation type(s),

• and of one or multiple types—eventually the same than the ones used for the co-
occurrences—called reference type(s).

This postulate defines a facet of an information space, as a perspective on the dataset
that enhances homogeneous—or even heterogeneous—co-occurrence networks built us-
ing one—or multiple—references. Facets with homogeneous co-occurrences built with
only one type of references are called simple facets.

Postulate 6.2. The information space can be decomposed into at least three simple
facets—including the one of physical entities id.

This postulate can be relaxed to two facets, but in this case no navigation is possible or
even to one facet that corresponds to the facet of physical entities id. In the latter, the
visualisation will show only hb-graphs in which hb-edges represent ids and have support
reduced to singleton vertices.

Postulate 6.3. There are at least two kinds of metadata which are either nonnumerical,
or that can be represented into categories.

Relaxing this postulate to a single kind of metadata disables navigation between the
different facets: it is always possible, even if it is not desirable. As any numerical data
can be treated in categories, the framework can accept any kind of data until they are
represented as text or categories.

6.3.2. Hypothesis and expectations of the hb-graph framework

The hypothesis we formulate, related to the research question 6.1, is the following:

Hypothesis 6.1. Hb-graphs are pertinent to achieve a refined hypergraph framework
that supports interactive navigation and visualisation of facets in an information space,
including the support of multiple references and heterogeneous co-occurrences.

To check this hypothesis, we refine it in expectations of what the theoretical framework
should answer. The fulfillment of the expectations will allow to validate Hypothesis
6.1: hence, the visual querying of an information space and the browsing inside the
information space by finding the links of co-occurrences inside a dataset will be validated
on a theoretical basis.
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Expectation 6.1. The framework should model the information space using hb-graphs.

Hb-graphs not only have like hypergraphs the capacity to handle multi-adic relation-
ships—when graphs can handle only pairwise relationships—, but also individual hb-
edge based multiplicities of vertices. Multiple authors—[New01b, TCR10]—acknowledge
the importance of modeling co-occurrence networks by hypergraphs, as it enhances
higher order relationships than the pairwise model enables. As we have already un-
derlined it, the database schema can be modeled, since [FMU82], using hypergraphs
which are anyway a particular case of hb-graphs. Handling multisets allow to store ad-
ditional information, either with a view to reflecting the vertex multiplicity or individual
weighting.

Expectation 6.2. The framework should provide the visualisation of co-occurrences as
hb-graph representations.

This expectation is linked with the previous one. Pairwise relationships hide a part of
the information in many cases as it is shown in [OLGMM17b].

Expectation 6.3. The framework should enable navigation and interaction between the
different facets of the information space.

This expectation is fundamental as we want to have a full browsing of the information
space, thereby allowing to query the dataset in all sort of manners.

Expectation 6.4. The framework should enhance the visual querying of the information
space.

We want a self contained browsing space that allows to query and display co-occurrences
that are retrieved from the dataset.

Expectation 6.5. The zooming in the dataset should be possible through restrictions
to sub-hb-graphs.

Selecting a subset of the vertices displayed should allow to view their relations with the
other facets.

Expectation 6.6. Heterogeneous co-occurrences should be possible.

This expectation is needed as the visualization of different facets on a single facet is
then possible. It could have already been introduced with hypergraphs. To reach this
expectation, the visualisation must be achieved by an extra-node representation of the
hb-graph, as the 2-section of the hb-graph would lead to hazardous interpretation.

Expectation 6.7. Multiple types of references should be possible.

This expectation is needed to support co-occurrences built from references of different
types that constitute a partition of the dataset.
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M
ET

A
D
AT

A

Schema hypergraph
↓

Related to
database structure

HSch = (VSch, ESch)

Extended schema
hypergraph

↓

Store possible
additional
processings

HSch =
(
VSch, ESch

)

Extracted extended
schema hypergraph

↓

U : set of metadata
of interest

(visualisation and
reference)

HX = (VX , EX) where
VX = U ,

EX =
{
e ∩ U : e ∈ ESch

}
Reachability
hypergraph
↙↓↘

Hyperedges are
connected
components

Ecc (⊂ VX) of HX

HR = (VR, ER)
VR = VX

ER = {Ecc : Ecc c.c. of HX}

Navigation hypergraph
↓

Choose: er ∈ ER
references
Rref ⊂ er

HN = (VN , EN )
VN = VR\Rref

EN =
{er\R : R ⊆ Rref ∧R 6= ∅}

D
AT

A

Facet visualisation
hb-graphs

Co-occurrence
networks as
hb-graphs

Table 6.1.: Synthesis of the framework.

6.3.3. The hb-graph framework

The hb-graph framework is built on two main parts: one at the metadata level and the
other at the data level: the first level enhances navigation while the second one provides
the facet visualisation hypergraphs. The enhancement of navigation is achieved by
considering different hypergraphs that originate from the database schema that will be
defined in Section 6.3.3.1: the schema hypergraph, the extended schema hypergraph, the
extracted extended schema hypergraph, the reachability hypergraph and the navigation
hypergraph. The different schemata are summarized in Table 6.1. Once the navigation
hypergraph is constructed, choosing one of its hyperedge and one or multiple references
inside enhances the construction of the different visualisation hb-graphs that will be
associated to the different facets of the information space as it will be explained in
Section 6.3.3.2. Visualisation hb-graphs are hb-graph of co-occurrences built from the
data instances that are linked to the reference instances.

To illustrate the different aspects of the hb-graph framework, we take as thumbnail
an example based on a publication dataset. In this case, the possible metadata types
are: publication id, title, abstract, authors, affiliations, addresses, author keywords,
publication categories, countries, organizations, and eventually some processed metadata
types—i.e. corresponding to data not directly contained in the publication dataset—such
as processed keywords, continent,...1

1Metadata of interest for visualisation or referencing are in italic
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6.3.3.1. Enhancing navigation

Relational database schemata are hypergraphs of metadata instances where the hy-
peredges gather table metadata: normalized forms are linked to the properties of the
hypergraphs modeling them—[Fag83]. In graph databases, the schema2 represents the
relationships between the vertex types. The schema hypergraph HSch = (VSch, ESch)
represents these relationships as hyperedges.

The schema hypergraph is possibly enriched with additional processings: the extended
schema hypergraph HSch =

(
VSch, ESch

)
stores this information.

Each data instance stored in the dataset is labeled using a labeling function applied to
the vertices of VSch. Hyperedges of the extended schema itself can be labeled by another
labeling function using another set of labels.

Types of visual or referencing interest are selected in a subset U of VSch to generate
HX = (VX , EX) , the extracted extended schema hypergraph, where VX = U and
EX =

{
e ∩ U : e ∈ ESch

}
.

From HX , we build the reachability hypergraph HR = (VR, ER) . VR corresponds
to the vertex set of the extracted extended schema hypergraph VX . The hyperedges
of HR are the connected components of HX . We assume that in each hyperedge of
the reachability hypergraph, there is at least one metadata type or a combination of
metadata types that can be chosen as the physical reference. The data instance
related to this reference is supposed to be unique. For instance, in a publication dataset
the physical reference is the publication id of the publication itself. In the example,
the extracted hypergraph has only one component {publication id, authors, processed
keywords, subject categories}, as shown in Figure 6.1.

Each hyperedge er ∈ ER of HR leads to one new navigation hypergraph HN =
(VN , EN ) by choosing a non-empty subsetRref of er of possible reference types of interest.
The choice of a subset R of Rref allows to consider the remaining vertices of er\R as
visualisation vertex types, that will be used to generate the facet visualisation hb-graphs
and are called the visualisation types. Hence: EN = {er\R : R ⊆ Rref ∧R 6= ∅} . The
simplest case happens when there is only one reference of interest selected at a time in
Rref; we restrict ourselves to this case for the moment, i.e. we consider for EN the set
EN/1 = {er\R : R ⊆ Rref ∧ |R| = 1} .

In the publication database example, many navigation hyperedges are possible. For in-
stance, the navigation hyperedge when choosing as reference publication ids is {authors,
publication categories, processed keywords} while when using processed keywords as ref-
erence the navigation hyperedge becomes: {authors, publication category, publication
ids}.

6.3.3.2. Visualisation hb-graphs corresponding to facets

In [OLGMM18d], we use sets to store co-occurrences. Nonetheless, in many cases, it
is worth storing additional information by attaching a multiplicity—with non-negative
integer or real values—to the elements of co-occurrences. A small example emphasizes
2although not required [MEP+14]
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Figure 6.1.: Schema hypergraph, Extended schema hypergraph, Extracted extended
schema hypergraph: exploded view shown on an example of publication dataset.

the interest of moving towards multisets: we consider the publication network of Figure
6.2. In this example, building co-occurrences accounting for occurrence multiplicity
not only induces a refined visualisation, with distinguishable hb-edges in between some
of the vertices (augmented reality and 3D) but also yields to refined rankings of both
vertices and hb-edges, as it is also mentioned in [OLGMM19a].
In a dataset D, each physical entity d ∈ D corresponds to a unique physical reference
r. d is described by a set of data instances of different types that are in α ∈ VSch. We
write I the set of data instances in D, and t the type application that gives the type of
an instance.
Hb-edges must have a common universe to account for the extension of the framework
to hb-graphs. We consider for each type α, its instance set:

Uα = {i : i ∈ I ∧ t (i) = α}

of instances of D of type α.
We write Aα,r = (Uα,mα,r) the multiset of universe Uα, of the values of type α—possibly
none—that are attached to d, the physical entity of reference r. The support of Aα,r is:

A?α,r =
{
ai1 , ..., aikr

}
.
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(a) A publication network

(b) Co-occurrences of organizations with keyword as reference
scene reconstruction

{{
Org 11,Org 21

}}
computer vision

{{
Org11,Org21,Org 31,Org 41

}}
augmented reality

{{
Org 21,Org 33,Org 42,Org 51

}}
3D

{{
Org 21,Org 32,Org 41,Org 51

}}
(b.i) Support hypergraph. (b.ii) Hb-graph.

Vertex weighted degree ranking:
1. Org 2;

2. Org 3; Org 4;
4: Org 5; Org 1.

Vertex weighted m-degree
ranking:
1. Org 3;

2. Org 2; Org 4;
4: Org 5; Org 1.

Hyperedge weighted cardinality
ranking:

Hb-edge weighted m-cardinality
ranking:

1. CV, AR, 3D; 2. SR 1. AR; 2: 3D; 3: CV; 4: SR

Figure 6.2.: A simplified publication network.
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Hence, we abusively write:

Aα,r =
{{

a
mα,r(ai1)
i1

, ..., a
mα,r

(
aikr

)
ikr

}}

omitting the elements of Uα that are not in the support of Aα,r.

d is entirely described by its reference r and the family of multisets, corresponding
to homogeneous co-occurrences of the different types α in VSch linked to the physical
reference, i.e.

(
r, (Aα,r)α∈VSch

)
.

In Figure 6.2, the publication id is the physical reference. Taking as reference the publi-
cation id, the co-occurrence of organizations for the Publication A is:{
Org 21,Org 31,Org 41

}
and the one of keywords is:

{
3D1, augmented reality1

}
. The

example in Figure 6.2 (b) shows a reference that is not the physical reference.

Type heterogeneity in co-occurrences enables simultaneous view of different types in
a single facet. To allow type heterogeneity in co-occurrences, we consider a partition ΓS
of the different types in VSch. Each type belonging to an element γ of the partition ΓS
will be visualized simultaneously in a co-occurrence: it enriches the navigation process,
enabling heterogeneous co-occurrences. An interesting case is when γ has a semantic
meaning and elements of γ appear as an “is a” relationship. For instance, in a publica-
tion database, an organization can correspond to “institute” and “company”. Also, we
consider Aγ,r = (Uγ ,mγ,r) , where Uγ = ⋃

α∈γ
Uα, of support A?γ,r = ⋃

α∈γ
A?α,r such that

mγ,r (a) =
{
mt(a),r (a) if a ∈ A?γ,r;
0 otherwise.

d is entirely described in the case of heterogeneous co-occurrences by
(
r, (Aγ,r)γ∈ΓS

)
.

The homogeneous co-occurrences are retrieved when all γ ∈ ΓS are singletons.

Performing a search on the dataset D retrieves a set S of physical references r. In the
single-reference-restricted navigation hypergraph, each hyperedge eN ∈ EN/1 describes
accessible facets relatively to a chosen reference type ρ ∈ VN\eN . Given a partition
γ ∈ ΓN , where ΓN = {γ ∩ eN : γ ∈ ΓS} is the induced partition of eN related to the
partition ΓS of VSch, the associated facet shows the visualisation hb-graph Hγ/ρ,S where
the hb-edges are the heterogeneous co-occurrences of types in γ relatively to reference
instances of type ρ (γ/ρ for short) retrieved from the different references in S.

We then build the co-occurrences γ/ρ by considering the set of all values of type ρ
attached to all the references r ∈ S: Σρ = ⋃

r∈S
A?ρ,r. Each element s of Σρ is mapped to

a set of physical references Rs = {r : s ∈ Aρ,r} ∈ P (S) in which they appear: we write
rρ the mapping. The multiset of values eγ,s of types α ∈ γ relatively to the reference
instance s is eγ,s = ⊎

r∈Rs
Aγ,r.

The raw visualisation hb-graph for the facet of heterogeneous co-occurrences γ/ρ
attached to the search S is then defined as:

Hγ/ρ,S
∆=
(⋃
r∈S

A?γ,r, (eγ,s)s∈Σρ

)
.
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Since some hb-edges can possibly point to the same sub-mset of vertices, we build
a reduced visualisation weighted hb-graph from the raw visualisation hb-graph. To
achieve this, we define: gγ : s 7→ eγ,s and R the equivalence relation such that: ∀s1 ∈ Σρ,
∀s2 ∈ Σρ: s1Rs2 ⇔ gγ (s1) = gγ (s2) .
Considering a quotient class s ∈ Σρ

/
R3, we write eγ,s = gγ (s0) where s0 ∈ s.

We consider:
Eγ

∆=
{
eγ,s : s ∈ Σρ

/
R
}

and:
Eγ

∆= {{eγ,s : s ∈ Σρ}} .

It holds:
Eγ = E?γ

since we have: eγ,s ∈ Eγ of multiplicity wγ (eγ,s) = |s| in this multiset and thus:

Eγ =
{
eγ,s

wγ(eγ,s) : s ∈ Sρ
/
R
}
.

Let g̃γ : s ∈ Σρ
/
R 7→ e ∈ Eγ , then g̃γ is bijective. g̃γ

−1 allows to retrieve the class
associated to a given hb-edge; hence the associated values of Σρ to this class—which
will be an important point for navigation. The references associated to e ∈ Eγ are⋃
s∈g̃γ−1(e)

rρ (s) . The reduced visualisation weighted hb-graph for the search S is

defined as:
Hγ/ρ,wγ ,S

∆=
(⋃
r∈S

A?γ,r,Eγ , wγ

)
.

Using the support hypergraph of the visualisation hb-graphs retrieves the results given
in the case of homogeneous co-occurrences in [OLGMM18d]: hence the hypergraph
framework appears to be a particular case of the hb-graph framework.

6.3.3.3. Navigability through facets

As for a given search S and a given reference ρ, the sets Σρ and Rs, s ∈ Σρ are fixed,
the navigability can be guaranteed between the different facets. We consider a group of
types γ, its visualisation hb-graph Hγ/ρ,wγ and a subset A of the vertex set of Hγ/ρ,wγ .
We target another group of types γ′ of heterogeneous co-occurrences referring to ρ for
visualisation. Figure 6.3 illustrates the navigation.
We suppose that the user selects elements of A as vertices of interest from which s·he·x
wants to switch facet. The hb-edges of Eγ which contain at least one element of A are
gathered in:

Eγ
∣∣∣
A

=
{
e : e ∈ Eγ ∧ (∃x ∈ e : x ∈ A)

}
.

Using the function g̃γ
−1, we retrieve the corresponding class of references of type ρ

associated to the elements of Eγ
∣∣∣
A
to build the set of references:

V
∣∣∣
A

=
{
g̃γ
−1(e) : e ∈ Eγ

∣∣∣
A

}
3Σρ
/
R is the quotient set of Σρ by R
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Physical entity: d
Reference: r

S d1
r1

. . . dS
rS

Aγ,r

aγ1

...

aγr

Aρ,r

aρ1

...

aρr

Aγ′,r aγ′1 . . . aγ′r

Figure 6.3.: Navigating between facets of the information space.

of type ρ involved in the building of co-occurrences of type γ′. Each of the classes in
V
∣∣∣
A
contains instances of type ρ that are gathered in a set Vρ,A. Each element of Vρ,A

is linked to a set of physical references by rρ. Hence we obtain the physical reference set
involving elements of A: SA = ⋃

s∈νρ,A
Rs.

The raw visualisation hb-graph Hγ′/ρ

∣∣∣
A

=
( ⋃
r∈SA

A?γ′,r,
(
eγ′,s

)
s∈Vρ,A

)
in the targeted

facet is now enhanced using SA as search set S. To obtain the reduced weighted version
we use the same approach as above. The multiset of co-occurrences retrieved includes all
occurrences that have co-occurred with the references attached to one of the elements of
A selected in the first facet. Of course, if A = Aγ,S , the reduced visualisation hb-graph
contains all the instances of type γ′ attached to physical entities of the search S.

In Figure 6.2.b(ii), with A = {Org1} , two hb-edges can be retrieved: computer vi-
sion—attached to PubB and PubC—and scene reconstruction—PubB. Hence: SA =
{PubB,PubC} . Switching to the Publication facet and keeping as reference keywords,
two hb-edges

{
PubB1,PubC1

}
and

{
PubB1

}
are retrieved. The same with A =

{Org1,Org2} retrieves all the co-occurrences of Publications with reference to keywords.

It can be of interest to put a filter on Hγ′/ρ

∣∣∣
A
to retain only the references used in the

first facet to build the co-occurrences. In this case, we obtain a sub-hb-graph of Hγ′/ρ
∣∣∣
A

that is limited to the references of co-occurrences involved in the previous facet.

An other example is given in Figure 6.4. We navigate between organization co-occurrences
and the subject category co-occurrences both built using keywords as reference. We se-
lect one of the organization in the organization facet. We show how the construction
of the hb-graph work for the targeted facet. Additionally, we present how the possible
filtering of the targeted hb-graph works and how it restricts the view to the references
of the first facet.

The reference type can always be shown in one of the facets as a visualisation hb-graph
where all the hb-edges are constituted of the references themselves with multiplicity the
number of time the reference occurs in the hb-graph.

Ultimately, by building a multi-dimensional network organized around groups of types,
one can retrieve very valuable information from combined data sources. This process
can be extended to any number of data sources as long as they share one or more types.
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(a) The publication network with four facets.

(b) Organization co-occurrences with keyword as reference.
scene reconstruction Pub B

{{
Org 11,Org 21

}}
computer vision Pub B, Pub C

{{
Org11,Org21,Org 31,Org 41

}}
augmented reality Pub A, Pub C, Pub D

{{
Org 21,Org 33,Org 42,Org 51

}}
3D Pub A, Pub D

{{
Org 21,Org 32,Org 41,Org 51

}}

(c) Building subject category co-occurrences with keywords as reference.

(d) Visualization of the subject category co-occurrences with keywords as reference.
(d.i) Unfiltered. (d.ii) Filtered.

Figure 6.4.: Navigating between facets in the publication network: visualizing orga-
nization co-occurrences with reference keywords and switching to subject categories
with reference keywords.
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Otherwise, the reachability hypergraph is not connected, and only separated navigations
are possible in this case.

6.3.3.4. Change of reference

Changing reference follows similar principles than navigating through facets. We con-
sider a group of types γ, its visualisation hb-graph Hγ/ρ,wγ and a subset A of the vertex
set of Hγ/ρ,wγ . But, this time, we target the same group of types γ of heterogeneous
co-occurrences referring to a new reference type ρ′ for visualisation.
We still suppose that the user selects elements of A as vertices of interest from which
s·he·x wants to switch facet. The hb-edges of Eγ , which contain at least one element of
A, are again gathered in:

Eγ
∣∣∣
A

=
{
e : e ∈ Eγ ∧ (∃x ∈ e : x ∈ A)

}
.

Using the function g̃γ
−1, we retrieve the corresponding class of references of type ρ

associated to the elements of Eγ
∣∣∣
A
, and build the set of references:

V
∣∣∣
A

=
{
g̃γ
−1(e) : e ∈ Eγ

∣∣∣
A

}
of type ρ involved in the building of co-occurrences of type γ. Each of the classes in
V
∣∣∣
A
contains instances of type ρ that are gathered in a set Vρ,A. Each element of Vρ,A

is linked to a set of physical references by rρ. Hence, we obtain the physical reference
set involving elements of A :

SA =
⋃

s∈νρ,A
Rs.

And, we can now enhance the raw visualisation hb-graph:

Hγ/ρ′
∣∣∣
A

=

 ⋃
r∈SA

A?γ,r, (eγ,s)s∈Vρ′,A


with the new reference type using SA as search set S. To obtain the reduced weighted
version, we use the same approach as before. The multiset of co-occurrences retrieved
includes all occurrences that have co-occurred with the references attached to one of the
elements of A selected in the first facet.
It is worth mentioning that a change of reference from ρ to ρ′ may result in additional
elements of type γ in the corresponding co-occurrences. This is illustrated on the pub-
lication network as shown in Figure 6.5.

6.3.3.5. The case of multiple references

Extending co-occurrences to multiple reference types chosen in eR ∈ ER is not straight-
forward. There are two ways of doing so: a disjunctive and a conjunctive way. We
consider the set R ⊂ eR of references and eN = eR\R the visualisation types.
In the disjunctive way, each co-occurrence is built as before, considering successively
each type ρ ∈ R. This is particularly adapted for types that are partitioning the physical
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(a) The publication network with four facets.

(b) Organization co-occurrences with keyword as reference.
scene reconstruction Pub B

{{
Org 11,Org 21

}}
computer vision Pub B, Pub C

{{
Org11,Org21,Org 31,Org 41

}}
augmented reality Pub A, Pub C, Pub D

{{
Org 21,Org 33,Org 42,Org 51

}}
3D Pub A, Pub D

{{
Org 21,Org 32,Org 41,Org 51

}}

(c) Building organization co-occurrences with subject categories as reference.

SC1
{{

Org11,Org22,Org 32,Org 42
}}

SC2
{{

Org 31,Org 41
}}

(d) Visualization of the organization co-occurrences with subject categories as reference.

Figure 6.5.: Changing reference in the publication network: visualizing organization
co-occurrences with reference keywords and switching to reference subject categories.
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references. It is the case for instance in the aggregation of two databases on two different
kind of physical data, such as publication and patent, where the co-occurrence of the
chosen navigation type is built referring either to a publication or (non-exclusive) to a
patent. The hb-graphs obtained are built by extending the family of hb-edges.
In the conjunctive approach, we start by building the cross product of instances of the
references and retrieve co-occurrences of elements for which the data d is attached to
the corresponding values of the cross-reference instances. Hence, co-occurrences are
restricted to the simultaneous presence of reference instances attached to the physical
entity.

6.3.4. The DataHbEdron

The DataHbEdron—the name we have given to the tool we have developed based on
these mathematical principles—provides soft navigation between the different facets of
the information space. Each facet of the information space corresponding to a visuali-
sation type includes a visualisation hb-graph viewed in its 2D extra-node representation
with a normalised thickness on hb-edges [OLGMM18b]. To enhance navigation, the
different facets are embedded in a 2.5D representation called the DataHbEdron. The
DataHbEdron4 can be toggled into either a cube with six faces—Figure 6.6(a)—or a
carousel shape with n faces—Figure 6.6(b)—to ease navigation between facets. The
reference face shows a traditional verbatim list of references corresponding to the search
output.
Faces of the DataHbEdron show different facets of the information space: the underlying
visualisation hb-graphs support the navigability through facets. Hb-edges are selectable
across the different facets; since each hb-edge is linked to a subset of references, the
corresponding references can be used to highlight information in the different facets as
well as in the face containing the reference visualisation hb-graph.

6.3.5. Validation and discussion

6.3.5.1. Fulfillment of expectations

Now that the hb-graph framework has been built, we can check that each expectation
expressed in Section 6.3.2 is fulfilled.

Guarantee 6.1. The framework should model the information space using hb-graphs.

We reach this expectation, either by using hypergraphs—particular case of hb-graphs—at
the metadata level or by using hb-graphs at the visualisation level. Even if the database
schema can always be modeled by a graph as in [ADLGP17], there are concepts that
better fit using hypergraphs to store the schema5. The other related work limit them-
selves to a few facets and the toggling between those facets; moreover, they do not take
into account multisets.
4An animated presentation can be found on my research page: https://www.infos-informatique.net
5A good example is given in https://blog.grakn.ai/modelling-data-with-hypergraphs-edff1e12edf0: if a
marriage can be easily modeled by a table that contains an id, a husband id, and a wife id, which is
already a triple, a divorce has an id, an id of marriage, a petitioner id and a respondent id, which is
a quadruple. In both cases, hypergraphs fit to model this situation.

https://www.infos-informatique.net
https://blog.grakn.ai/modelling-data-with-hypergraphs-edff1e12edf0
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(a) cube shape.

(b) carousel shape.

Figure 6.6.: DataHbEdron: (a) cube shape (b) carousel shape.
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Guarantee 6.2. The framework should provide the visualisation of co-occurrences as
hb-graph representations.

We build the visualisation hb-graph to show co-occurrences of a metadata type referring
to one or multiple chosen metadata references. The framework is intrinsically supporting
the concept of hb-graphs as it was done with hypergraphs on a few facets in [DRRD12]
by considering multi-partite graphs. In [ADLGP17], the co-occurrences retrieved are
systematically transformed in graphs and direct pairwise link.

Guarantee 6.3. The framework should enable navigation and interaction between the
different facets of the information space.

The navigability in between facets has been detailed in the model, by showing the
fundamental role of the references and of the physical references. This link is direct
when handling hb-graphs: this is a well known technique found in image retrieval for
fusing hypergraphs of different features such as image features and tags to make learning
out of it [ACYL17]. Using hb-graphs to ensure navigability between facets enforce to
consider paths in between the elements of the schema.

Using the incident matrices associated to the support hypergraph of the different vi-
sualisation hb-graphs and the incident matrix of the physical references related to the
references chosen, the navigation between facet can be achieved only by transposition
and matrix multiplication of these binary incident matrices. It opens up to lightweight
applications where the only information given is the incident matrix of the physical
entities related to the different facets of the information space.

Guarantee 6.4. The framework should enhance the visual querying of the information
space.

Each facet is constituted of a visualisation hb-graph that is represented using an extra-
node representation of the hb-graph. The extra-node refers to the reference instances
that have this hb-edge in common. These reference instances are linked to the physical
entities they are attached to. Also, the interaction between a facet and the facet of
physical entities (that comprises only vertices of the physical entities) can be enhanced.
On the opposite, as physical entities are linked to the references the co-occurrences are
attached to, the co-occurrences can be highlighted in the different facets. Authorizing
interactivity with extra-node and vertices can also enhance new search and eventually
enable the building of complex queries. This aspect will be developed with a use case
in Chapter D.1.

Guarantee 6.5. The zooming in the dataset should be possible through restrictions to
sub-hb-graphs.

We have shown that we can restrict ourselves to a group of vertices before switching
between the different facets.

Guarantee 6.6. Heterogeneous co-occurrences should be possible.
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We handled this case in Section 6.3.3.2.

Guarantee 6.7. Multiple types of references should be possible.

It has been handled in Section 6.3.3.5 with two possible cases: the conjunctive, using
cross product, and the exclusive disjunctive.
Finally, this theoretical hb-graph framework obeys to the Mantra of Visual analytics:
“Analyze First – Show the Important – Zoom, Filter and Analyze Further – Details on
Demand” as it is exposed in [KAF+08].

6.3.5.2. Comparison with existing solutions

Verbatim browser PivotPath PivotSlice CS core DataEdron cube DataHbEdron

output linear tripartite graph graph graph linear &
hypergraph linear & hb-graph

#facets 1 3 many many 4 many
view per facet no no no yes yes yes

simultaneous facet views no yes yes no yes yes
heterogeneous co-occurrences x no no yes no yes

multiple references x no no disjunctive no conjunctive,
disjunctive

zoom in data new query no yes yes no yes
filter data new query no yes yes no by visual queries

visual query no no yes, restricted to
current search

yes, restricted to
current search no yes, even with

new search
redundancy in co-occurrences x no no no no yes

information extraction limited pivot change elaborated
questions

elaborated
questions

elaborated
questions

elaborated
questions

combination of facets no no yes yes yes yes

type of ranking binary cosine
similarity no

number of
references per

vertex

number of
references per

vertex

hyperedges and
vertices

hb-edges and
vertices

Table 6.2.: Elements of comparison between different multi-faceted visualization
frameworks.

The validity of our framework is asserted by completeness and robustness of the math-
ematical construction: we have achieved the possibility to navigate inside the dataset
by showing co-occurrences in a sufficiently refined way to support all the information
extracted. As this model has been instantiated through a user interface in the use case
of Arxiv, but, also, as mentioned previously, on some other sample data using csv files,
its versatility is guaranteed. We have gathered in Table 6.2 some of the non-exhaustive
features to compare our solution with the others. The user interface uses a 2.5D ap-
proach, but it is out of the scope of this Thesis to make any claim on the quality of the
interactions a user can have with such an interface.

6.3.6. A use case

We applied this framework to perform searches and visual queries on the Arxiv database.
The results are visualized in the DataHbEdron allowing simultaneous visualisation of
the different facets of the information space. The tool developed is now part of the
Collaboration Spotting family6. When performing a search, the standard Arxiv API7
6http://collspotting.web.cern.ch/
7https://arxiv.org/help/api/index

http://collspotting.web.cern.ch/
https://arxiv.org/help/api/index
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is used to query the Arxiv database. The queries can be formulated either by a text
entry or done interactively directly using the visualisation: queries include single words
or multiple words, with AND, OR and NOT possible and parenthesis grouping. The
querying history is stored and presented as a hb-graph: it is also interactive allowing the
visual building of complex queries and the refinement of the queries that were already
performed. Each time a new query is formulated, the Arxiv API is used to retrieve the
corresponding metadata.

When performing a search on Arxiv, the query is transformed into a vector of words.
The most relevant documents are retrieved based on a similarity measure between the
query vector and the word vectors associated to individual documents. Arxiv relies on
Lucene’s built-in Vector Space Model of information retrieval and the Boolean model8.
The Arxiv API returns the metadata associated to the document with the highest scores
for the query performed. We keep only the first n answers, with n tunable by the user.
This metadata, filled by the authors during their submission of a preprint, contains
different information such as authors, Arxiv categories and abstract.

The information space contains four main facets: the first facet shows the Arxiv reference
visualisation hb-graph with a contextual sentence related to the query, and links to
Arxiv article’s presentation and to Arxiv article’s pdf. This first facet layout is similar
to classical textual search engines—Figure 6.7.

Figure 6.7.: First facet of the DataHbEdron: a well-known look like of a classical
verbatim interface.

The second facet corresponds to co-authors of the articles using as reference the pub-
8https://lucene.apache.org/core/2_9_4/scoring.html

https://lucene.apache.org/core/2_9_4/scoring.html
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lication itself. The third facet is the co-keywords extracted from the abstracts. The
fourth facet is showing the Arxiv categories involved in the reference.

Co-keywords are extracted from the abstracts using TextBlob, a natural language pro-
cessing Python library9. We extract only nouns using the tagged text, where lemmati-
zation and singularization have been done.

Nouns in the abstract of each document are scored with TF-IDF, the Term Frequency-
Invert Document Frequency. Scoring each noun in each abstract of the retrieved docu-
ments generates a hb-graphs HQ of universe the nouns contained in the abstracts. Each
hb-edge contains a set of nouns extracted from a given abstract with a multiplicity
function that represents the TF-IDF score of each noun. We keep only the first w words
related to an abstract, where w is tunable by the end-user, in order to limit the size of
the hb-edges.

The fifth facet shows the queries that have been performed during the session: the graph
of those queries can be saved. The sixth facet is reserved to show additional information
such as the pdf of publications.

Any node on the facets is interactive, allowing to highlight information from one facet to
another one by showing the hb-edges that are mapped through the references. Queries
can be built using the vertices of the hb-graph, either isolated or by combining them
with the current search terms using AND, OR and NOT by keyboard shortcuts and
mouse. The only query that has to be performed by typing is the first one. Merging
queries from different users is immediate as it is only hb-edges in a hb-graph. The
queries are potentially evolving, gathered, saved and re-sketched months later.

Figure 6.8.: Performed search.

We added the possibilities to display additional information related to authors using
DBLP10, but also to have information on keywords using both DuckDuckGo11 for dis-
ambiguation and Wikipedia12 to enhance Arxiv information.
9https://textblob.readthedocs.io/en/dev/

10https://dblp.org/
11https://duckduckgo.com/
12https://www.wikipedia.org/

https://textblob.readthedocs.io/en/dev/
https://dblp.org/
https://duckduckgo.com/
https://www.wikipedia.org/
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6.3.7. Intermediate conclusion

The framework supports dataset visual queries, possibly contextual, that either result
from searches on related subjects or refine the current search: it enables full navigability
of the information space. It provides powerful insights into datasets using simultaneous
facet visualisation of the information space directly constructed from the query results.
This framework is versatile enough to enhance user insight into many other datasets,
particularly textual and multimedia ones.

6.4. Further comments

The full interactivity of facets is achieved; potentially, facets have to support large
visualisation hb-graphs composed of several hundred vertices and edges. The support of
the visualisation of such hb-graphs relies mainly on the fine spreading of the information
displayed over the space of visualisation.

Different strategies can be used including component detection and their circular place-
ment. But in random uniform and general hypergraphs, as well as in most of the real
co-occurrence networks a giant component occurs—[SPS85, GZCN09, dP15]—and this
component requires special attention on the placement of the vertices for visualisation.

The core idea is to focus on the central vertices to spread the information; we focus our
attention in the remaining parts of this Thesis on the detection of such vertices. The
idea is to use diffusion on the hb-graph to achieve the ranking of vertices and hb-edges.
Hb-graphs hold higher order relationships that cannot be captured by matrices, as they
describe pairwise relations either of adjacency or of incidence. Modeling diffusion and
capturing higher order relations require to use tensors. Hence our quest, from the next
Chapter, to model adjacency in hb-graphs and to capture these higher order links.
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This chapter is based on ideas of a talk presented at CTW 20191.
Prerequisites: Section 1.3 and, Chapters 2 and 6.

7.1. Motivation

In Chapter 6, we have shown how an information space can be modeled by using a
hb-graph framework, composed of multiple facets showing visualisation hb-graphs and
a reference hb-graph that displays the reference on the corresponding facet. In Chapter
2, we have obtained an efficient way of ranking vertices and hb-edges: it can be applied
to the different visualisation hb-graphs separately. Nonetheless, we have shown that a
mapping exists between the references used to generate the co-occurrence networks and
the co-occurrences themselves. In this Chapter, we tackle the problem of aggregating
the reference rankings obtained from the different facets. In the literature, the problem
is known as rank aggregation or indifferently as ranking aggregation.
The research question we want to answer in this Chapter is the following:

Research question 7.1. How to rank the references in an information space taking
into account individual rankings obtained from the different facets?

This question can be viewed as a refinement of the query results, which are traditionally
based on the decreasing values of the binary cosine similarity between the query and the
results. If the binary cosine similarity performs well in finding a list—not necessarily
ordered—of results that matches the query and, if it is also fast to calculate, it is less
informative for the results that have a non-zero similarity, and certainly not sufficient
for performing an efficient ranking. Moreover, additional information related to the
1Published in the online proceedings of CTW 2019:

http://wwwhome.math.utwente.nl/∼ctw/CTW2019ProceedingsFinal.pdf.

http://wwwhome.math.utwente.nl/~ctw/CTW2019ProceedingsFinal.pdf
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different facets can be retrieved. In this chapter, we aim at showing the influence of
the different facet rankings to obtain an aggregated ranking. We propose a modified
weighted approach of a classical method used for aggregation ranking and show the
influence of weights on randomly generated information spaces and on real queries. The
intuition behind this method is to let the possibility to tune the aggregated ranking by
putting more emphasize on some facets in an information space.
We start by surveying the existing work and by giving the mathematical background of
the approach prior to propose our new way of aggregating the rankings in an information
space.

7.2. Mathematical background and related work

7.2.1. The problem of ranking aggregation

We consider a list L of N elements and m rankings (σi)i∈JmK of the list L . We write
L←→ the set of all possible rankings—including possible ties—of the list L . The aim of
ranking aggregation is to find a consensus order σ? ∈ L←→ that aggregates the rankings
(σi)i∈JmK while reflecting them as much as possible. This can be achieved either by using
directly ranks or by using a score function.
Achieving a consensus by using directly ranks implies to use a distance d and an aggre-
gation function Aggrr—often a sum, or a weighted sum—and the problem of consensus
is formalized as finding σ? such that:

σ? = argmin
σ∈L←→

Aggrr (d (σi, σ)) .

When using a function s that scores each ranking σi, the consensus is obtained by
using a function Aggrs, that is used to minimize, maximize, average,... the different
scores obtained. Hence, the problem of consensus consists in finding σ? such that it
corresponds to a ranking obtained from the sorting of Aggrs (s (σi)) :

σ? = Rank (Sort (Aggrs (s (σi)))) .

7.2.2. Classical distances between rankings

To compare two rankings σ1 and σ2 of a list L , different distances have been defined.
The Spearman footrule distance defined in [Spe87] between two rankings σ1 and
σ2 of a list L corresponds to the displacement distance in absolute value between the
rankings:

F (σ1, σ2) ∆=
∑
l∈L

|σ1 (l)− σ2 (l)| .

In [Ken38] and [Ken48], two distances between two rankings σ1 and σ2 of a list L are in-
troduced. The first is the Kendall tau ranking distance K (σ1, σ2) that corresponds
to the number of inverted ranking between the two rankings. More formally:

K(σ1,σ2)∆=|{(i,j):i<j,(σ1(i)<σ1(j)∧σ2(i)>σ2(j))∨(σ1(i)>σ1(j)∧σ2(i)<σ2(j))}|
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where σk (i) is the ranking of i in the list σk where k ∈ J2K .

Formulated an other way:

K (σ1, σ2) ∆=
∑

{i,j}∈JmK

Ki,j (σ1, σ2)

with:

Ki,j(σ1,σ2)∆=

{
1 if (σ1(i)<σ1(j)∧σ2(i)>σ2(j))∨(σ1(i)>σ1(j)∧σ2(i)<σ2(j))

0 otherwise.

At last, the normalised Kendall tau distance is defined as:

Kn (σ1, σ2) ∆= K (σ1, σ2)(
n
2

) .

7.2.3. Origin of the ranking aggregation problem

The ranking aggregation problem seeks to resolve the global ranking of elements for a
given list of rankings of those elements. The ranking aggregation problem has its origin
in election studies, before the French Revolution, and the research of a scrutiny that is
fair to represent voters choice. In 1770, Borda presented to the French Royal Academy
of Science a way of choosing the winner over the elector’s preferences for candidates by
using what is now known as the Borda method. The Borda method presented in [dB81]
is a weighted vote system where the electors rank a list of the first k candidates they
prefer, where k is common to all voters. Each candidate is given a number of points
that corresponds to the number of candidates that are less preferred than himself. The
candidate with the highest sum of points wins. Borda proposed this method to have
an alternative to the method of Condorcet that Borda thought to be too complicated:
in the Condorcet method presented in [No85], the candidate that is elected, called now
the Condorcet winner, is the majority winner, if s·he·x exists, of a series of vote on
a head-to-head basis between all the candidates. The fact that this method does not
give automatically a winner is called the Condorcet paradox2. Nonetheless, the Borda’s
method was largely criticized by Condorcet as it forces to have large consensus, but fails
to the majority criterion and is subject to scrutiny manipulations, since, if some of the
voters are insincere, they can vote for an outsider they do not like in order to defeat a
leading candidate and to promote a second choice candidate.

7.2.4. Kemeny-Young order

The Kemeny-Young order based on the Kendall tau distance was introduced in
[Kem59]: it aims at finding a ranking that minimizes the number of disagreements
between the global ranking and each of the rankings by evaluating the sum of the Kendall
tau distance between a candidate ranking and the different rankings. Mathematically
2A typical example leading to the Condorcet paradox can be found on
https://fr.wikipedia.org/wiki/Paradoxe_de_Condorcet.

https://fr.wikipedia.org/wiki/Paradoxe_de_Condorcet
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speaking, considering m rankings (σi)i∈JmK of a list of n objects, it searches the order
σ? such that it solves:

σ? = argmin
σ∈R

K (σ, σ1, ..., σm)

where:
K (σ, σ1, ..., σm) =

∑
k∈JmK

K (σ, σk) .

This method has the advantage to find a Condorcet winner if there exists. Moreover,
in [YL78], the Kemeny’s order is shown to be the unique preference function, for a
given electorate, that gives a consensus, which is neutral—i.e. symmetric in the treat-
ment of alternatives—, consistent—the preferred candidate does not depend on how the
electorate is split—and Condorcet—i.e. rank alternatives in function of the majority.

7.2.5. A revival of interest

Ranking aggregation has found a revival of interest with the raise of Internet: [DKNS01]
is an authoritative paper on the subject where the authors develop techniques to over-
come the difficulties of finding a common ranking to a list of rankings as finding a
Kemeny order is shown to be NP-hard even for m = 4 rankings.
To this end, they consider the extended Condorcet Criterion introduced in [To98] which
states that “If the set of alternatives can be partitioned in such a way that all members
of a subset of this partition defeat all alternatives belonging to subsets with a higher
index [N/A: (ranking)], then the former should obtain a better rank than the latter.”
This allows to propose an admissible partition to recursively split the ties into a subset
of the partition such that it can be solved separately.
Using any favorite aggregation method, in [DKNS01], the authors propose a local
optimization, called local Kemenization, such that it helps in improving the overall
K (σ, σ1, ..., σm) by just successively transposing adjacent pair of elements if it decreases
the value of K.
In [SZ09], the authors compare different methods of rank aggregation and distinguish
three categories of ranking methods which include positional methods, comparison sort
methods and hybrid methods. Positional methods aim at finding an optimal permu-
tation of the elements—ranking—in which the position of each element is “close to its
average position”; whereas comparison methods use directly the comparison between
the ranking of the elements and suppose to have a binary relation on the elements that
compares their ranking. The binary relation ranks an element i before an element j if
a majority of the list of rankings has ordered them in this order. This relation is not
transitive and, hence, is not even a pre-order relation, as only reflexivity is ensured.
Hybrid methods include methods that are both positional and comparison methods:
they include the Markov chains introduced by [DKNS01] for web pages, especially the
Markov chain named MC4. MC4 is based on a random walk where the surfer decides to
move from a page P to a page Q on the majority rule based on the ranking of the two
pages. The algorithm is given in Algorithm 7.1. The algorithm is shown to outperform
other aggregation methods, both without or with local Kemenization.
In [Lin10], three ranking method categories are proposed: distributional based that is
not described in [SZ09], heuristic, that includes both Borda’s method and Markov Chain
approaches, and stochastic optimization methods, aiming at minimizing a criteria.
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Algorithm 7.1 MC4 algorithm as proposed in [DKNS01].
• Current state page P.
• Choose Q uniformly among all the pages ranked.
• If σi (Q) < σi (P ) for a majority of the rankings (σi)16i6m :

go to Q
else:

stay on P.

In [TN11], the authors tackle the problem of multi-modality fusion for image and video
re-ranking by considering different similarity graphs built from different features of
a dataset, called modalities. They consider two main iterative approaches to find a
modality agreement that use different strategies: one approach uses semi-supervised
learning by considering the different rankings, and the other one uses a random walk
by creating a context graph which is a linear fusion of the different modality graphs.
In [DL18], the authors propose a multiplex PageRank based on topologically biased
random walks. Multiplex networks are series of graphs based on different features
of an information space. Biases are introduced to give more or less weight to the
topological properties of nodes such as degree, strength or clustering in the considered
random walks. They consider different facets of an information space and work on some
collaboration and citation networks. The biases are introduced through exponents of
features.
In [WZS16], the authors use a unified hypergraph of different features and labels of
social images to build heterogeneous hyperedges with an incident matrix similar to the
one of a hb-graph, using a softmax similarity. This heterogeneous hypergraph is used
to learn labels on vertices, using different learn weights on the hyperedges.
In [ACYL17], the authors use a multi-hypergraph—multi in the sense of multiple—fusion
framework for person re-identification through non overlapping cameras: they build
different hypergraphs based on feature descriptor using a star representation—i.e. an
extra-node representation—where the extra-node represents in this case the centroid of
the feature. Each vertex belongs to different hyperedges depending on the strength of
connection—based on a heat kernel—that is calculated using a distance between the
vertex and the extra-node viewed as the centroid of the hyperedge. The incident matrix
constructed is similar to the one of a hb-graph. To fuse the hypergraphs, they formalize
an objective function that combines an overall regularization term based on the hy-
pergraph Laplacian applied to a relevance vector, a graph weight regularization—using
the Laplacian of a similarity matrix between two hypergraphs filtered by a heat kernel
with weights on hypergraphs—, and an empirical loss function depending on weights.
They alternatively update the relevance vector and the weights on hypergraphs until
convergence. Their results overtake other methods on two popular benchmark datasets
for person re-identification.
In [GLG+13], the authors propose a visual analysis tool to achieve multi-attribute rank-
ings: they allow the sub-selection of attributes and normalize the attribute value to have
a common scale. The aggregation score is obtained by either doing the sum of the pon-
dered normalised attributes or by taking the maximum of the score obtained on the
different sub-lists. The final ranking is based on those scores: the higher the score, the
higher the rank. The whole set of scores is given using a multi-column presentation,
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with columns used as rank separators that allow to have not only the aspect of slope
graph but help to read the final ranking.

As it is emphasized in [LAYK+18], on the Internet, many websites use ranking policies
for search results, advertisement, recommender systems. When a new ranking is pro-
posed, the evaluation can be done either online—i.e. directly in production—using A/B
testing between the proposed ranking and the previous, or offline. The offline evalu-
ation requires to use a click model as it is proposed in [CSdR13]. Other studies use
additional data to evaluate the ranking policy. For instance, in [LAYK+18], the authors
use click logs of previous searches to construct estimators to evaluate the number of
clicks expected from the new ranking; it allows them to avoid ranking with poor results.

7.2.6. Comparison of rankings

We consider two rankings σ1 and σ2 of a list L of n elements indexed by i ∈ JnK .

The strict Kendall tau rank correlation coefficient, written τ, corresponds to the
ratio of the difference in the number of strict concordant pairs and strict discordant
pairs related to the number of pairs. Its explicit expression is:

τ (σ1, σ2) ∆=

∑
i,j∈JnK : i<j

sgn (σ1 (i)− σ1 (j)) sgn (σ2 (i)− σ2 (j))(
n
2

) .

This coefficient does not take into account the pairs that are matching, which can be
important in case of ties.

For this, we can define the matching correlation coefficient ν defined as:

νmatch (σ1, σ2) ∆=

∑
i,j∈JnK : i<j

1(σ1(i)==σ1(j))1(σ2(i)==σ2(j))(
n
2

) ,

where 1(φb) =
{

1 if φb;
0 otherwise,

with φb a Boolean condition statement.

We introduce a large Kendall tau rank correlation coefficient τL that takes into
account the agreement and disagreement on ties.

We define the disagreement on matching correlation coefficient:

νdisagree(σ1,σ2)∆=

∑
i,j∈JnK : i<j

(
1(σ1(i)!=σ1(j))1(σ2(i)==σ2(j)) + 1(σ1(i)==σ1(j))1(σ2(i)!=σ2(j))

)
(
n
2

)

and:
τL (σ1, σ2) ∆= τ (σ1, σ2) + νmatch (σ1, σ2)− νdisagree (σ1, σ2) .
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The scaled Spearman footrule correlation coefficient ρ is defined as:

ρ (σ1, σ2) ∆=

∑
i∈JnK

|σ1 (i)− σ2 (i)|(
n
2

) .

Finally, we will also use the Jaccard index @k, k ∈ N\ {0}. To achieve this purpose,
we extract sub-lists related to the two rankings corresponding to the top k elements
`i = {l : l ∈ JnK ∧ σi (l) 6 k} , i = 1, 2. The Jaccard index @k of the rankings σ1 and σ2
is defined as:

J@k (σ1, σ2) ∆= # (`1 ∩ `2)
# (`1 ∪ `2) .

and the overlap coefficient @k, k ∈ N\ {0} , of the rankings σ1 and σ2 is defined as :

O@k (σ1, σ2) ∆= # (`1 ∩ `2)
min (#`1,#`2) .

7.3. Multi-diffusing in an information space

After having simplified the notations used in Chapter 6, we start studying the different
strategies that could be taken to aggregate the rankings of references. We then expose
the two strategies retained.

7.3.1. Laying the first stones

We consider an information space with K+1 facets (Fk)k∈JK+1K containing respectively
data instances of different types (Tk)k∈JK+1K , one of them being chosen as the type of
reference. We can always consider that the data instances of the reference type are
attached to the K+1-th facet, even if we need to re-index the facet and type sequences.
We write R = VK+1 the set of references.

The data instances of a given type Tk, with k ∈ JK + 1K , constitute a set Vk attached
to the k-th facet. We write Hk =

(
Vk,Ek, we,k

)
the reduced visualisation hb-graph of

the facet Fk.

We consider:
ρk : R→ Ek

such that:
∀r ∈ R,∃e ∈ Ek : ρk(r) = e.

ρk is surjective.

The attached references to a given hb-edge can be found by defining:

νk : Ek → P (R) ,

such that:
∀e ∈ Ek : νk (e) = {r ∈ R : ρk (r) = e} .
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7.3.2. Strategies for ranking references

To achieve the ranking of the references that are at the origin of the different facet
visualisation hb-graphs, we can think of different strategies.

A first strategy is to rank the hb-edges of each facet separately by using, for instance
the diffusion by exchange on each visualisation hb-graph for the different facets. The
ranking aggregation takes place at the level of the references, by considering the different
rankings of hb-edges the references are related to. This strategy permits to use some
classical methods of ranking aggregation such as the Borda’s or Condorcet’s methods.
Moreover, to enhance personalized rankings, we can put weights on the different facets:
the rank aggregation can then be achieved by using a modified Borda method for in-
stance or MC4 in [DKNS01], but might exclude some methods such as the Condorcet
one.

Other strategies consider various hb-graphs involving both the references and the hb-
edges attached to them, either at the hb-edge level or at the vertex level.

The second strategy would be to consider a hb-graph of hb-edges attached to a reference
and to enhance diffusion by exchange on it. However, in real world cases, this hb-graph is
potentially insufficiently connected, as hb-edges of the different facets might not repeat
so often.

The third strategy consists in adding connectivity in the hb-graph proposed in the
second strategy, by reporting the lattice of intersection of the hb-edges of each facet
into H, enriching the hb-edges of H with additional hb-edges that reflect the hb-edge
connections in each facets. One possible pitfall of this method is that the facet hb-
edges are loosing in a way the higher order information of the intersection as two facet
hb-edges will be connected if they intersect in the facet.

Other strategies consist of more sophisticated diffusion based on modified hb-graphs:
they are out of scope of this chapter, but can be kept in mind as further possible
refinements. Considering all these arguments, we only consider the first strategy in this
Chapter.

7.3.3. Ranking aggregation by modified weighted MC4

In this approach, we consider that for each facet the exchange-based diffusion on the
reduced visualisation hb-graph has been achieved, leading to a sorting of the hb-edges.
As each hb-edge is by construction linked to one or more references, the ranks are
reported to every attached references; we obtain a ranking σk of all the references r ∈ R
for each facet Fk, k ∈ JKK , with possible ties.

In order to tune the rankings, we give tunable weights to the facets (wFk)k∈JKK such
that: ∑

k∈JKK
wFk = 1 and wFk > 0 for all k ∈ JKK .

We start by computing a weighted majority matrix M of elements obtained for each
couple of references (ri1 , ri2) ∈ R2 by:

M (ri1 , ri2) =
∑
k∈JKK

wk1σk(ri1)<σk(ri2) −
∑
k∈JKK

wk1σk(ri1)>σk(ri2).
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Algorithm 7.2 The WT-MC4 algorithm.
Prerequisite:
A set of references R and K rankings (σk)k∈JKK of these references
Algorithm:
Calculate for all (ri1 , ri2) ∈ R2 the elements of M :

M (ri1 , ri2) =
∑
k∈JKK

wk1σk(ri1)<σk(ri2) −
∑
k∈JKK

wk1σk(ri1)>σk(ri2).

Stack = R.
L = [0 for r ∈ R] # To store the number of times the reference is visited.
Choose a current state reference: rcurrent ∈ R.
Remove rcurrent from Stack.
While stack is not empty:

Choose a random number γ
Choose rnext uniformly among all the references in R.
If γ > γ0:

rcurrent := rnext
else:

If M (rnext, rcurrent) > 0
rcurrent := rnext

else:
# stay in rcurrent.

L [rcurrent] + = 1.
If rcurrent ∈ Stack:

Remove rcurrent from Stack.
LoopWhile

We propose a modified version—that we callWT-MC4—of the Algorithm 7.1 shown as
the most efficient in [DKNS01]. This modified version includes teleportation and weights
and is presented in Algorithm 7.2. The teleportation is useful for the management of
ties, so that the algorithm do not loop infinitely. The threshold γ0 is put at 0.85 which is
a classical value used in the PageRank algorithm, even if we did not investigate further
the relevance and efficiency of this threshold.

7.3.4. Results and evaluation

We validate the approach using random generated information spaces and apply it to
the case of Arxiv querying.

7.3.4.1. Randomly generated information space

We generate each time an information space of Nfacet facets with visualisation hb-graphs
generated using the same method as in Chapter 2. The number of hb-edges for each of
these facets varies and it is set to a maximum value Pmax : it corresponds also to the
maximal number of references. Each reference r ∈ JPmaxK is associated randomly to one
hb-edge of each facet: in this way, some hb-edges are repeated.
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We give the possibility to assign a weight to each facet and explore systematically
different cases that are generated using weights shared uniformly between k facets out
of Nfacet, k ∈ JNfacetK , the remaining weights being put to zero.

For computation time reasons, as we generate NIS information spaces—with NIS 6
1000—, we limit the experiment to Nfacet 6 6. Taking more facets would require more
time for exploring the different weighting cases.

For each random information space generated, we compute for each of their facets the
ranking of the hb-edges obtained by exchange-based diffusion. We then compute the
aggregation of ranking by the Borda method and by our modified MC4, using the
different weights assigned to the hb-edges, and compute the different indexes proposed
in Section 7.2.6.

At the end of the NIS iterations, we calculate the average of the different ranking
comparison features proposed in Section 7.2.6 between the current ranking and the
one obtained with the Borda method and their standard deviations. The results are
presented in Table 7.1 where Nfacet = 3 and NIS = 1000. We observe in this Table that
the best agreement with the Borda method is achieved with our WT-MC4 method, with
equal weighting of the facets. Putting the weights on only two facets out of the three
increases the disagreement—approximately 10% drop in Kendall tau correlation between
equi-weight set on the three facets and two facets non-zero equi-weighting out of the
three facets—with the Borda method realized on the three facets, but the gap is much
less important than when putting the weight on only one facet—approximately 53% drop
in Kendall tau correlation between equi-weight and one facet non-zero weighting out of
the three facets. We will investigate later in this Chapter this phenomena, depending
on the number of facets in the information space and the number of non-zero weighted
facets. The results are similar for all the other indices with optimal values—achieved for
the highest values for all indices but the scaled Spearman footrule correlation coefficient
which has to be the closest to zero—obtained for the comparison of the Borda method
and the modified equi-weight MC4.

In Table 7.2, obtained from the same set of information spaces than in Table 7.1, we
observe that with similar facets the Kendall tau coefficient between the ranking ag-
gregation obtained by WT-MC4 with equal weights and the ranking obtained for each
facet with the exchange-based diffusion is equally low whatever the facet is, compared
to the cases with weight only on one facet, where the agreement is the highest. We also
observe that our method of ranking is fair, as when the facets are similarly generated,
the results obtained on the different facets are similar. We did not investigate further
the case of dissimilar facets in the information space.

In Table 7.3 and Figure 7.1, for NIS = 100, we present the results of the evolution of
Kendall tau coefficient between the ranking aggregation obtained by WT-MC4 with
equal weights and the ranking obtained for each facet with the exchange-based diffusion
when the number of facets increases from 1 to Nfacet, with Nfacet varying from 2 to 5.
Increasing the number of facets implies more compromises between the different facets,
and hence to have a lower value of the Kendall tau for the equi-weight WT-MC4 when
Nfacet increases. This behavior depends only on the number of non-zero weight facets,
and not on the number of facets of the information space generated; it underlines the
difficulties to arrive to a consensus.
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f (σBorda, σCurrent) / σ (f (σBorda, σCurrent)) with f = ...Current
τ τL νdisagree νmatching ρ O@10 O@25 O@50 J@10 J@25 J@50

Facet 0
|V | ≈ 455 σ (|V |) ≈ 241
|E| ≈ 173 σ (|E|) ≈ 85

0.389
/ 0.122

0.257
/ 0.093

0.135
/ 0.068

0.004
/ 0.002

0.541
/ 0.179

0.426
/ 0.195

0.597
/ 0.176

0.736
/ 0.160

0.144
/ 0.087

0.246
/ 0.108

0.359
/ 0.129

Facet 1
|V | ≈ 452 σ (|V |) ≈ 246
|E| ≈ 172 σ (|E|) ≈ 85

0.385
/ 0.127

0.255
/ 0.098

0.134
/ 0.068

0.004
/ 0.002

0.544
/ 0.178

0.430
/ 0.198

0.597
/ 0.178

0.738
/ 0.156

0.145
/ 0.095

0.244
/ 0.109

0.360
/ 0.131

Facet 2
|V | ≈ 462 σ (|V |) ≈ 244
|E| ≈ 174 σ (|E|) ≈ 85

0.389
/ 0.122

0.257
/ 0.094

0.136
/ 0.068

0.004
/ 0.003

0.539
/ 0.176

0.427
/ 0.197

0.593
/ 0.175

0.734
/ 0.159

0.145
/ 0.094

0.244
/ 0.107

0.361
/ 0.128

References 0.428
/ 0.169

0.357
/ 0.260

0.073
/ 0.106

0.002
/ 0.002

0.436
/ 0.171

0.458
/ 0.194

0.541
/ 0.130

0.613
/ 0.088

0.295
/ 0.153

0.345
/ 0.119

0.364
/ 0.117

WT-MC4
{’0’: 0.33, ’1’: 0.33, ’2’: 0.33}

0.650
/ 0.108

0.629
/ 0.110

0.022
/ 0.002

0.000
/ 0

0.253
/ 0.078

0.632
/ 0.167

0.699
/ 0.124

0.749
/ 0.108

0.452
/ 0.168

0.532
/ 0.143

0.596
/ 0.137

WT-MC4
{’0’: 0.5, ’1’: 0.5, ’2’: 0.0}

0.579
/ 0.123

0.558
/ 0.124

0.021
/ 0.003

0.000
/ 0

0.306
/ 0.088

0.341
/ 0.171

0.483
/ 0.147

0.487
/ 0.152

0.204
/ 0.120

0.319
/ 0.125

0.438
/ 0.142

WT-MC4
{’0’: 0.5, ’1’: 0.0, ’2’: 0.5}

0.584
/ 0.123

0.564
/ 0.124

0.021
/ 0.003

0.000
/ 0

0.302
/ 0.088

0.349
/ 0.168

0.482
/ 0.149

0.606
/ 0.138

0.208
/ 0.119

0.319
/ 0.127

0.439
/ 0.139

WT-MC4
{’0’: 0.0, ’1’: 0.5, ’2’: 0.5}

0.582
/ 0.124

0.561
/ 0.124

0.021
/ 0.003

0.000
/ 0

0.304
/ 0.088

0.345
/ 0.168

0.482
/ 0.147

0.607
/ 0.138

0.205
/ 0.119

0.318
/ 0.125

0.440
/ 0.139

WT-MC4
{’0’: 0.0, ’1’: 0.0, ’2’: 1.0}

0.301
/ 0.094

0.275
/ 0.095

0.027
/ 0.005

0.000
/ 0

0.485
/ 0.060

0.212
/ 0.159

0.353
/ 0.156

0.489
/ 0.154

0.121
/ 0.102

0.219
/ 0.117

0.331
/ 0.138

WT-MC4
{’0’: 0.0, ’1’: 1.0, ’2’: 0.0}

0.300
/ 0.096

0.274
/ 0.096

0.026
/ 0.005

0.000
/ 0

0.486
/ 0.061

0.215
/ 0.158

0.351
/ 0.157

0.489
/ 0.155

0.123
/ 0.101

0.217
/ 0.119

0.331
/ 0.139

WT-MC4
{’0’: 1.0, ’1’: 0.0, ’2’: 0.0}

0.303
/ 0.096

0.277
/ 0.096

0.027
/ 0.005

0.000
/ 0

0.484
/ 0.061

0.216
/ 0.157

0.353
/ 0.155

0.487
/ 0.152

0.123
/ 0.100

0.219
/ 0.117

0.329
/ 0.135

Table 7.1.: Different ranking comparison features—as defined in Section 7.2.6 between
Borda ranking and current ranking on 1000 generated information spaces of 3 facets
with similar parameters.

Facet diffusion ranking =⇒ Facet 0 Facet 1 Facet 2
vs WT-MC4 with weights ⇓ Mean StDev Mean StDev Mean StDev

{’0’: 0.33, ’1’: 0.33, ’2’: 0.33} 0.390 0.135 0.391 0.133 0.385 0.136
{’0’: 0.5, ’1’: 0.5, ’2’: 0.0} 0.505 0.029 0.503 0.030 0.033 0.045
{’0’: 0.5, ’1’: 0.0, ’2’: 0.5} 0.502 0.028 0.035 0.046 0.503 0.029
{’0’: 0.0, ’1’: 0.5, ’2’: 0.5} 0.036 0.047 0.502 0.028 0.503 0.029
{’0’: 0.0, ’1’: 0.0, ’2’: 1.0} 0.020 0.047 0.021 0.047 0.649 0.264
{’0’: 0.0, ’1’: 1.0, ’2’: 0.0} 0.024 0.049 0.654 0.264 0.022 0.047
{’0’: 1.0, ’1’: 0.0, ’2’: 0.0} 0.653 0.262 0.025 0.051 0.021 0.049

Table 7.2.: Kendall tau of 1000 WT-MC4 ranking aggregation compared to the facet
rankings (average on the 1000 information) depending on the weights put on the
facets. The average features of the facets are given in Table 7.1.

# non-zero weight facets ⇒ 1 2 3 4 5
# facets ⇓ Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev

2 0.585 0.251 0.499 0.030
3 0.613 0.268 0.501 0.030 0.391 0.127
4 0.665 0.252 0.504 0.029 0.393 0.126 0.355 0.100
5 0.727 0.259 0.506 0.027 0.396 0.125 0.357 0.041 0.321 0.080

Table 7.3.: Average Kendall tau of the WT-MC4 ranking aggregation compared to
the non-zero weight facet rankings (average on 100 information spaces) depending on
the number of facets having non-zero equal weights. Parameters of facet hb-graphs
similar to Table 7.1.
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Figure 7.1.: Average Kendall tau correlation coefficient between the WT-MC4 ranking
aggregation compared to the non-zero weight facet rankings depending on the number
of non-zero weight facet rankings—corresponding data is shown in Table 7.2—(100
information spaces for each value of the number of facets).

# non-zero weight facets ⇒ 1 2 3 4 5 6
# facets ⇓ Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev

2 0.355 0.090 0.824 0.053
3 0.295 0.096 0.582 0.109 0.665 0.104
4 0.276 0.088 0.488 0.114 0.543 0.110 0.777 0.060
5 0.248 0.087 0.420 0.092 0.491 0.098 0.662 0.085 0.710 0.081
6 0.240 0.073 0.382 0.083 0.443 0.099 0.577 0.103 0.637 0.092 0.763 0.065

Table 7.4.: Average Kendall tau of the WT-MC4 ranking aggregation—with non-zero
weights as indicated—compared to the Borda aggregation ranking—on all facet rank-
ings—(average on 100 information spaces) depending on the number of facets having
non-zero weights. Parameters of facet hb-graphs similar to Table 7.1.

In Table 7.4 and in Figure 7.2, we present the evolution of the strict Kendall tau rank
correlation coefficient between the Borda aggregation ranking and WT-MC4, depending
on the number of non-zero facets. It confirms that the variation in the disagreement
between the two rankings decreases when the number of facets increases, with a behavior
that is different between an odd and an even number of facets, and similarly odd and even
number k of non-zero weight facets. The transition from even k to odd k leads to a lesser
increase than the transition from odd k to even k. Increasing the number of facets for
ranking does not necessarily improves the agreement between the two rankings. Finally,
these results show how the WT-MC4 approximates the ranking obtained by Borda
method with a stochastic weighted approach when the weights are equi-distributed
between the non-zero weight facets.
Wondering if the results where due to a low number of generated information spaces,
we have generated NIS = 1000 information spaces. We observed exactly the same kind
of results than those shown in Table 7.5 and Figure 7.3.
All these results are conform to expectation for such a weighting of facets, and, essen-
tially, indicate that putting weights differently on facets allows the favoring of different
facets, with an expected facets re-ranking that is in line with the weight—the empha-
size—that is put on the different facets. Moreover, increasing the number of facets
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Figure 7.2.: Average Kendall tau correlation coefficient between the ranking obtained
by Borda aggregation of the facet diffusion by exchange rankings and the WT-MC4 re-
alized with equi-weight on non-zero equal weight facets—corresponding data is shown
in Table 7.4—(100 information spaces for each value of the number of facets).

# non-zero weight facets ⇒ 1 2 3 4 5 6
# facets ⇓ Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev

2 0.357 0.096 0.821 0.050
3 0.303 0.094 0.585 0.127 0.650 0.112
4 0.272 0.093 0.485 0.116 0.545 0.116 0.771 0.066
5 0.250 0.091 0.424 0.108 0.480 0.109 0.650 0.094 0.690 0.085
6 0.239 0.086 0.393 0.096 0.455 0.101 0.592 0.089 0.628 0.090 0.755 0.058

Table 7.5.: Average Kendall tau of the WT-MC4 ranking aggregation compared to the
non-zero equal weight facet rankings (average on 1000 information spaces) depending
on the number of facets having non-zero weights. Parameters of facet hb-graphs
similar to Table 7.1.

0 1 2 3 4 5 6
0

0.5

1

Number of non-zero facets

τ
(σ

B
or

da
,σ

W
T

-M
C

4)

2 facets
3 facets
4 facets
5 facets
6 facets

Figure 7.3.: Average Kendall tau between Borda aggregation of the rankings obtained
on references via diffusion by exchange and the WT-MC4 with equi-weight on non-
zero equal weight facets—it corresponds to data shown in Table 7.5—(1000 random
information spaces for each value of the number of facets are generated).
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makes the agreement slower to reach, but at the end, the level of agreement with the
Borda ranking depends essentially on the parity of the number of facets.

7.3.4.2. Application to the Arxiv information space

The main difficulty in applying multi-diffusion to a real case is that the facet visual-
ization hb-graphs are essentially unconnected, which limits terribly the exchange-based
diffusion ranking to ensure the convergence and the coherence of the ranking. It means,
strictly speaking, that the exchange-based diffusion will give results that are coherent
only for the connected components. Refining the way the connected components are
ranked between one another is out of the scope of this section, and is an open research
question.
However, we applied the multi-diffusion to three facets of Arxiv information space: au-
thors, keywords and subject categories. In each facet, the hb-edge ranking is achieved
by using the exchange-based diffusion. In Table 7.6, we summarize the top 1000 an-
swers returned from the 27 Arxiv queries performed: most of the time, the only facet
visualization hb-graph that is connected is the one with keywords—or in the worst cases
has only a few components. As in the previous section, there is no correlation between
the rankings of the different facets. Since we are in fact interested in the ranking ag-
gregation, and the way it works, we use these imperfect rankings on the overall facet
visualization hb-graphs as a basis to apply the ranking aggregation.
We also consider the hb-graph of references based on their connection through hb-edges
and make some diffusion on it, even if again this hb-graph is not well connected. With
the rankings obtained in individual facets, we perform an aggregation ranking using the
Borda method and WT-MC4 with different weights, as it has been done in the random
case. We compare the different rankings obtained byWT-MC4 with the different weights
to the rankings of the facets, the one of the Borda method and the one of the references,
using the strict Kendall’s tau coefficient.
The different ranking aggregation comparisons are given in Table 7.7: the results are
based on a limited number of 29 queries performed on Arxiv including the first 100
results and 200 results; the queries performed are: 3D, printer, hypergraph, graph,
“Higgs boson”, particle, snow, star, Laplacian, diffusion, nanotechnology, CNN, RNN,
neural network, “machine learning”, “deep learning”, learning, machine, “information
retrieval”, “information”, “data mining”, entropy, information, adjacency, “3D printer”,
physics, particle, network, neural. The results of the Borda aggregation ranking is
mainly due to the author and keyword facets as it is both shown in the difference of
Kendall’s tau coefficient with equi-weight WT-MC4 and a:0.5/k:0.5/t:0 WT-MC4. Key-
word ranking or author ranking alone still perform well facing the Borda aggregation
ranking, but there is a true complementarity between the two, as the a:0.5/k:0.5/t:0
WT-MC4 Kendall’s tau coefficient with Borda aggregation ranking method is improved
significantly (+0.23 for authors alone and +0.16 for keywords alone). The values ob-
tained for equi-weight WT-MC4 are higher than the one we could expect with three
random facets: this can be due to the nature of hb-graphs that are behind.
Detailed results for the strict Kendall tau correlation coefficients of the different searches
are given in Table 7.8 and illustrated with a three 2-D diagrams in Figure 7.4 for the
facets of Authors and Keywords, Figure 7.5 for the facets of Authors and Tags and, in
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authors - keywords -0.001 -0.063 0.102 0.086 0.083 0.129 -0.049 0.064 0.115 0.13 -0.013 0.048 0.103
authors - tags 0.055 0.051 -0.027 0.038 0.092 0.009 0.023 0.008 -0.027 -0.001 0.057 -0.044 -0.054
keywords - tags -0.106 0.025 -0.077 -0.003 0.003 0.004 -0.051 -0.086 -0.009 -0.041 0.014 -0.038 -0.072

|V | 2948 825 1529 1868 1329 2146 13468 2366 1592 2124 3854 3228 2936
|E| 953 219 883 945 817 943 685 934 895 935 969 969 960authors

# C.C. 627 193 403 656 337 787 283 489 598 779 698 655 597
|V | 4884 2616 3248 3275 2051 3972 4700 4166 2796 3962 4707 4720 4476
|E| 1000 230 1017 997 999 999 720 999 998 1000 1000 1000 1000keywords

# C.C. 2 1 1 1 1 2 2 3 1 1 1 1 1
|V | 161 105 343 382 17 159 121 64 461 252 91 96 101
|E| 271 121 423 491 25 312 205 90 575 396 221 217 238tags

# C.C. 10 13 5 7 1 7 11 15 7 8 6 3 3
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authors - keywords 0.062 0.097 0.082 0.051 0.07 0.041 0.105 0.052 0.092 0.109 -0.026 0.047 0.045 0.067
authors - tags 0.009 -0.021 -0.006 0.008 -0.007 -0.016 -0.023 -0.046 -0.041 0.03 0.082 -0.04 0.084 0.006
keywords - tags -0.014 -0.051 -0.038 -0.028 -0.054 0.005 -0.053 -0.006 -0.07 0.012 -0.069 -0.075 0.045 -0.017

|V | 2486 2594 2892 2491 2392 2357 1830 2542 1589 2053 2970 2143 2307 2533
|E| 963 979 961 967 961 914 900 945 895 926 953 1530 951 967authors

# C.C. 795 761 728 668 783 629 692 717 696 737 679 1373 670 796
|V | 3759 3561 3968 3490 3977 3935 3815 4600 3317 3958 5389 3570 3907 3910
|E| 999 999 999 999 997 998 992 996 999 1000 1000 1832 999 1000keywords

# C.C. 2 2 1 1 2 2 3 1 1 1 2 8 1 1
|V | 169 154 119 114 216 162 197 187 247 406 183 214 164 173
|E| 367 288 281 220 398 301 380 368 379 537 288 553 352 369tags

# C.C. 9 4 6 2 8 5 12 9 5 20 10 2 5 8

Table 7.6.: Strict Kendall tau correlation coefficient between two facets exchange-based
diffusion rankings and some additional statistics on facets when querying Arxiv, on
first top 1000 answers returned by the Arxiv API.

Top 100 results Top 200 results Top 1000 results
|V | |E| #C.C. τ100 σ (τ100) |V | |E| #C.C. τ200 σ (τ200) |V | |E| #C.C. τ1000 σ (τ1000)

authors (a) 241.9 97.8 89.1 0.437 0.095 484.7 118.0 167.1 0.440 0.088 2718.2 922.9 660.2 0.470 0.055
keywords (k) 864.5 100.9 1.4 0.537 0.064 1384.1 199.9 1.4 0.541 0.057 3878.9 991.4 1.7 0.549 0.049

tags (t) 47.3 51.2 7.4 0.179 0.095 73.1 90.0 8.2 0.166 0.086 187.3 321.0 7.4 0.095 0.077
references 249.9 100.9 x 0.096 0.162 481.6 199.9 x 0.130 0.159 2235.3 992.9 x 0.220 0.149

WT-MC4 a: 0.33, k: 0.33, t: 0.33 x x x 0.734 0.069 x x x 0.706 0.065 x x x 0.660 0.071
WT-MC4 a: 0.5, k: 0.5, t: 0 x x x 0.687 0.060 x x x 0.699 0.050 x x x 0.741 0.041
WT-MC4 a: 0.5, k: 0, t: 0.5 x x x 0.430 0.037 x x x 0.421 0.053 x x x 0.392 0.056
WT-MC4 a: 0, k: 0.5, t: 0.5 x x x 0.545 0.063 x x x 0.526 0.050 x x x 0.475 0.043
WT-MC4 a: 0, k: 0, t: 1 x x x 0.179 0.095 x x x 0.160 0.086 x x x 0.088 0.074
WT-MC4 a: 0, k: 1, t: 0 x x x 0.533 0.064 x x x 0.538 0.056 x x x 0.546 0.048
WT-MC4 a: 1, k: 0, t: 0 x x x 0.425 0.099 x x x 0.426 0.078 x x x 0.443 0.064

Table 7.7.: Strict Kendall tau correlation coefficient between Borda aggregation rank-
ing and the rankings obtained either directly by diffusion on the corresponding facet
or by WT-MC4 with different weights, when querying the Arxiv database (on 29
queries) for the first 100, 200 and 1000 results returned by the API.
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authors (a) 0.472 0.378 0.504 0.49 0.476 0.482 0.445 0.498 0.456 0.498 0.473 0.502 0.535
keywords (k) 0.505 0.476 0.553 0.534 0.606 0.609 0.485 0.563 0.544 0.566 0.503 0.534 0.553

tags (t) 0.052 0.292 0.066 0.181 0.055 0.107 0.082 -0.036 0.213 0.11 0.109 -0.002 -0.025
references 0.292 -0.028 0.104 0.039 0.548 0.265 0.171 0.572 -0.022 0.142 0.292 0.405 0.389

WT-MC4 a: 0.33, k: 0.33, t: 0.33 0.577 0.738 0.695 0.748 0.56 0.665 0.619 0.559 0.806 0.728 0.582 0.551 0.648
WT-MC4 a: 0.5, k: 0.5, t: 0 0.776 0.695 0.745 0.73 0.781 0.767 0.763 0.805 0.656 0.707 0.78 0.777 0.793
WT-MC4 a: 0.5, k: 0, t: 0.5 0.421 0.436 0.406 0.431 0.448 0.403 0.35 0.372 0.443 0.373 0.405 0.426 0.356
WT-MC4 a: 0, k: 0.5, t: 0.5 0.479 0.546 0.493 0.491 0.595 0.49 0.442 0.467 0.501 0.45 0.445 0.477 0.378
WT-MC4 a: 0, k: 0, t: 1 0.044 0.293 0.037 0.125 0.044 0.107 0.076 -0.033 0.199 0.108 0.108 -0.006 -0.031
WT-MC4 a: 0, k: 1, t: 0 0.502 0.474 0.551 0.532 0.605 0.604 0.483 0.561 0.54 0.561 0.499 0.532 0.551
WT-MC4 a: 1, k: 0, t: 0 0.467 0.382 0.485 0.414 0.386 0.464 0.441 0.477 0.412 0.467 0.461 0.478 0.522
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authors (a) 0.479 0.511 0.513 0.503 0.472 0.472 0.473 0.48 0.45 0.467 0.453 0.236 0.491 0.488
keywords (k) 0.542 0.565 0.548 0.535 0.543 0.542 0.572 0.532 0.579 0.547 0.495 0.736 0.519 0.538

tags (t) 0.121 0.023 0.048 0.034 0.099 0.089 0.09 0.088 0.066 0.233 0.11 0.037 0.204 0.112
references 0.178 0.311 0.269 0.344 0.195 0.206 0.178 0.174 0.179 0.03 0.232 0.198 0.075 0.202

WT-MC4 a: 0.33, k: 0.33, t: 0.33 0.709 0.6 0.667 0.591 0.671 0.65 0.662 0.72 0.679 0.783 0.594 0.603 0.706 0.709
WT-MC4 a: 0.5, k: 0.5, t: 0 0.736 0.761 0.764 0.773 0.723 0.752 0.736 0.737 0.707 0.686 0.767 0.636 0.734 0.728
WT-MC4 a: 0.5, k: 0, t: 0.5 0.386 0.427 0.38 0.398 0.388 0.387 0.391 0.374 0.347 0.437 0.411 0.157 0.446 0.373
WT-MC4 a: 0, k: 0.5, t: 0.5 0.454 0.483 0.433 0.448 0.464 0.461 0.506 0.413 0.463 0.526 0.492 0.512 0.49 0.436
WT-MC4 a: 0, k: 0, t: 1 0.119 0.016 0.05 0.033 0.098 0.083 0.086 0.087 0.066 0.214 0.108 0.041 0.201 0.107
WT-MC4 a: 0, k: 1, t: 0 0.539 0.562 0.546 0.533 0.54 0.54 0.568 0.53 0.576 0.544 0.492 0.73 0.516 0.537
WT-MC4 a: 1, k: 0, t: 0 0.454 0.486 0.5 0.483 0.446 0.439 0.403 0.457 0.392 0.462 0.445 0.178 0.482 0.477

Table 7.8.: Kendall tau correlation coefficient between Borda aggregation ranking and
the rankings obtained either directly by diffusion on the corresponding facet or by
WT-MC4 with different weights, when querying the Arxiv database (27 queries).

Figure 7.6 for the facets of Keywords and Tags; it enhances the fluctuations depending
on the queries on the rankings depending on the different facets. The facets of authors
and keywords often contribute a lot in the final ranking obtained in WT-MC4 and
corroborate with Borda aggregation method. We observe that the tags have more
importance in queries covering different subjects, i.e. when the categorization by tags
starts to be discriminative of different topics.

7.4. Further comments

Rank aggregation in an information space requires to address different difficulties, in-
cluding ties and the connectedness of the generated hb-graphs. We have proposed in
this study a way of aggregating the different facets by using a random surfing with
teleportation in the information space, using a weighted criteria to handle the behavior
of the random surfer. This process is finally a stochastic barycentric Borda. Applying
it to real cases requires to find some ways of handling the different connected compo-
nents in any real case applications, that might be very different in nature depending
on the facets. A way of handling this would certainly be to normalize the values of the
diffusion according to the size of the components the vertices are in. This remains an
open question to implement it and evaluate it. Another approach could be to consider a
modified exchange-based diffusion process that would take into account the links to the
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Figure 7.4.: Comparison of different queries Kendall tau correlation coefficients be-
tween Borda aggregation ranking and the rankings obtained either directly by dif-
fusion on the corresponding facet (Authors and Keywords) or by WT-MC4 with
equi-weights, when querying the Arxiv database (27 queries).
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Figure 7.5.: Comparison of different queries Kendall tau correlation coefficients be-
tween Borda aggregation ranking and the rankings obtained either directly by diffu-
sion on the corresponding facet or by WT-MC4 with equi-weights, when querying the
Arxiv database (27 queries).
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Figure 7.6.: Comparison of different queries Kendall tau correlation coefficients be-
tween Borda aggregation ranking and the rankings obtained either directly by diffu-
sion on the corresponding facet or by WT-MC4 with equi-weights, when querying the
Arxiv database (27 queries).
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references. A third way could be to introduce a low weighted hyperedge that connects
all the vertices in one hyperedge, reflecting that the elements belong to the same search.
The method we propose as any algorithm of this kind can be parallelized.



Conclusion

From a coarsening problem to visualize large hypergraphs in order to handle properly
their layout, the quest to model the diffusion on such structures has led us to redefining
adjacency in hypergraphs. Modeling e-adjacency requires tensors. We have focused on
preserving the interpretability in terms of hypergraph uniformisation and polynomial
homogenization, which has led us to introduce hb-graphs, and particularly natural hb-
graphs, to handle vertex redundancy.

Hb-graphs have proven to be effective to handle efficiently refined information in com-
parison with hypergraphs and graphs. They have been an opportunity to introduce
an exchange-based diffusion that takes into account multiplicities of vertices and that
enables the ranking not only of vertices, but also of hb-edges.

Using natural hb-graphs, we proposed two additional e-adjacency tensors, and partic-
ularly the straightforward one, which has some nice spectral properties. Nonetheless,
using exchange-based diffusion, we have shown that the m-uniformisation processes in-
volved have an influence on the diffusion over the structure itself. In this context, we
have evaluated the different proposed tensors presented in this Thesis as well as in the
literature.

Concluding by introducing a new Laplacian tensor for general hb-graphs, we have opened
the door to new theoretical developments to study tensor-based diffusion.

Concomitantly, hb-graphs fit for the modeling of co-occurrence networks. Their use in
multi-faceted information spaces leads us to propose a hb-graph framework, and the
DataHbEdron, enabling full visual querying of a textual dataset.

Supporting redundancy, natural hb-graphs enable a dense space, that fills the space of
hypergraphs. They constitute a bridge between graph structures, multiset structures
and their set support, tensor approaches and polynomial views. A lot of their properties
have still to be discovered or studied, such as the L-polynomial.

This research has lead us to explore different worlds, often precluded of difficult chal-
lenges, but has been a charming journey. We hope to continue this exploration in
forth-coming research: there are a lot of remaining open research questions that can
appear as a research statement for future work. We gather here some of the research
questions raised in this Thesis that require further investigations.

• On hb-graphs themselves: hb-graphs are a powerful structure to handle re-
fined information on co-occurrences. We still have to investigate some of their
mathematical properties. This includes the following questions:

– Are general hb-graphs a separate category?
 We conjecture that this question has a positive answer, and that natural
hb-graphs are a sub-category.
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– What are extensions of hb-graphs to negative multiplicities?
 It could be very valuable to extend hb-graphs to negative multiplicities for
handling cases related to opinion mining.

– How to handle multi-variable multiplicities on hb-graphs?
 This could be a possibility to handle multiple features on a same hb-graphs,
for instance multiplicity and weights, or in image processing.

– What is a coloring of a hb-graph?
 Hypergraph coloring has applications in divide and conquer approaches;
hb-graph coloring, and particularly of natural hb-graphs could lead to refine-
ments in this strategies.

– What kind of clustering algorithm to use with hb-graphs?
 Some work exists on structures that are not properly using hyperedge-
based weighting of vertices and that are in practice similar to hb-graphs.
These works have shown that taking into accounts multiplicities at the hb-
edge level enhances clustering. Investigating further clustering on hb-graphs
could lead to refined clustering algorithms that account for the higher order
relationships.

• On multi-faceted information spaces and diffusion in facets: different
challenges at every level exists: it includes an upstream work on the datasets
themselves, on the way the data are fed into the information space, on the eval-
uation of the visualization interface, as well on the extraction of the important
information from the networks themselves.

– What is the impact on the user to interact with multi-faceted visualisation of
an information space to solve tasks?
 A full evaluation including A/B testing is required to evaluate the Data-
HbEdron compared to traditional verbatim interfaces for searching in an
information space.

– How to improve the data feeding of the information space?
 The proposed framework is versatile enough to support various kind of
data. The implementation of facets is done manually at the moment. Au-
tomatic facet discovery could be one way of investigation to improve the
feeding of the information space. This subject encompasses also the problem
of data linkage and the merging of heterogeneous sources, and automatic ex-
ploration throughout the different datasets. All these problems are linked to
the FAIR-ability of data. FAIR—for Findable, Accessible, Interoperable and
Reusable— are principles that were edict in 2016 in [WDA+16] for improving
infrastructures that supports the reuse of scholarly data.

– How to rank information in a disconnected hb-graph? How to rank an infor-
mation space that is disconnected on some facets?
 Different strategies can be foreseen, one being to connect data with a dif-
ferentiated link that would interconnect them by the fact they belong to the
same information space or are members of the same facet.

– How to enhance diffusion in other ways in the information space?
 Alternative strategies to the one taken for ranking aggregation can be
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foreseen based on diffusion. Some of them interconnect the different facets
via links between them.

– Which sort of features to use as abstract information function?
 The influence of biases still have to be tested on the rank aggregation and
on real datasets.

• On e-adjacency tensor and tensor-based diffusion: this aspect concerns
additional theoretical and experimental developments on the proposed e-adjacency
tensor and layered Laplacian.
– What is the disturbance on diffusion of the m-uniformisation process in sim-

ulated and real cases?
 Evaluating the real impact of m-uniformisation processes is still an open
work; it includes its testing on different real datasets, and finding measures
to evaluate it.

– How do we define the algebraic / analytic connectivity in hb-graphs? What
are the links between the hb-graph layered Laplacian eigenvalues and the hb-
graph features such as the algebraic / analytic connectivity?
 Algebraic connectivity in graphs corresponds to the second eigenvalue of
the Laplacian matrix; extension to hypergraphs have been proposed for even
uniform hypergraphs as the second smallest Z-eigenvalue of the Laplacian in
[HQ12]. To extend algebraic connectivity, [Qi14] uses the concept of ana-
lytic connectivity for a uniform hypergraph via an optimization formulation.
Extending this concept to hb-graphs may link to additional insights on the
particular structures, like it has been done for graphs with hypergraphs.

– How does the diffusion process based on this layered Laplacian evolve with
time? How can we use this layered Laplacian for clustering?
 Finding how the layered Laplacian helps to understand the underlying dif-
fusion process is fundamental for having insights into the capture of higher or-
der relationships. Coupled with the idea of the spectral clustering in graphs,
the layered Laplacian could help clustering the hb-graph via spectral tech-
niques.

– Can we evaluate the perturbation on the exchange-based diffusion from the
L-polynomial before uniformisation?
 As the layered Laplacian is constructed using a polynomial homogeniza-
tion, this homogenization corresponds to a m-uniformisation of the hb-graph
and might have impacts on the diffusion process on the structure.

– What is a spectral analysis of hb-graphs?
 This is a vast topic, that could help to refine results in the particular
structures that are hypergraphs for hb-graphs, as hypergraphs already help
to refine graph spectral analysis. We already investigate some results in our
Thesis on the built e-adjacency tensor for general hb-graphs.

• Further questions to be addressed that open up the subject, to different fields
from visualisation, via ontologies and problems of data linkage and FAIR princi-
ples:
– How to enhance meaningful visualizations for heterogeneous datasets, mixing

textual and numerical values, while keeping the links?
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 This is a key issue, as categorical data are often displayed as bar charts
while textual data fit for hb-graph representation. Using our mechanisms
in the hb-graph framework enhances new possibilities of visualisation and
interactivity, that still have to be investigated.

– How to give semantic to clusters in textual datasets?
 Finding the semantic of vertices gathered in communities is fundamental
in order to give insights on the visualization of very large hb-graphs, as they
need to be presented using communities due to their complexity.

– In relation with the DataHbEdron, several sources of data can be used: how
to ensure the coherence of what is going to be displayed?
 Behind, there is still the problem of interoperability and FAIR-ability of
the data (even if it is not necessary scholar data); data cleansing and data
linking might be necessary to obtain sufficiently meaningful and coherent
visualizations.

It remains an open question on how diffusion over such structures should be handled, if
ever possible. Diffusion is a clear concept on graphs. Generalizing this concept to (m-
)uniform structures with the finite element approach in order to obtain the Laplacian
remains valid thanks to the hb-edge / hyperedge uniformity. But it is still unclear if
this concept can be generalized to non-uniform structures like general hypergraphs, and
a posteriori to structures like general hb-graphs. A revision of the diffusion concept
to multi-diffusion—multi in the sense of multi-directed—is seen as a requirement for
further developments.

Meyrin (Switzerland), March 2020, the 23rd.
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Chapter A List of talks and conferences

Date Conference Title Kind
Computer science

05.2017 GPU-Days
Wigner Budapest

2017

Challenges in visualizing large graphs and
hypergraphs.

Talk

09.2018 CBMI 2018 Exchange-Based Diffusion in Hb-Graphs:
Highlighting Complex Relationships.

Talk &
article

10.2018 CUSO Linguistic
& CS

Hb-graphs and their application to textual datasets. Talk

01.2019 CUSO CS HyperBagGraph DataEdron: Modeling and
Visualisation of Complex Co-occurence Networks.

Poster

01.2019 AMLD The DataEdron of HyperBag-Graphs: An Enriched
Browsing Experience of Scientific Publications.

Poster

05.2019 IDIAP
Valais/Wallis AI
Workshop 5th

edition
Interpreting

machine learning

The HyperBagGraph DataEdron: An Enriched
Browsing Experience of Scientific Publication

Databases.

Talk

01.2020 SOFSEM 2020
Cyprus

The HyperBagGraph DataEdron: An Enriched
Browsing Experience of Multimedia Datasets.

Talk &
article

Mathematics
10.2017 APMEP Graphes et hypergraphes @ CERN Talk
09.2018 2nd IMA Derby On Adjacency and e-Adjacency in General

Hypergraphs: Towards a New e-Adjacency Tensor.
Talk &
short
article

09.2018 2nd IMA Derby Hypergraph Modeling and Visualisation of Complex
Co-occurrence Networks.

Poster &
short
article

10.2019 MCCC32 Duluth On Hb-graphs and their Application to General
Hypergraph e-adjacency Tensor.

Abstract &
talk &
Journal

07.2019 CTW 2019
Twente

Multi-diffusion in Hb-Graphs. Abstract &
talk

07.2019 SIAM/ICIAM
2019

The HyperBagGraph DataEdron: An Enriched
Browsing Experience of Scientific Publication

Databases.

Poster &
Talk

09.2019 SEME / AMIES
Toulouse

Analyse sémantique du langage naturelle. Talk &
Rapport

01.2020 Low rank models
SIAM/CUSO

2020

Hyper-bag-graphs and general hyper(-bag-)graph
e-adjacency tensors

Poster

Physics
04.2018 CERN Doctoral

poster session
Hypergraph Modeling and Visualisation of Complex

Collaboration Networks.
Poster

05.2019 CCEGN Hb-graphs and their Applications. Poster &
informal
talk

11.2019 AIME Budapest Hb-graphs and their Applications. Talk
Other

11.2019 SES Pune The HyperBagGraph DataEdron: An Enriched
Browsing Experience of Scientific Publication

Databases.

Poster

Table A.1.: List of talks and posters related to this Thesis—as of 07.12.2019.
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B. Mathematical background

This Chapter is based on [OLGMM17a], [OLGMM17b], [OLGMM18b], [OLGMM18c],
[OLGMM19a], [OLGMM19c] and [Ouv20]. It provides all the necessary background
concepts used in this Thesis.

B.1. Hypergraphs

[Ber67] introduces hypergraphs as a means to generalize graphs. Graphs only support
pairwise relationships. Hypergraphs preserve the multi-adic relationships and, therefore,
become a natural modeling of collaboration networks and various other situations. They
already allow a huge step in modeling, but some limitations remain that will be discussed
further in this Thesis that has pushed us to introduce an extension of hypergraphs. In
this Section, we aim at giving a short synthesis on hypergraphs based on [Ouv20] and
introduce the needed notations used throughout this Thesis. The interested reader can
refer to [Ouv20] for a full introduction on hypergraphs and their applications.

B.1.1. Generalities

As given in [Ber73], a hypergraph H = (V,E) on a finite set of vertices (or nodes)
V

∆= {vi : i ∈ JnK}1 is defined as a family of hyperedges E ∆= (ej)j∈JpK where each
hyperedge is a non-empty subset of V and such that ⋃

j∈JpK
ej = V.

It means that in a hypergraph, a hyperedge links one or more vertices. In [Vol09], the
definition of hypergraphs includes also hyperedges that are empty sets as hyperedges
are defined as a family of subsets of a finite vertex set and it is not necessary that the
union covers the vertex set. Both the vertex set and the family of hyperedges can be
empty; it they are at the same time, the hypergraph is then designated as the empty
hypergraph. This definition of hypergraph opens their use in various collaboration
networks. It is the one we choose in this Thesis.

In [Bre13], an intermediate definition is taken, relaxing only the covering of the vertex
set by the union of the hyperedges enabling only isolated vertices in hypergraphs.

Other interesting definitions of hypergraphs, based on binary relations, exist that are
given in [Ste12]; a full comparison is achieved in [Ouv20].

When needed, elements of V will be written (vi)i∈JnK and those of E will be written as
(ej)j∈JpK . Abusively, ej will also designate the subset ι (ej) of V.

1We write for n ∈ N∗ : JnK = {i : i ∈ N∗ ∧ i 6 n}
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Two hyperedges ej1 ∈ E and ej2 ∈ E, with j1, j2 ∈ JpK and j1 6= j2 such that ej1 = ej2
are said repeated hyperedges.
A hypergraph is said with no repeated hyperedge, if it has no repeated hyperedges.
Following [CF88], where the hyperedge family is viewed as a multiset of hyperedges, a
hypergraph with repeated hyperedges is called a multi-hypergraph.
A hypergraph is said simple, if for any two hyperedges ej1 ∈ E and ej2 ∈ E :

ej1 ⊆ ej2 ⇒ j1 = j2.

Hence, a simple hypergraph has no repeated hyperedges.
A hyperedge e ∈ E such that: |e| = 1 is called a loop.
A hypergraph is said linear if it is simple and such that every pair of hyperedges shares
at most one vertex.
A sub-hypergraph K of a hypergraph H is the hypergraph formed by a subset W of
the vertices of H and the hyperedges of H that are subsets of W .
A partial hypergraph H′ generated by a subset E′ ⊆ E of the hyperedges is a hy-
pergraph containing exactly these hyperedges and whose vertex set contains at least all
the vertices incident to this hyperedge subset.
The star of a vertex v ∈ V of a hypergraph H, written H(v), is the family of hyper-
edges containing v.
The dual of a hypergraph H is the hypergraph H∗ whose vertices corresponds to the
hyperedges of H and the hyperedges of H∗ are the vertices of H, with the incident
relation that links each vertex to its star.
The neighborhood of a vertex v ∈ V is the set Γ (v) of vertices that belongs to the
hyperedges this vertex is belonging.

B.1.2. Weighted hypergraph

In [ZHS07], the definition of a weighted hypergraph is given, based on the definition of
[Ber73] of a hypergraph.
Hwe = (V,E,we) is a weighted hypergraph, if (V,E) is a hypergraph and we : E → R
is a function that associates to each hyperedge e ∈ E a weight we (e) .
We can refine this definition to handle weights on individual vertices, by using a second
function wv : V → R that associates to each vertex v ∈ V a weight wv (v) . But putting
weights that are hyperedge dependent cannot be achieved with hypergraphs as it would
imply to move to a new algebra, as we will see with the introduction of hb-graphs.

B.1.3. Hypergraph features

Hypergraph features are very similar to those of graphs with some arrangements to
account for their differences in structure.
The order oH of a hypergraph H is defined as oH

∆= |V | .
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The rank rH of a hypergraph H is the maximum of the cardinalities of the hyperedges:

rH
∆= max

e∈E
|e| ,

while the anti-rank sH corresponds to the minimum:

sH
∆= min

e∈E
|e| .

The degree of a vertex vi ∈ V , written deg (vi) = di, corresponds to the number of
hyperedges that this vertex participates in. Hence:

deg (vi)
∆= |H (vi)| .

It is also designated as hyper-degree in some articles.

B.1.4. Paths and related notions

A path vi0ej1vi1 . . . ejsvis in a hypergraph H from a vertex u to a vertex v is a vertex
/ hyperedge alternation with s hyperedges ejk such that: ∀k ∈ JsK , jk ∈ JpK and s + 1
vertices vik with ∀k ∈ {0} ∪ JsK , ik ∈ JnK and such that vi0 = u, vis = v, u ∈ ej1 and
v ∈ ejs and that for all k ∈ Js− 1K, vik ∈ ejk ∩ ejk+1 .

The length of a path from u to v is the number of hyperedges it traverses; given a
path P, we write l (P) its length. It holds that if P = vi0ej1vi1 . . . ejsvis , we have:
l (P) = s.

The hypergraph distance d (u, v) between two vertices u and v of a hypergraph is
the length of the shortest path between u and v, if there exists, that can be found
in the hypergraph. In the case where there is no path between the two vertices, they
are said to be disconnected, and we set: d (u, v) = +∞. A hypergraph is said to be
connected if there exists a path between every pair of vertices of the hypergraph, and
disconnected otherwise.
A connected component of a hypergraph is a maximal subset of the vertex set for
which there exists a path between any two vertices of this maximal subset in the hyper-
graph.

B.1.5. Multi-graph, graph, 2-section

A hypergraph with rank at most 2 is called a multi-graph. A simple multi-graph
without loop is a graph.
For the moment, we keep the original concept of adjacency as it is implicitly given in
[Bre13]; we mention it here as 2-adjacency since it is a pairwise adjacency.
Two distinct vertices vi1 ∈ V and vi2 ∈ V are said 2-adjacent if there exists e ∈ E
such that vi1 ∈ e and vi2 ∈ e.

The graph [H]2
∆=
(
V[2], E[2]

)
obtained from a hypergraph H = (V,E) by considering:

V[2]
∆= V and such that if vi1 and vi2 are 2-adjacent in H, {vi1 , vi2} ∈ E[2] is called the

2-section of the hypergraph H.
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The graph [H]I
∆= (VI , EI) obtained from a hypergraph H = (V,E) by considering:

VI
∆= V ∗ and, such that, if ej1 ∈ E and ej2 ∈ E—with j1 6= j2—are intersecting hyper-

edges in H, then {ej1 , ej2} ∈ EI , is called the intersection graph of the hypergraph
H.

Let k ∈ N∗. A hypergraph is said to be k-uniform if all its hyperedges have the same
cardinality k.

A directed hypergraph H = (V,E) on a finite set of n vertices (or vertices) V =
{vi : i ∈ JnK} is defined as a family of p hyperedges E = (ej)j∈JpK where each hyperedge
ej contains exactly two non-empty subsets of V , one which is called the source—written
es j—and the other one which is the target—written et j . A hypergraph that is not
directed is said to be an undirected hypergraph.

The incidence graph [H]L = (VL, EL)—or Levi graph—of a hypergraph H = (V,E)
is the bipartite graph of vertex set VL = V ∪ VE where VE is the set of vertices ve
corresponding to each hyperedge e of E and where (v, ve) ∈ EL if v ∈ V and v ∈ e.

It is worth mentioning that the incidence graph confuses the hypergraph with its dual:

[H]L = [H∗]L .

B.1.6. Sum of hypergraphs

Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs. The sum of these two
hypergraphs is the hypergraph written H1 +H2 defined as:

H1 +H2
∆= (V1 ∪ V2, E1 ∪ E2) .

This sum is said direct if E1 ∩ E2 = ∅. In this case, the sum is written H1 ⊕H2.

B.1.7. Matrices associated to hypergraphs

B.1.7.1. Incidence matrix

The incidence matrix:
H

∆= [hij ]i∈JnK
j∈JpK

of a hypergraph is the matrix having rows indexed by the corresponding indices of
vertices of H and columns by the hyperedge indices, and where the coefficient hij

∆= 1
when vi ∈ ej , and hij

∆= 0 when vi /∈ ej .

B.1.7.2. Adjacency matrix

We focus in this paragraph on the pairwise adjacency as defined in [Ber73] and [Bre13].
In the latter, the adjacency matrix of a hypergraph H is defined as the square
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matrix A
∆= [aij ] having rows and columns indexed by indices corresponding to the

indices of vertices of H and where for all i, j ∈ JpK , i 6= j :

aij
∆= |{e ∈ E : vi ∈ e ∧ vj ∈ e}|

and for all i ∈ JpK :
aii

∆= 0.

It holds, following [ERV05]:
A = HHᵀ −DV

where DV
∆= diag

(
(di)i∈JnK

)
is the diagonal matrix containing vertex degrees.

The adjacency matrix of a weighted hypergraph Hw is defined in [ZHS07] as the
matrix Aw of size n× n defined as:

Aw
∆= HWHᵀ −Dw

where:
W

∆= diag
(
(wj)j∈JpK

)
is a diagonal matrix of size p × p containing the weights (wj)j∈JpK of the respective
hyperedges (ej)j∈JpK and Dw is the diagonal matrix of size n× n:

Dw
∆= diag

(
(dw (vi))i∈JnK

)
and where for all i ∈ JnK:

dw (vi)
∆=

∑
j∈{k:k∈JpK∧vi∈ek}

wj

is the weighted degree of the vertex vi ∈ V.

We will refine the concept of adjacency in general hypergraphs in the next Chapter.

B.1.8. Hypergraph visualisation

In [Mäk90], hypergraph visualizations are classified in two categories called the “subset
standard” and the “edge standard”. These two types of representations reflect the two
facets of hypergraphs. The subset standard reflects that hyperedges are subsets of
the vertex set: the vertices of a hyperedge are drawn as points and hyperedges as closed
envelopes. The edge standard reflects that vertices of a hyperedge maintain together
a multi-adic relationship: two main representations are the clique representation,
which corresponds to the 2-section graph of the hypergraph and the extra-node rep-
resentation, which corresponds to the incidence graph—also called Levi graph—of the
hypergraph.

To have full details on these representations, and others like the Zykov representation,
the reader can refer to [Ouv20]. We just tackle here the problem of large hypergraph
visualization, which is central in some ways, to the foundations of this Thesis.
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Sub-figure B.1 (a): Clique representation: The coordinates of the nodes are calculated
by ForceAtlas2 on the extra-node view and then transferred to this view.

Sub-figure B.1 (b): Extra-node representation: The coordinates of the nodes are calcu-
lated by ForceAtlas2 for this representation.

Figure B.1.: Hypergraph of organizations: Sub-figures (a) and (b) refer to the search:
title:((bgo AND cryst*) OR (bgo AND calor*)) abstract:((bgo AND cryst*) OR (bgo
AND calor*)) from [OLGMM17b].
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Figure B.2.: Keyword collaborations from search: “TITLE: hypergraph”.

#publications = 200, #nodes = 707, #edges = 1655, #clusters = 102, #isolated
clusters = 67.
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Figure B.3.: Organization collaborations from search: “TITLE:graph”.

#publications = 3969, #patents=893
#nodes = 2932, #edges = 4731, #clusters = 951, #isolated clusters = 914.
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Figure B.4.: Principle of the calculation of coordinates for large hypergraphs.

Large hypergraphs require strategies to be properly visualized. We have shown in
[OLGMM17b] that switching from the 2-section representation to the incidence rep-
resentation reduces considerably the overall cognitive load, as the number of edges to
be represented is effectively highly diminished in real networks; moreover, true collabo-
rations are seen more distinguishably. An example is given in Figure B.1, that shows how
the representation of the same hypergraph in two different modes impact the cognitive
load of the information that is represented.

Complex co-occurrence networks can be modeled in a first instance by modeling them by
hypergraphs as we have presented it in [OLGMM18d], where the hyperedges represent
co-occurrences attached to a given reference; we will refine this approach in Chapter 6
using hb-graphs. When scaling up, such representations of large hypergraphs require
different strategies in order to improve the global layout and the information displaying.
These strategies include the segmentation of the hypergraph into connected components:
they are ordered firstly by the number of references attached to the co-occurrences con-
stituting them and secondly with respect to the number of vertices within co-occurrences
they contain. The layout of each connected component is computed separately, by con-
sidering the communities based on the Louvain algorithm presented in [BGLL08] and
using a force directed algorithm, named ForceAtlas2, presented in [JVHB14], to ensure
the layout of the communities and of the vertices inside the communities. To achieve a
proper layout, vertices of importance for the community are placed first and the remain-
ing vertices are then placed around those fixed important vertices, with an optimization
of the layout. The principle of the calculus is given in Figure B.4 and the results is
shown in Figure B.2 and Figure B.3.

Optimizing the layout of a large hypergraph is a challenging task. It requires to capture
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important vertices of the hypergraph, i.e. the ones we do not want to loose by over-
whelming or overlapping in the representation. This requirement has been the starting
point of our quest for a diffusion tensor.

B.2. Multisets

This section is extracted from a section of [OLGMM19c].

B.2.1. Generalities

The concept of multisets is known from the ancient times. [Knu68] mentioned that N.G.
de Bruijn coined the word “multiset” to designate structures that were previously
called “list, bunch, bag, heap, sample, weighted set, collection” in the literature. In
[Yag86], the theory of bags and fuzzy bags is developed. In [Alb91], definitions and
algebraic properties on bags are given, with the aim of having a convenient modeling
data structure. In [Bli88], the concept of multiset is traced back to the very origin of
numbers, when numbers were represented by repeating occurrences of symbols.

In [Bli88], the authors start by giving the following naive concept of multiset before
building the theory MST of multisets:

“The naive concept of multiset that we now formalize has the following properties: (i) a
multiset is a collection of elements in which certain elements may occur more than once;
(ii) occurrences of a particular element in a multiset are indistinguishable; (iii) each
occurrence of an element in a multiset contributes to the cardinality of the multiset;
(iv) the number of occurrences of a particular element in a multiset is a (finite) positive
integer; (v) the number of distinguishable (distinct) elements in a multiset needs to be
finite; and (vi) a multiset is completely determined if we know which elements belong
to it and the number of times each element belongs to it.”

Nonetheless, the requirement (v) on the finitude is not necessary and, relying on [SIYS07],
we will give the definitions on multisets without this constraint and this will hold in the
remaining of this Thesis.

We consider a countable set A of distinct objects and a subset W ⊆ R+. We consider
m an application from A to W. Then Am

∆= (A,m)2 is called a multiset—or mset or
bag— on A. A is called the ground or the universe of the multiset Am, m is called
the multiplicity function of the multiset Am. A?m

∆= {x ∈ A : m(x) 6= 0} is called the
support of Am. The elements of the support of a mset are called its generators. A
multiset where W ⊆ N is called a natural multiset.

We write M (A) the set of all multisets of universe A. Some extensions of multisets exist
where the multiplicity function can have its range in Z—called hybrid set in [Loe92].
Some other extensions exist like fuzzy multisets ([Syr01]). Most definitions when not
restricted to natural multisets can extend to W ⊆ R.
2We systematically use fraktur font to designate multisets or mathematical objects that involves mul-
tisets. For the reader that is not familiar to fraktur font, see Appendix F to have used letters and
their correspondence in the text font.
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Several notations of msets exist. One common notation which we will use here is:
Am = {xmii : i ∈ JnK ∧ xi ∈ A} with A = {xi : i ∈ JnK} the universe of the mset Am and
the notation ∀i ∈ JnK : mi = m (xi) . When the universe is made clear by the context,
we can abusively write: Am = {xmii : i ∈ JnK ∧ xi ∈ A ∧mi 6= 0} .
An other useful notation for a natural multiset is the one similar to an unordered list:

Am =


x1, . . . , x1︸ ︷︷ ︸

m1 times

, . . . , xn, . . . , xn︸ ︷︷ ︸
mn times


 .

In this last representation, we do not write the elements that are not in the support,
also the universe has to be clearly stated.
The m-cardinality #mAm of a mset Am corresponds to the sum of the multiplicities
of the elements of its universe:

#mAm
∆=
∑
x∈A

m(x)

while the cardinality #Am of a mset Am is the number of elements of its support:

#Am = |A?m| .

There exists only one multiset of universe A with an empty support that is called the
empty multiset of universe A and written ∅A.
Different operations can be defined on the set of all multisets of the same universe. We
consider up to the end of this Section two msets A = (U,mA) and B = (U,mB) on
the same universe U. We define different operations such as inclusion, equality, union,
intersection, sum,...
The inclusion of A in B—written A ⊆ B—holds if for all x ∈ U :

mA(x) 6 mB(x).

A is then called a submset of B and said to be included in B.

If A ⊆ B and B ⊆ A, then A and B are said to be equal.

The union of A and B is the mset C ∆= A∪B of universe U and of multiplicity function
mC such that for all x ∈ U :

mC(x) ∆= max (mA(x),mB(x)) .

The intersection of A and B is the mset D ∆= A∩B of universe U and of multiplicity
function mD such that for all x ∈ U :

mD(x) ∆= min (mA(x),mB(x)) .

The sum of A and B is the mset S ∆= A]B of universe U and of multiplicity function
mS such that for all x ∈ U :

mS(x) ∆= mA(x) +mB(x).
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It is worth reminding that ∪, ∩ and ] are commutative and associative laws on msets
of the same universe. The empty mset of same universe corresponds to the identity for
these operations. ] is distributive for ∪ and ∩. ∪ and ∩ are distributive one for the
other. ∪ and ∩ are idempotent.

The difference of two msets is the mset T ∆= A −B of universe U and of multiplicity
function mT such that for all x ∈ U :

mT(x) ∆= mA(x)−mA∩B(x).

A set can be viewed as a natural mset where the multiplicities are in {1} , i.e. a natural
multiset where the support corresponds to the universe and such that the multiplicity
of the elements is always 1.

We can note that the classical property for sets: (A−B) ∩B = ∅U does not hold for
multisets—see [SIYS07] for an example.

The complementation of A referring to a family R of multisets (Ai)i∈I of universe
U is the multiset Ac of universe U and of multiplicity function mAc such that for all
x ∈ U :

mAc(x) ∆= max
i∈I

(mAi(x))−mA(x).

Finally, the power set of a multiset Am—written P (Am)—is defined as the set of all
submsets of Am.

We define the fusion of two msets A of universe U and B of universe V as the multiset
F̊

∆= A⊕B of universe U∪V and of multiplicity function mF̊ such that for all x ∈ U∪V :

mF̊ (x) ∆=


mA (x) if x ∈ U\V
mA (x) +mB (x) if x ∈ U ∩ V
mB (x) if x ∈ V \U.

An interesting alternative approach to define multisets is the one given in [Syr01] where
a natural multiset Am = (A,m) is viewed as a couple 〈A0, ρ〉 , where A0 is the set of
instances of elements of A, that includes copies of elements, and ρ is an equivalency
relation ρ over A0 :

∀x ∈ A0, ∀x′ ∈ A0 : xρx′ ⇔ ∃!c ∈ A : xρc ∧ x′ρc.

Two elements of A0 such that: xρx′ are said copies of one another. The unique c ∈ A
is called the original element. x and x′ are said copies of c.

Also, A0/ρ is isomorphic to A and:

∀x ∈ A0/ρ,∃!c ∈ A : |{x : x ∈ x}| = m(c) ∧ ∀x ∈ x : xρc.

The set A0 is then called a copy-set of the multiset Am.

We can remark that a copy-set for a given multiset is not unique. Sets of equivalency
classes of two couples < A0, ρ > and < A′0, ρ

′ > of a given multiset are isomorphic.
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B.2.2. Algebraic representation of a natural multiset

We propose in this Section two algebraic representations of a natural multiset Am =
(A,m) of countable universe A = {xi : i ∈ JnK} and multiplicity function m.

Vector representation of a natural multiset

A multiset Am can be conveniently represented by a vector of length the cardinality
of the universe and where its components represent the multiplicity of the correspond-
ing element. We suppose that the elements of A are given in a fixed order—it is al-
ways possible to index these elements by a subset of the positive integer set. Hence
−→
Am

∆= (m (xi))xi∈A is called a vector representation of the multiset Am. This
representation requires |A| space and has |A| − |A?m| null elements.

The sum of the elements of −→Am is #mAm.

This representation will be useful later when considering family of multisets in order to
build the incident matrix of a hb-graph.
An alternative representation is obtained using a symmetric hypermatrix. This approach
is needed to reach our goal of constructing an e-adjacency tensor for general hb-graphs
and hypergraphs.

Hypermatrix representations of a natural multiset

The unnormalized hypermatrix representation of the natural multiset Am =
(A,m) is the symmetric hypermatrix Au

∆= (au,i1...ir)i1,...,ir∈JnK of order r = #mAm and
dimension n such that au,i1...ir = 1 if ∀j ∈ JrK : ij ∈ JnK∧ xij ∈ A?m. The other elements
are null.

Hence the number of non-zero elements in Au is r!∏
x∈A?m

m (x) out of the nr elements of

the representation.

The sum of the elements of Au is then: r!∏
x∈A?m

m (x) .

To normalize Au, we enforce the sum of the elements of the hypermatrix to be the
m-rank of the multiset it encodes.
The normalized hypermatrix representation of the multiset Am is the symmetric
hypermatrix A

∆= (ai1...ir)i1,...,ir∈JnK of order r = #mAm and dimension n such that

ai1...ir =

∏
x∈A?m

m (x)

(r − 1)! if ∀j ∈ JrK : ij ∈ JnK ∧ xij ∈ A?m. The other elements are null.

B.2.3. Morphisms, category and multisets

In [Syr01], the author introduces two equivalent categories of multisets, calledMSet and
Bags: MSet reflects the multiplicity approach while Bags reflects the copy approach
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and reserved to what is called pure multisets in [Syr03], i.e. what we have called natural
multisets.

MSet objects are pairs (A,P ) constituted of a set A and P : A → Set a presheaf3
on A, that describes a multiset, as P (a) with a ∈ A is a set of cardinality equals to
the multiplicity of a in the multiset. An arrow between two objects of MSet is a pair
constituted of a function and a natural transformation, i.e. a family of functions.

The definition of Bags is based on a function p : X → A where X represents the set of
all copies of elements of A. The objects of Bags are pairs (A, p) and an arrow between
two objects (A, p) and (B, q) , with p : X → A and q : Y → B of Bags is a pair (f, g)
such that f : A→ B and g : X → Y and such that q ◦ g = f ◦ p.

In [Syr03], the author introduces a third category called Mul and linked it to a new
definition of general multisets. A multiset is defined in this reference as a pair (A, ρ)
where A is a set and ρ is an equivalence relation on A. A morphism of two multisets
(A, ρ) and (A′, ρ′) is defined as a function f : A → A′ such that for all x1 and x2 in
A, if x1ρx2, then f (x1) ρ′f (x2) . In Mul, the objects correspond to the multisets and
the arrows to the morphisms of the multisets. This last definition is the one retained
in [IT15], where the author characterizes the different kind of morphisms encountered
in Mul: it includes the monomorphisms that corresponds exactly to the injective mor-
phisms, the epimorphisms corresponding to the surjective functions, and shows that any
split monomorphism is a monomorphism and that any split epimorphism is an epimor-
phism. Moreover, the composition of arrows keeps monomorphisms, epimorphisms and
bimorphisms. In Mul, every isomorphism is a bimorphism but the converse does not
hold, which would have made Mul a balanced category.

B.2.4. Topologies on multisets

Defining topologies on multisets requires to handle the problem of the complementation
on multisets. In [GJ12], the authors consider [A]∞ the set of all multisets of universe
A and [A]w the set of all multisets where elements have a multiplicity in JwK∪ {0} . All
multisets are then considered in [A]w and the complementation of a multiset A ∈ [A]w
is done using this family.

The sum of two multisets A and B in [A]w is redefined as the mset Sw ∆= A ] B of
universe A and of multiplicity function mSw such that for all a ∈ A :

mSw (a) ∆= min {w,mA (a) +mB (a)} .

The authors consider different kind of submsets of a mset A in [A]w: the whole submset
where the elements of the support of the submset have same multiplicity than in A
and the full submset where the elements of the submset have a multiplicity less or
equal to the one of A. For each kind corresponds a power mset, either whole—written
PW(A)—or full—denoted PF (A)—, which are both sets of all whole or full submsets
of a given mset. These two power msets are ordinary sets. The cardinality of PW(A)
3A presheaf F on a category C is a contravariant functor: F : Cop → Set. When C is a discrete
category, i.e. a category having only objects and no arrows, Cop = C, which is the case for a set A
considered as a category.
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is 2n where n = #A? and the cardinality of PF (A) is ∏
a∈A?

m (a) . In both cases, Cantor

power set theorem—that stipulates for sets that the cardinality of a set—is strictly less
than the cardinality of its power set fails in the case of msets. In order to preserve
this theorem for multisets, the authors introduce a power mset P (A), that takes into
account the repetitions of msets. They then consider different operation on a collection
of msets drawn from [A]w including Cartesian product of two msets and a mset relation
on a mset.

Finally, the authors introduce a multiset topology τ ⊆ P? (A) of a multiset A ∈ [A]w
with the classical axioms of a topology, called A-topology: these axioms includes the
fact that the m-set union of any sub-collection of τ is in τ and the same for the mset
intersection of any finite sub-collection, and the fact that A and ∅A are in τ. Classi-
cal topology is then considered including closure, interior and limit point as well as
continuous multiset functions.

The key point in this work has been to introduce the power mset of a multiset.

B.2.5. Applications of multisets

This section is partly based on [OLGMM19a].

Multisets, under the appellation bag, appear in different domains such as text modeling,
image description and audio [SJP+16]. In text representation, bag of words have been
first introduced in [Har54]: bags are lists of words with repetitions, i.e. multisets of
words on a universe. Many applications occur with different approaches. Bags of words
have been used for instance in fraud detection [PS15]. More recently, bag of words have
been used successfully for translation by neural nets as a target for the translation,
since a sentence can be translated in many different ways [MSWL18]. In [CAO+18],
multi-modal bag of words have been used for cross domains sentiment analysis.

Bags of visual words is the transcription to image of textual bags of words; in bags
of visual words, a visual vocabulary based on image features is built to enabling the
description of images as bags of these features. Since their introduction in [SZ03],
many applications have been realized: in visual categorization [CDF+04], in image
classification and filtering [DPN08], in image annotation [Tsa12], in action recognition
[PWWQ16], in land-use scene classification [ZTH14], in identifying mild traumatic brain
injuries [MWW+17] and in word image retrieval [SJ12].

Bags of concepts are an extension of bags of words to successive concepts in a text
[KKC17]. A recent extension of these concepts is given in [SWG+18] where bag of
graphs are introduced to encode in graphs the local structure of a digital object: bags
of graphs are available as bags of singleton graphs and bags of visual graphs. Using the
hb-graphs as we propose in this Thesis will allow to extend this approach, by taking
advantage of multi-adic relationships, and, also, of the multiplicity of vertices specific
to each hb-edge.

Additional applications to mathematics can be found in [SIYS07]: it includes the integer
prime factorization, the representation of monic polynomials by the mset of its roots and
correspondence between polynomial operations and mset operations, the zeros and poles
of meromorphic functions. Other non-straightforward applications in mathematics are
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considered such as the semi-ring of multisets developed in [Po00] making connections
between eigenvalues and eigenvectors of max-plus algebra4 and the non-negative real
number systems.
Different approaches exist in computing, either theoretical or practical, that uses mul-
tisets. For instance, in [BLM93] the authors present a formalism where programs are
presented in terms of multiset transformations, giving birth to the GAMMA programs,
the first version of chemical programming5; other approaches exist such as the one using
generalised multisets in [BFR06] or higher-order chemical language in [BFR07]. Mul-
tisets are used in membrane computing, a part of computer science that seeks to find
computational models that mimic biological systems as introduced by Păun6 in 1998,
to describe objects in super-cells in [DP99].
In [PK08], the authors use decision procedures for multisets using cardinality con-
straints. Collection of multisets are found in software verification and interactive the-
orem proving. They emphasize the useful operations and relations on multisets, par-
ticularly formulas on the number of occurrences of each element in a multiset, using
quantifier-free Presburger arithmetic (QFPA for short) which is a first order decidable
theory that uses an arithmetic containing only addition and recurrence statement. They
propose an algorithm for reducing multiset formulas to sum normal form, introducing
constraints on multisets; the satisfiability is achieved using an extension of QFPA to
unbounded expressions.
More recently in [BA16], the authors introduce multiset operations for privacy-preserving
set operations among multiple players, such as computing database intersection of dif-
ferent organizations.

B.3. Tensors and hypermatrices

B.3.1. An introduction on tensors

A rigorous introduction of tensors is achieved in [Lee13]: we rely on it in this introduc-
tion.
First, we introduce the notion of co-vector.
We consider a finite dimension vector space V over R. A co-vector is a linear form i.e.
an application ω : V → R which is linear7. The set of all co-vectors of V constitutes the
dual space V ? of V.
For a given basis (ei)i∈JnK of V, the co-vectors

(
εj
)
j∈JnK of V ? are defined by:

εj (ei)
∆= δij ,

where: δij
∆=
{

1 if i = j

0 otherwise
is the Kronecker delta symbol. The co-vectors

(
εj
)
j∈JnK

constitutes a basis of V ?, called the dual basis of (ei)i∈JnK .

4Cf for instance [ABG06] for a definition of max-plus algebra
5For a cool introduction, see: http://gigasquidsoftware.com/chemical-computing/index.html
6Cf [Pău11] for a reference book on membrane computing
7An application f : V → W , where V and W are two vector spaces, is linear if for all v, v′ ∈ V and
λ, µ, f (λv + µv′) = λf (v) + µf (v′) .
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We define the tensor product of two co-vectors ω and ω′ of V ? as the map:

ω ⊗ ω′ : V × V → R,

such that for (v1, v2) ∈ V × V :

ω ⊗ ω′ (v1, v2) ∆= ω (v1) · ω′ (v2) .

The tensor product of two co-vectors can be generalized to any two multilinear forms.

Considering k vector spaces (Vj)j∈JkK , a multilinear form is an application F : V1 ×
...× Vk → R which is linear in each of its variables. We write L (V1, ..., Vk;R) the space
of the multilinear forms on the vector space V1 × ...× Vk.

The tensor product of two multilinear forms F : V1 × ... × Vk → R and G :
W1 × ... ×Wl → R is defined as the map: F ⊗ G : V1 × ... × Vk ×W1 × ... ×Wl → R
such that for all (v1, ..., vk) ∈ V1 × ...× Vk and (w1, ..., wl) ∈W1 × ...×Wl, it holds:

F ⊗G (v1, ..., vk, w1, ..., wl)
∆= F (v1, ..., vk) ·G (w1, ..., wl) .

F ⊗G is a multilinear form of k + l variables and lives in L (V1, ..., Vk,W1, ...,Wl;R) .

Hence, considering k vector spaces (Vj)j∈JkK and k linear forms ωj ∈ V ?
j , with j ∈ JkK,⊗

j∈JkK
ωj is a multilinear form of L (V1, ..., Vk;R) and for (v1, ..., vk) ∈ V1 × ...× Vk :

⊗
j∈JkK

ωj (v1, ..., vk)
∆=
∏
j∈JkK

ωj (vj) .

It follows that considering a basis
(
e(j) ij

)
ij∈JnjK

for each of the vector space Vj of

dimension nj with j ∈ JkK and, considering the corresponding dual spaces
(
ε
ij
(j)

)
ij∈JnjK

,
it holds that: ⊗

j∈JkK

ε
ij
(j)


i1∈Jn1K,...,ik∈JnkK

is a basis of L (V1, ..., Vk;R) .

This means that any multilinear form F ∈ L (V1, ..., Vk;R) can be decomposed in:

F =
∑

i1∈Jn1K,...,ik∈JnkK

Fi1...ik
⊗
j∈JkK

ε
ij
(j).

With the same idea, and without developing all the arguments that can be found in
[Lee13], the same approach can be taken to build a new vector space V1 ⊗ ...⊗ Vk in
which elements are of the type v1 ⊗ ...⊗ vk such that they are linear in each of the vi,
i ∈ JkK. It is shown that V ?

1 ⊗ ...⊗ V ?
k is isomorphic to L (V1, ..., Vk;R) and that by

duality: V1⊗ ...⊗ Vk is isomorphic to L (V ?
1 , ..., V

?
k ;R) .

With V1 = ... = Vk = V a finite dimensional space, a covariant cubical tensor on
V of order (or rank) k is an element of V ?⊗ ...⊗ V ?︸ ︷︷ ︸

ktimes

i.e. a multilinear form of k
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elements of V. We write: L0
k (V ) the space of the covariant cubical tensor on V of rank

k. An element of V ⊗ ...⊗V is called a contravariant cubical tensor on V of rank
k. We write: Lk0 (V ) the space of the contravariant cubical tensor on V of rank k. More
generally an element of V ⊗ ...⊗ V︸ ︷︷ ︸

ktimes

⊗ V ?⊗ ...⊗ V ?︸ ︷︷ ︸
ltimes

is called a mixed tensor of type

(k, l) . The corresponding space is Llk (V ) .
Only elements of L0

k (V ) admits the restricted approach that is presented in the next
section.

B.3.2. Restricted approach of tensors as hypermatrices

As we are interested only in cubical tensors8 that are abusively identified to hypermatri-
ces, we give a straightforward presentation of tensors and their relative hypermatrices.
We write L0

k (Rn) the space of cubical tensors of rank k and dimension n with values in
R, and Ak one of its elements.
The Segre outerproduct ⊗ of a = [ai] ∈ Rl and b = [bj ] ∈ Rm is defined as:

a⊗ b = [aibj ] i∈JlK
j∈JmK

∈ Rl×m.

More generally, as given in [CGLM08], the outerproduct of k vectors u(i) ∈ Rni , with
i ∈ JkK and where ∀i ∈ JkK , ni ∈ N∗, is defined as:

k
⊗
i=1

u(i)
∆=
[
k∏
i=1

u(i)ji

]
j1∈Jn1K,..,jk∈JnkK

∈ Rn1×...×nk .

Here, we consider ni = n for all i ∈ [k] . Writing e1, ..., en the canonical basis of Rn,
(ei1 ⊗ ...⊗ eik)i1,...,ik∈JnK is a basis of L0

k (Rn) .

Then the tensor Ak ∈ L0
k (Rn) is associated to a hypermatrix Ak =

(
a(k) i1...ik

)
i1,...,ik∈JnK

by writing Ak as:
Ak =

∑
i1,...,ik∈JnK

a(k) i1...ikei1 ⊗ ...⊗ eik .

Ak is called the canonical hypermatrix representation (CHR for short) of Ak.
In [Lim13], amultilinear matrix multiplication is defined considering A ∈ Rn1×...×nd

and Xj =
[
x(j)kl

]
∈ Rmj×nj for j ∈ JdK as:

A′
∆= (X1, ..., Xd) .A

where A′ is the hypermatrix of Km1×...×md of coefficients:

a′j1...jd
∆=

∑
k1∈Jn1K,...,kd∈JndK

x(1)j1k1 ...x(d)jdkdak1...kd

for ji ∈ JmiK with i ∈ JdK .
8We often abusively use the word tensor for its hypermatrix representation in a canonical basis in
the verbatim of this Thesis, following the abuse made in [QL17]. Nonetheless, when writing it
mathematically we make the difference between the tensor A of dimension n and rank r and its
canonical hypermatrix representation (CHR for short), written A = (ai1...ir ) as defined in this
Section.
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B.3.3. On classification of hypermatrices

This Section is extracted from [OLGMM19c].

Most of the definitions and results of this Section are taken directly from [QL17], which
is the first book on tensor spectral analysis.

We consider a tensor A and its CHR of order m and dimension n:

A = (ai1...im)i1,...,im∈JnK .

The set of such hypermatrices is written Tm,n. The subset of Tm,n of hypermatrices with
only non-negative9 coefficients is written Nm,n.

A hypermatrix A = (ai1...im)i1,...,im∈JnK ∈ Tm,n is said reducible if there exists a
nonempty proper subset J ( JnK such that:

∀i1 ∈ J, ∀ (i2, ..., im) ∈ (JnK \J)m−1 : ai1...im = 0.

A hypermatrix that is not reducible is said irreducible. The notion of reducibility has
to be seen as a possible way of reducing the dimensionality of the problem.

Irreducible non-negative hypermatrices have plenty of nice properties, particularly the
Perron-Frobenius theorem for irreducible non-negative hypermatrices which is one of
the two declinations of the extension of the Perron-Frobenius theorem for irreducible
non-negative matrices.

The Perron-Frobenius theorem for irreducible non-negative matrices states that the
eigenvector associated to the spectral radius of a non-negative matrix is non-negative,
and, if, moreover, this matrix is irreducible, then this eigenvector is positive10 and its
eigenvalue is the unique one associated with a non-negative eigenvector.

The Perron-Frobenius theorem has a lot of applications in probability with stochastic
matrices and is the basis for algorithms such as PageRank, ensuring that the convergence
is feasible [PSS05].

But hypermatrices manipulated in hypergraph theory are reducible. In this case, this
first extension of the theorem of Perron-Frobenius cannot be used.

Weak irreducibility of non-negative hypermatrices has been introduced to help to solve
this problem. To define weak irreducibility, an associated graph G (A) is built out of
the non-negative hyper-cubic CHR A which represents A by considering as vertex set
JnK and building the edges by considering an edge from i to j if there exists aii2...im 6= 0
such that j ∈ {i2, ..., im} .

A directed graph is strongly connected if for any ordered pair of vertices (i, j) of the
graph, there exists a directed path from i to j.

A tensor A is said weakly irreducible if its associated graph is strongly connected. A
tensor that is not weakly irreducible is said weakly reducible.

We consider now a tensor A of non-negative CHR A = (ai1...im) ∈ Nm,n.

9I.e. either positive or equals to zero.
10I.e. all the coefficients are strictly greater than zero.
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The representative vector of A is the vector u (A) of coordinates:

ui (A) ∆=
∑

i2,...,im∈JnK

aii2...in .

A is called a strictly non-negative tensor if its representative vector is positive.

Let now J be a proper nonempty subset of JnK . The tensor AJ of CHR AJ
∆= (αi1...im) ∈

Nm,|J | such that: αi1...im
∆= ai1...im if i1, ..., im ∈ J is called the principal sub-tensor

of A associated to J.

A is said a non-trivially non-negative tensor if there exists a principal sub-tensor
of A that is a strictly non-negative tensor.

The following proposition will be helpful in the spectral analysis of hb-graphs.

Proposition B.1. A non-negative tensor has a positive eigenvalue if and only if it is
non-trivially non-negative.

As a consequence, a non-trivially non-negative tensor has its spectral radius positive.

In [QL17], a procedure is given to check easily if a non-negative tensor is non-trivially
negative or not.

B.3.4. Eigenvalues

The definitions and results of this Section are based on [QL17]. Proofs can be found in
this reference.

Let Tm,n be the set of all real hypermatrices of order m and dimension n and Sm,n the
subset of Tm,n of symmetric hypermatrices, i.e. hypermatrices such that are invariant
by any permutations of the indices.

Let A = (ai1...im) ∈ Tm,n. Let I ∈ Tm,n designates the identity tensor.

Definition B.1. A number λ ∈ C is an eigenvalue of A if there exists a nonzero
vector x ∈ Cn such that:

∀i ∈ J1, nK ,
(
Axm−1

)
i

= λxm−1
i . (B.1)

In this case, x is called an eigenvector of A associated with the eigenvalue λ and (x, λ)
is called an eigenpair of A.

The set of all eigenvalues of A is called the spectrum of A. The largest modulus of all
eigenvalues is called the spectra radius of A, denoted as ρ (A) .

Remark B.3.1. Writing x[m−1] =
(
xm−1
i

)
i∈JnK

, B.1 can be transformed into:

Axm−1 = λx[m−1].
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Proposition B.2. Let α and β be two real numbers.

If (λ, x) is an eigenpair of A, then (αλ+ β, x) is an eigenpair of αA + βI.

Definition B.2. A H-eigenvalue is an eigenvalue λ of A that has a real eigenvector
x associated to it. x is called in this case an H-eigenvector.

Proposition B.3. A H-eigenvalue is real.

A real eigenvalue is not necessarily a H-eigenvalue.

The following theorem holds for symmetric tensors:

Theorem B.1. Let A ∈ Sm,n. If m is even, then A always have H-eigenvalues and, A
is positive definite (resp. semi-definite) if and only if its smallest H-eigenvalue λHmin (A)
is positive (resp. non-negative).

Theorem B.2. Let A ∈ Tm,n be a non-negative tensor. Then A has at least one
H-eigenvalue and λHmax (A) = ρ (A) . Furthermore λHmax (A) has a non-negative H-
eigenvector.

Definition B.3. A tensor is called an essentially non-negative tensor if all its
off-diagonal entries are non-negative.

A tensor is called a Z-tensor if its off-diagonal entries are non-positive.

Theorem B.3. Essentially non-negative tensors and Z-tensors always have H-eigenvalues.

Definition B.4. Let A = (ai1...im) ∈ Tm,n.

The diagonal elements of A are the elements ai...i for i ∈ JnK .

The off-diagonal elements of A are the other elements.

An important result is the following:

Proposition B.4. Let A ∈ Tm,n. Then the eigenvalues of A belong to the union of n
disks in C. These n disks have the diagonal entries of A as their centers and the sums
of the absolute values of the off-diagonal entries as their radii.

Remark B.3.2. The proof shows that if (λ, x) is an eigenpair of A = (ai1...im), it holds
for i ∈ JmK such that: |xi| = max {|xj | : j ∈ JnK} :

|λ− ai...i| 6
∑

i2,...,im∈JnK
δii2...im=0

|aii2...im | . (B.2)

Corollary B.1. If A is a non-negative tensor of Tm,n with an equal row sum r, then r
is the spectral radius of A.
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Other types of eigenvalues also exist. It is worth mentioning E-eigenvalues and Z-
eigenvalues since they are part of the related work of this Thesis.

Given a tensor A = (ai1...im) of Tm,n, λ ∈ C is an E-eigenvalue of A if there exists a
vector x ∈ Cn, called an E-eigenvector, such that: Axm−1 = λx with: x>x = 1.

A Z-eigenvalue is an E-eigenvalue associated to a real E-eigenvector. A Z-eigenvalue
is always real—but a real E-eigenvalue is not necessary a Z-eigenvalue.

Any symmetric tensor has Z-eigenvalues.
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C.1. An example using hypergraphs for modeling
co-occurrence networks and showing their limitations

Considering the publication co-occurrence network example, including three facets—organization,
publication itself and keywords—as shown in Figure .

Figure C.1.: Example of a publication co-occurrence network with three facets

If co-occurrences of organizations are retrieved choosing as reference the publications
ids, the co-occurrences shown in Table C.1 are obtained. In this case, a family of
subsets of the vertex set of organizations is obtained; each of this subset corresponds to
a hyperedge of the hypergraph modeling the co-occurrences.

Pub A Org 2, Org3, Org 4

Pub B Org 1, Org 2

Pub C Org 3, Org 4

Pub D Org2, Org 3, Org 5

Table C.1.: Co-occurrences of organizations built using Publication as reference

If now, co-occurrences of organizations are built using as reference the keywords, the
co-occurrences retrieved include multiplicities that are depending on the co-occurrence.
In this case, we obtain a family of multisets of organizations of same universe, which is
the set of organizations the dataset holds, as shown in Table C.2. Hypergraphs in this
case are not able to handle it.
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scene
reconstruction

{{
Org 11,Org 21

}}
computer vision

{{
Org 11,Org 21,Org 31,Org 41

}}
augmented

reality

{{
Org 21,Org 33,Org 42,Org 51

}}
3D

{{
Org 21,Org 32,Org 41,Org 51

}}
Table C.2.: Co-occurrences of organizations built using Keywords as reference

C.2. Homomorphisms of natural hb-graphs

In this appendix, we specify homomorphisms of natural hb-graphs and define the cat-
egory of hb-graphs. We extend in this Section the results given for hypergraphs in
[DW80]—as exposed in [Ouv20]—to hb-graphs.

Let the universe multiset functor: P : Set⇒Mul be defined by:

• for its object part, it associates to an object V of Set an object P (V ) which is
the collection (class) of all multisets on V i.e. the elements of M (V ) .

• for its arrow part, by: for h ∈ homSet (V1, V2): P (h) is the morphism P (h)
of homMul (P (V1) , P (V2)) such that for M1 ∈ P (V1) , with M1 = φ ((X1, ρ1)),
P (h) (M1) with (X2, ρ2) = φ−1 (P (h) (M1)) is such that:

∀x, x′ ∈ X1 : xρ1x
′ ⇒ yρ2y

′

where y and y′ are the elements of X2 corresponding to copies of elements of
P (h) (M1) = M2.

We consider HbGraph composed of a class of objects constituted of all hb-graphs. A
hb-graph H is given in this class by using a vertex set V, a hb-edge list E and a mapping
function ι : E → M (V ) where M (V ) is the set of all multisets of universe V which is
obtained as the image of V ∈ Set through the functor P. We have for each e ∈ E : ι (e)
corresponds to a multiset belonging to M (V ) .

We consider two hb-graphs: H1 = (V1,E1, ι1) and H2 = (V2,E2, ι2) .

A hb-graph homomorphism h : H1 → H2 is defined as a pair of functions h = (hV , hE)
with hV : M (V1)→M (V2) and hE : E1 → E2 such that the diagram:

E1 M (V1) \ {∅}

E2 M (V2) \ {∅}

ι1

hE P (hV )
ι2

commutes.

Let h1 ∈ MorHbGraph (H1,H2) and h2 ∈ MorHbGraph (H2,H3) be two hb-graph homo-
morphisms. The composition of these two hb-graphs, written h = h2◦h1, is the hb-graph
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homomorphism: h = (hV , hE) such that: hV = hV,2 ◦ hV,1 and hE = hE,2 ◦ hE,1. This
composition is associative.

For every object H, the identity hb-graph morphism 1H keeps the hb-edges identical and
keeps each hb-edge in the same state.

Hence, considering objects as hb-graphs and arrows as hb-graph homomorphisms, Hb-
Graph is a category.

The following lemmata occur:

Lemma C.1. Hyp is a full sub-category of HbGraph.

Proof. We consider the inclusion functor: J : Hyp⇒ HbGraph defined as:

• for the object part: H → J (H) where J (H) is the hb-graph of universe the vertex
set of H and where the hb-edges are linked to multisets with multiplicity no more
than one;

• for the arrow part: at each hypergraph homomorphism corresponds a unique hb-
graph homomorphism that behaves similarly on vertices and hb-edges than the
one on hypergraph.

Lemma C.2. Duality of hb-graphs is a covariant functor d : HbGraph⇒ HbGraph

Proof. The object part of the functor associates to a hb-graph its dual: for H =
(V,E, ι) ∈ HbGraph, d (H) = H̃ with H̃ = (E,V, ι̃) where: ι̃ : V → M (E) such
that: ι̃ (v) corresponds to the multiset described by:

{{
eme(v) : v ∈ ι (e)

}}
.

The arrow part of the functor associates to one hb-graph homomorphism h ∈ HomHbGraph (H1,H2)
the hb-graph homomorphism corresponding to the duals: d (h) : d (H1) → d (H2) such
that d (h) (x) = h (x) for x ∈ V ∪ E.

If we take H = H1 = H2 and h = IdH, we have d (IdH) = Idd(H).

Taking h1 ∈ HomHbGraph (H1,H2) and h2 ∈ HomHbGraph (H2,H3), we have:

d (h1 ◦ h2) = h1 ◦ h2 = d (h1) ◦ d (h2) .

We write TGraph the category of all graphs as defined in [BMSW08].

Lemma C.3. The incidence multipartite graph of a hb-graph induces a covariant func-
tor M : HbGraph→ TGraph.

Proof. We have explained in Section 1.4.6.2 how we can associate a unique extra-vertex
multipartite graph GH to a hb-graph H.

We consider for M :

• for the object part: M : H→M (H) where M (H) = GH.
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• for the arrow part: given h ∈ HomHbGraph (H1,H2) , we consider M (h) : GH1 →
GH2 such that: v → h (v) and e → h (e) such that any copies of a vertex in a
hb-edge has its image that is the copy of the image of the copies in the hb-edge
image.

If we take H = H1 = H2 and h = IdH, copies of vertices will remain the same byM (IdH)
as well as hb-edges and M (IdH) = IdM(H).

Moreover, taking h1 ∈ HomHbGraph (H1,H2) and h2 ∈ HomHbGraph (H2,H3), we have:

M (h2 ◦ h1) = M (h2) ◦M (h1) .

We conjecture that general hb-graphs constitute a new category, but this remains an
open question.
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D. Complements Chapter 2: Diffusion in
hb-graphs

D.1. Facets and Biased diffusion

This chapter is extending the approach presented in Chapter 2 and in [OLGMM19a].
It has been published after this Thesis Defense in [OGMM20].
Prerequisites: Section 1.3 and, preferably Chapter 2.

D.1.1. Motivation

Facets are not all of same nature in an information space; depending on the information
they carry, the ranking of the information hold by their visualisation hb-graph has to
be performed on different features, and the importance stressed on the lower, higher or
medium values depending on the application. Hence, the necessity of extending to a
more general approach the exchange-based diffusion that is already coupled to a biased
random walk given in [OLGMM19a] and presented in Chapter 2.
In this Section, we want to tackle the following Research Question:

Research question D.1. How to extend the exchange-based diffusion on hb-graphs to
support a general biased-feature-exchange-based diffusion?

We start by reviewing what has been achieved so far on biased diffusion, and propose a
framework to achieve such a kind of diffusion.

D.1.2. Related work

In [DM11], the authors introduce an abstract information function f : V → R+ which
is associated to a probability for each vertex vi ∈ V :

pf (vi) = f (vi)∑
j∈J|V |K

f (vj)
.

In [ZGC10], a bias is introduced in the transition probability of a random walk in order
to explore communities in a network. The bias is either related to a vertex property
xi, such as the degree, or to an edge property yj , such as the edge multiplicity or the
shortest path betweenness. For a vertex, the new transition probability between vertex
vi and vj is given by:

Tij (x, β) = aije
βxi∑

l
aljeβxl

,
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where A = (aij)i,j∈JnK is the adjacency matrix of the graph and β is a parameter.

A same kind of bias, can be used related to the edges and can be combined to the former
to have the overall transition probability from one vertex to an other.

D.1.3. Biased diffusion in hb-graphs

We consider a weighted hb-graph H = (V,E, we) with |V | = n and |E| = p; we write H
the incidence matrix of the hb-graph.

D.1.3.1. Abstract information functions and bias

We consider a hb-edge based vertex abstract information function:

fV : V × E→ R+.

The exchange-diffusion that we have presented in Chapter 2 is a particular example of
biased diffusion, where the biases are given in Table D.1. An unbiased diffusion would
be to have a vertex abstract function and a hb-edge vertex function that is put to 1 for
every vertices and hb-edges, i.e. equi-probability for every vertices and every hb-edges.

Hb-edge based vertex abstract
information function

fV (vi, ej) = mj (vi)w (ej)

Vertex abstract information function FV (vi) = dw,vi
Vertex bias function gV (x) = x
Vertex overall bias GV (vi) = dw,vi

Vertex-based hb-edge abstract
information function

fE (ej , vi) = mj (vi)w (ej)

Hb-edge abstract information function FE (ej) = w (ej) #mej
Hb-edge bias function gE (x) = x
Hb-edge overall bias GE (ej) = w (ej) #mej

Table D.1.: Features used in the exchange-based diffusion of Chapter 2.

We define the vertex abstract information function: FV : V → R+ such that:

FV (vi)
∆=
∑
j∈JpK

fV (vi, ej) .

We define the probability corresponding to the hb-edge based vertex abstract
information as:

pfV (ej |vi)
∆= fV (vi, ej)

FV (vi)
.

If we now consider a vertex bias function: gV : R+ → R+ applied to fV (vi, ej) , we
can define a biased probability on the transition from vertices to hb-edges as:

p̃V (ej |vi)
∆= gV (fV (vi, ej))

GV (vi)
,
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where GV (vi), the vertex overall bias, is defined as:

GV (vi)
∆=
∑
j∈JpK

gV (fV (vi, ej)) .

Typical choices for gV are: gV (x) = xα or gV (x) = eαx.When α > 0, higher values of fV
are encouraged, and on the contrary, when α < 0 smaller values of fV are encouraged.
Similarly, we introduce the vertex-based hb-edge abstract information function:
fE : E× V → R+.

We define the hb-edge abstract information function: FE : V → R+ as:

FE (ej)
∆=
∑
i∈JnK

fE (ej , vi) .

We define the probability corresponding to the vertex-based hb-edge abstract
information as:

pfE (vi|ej)
∆= fE (ej , vi)

FE (ej)
.

If we now consider a vertex bias function: gE : R+ → R+ applied to fE (ej , vi) , we can
define a biased probability on the transition from hb-edges to vertices as:

p̃E (vi|ej)
∆= gE (fE (ej , vi))

GE (ej)
,

where GE (ej), the hb-edge overall bias is defined as:

GE (ej) =
∑
i∈JnK

gE (fE (ej , vi)) .

Typical choices for gE are: gE (x) = xα or gE (x) = eαx.When α > 0, higher values of fE
are encouraged, and on the contrary, when α < 0 smaller values of fE are encouraged.

D.1.3.2. Biased diffusion by exchange

We now consider a two-phase step diffusion by exchange, with a similar approach than
in Chapter 2; we just describe here what differs from this approach.
The vertices hold an information value at time t given by: αt : V → [0; 1] .
The hb-edges hold an information value at time t given by: εt : E→ R.

During the first phase between time t and time t + 1
2, the contribution to the

value εt+ 1
2

(ej) from the vertex vi is now given by:

δεt+ 1
2

(ej |vi) = p̃V (ej |vi)αt (vi)

and
εt+ 1

2
(ej) =

n∑
i=1

δεt+ 1
2

(ej | vi) .

We still have:
αt+ 1

2
(vi) = αt (vi)−

p∑
j=1

δεt+ 1
2

(ej | vi) .
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Claim D.1 (No information on vertices at t+ 1
2). It holds:

∀i ∈ JnK : αt+ 1
2

(vi) = 0.

Proof. For all i ∈ JnK :

αt+ 1
2

(vi) = αt (vi)−
∑
j∈JpK

δεt+ 1
2

(ej | vi)

= αt (vi)−
∑
j∈JpK

gV (fV (vi, ej))
GV (vi)

αt (vi)

= αt (vi)− αt (vi)

∑
j∈JpK

gV (fV (vi, ej))

GV (vi)
= 0.

Claim D.2 (Conservation of the information of the hb-graph at t+ 1
2). It holds:∑

vi∈V
αt+ 1

2
(vi) +

∑
ej∈E

εt+ 1
2

(ej) = 1.

Proof. We have:∑
vi∈V

αt+ 1
2

(vi) +
∑
ej∈E

εt+ 1
2

(ej) =
∑
ej∈E

εt+ 1
2

(ej)

=
∑
ej∈E

∑
i∈JnK

δεt+ 1
2

(ej | vi)

=
∑
ej∈E

∑
i∈JnK

gV (fV (vi, ej))
GV (vi)

αt (vi)

=
∑
i∈JnK

αt (vi)

∑
ej∈E

gV (fV (vi, ej))

GV (vi)

=
∑
i∈JnK

αt (vi)

= 1.

We introduce the vertex overall bias matrix:

GV
∆= diag

(
(GV (vi))i∈JnK

)
and the biased vertex-feature matrix:

BV
∆= [gV (fV (vi, ej))]i∈JnK

j∈JpK
.
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It holds:
PE,t+ 1

2
= PV,tG

−1
V BV . (D.1)

During the second phase that starts at time t+ 1
2, the values held by the hb-edges

are transferred to the vertices.

The contribution to αt+1 (vi) given by a hb-edge ej is proportional to εt+ 1
2
in a factor

corresponding to the biased probability p̃E (vi|ej) :

δαt+1 (vi | ej) = p̃E (vi|ej) εt+ 1
2

(ej) .

Hence, we have:

αt+1 (vi) =
p∑
j=1

δαt+1 (vi | ej)

and:

εt+1 (ej) = εt+ 1
2

(ej)−
n∑
i=1

δαt+1 (vi | ej) .

Claim D.3 (The hb-edges have no value at t+ 1). It holds:

εt+1 (ej) = 0.

Proof. For all i ∈ JpK :

εt+1 (ej) = εt+ 1
2

(ej)−
∑
i∈JnK

δαt+1 (vi | ej)

= εt+ 1
2

(ej)−
∑
i∈JnK

p̃E (vi|ej) εt+ 1
2

(ej)

= εt+ 1
2

(ej)

1−

∑
i∈JnK

gE (fE (ej , vi))

GE (ej)


= 0.

Claim D.4 (Conservation of the information of the hb-graph at t+ 1). It holds:

∑
vi∈V

αt+1 (vi) +
∑
ej∈E

εt+1 (ej) = 1.
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Proof. ∑
vi∈V

αt+1 (vi) +
∑
ej∈E

εt+1 (ej) =
∑
vi∈V

αt+1 (vi)

=
∑
vi∈V

∑
ej∈E

δαt+1 (vi | ej)

=
∑
vi∈V

∑
ej∈E

p̃E (vi|ej) εt+ 1
2

(ej)

=
∑
ej∈E

εt+ 1
2

(ej)

∑
vi∈V

gE (fE (ej , vi))

GE (ej)

=
∑
ej∈E

εt+ 1
2

(ej)

= 1.

We now introduce GE
∆= diag

(
(GE (ej))j∈JpK

)
the diagonal matrix of size p× p and the

biased hb-edge-feature matrix:

BE
∆= [gE (fE (ej , vi))]j∈JpK

i∈JnK
,

it comes:
PE,t+ 1

2
G−1

E BE = PV,t+1. (D.2)

Regrouping (D.1) and (D.2):

PV,t+1 = PV,tG
−1
V BVG

−1
E BE . (D.3)

It is valuable to keep a trace of the intermediate state:

PE,t+ 1
2

= PV,tG
−1
V BV

as it records the information on hb-edges.
Writing T = G−1

V BVG
−1
E BE , it follows from D.3:

PV,t+1 = PV,tT. (D.4)

Claim D.5 (Stochastic transition matrix). T is a square row stochastic matrix of di-
mension n.

Proof. Let consider:
A = (aij)i∈JnK

j∈JpK
= G−1

V BV ∈Mn,p

and
B = (bjk)j∈JpK

k∈JnK
= G−1

E BE ∈Mp,n.

A and B are non-negative rectangular matrices. Moreover:
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• aij = p̃V (ej |vi) and it holds:∑
j∈JpK

aij =
∑
j∈JpK

p̃V (ej |vi)

=
∑
j∈JpK

gV (fV (vi, ej))
GV (vi)

= 1;

• bjk = p̃E (vk|ej) and it holds:∑
k∈JnK

bjk =
∑
k∈JnK

p̃E (vk|ej)

=

∑
k∈JnK

gE (fE (ej , vk))

GE (ej)
= 1.

We have:
PV,t+1 = PV,tAB,

where:

AB =

∑
j∈JpK

aijbjk


i∈JnK
k∈JnK

.

It yields: ∑
k∈JnK

∑
j∈JpK

aijbjk =
∑
j∈JpK

aij
∑
k∈JnK

bjk

=
∑
j∈JpK

aij

= 1.

Hence AB is a non-negative square matrix with its row sums all equal to 1: it is a row
stochastic matrix.

Claim D.6 (Properties of T). Assuming that the hb-graph is connected, the biased
feature exchange-based diffusion matrix T is aperiodic and irreducible.

Proof. This stochastic matrix is aperiodic, due to the fact that any vertex of the hb-
graph retrieves a part of the value it has given to the hb-edge, hence tii > 0 for all
i ∈ JnK.

Moreover, as the hb-graph is connected, the matrix is irreducible as any state can be
joined from any other state.
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The fact that T is a stochastic matrix aperiodic and irreducible for a connected hb-graph
ensures that (αt)t∈N converges to a stationary state which is the probability vector πV
associated to the eigenvalue 1 of T . Nonetheless, due to the presence of the different
functions for vertices and hb-edges, the simplifications do not occur anymore as in the
case of Chapter 2 and thus we do not have an explicit expression for the stationary state
vector of the vertices.

The same occurs for the expression of the hb-edge stationary state vector πE which is
still calculated from πV using the following formula:

πE = πVG
−1
V BV .

D.1.3.3. Results and evaluation

We consider different biases on a randomly generated hb-graph using still the same
features that in the exchange-based diffusion realized in Chapter 2. We generate hb-
graphs with 200 collaborations—built out of 10,000 potential vertices—with a maximum
m-cardinality of 20, such that the hb-graph has five groups that are generated with
two of the vertices chosen out of a group of 10, that have to occur in each of the
collaboration; there are 20 vertices that have to stand as central vertices, i.e. that
ensures the connectivity in between the different groups of the hb-graph.

The approach is similar to the one taken in Chapter 2, using the same hb-edge based
vertex abstract information function and the same vertex-based hb-edge abstract infor-
mation function, but putting different biases as it is presented in Table D.2.

Experiment 1 2 3 4 5
Vertex bias function gV (x) = x x2 x0.2 e2x e−2x

Hb-edge bias function gE (x) = x x2 x0.2 e2x e−2x

Experiment 6 7 8 9
Vertex bias function gV (x) = x2 e2x x0.2 e−2x

Hb-edge bias function gE (x) = x x x x

Experiment 10 11 12 13 14 15
Vertex bias function gV (x) = x x x x e2x e−2x

Hb-edge bias function gE (x) = x2 e2x x0.2 e−2x e−2x e2x

Table D.2.: Biases used during the 15 experiments.

We compare the rankings obtained on vertices and hb-edges after 200 iterations of the
exchange-based diffusion using the strict and large Kendall tau correlation coefficients
for the different biases proposed in Table D.2. We present the results as a visualisation
of correlation matrices in Figure D.1 and in Figure D.3, lines and columns of these
matrices being ordered by the experiment index presented in Table D.2.

We write σi,t the ranking obtained with Experiment i biases for t ∈ {V,E} indicating
whether the ranking is performed on vertices or hb-edges—the absence of t means that
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it works for both rankings. The ranking obtained by Experiment 1 is the one of Chapter
2, and is called the reference ranking.

In Experiments 2 to 5, the same bias is applied to both vertices and hb-edges. In Ex-
periments 2 and 3, the biases are increasing functions on [0; +∞[ , while in Experiments
4 and 5, they are decreasing functions.

Experiments 2 and 3 lead to rankings that are well correlated with the reference ranking
given the large Kendall tau correlation coefficient value. The higher value of τL (σi, σj)
compared to the one of τ (σi, σj) marks the fact that the rankings with pair of sim-
ilar biases agree with the ties in this case. The exponential bias yields to a ranking
that is more granular in the tail for vertices, and reshuffles the way the hb-edges are
ranked; similar observations can be done for both the vertex and hb-edge rankings in
Experiments 2 and 3.

In Experiments 4 and 5, the rankings remain well correlated with the reference ranking
but the large Kendall tau correlation coefficient values show that there is much less
agreement on the ties, but it is very punctual in the rankings, with again more discrim-
ination with an exponential bias. This slight changes imply a reshuffling of the hb-edge
rankings in both cases, significantly emphasized by the exponential form.

None of these simultaneous pairs of biases reshuffle very differently the rankings obtained
in the head of the rankings of vertices, but most of them have implications on the head
of the rankings of the hb-edges: typical examples are given in Figure D.5. It would need
further investigations using the Jaccard index.

Dissimilarities in rankings occur when the bias is applied only to vertices or to hb-
edges. The strict Kendall tau correlation coefficients between the rankings obtained
when applying the bias of Experiments 6 to 9—bias on vertices—and 10 to 13—bias on
hb-edges—and the reference ranking for the vertices show weak consistency for vertices
with values around 0.4—Figure D.1—, while the large Kendall tau correlation coefficient
values show a small disagreement with values around -0.1—Figure D.2. For hb-edges,
the gap is much less between the strict—values around 0.7 as shown in Figure D.3—and
large Kendall tau correlation coefficient values—with values around 0.6 as shown in
Figure D.4.

Biases with same monotony variations—gt (x) = x2 and gt (x) = e2x on the one hand and
gt (x) = x0.2 and gt (x) = e−2x on the other hand—have similar effects independently of
their application to vertices xor to hb-edges. It is also worth to remark that increasing
biases lead to rankings that have no specific agreement or disagreement with rankings
of decreasing biases—as it is shown with τL (σi, σj) and τ (σi, σj) for i ∈ J6; 13K .

We remark also that increasing biases applied only to vertices correlate with the corre-
sponding decreasing biases applied only to hb-edges, and vice-versa. This is the case for
Experiments 6 and 12, Experiments 7 and 13, Experiments 8 and 10, and Experiments
9 and 11 for both vertices—Figures D.1 and D.2—and hb-edges—Figures D.3 and D.4.

Finally, we conduct two more experiments—Experiments 14 and 15—combining the
biases gt (x) = e2x and gt (x) = e−2x in two different manners. With no surprise,
they reinforce the disagreement with the reference ranking both on vertices and hb-
edges, with a stronger disagreement when the decreasing bias is put on vertices. We
can remark that Experiment 14—gV (x) = e2x and gE (x) = e−2x—has the strongest
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correlations with the rankings of dissimilar biases that are either similar to the one of
vertices—Experiments 6 and 7— or to the one of hb-edges—Experiments 12 and 13.

Figure D.1.: Strict Kendall tau correlation coefficient for node ranking with biases.
Realized on 100 random hb-graphs with 200 hb-edges of maximal size 20, with 5
groups.

A last remark is on the variability of the results: if the values of the correlation coef-
ficients change, from one hb-graph to another, the phenomenon observed remains the
same, whatever the first hb-graph observed; however, the number of experiments per-
formed ensures already a minimized fluctuation in these results.

D.1.3.4. Further comments

The biased-exchange-based diffusion proposed in this Chapter enhances a tunable diffu-
sion that can be integrated into the hb-graph framework to tune adequately the ranking
of the facets. The results obtained on randomly generated hb-graphs have still to be
applied to real hb-graphs, with the known difficulty of the connectedness: it will be ad-
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Figure D.2.: Large Kendall tau correlation coefficient for node ranking with biases.
Realized on 100 random hb-graphs with 200 hb-edges of maximal size 20, with 5
groups.

dressed in future work. There remains a lot to explore on the subject in order to refine
the query results obtained with real searches. The difficulty remains that in ground
truth classification by experts, only a few criteria can be retained, that ends up in most
cases in pairwise comparison of elements, and, hence, does not account for higher order
relationships.
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Figure D.3.: Strict Kendall tau correlation coefficient for hb-edge ranking with biases.
Realized on 100 random hb-graphs with 200 hb-edges of maximal size 20, with 5
groups.
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Figure D.4.: Large Kendall tau correlation coefficient for hb-edge ranking with biases.
Realized on 100 random hb-graphs with 200 hb-edges of maximal size 20, with 5
groups.
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(a) First ranking: gV (x) = x and gE (x) = x; Second ranking: gV (x) = e2x and gE (x) = e2x.

(b) First ranking: gV (x) = x and gE (x) = x; Second ranking: gV (x) = x2 and gE (x) = x2.

(c) First ranking: gV (x) = x and gE (x) = x; Second ranking: gV (x) = e−2x and gE (x) = e−2x.

(d) First ranking: gV (x) = x and gE (x) = x; Second ranking: gV (x) = x0.2 and gE (x) = x0.2.

Figure D.5.: Effect of vertex biases on ranking.
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tensor of natural hb-graphs

E.1. Building a tensor of e-adjacency for general hypergraphs

This chapter is based on [OLGMM17a]. A condensed version has been published in
[OLGMM18a].
Prerequisites: Section B.1 and B.3.

E.1.1. Motivation

An edge in a graph connects only two vertices while a hyperedge in a hypergraph en-
ables multiple vertices to be connected. Recent improvements in tensor spectral theory
have made the research on the spectra of hypergraphs more relevant. For studying
such spectra, a proper definition of general hypergraph Laplacian tensor is needed and,
therefore, the concepts of adjacency and consequently of (—as it will be defined later—e-
)adjacency tensor must be properly defined.
In [Pu13], a clear distinction is made between the pairwise relationship which is a binary
relation and the co-occurrence relationship which is presented as the extension of the
pairwise relationship to a multi-adic relationship. The notion of co-occurrence is often
used in linguistic data as the simultaneous appearance of linguistic units in a reference.
The co-occurrence concept can be easily extended to vertices contained in a hyperedge:
we designate it in hypergraphs by the term e-adjacency.
Nonetheless, it is more than an extension. Graph edges connect vertices by pair: graph
adjacency concept is clearly a pairwise relationship. For a given edge, only two vertices
can be e-adjacent. Thus, adjacency and e-adjacency are equivalent in graphs.
Extending the adjacency notion to hypergraphs, two vertices are said adjacent if there
exists a hyperedge that connects them. Hence, the adjacency notion still captures a
binary relationship and can be modeled by an adjacency matrix. But, in this case,
e-adjacency is no more a pairwise relationship, as, for a given hyperedge, more than
two vertices can occur, since a hyperedge contains potentially multiple vertices. Also, a
multi-adic relationship has to be captured and to be modeled using tensor. Hence, the
adjacency matrix and the e-adjacency tensor of a hypergraph are two separated notions.
Nonetheless, the e-adjacency tensor is often abusively named the adjacency tensor in
the literature.
We aim at answering in this chapter the following research questions:

Research question E.1. What is the proper concept of adjacency for general hyper-
graphs?
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This research question aim is to redefine adjacency in hypergraphs, by considering dif-
ferent kinds of adjacency.

Research question E.2. How to achieve the modeling of the newly defined adjacency
concept with a tensor which not only preserves all the structural information of the
hypergraph, but, also, captures separately the information on its hyperedges, and that is
interpretable in term of hypergraph-based process?

This second research question will bring us to consider an uniformisation process that
transforms a general hypergraph into a uniform hypergraph, and that will lead to defin-
ing a new (e-)adjacency tensor which will not solely preserve all the structural infor-
mation of the hypergraph, but, also, will capture separately the information on its
hyperedges.
After sketching the background and the related work on the adjacency and e-adjacency
concepts for hypergraphs in Section E.1.3, we propose a new unnormalized e-adjacency
tensor in Section E.1.4. Section E.1.5 tackles the particular case of graphs seen as 2-
uniform hypergraphs and the link with the Disjunctive Normal Form (DNF for short).
Some additional comments are addressed in Section E.1.7. A full example is given in
Appendix E.2.2.

Notation Exponents are indicated into parenthesis—for instance y(n)—when they refer
to the order of the corresponding tensor. Indices are written into parenthesis when they
refer to a sequence of objects—for instance a(k)ij is the elements at row i and column j
of the matrix A(k). The context should make it clear.
For the convenience of readability, we write z0 for z1, ..., zn. Hence given a polynomial
P, P (z0) has to be understood as P

(
z1, ..., zn

)
.

Given additional variables y1, ..., yk, we write zk for z1, ..., zn, y1, ..., yk.

Sk is the set of permutations on the set JkK .

Hypergraph basic definitions are reminded in Chapter B. In this chapter, we make the
following postulate:

Postulate E.1. The hypergraphs considered are undirected and with no repeated hyper-
edges.

E.1.2. Adjacency in hypergraphs

We consider a hypergraph H = (V,E), with V = {vi : i ∈ JnK} and E = (ej)j∈JpK , and
two vertices vi1 ∈ V and vi2 ∈ V with i1 ∈ JnK and i2 ∈ JnK . Traditionally, vi1 and vi2
are said adjacent if there exists e ∈ E such that vi1 ∈ e and vi2 ∈ e. This adjacency is
a pairwise concept.
To switch to a higher order concept of adjacency, we consider an integer k > 1 and k
vertices vij , with ij ∈ JnK for all j ∈ JkK and say that vi1 , ..., vik are k-adjacent if there
exists e ∈ E such that for all j ∈ JkK , vij ∈ e.With k = 2, the usual notion of adjacency
is retrieved.
Trivially:
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Proposition E.1. If k vertices are k-adjacent, then any subset of these k vertices of
size l 6 k is l-adjacent.

The maximal k-adjacency a hypergraph can support is called the k-adjacency. As the
maximal number of vertices a hyperedge can have in a general hypergraph corresponds
to the rank of this hypergraph, the k-adjacency corresponds to rH-adjacency.

We now consider a hyperedge e ∈ E. The vertices constituting e are said e-adjacent
vertices.

If the hypergraph is k-uniform, then the k-adjacency is exactly the k-adjacency and is
equivalent to the e-adjacency of vertices in a hyperedge.

For a general hypergraph, if it is true that k-adjacency implies e-adjacency, the reciprocal
is no longer true, as any hyperedge e ∈ E such that |e| < rH

1 does not hold any
k-adjacent vertices. In this case, the notions of k-adjacency and of e-adjacency are
definitively distinct.

E.1.3. Background and related work

E.1.3.1. The matrix approach

In Section B.1.7.2, we already mentioned that the adjacency matrix does not keep the
multi-adicity. The adjacency matrix captures only links between pair of vertices: this is
equivalent to extend the hypergraph to its 2-section and to capture the information of
the corresponding graph. Therefore, the multi-adicity cannot be captured by a matrix.

Following a lemma cited in [DPP16], the following lemma can be enunciated:

Lemma E.1. Let H = (V,E) be a hypergraph and let vi1 , vi2 ∈ V. If vi1 and vi2 are
2-adjacent in H, then they are adjacent in the 2-section [H]2 .

Reciprocally, two vertices that are adjacent in the 2-section of a hypergraph are also 2-
adjacent in the hypergraph. Nonetheless, it doesn’t imply any isomorphism between H
and [H]2: [H]2 appears as an equivalence class of the equivalence relation R defined on
the set of hypergraphs with no loop, where two hypergraphs are in relation by R, if they
have the same graph as 2-section. Therefore, the 2-section of a hypergraph corresponds
to an equivalence class of 2-adjacency.

Moving to the concept of e-adjacency will preserve the higher order relationships held
in the hypergraph.

E.1.3.2. Existing k and e-adjacency tensors

In [MN12], an unnormalized version of the k−adjacency tensor of a k-uniform hyper-
graph is given. This definition is also adopted in [GD17].
1rH is the rank of the hypergraph H as defined in Section B.1.3.
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Definition E.1. The unnormalized [k-]adjacency tensor of a k-uniform hypergraph
H = (V,E) on a finite set of vertices V = {vi : i ∈ JnK} and a family of hyperedges E =
(ej)j∈JpK of equal cardinality k is the tensor Araw of CHR Araw = (araw i1...ik)i1,...,ik∈JnK
such that:

araw i1...ik =
{

1 if {vi1 , ..., vik} ∈ E;
0 otherwise.

In [CD12], a slightly different version exists for the definition of the adjacency tensor,
called the degree normalized k-adjacency tensor.

Definition E.2. The [degree normalized k-]adjacency tensor of a k-uniform hyper-
graph H = (V,E) on a finite set of vertices V = {vi : i ∈ JnK} and a family of hyperedges
E = (ej)j∈JpK of equal cardinality k is the tensor A of CHR A = (ai1...ik)i1,...,ik∈JnK such
that:

ai1...ik = 1
(k − 1)!

{
1 if ∃e ∈ E : e = {vi1 , ..., vik} ;
0 otherwise.

Introducing in this definition, the coefficient 1
(k − 1)! allows to retrieve the degree of a

vertex vi summing the elements of index i on the first mode of the tensor. Hence, we
call it the degree normalized adjacency tensor.

Proposition E.2. Let H = (V,E) be a k-uniform hypergraph. Let vi ∈ V be a
vertex. It holds by considering the degree normalized k−adjacency tensor A of CHR
A = (ai1...ik)i1,...,ik∈JnK :

deg (vi) =
∑

i2,...,ik∈JnK

aii2...ik .

Proof. On the first mode of the degree normalized adjacency tensor, for a given vertex
vi that occurs in a hyperedge e = {vi, vi2 , ..., vik} , the elements aiσ(i2)...σ(ik) = 1

(k − 1)! ,

where σ ∈ Sk−1, exist in quantity (k − 1)! in the first mode. Hence ∑
σ∈Sk−1

aiσ(i2)...σ(ik) =

1.

Repeating it for all hyperedges where vi is an element retrieves the degree of vi.

This definition could be interpreted as the definition of the e-adjacency tensor for a
uniform hypergraph since the notion of k-adjacency and e-adjacency are equivalent in
a k-uniform hypergraph.

In [Hu13], a full study of the spectra of an uniform hypergraph using the Laplacian
tensor is given. The definition of the Laplacian tensor is linked to the existence and
definition of the normalized [k-]adjacency tensor.
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Definition E.3. The [eigenvalues] normalized [k-]adjacency tensor of a k-uniform
hypergraph H = (V,E) on a finite set of vertices V = {vi : i ∈ JnK} and a family of hyper-
edges E = (ej)j∈JpK of equal cardinality k is the tensor A of CHR A = (ai1...ik)i1,...,ik∈JnK
such that:

ai1...ik =


1

(k − 1)!
∏

16j6k

1
k

√
dij

if {vi1 , ..., vik} ∈ E;

0 otherwise.

The aim of the normalization is motivated by the need of bounding the different tensor
eigenvalues.

The normalized Laplacian tensor L is given in the following definition.

Definition E.4. The normalized Laplacian tensor of a k-uniform hypergraph H =
(V,E) on a finite set of vertices V = {vi : i ∈ JnK} and a family of hyperedges E =
(ej)j∈JpK of equal cardinality k is the tensor L = I − A where I is the k-th order n-
dimensional diagonal tensor of CHR that has its j-th diagonal element ij...j = 1 if dj > 0
and 0 otherwise.

In [BCM17], the definition of the [e-]adjacency tensor is extended to general hyper-
graphs. The information on hyperedges of lower cardinality is spread inside the tensor.
This approach focuses on the spectra of the constructed hypermatrix.

Definition E.5. Let H = (V,E) be a general hypergraph on a finite set of vertices
V = {vi : i ∈ JnK} and a family of hyperedges E = (ej)j∈JpK of rank rH.

The [e-]adjacency hypermatrix of H written BH of CHR:

BH =
(
bi1...irH

)
16i1,...,irH6n

is such that for a hyperedge: e = {vl1 , ..., vls} of cardinality s 6 rH, we have:

bp1...prH
= s

α
, where α =

∑
k1,...,ks>1∑
i∈JsK

ki=rH

rH!
k1!...ks!

with p1, ..., prH chosen in all possible ways from {l1, ..., ls} with at least once from each
element of {l1, ..., ls} .

The other values of the hypermatrix are zero.

The e-adjacency cubical hypermatrix of order the rank of the hypergraph rH is kept
at a dimension corresponding to the number of vertices n at the cost of splitting the
information of the hyperedges in a varying number of elements of the tensor depending
on the hyperedge cardinalities. A hyperedge e, of cardinality #e = s, is represented by
a set of elements in the tensor whose indices correspond to permutations of the different
multisets

{{
lkii , i ∈ JsK

}}
such that: ∀i, ki > 1 and ∑

i∈JsK
ki = rH, i.e. all the multisets
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that can be built of universe {l1, ..., ls} and of support {l1, ..., ls} and m-cardinality rH.
A detailed example is given in Appendix E.2.1.

We will come back to the consequences of filling the tensor elements this way in Chapter
4.

A s-composition of an integer m is a tuple (ki)i∈JsK such that ∑
i∈JsK

ki = m.

Let (ki)i∈JsK be a s-composition of rH with ki > 1 for all i ∈ JsK . Then the number
of combinations of rH elements of {l1, ..., ls} , at least repeated once and following the
distribution given by (ki)i∈JsK , is given by the multinomial coefficient:(

rH
k1 ... ks

)
= rH!∏

i∈JsK
ki!
.

We now focus on the number of compositions ps(m) of an integer m in s ordered parts.
A composition of an integer is a tuple. This is equivalent to putting s− 1 sticks in the
space between two stones of a line of m stones, i.e. in m− 1 spaces. We have then:

ps (m) =
(
m− 1
s− 1

)

possibilities to do it.

Hence for representing a single hyperedge of cardinality s, ps (rH) partitions (ki)i∈JsK of
rH are involved, each of them implies to fill:(

rH
k1 ... ks

)
= rH!∏

i∈JsK
ki!

elements of the tensor.

It is worth mentioning another definition of e-adjacency tensor that has been recently
published in [SZB19].

Definition E.6. The [prefixed e-]adjacency tensor—written SH—of a general hy-
pergraph H = (V,E) , with V as vertex set—[identified to JnK]—and E as hyperedge
set is the cubical tensor of CHR SH =

(
si1...irH

)
of order rH and dimension |V | with

entries:

si1...irH =


1

(s− 1)! i1 = ... = ik−s+1, {ik−s+1, ..., ik} ∈ E;

0 otherwise.

This definition has the advantage of reducing the number of elements that contain
information, at the cost of having a non-symmetric hypermatrix.

In this Thesis, the proposed method to elaborate an e-adjacency tensor focuses on the
fact that the construction is interpretable: a uniformisation process is proposed in which
a general hypergraph is transformed into a uniform hypergraph by adding elements. The
strong link made with homogeneous polynomials reinforces the choice made and allows
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to retrieve a proper matrix of a uniform hypergraph at the end of the process. The
additional vertices help capturing not solely the e-adjacency but also give the ability to
hold the information on k-adjacency at whatever level it occurs.

The approach is based on the homogenization of sums of polynomials of different degrees
and by considering a family of uniform hypergraphs. It is also motivated by the fact
that the information on the cardinality of the hyperedges has to be kept in some ways
and, that the elements should not be mixed with the different layers of the hypergraph.

E.1.4. Towards an e-adjacency tensor of a general hypergraph

To build an e-adjacency tensor for a general hypergraph, we need a way to store elements
which represent the hyperedges. As these hyperedges have different cardinalities, the
representation of the e-adjacency for vertices in a unique tensor can be achieved only by
filling the hyperedges with additional elements. The problem of finding an e-adjacency
tensor of a general hypergraph is then transformed into a uniformisation problem.

This uniformisation process should be at least interpretable in term of uniform hyper-
graphs. It should capture the structural information of the hypergraph, which includes
information on the number of hyperedges, degrees of vertices and additional information
on the main features of the hypergraph.

We propose a framework based on homogeneous polynomials that are iteratively summed
by weighting with technical coefficients and homogenized. This uniformisation process
allows the construction of a weighted uniform hypergraph. The technical coefficients are
adjusted such that the handshake lemma holds in the constructed uniform hypergraph.

E.1.4.1. Family of tensors attached to a hypergraph

Let H = (V,E) be a hypergraph. A hypergraph can be decomposed in a family of
uniform hypergraphs.

To achieve it, let R be the equivalency relation: eRe′ ⇔ |e| = |e′| .

E/R is the set of classes of hyperedges of same cardinality. The elements of E/R are
the sets: Ek

∆= {e ∈ E : |e| = k} .

Considering K = {k : Ek ∈ E/R} , we set Ek
∆= ∅ for all k ∈ JrHK \K.

Let us consider the hypergraphs: Hk
∆= (V,Ek) for all k ∈ JrHK which are all k-uniform.

It holds that: E = ⋃
k∈JrHK

Ek and Ej ∩Ek = ∅ for all j 6= k, hence the family (Ek)k∈JrHK

forms a partition of E which is unique by the way it has been defined.

Hence:
H =

⊕
k∈JrHK

Hk.

The hypergraph H is said to be decomposed into a family of hypergraphs (Hk)k∈JrHK
where Hk is k-uniform.
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An illustration of the decomposition of a hypergraph into a family of uniform hyper-
graphs is shown in Figure E.1. This family of uniform hypergraphs decomposes the
original hypergraph in layers. A layer holds a k-uniform hypergraph—with k ∈ JrHK—:
therefore, the layer is said to be of level k.

Figure E.1.: Illustration of a hypergraph decomposed in three layers of uniform hy-
pergraphs.

At each k-uniform hypergraph Hk can be mapped a (k-adjacency) e-adjacency tensor
Ak with CHR Ak of order k which is hyper-cubic and symmetric of dimension |V | = n.
This hypermatrix can be unnormalized or normalized, but this choice has to be made
the same for the whole family of Hk.

Once chosen a type of tensor—normalized or unnormalized—, the hypergraph H is then
fully described by the family of e-adjacency tensors AH = (Ak) . In the case where all
the Ak are chosen normalized, this family is said pre-normalized. The final choice will
be made further in Section E.1.4.7 and explained to fulfill the expectations listed in the
next section.

E.1.4.2. Expectations for an e-adjacency tensor for a general hypergraph

The definition of the family of tensors attached to a general hypergraph has the ad-
vantage to open the way to the spectral theory for uniform hypergraphs which is quite
advanced.

Nonetheless, many problems remain in keeping a family of tensors of different orders:
for instance, studying the spectra of the whole hypergraph could be hard to achieve by
this means. Also, it is necessary to get an e-adjacency tensor for the whole hypergraph
which retains the information on the whole structure.

The underlying idea is to “fill” the hyperedges with sufficient elements such that the
general hypergraph is transformed into an uniform hypergraph through a uniformisation
process. A similar approach has been taken in [BCM17] where the filling elements are
the vertices belonging to the hyperedge itself, involving a hb-graph m-uniformisation,
as we will tackle it in Chapter 3. In the next sections, the justification of the approach
taken will be made via homogeneous polynomials. Before getting to the construction,
expected properties of such a tensor have to be listed.
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Expectation E.1. The tensor should be symmetric and its generation should be simple.

This expectation emphasizes the fact that in between two constructed e-adjacency ten-
sors, the one that can be easily generated has to be chosen: this includes the fact that
the tensor has to be described in a simple way.

Expectation E.2. The unnormalized e-adjacency tensor keeps the overall structure of
the hypergraph.

This expectation emphasized the fact that the e-adjacency tensor should help to retrieve
the different layers of the hypergraph, in such a way that it respects the structure of
each layer.

Expectation E.3. The e-adjacency tensor should allow the retrieval of the vertex de-
grees.

In the adjacency matrix of a graph, the information on the vertex degrees is encoded
directly. It is still the case with the k-adjacency degree normalised tensor defined by
[Sha13] and [PZ14].

Expectation E.4. The e-adjacency tensor should allow the retrieval of the number of
hyperedges of same cardinality.

This expectation is linked with the expectation on the keeping of the overall structure
of the hypergraph.

Expectation E.5. The tensor should be invariant to vertex permutations either globally
or at least locally.

This expectation is motivated by the fact that in a hyperedge the vertices have no
order. This expectation can be local, since the special vertices will not have the same
status than the ones of the original hypergraph. Also, the invariance by permutation is
expected on the vertices of the original hypergraph.

Expectation E.6. The e-adjacency tensor should allow the unique retrieval of the
hypergraph it is originated from.

This expectation seems important when rebuilding the original hypergraph from its e-
adjacency tensor. Hence, all the necessary information to uniquely retrieve the original
hyperedges has to be encoded in the tensor.

Expectation E.7. Giving the choice of two representations the e-adjacency tensor
chosen should be the sparsest one.

Sparsity enables information compression, and lowers both the space and the complexity
calculus. Also, sparsity is a desirable property for some statistical reasons as shown in
[Nik00] or expected in [BDE09] for signal processing and image encoding.
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E.1.4.3. Tensors family and family of homogeneous polynomials

To construct a homogeneous polynomial representing a general hypergraph, the family
of e-adjacency tensors obtained in the previous section has to be mapped to a family
of homogeneous polynomials. This mapping is used in [CQU15] where the author links
symmetric tensors and homogeneous polynomials of degree s to show that the problem
of the CP decomposition of different symmetric tensors of different orders and the
decoupled representation of multivariate polynomial maps are related.

Homogeneous polynomials family of a hypergraph We consider a hypergraph H with
its family of unnormalized tensor AH = (Ak) of CHR which is cubical and symmetric of
order k and dimension n. We can also attach to H a family PH = (Pk) of homogeneous
polynomials with deg (Pk) = k. To achieve this, we consider a vector z ∈ Kn and
the multilinear matrix multiplication defined in B.3.2: it holds that (z)[k].Ak—with
(z)[k]

∆= (z, ..., z) ∈ (Kn)k—contains only one element written Pk
(
z1, ..., zn

)
= Pk (z0)

such that:
Pk (z0) =

∑
i1,...,ik∈JnK

a(k) i1...ikz
i1 ...zik . (E.1)

The formulation of Pk can be reduced taking into account that Ak is symmetric for a
uniform hypergraph:

Pk (z0) =
∑

16i16...6ik6n
k!a(k) i1...ikz

i1 ...zik . (E.2)

Writing:
P̃k (z0) =

∑
16i16...6ik6n

a(k) i1...ikz
i1 ...zik . (E.3)

the reduced form of Pk, it holds:

Pk (z0) = k!P̃k (z0) .

Writing for 1 6 i1 6 ... 6 ik 6 n:

α(k) i1...ik
∆= k!a(k) i1...ik

and: α(k)σ(i1)...σ(ik)
∆= 0 for σ ∈ Sk, σ 6= Id.

It holds:

Pk (z0) =
∑

16i16...6ik6n
α(k) i1...ikz

i1 ...zik

=
∑

16i1,...,ik6n
α(k) i1...ikz

i1 ...zik . (E.4)

and:
P̃k (z0) =

∑
16i16...6ik6n

α(k) i1...ik
k! zi1 ...zik . (E.5)
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Reversibility of the process Reciprocally, given a homogeneous polynomial of degree
k, a unique hyper-cubic tensor of order k can be built: its dimension is the number
of different variables in the homogeneous polynomial. If the homogeneous polynomial
of degree k is supposed reduced and ordered, then only one hyper-cubic and symmet-
ric hypermatrix can be built. It reflects uniquely a k-uniform hypergraph adding the
constraint that each monomial is composed of the product of k different variables.

Proposition E.3. Let P (z0) = ∑
i1,...,ik∈JnK

ai1...ikz
i1 ...zik be a homogeneous polynomial

of degree k where:

• for j 6= k : zj 6= zk;

• for all j ∈ JnK : deg
(
zj
)

= 1;

• and such that for all σ ∈ Sk : aσ(i1)...σ(ik) = ai1...ik .

Then P is the homogeneous polynomial attached to a unique k-uniform hypergraph H =
(V,E,w)—up to the indexing of vertices.

Proof. Considering the vertices (vi)i∈JnK labeled by the elements of JnK .

If ai1...ik 6= 0, then for all σ ∈ Sk : aσ(i1)...σ(ik) a unique hyperedge ej is attached
corresponding to the vertices vi1 , ..., vik and which has weight w(ej) = kai1...ik .

E.1.4.4. Uniformisation and homogenization processes

A single tensor is always easier to use than a family of tensors; the same applies for ho-
mogeneous polynomials. Building a single tensor from tensors of different order requires
to fill in the “gaps”; summing homogeneous polynomials of varying degrees always gives
a new polynomial: but, most frequently, this polynomial is not anymore homogeneous.
Homogenization techniques for polynomials are wellknown and require additional vari-
ables.

Different homogenization processes can be envisaged to get a homogeneous polynomial
that represents a single cubic and symmetric tensor by making different choices on the
variables added in the homogenization phase. As a link has been made between the vari-
ables and the vertices of the hypergraph, we want that this link continues to occur during
the homogenization of the polynomial as each term of the reduced polynomial corre-
sponds to a unique hyperedge in the original hypergraph; the homogenization process is
interpretable in terms of hypergraph uniformisation process of the original hypergraph:
hypergraph uniformisation process and polynomial homogenization process are the two
sides of the same coin.

So far, we have separated the original hypergraph H in layers of increasing k-uniform
hypergraphs Hk such that:

H =
⊕

k∈JrHK

Hk.

Each k-uniform hypergraph can be represented by a symmetric and cubic tensor. This
symmetric and cubic tensor is mapped to a homogeneous polynomial. The reduced
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homogeneous polynomial is interpretable, if we omit the coefficients of each term, as a
disjunctive normal form. Each term of the homogeneous polynomial is a conjunctive
form which corresponds to simultaneous presence of vertices in a hyperedge: adding all
the layers allows to retrieve the original hypergraph; adding the different homogeneous
polynomials allows to retrieve the disjunctive normal form associated with the original
hypergraph.
In the hypergraph uniformisation process, iterative steps are done starting with the lower
layers to the upper layers of the hypergraph. In parallel, the polynomial homogenization
process is the algebraic justification of the hypergraph uniformisation process. It allows
to retrieve a polynomial attached to the uniform hypergraph built at each step and
hence a tensor.

Hypergraph uniformisation process We can describe algorithmically the hypergraph
uniformisation process: it transforms the original hypergraph in a uniform hypergraph.

Initialisation The initialisation requires that each layer hypergraph is associated to a
weighted hypergraph.
To each uniform hypergraphHk, we associate a weighted hypergraphHwk,k = (V,Ek, wk) ,
with: ∀e ∈ Ek : wk(e) = ck, ck ∈ R+∗.

The coefficients ck are technical coefficients that will be chosen when considering the
homogenization process and the fulfillment of the expectations of the e-adjacency tensor.
The coefficients ck can be seen as dilatation coefficients only dependent of the layers of
the original hypergraph.
We initialize: k := 1 and Kw := Hw1,1 and generate rH − 1 distinct vertices yj , j ∈
JrH − 1K that are not in V.

Iterative steps Each step in the hypergraph uniformisation process includes three
phases: an inflation phase, a merging phase and a concluding phase.

Inflation phase: The inflation phase consists in increasing the cardinality of each
hyperedge obtained from the hypergraph built at the former step to reach the cardinality
of the hyperedges of the second hypergraph used in the merge phase.
We define a first operation that consists in inflating each hyperedge of the hypergraph
with an additional vertex that does not belong to the original vertex to obtain a vertex-
augmented hypergraph.

Definition E.7. The y-vertex-augmented hypergraph of a weighted hypergraph
Hw = (V,E,w) is the hypergraph Hw

∆=
(
V ,E,w

)
obtained by the following rules:

• y /∈ V ;

• V
∆= V ∪ {y} ;

• Writing φ : P (V ) → P
(
V
)
the map such that for A ∈ P (V ) : φ(A) = A ∪ {y} ,

it holds:
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– E
∆= {φ (e) : e ∈ E} ;

– ∀e ∈ E, w (φ(e)) ∆= w(e).

Proposition E.4. The vertex-augmented hypergraph of a k-uniform hypergraph is a
k + 1-uniform hypergraph.

The inflation phase at step k generates from Kw the yk-vertex augmented hypergraph
Kw.

As Kw is k-uniform at step k, Kw is k + 1-uniform.

Merging phase: The merging phase generates the sum of two weighted hypergraphs
called the merged hypergraph.

We start by defining the merging operation of two hypergraphs.

Definition E.8. The merged hypergraph Ĥŵ
∆=
(
V̂ , Ê, ŵ

)
of two weighted hyper-

graphs Ha = (Va, Ea, wa) and Hb = (Vb, Eb, wb) is the weighted hypergraph defined as
follow:

• V̂
∆= Va ∪ Vb;

• Êk+1
∆= Ea ∪ Eb;

• ∀e ∈ Ea : ŵ(e) ∆= wa(e) and ∀e ∈ Eb : ŵ(e) ∆= wb.

The merging phase at step k generates from Kw and Hwk+1,k+1 the merged hypergraph
K̂ŵ. As it is generated from two k + 1-uniform hypergraphs, it is also a k + 1-uniform
hypergraph.

Ending phase: If k equals rH − 1, the iterative part ends and returns K̂ŵ.

Otherwise, a next step is needed with Kw := K̂ŵ and k := k + 1.

Termination: We obtain by this algorithm a weighted rH-uniform hypergraph asso-
ciated to H which is the returned hypergraph from the iterative part: we write it
Ĥŵ =

(
V̂ , Ê, ŵ

)
.

Definition E.9. Writing Vs = {yj : j ∈ JrH − 1K} , Ĥŵ
∆=
(
V̂ , Ê, ŵ

)
is called the Vs-

layered uniform of H.

Proposition E.5. Let H = (V,E) be a hypergraph of order rH.

Let consider Vs = {yj : j ∈ J1, rH − 1K} such that V ∩ Vs = ∅ and let Ĥŵ =
(
V̂ , Ê, ŵ

)
be the Vs-layered uniform of H. Then:

• (V, Vs) is a partition of V̂ ;
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• ∀e ∈ E,∃!ê ∈ Ê : e ⊆ ê ∧ ê\e = {yj : j ∈ J|e| , rH − 1K} .

Proof. The way the Vs-layered uniform of H is generated justifies the results.

Proposition E.6. Let H = (V,E) be a hypergraph of order rH.
Let consider Vs,i = {yj : j ∈ JrH − 1K} such that Vs = ⋃

i∈JrH−1K
Vs,i, V ∩ Vs = ∅ and let

Ĥŵ =
(
V̂ , Ê, ŵ

)
be the Vs-layered uniform of H.

Then, the vertices of H that are e-adjacent in H in a hyperedge e are e-adjacent with
the vertices of Vs,|e| in Ĥŵ.

Reciprocally, if vertices are e-adjacent in Ĥŵ, the ones that are not in Vs are e-adjacent
in H.

As a consequence, Ĥŵ captures the e-adjacency of H.

Polynomial homogenization process In the polynomial homogenization process, we
build a new family RH = (Rk) of homogeneous polynomials of degree k iteratively from
the family of homogeneous polynomials PH = (Pk) by following the subsequent steps
that respect the construction phases in Figure E.2. Each of these steps can be linked
to the steps of the homogenization process.

H
Hypergraph

uniformisation process

(Hk)
Uniform hypergraphs

layers of H

(Tk)
Family

of tensors

Pk
Family of homogeneous

polynomials

×ck

+

if k < kmaxR1 = c1P1
If k > 1:

Rk = ckPk +Rk−1y
k−1

Homogeneous
polynomial of

aggregated layers
of level 1 to k

Rkmax
Global homogeneous
polynomial of H

if
k = kmax

T
e-adjacency
tensor of H

Figure E.2.: Construction phases of the e-adjacency tensor.

Initialisation Each polynomial Pk, k ∈ JrHK attached to the corresponding layer k-
uniform hypergraph Hk is multiplied by a coefficient ck equal to the corresponding di-
latation coefficient of the hypergraph uniformisation process as discussed further in Sec-
tion E.1.4.6. ckPk represents the reduced homogeneous polynomial attached to Hwk,k.
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Using the notations zk−1 and z0 as defined in E.1.1, we initialize: k := 1 and:

Rk (zk−1) = R1 (z0) = c1P1 (z0) = c1

n∑
i=1

a(1) iz
i.

We generate rH − 1 distinct 2 by 2 variables yj , j ∈ JrH − 1K that are also pairwise
distinct from the zi, i ∈ JnK .

Iterative steps At each step, we sum the current Rk (zk−1) with the next layer coeffi-
ciented polynomial ck+1Pk+1 in a way to obtain a homogeneous polynomial Rk+1 (zk) .
To help the understanding we describe the first step, then generalize to any step.

Case k = 1: To build R2, an homogenization of the sum of R1 and c2P2 is needed. It
holds:

R1 (z0) + c2P2 (z0) = c1
∑
i∈JnK

a(1) iz
i + c2

∑
i1,i2∈JnK

a(2) i1i2z
i1zi2 .

To achieve the homogenization of R1 (z0) + c2P2 (z0) , a new variable y1 is introduced.

It follows for y1 6= 0 :

R2 (z1) = R2
(
z0, y

1
)

= y1(2)
(
R1

(
z0
y1

)
+ c2P2

(
z0
y1 (2)

))
= c1

∑
i∈JnK

a(1) iz
iy1 + c2

∑
i1,i2∈JnK

a(2) i1i2z
i1zi2 .

By continuous prolongation of R2, it is set:

R2 (z0, 0) = c2
∑

i1,i2∈JnK

a(2) i1i2z
i1zi2 .

In this step, the weighted degree 1 polynomial R1 (z0) = c1P1 (z0) attached to Hw1,1 is
transformed in a degree 2 homogeneous polynomial y1R1 (z0) = c1y

1P1 (z0) : y1R1 (z0)
corresponds to the homogeneous polynomial of the weighted y1-vertex-augmented 1-
uniform hypergraph Hw1,1 built during the inflation phase in the hypergraph uniformi-
sation process.

y1R1 (z0) is then summed with the homogeneous polynomial c2P2 attached to Hw2,2
to get a homogeneous polynomial of degree 2: R2 (z1) . R2 (z1) is the homogeneous
polynomial of the merged 2-uniform hypergraph Ĥŵ1,1 of Hw1,1 and Hw2,2.

General case: Assuming that Rk (zk−1) is a homogeneous polynomial of degree k that
can be written as:

Rk (zk−1) =
∑
j∈JkK

cj
∑

i1,...,ij∈JnK

a(j) i1...ijz
i1 ...zij

k−1∏
l=j

yl,

with the convention that:
k−1∏
l=j

yl = 1 if j > k − 1 and zk−1 = z1, ..., zn, y1, ..., yk−1.
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Rk+1 is built as a homogeneous polynomial from the sum of Rk and ck+1Pk+1 by adding
a variable yk and factorizing by its k + 1-th power.
Therefore, for yk−1 6= 0 :

Rk+1 (zk) = yk (k+1)
(
Rk

(
zk−1
yk (k)

)
+ ck+1Pk+1

(
z0

yk (k+1)

))

=

∑
j∈JkK

cj
∑

i1,...,ij∈JnK

a(j) i1...ijz
i1 ...zij

k−1∏
l=j

yl

 yk
+ck+1

∑
i1,...,ik+1∈JnK

a(k+1) i1 ... ik+1z
i1 ...zik+1 .

And for yk = 0, it is set by continuous prolongation:

Rk+1 (zk−1, 0) = ck+1
∑

i1,...,ik+1∈JnK

a(k+1) i1 ... ik+1z
i1 ...zik+1 .

The fact that Pk+1 (z0) can be null does not prevent to do the step: the degree of Rk
will then be elevated of 1.
The interpretation of this step is similar to the one done for the case k = 1.

End step phase: If k equals rH − 1, the iterative part ends up, else k := k + 1 and,
the next iteration is started.

Conclusion: The algorithm build a family of homogeneous polynomial which is inter-
pretable in term of uniformisation of a hypergraph.

E.1.4.5. Building an unnormalized symmetric tensor from this family of
homogeneous polynomials

Based on RH :
It is now insightful to interpret the built polynomials.
The notation w(k) = w1

(k), ..., w
n+k−1
(k) is used, with for i ∈ JnK : wi(k) = zi and for

j ∈ Jk − 1K : wn+j
(k) = yj .

• The interpretation of R1 is trivial as it holds the single element hyperedges of the
hypergraph;

• R2 is a homogeneous polynomial with n+ 1 variables of order 2:

R2 (z1) = c1
∑
i∈JnK

a(1) iz
iy1 + c2

∑
i1,i2∈JnK

a(2) i1i2z
i1zi2

= c1
∑
i∈JnK

α(1) iz
iy1 + c2

∑
16i16i26n

α(2) i1i2z
i1zi2 .

It can be rewritten:

R2
(
w(2)

)
=

∑
i1,i2∈Jn+1K

r(2) i1i2w
i1
(2)w

i2
(2)

where:
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– for 1 6 i1 6 i2 6 n and σ ∈ S2 :

r(2)σ(i1)σ(i2) =
c2α(2) i1i2

2! = c2a(2) i1i2 ;

– for i ∈ JnK and σ ∈ S2 :

r(2)σ(i)σ(n+1) =
c1α(1) i

2! =
c1a(1) i

2! ;

– the other coefficients: r(2) i1i2 are null.
Also R2 can be linked to a symmetric hyper-cubic tensor of order 2 and dimension
n+ 1.

• Rk is a homogeneous polynomial with n+ k − 1 variables of order k.

Rk (zk−1) =
∑
j∈JkK

cj
∑

i1,...,ij∈JnK

a(j) i1...ijz
i1 ...zij

k−1∏
l=j

yl

=
∑
j∈JkK

cj
∑

16i16...6ij6n
α(j) i1...ijz

i1 ...zij
k−1∏
l=j

yl

with the convention that:
k−1∏
l=j

yl = 1 if j > k − 1.

It can be rewritten:

Rk
(
w(k)

)
=

∑
i1,...,ik∈Jn+k−1K

r(k) i1 ... ikw
i1
(k)...w

ik
(k),

where:
– for 1 6 i1 6 ... 6 ik 6 n, for all j ∈ Jk − 1K , for all σ ∈ Sk :

∗ r(k)σ(i1)...σ(ik) =
ckα(k) i1...ik

k! = cka(k) i1...ik ;

∗ r(k)σ(i1)...σ(ij)σ(n+j)...σ(n+k−1) =
cjα(j) i1...ij

k! = j!
k!cja(j) i1...ij ;

– the other elements r(k) i1 ... ik are null.
Also Rk can be linked to a symmetric hyper-cubic tensor of order k and dimension
n+ k − 1 written Rk whose elements are r(k) i1 ... ik .

The hypermatrix RrH is called the unnormalized e-adjacency hypermatrix.

E.1.4.6. Interpretation and choice of the coefficients for the unnormalized tensor

There are different ways of setting the coefficients c1, ..., ckmax that are used. These
coefficients can be seen as a way of normalizing the tensors of e-adjacency generated
from the k-uniform hypergraphs.
A first way of choosing them is to set them all equal to 1. In this case, no normalization
occurs. The impact on the e-adjacency tensor of the original hypergraph is that e-
adjacency in hyperedges of size k have a weight of k times bigger than the e-adjacency
in hyperedges of size 1.
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A second way of choosing these coefficients is to consider that in a k-uniform hyper-
graph, every hyperedge holds k vertices and then contributes k to the total degree.
Representing this k-uniform hypergraph by the k−adjacency degree normalized ten-
sor Ak of CHR Ak =

(
a(k) i1...ik

)
i1,...,ik∈JnK

, it holds a revisited hand-shake lemma for
k-uniform hypergraphs:

∑
16i1,...,ik6n

a(k) i1...ik =
∑
i∈JnK

∑
i2,...,ik∈JnK

a(k) ii2...ik

=
∑
i∈JnK

d(k) i

= k |Ek|

where d(k) i is the degree of the vertex vi in Hk.

This formula can be extended to general hypergraphs:

|E| =
∑

k∈JrHK

|Ek|

=
∑

k∈JrHK

1
k

∑
i∈JnK

d(k) i

=
∑

k∈JrHK

1
k

∑
i1,...,ik∈JnK

a(k) i1...ik .

For general hypergraphs, the tensor is of order rH.∑
i1,...,irH∈Jn+rH−1K

ri1...irH =
∑

i∈Jn+rH−1K

∑
i2,...,ik∈Jn+rH−1K

rii2...irH

=
∑
i∈JnK

deg (vi) +
n+rH−1∑
i=n+1

deg (yi) .

The constructed tensor corresponds to the tensor of a rH-uniform hypergraph with
n+ rH − 1 vertices. It holds:

∑
i1,...,irH∈Jn+rH−1K

ri1...irH = rH|E|.

And, therefore:

∑
i1,...,irH∈Jn+rH−1K

ri1...irH =
∑

k∈JrHK

rH
k

∑
i1,...,ik∈JnK

a(k) i1...ik .

Also, ck = rH
k

seems to be a good choice in this case.

The final choice will be taken in the next paragraph to answer to the required specifi-
cations on degrees. It will also fix the matrix chosen for the uniform hypergraphs.
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E.1.4.7. Fulfillment of the unnormalized e-adjacency tensor expectations

Guarantee E.1. The tensor should be symmetric and its generation should be simple.

Proof. By construction, the e-adjacency tensor is symmetric. To generate it, only one
element has to be described for a given hyperedge the other elements obtained by
permutation of the indices being the same. Also, the built e-adjacency tensor is fully
described by giving |E| elements.

Guarantee E.2. The unnormalized e-adjacency tensor keeps the overall structure of
the hypergraph.

Proof. By construction, the layer of level equal or under j can be seen in the mode 1 at
the n + j-th component of the mode. To have only elements of level j one can project
this mode so that it keeps only the first n dimensions.

In the expectations of the built co-tensors listed in the paragraph E.1.4.2, the e-adjacency
tensor should allow the retrieval of the degree of the vertices. It implies to fix the choice
of the k-adjacency tensors used to model each layer of the hypergraph as well as the
normalizing coefficient.
Let consider for k ∈ JrHK, l ∈ J2, rHK and i ∈ Jn+ rH − 1K :

Ik,l,i = {(i1, ..., il) : i1 = i ∧ ∀j ∈ J2, lK : ij ∈ Jn+ k − 1K}

and its subset of ordered tuples:

OIk,l,i={(i1,...,il):(i1,...,il)∈Ik,l,i∧(l>2 =⇒ ∀(j1,j2)∈J2,lK2:j1<j2 =⇒ ij1<ij2)}.

Then: ∑
(i1,...,irH)∈IrH,rH,i

ri1...irH =
∑

(i1,...,irH)∈OIrH,rH,i
(rH − 1)!ri1...irH

=
rH∑
j=1

∑
(i1,...,ij)∈OIrH,j,i

j!cja(j) i1...ij
rH

.

Hence, the expectation on the retrieval of degree imposes to set cja(j) i1...ij = rH
j! for the

elements of A(j) that are not null, which is coherent with the usage of the coefficient
cj = rH

j
and of the degree-normalized tensor for j-uniform hypergraph where not null

elements are equals to: 1
(j − 1)! . This choice is then made for the rest of the Chapter.

Remark E.1.1. By choosing cj = rH
j

and the degree-normalized tensor for j-uniform

hypergraph where non-zero elements are equals to: 1
(j − 1)! , it follows that:

ri1...irH = 1
(rH − 1)!
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for all elements which is consistent with the fact that we have built a rH-uniform hy-
pergraph by filling each hyperedge with additional vertices. This method is similar to
make a plaster molding from a footprint in the sand: the filling elements help reveal the
underlying structure.

With this choice, writing 1e∈E :
{

1 if e ∈ E
0 otherwise

, it holds:

∑
(i1,...,irH)∈IrH,rH,i

ri1...irH =
∑

j∈JrHK

∑
(i1,...,ij)∈OIrH,j,i

1{
vi1 ,...,vij

}
∈E .

It follows immediately:

Guarantee E.3. The unnormalized e-adjacency tensor allows the retrieval of the degree
of the vertices of the hypergraph.

Proof. Defining for i ∈ JnK: di = deg (vi) .
From the previous choice, it follows that:∑

(i1,...,irH)∈IrH,rH,i
ri1...irH =

∑
(i1,...,irH)∈OIrH,rH,i

(rH − 1)!ri1...irH

=
∑

j∈JrHK

∑
(i1,...,ij)∈OIrH,j,i

j!cja(j) i1...ij
rH

=
∑

j∈JrHK

∑
(i1,...,ij)∈OIrH,j,i

1{
vi1 ,...,vij

}
∈E

= deg (vi)

as
j!cja(j) i1...ij

rH
= 1 only for hyperedges where vi is in it (and they are counted only

once for each hyperedge).

Guarantee E.4. The unnormalized e-adjacency tensor allows the retrieval of the num-
ber of hyperedges of same cardinality.

Proof. Defining dn+i = |{e : |e| 6 i}| for i ∈ JrHK .

∑
(i1,...,irH)∈IrH,rH,n+i

ri1...irH =
∑
j∈JiK

∑
16l1<...<lj6n

(rH − 1)!
j!cja(j) i1...ij

rH!

=
∑
j∈JiK

∑
16l1<...<lj6n

1{
vl1 ,...,vlj

}
∈E

due to the fact that rn+i i2...irH 6= 0 if and only if there exists at most i indices i2 to irH
that are between 1 and n which correspond to vertices in the general hypergraph and
the other indices have value strictly above n which represent additional vertices.
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It follows: ∑
(i1,...,irH)∈IrH,rH,n+i

ri1...irH = dn+i.

We set: dn+rH = |E| .
Also dn+j allows to retrieve the number of hyperedges of cardinality equal or less than
j.
Therefore:

• for j ∈ J2, rHK: |{e : |e| = j}| = dn+j − dn+j−1;
• for j = 1: |{e : |e| = 1}| = dn+1.

An other way of keeping directly the cardinality of the layer rH in the e-adjacency tensor
would be to store it in an additional variable yrH .

We gather here the fullfilment of Expectation E.5 and E.6.

Guarantee E.5. The e-adjacency tensor is unique up to the labeling of the vertices for
a given hypergraph.
Reciprocally, given the e-adjacency tensor and the number of vertices, the associated
hypergraph is unique.

Proof. Given a hypergraph, the process of decomposition in layers is bijective as well
as the formalization by degree normalized k-adjacency tensor. Given the coefficients,
the process of building the e-adjacency homogeneous polynomial is also unique and the
reversion to a symmetric cubic tensor is unique.
Given the e-adjacency tensor and the number of vertices, as the e-adjacency tensor
is symmetric, up to the labeling of the vertices, considering that the first n variables
encoded in the e-adjacency tensor in each direction represents variables associated to
vertices of the hypergraph and the last variables in each direction encode the informa-
tion of cardinality, it is possible to retrieve each layer of the hypergraph uniquely and,
consequently, the whole hypergraph.

Expectation E.7 will be used in Chapter 3 for the final choice of the tensor.

E.1.4.8. Interpretation of the e-adjacency tensor

The general hypergraph layer decomposition allows to retrieve uniform hypergraphs
that can be separately modeled by e-adjacency (or equivalently k-adjacency) tensor of
k-uniform hypergraphs. We have shown that filling these different layers with additional
vertices help to uniformize the original hypergraph by keeping the e-adjacency. The
coefficients used in the iterative process have to be seen as weights on the hyperedges of
the final rH-uniform hypergraph: these coefficients allow to retrieve the right number of
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hyperedges from the uniformed hypergraph tensor so that it corresponds to the number
of hyperedges of the original hypergraph.

The additional dimensions in the e-adjacency tensor allow to retrieve the cardinality
of the hyperedges. By decomposing a hypergraph in a set of uniform hypergraphs, the
hyperedges are normalized using their cardinality.

The iterative approach principle is illustrated in Figure E.3: vertices that are added at
each level give indication on the original cardinality of the hyperedge it is added to.

Figure E.3.: Illustration of the iterative approach concept on an example.
In the iterative approach, the layers of level n and n+ 1 are merged together into the
layer n+1 by adding a filling vertex to the hyperedges of the layer n. On this example,
during the first step the layer 1 and 2 are merged to form a 2-uniform hypergraph.
In the second step, the 2-uniform hypergraph obtained in the first step is merged to
the layer 3 to obtain a 3-uniform hypergraph.

Viewed in an other way, e-adjacency hypermatrix of uniform hypergraph do not need
an extra dimension as the hyperedges are uniform, therefore, there is no ambiguity.
Adding an extra variable allows to capture the dimensionality of each hyperedge while
preventing any ambiguity on the meaning of each element of the tensor.
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E.1.5. Some comments on the e-adjacency tensor

E.1.5.1. The particular case of graphs

As a graph G = (V,E) with |V | = n can always be seen as a 2-uniform hypergraph
HG, the approach given in this paragraph should allow to retrieve in a coherent way the
spectral theory for normal graphs.

The hypergraph that contains the 2-uniform hypergraph is then composed of an empty
level 1 layer and a level 2 layer that contains only HG.

Let A be the adjacency matrix of G. The e-adjacency tensor of the corresponding
2-uniform hypergraph is of order 2 and obtained from A by multiplying it by c2 and
adding one row and one column of zero. Therefore, the e-adjacency tensor of the two

levels of the corresponding hypergraph is: A=
(
c2A 0

0 0

)
.

Also, as an eigenvalue λ of A seen as a matrix is a solution of the characteristic poly-
nomial det (A− λI) = 0 ⇔ −λ det (c2A− λI) = 0 ⇔ −λcn2 det

(
A− λ

c2
I

)
= 0, the

eigenvalues of A are c2 times the ones of A and one additional 0 eigenvalue. This last
eigenvalue is attached to the eigenvector (0...0 1)T . The other eigenvalues have same
eigenvectors than A with one additional n+ 1 component which is 0.

Proof. Let consider Y =
(
X
y

)
with X vector of dimension n. Let λ be an eigenvalue

of A and Y an eigenvector of A.

AY = λY ⇔ A
(
X
y

)
= λ

(
X
y

)
⇔ (c2A− λIn)X = 0 ∧ −λy = 0 ⇔ X eigenvalue

of A attached to λ

c2
. y can be always taken equals to 0 to fit the second condition.

Therefore, globally there is no change in the spectrum: the eigenvectors remain, the
eigenvalues of the initial graph are multiplied by the normalizing coefficient.

E.1.5.2. e-adjacency tensor and disjunctive normal form

Let H = (V,E) be a hypergraph, A its e-adjacency tensor and R̃rH the reduced attached
homogeneous polynomial:

R̃rH

(
w(rH)

)
=

∑
16i1<...<ik6n+rH−1

r̃(rH) i1 ... irHw
i1
(rH)...w

irH
(rH)

with r̃(rH) i1 ... irH = rH!r(rH) i1 ... irH .

The variables
(
wi(rH)

)
i∈Jn+rH−1K

of Rkmax can be considered as Boolean variables and,
therefore, Rkmax can be considered as a Boolean function. The variables wi(rH) for
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i ∈ JnK captures whether a vertex belongs to the considered hyperedge and for i ∈
Jn+ 1, n+ rH − 1K to the layer of level i− n.

This Boolean homogeneous polynomial PB
(
w(rH)

)
is in full disjunctive normal form

as it is a sum of products of Boolean variables holding only once in each product and
where the conjunctive terms are made of rH variables.

PB rH (z0) = PB

z0, 0, ..., 0︸ ︷︷ ︸
rH−1

 allows to retrieve the part of the full DNF which stores

hyperedges of size rH.

PB rH−1 (z0) = PB

z0, 0, ..., 0︸ ︷︷ ︸
rH−2

, 1

 − PB

z0, 0, ..., 0︸ ︷︷ ︸
rH−1

 allows to retrieve the full DNF

which stores hyperedges of size rH − 1.

PB rH−j (z0) = PB

z0, 0, ..., 0︸ ︷︷ ︸
rH−j−1

, 1, ..., 1︸ ︷︷ ︸
j

−PB
z0, 0, ..., 0︸ ︷︷ ︸

rH−j−2

, 1, ..., 1︸ ︷︷ ︸
j−1

 allows to retrieve the

full DNF which stores hyperedges of size rH − j.

Stopping at PB 1 (z0) = PB

z0, 1, ..., 1︸ ︷︷ ︸
rH−1

−PB
z0, 0, 1, ..., 1︸ ︷︷ ︸

rH−2

 allows to retrieve the full

DNF which stores hyperedges of size 1.
Considering the adjacency matrix of [ZHS07] of this unweighted hypergraph, it holds
that w>0 Aw0 can be considered as a Boolean homogeneous polynomial in full disjunctive
form where the conjunctive terms are composed of only two variables. This shows, if
necessary, that this approach is a pairwise approximation of the e-adjacency tensor.
The homogeneous polynomial attached to [BCM17] tensor can be mapped to a Boolean
polynomial function by considering the same term elements with coefficient being 1
when the original homogeneous polynomial has a non-zero coefficient and, 0 otherwise.
Nonetheless, this Boolean function is no more in DNF. Reducing it to DNF yields to

the expression of PB

z0, 1, ..., 1︸ ︷︷ ︸
rH−1

 .

E.1.5.3. First results on spectral analysis of e-adjacency tensor

Let H = (V,E) be a general hypergraph of e-adjacency tensor AH of CHR AH =(
ai1...irH

)
.

In the e-adjacency tensor AH built, the diagonal entries are equal to zero. As all
elements of AH are all non-negative real numbers and as we have shown that:

∀i ∈ Jn+ rH − 1K :
∑

i2,...,irH∈Jn+rH−1K
δii2...irH=0

aii2...irH = di.

It follows:
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Theorem E.1. The e-adjacency tensor AH of CHR AH =
(
ai1...irH

)
of a general

hypergraph H = (V,E) has its eigenvalues λ such that:

|λ| 6 max (∆,∆?) (E.6)

where: ∆ ∆= max
i∈JnK

(di) and ∆? ∆= max
i∈JrH−1K

(dn+i) .

Proof. From B.2, we can write, as ai...i = 0 and aii2...irHare non-negative numbers, that
for all λ it holds:

|λ| 6
∑

i2,...,irH∈Jn+rH−1K
δii2...irH=0

aii2...irH

and thus writing ∆ = max
i∈JnK

(di) and ∆? = max
i∈JrH−1K

(dn+i) , it holds: |λ| 6 max (∆,∆?) .

Proposition E.7. Let H be a r-regular r-uniform hypergraph. Then this maximum is
reached.

Proof. In this case:
∀i ∈ JnK , di = ∆ = r

and:
∆? = 0,

also:
max (∆,∆?) = r.

Considering λ = r and the vector 1 which components are only 1, (r,1) is an eigenpair
of AH as for all i ∈ JnK :

∑
i2,...,irH∈Jn+rH−1K

aii2...irHxi2 ...xirH = λxrH−1
i

⇔
∑

i2,...,irH∈Jn+rH−1K
aii2...irH = r

⇔ di = r.

Remark E.1.2. We see that this bound includes ∆? which can be close to the number
of hyperedges, for instance where the hyperedges would be constituted of only one vertex
per hyperedge except one hyperedge with rH 6= 1 vertices in it.
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E.1.6. Evaluation

We have gathered in Table E.1 some key features of both the e-adjacency tensor proposed
by [BCM17]—written BH—, the new e-adjacency tensor proposed by [SZB19]—written
SH—and the one constructed in this Thesis—written AH. The constructed tensor has
same order than the two others. The dimension of AH is rH−1 bigger than BH and SH
(n− 1 in the worst case). The way AH and SH are built uses potentially (n+ rH − 1)!

(n− 1)!nrH

times less elements than for BH—O

(
n!
nn

)
in the worst case. The number of non-

zero elements filled in AH and SH for a given hypergraph is
(

1 + rH − 1
n

)rH
times

the number of elements of BH (O (4n) times in the worst case). But, the number of
elements to be filled to have full description of a hyperedge of size s by permutation
of indices due to the symmetry of the tensor is only 1 in the case of AH , which is

1
ps (rH) times less than for a hyperedge stored in BH and 1

s
for a hyperedge stored in

SH. The minimum number of elements needed to be described the other being obtained
by permutation is 1

|E|
∑

s∈JrHK
ps (rH) |Es| bigger for BH than for AH and 1

|E|
∑

s∈JrHK
s |Es|

bigger for SH than for AH. Moreover, the value of the elements in BH and SH varies
with the cardinality of the hyperedge; in AH, any element has same value. Both tensors
allow the reconstruction of the original hypergraph; for BH, it requires at least ps (rH)
checks per hyperedge and s in SH as for AH it requires only one element per hyperedge.

In both cases, node degrees can be deduced from the e-adjacency tensor. AH allows the
retrieval of the structure of the hypergraph in term of hyperedges cardinality which is
not straightforward in the case of BH and SH.

The fact that AH can be interpreted in terms of hypergraph uniformisation is possible as
it is the e-adjacency tensor of the Vs-layered uniform hypergraph Ĥŵ obtained from H.
BH and SH are not interpretable in term of hypergraph uniformisation, as hyperedges
do not allow repetition of vertices; we will have to wait the introduction of hb-graphs
to get a meaningful interpretation—Chapter 4.

E.1.7. Further comments

The importance of defining properly the concept of adjacency in a hypergraph has
helped us to build a proper e-adjacency tensor in a way that allows to contain impor-
tant information on the structure of the hypergraph. This work contributes to give
a methodology to build a uniform hypergraph and hence a cubical symmetric tensor
from the different layers of uniform hypergraphs contained in a hypergraph. The built
tensor allows to reconstruct with no ambiguity the original hypergraph. Nonetheless,
first results on spectral analysis show difficulties to use the tensor built as the additional
vertices inflate the spectral radius bound. The uniformisation process is a strong basis
for building alternative proposals.
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BH SH AH
CHR BH SH AH
Order rH rH rH

Dimension n n n+ rH − 1
Total number of

elements
nrH nrH (n+ rH − 1)rH

Total number of
elements potentially
used by the way the

tensor is build

nrH nrH (n+ rH − 1)!
(n− 1)!

Number of non-zero
elements for a given

hypergraph

∑
s∈JrHK

αs |Es| with

αs = ps (rH) rH!
k1!...ks!

∑
s∈JrHK

s! |Es| rH! |E|

Number of repeated
elements per

hyperedge of size s

rH!
k1!...ks!

s! rH!

Number of elements
to be filled per

hyperedge of size s
before permutation

Varying: ps (rH)

Varying s if
prefix is

considered as
non-permuting

part

Constant: 1

Number of elements
to be described to
derived the tensor
by permutation of

indices

∑
s∈JrHK

ps (rH) |Es|
∑

s∈JrHK
s |Es| |E|

Value of elements of
a hyperedge

Varying
s

αs

Varying
1

(s− 1)!

Constant
1

(rH − 1)!
Symmetric Yes No Yes

Reconstructivity Need computation of
duplicated vertices

Need
computation of

duplicated
vertices

Straightforward:
delete special

vertices

Nodes degree Yes Yes Yes

Spectral analysis Yes Yes

Special vertices
increase the

amplitude of the
bounds

Interpretability of
the tensor in term of

hypergraph
uniformisation

No No Yes

Table E.1.: Evaluation of the e-adjacency tensor.

BH is the adjacency tensor defined in [BCM17].
SH is the adjacency tensor defined in [SZB19].

AH is the layered e-adjacency tensor as defined in this Thesis.
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Chapter E Complements Chapter 3: e-adjacency tensor of natural hb-graphs

E.2. Examples of hypermatrices for general hypergraphs

E.2.1. An example of the e-adjacency hypermatrix proposed by [BCM17]

For instance, with the hypergraph H = (V,E) with V = {v1, v2, v3, v4, v5} with E =
{e1, e2, e3} where: e1 = {v1, v2, v3, v4} , e2 = {v2, v5} and e3 = {v3} has as e-adjacency
hypermatrix following the model proposed by [BCM17] BH = (bi1i2i3i4)∀j∈J4K:ij∈J5K .
Considering all permutations of the indices σ ∈ S4, we have:

• e1 stored in all the elements: bσ(1 2 3 4) and of value 1
6;

• e2 stored in all the elements: bσ(2 5 5 5), bσ(2 2 5 5) and bσ(2 2 2 5); the value of these

elements is 2
α2

= 1
7 as α2 = 2× 4!

1!3! + 4!
2!2! = 14;

• e3 stored in b3 3 3 3 = 1.
• The other elements of BH are equal to 0.

E.2.2. An example of layered e-adjacency hypermatrix for general
hypergraph

The example given illustrates the layered e-adjacency tensor for general hypergraphs as
it is exposed in Appendix E.1.

Example E.2.1. Given the following hypergraph: H = (V,E) where:
V = {v1, v2, v3, v4, v5, v6, v7} and E = {e1, e2, e3, e4, e5, e6, e7} with: e1 = {v1, v2, v3} ,
e2 = {v1, v2, v7} , e3 = {v6, v7} , e4 = {v5} , e5 = {v4} , e6 = {v3, v4} and e7 = {v4, v7}.

This hypergraph H is drawn in Figure E.1.
The layers of H are:

• H1 = (V, {e4, e5}) with the associated unnormalized tensor:

A1 raw =
[

0 0 0 1 1 0 0
]

and associated homogeneous polynomial:

P1 (z0) = z4 + z5.

More generally, the version with a normalized tensor is:

P1 (z0) = a(1) 4z4 + a(1) 5z5.

• H2 = (V, {e3, e6, e7}) with the associated unnormalized tensor:

A2 raw =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 1 0


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and associated homogeneous polynomial:

P2 (z0) = 2z3z4 + 2z6z7 + 2z4z7.

More generally, the version with a normalized tensor is:

P2 (z0) = 2!a(2) 3 4z3z4 + 2!a(2) 6 7z6z7 + 2!a(2) 4 7z4z7.

• H3 = (V, {e1, e2}) with the associated unnormalized tensor:

A3 raw =



0 0 0 0 0 0 0
0 0 1 0 0 0 1
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 1 0 0 0 1
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
0| 0| 0|

0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


and associated homogeneous polynomial:

P3 (z0) = 3!z1z2z3 + 3!z1z2z7.

More generally, the version with a normalized tensor is:

P3 (z0) = 3!a(3) 1 2 3z1z2z3 + 3!a(3) 1 2 7z1z2z7.

The iterative process of homogenization is then the following using the degree-normalized
adjacency tensor Ak = 1

(k − 1)!Ak raw and the normalizing coefficients ck = kmax
k

, with
kmax = 3 :

• R1 (z0) = 3
1P1 (z0) ;

• R2 (z1) = R1 (z0) y1 + 3
2P2 (z0) ;

• R3 (z2) = R2 (z1) y2 + 3
3P3 (z0) .

Hence:

R3 (z2) = 3
(
a(1) 4z4 + a(1) 5z5

)
y1y2

+3
2 × 2!

(
a(2) 3 4z3z4 + a(2) 6 7z6z7 + a(2) 4 7z4z7

)
y2

+3!
(
a(3) 1 2 3z1z2z3 + a(3) 1 2 7z1z2z7

)
.

Therefore, the e-adjacency tensor of H is obtained by writing the corresponding sym-
metric cubical tensor of order 3 and dimension 9, described by: r489 = r589 = r349 =
r679 = r479 = r123 = r127 = 1

2 . The other remaining not null elements are obtained by
permutation on the indices.

Finding the degree of one vertex from the tensor is easily achievable; for instance
deg (v4) = 2! (r489 + r349 + r479) = 3.
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