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Introduction
Dans cette thèse, on s’intéresse aux questions d’approximabilité des courbes

tropicales dans les espaces a�nes. Originellement, ces questions ont mené à
l’un des résultats les plus marquants de la récente théorie qu’est la géométrie
tropicale: dans [Mik05], Mikhalkin montre que l’on peut résoudre des problèmes
de géométrie énumérative dans le plan en adoptant un point de vue tropical.
La version tropical de tels problèmes s’avère être bien plus abordable et tend
à se réduire à des questions de combinatoire plus simples. La profondeur
d’une telle approche réside dans l’existence d’une correspondance entre les
objets classiques et les objets tropicaux que l’on considère. Classiquement,
on s’intéresse à compter les courbes planaires de degré fixé et soumises à des
contraintes bien choisies; on entend par là que l’on devrait compter un nom-
bre fini d’objets. La même question possède une contrepartie tropicale qui
admet une réponse combinatoire. Il faut alors se demander en quoi résoudre
le problème tropicalement nous aide à résoudre notre problème de départ.
Le théorème de correspondance de Mikhalkin nous dit que les solutions du
problème tropical correspondent à un certain nombre de solution du problème
d’origine, et donc qu’un compte tropical avec les multiplicités appropriées
nous mène au résultat escompté. Pour autant, nous n’avons pas expliqué
ce qu’était cette correspondance : il s’agit de la possiblité d’approximer les
courbes tropical par des familles de courbes algébriques classiques, modulo
une dégénérescence de la structure complexe ambiante.
Suivant les idées développées par Krichever dans [Kri], on abordera la ques-
tion d’approximabilité avec une perspective plus large : au lieu de nous
restreindre aux applications algébriques, nous considérerons plutôt des ap-
plications harmoniques, nous permettant ainsi une plus grande flexibilité.
À étendre notre point de vue, on peut espérer pouvoir approximer une plus
grande variété d’objets : nous les appellerons courbes tropicales harmoniques,
ainsi que les morphismes harmoniques associés. Dans la première partie de
ce travail, nous montrerons que tout morphisme tropical harmonique est
approximable par une famille d’applications harmoniques sur des surfaces
de Riemann. Il nous faudra passer par un théorème de convergence sur
les familles de di↵érentielles imaginaires normalisées sur les surfaces de Rie-
mann, dans le style de [GK10]. À l’aide de cette machinerie, on donnera une
démonstration alternative du théorème d’approximation des courbes tropi-
cales complexe dans le plan, originellement du à Mikhalkin.
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Un autre de nos intérêts pour les questions d’approximabilité se rattache
à la topologie des courbes algébriques réelles, comme suggéré par le seizième
problème de Hilbert. Cela nous ramène à la fin des années soixante-dix,
lorsque Viro inventa les techniques dites aujourd’hui de patchworking, cf
[Vir08] par exemple. On ne pourrait donner ici une liste exhaustive des appli-
cations de ces techniques comme [Vir84], [IV96], [Mik00] ou encore [ABD14].
Le but de telles méthodes est de construire des courbes algébriques réelles
planaires, ou plus généralement dans n’importe quelle surface torique, tout
en controllant leur topologie. Originellement, ces techniques servaient à pro-
duire des courbes lisses, mais on put produire après quelques améliorations
certaines courbes singulières, cf [MMS12] et [Shu12]. Concernant la de-
scription des courbes singulières, il y à deux manières de s’y prendre : soit
en en donnant une équation, soit en en donnant une paramétrisation. À
noter que la seconde a l’avantage d’être stable : en e↵et, la déformation
d’une paramétrisation ne fait pas disparâıtre les singularités, contrairement
à la déformation générique d’une équation. C’est en partie pour cela que le
théorème d’approximation de Mikhalkin est très pratique pour construire des
courbes singulières avec une topologie métrisée. Dans la seconde partie de
cette thèse, nous utiliserons ces techniques pour construire et classifier une
classe très particulière de courbes. Les courbes de Harnack simples ont été
introduites par Mikhalkin dans [Mik00]. Dès lors, on leur a trouvé une mul-
titude de définitions equivalentes et très intéressantes (voir [MR01], [MO07]
et [PR04]) et on leur a trouvé quelques étonnantes interprétations physiques
(voir [KOS06] et [CD13]). Ici, nous donnerons une généralisation naturelle
de ces courbes. En particulier, nous permettons à ces courbes d’acquérir des
singularités de tous types, contrairement aux courbes originelles, cf [MR01].
Nous montrerons que ces courbes admettent une contrepartie tropicale et
que leur approximation donne lieu à toute une faune de nouvelles courbes de
Harnack. Enfin, nous donnerons la classifiaction topologique des courbes de
Harnack possédant un unique noeud hyperbolique. Il s’agit du cas le plus
simple n’ayant pas été traité jusqu’à là. Nous décrirons complètement leur
classification topologique et établirons une relation forte entre ces courbes
et leur avatars tropicaux, dans le style de [KO06]. Nous pensons que ces
courbes ont encore beaucoup de secrets à nous livrer. Nous appuyerons nos
spéculations dans la toute dernière section de ce travail.

Cette thèse se divise en deux parties. Elles peuvent être lues indépendamment,
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bien qu’elles soient très connectées dans leur contenu.
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Introduction
In this work, we investigate a generalization of the question of approxima-

bility of tropical curves in a�ne spaces. Originally, this question led to one
of the most striking result in the early days of tropical geometry: in [Mik05],
Mikhalkin showed that one can give tropical solutions to classical problems
in enumerative geometry in the plane. The tropical version of such enumer-
ative problems turns out to be more tractable as the whole question reduces
to simple combinatorics. The deepness of such an approach lies in the exis-
tence of a correspondence between the classical and tropical objects involved
in the picture. Classically, one is interested in counting algebraic curves in
the plane with a fixed degree and submitted to well chosen point constraints,
meaning that the number of solution should be finite. The very same ques-
tion can be considered tropically and solved by combinatorial means. Now
comes the question of how much does it help to solve the original problem.
Mikhalkin’s correspondence theorem states any tropical solution corresponds
to a certain number of classical solutions and that counting the number of
tropical solutions with multiplicities leads to the classical count. Still, we
did not explain how this correpondence arises: it comes from the ability to
approximate tropical curves by a family of classical ones while degenerating
the ambient complex structure.
Following the ideas introduced by Krichever in [Kri], we approach the ques-
tion of approximability from a wider point of view by dealing not only with
algebraic maps but also with harmonic ones. This extension allows for a lot
more flexibility. As a consequence, one approximates a wider class of objects
that will be called harmonic tropical curves and associated harmonic mor-
phisms. In the first part of this work, we prove that basically any tropical
harmonic morphism is approximable by families of harmonic maps on Rie-
mann surfaces. This goes by the way of a convergence theorem on sequence
of imaginary normalized di↵erentials on Riemann surfaces, in the spirit of
[GK10]. Using this framework, we give an alternative proof of Mikhalkin’s
approximation theorem for simple complex tropical curves in the plane.

Another motivation of the question of approximability that will be of in-
terest to us is related to the topology of real algebraic curves, as suggested by
Hilbert’s sixteenth problem. It brings us back to the late seventies when Viro
invented the now called patch-working techniques, see [Vir08] for instance.
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One could give but a partial list of the applications of such techniques, as
[Vir84], [IV96], [Mik00] or [ABD14]. The aim of such techniques is to pro-
duce real algebraic curves in the plane, or in any toric surface, with prescribed
topology. Originally designed to produce smooth curves, some enhancement
of Viro’s patch-working allows to construct singular ones, see [MMS12] and
[Shu12]. Regarding construction of singular curves, one can proceed in 2
ways : either by using equations or by using parametrizations. The latter
has the advantage of stability, namely that singularities of a curve do not
disappear by perturbation of a parametrization, unlike equations. That is
why Mikhalkin’s approximation theorem is very usefull and tractable for the
construction of singular curves with prescribed topology. In the second part
of this work, we use these techniques to construct and classify a class of
very particular planar curves. Simple Harnack curves have been introduced
by Mikhalkin in [Mik00]. Since then, it has been shown they possess many
equivalent and interesting definitions (see [MR01], [MO07] and [PR04]) and
that they have surprising physical interpretations (see [KOS06] and [CD13]).
Here, we provide a natural extension of this class of curves. In particular,
we allow such curves to possess singularities of any kind, unlike the classical
definition, see [MR01]. We show that these curves have tropical counterparts
and that their approximation produces a whole zoo of new Harnack curves.
Finally we undertake the topological classification of Harnack curves with
a single hyperbolic node. This is the simplest instance that has yet to be
considered. We give a complete description of them and show a strong con-
nection with their tropical counterparts, in the fashion of [KO06]. We believe
these curves have yet to reveal all their secrets. We motivate our speculation
in the very last section of this work.

The content of this thesis is two-folded. Both part can be read quite inde-
pendently, however they are strongly connected in spirit.
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mots sur tout ce que vous m’inspirez. Clo, merci pour tous ces beaux mo-
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Part I

On convergence of imaginary
normalized di↵erentials,
harmonic tropical curves and
their approximation
Introduction In his paper [Kri], I.Krichever introduced a generalization
of the notion of amoebas due to Gelfand, Kapranov and Zelevinsky [GKZ08].
Imaginary normalized di↵erential are meromorphic di↵erentials on Riemann
surface having simple poles and purely imaginary periods. It is a classical
fact due to Riemann that imaginary normalized di↵erentials are determined
by their collection of residues at the poles. Integrating the real part of such
di↵erentials provides real valued harmonic functions. Any n-tuple of those
functions gives a map very similar to the classical amoeba map for algebraic
varieties immersed in any complex torus. In this work, we suggest the ter-
minology of harmonic amoebas for the image of such maps. Krichever shows
that harmonic amoebas are very similar to classical ones: in the planar case,
they have thin tentacles going o↵ to infinity and define convex connected com-
ponents in their complement. They also possess a logarithmic gauss map, a
Ronkin function, gradient of which takes values in a convex polygon, as in
[PR04]. They have finite area bounded in term of the area of their “Newton”
polygon. The bound provided is sharp and characterizes a generalization of
simple Harnack curves as studied in [Mik00] and [MR01].
One distinction from the algebraic picture introduced by [GKZ08] is that
there is no restriction on the Riemann surfaces under consideration. For ex-
ample, admitting an embedding in a toric surface imposes a constraint on
the moduli spaces of curves, see [CV09] for example. A second distinction
is non integrality: the Legendre transform of the Ronkin function defines a
piecewise linear function. In turn, the corner locus of this function defines the
harmonic spine of the harmonic amoebas. The facets of the Legendre trans-



form, and thus the spine of a harmonic amoeba are no longer constrained
to have integral slopes. Consideration of such object is our motivation to
introduce here the notion of harmonic tropical curves.
To be more precise, we introduce the notion of harmonic morphism from
abstract tropical curves to a�ne spaces. The definition is a mimic of the one
given in [Mik05], except that one allows irrational slopes. Let us mention here
that we won’t give a general definition of what an harmonic tropical curve is.
In the usual tropical setting, an immersed (or parametrized) tropical curve
is more than its underlying point set. It is generally equipped with weights
that can be defined in a very natural way, thanks to integrality. Such data
gives extra information about the possible parametrization of such objects.
In the harmonic case, things are more complicated and the data one should
add to the underlying point set is more cumbersome. Therefore, we give the
precise definition only in the case of simple harmonic tropical curves, yet still
focus on morphisms in great generality. .
In this part, we show that tropical harmonic morphism can be approximated
by harmonic amoeba map from Riemann surfaces to a�ne spaces. This goes
by the study of convergence of imaginary normalized di↵erentials (i.n.d. for
short) along well chosen families of Riemann surfaces. Such approximability
implies that harmonic tropical curves of any type can be obtained as limit of
families of harmonic amoebas. With a bit of extra work, it provides an alter-
native proof of a theorem due to Mikhalkin: the approximability of simple
complex tropical curves in the plane.
Let us now describe more precisely the content of the first part of this thesis,
section by section.

1. We introduce the necessary material. We recall the main facts of the
paper [Kri] which is the starting point of our study. Then, we introduce the
necessary settings in order to define convergence of di↵erentials. We also
reviews some classical facts about hyperbolic geometry in the plane with a
view toward uniformization of Riemann surfaces, their decomposition into
pairs of pants and the introduction of Fenchel- Nielsen coordinates. We end
up with the usual definitions surrounding tropical curves.

2. We define convergence of a sequence of Riemann surfaces toward an
abstract tropical curve in terms of Fenchel-Nielsen coordinates. In spirit,
this definition first exhibit the limiting curve, the maximally degenerate sta-
ble curve dual to the abstract tropical curve, when simply considered as a
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graph. Secondly, it specify how fast vanishing cycles are contracted in time.
In a way, it describes an abstract tropical curve as a linear subspace of the
tangent space of the corresponding stable curve. Now fixing a collection of
residues specifies both a sequence of i.n.d. defined respectively on the se-
quence of Riemann surfaces, and and exact (tropical) 1-form on the limiting
tropical curve. We prove

Theorem 1. “ The sequence of i.n.d. converges to an i.n.d. on
the limiting stable curve. The di↵erential at the limit is totally
determined by the exact 1-form on the limiting tropical curve.”

We then refine the definition of convergence to abstract complex tropical
curves: one demands convergence of the twists in the Fenchel-Nielsen coor-
dinates. In a way, it describes abstract complex tropical curves as tangent
direction in the tangent space of the corresponding stable curve. We obtain

Theorem 2. “ The sequence of period matrices associated to the
sequence of i.n.d. converges. The limiting period matrix is totally
determined by the limiting complex tropical curve and the exact
1-form on it.”

3. Fix a sequence of Riemann surface converging to an abstract tropical
curve. As before, choosing a m-tuples of collection of residues defines a se-
quence of m i.n.d.’s on the sequence of Riemann surface, and m exact 1-forms
on the tropical curve. Integration of these forms corresponds to an harmonic
morphism on the tropical curve, giving rise to an immersed harmonic tropi-
cal curve. Integration of the i.n.d.’s gives a sequence of harmonic amoebas.
Using theorem 1, one has

Theorem 3. “ The sequence of harmonic amoebas converges in
Hausdor↵ distance to the harmonic tropical curve.”

4. In the last section, we undertake the question of integrality in the planar
case. It was a remark in [Kri] that exponentials of harmonic maps given by
i.n.d.’s admits a well define harmonic conjugate if and only if the periods
of the di↵erentials are integer multiples of 2⇡i. In such case it gives rise to
an holomorphic function. Then, any m-tuples of such di↵erentials defines a
classical amoeba in the a�ne m-space. Theorem 2 implies that the limiting
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period matrix is integer when the sequence of Riemann surfaces converges to
the normalization of a simple complex tropical curve in the plane. The fact
that the period matrix is integral at the limit does not guarantee intregality
close to the limit. Then, in order to prove Mikhalkin’s approximation theo-
rem, see theorem 4.9, one look for sequences of Riemann surfaces included in
some leaf of the moduli space. Such leaves are those on which the specified
i.n.d.’s have the desired integer periods. We show that these leaves have the
required transversality property at the limit and give an alternative proof of
Mikhalkin’s theorem.

1 Prerequisites

1.1 Imaginary normalized di↵erentials and harmonic
amoebas

In this section, one briefly overviews the facts of [Kri] of main interest for
us. Unless specified otherwise, the proofs of the statements to follow can be
found there.

Definition 1.1. Let n and g be natural numbers such that 2g � 2 + n > 0
with n � 2, and S 2 Mg,n a Riemann surface. An imaginary normalized
di↵erential ! on S is an holomorphic di↵erential on S having simple poles
at the n punctures of S and such that

Re

✓

Z

�

!

◆

= 0

for any � 2 H
1

(S,Z).

Theorem 1.2. Let n and g be natural numbers such that 2g�2+n > 0 with
n � 2, and S 2 Mg,n a Riemann surface. Denote by p

1

, ..., pn the n punctures
of S. For any collection of real number r

1

, ..., rn such that
P

j rj = 0, there
exists a unique imaginary normalized di↵erential ! on S such that

Resp
j

! = rj

for any 1  j  n.

Proof See [Lan82].
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⇤

Definition 1.3. A collection of residues R is the data R :=
n

(r(j)
1

, ..., r(j)n )
o

1jm

for some natural numbers n and m and real numbers r(j)k such that for any
1  j  m

X

1kn

r(j)k = 0.

The number m is called the dimension of R. According to the previous theo-
rem, a collection of residues R defines a collection of imaginary normalized
di↵erentials !R,S := (!(1)

R,S, ...,!
(m)

R,S) on any curve S 2 Mg,n defined by

Resp
k

!(j)
R,S = r(j)k

for any 1  k  n and 1  j  m, where pk is the k-th puncture of S.
Given a collection of residues R, a curve S 2 Mg,n and an initial point
z
0

2 S, one defines the map

AR : S ! Rm

z 7!
⇣

Re(
R z

z
0

!(1)

R,S), ..., Re(
R z

z
0

!(m)

R,S)
⌘ .

One introduces here the following terminology

Definition 1.4. Let S 2 Mg,n and R be a collection of residues of dimension
m. The set AR(S) ⇢ Rm is the harmonic amoeba of S with respect to R.

Those objects have been introduced by Krichever in [Kri]. Recall that
classical amoebas as introduced in [GKZ08] are defined as images of algebraic
subvarieties V ⇢ (C⇤)m by the map

A : (C⇤)m ! Rm

(z
1

, ..., zk) 7! (log |z
1

|, ..., log |zk|)
.

Suppose for simplicity that V is smooth. The embedding of V in (C⇤)m is
given by the m coordinates functions zj’s. The map A|

V

is given coordinate
wise by integrating the real part of the imaginary normalized di↵erentials
d log zj. Note that any period of such di↵erential is an integer multiple of
2i⇡, it applies in particular for its residues at the punctures.
Here, one restricts to the case of amoebas of Riemann surface S. The major
di↵erence with harmonic amoebas is that S can be taken arbitrarily. In
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particular, S need not to be immersed in the torus (C⇤)m. Moreover, the
collection of residues R can take arbitrary values at a puncture.
The terminology is motivated by the fact that any coordinate function of
the map AR is harmonic on the punctured Riemann surface, and that the
definition of harmonic amoebas generalizes the one of classical amoebas in
the case of Riemann surfaces.
The first analogy with classical amoebas is given by the following

Proposition 1.5. Let S 2 Mg,n and R be a collection of residues of dimen-
sion 2. Then, all the connected components of the complement of AR(S) ⇢ R2

are convex, and the unbounded components are separated by tentacle-like
asymptotes of AR(S).

The similarity goes far beyond. To such harmonic amoebas, once can
associate a logarithmic Gauss map, a Ronkin function and extend many
classical properties of those objects. One again, one refers to [Kri]. Even
though it hasn’t been defined there, the latter reference provide the material
to generalize the notion of spine over verbatim, as it was introduced in [PR04].
Such consideration leads to introducing a more general class of immersed
tropical curve with non rational slopes. They will be introduced further in
this text as harmonic tropical curves.

Proposition 1.6. Let S 2 Mg,n and R be a collection of residues of dimen-
sion 2. There exists a constant MR independent of S, such that

Area (AR(S))  MR

where Area is the euclidean area in R2.

Let S 2 Mg,n and R be a collection of residues of dimension m. Fixing
a basis �

1

, ..., �
2g+n�1

of H
1

(S,Z), one can define the period matrix PR,S 2
M

(2g+n�1)⇥m(R) by

(PR,S)l,k :=
1

2i⇡

Z

�
l

!(k)
R,S.

A change of basis of H
1

(S,Z) is given by a matrix A 2 Sl
2g+n�1

(Z). The
period matrix relative to the new basis is given by A · PR,S.

Definition 1.7. For S 2 Mg,n and R be a collection of residues of dimension
m, the period matrix of S with respect to R is the equivalence class of PR,S 2
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M
(2g+n�1)⇥m(R) by the left action of Sl

2g+n�1

(Z). One still denote this class
by PR,S.
PR,S is an integer period matrix if one of its representative (and then all of
them) has all its entries in Z. In such case, one can define the holomorphic
map

◆R : S ! (C⇤)m

z 7!
⇣

e
R
z

z

0

!
(1)

R,S , ..., e
R
z

z

0

!
(m)

R,S

⌘ .

1.2 Relative di↵erentials and the Hodge bundle

One of he main ingredient of the results to follow is the study of sequences
of imaginary normalized di↵erentials on Riemann surfaces. In the present
case, we want to study the convergence of a family {St,!t}t2N, where !t

is an imaginary normalized di↵erential on a Riemann surface St, such that
St converges to maximally degenerated stable curve of the compact moduli
space Mg,n. One has to precise what we mean by convergence, and in which
space.
Recall that the classical Hodge bundle ⇤g,n ! Mg,n is the rank g vector bun-
dle whose fiber at a point (S; p

1

, ..., pn) is the space of holomorphic sections
of the dualizing sheaf over S, see [ELSV01]. Geometrically, the fiber of ⇤g,n

over a smooth curve (S; p
1

, ..., pn) 2 Mg,n is the vector space of holomor-
phic di↵erentials. Now for a singular curve (S; p

1

, ..., pn) 2 Mg,n with simple
node q

1

, ..., qk, the fiber of ⇤g,n over S is the vector space of meromorphic
di↵erentials such that their pullback on the normalization S̃ have at most
simple poles at the preimages of the nodes of S, and such that their residues
at the 2 preimages of any of the qj’s are opposite to each other. Note that
this vector space is also g-dimensional. The fact that ⇤g,n is a vector bundle
on Mg,n can be found in [ACG11], and references therein. Now, consider the
following twisted version of the latter bundle.

Definition 1.8. One defines ⇤m
g,n ! Mg,n to be the vector bundle of rank

g + n � 1 obtained by tensoring ⇤g,n by OS(p1 + ... + pn). An point of ⇤m
g,n

lying over a curve S will be called a generalized meromorphic di↵erential on
S.

The fibers of ⇤m
g,n are easily described in terms of the one of the Hodge

bundle: we simply allowed extra simple poles at the punctures. Then, a
sequence

��

St,!t

� 

t2N is just a sequence of points in the total space of ⇤m
g,n.

We naturally define
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Definition 1.9. A sequence
��

St,!t

� 

t2N convergence if it converges point-
wise in the total space of the bundle ⇤m

g,n

Of course, it would be very practical to have a set of coordinates, at
least locally, to determine such point wise convergence. Convergence on the
base space will be described in term of Fenchel-Nielsen coordinates, see next
subsection. We should only care about a coherent coordinate system on
the fibers over the sequence {St}t2N. Assume for example that there is a
simply connected open subset U ⇢ Mg,n such that {St}t>t

0

⇢ U , for some
large t

0

. In such case, H
1

(S,Z) can be trivialized on U . In the sequel, we
will consider sequences converging to maximally degenerated stable curves.
Irreducible components of such curves are Riemann spheres with 3 marked
points standing for either nodes or marked points of the curve. There are
exactly 3g� 3 nodes. Hence, the sequence {St}t>t

0

specifies 3g� 3 vanishing
cycles in H

1

(S,Z), cycles against which one can integrate the di↵erentials !t,
for any time t > t

0

. Now, choose g of these cycles and (n � 1) small loops
around all the punctures except one such that they are linearly independant
in H

1

(S,Z). Denote them by �
1

, ..., �g+n�1

, then computing the periods along
those cycles gives the map

⇤m
g,n

�

U
�

! U ⇥ Cg+n�1

(S,!) 7!
⇣

S,
� R

�
1

!, ...,
R

�
g+n�1

!
�

⌘ .

This provides a system of coordinates on the fibers of the twisted Hodge
bundle ⇤m

g,n above U . In particular, we have the following lemma

Lemma 1.10. A sequence
��

St,!t

� 

t>t
0

converges if and only if the sequence

{St}t>t
0

converges in Mg,n and if the period vectors
� R

�
1

!t, ...,
R

�
g+n�1

!t

�

converges in Cg+n�1.

We conclude this section by recalling the notion of relative di↵erential in a
particular case of interest for us. In order to determine global convergence of
di↵erentials, one need to study their local behaviour on the Riemann surface
around the nodes to be. Generically, simple nodes appear by shrinking cycles
in cylinders. A canonical model can be chosen as

F : D(1, 1) ! D(1)
(x, y) 7! xy
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whereD(1, 1) :=
�

(x, y) 2 C2

�

� |x| < 1, |y| < 1
 

andD(1) :=
�

� 2 C
�

� |�| < 1
 

.
The fibers of F over a non zero � are holomorphic cylinders and the fiber
over 0 is the union of the 2 unit discs in C2. We will denote them by

C� := F�1(�).

Consider the relative dualizing sheaf !F of the morphism F , see [ACG11]. As
before, sections of such sheaf are just holomorphic di↵erentials on C� for � 6=
0. The fiber over C

0

is the space of meromorphic di↵erentials having simple
poles with opposite residues at the origin of both irreducible component of
C

0

. Roughly speaking, global sections are given by di↵erential on the total
space D(1, 1) mod out by di↵erentials coming from functions on the base.
The latter are exactly those that are identically zero on every fiber C�. For
example

d� = ydx+ xdy

implies that dx
x

is equivalent to �dy
y

as a section of !F . They correspond
to the same di↵erential while restricted to any fiber C�. In particular, the
induced di↵erential on C

0

is given by dx
x

on the x-unit disc and �dy
y

on the
y-unit disc.

Let us now define what we will mean by the convergence of a sequence
of holomorphic di↵erentials in this local model. It is a classical fact that
the moduli space of holomorphic cylinders is described by the family C� for
0 < � < 1. In the sequel, we will always restrict to this case.

Definition 1.11. Let {�t}t2N ⇢ ]0, 1[ be a sequence converging to zero and
{!t}t2N be a sequence of holomorphic di↵erentials on C�

t

. The sequence
{!t}t2N converges if it converges point wise in in the total space H

0

�

D(1),!F
�

Denote by �� the oriented loop in C� given by

��(✓) =
�

p
�ei✓,

p
�e�i✓

�

for 0  ✓  2⇡.

The latter definition implies that the sequence of periods
n

R

�
t

!t

o

t2N
on the

family of holomorphic cylinders does converges. Unlike before, convergence
of the sequence of periods does not imply point wise convergence. Indeed,
adding a global section that is holomorphic everywhere does no change the
periods.
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1.3 A bit of hyperbolic geometry

In this subsection, one recalls some basic facts about geometry of hyperbolic
surfaces, uniformization of punctured Riemann surfaces and Fenchel-Nielsen
coordinates on moduli spaces of curves. One refers to [Bus10] for the proofs
of the statements given here. Another reference is [ACG11].

Definition 1.12. A pair-of-pants Y (“pop” for short) is a Riemannian sur-
face such that

⇤ Y is homeomorphic to CP1 \
�

E
1

[ E
2

[ E
3

�

where each of the Ei’s is
either a point or an open disc, the Ei’s being pairwise disjoint,

⇤ the boundary components of Y are geodesics,

⇤ Y is a complete metric space of constant curvature -1.

Recall that the upper half-space H :=
�

z 2 C
�

� Im(z) > 0
 

equipped
with the Riemannian metric

g :=
(dx2 + dy2)

y2

where z = x+ iy, is a complete metric space with constant curvature -1.

Theorem 1.13. For any ↵, �, � > 0, there exists an hyperbolic right-angled
hexagon H ⇢ H with consecutive side lengths a,↵, b, �, c, �. The lengths a, b, c
are determined by ↵, �, �, and H is unique up to isometry.

Definition 1.14. A generalized hyperbolic right-angled hexagon H ⇢ H is the
limit for the Hausdor↵ distance on compact sets of a sequence of hyperbolic
right-angled hexagons {Ht}t>>1

of respective lengths ↵t, �t, �t converging in
R�0

.

From now on, a boundary components of a “pop” Y will be meant to be
a boundary geodesic as well as a puncture of Y .

Theorem 1.15. For any “pop” Y , there exists a unique orientation reversing
isometry � fixing the boundary components. The quotient Y/� is isometric
to a generalized hyperbolic right-angled hexagon H ⇢ H.
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A cyclical order on the 3 boundary components of a “pop” Y is equiv-
alent to an orientation on Y/�. Hence, it specifies an initial vertex on the
sides of Y/� corresponding to boundary geodesics of Y . In other words, it
specifies one of the 2 fixed points of � on every boundary geodesic. Moreover,
every boundary geodesic is naturally oriented. Therefore, such cyclical order
provides a natural isomorphism from any boundary geodesic of Y to

S1 :=
�

z 2 C
�

� |z| = 1
 

equipped with the canonical complex orientation. Notice that the fixed locus
of � is made of 3 geodesics. Each such geodesic joins 2 of the boundary
components, and meets them orthogonally. Note that orthogonality make
sense even in the case of a puncture if one consider the real oriented blow up
of the “pop” at the puncture.

Definition 1.16. For any “pop” Y , we define RY to be the fixed locus of the
isometry � of the previous theorem.

Definition 1.17. Let Y be a “pop”. For any boundary geodesic � of Y , the
half-collar associated to � is the tubular neighbourhood

K1/2
� :=

�

z 2 Y
�

� d(z, �)  w
�

l(�)
� 

where w
�

l(�)
�

:= arcsinh
�

1/ sinh
�

1

2

l(�)
��

.
For any puncture p of Y , the cusp Kp associated to p is the neighbourhood of
p in Y isometric to the space ]�1, log(2)] ⇥ R/Z of coordinates (⇢, t) with
the metric d⇢2 + e2⇢dt2.

Theorem 1.18. Let Y be a “pop”. The half-collars and cusps of Y are
pairwise disjoint.

Definition 1.19. Let Y be a “pop”. Define Y bd to be the closure in Y of the
complement of all the cusps and half-collars of Y .

Now, let Y
1

and Y
2

be 2 “pop”, with cyclical order of their boundary
components, and let �i ⇢ Yi (i = 1, 2) be boundary geodesics of the same
length. Gluing Y

1

to Y
2

by an orientation reversing isometry

�
1

' S1 ! �
2

' S1

z 7! �ei✓z

one obtains a complete hyperbolic surface with geodesic boundaries.

This is a building block for the following construction.
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Definition 1.20. A cubic graph G is a graph with only 3-valent and 1-valent
vertices. The edges adjacent to a 1-valent vertex are called leaves. A ribbon
structure R on G is a the data for every vertex of G of a cyclical ordering
of its adjacent leaves-edges.

Consider a cubic graph G equipped with a ribbon structure. Denote by
g the genus of G and by n its number of leaves. A quick Euler characteristic
computation shows that G has (3g � 3 + n) edges and (2g � 2 + n) 3-valent
vertices. Assume the latter quantity is strictly positive. Now consider 2
functions

l : E(G) ! R>0

⇥ : E(G) ! S1

.

From this data, one can construct a Riemann surface of genus g with n
punctures as follows: for each v 2 V (G), consider a “pop” Yv together with
a bijection between the set of boundary components of Yv and the set of
leaf-edge e 2 LE(G) adjacent to v such that

⇤ punctures of Yv are in bijection with leaves adjacent to v,

⇤ boundary geodesics are in bijection with edges adjacent to v and their
length is given by the map l.

The ribbon structure on G is equivalent to a cyclical order on the boundary
components of every Yv, via these bijections. According to this cyclical or-
dering, let us fix the following framing on each boundary geodesic of Yv: first
orient each geodesic such that the normal vector field points inward Yv. De-
fine the origin of each boundary geodesic � to be its intersection point with
the unique connected component of RYv connecting � to the previous bound-
ary component of Yv. Equipped with this framing, each boundary geodesic
is a group, and there is a unique orientation preserving isomorphism between
each geodesic and S1.
For 2 nearby vertices v

1

, v
2

2 V (G) connected by an edge e 2 E(G), glue the
corresponding geodesics in Yv

1

and Yv
1

by the isometry

S1 ! S1

z 7! �⇥(e)z.

The element ⇥(e) is classically referred as the twist parameter along the edge
e. The result is a complete Riemannian surface S(G, l,⇥) of genus g with n
punctures and constant curvature -1. This surface is locally modelled on H
with holomorphic transition functions, hence it is a Riemann surface.
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Definition 1.21. Define FNG :
�

C⇤�3g�3+n ! Mg,n to be the map that
associates to any couple of functions

�

l,⇥
�

the Riemann surface S(G, l, ✓).

Theorem 1.22. Let G be a cubic graph of genus g, with n leaves and equipped
with a fixed ribbon structure. Assume G has at least one vertex, guaranteeing
2g � 2 + n > 0.
The map FNG :

�

C⇤�3g�3+n ! Mg,n is surjective.

The 2 maps l and ⇥ are known as Fenchel-Nielsen coordinates for the
curve S, relatively to G.

Remark. The latter map turns out to be an intermediate covering to the
universal covering of Mg,n by the Teichmüller space Tg,n ' R6g�6+2n. As one
knows that the topology of Mg,n is not trivial, the latter covering is far from
being injective.

Remark. Ribbon structures are used here as a technical tool and are not of
primary interest for us. For this reason, our notation will never refer explic-
itly to the choice of such structure. Nevertheless, the reader should be aware
that this underlying structure has to be fixed.
As an example, a Riemann surface with twists in {0, ⇡} can always be pre-
sented as a curve with only 0-twists by an appropriate change of the ribbon
structure.

Definition 1.23. For any Riemann surface S 2 Mg,n, and any geodesic
� ⇢ S, the collar associated to � is the tubular neighbourhood

K� :=
�

z 2 S
�

� d(z, �)  w
�

l(�)
� 

.

1.4 Tropical curves

In this subsection, one introduces abstract (complex) tropical curves and
tropical 1-form on them. As abstract objects, the definition of (complex)
tropical curves follows the classical framework. There are several ways to
broach these objects, and those known to the author can be found in [Mik05]
and [Vir11]. However, the point of view adopted here on complex tropical
curves is a bit di↵erent. The definitions are designed such that complex trop-
ical curves arise naturally as limiting object of families of Riemann surfaces
described in the Fenchel-Nielsen fashion. The reader could be surprised to
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see that Riemann surfaces and complex tropical curves are encoded here by
the very same combinatorial data. Nevertheless, they should be considered
as di↵erent objects in spirit, as suggested by definitions 2.1 and 2.6.
Another point is that one restrict our attention to 3-valent tropical curves.
They stands for smooth curves. There are several reason for that : first, it
is a necessary restriction in order to fit perfectly to the hyperbolic frame-
work given previously. Secondly, considering general tropical curves would
obscure vainly both statements and proofs. Finally, all the results in the
present paper can be generalized to every tropical curve by simple density
arguments, as 3-valent tropical curves are dense in their respective moduli
space, see [Mik05].

Definition 1.24. An abstract tropical curve C̃ is a topological space home-
omorphic to a cubic graph with all 1-valent vertices removed, and equipped
with a complete inner metric.

⇤ We denote by V (C̃) the set of vertices of C̃.

⇤ The connected components of C̃ \ V (C̃) isometric to
�

]0; a[ , deucl
�

for

some a > 0 are called the edge of C̃ and form the set E(C̃), where deucl
stands for the euclidean distance on R.

⇤ The connected components of C̃ \ V (C̃) isometric to
�

]�1; 0[ , deucl
�

are called the leaves of C̃ and form the set L(C̃).

⇤ The union of L(C̃) and E(C̃) is denoted LE(C̃).

⇤ The length of an edge e 2 E(C̃) is denoted l(e).

In the sequel, we will replace the word “tropical” by the symbol T when-
ever it is not confusing. Similarly, we will replace the word “complex” (resp.
“real”) by the symbol C (resp. R).

We are about to define exact 1-forms on abstract T-curves. In order to do
so, let us introduce some necessary definitions. Such 1-forms will be modelled
on the following local construction:
let C̃ be an abstract T-curve and e 2 LE(C̃). A 1-form ! on e is a classical
constant 1-form a ·dx where a 2 R and x : e ! R is an isometric coordinate.
For any other isometric coordinate y : e ! R, one has ! = ±a dy depending
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whether x � y�1 preserves orientation or not.
Hence, a 1-form ! on e is equivalent to the data of an orientation ~e on e
and a real number !~e. If �~e denotes the opposite orientation on e, then
!�~e = �!~e.

Definition 1.25. Let C̃ be an abstract T-curve. A 1-form ! on C̃ is the data
of a 1-form on every e 2 LE(C̃) such that for any v 2 V (C̃), and ~e

1

, ~e
2

, ~e
3

its 3 adjacent elements in LE(C̃) oriented toward v, one has

w~e
1

+ w~e
2

+ w~e
3

= 0.

The set of 1-forms on C̃ is denoted by ⌦(C̃). For any e 2 L(C̃) and its
orientation ~e toward its adjacent vertex, the number w~e is called the residue
of ! at e. An element ! 2 ⌦(C̃) is holomorphic if all its residues are zero.
The set of holomorphic 1-form on C̃ is denoted by H⌦(C̃).

Definition 1.26. Let C̃ be an abstract T-curve. A path c in C̃ is an injective
map c : J1,mK ! LE(C̃), for some m 2 N, such that each c(j) is oriented
and such that the terminal vertex of c(j) is the initial vertex of c(j + 1) for
all 1  j < m.
A loop � in C̃ is an injective map � : Z/mZ ! E(C̃), for some m 2 N,
such that each c(j) is oriented and such that the terminal vertex of c(j) is
the initial vertex of c(j + 1) for all j 2 Z/mZ.
The leaves-edges of a path, or a loop ⇢ in C̃ are oriented by definition. Hence,
one can integrate any 1-form ! on C̃ along ⇢, and one has the formula

Z

⇢

! =
X

e2⇢
l(e)!~e .

For a path from a leaf to another, or a loop ⇢, one defines the 1-form !⇢ dual
to ⇢ by

!⇢
~e =

⇢

1 if e 2 Im(⇢)
0 otherwise

.

Definition 1.27. Let C̃ be an abstract T-curve. An exact 1-form ! on C̃ is
an element of ⌦(C̃) such that

Z

⇢

! = 0

for any loop ⇢ in C̃. The set of exact 1-forms on C̃ is denoted by ⌦exact(C̃).
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Remark. The terminology is justified by the fact that exact 1-forms are
exactly those obtained as gradient of tropical functions. This is a part of the
tropical Abel-Jacobi theorem, see [MZ08].

Before ending this subsection, we introduce some useful results on exact
1-forms.

Proposition 1.28. Let C̃ be an abstract T-curve of genus g with n leaves
such that n � 1 and 2g � 2 + n > 0. Then, one has the following

1) For any 1-form !, the sum of all its residues is zero.

2) ⌦(C̃) is a real vector space of dimension g + n� 1.

3) H⌦(C̃) is a real vector space of dimension g.

4) ⌦(C̃) = ⌦exact(C̃)�H⌦(C̃).

5) ⌦exact(C̃) is a real vector space of dimension n � 1 and each element of
⌦exact(C̃) is determined by its residues.

Proof Under our assumptions on g and n, C̃ can be considered as the
dual graph of an hyperbolic pair-of-pants decomposition of a Riemann sur-
face of genus g with n marked points. As we have already said, C̃ has exactly
2g� 2 + n 3-valent vertices. Cut C̃ at g points in such a way that the result
is a metric tree C̃cut. Hence C̃cut has still 2g � 2 + n 3-valent vertices, n
leaves of infinite length and 2g leaves of finite length. Any 1-form on C̃cut

can be constructed as follows : pick one of the n infinite leaves, and prescribe
a residue on it, and travel along the tree C̃cut. Each time a 3-valent vertex
is encountered, one has R-many ways to locally define a 1-form, hence the
space of 1-forms on C̃cut is naturally isomorphic to R(2g�2+n)+1. In order to
get a 1-form on C̃, one has to pick a 1-form on C̃cut that has opposite residues
at every of the g pairs of finite leaves. These are g linearly independent con-
ditions on the space of 1-forms on C̃cut, as long as n > 0. Indeed, consider a
labelling l

1

, ...l
2g+n of the leaves of C̃cut such that l

1

, ...ln correspond to the in-
finite leaves and ln+2i�1

, ln+2i correspond to the 2 finite leaves glued together
in C̃ (for 1  i  g). Let !

2

, ...,!g+n be the 1-forms dual to the paths from
l
1

to li for 2  i  n, and from l
2i�n�1

to l
2i�n for n + 1  i  g + n, see

definition 1.26. It forms a generating family for the space of 1-forms on C̃cut

inducing a 1-form on C̃. By dimension reasoning, it is then a basis and 2) is
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proven.
The sum of the residues for any element of the basis !

2

, ...,!g+n is zero, hence
it holds for any 1-form on C̃ and 1) is proven.
It follows that H⌦(C̃) is a g-dimensional vector space generated by
!n+1

, ...,!g+n, which is 3).
The map H

1

(C̃,R)⇥⌦(C̃) ! R defined by (�,!) 7!
R

�
! is a perfect pairing

when restricted to H⌦(C̃). It implies both that a holomorphic 1-form with
all periods equal to zero is necessarily zero and that for any ! 2 ⌦(C̃), there
is a unique !

0

2 H⌦(C̃) having exactly the same periods. In other words,
⌦(C̃) = ⌦exact(C̃)�H⌦(C̃).
Finally, the di↵erence between two elements of ⌦exact(C̃) having the same
residues is an element of ⌦exact(C̃) \ H⌦(C̃), hence it is zero, and 5) is
proven.

⇤
Definition 1.29. According to the point 5) of proposition 1.28, a collection
of residues R of dimension m defines a collection of exact 1-forms !R, ˜C :=

(!(1)

R, ˜C
, ...,!(m)

R, ˜C
) on any abstract T-curve C̃ defined by

Resl
k

!(j)

R, ˜C
= r(j)k

for any 1  k  n and 1  j  m, where lk is the l-th leaf of C̃.
Given a collection of residues R, an abstract T-curve C̃ and an initial point
p
0

2 C̃, one defines the map

⇡R : C̃ ! Rm

p 7!
⇣

Re(
R p

p
0

!(1)

R, ˜C
), ..., Re(

R p

p
0

!(m)

R, ˜C
)
⌘ .

Definition 1.30. An abstract complex tropical curve Ṽ is the data of an
abstract T-curve C̃ equipped with a ribbon structure and a collection of twist
parameters ⇥ : E(C̃) ! S1. An abstract CT-curve will simply be denoted
by the pair Ṽ = (C̃,⇥), without referring explicitly to the underlying ribbon
structure.

Remark. Note that an abstract T-curve C̃ can be seen as a cubic graph
together with a length function

l : E(C̃) ! R�0

.

Then, an abstract CT-curve can be described by Fenchel-Nielsen coordinates
in the same fashion as theorem 1.22.
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2 Convergence of imaginary normalized dif-
ferentials

The purpose of this section is to study the limit of imaginary normalized
di↵erentials on punctured Riemann surfaces while moving to maximally de-
generate stable curves in the Deligne-Mumford moduli space Mg,n.
In the sequel, we will be looking at the following class of sequences of curves
in Mg,n.

Definition 2.1. Let C̃ be an abstract T-curve of genus g with n leaves such
that 2g � 2 + n > 0 and n � 2. One says that a sequence {St}t2N ⇢ Mg,n

converges to C̃ if for a fixed ribbon structure on C̃

⇤ there exists a length function lt and a twist function ⇥t such that
St ' S(C̃, lt,⇥t) for any t,

⇤ lt(e) ⇠
t!1

4⇡

l(e) log(t)
for any e 2 E(C̃).

Remark. If one forgets the metric, an abstract T-curve C̃ can be thought of
as the dual graph of a maximally degenerate stable curve where any element
v 2 V (C̃) is dual to a sphere with 3 special points that are either nodes
(dual to elements e 2 E(C̃)) or marked points (dual to elements e 2 L(C̃)).
In the latter definition, every geodesic dual to an edge e 2 E(C̃) in St gets
contracted to a node in the limit. Set theoretically, {St}t2N is a sequence of
points in Mg,n converging to the maximally degenerate stable curve S

˜C in
Mg,n corresponding to C̃. The asymptotic of the lengths of these geodesics is
a partial information on the tangent direction with which {St}t2N approaches
S

˜C .

Considering a collection of residues R := (r
1

, ..., rn) and a sequence
{St}t2N ⇢ Mg,n give rise to the sequence {(St,!R,S

t

)}t2N ⇢ Mg,n in the
total space of the twisted Hodge bundle ⇤m

g,n, see definition 1.3.

As we already explain, an abstract T-curve C̃ gives a point S
˜C 2 Mg,n sim-

ply by considering the stable curve dual to the underlying cubic graph of C̃.
Now for ! 2 ⌦exact(C̃), let us associate a generalized imaginary normalized
di↵erential on S

˜C as follows:
each irreducible component of the normalization S̃

˜C of S
˜C corresponds to a
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vertex v 2 V (C̃), denote it Cv. It is a sphere with 3 punctures correspond-
ing to the 3 elements e

1

, e
2

, e
3

2 LE(C̃) adjacent to v. If one orients them
toward v and consider the unique imaginary normalized di↵erential on Cv
having residue !~e

j

at the j-th puncture, it defines a generalized imaginary
normalized di↵erential on S

˜C .
According to this construction, a pair (C̃,!) of an abstract T-curve and an
element ! 2 ⌦exact(C̃) gives a point in the total space ⇤m

g,n over the curve
S

˜C .

Definition 2.2. For an abstract T-curve C̃ and a 1-form ! 2 ⌦(C̃), one
denote by

⇥

C̃,!
⇤

2 ⇤m
g,n the image of the pair (C̃,!) by the above construction.

The main result of this subsection is the following

Theorem 1. Let {St}t2N ⇢ Mg,n be a sequence converging to an abstract

T-curve C̃ and R := (r
1

, ..., rn) be a collection of residues. Let {!R,S
t

}t2N be
the associated sequence of imaginary normalized di↵erentials, see definition
1.3, and !R, ˜C the associated 1-form on C̃, see definition 1.29.

Then, the sequence {(St,!R,S
t

)}t2N ⇢ ⇤m
g,n converges to

⇥

C̃,!R, ˜C

⇤

.

Remark. The latter theorem suggest that one should think about exact
1-forms on tropical curves as the tropical avatar of imaginary normalized
di↵erentials on Riemann surfaces. Forgetting the phases is a common process
in tropical geometry. In the case of an imaginary normalized di↵erential !,
it seems at first glance that the whole information is encapsulated in its
imaginary part, as every period of the real part is zero. This is equivalent
to the exactness of Re(!), that is Re(!) = df for some harmonic function
f . Considered in family, it turns out that one controls the rate of growth
of the ft’s near the nodes to be. Those rates can be used to determine
the imaginary normalized di↵erential in the limit. So then, exact 1-forms
on tropical curves should be considered more precisely as tropical avatars
of real parts of imaginary normalized di↵erentials. Exactness appears then
naturally.

The rest of this section is devoted to the proof of the latter theorem. Let us
recall that

C� :=
�

(x, y) 2 C2| xy = �, |x| < 1, |y| < 1
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for 0  � < 1. It is a classical fact that for � > 0, any biholomorphism of
C� that preserves the boundary components is a rotation, see for example
[Rud87]. Hence, one can define an argument function Arg : C� ! R/2⇡Z
that is unique up to an additive constant.
For 0 < � < 1, a transversal path ⇢� : [a�, b�] ! C� is a smooth injective
map such that ⇢�(a�) belongs to the connected component of @C� on which
|x| = � and ⇢�(b�) belongs to the connected component of @C� on which
|x| = 1. An admissible family of transversal paths is a family {⇢�}

0<�<1

such
that there exists a uniform bound M > 0 such that for 0 < � < 1 one has

�

�

�

�

Z b
�

a
�

d

ds
Arg

�

⇢�(s)
�

ds

�

�

�

�

< M.

It just prevents ⇢� from wrapping infinitely many time around C� as �! 0.
For 0 < � < 1, recall also that �� is the oriented loop on C� defined by

��(✓) =
�

p
�ei✓,

p
�e�i✓

�

for 0  ✓  2⇡.

Note that the signed intersection number �� \ ⇢� is always 1.

Lemma 2.3. Let {�t}t2N ⇢ ]0, 1[ be a sequence converging to zero and
{!t}t2N be a converging sequence of holomorphic di↵erentials on C�

t

, see def-
inition 1.11. Define

⇤ := lim
t!1

1

2⇡i

Z

�
�

t

!t.

For any admissible family of transversal paths {⇢�
t

}t2N, one has

lim
t!1

R

⇢
�

t

!t

log(�t)
= �⇤.

Proof First, let us prove the lemma on a particular case : consider !•
t

to be the restriction of the holomorphic di↵erential x�1dx on D(1, 1) to C�
t

.
Consider the following family of transversal paths

⇢•�
t

: [�, 1] ! C�
t

s 7!
�p

s,
p
s�1�t

�

It is obviously an admissible family. Remark that this family converges when
t goes to 1. The limit path is a union of 2 straight segments ⇢•

0,1 and ⇢•
0,2
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sitting in the x- and y-unit discs respectively. On one hand, we have

⇤• := lim
t!1

1

2⇡i

Z

�
�

t

!•
t = lim

t!1
1

2⇡i

I

|z|=p
�
t

dz

z
= 1,

and on the other
Z

⇢•
�

t

!•
t =

Z

1

�
t

ds

s
= � log(�t).

This proves the lemma for our particular case.
Now let us prove the lemma in the general case. Remark that any transversal
path ⇢�

t

is homotopic to �2�
t

��•�
t

��1�
t

, with �1�
t

and �2�
t

being 2 locally injective
paths in the appropriate connected components of @C�

t

. Hence
Z

⇢
�

t

!t =

Z

⇢1
�

t

!t +

Z

⇢•
�

t

!t +

Z

⇢2
�

t

!t.

But the integrals along the 2 paths on the boundary are uniformaly bounded
in �, by the admissibility condition and the convergence of !t. It follows that

lim
t!1

R

⇢
�

t

!t

log(�t)
= lim

t!1

R

⇢•
�

t

!t

log(�t)

Now, define !̃t := !t�⇤!•
t so that !̃t converges to an holomorphic di↵erential

on C
0

. Then, there exist 2 holomorphic functions h
1

(x) and h
2

(y) defined on
the respective unit discs such that, by the above remark, one has

lim
t!1

Z

⇢
�

t

!̃t =

Z

⇢•
0,1

h
1

(x) dx+

Z

⇢•
0,2

h
2

(y) dy + O(1).

Each of the integrals of the right-hand side is a well defined and bounded
quantity. As a consequence

lim
t!1

R

⇢
�

t

!̃t

log(�t)
= 0,

and

lim
t!1

R

⇢
�

t

!t

log(�t)
= ⇤ lim

t!1

R

⇢
�

t

!•
t

log(�t)
.
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Using the above remark one again, one has that

lim
t!1

R

⇢
�

t

!•
t

log(�t)
= lim

t!1

R

⇢•
�

t

!•
t

log(�t)

= �1,

and the lemma is proved.

⇤

Lemma 2.4. Let a 2 R, a > 0 and {at}t2N be a sequence of positive numbers
such that

at ⇠
t!1

4⇡

a log(t)
.

Let �t be the unique real number such that C�
t

is biholomorphic to the hy-
perbolic collar around a geodesic of length at, see definition 1.23.
Consider a converging sequence {!t}t2N of holomorphic di↵erentials on C�

t

and define

⇤ := lim
t!1

1

2⇡i

Z

�
�

t

!t.

For any admissible family of transversal paths {⇢�
t

}t2N, one has

lim
t!1

R

⇢
�

t

!t

log(t)
= a⇤.

Proof The proof is about finding the asymptotic of �t in terms of t. On
one hand, the map z 7! (

p
�z,

p
�z�1) defines a biholomorphism between

the annulus
n

z 2 C|
p
�  |z|  1/

p
�
o

and C�. For an annulus of type r <

|z| < R in the complex plane, one can choose R/r as a conformal invariant,
see [Ahl10]. This invariant determines the annulus up to biholomorphism.
According to this, C� has conformal invariant ��1.
On the other hand, following [Bus10], an hyperbolic collar around a geodesic
of length at can be isometrically presented as the space

�

[�w(at), w(at)]⇥ R/Z, d⇢2 + a2t cosh(⇢)
2ds2

�
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where w(at) = arcsinh
�

1/ sinh(at/2)
�

. Applying the change of variable
⇢(u) = arcosh

�

at/ cos(atu)
�

, one gets

 

⇥

�⇢�1

�

w(at)
�

, ⇢�1

�

w(at)
�⇤

⇥ R/Z,
✓

at
cos(atu)

◆

2

(du2 + ds2)

!

.

Applying now
�

u(z), s(z)
�

= (2⇡)�1

�

Re(log(z)), Im(log(z))
�

, one gets

 

�

z 2 C|⌘(at)�1  |z|  ⌘(at)
 

,

✓

at
2⇡|z| cos(at log(z))

◆

2

|dz|2
!

,

where

⌘(at) = exp

 

2⇡

at
arccos

 

1

cosh
�

w(at)
�

!!

.

Comparing conformal invariants, one deduces that �t = ⌘(at)�2. Let us
compute the asymptotic of �t : first notice that w(at) goes to +1 as t goes
to +1, hence

lim
t!1

arccos

 

1

cosh
�

w(at)
�

!

= 1.

It follows that

�t = ⌘(at)
�2 ⇠

t!1
exp

✓

�4⇡

at

◆

⇠
t!1

e�a log(t).

Applying the previous lemma, one concludes that

a⇤ = limt!1 �a

R

⇢
�

t

!t

log(�t)

= limt!1 �a

R

⇢
�

t

!t

log(e�a log(t))

= limt!1

R

⇢
�

t

!t

log(t)
.

⇤
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Before proving theorem 1, let us introduce a technical definition : to a loop
⇢T in an abstract T-curve C̃, we will associate a piecewise geodesic loop in
any curve S ' S(C̃, l,⇥). Recall that a loop is a map ⇢T : Z/mZ ! E(C̃).
It can be presented as well as a map V : Z/mZ ! V (C̃) where V (j) is
the vertex between ⇢T(j) and ⇢T(j + 1). Denote by YV (j) the “pop” in the
decomposition of S corresponding to the vertex V (j), by �j the geodesic in
the decomposition of S corresponding to the edge ⇢T(j) and orient it such
that the associated normal vector field points toward YV (j).
Now construct the piecewise geodesic loop ⇢̆ in S as follows : ⇢̆\ YV (j) is the
oriented connected component of RYV (j) going from �(j) to �(j + 1), and
⇢̆ \ �j is the positive arc of �j connecting ⇢̆ \ YV (j�1)

to ⇢̆ \ YV (j).

Definition 2.5. For any loop ⇢T in an abstract T-curve C̃ and any curve
S ' S(C̃, l,⇥), define by ⇢̆ ⇢ S the loop in S associated to ⇢T, as constructed
above.

Proof of theorem 1 Recall that from definition 2.1, St is presented as
S(C̃, lt,⇥t).
Suppose first that for any geodesic �t of the “pop” decomposition of St, the

sequence
n

R

�
t

!R,S
t

o

t2N
converges. It is clearly a necessary and su�cient

condition for the sequence {(St,!R,S
t

)}t2N to converge in the total space of

the bundle ⇤m
g,n, see lemma 1.10. Let us show that the limit is

⇥

C̃,!R, ˜C

⇤

.

Pick g loops ⇢1T, ..., ⇢
g
T in C̃ forming a basis of H

1

(C̃,Z). For any 1  j  g
and any t, construct a loop ⇢jt ⇢ St as follows: as an intermediate step,
consider the piecewise geodesic loop ⇢̆jt ⇢ St associated to ⇢jT (see definition
2.5). Now define ⇢jt to be the unique geodesic in the free homotopy class of
⇢̆jt , see theorem 1.6.6 in [Bus10]. Now for 1  j  g, index coherently the
edges ~e jk as they are encountered in the loop �jT for 1  k  mj, where the
orientation on the ~e jk’s is induced by �jT . Denote also by �jkt the geodesic of
the “pop” decomposition of St associated to ~e jk oriented coherently to the
orientation of ~e jk, and Kjk

t the collar around �jkt . Define  jk
t : Kjk

t ! C�jk

t

the biholomorphism such that :

⇤  jk
t

�

⇢ j
t \Kjk

t

�

is a transversal path in C�jk

t

,

⇤  jk
t

�

⇢ j
t \Kjk

t

�

\ {(x, y) 2 C2| |x| = 1} = (1,�jkt ).

Note that the push-forward of !R,S
t

on C�jk

t

by  jk
t gives rise to a convergent

sequence, according to definition 1.11. Indeed, the limit is given on each
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connected component of the normalization of S
˜C by a unique meromorphic

di↵erential. This di↵erential admits a unique representation as f(z)dz once
a coordinate z is chosen.
It implies first that !R,S

t

converges toward an holomorphic di↵erential on the
complement of the collars, so the integral on this complement converges to a
finite quantity. Hence one has

Z

⇢ j

t

!R,S
t

=

m
j

X

k=1

Z

⇢ j

t

\Kjk

t

!R,S
t

+ O(1).

Now, applying lemma 2.4 for each of the collars involved in the latter formula,
one gets

lim
t!1

R

⇢ j

t

!R,S
t

log(t)
=

m
j

X

k=1

ajk⇤jk (1)

where ajk is the length of the edge ejk of C̃ and ⇤jk = lim
t!1

1

2⇡i

Z

�jk

t

!R,S
t

which exist by assumption.
As !R,S

t

is an imaginary normalized di↵erential for any t, it implies that
⇤jk 2 R and that

Re
�

Z

⇢ j

t

!R,S
t

�

= 0, 8t, 8j.

Considering the real part on both sides in (1) gives in turn that

m
j

X

k=1

ajk⇤jk = 0, 8j. (2)

By definition of the ⇤jk, one can construct a 1-form on C̃ taking the value ⇤jk

along ~ejk and having residue rl at the l-th leaf of C̃. The equation (2) states
exactly that this 1-form belongs to ⌦exact(C̃). According to proposition 1.28,
this 1-form is exactly !R, ˜C and the theorem is proved in this case.
Suppose now that there is a bound for all the periods

R

�
t

!R,S
t

that is uniform
in t. For any subsequence {tk}t2I such that all these periods converge, one
can reduce to the previous case and deduce that !R,S

t

k

converges to !R, ˜C .
As any converging subsequence converges to the same limit, the original se-
quence does converge.

Suppose finally that limt!1 Mt = +1 where Mt is defined as max
�

�

�

R

�
t

!R,S
t

�

�

�

.
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Consider the sequence of imaginary normalized di↵erential !̃t := 1

M
t

!R,S
t

.
Considering a subsequence if necessary, assume that the periods

R

�
t

!̃t con-
verge. Applying the same argument as in the first case, one construct a limit
element !̃T 2 ⌦exact(C̃). The way we rescaled !R,S

t

to get !̃t implies that

⇤ there is an ~e in C̃ such that |!̃T
~e | = 1,

⇤ !̃T has no residues.

In other word, !̃T is a non zero exact 1-form which is holomorphic. This is
in contradiction with 1.28 and the theorem is proved.

⇤

In the rest of this section, one shows that if one refines the definition of
convergence of 2.1, one controls every period of the sequence of imaginary
normalized di↵erentials at the limit.

Definition 2.6. Let (C̃,⇥) be an abstract CT-curve of genus g and n leaves
with 2g � 2 + n � 1 and n � 1. One says that a sequence {St}t2N ⇢ Mg,n

converges to (C̃,⇥) as t goes to infinity if :

• St ' S(C̃, lt,⇥t) converges to C̃, see definition 2.1,

• the sequence of functions {⇥t}t2N converges to ⇥.

Theorem 2. Let {St}t2N ⇢ Mg,n be a sequence converging to an abstract

CT-curve (C̃,⇥) and R := (r
1

, ..., rn) be a collection of residues. Let {!R,S
t

}t2N
be the associated sequence of imaginary normalized di↵erentials, see defini-
tion 1.3, and !R, ˜C the associated 1-form on C̃, see definition 1.29.

For any loop ⇢T ⇢ C̃, and ⇢̆t the associated loop in St, see definition 2.5, one
has

lim
t!1

Z

⇢̆
t

!R,S
t

=
X

e2⇢T
log
�

⇥(e)
��

!R, ˜C

�

~e

where the branch of log is chosen such that log : S1 ! [0, 2i⇡[ ⇢ C.

In order to prove this statement, let us briefly study imaginary normalized
di↵erentials ! on S 2 M

0,3. More precisely, we are interested in paths ⇢
in S for which Im(!)|

⇢

⌘ 0. With the help of the uniformizing metric g
on S, one can consider the vector field Im(!)_ dual to Im(!) defined by
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Im(!) = g
�

· , Im(!)_). Similarly, denote by Re(!)_ the vector field dual
to Re(!) with respect to g. The vector field Im(!)_ is obtained by rotating
Re(!)_ by ⇡/2. As a consequence, a path ⇢ in S is such that Im(!)|

⇢

⌘ 0
if and only if the tangent vector field of ⇢ is parallel to Re(!)_ at any point,
i.e ⇢ is a flow line of Re(!)_.
Let us choose the model S ' CP1 \ {�1, 1,1}. Up to multiplication of ! by
a constant and an automorphism of S (exchanging the punctures), one can
assume that

! =

✓

�
1

z � 1
+

��1

z + 1

◆

dz (3)

with ��1

,�
1

> 0. Consider the real oriented blow-up SBl of S at �1, 1 and
1, and denote by ��1

, �
1

and �1 the 3 corresponding boundary components
of SBl. The vector field Re(!)_ does not extend to the boundary of SBl

as its modulus tends to infinity, nevertheless its asymptotic direction is well
defined.

Lemma 2.7. Let ! be an imaginary normalized di↵erential on S as in (3).
Then, one has

⇤ the 3 connected components of RS are parallel to Re(!)_,

⇤ Re(!)_ is asymptotically orthogonal to ��1

, �
1

and �1. It is oriented
inward SBl at ��1

and �
1

and outward SBl at �1.

⇤ For any point p in ��1

or �
1

out of RSBl, the flow line of Re(!)_

starting at p ends in �1.

⇤ [�1, 1] is the unique flow line in SBl connecting ��1

to �
1

.

Proof The first point is an easy consequence of the fact that ! is defined
over R.
For the second point, consider a complex coordinate z centred at one of the
3 punctures of S and consider the circular integral

I

|z|=r

! =

I

|z|=r

✓

�

z
+ h(z)

◆

dz

=

Z

2⇡

0

�

i�+ h(rei✓)irei✓
�

d✓

=

Z

2⇡

0

(i�+ rO(1)) d✓
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where h is an holomorphic function near the origin. The integrand converges
uniformly to a purely imaginary function as r goes to 0. It is equivalent
to say that the vector field Re(!)_ becomes everywhere orthogonal to the
tangent vector field of the circle of radius r as r goes to 0.
As Im(!)_ is obtained by rotating Re(!)_ by ⇡/2, it gets asymptotically
parallel to the tangent vector field of the circle of radius r as r goes to 0. If
� > 0, the latter integral is a positive multiple of i. It means then that these
vector fields point in the same direction. If � < 0, they point in opposite
direction.
For the third point, notice that Re(!)_ has a unique zero at the point
⇣ := �

1

���1

�
1

+��1

2]�1, 1[. As this vector field is the gradient field of the harmonic

function
R

Re(!), by classical Morse lemma, it is locally isotopic to the gra-
dient field of x2 � y2. There are exactly 2 flow lines passing through ⇣. One
is ]�1, 1[ and the flow is oriented towards ⌘ on each connected component of
]� 1, 1[ \ ⇣. The other flow line intersects]� 1, 1[ transversally at ⇣, and the
flow is locally oriented outward ⌘. Hence, any flow line starting from p never
reaches the only singular point ⇣ of the vector field Re(!)_. Hence, it can
be extended until it reaches the boundary of SBl. According to the di↵erent
orientation of the field at the boundary components, it has to end up in �1.
The last point is a consequence of the previous points.

⇤

��1

�
1

�1 SBl

RSBl

Figure 1: Phase portrait of Re(!)_ on SBl.

Lemma 2.8. Let {Yt}t2N be a sequence of “pop” converging to S 2 M
0,3

and let {!t}t2N be a sequence of imaginary normalized di↵erential on Yt con-
verging to an imaginary normalized di↵erential on S. For any connected
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component ⇢t ⇢ Yt of RYt, one has

lim
t!1

Z

⇢
t

Im(!t) = 0.

Proof Assume that the 3 residues of !t are non zero at the limit, the
general case can be deduced by continuity. According to the proof of the
previous lemma, one can choose 3 sequences of positive numbers rt,�1

, rt,1
and rt,1 such that up to multiplication of !t by a constant independent of t,
one has

⇤ Yt ' B
0

(rt,1) \ (B�1

(rt,�1

) [ B
1

(rt,1)),

⇤ if one denotes by �t,�1

(resp. �t,1, resp. �t,1) the boundary of B
0

(rt,1)
(resp. B�1

(rt,�1

), resp. B
1

(rt,1)), there exists N
1

> 0 such that for
t > N , one has

R

�
t,�1

Im(!t),
R

�
t,1

Im(!t) > 0.

⇤ There exists N
2

> N
1

such that for t > N
2

, Re(!t)_ is everywhere
transversal to the tangent vector fields of �t,�1

, �t,1 and �t,1.

⇤ There exists N
3

> N
2

such that for t > N
3

, !t has a single zero on Yt.

The same treatment as in the proof of the previous lemma implies that

⇤ for t > N
3

, there is a unique flow line of Re(!t) in Yt joining �t,�1

and
�t,1, converging in Hausdor↵ distance to ]� 1 + rt,�1

, 1� rt,1[⇢ Yt,

⇤ for t > N
3

, one can construct 2 sequences of flow line of Re(!t) in Yt

going from �t,�1

(resp. �t,1) to �t,1 converging in Hausdor↵ distance to
]� rt,1,�1� rt,�1

[ (resp. ]1 + rt,1, rt,1[).

If for example ⇢t :=]� 1 + rt,�1

, 1� rt,1[ and ⇢̆t is the sequence of flow lines
converging to ⇢t, then ⇢t is homotopic to ⇢t,1 � ⇢̆t � ⇢t,�1

where ⇢t,�1

is an arc
in �t,�1

and ⇢t,1 is an arc in �t,1. As ⇢̆t converges to ⇢t, the integrals of Im(!t)
over ⇢t,�1

and ⇢t,1 tend to 0 as t goes to 1. Hence

lim
t!1

Z

⇢
t

Im(!t) = lim
t!1

Z

⇢̆
t

Im(!t) = 0

as ⇢̆t is a flow line of Re(!t) for any t. The same argument apply for any
choice of the sequence ⇢t and the lemma is proved.
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⇤
Proof of theorem 2 For any loop ⇢T ⇢ C̃, the associated loop ⇢̆t ⇢ St

is piecewise geodesic, see 2.5. According to the definition, ⇢̆t is made out
of connected components of RYt for some “pop” Yt of the decomposition of
St and arcs in some of the geodesics �t of the same decomposition. By the
previous lemma, parts of ⇢̆t contained in the di↵erent RYt’s do not contribute
in the limit of the integral of Im(!t) along ⇢̆t. Let ~e be an edge of ⇢T, and
�t the corresponding geodesic in St. By definition, ⇢̆t \ �t is an arc of length
1

2⇡
· log

�

⇥t(e)
�

· lt(e) of �t. If one shows that

lim
t!1

Z

⇢̆
t

\�
t

Im(!t) = log
�

⇥(e)
�

·
�

!R, ˜C

�

~e
,

then the proposition is proved.
For t big enough, and " > 0 small enough, consider the tubular neighbour-
hood U" of width " around �t. Let ct,1 and ct,2 be the flow lines of Re(!t)
starting at the end points of ⇢̆t\�t and ending on @U". Denote by ⇢̆t," the arc
on @U" between the end points of ct,1 and ct,2 such that ⇢̆t \ �t is homotopic
to c�1

t,2 � ⇢̆t," � ct,1. For any t, one has
Z

⇢̆
t

\�
t

Im(!t) =

Z

c�1

t,2

�⇢̆
t,"

�c
t,1

Im(!t) =

Z

⇢̆
t,"

Im(!t)

as ct,1 and ct,2 are flow lines of Re(!t). Now, one clearly has

lim
"!0

lim
t!1

Z

⇢̆
t,"

Im(!R, ˜C) = lim
"!0

Z

↵
",⇥(e)

�

!R, ˜C

�

~e

z
dz

= log
�

⇥(e)
�

·
�

!R, ˜C

�

~e

where ↵",⇥(e) :=
�

z 2 C
�

�|z| = ", ✓  Arg(z)  ✓ + log
�

⇥(e)
� 

for some ar-
gument ✓.

⇤

3 Approximation of harmonic tropical curves

3.1 Harmonic tropical curves

Definition 3.1. Let C̃ be an abstract tropical curve. An harmonic morphism
⇡ : C̃ ! Rm is a continuous map such that
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⇤ for any e 2 LE(C̃), the restriction map ⇡|
e

is a�ne linear.

⇤ For any v 2 V (C̃), denote by ~e
1

, ~e
2

and ~e
3

the 3 unitary tangent vectors
of the 3 leaves-edges adjacent to v. Then

⇡(~e
1

) + ⇡(~e
2

) + ⇡(~e
3

) = 0.

The latter condition is referred as the balancing condition. The harmonic
morphism ⇡ is called simple if moreover

⇤ for any e 2 LE(C̃), the restriction map ⇡|
e

is an embedding.

⇤ ⇡ is at most 2-to-1 and injective out of a finite set of points disjoint
from V (C̃).

In the case of a simple harmonic morphism ⇡ : C̃ ! Rm, its image is
naturally a metric space. Indeed, the injectivity assumptions ensure that one
can push forward the metric of C̃ onto its image.

Definition 3.2. A simple harmonic tropical curve C 2 Rm is the metric
space obtained as the image of a simple harmonic morphism ⇡ : C̃ ! Rm.

Remark. A simple harmonic tropical curve is fully determined by its point
set together with a unitary tangent vector at one of its vertices v. Indeed, this
tangent vector is supported by one of the elements e of LE(C̃) adjacent to
v. As harmonic morphisms are locally a�ne linear, the data of this tangent
vector determined the metric on e. Now, the balancing condition in 3.1 allows
to recovers the unitary tangent vectors for the 2 other elements of LE(C̃)
adjacent to v. Hence, the metric can be recovered inductively on the whole
curve C.

Proposition 3.3. For any simple harmonic T-curve C 2 Rm, there exists a
unique abstract T-curve C̃ and a simple harmonic morphism ⇡ : C̃ ! Rm

such that ⇡(C̃) = C as metric space. The T-morphism ⇡ is unique up to
isometry of the source.
The abstract T-curve C̃ is called the normalisation of C.

Proof Set theoretically, a simple harmonic T-curve C 2 Rm is just a
graph with straight edges, and straight leaves. It has only 3-valent and 4
valent vertices. By definition, there exists such simple harmonic morphism
⇡ : C̃ ! Rm such that ⇡(C̃) = C as metric space. One simply reconstruct
C̃ from C by splitting up the 4-valent vertices of C into 2 edges-leaves in C̃
and pulling back the metric. The details are left to the reader.
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⇤

Remark. For the sake of simplicity, one does not introduce a definition for
general harmonic tropical curve in Rm. It is already clear that the only
consideration of the set theoretical image of an harmonic morphism is not
satisfactory, as one would lake too much structure. In fair generality, some
leaves-edges can be contracted by an harmonic morphism. It implies in par-
ticular that the combinatorial type of an abstract T-curve cannot be recov-
ered by its image. One should reasonably equip every leaf-edge of the image
with positive multiplicities µ together with a collection of µ unitary tangent
vectors such that the all setting satisfies a balancing condition. We postpone
the general treatment of harmonic tropical curves to a further paper.

Proposition 3.4. Let C̃ be an abstract T-curve and R a collection of residues
of dimension m. Then the map ⇡R : C̃ ! Rm is an harmonic morphism.
Moreover, for any vertex v 2 V (C̃) and any of its adjacent leaf-edge ~e ori-
ented outward, the corresponding unitary tangent vector is sent to the vector
�

!R, ˜C

�

~e
.

Reciprocally, for any harmonic morphism ⇡ : C̃ ! Rm, there exists a unique
collection of residues R of dimension m such that ⇡ = ⇡R.

Proof As every coordinates of !R, ˜C is a constant 1-form on any leaf-edge

of C̃, it is clear that ⇡R is a�ne linear on every leaf-edge. By definition,
an oriented segment of length l included in ~e 2 LE(C̃) is sent to the vector
l · (!R, ˜C)~e. Hence the image of a unitary tangent vector is as predicted. The
balancing condition of 3.1 follows from the definition 1.25. The first part of
the statement is proven.
Reciprocally, it is now clear that the map ⇡ is given by integration of an
m-tuple of local 1-forms on any e 2 LE(C̃). The balancing condition of 3.1
is clearly equivalent to the fact that these m-tuples of local 1-forms give rise
to m-tuple of 1-forms on C̃, see 1.25. Exactness follows from the fact that
this m-tuple is given by integrating the m-tuple of the coordinate functions
of ⇡. Uniqueness is clear.

⇤

Definition 3.5. An element ! 2 ⌦exact(C̃) for a T-curve C̃ is integer if !~e 2
Z for any element e 2 LE(C̃). A collection of residues R of dimension m is
integer on C̃ if the m coordinates of !R, ˜C are integer elements of ⌦exact(C̃).
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3.2 Degeneration of harmonic amoebas

Theorem 3. Let {St}t2N ⇢ Mg,n be a sequence converging to an abstract T-
curve C̃ and let R :=

n

(r(j)
1

, ..., r(j)n )
o

1jm
be a collection of residues. Then,

for an appropriate choice of a sequence z
0,t 2 St and p

0

2 C̃ of initial points
(see 1.3 and 1.29), one has

lim
t!1

1

log(t)
AR(St) = ⇡R(C̃)

in Hausdor↵ distance.

Remark. In addition to the remark following theorem 1, the latter theorem
justifies the terminology of harmonic tropical curves as limits of harmonic
amoebas.

Proof For m = 1, both AR and ⇡R are surjective on R, hence there is
nothing to prove. Assume m � 2. One can reduce to the case m = 2. Indeed,
if for any 1  i < j  m and any projection

⇢ij : Rm ! R2

x := (x
1

, ..., xm) 7! (xi, xj)

1

log(t)
⇢ij
�

AR(S)
�

converges to ⇢ij
�

⇡R(C̃)
�

, then 1

log(t)
AR(S) converges to ⇡R(C̃).

Assume m = 2. According to proposition 1.6, there exists a constant MR

independent of t such that

Area (AR(St))  MR.

It implies that

lim
t!1

Area

✓

1

log(t)
AR(St)

◆

= 0. (4)

For each v 2 V (C̃), denote by Yv,t the “pop” corresponding to v in the
decomposition of St, and Y bd

v,t the subset of Yv,t defined in 1.19. For each

e 2 E(C̃), denote by Ke,t the collar associated to the geodesic correspond-
ing e in the decomposition of St. For each e 2 L(C̃), denote by Ke,t the
cusp associated to the puncture of St corresponding to e. As AR is defined
by integration and depends on the choice of an initial point, let us move
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successively this point on each of the pieces Y bd
v,t and Ke,t and study the con-

vergence of their respective images. The convergence of !R,S
t

to !R, ˜C given
by theorem 1 ensures that AR is bounded on Y bd

v,t , uniformly in v and t. It
implies that 1

log(t)
AR(Y bd

v,t) converges to a point when t goes to 1. Now, ac-
cording to lemma 2.4 and theorem 1, the projections on the x- and y-axis of

1

log(t)
AR(Ke,t) for any e 2 E(C̃) are segments of respective asymptotic length

�

�

�

l(e) ·
�

!(1)

R, ˜C

�

~e

�

�

�

and
�

�

�

l(e) ·
�

!(2)

R, ˜C

�

~e

�

�

�

. Using (4) and the convexity of the con-

nected component of the complement of AR(St) (see 1.5), one deduces that
1

log(t)
AR(Ke,t) converges to a segment of slope

⇣

�

!(1)

R, ˜C

�

~e
,
�

!(2)

R, ˜C

�

~e

⌘

and length

l(e) ·
q

�

!(1)

R, ˜C

�

2

~e
+
�

!(2)

R, ˜C

�

2

~e
, for any e 2 E(C̃). For e 2 L(C̃), 1

log(t)
AR(Ke,t)

converges to a half-line of slope
⇣

�

!(1)

R, ˜C

�

~e
,
�

!(2)

R, ˜C

�

~e

⌘

. Note that this is pre-

cisely the image of e by ⇡R for any e 2 LE(C̃).
Now, choose an initial vertex v

0

2 V (C̃), and any sequence of initial points
z
0,t 2 Y bd

v
0

,t for St, and consider the maps AR and ⇡R with respect to these
choices of initial points. Putting the pieces Y bd

v,t and Ke,t together, one de-

duces that 1

log(t)
AR(St) converges to ⇡R(C̃).

⇤

4 Approximation of complex tropical curves
in the plane

4.1 Immersed complex tropical curves

Recall that by proposition 3.4, every simple harmonic morphism on an ab-
stract T-curve is given by a unique collection of residues.

Definition 4.1. Let C̃ be an abstract T-curve. A simple harmonic morphism
⇡R : C̃ ! Rm is a simple tropical morphism if R is integer, see definition
3.5.
A simple tropical curve is the image of an abstract tropical curve by a simple
T-morphism, see definition 3.1.

Remark. The latter definition of simple T-morphism and T-curve gives the
same objects as in classical theory, see [Mik05] for instance. In the present
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text, we introduced the more general notions of simple hamonic morphisms
and simple harmonic tropical curves and the fact that we added the specific
term “harmonic” to descibe more general object can be a bit misleading.
One makes such choice here in order to fit with classical terminology and
point out once again that simple tropical curves are in fact special instances
of simple harmonic tropical curves.

Proposition 4.2. For any simple T-curve C 2 R2, there exists a unique
abstract T-curve C̃ and a T-morphism ⇡ : C̃ ! R2 such that ⇡(C̃) = C.
The T-morphism ⇡ is unique up to isometry of the source.
The abstract T-curve C̃ is called the normalisation of C.

Proof This is a specific instance of proposition 3.3.

⇤
Definition 4.3. From now on, we define the vertices (resp. edges, resp.
leaves) of a simple T-curve C 2 R2 to be the image of the vertices (resp.
edges, resp. leaves) of its normalization C̃, and carry the previous notations
V (C), E(C), L(C) and LE(C).
The points of C having 2 preimages in C̃ are called the nodes of C and form
the set N(C).

One comes now to the definition of simple complex tropical curves in the
plane. Recall that for a polynomial f 2 C[x, y], the Newton polygon New(f)
is the convex hull in R2 of the set of monomials of appearing in f , seen as
points in Z2 ⇢ R2.

Definition 4.4. A binomial cylinder & ⇢ (C⇤)2 is a set defined by an equation
zawb = c with c 2 C⇤ and (a, b) 2 Z2 a primitive integer vector.
A general line L 2 (C⇤)2 is a set defined by a polynomial equation f(z, w) = 0
where New(f) has euclidean area 1/2.

Recall that the coamoeba of a curve C ⇢ (C⇤)2 is the set denoted CoA(C)
obtained as the image of C by the argument map Arg : (C⇤)2 ! T where

T :=
�

R/2⇡Z
�

2

is the argument torus.
Consider the general line L

0

:=
�

(z, w) 2 (C⇤)2
�

� z + w + 1 = 0
 

. Its coamoeba
CoA(L

0

) is the union of the 2 open triangles delimited by the 3 geodesics
�
1

:= {Arg(z) = ⇡} , �
2

:= {Arg(w) = ⇡} and �
3

:= {Arg(w) = Arg(z) + ⇡}
plus their 3 common vertices (⇡, 0), (0, ⇡) and (⇡, ⇡), see figure 2.
As a convention, we choose a framing on each of the �i’s as follows
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⇤ �
1

is oriented downward, with origin (⇡, ⇡),

⇤ �
2

is oriented leftward, with origin (0, ⇡),

⇤ �
3

is oriented up-rightward, with origin (⇡, 0).

These framings are coherent with the up-left triangle of CoA(L
0

) (see figure
2). The argument map is orientation preserving on this triangle and orien-
tation reversing on the other. For this reason, the framings are kept globally
unchanged by any of the 6 toric automorphisms of L

0

.
With this framing, any boundary geodesic is canonically isomorphic as an
abelian group to

S1 :=
�

z 2 C
�

� |z| = 1
 

equipped with the counter-clockwise orientation.

Proposition 4.5. For any general line L, there exists a toric transformation
of (C⇤)2, that is an element � 2 Sl

2

(Z)o (C⇤)2 such that �(L) = L
0

.
The induced transformation �T 2 Sl

2

(Z)o T on the argument torus T sends
CoA(L) onto CoA(L

0

).
There is a unique framing of the boundary geodesics of CoA(L) that maps
to the canonical framings on CoA(L

0

) by any � 2 Sl
2

(Z) o (C⇤)2 such that
�(L) = L

0

.
For any general line L, we equip CoA(L) with these framings.

Proof By Pick’s formula, the Newton polygon of any polynomial equation
defining L contains 3 integer points spanning the lattice Z2. Then, there
exists an element of Sl

2

(Z) sending this polygon onto the standard simplex
of size 1. Translating the coordinates by an appropriate element of (C⇤)2

gives the desired �. The details are left to the reader.

⇤

Definition 4.6. A simple complex tropical curve V ⇢ (C⇤)2 is a topological
Riemann surface such that :

⇤ its amoeba A(V ) is a simple T-curve C ⇢ R2,

⇤ for any e 2 LE(C), there exists a binomial cylinder & such that
�

A|
V

��1

(e) = A�1(e) \ &,
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(-⇡,-⇡)

(0, 0)

T

Figure 2: The coamoeba of L
0

(grey), and the framings (black) of its 3
boundary geodesics (blue).

⇤ for any v 2 V (C), there exists a general line L such that
�

A|
V

��1

(v) = CoA(L).

Remark. The fact that such simple CT-curve does exist could be formulated
as an easy proposition. In order V ⇢ (C⇤)2 to be a topological Riemann
surface, the binomial cylinder & sitting above an edge e 2 LE(C) has to
be defined by an equation zawb = c where (a, b) 2 Z2 is a primitive integer
vector supporting e. The fact that such cylinders can be glued together by the
coamoeba of general line above a vertex v 2 V (C) holds on an appropriate
choice of the c’s and the second point of definition 3.1.

Let us consider a simple CT-curve V , with C := A(V ). For any e 2 E(C)

and v
1

, v
2

2 V (C) its 2 adjacent vertices, the topological cylinder
�

A|
V

��1

(e)

is glued to 2 boundary geodesics �
1

and �
2

in
�

A|
V

��1

(v
1

) and
�

A|
V

��1

(v
2

)
respectively. Let ⌧

1

, ⌧
2

be the canonical group isomorphisms ⌧i : S1 ! �i.
Identifying the 2 argument torus A�1(v

1

) and A�1(v
2

), one has that �
1

and
�
2

are set theoretically identical. This is due to the fact that the coamoeba
of a binomial cylinder is single geodesic in T . Under this identification, one
has that the map ⌧�1

2

� ⌧
1

is an orientation reversing isometry of the form

⌧�1

2

� ⌧
1

: S1 ! S1

z 7! �ei✓z.

As this isometry is self inverse, the datum ei✓ does not depend on the order
we have chosen for �

1

and �
2

.

49



Definition 4.7. Let V be a simple CT-curve, with C := A(V ). For any
e 2 E(C), the element ei✓ 2 S1 constructed above is called the twist parameter
of the edge e.

Remark. A simple T-curve C ⇢ R2 is naturally equipped with a ribbon
structure: for any v 2 V (C), its adjacent edges are ordered cyclically with
respect to the counter-clockwise orientation of R2.

Proposition 4.8. For a simple CT-curve V ⇢ (C⇤)2, there exists a unique
abstract CT-curve Ṽ := (C̃,⇥) such that

⇤ there exists a T-morphism ⇡ : C̃ ! R2 such that ⇡(C̃) = C with
C := A(C),

⇤ the ribbon structure on C̃ is the pull-back by ⇡ of the natural ribbon
structure of C,

⇤ ⇥ is the pull-back by ⇡ of the collection of twist parameters of V
�

recall

that ⇡ induces a bijection between E(C̃) and E(C)
�

.

The abstract CT-curve Ṽ is called the normalization of V .

Proof It falls from proposition 6.27.

⇤
Remark. A simple CT-curve V ⇢ (C⇤)2 is a topological oriented Riemann
surface obtained by patching triangles and cylinders equipped with a con-
formal structure. Its normalization Ṽ is the necessary and su�cient data to
reconstruct abstractly V .

The study of simple CT-curves is motivated by the fact that they arise
as limit of classical algebraic curves in the plane in the following way :
as in [Mik05], consider the di↵eomorphism

Ht : (C⇤)2 ! (C⇤)2

(z, w) 7!
⇣

|z|
1

log(t)

z
|z| , |w|

1

log(t)

w
|w|

⌘ .

This corresponds to a change of the holomorphic structure of (C⇤)2, see
section 6 in [Mik05]. Note that for any holomorphic curve S ⇢ (C⇤)2,

A
�

Ht(S)
�

=
1

log(t)
A(S).

One has the following
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Proposition 4.9. Let V ⇢ (C⇤)2 be a simple CT-curve, C := A(V ), Ṽ =
(C̃,⇥) its normalization, and R the collection of residue giving the normal-
ization T-morphism ⇡R : C̃ ! C. Let {St}t2N,t>>1

be a sequence of Riemann

surface converging to Ṽ . Assume moreover that PR,S
t

is a constant family of
integer period matrix, then

lim
t!1

Ht

�

◆R(St)
�

= V

in Hausdor↵ distance, see definition 1.7.

Proof To see that Ht

�

◆R(St)
�

converges to a simple CT-curve, one adopt
the same startegy as in theorem 3, cutting St into “pop”’s. Let Yv,t be the
“pop” of the decomposition of St associated to v 2 V (C). Up to the ac-
tion of Sl

2

(Z) on the coordinates of !R,S
t

, one can suppose that (!R,S
t

)~e =
(1, 0), (0, 1) and (�1,�1) for the 3 inward edges adjacent to v. We have
already seen in the proof of 3 that choosing the initial point z

0

in Y bd
v,t ,

A
�

Ht(◆R(St))
�

converges to a tripod T centred at the origin with 3 rays of
finite or infinite length pointing in the directions (�1, 0), (0,�1) and (1, 1).
The pair (Yv,t,!R,S

t

) converges to
�

CP1\{�1, 1,1} , ( dz
z�1

, dz
z+1

)
�

. As this pair

of imaginary normalized di↵erentials gives the embedding of CP1\{�1, 1,1}
as L

0

in (C⇤)2, it is clear that Arg
�

Ht(◆R(St))
�

converges in Hausdor↵ dis-

tance to CoA(L
0

) in the argument torus T . It is an easy exercise to check
that Ht

�

◆R(St)
�

converges in Hausdor↵ distance to a surface with boundary

Vv,1 ⇢ (C⇤)2 such that Arg(Vv,1) = CoA(L
0

), A(Vv,1) = T and such that
the fibration of Vv,1 over T is the one of a simple CT-curve over its amoeba,
that is Arg

�

A�1

|
V

v,1
(0, 0)

�

= CoA(L
0

) and that the fibration over T \ (0, 0) is
a locally trivial fibration of geodesics in T .
Note that Vv,1 has a unique anti-holomorphic involution, which is the limit
of the unique such involution on Yv,t. Its fixed locus is also the limit of RYv,t.
It consists of the fiber in Vv,1 by the map Arg over the 3 special points of
CoA(L

0

).
Gluing back the Yv,t together, one deduces first that V1 := limt!1 Ht

�

◆R(St)
�

is a simple CT-curve. Secondly, the twists of V1 are exactly the twists of V .
As we already know from theorem 3 that A(V1) = A(V ), the proposition is
proved.

⇤
Let us conclude this section with a useful technical lemma
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Lemma 4.10. Let V ⇢ (C⇤)2 be a simple CT-curve, and ⇡R : Ṽ ! V be

its normalization. Denote Ṽ :=
�

C̃,⇥
�

, and !R, ˜C :=
�

!(1)

R, ˜C
,!(2)

R, ˜C

�

. For any

loop ⇢T ⇢ C̃ and 1  j  2, one has

X

e2⇢T
log
�

⇥(e)
��

!(j)

R, ˜C

�

~e
2 2i⇡Z.

Proof Let us denote C := A(V ). Recall that edges, leaves and vertices of
C and C̃ are in bijection, and we will use it implicitly here. For any vertex v 2
⇢T, there is a distinguished point among the 3 special points of

�

A|
V

��1

(v),
namely the intersection point of the 2 geodesics corresponding to the 2 edges
in ⇢T adjacent to v. Let us look at the position of this distinguished point in
the argument torus T while going around ⇢T. Going from a vertex v to the
next one via an edge ~e, the distinguished point is translated in the argument
torus T =

�

R/2⇡Z
�

2

by 1

i
⇥(e)

�

!R, ˜C

�?
~e

where
�

!R, ˜C

�?
~e

is the rotation of
�

!R, ˜C

�

~e
by ⇡/2. After a full cycle along ⇢T, the distinguished point has to

end up at its initial place in T . Summing these displacements in the universal
cover R2 of T , it is equivalent to say that

X

e2⇢T

1

i
log
�

⇥(e)
��

!R, ˜C

�?
~e
2 2⇡Z2,

which is equivalent to the statment.

⇤

4.2 A Mikhalkin’s approximation theorem

Theorem 4.11 (Mikhalkin). Let V ⇢ (C⇤)2 be a simple CT-curve, with
normalization Ṽ := (C̃,⇥), such that C̃ has genus g with n leaves. There
exists a family {St}t2N,t>>1

⇢ Mg,n together with immersions ◆t : St ! (C⇤)2

such that
lim
t!1

Ht

�

◆R(St)
�

= V

in Hausdor↵ distance. Moreover, the sequence of twist functions {⇥t}t2N,t>>1

of St can be chosen to be constant and equal to ⇥.

In the rest of this section, V ⇢ (C⇤)2 will be a simple CT-curve, the T-
curve A(V ) ⇢ R2 will be denoted C, and the normalization of V will be
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denoted Ṽ := (C̃,⇥). The genus and number of leaves of C̃ will be denoted
g and n respectively. At the level of T-curves, the collection of residue giving
the normalization morphism will be denoted by R, that is ⇡R : C̃ ! C.

According to theorem 3, one is able to approximate any T-curve in the
plane by a family of harmonic amoebas {AR(St)}t2N, for a suitable family
{St}t2N ⇢ Mg,n.
We have seen in the prerequisites that for S 2 Mg,n, and the pair of imagi-

nary normalized di↵erentials !R,S := (!(1)

R,S,!
(2)

R,S), if
R

�
!(j)
R 2 2i⇡Z for every

loop � ⇢ S and 1  j  2, then

◆R : S ! (C⇤)2

z 7!
�

e
R
z

z

0

!
(1)

R,S , e
R
z

z

0

!
(2)

R,S

�

is a well defined holomorphic function such that

AR(S) = A
�

◆R(S)
�

.

In the conditions of theorem 4.11, the collection of residues R is determined
by the CT-curve V ⇢ (C⇤)2. One then need to find a family {St}t2N ⇢ Mg,n

converging to Ṽ and such that !R,S
t

has period vectors in 2i⇡Z2 for every
loop in St, for t large enough.
A first step in this direction is the following

Proposition 4.12. Let V ⇢ (C⇤)2 be a simple CT-curve, C := A(V ),
Ṽ := (C̃,⇥) its normalization and R the collection of residues giving the
normalization T-morphism ⇡R : C̃ ! C. For any family {St}t2N ⇢ Mg,n

converging to Ṽ , the family of period matrices {PR,S
t

}t2N of St with respect
to R converges to an integer period matrix PR, ˜C.

Proof According to theorem 1, the period vectors 1

2i⇡

� R

�
t

!(1)

R,S
t

,
R

�
t

!(2)

R,S
t

�

tends to the vector
�

!R, ˜C

�

~e
, where �t is the geodesic of the decomposition

of St corresponding to e 2 E(C̃). As V is a simple CT-curve, the collection
of residues R is integer on C̃. Hence the latter period vectors tend to be
integers. Now let us consider a basis ⇢(1)T , ..., ⇢(g)T 2 H

1

(C̃,Z) and consider the

associated family of piecewise geodesic loops ⇢̆(1)t , ..., ⇢̆(g)t ⇢ St (see definition
2.5). By theorem 2 and lemma 4.10, one has that

lim
t!1

Z

⇢̆
(k)

t

!(j)
R,t 2 2i⇡Z
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for 1  k  g and 1  j  2. As the �t and the ⇢̆(k)t generate H
1

(St,Z) for
any t, the proposition is proved.

⇤

As we have seen in the prerequisites, the consideration of C̃ with the
ribbon structure induced from the one of C, allows to describe Mg,n locally
in terms of Fenchel-Nielsen coordinates. Recall that C̃ has exactly 3g�3+n
edges, and that together with a ribbon structure on C̃, the data of length
and twists on every edges of C̃ allows to construct every element of Mg,n via
the map

FN
˜C :

�

C⇤�3g�3+n ! Mg,n

(l,⇥) 7! S(C̃, l,⇥)
,

see theorem 1.22. Now consider the following partial compactification of
(C⇤)3g�3+n at the origin : consider the length factor (R>0

)3g�3+n of its polar
coordinate system, and embed it in the real oriented blowup of R3g�3+n at the
origin. The latter ambiant space is di↵eomorphic to

�

x 2 R3g�3+n
�

� |x| � 1
 

and (R>0

)3g�3+n is presented there as

�

x 2 (R>0

)3g�3+n
�

� |x| > 1
 

.

Consider its partial compactification

�

x 2 (R>0

)3g�3+n
�

� |x| � 1
 

and denote by (C⇤)3g�3+n
0

the product space of (S1)3g�3+n with the latter
partial compactification, and define also the following subset

F
0

:= (S1)3g�3+n ⇥
�

x 2 (R>0

)3g�3+n
�

� |x| = 1
 

.

The points of F
0

can be naturally considered as equivalence classes of se-
quences {zn}n2N ⇢ (C⇤)3g�3+n converging to the origin and such that lim

n!1
Arg(zn)

exists coordinate wise, up to the equivalence relation

{zn} ⇠ {zn} if lim
n!1

Arg(zn) = lim
n!1

Arg(zn)

and 9� > 0 such that lim
n!1

|zn|
|zn|

= (�, ...,�).
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Let C̃ be an abstract T-curve combinatorially equivalent to C̃, that is sup-
ported on the same cubic graph. According to the definition 2.6, any sequence
{St}t2N converging to a CT-curve Ṽ = (C̃ ,O) can be lifted by H

˜C to a se-
quence {zn}n2N ⇢ (C⇤)3g�3+n converging in (C⇤)3g�3+n

0

. Hence, F
0

can be

naturally considered as equivalence classes of CT-curves Ṽ = (C̃ ,O) such
that C̃ is combinatorially equivalent to C̃, up to the equivalence relation

Ṽ
1

= (C̃
1

,O
1

) ⇠ Ṽ
2

= (C̃
2

,O
2

) if O
1

= O
2

and
9� > 0 such that C̃

1

= �C̃
2

as metric spaces.

Clearly, the map FN
˜C extends to (C⇤)3g�3+n

0

! Mg,n, and F
0

is mapped to
S

˜C , the stable curve of dual graph C̃. Now, consider the map

⇧R : (C⇤)3g�3+n ! M
(2g+n�1)⇥2

(R)/Sl
(2g+n�1)

(Z)
(l,O) 7! PR,S( ˜C,l,O)

which associates to (l,O) the period matrix of S(C̃, l,O) with respect to R,
see definition 1.7.

Proposition 4.13. ⇧R extends to (C⇤)3g�3+n
0

. Let [Ṽ ] be the equivalence
class of Ṽ in F

0

, then the level set ⇧�1

R

�

⇧([Ṽ ])
�

⇢ (C⇤)3g�3+n
0

is an analytic

subset of real codimension 4g intersecting F
0

at the locus of classes [Ṽ ] with
Ṽ = (C̃ ,O) satisfying

X

e2⇢
l(e)(!R, ˜C )~e = (0, 0) 2 R2 (5)

X

e2⇢
log
�

⇥(e)
�

(!R, ˜C )~e = (0, 0) 2 (S1)2 (6)

for any loop ⇢ ⇢ C̃ .

Proof From the proof of lemma 4.10, one remark that the limiting period
matrix of a family St converging to a CT-curve Ṽ = (C̃ ,O) depends only
on the pair of exact 1-forms !R, ˜C on C̃ and O. These objects are kept fixed

within the class [Ṽ ]. It follows that ⇧R extends to (C⇤)3g�3+n
0

.
For any simply connected domain U ⇢ (C⇤)3g�3+n, one can trivialize
H

1

(S,Z) ' H for any S 2 FN
˜C(U). Now fix a basis ⇢

1

, ..., ⇢
2g+n�1

of H
such that ⇢

1

, ..., ⇢n�1

are given by small loops around n � 1 of n punctures,
and consider the period matrix PR,S 2 M

(2g+n�1)⇥2

(R) of any curve S 2 U
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with respect to the latter basis of H. This gives a map to R2(2g+n�1), but
the 2(n � 1) coordinates corresponding to ⇢

1

, ..., ⇢n�1

are constant as they
just compute the residues at the punctures. Hence, one has at most 4g non
trivial coordinate functions. This functions are in fact analytic and define
smooth level sets of codimension exactly 4g. One refers to theorem 2.6 and
lemma 2.4 of [GK10], for the proof.
Now, let Ṽ = (C̃ ,O) be a CT-curve such that [Ṽ ] 2 ⇧�1

R

�

⇧([Ṽ ])
�

. Recall

that C̃ has to have the same combinatorial type as C̃. As a consequence,
their edges are in natural bijection. The bunch of equation (5) is equivalent
to saying that the pairs of exact 1-forms !R, ˜C on C̃ and !R, ˜C on C̃ are equal

in the following sense : for any ~e 2 E(C̃ ) = E(C̃), (!R, ˜C)~e = (!R, ˜C )~e. These
are necessary conditions, as these values are indeed limits of corresponding
periods by theorem 1. For the bunch of equations (6), the left-hand side can
be seen as a limit period vector in R2 for a well chosen basis ⇢

1

, ..., ⇢
2g+n�1

of H, see theorem 2. The equations (6) are equivalent to the fact that the
associated periods are in the lattice 2i⇡Z2, which is necessary by lemma 4.10.
In order to see that those conditions are also su�cient, one can extract out
of them a subset of 4g linearly independent conditions. Clearly the condi-
tions (5) are independent of the conditions (6), and both have the same rank.
The fact that the conditions of (5) are 2g dimensional is shown in [Mik05].
Proposition 2.23 of the latter reference shows that (5) defines a polyhedral
domain on the l-factor, interior of which is of the expected codimension.

⇤
Proof of theorem 4.11 Let p

1

: (C⇤)3g�3+n
0

! (S1)3g�3+n be the
projection on the factor of twists. Note that, as Ṽ is the normalization of
the simple CT-curve V , the class [Ṽ ] is in the interior of the polyhedral
domain F

0

\ ⇧�1

R

�

⇧R([Ṽ ])
�

. By the previous lemma, one has the following
transversal intersection

⇣

⇧�1

R

�

⇧R([Ṽ ])
�

\ F
0

⌘

t
�

p�1

1

(⇥) \ F
0

�

.

Hence, the intersection of ⇧�1

R

�

⇧R([Ṽ ])
�

and p�1

1

(⇥) stays transversal for

a small enough neighbourhood U ⇢ (C⇤)3g�3+n
0

of [Ṽ ] and U \ p�1

1

(⇥) \
⇧�1

R

�

⇧R([Ṽ ])
�

is a smooth subvariety of dimension g � 3 + n. Hence, for t
large enough, it is possible to construct a sequence of points {zt}t2N,t>>1

⇢
U \ p�1

1

(⇥) \ ⇧�1

R

�

⇧R([Ṽ ])
�

converging to [Ṽ ] and such that the sequence

St := FN
˜C(zt)
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converges to Ṽ . The question of finding such a sequence is just about choosing
|zt| coherently to definition 2.1. Now, St has been constructed such that the
period matrix PR,S

t

is constant and integer, thanks to lemma 4.10. Hence,
one can conclude by applying proposition 4.9.

⇤

5 Discussions

5.1 Superabundancy and transversality of the phases

A tropical immersion ⇡ : C̃ ! Rm is called superabundant if its deformation
space is bigger than expected, see [Mik05]. A simple instance of superabun-
dancy is given when a cycle of the tropical curve C̃ is mapped to a strict
linear subspace of Rm.
Superabundant immersions are possible candidate for not being approx-
imable by algebraic immersions. Let us give an example : consider the
tautological embedding of a regular projective tropical cubic in R2. Now
embed this plane as R2 ⇥ {0} ⇢ R3. By the above remark, the resulting
embedding in R3 is superabundant. So far, this tropical embedding is still
approximable by algebraic ones as the embedding ⇡ : C̃ ! R2 is. Now choose
3 points on the planar cubic, and consider the modification of the cubic at
this points. Assume for simplicity that these points are chosen on the leaves
of direction (1, 1). It gives a tautological embedding of an abstract tropical
elliptic curve in R3, as shown below.

(1,1,1)

R2

R3

Let us denote by ⇡
3

: C̃ ! R3 this tropical embedding. By classical theory,
one knows that every cubic in the 3-space is contained in a plane. Hence, in
order our tropical elliptic curve to be approximable by algebraic ones, it has

57



to sit in a tropical plane. This condition is equivalent for the 3 chosen points
on the planar cubic to sit on a tropical line.
By theorem 3, the tropical morphism ⇡

3

is approximable by a sequence of
harmonic maps, and ⇡

3

(C̃) arise as the Hausdor↵ limit of the correspond-
ing sequence of harmonic amoebas. In order to approximate ⇡

3

by algebraic
map, one also have to deal with phases, as we did to prove theorem 4.11.
More precisely one need to construct a sequence of imaginary normalized
di↵erentials having integer periods. Obviously, it can be done for the 2 dif-
ferentials giving the first 2 coordinate functions, as the projection of ⇡

3

(C̃) to
the (x, y)-plane is approximable by algebraic curves. For the z-coordinate,
we are facing a non transversality problem. For all the possible deformation
of C̃ within the same combinatorial type, the exact 1-forms having residues
1 at the 3 vertical leaves and �1 at the leaves of slope (1, 1, 1) are supported
exactly on this 6 leaves and are zero everywhere else.
Coming back to the formalism of the last subsection, denote by R the collec-
tion of residues just given above on these 6 leaves. The observation we made
means that the level set of the period map ⇧R we are interested in does not
intersect transversally the exceptional divisor F

0

of the partial compactifica-
tion (C⇤)12

0

. This level set is indeed reducible, one of its components being
F
0

. There is another irreducible component not contained in F
0

and having
a transversal intersection with it. It corresponds to the deformations of C̃ for
which the 3 points of the modification lie on a tropical line. Equivalently,
these are the curves for which the harmonic function giving the z-coordinate
comes from a holomorphic function. Hence, one cannot leave F

0

while stay-
ing in the specified level set if one does not already lie in the latter irreducible
component.

5.2 The complement of harmonic amoebas

In [Kri], Krichever asked whether one can determine an upper bound ⌫(g, n)
for the number of connected components of the harmonic amoeba AR(S) ⇢
R2 independent of the collection of residues R and the Riemann surface
S 2 Mg,n. This question boils down to the study of the complement of their
underlying spines. It is not clear a priori how one can equip such spine with
extra structure in order to make it an harmonic tropical curve in a natural
way. Nevertheless, one can already ask the latter question while restricting
to simple harmonic tropical curves of genus g and with n leaves.
Note first that one can assume that all the leaves have pairwise distinct
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directions. Indeed, if 2 leaves have the same direction, slanting these leaves
one toward the other would produce an extra component of the complement.
Let us denote by ⌫T(g, n) the number of connected components of the the
complement of simple harmonic tropical of genus g with n leaves. One has

⌫T(g, n)  ⌫(g, n).

Determining the ⌫T(g, n) seems to be already a chalenging combinatorial
question. For g = 0 at least, one can provide a simple recursive formula : in
order to maximalize the number of connected components of the complement,
one has to maximize the number of intersection points between the leaves.
There are at least 2 leaves that cannot intersect. Starting from n = 3,
one construct a sequence of simple harmonic tropical curves we claim to be
maximal regarding to our problem. The construction is pictured below. Note

n = 3 n = 4 n = 5 n = 6...

that as long as the (n � 2) leaves pointing upward does intersect pairwise,
the combinatorial type of their arrangement doesn’t matter. It gives the
recursive formula ⌫T(0, n+1) = ⌫T(0, n)+(n�1) for n � 3, and ⌫T(0, 3) = 3,
hence

⌫T(0, n) =
(n� 2)(n� 1)

2
+ 2

for n � 3. In the case g = 1, no leaf can intersect the only cycle of the curve.
Similarily to the rational case, one gets

⌫T(1, n) =
(n� 2)(n� 1)

2
+ 3.

Starting from g = 2, some leaves can intersect cycles of the curve, and the
number of connected component depends on it, as shown below.
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We claim at least that

⌫T(g, n) � g(n� 2) +
(n� 2)(n� 1)

2
+ 2.

60



Part II

On generalized Harnack curves
Intoduction The main subject of this second part is the study of a gen-
eralization of simple Harnack curves as introduced by Mikhalkin in [Mik00].
In the latter, he considered the question of existence of real projective plane
curve of degree d in maximal position with respect to a given set of lines.
Maximal position means that there exists one oval of its real locus intersect-
ing each line d times, one after the other. He also demanded the curve to
be an M-curve. This mean that its real locus has the maximal number of
connected components, which is (d�1)(d�2)

2

+ 1 by Harnack’s inequality. He
showed that for 3 lines, that can be taken to be the coordinate axes, there
exists such curves and that the topological type of the arrangement is unique.
For 4 lines and more, no such curve exists. He noticed that the question can
also be asked for any toric surface, where lines are replaced by the toric divi-
sors at infinity. In this situation one obtains similar existence and uniqueness
results.
In the projective case, these curves were constructed by Harnack, before
Hilbert announced his sixteenth problem. For general toric surfaces, the
existence is guaranteed by using Viro’s combinatorial patch-working. The
uniqueness of the topological type of arrangement proved in [Mik00] follows
from a careful study of amoebas of plane curves. Since then, simple Harnack
curves have been shown to enjoy many di↵erent equivalent definitions, of dif-
ferent nature. In [MR01], the authors show that simple Harnack curves are
the only one for which the inequality provided by [PR04] on area of amoe-
bas is sharp. Simple Harnack curves are also characterized by the fact that
their amoeba map is at most 2-to-1. They also have maximal logarithmic
curvature, see [PR11]. Finally, one can show that after appropriate compact-
ification, the argument map realizes a covering from simple Harnack curves
to the argument torus, blown up at the origin, see [MO07].
Simple Harnack curves surprisingly appeared as spectral curves in physical
model. One example is given in [CD13] for the Ising model on the torus. Go-
ing backwards, the authors of [KOS06] presented simple Harnack curves as
spectral curves of dimer configurations on the torus, in relation with random
surfaces and crystallography. A bit later, some of the previous authors gave a
surprising parametrization of the space of projective simple Harnack curves,
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see [KO06]. As we have seen before, amoebas have thin tentacles going o↵ to
infinity, and the connected components of their complement are convex. The
intercept of the tentacles together with the area of the compact components
of the complement give global coordinates on the space of simple Harnack
curves. They also show that consideration of their spine as defined in [PR04]
gives a local di↵eomorphism between such curves and planar tropical curve
of the same degree.
We believe that simple Harnack curves have yet to reveal all of their proper-
ties. This is one reason why we suggest a simple generalization. Let us now
describe more precisely the content of the second part of this thesis, section
by section.

5.First we recall more precisely the general theory of Harnack curves, and
tropical curves. Some of the prerequisites might be repeated from the first
part of this work.

6. We give the definition of generalized Harnack curves. The characteri-
zation given in [PR11] can be reformulated by saying that the logarithmic
Gauss map of a simple Harnack curve is totally real, this means that the
pull-back of the real part of the target is exactly the real part of the source.
We simply keep this characterization and relax any smoothness assumption.
Note that Mikhalkin’s Harnack curve were originally assumed to be smooth
in [Mik00]. Later in [MR01], the authors showed that in the closure, simple
Harnack curves can only get real isolated double points as singularities. Go-
ing forth, we generalize in a straightforward way the characterization given
in [MO07].

Theorem 4 “Up to an appropriate compactification, Harnack
curves are the only planar curves for which the argument map
realizes a covering on the argument torus, blown up at the origin.”

This characterization is not the most tractable, but it has a very useful appli-
cation. It “determines” the area of the amoeba and the coamoeba of Harnack
curves.

7. We define tropical Harnack curves in the most practical way. We show
that one can equipped these curves with phases in order to get very partic-
ular complex tropical curves in the plane. Using Mikhalkin’s approximation
theorem, one shows
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Theorem 5 “Approximation of tropical Harnack curve produces
Harnack curves with prescribed topology.”

As an illustration, we show how to construct Harnack curves with hyperbolic
nodes, cusps, or complex conjugated double points. We end up this section
by classifying all topological type that can be obtained from tropical Harnack
curves with a single hyperbolic node.

8. In the last section, we undertake the study of Harnack curves with a
single hyperbolic node. The main result is

Theorem 6 “All the topological type for Harnack curves with a
single hyperbolic node can be constructed by tropical methods.”

On the way we show

Theorem 7 “The spine of a generic simple Harnack curve with
a single hyperbolic node is a tropical Harnack curve with a single
hyperbolic node, and that these two spaces of curves are locally
di↵eomorphic.”

and

Theorem 8 “The argument map lift to the universal covering of
the argument torus while restricted to half of the curve.It realizes
a di↵eomorphism onto the complementary in the Newton Polygon
of the curve, of a unit square located in one of the corners.”

6 Prerequisites

6.1 Subtropical geometry of planar curves

In this text, C� ⇢ (C⇤)2 will denote an algebraic curve in the complex 2-torus.
Such curve can be defined as the zero set of a Laurent polynomial

f 2 C
⇥

z±1, w±1

⇤

.

Any monomial z↵w� is a point of the space of characters over (C⇤)2, this
space being naturally isomorphic to Z2. The Newton polygon New(f) is
defined as the convex hull in R2 = Z2⌦ZR of the monomials z↵w� appearing
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in f . Two Laurent polynomials g and f define the same zero set in (C⇤)2 if
and only if there exists a 2 C⇤ and (↵, �) 2 Z2 such that

f(z, w) = az↵w�g(z, w).

Then, New(f) is the translation of New(g) by (↵, �). As a convention, one
will always consider polynomials f 2 C [z, w] such that New(f) touches both
the z- and w- axes. According to this convention, any curve C� ⇢ (C⇤)2 is
defined by a polynomial f , unique up to a multiplicative constant a 2 C⇤.
The Newton polygon New(f) is uniquely determined by C� and will be de-
noted �.

The Newton polygon� of C� induces a toric compactification (C⇤)2 ⇢ T
�

,
whenever the interior of � is 2-dimensional. It can be constructed as the
closure of the image of the following map

(C⇤)2 ! CPm

(z, w) 7!
⇥

z↵0w�
0 : ... : z↵mw�

m

⇤

where � \ Z2 =: {(↵
0

, �
0

), ..., (↵m, �m)}. The action of (C⇤)2 onto itself
extends to T

�

. (C⇤)2 is an open dense orbit in T
�

. In addition, there is a
C⇤-orbit for each side of �, and an orbit reduced to a single point for each
vertex of �. Denote

S1 :=
�

z 2 C
�

� |z| = 1
 

.

We will also describe S1 as R/2⇡Z without any di↵erence. As a subgroup of

(C⇤)2,
�

S1

�

2

acts on T
�

. The moment map µ : T
�

! � is the quotient map
of T

�

by the latter action. On the torus, it is given by

µ(z, w) =

X

1jm

|z↵jw�
j |(↵j, �j)

X

1jm

|z↵jw�
j |

.

For any side s of �, the toric divisor at infinity associated to s is defined by
Ds := µ�1(s). It is isomorphic to CP1 and compactify one of the C⇤-orbit
mentioned above. For any vertex v of �, µ�1(v) is one of the orbits reduced
to a single point. We will refer to it as the vertices of T

�

.
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We will denote by C ⇢ T
�

the closure of C�. The curve C intersects every
divisor Ds with multiplicity |s \ Z2|� 1. A curve C ⇢ T

�

constructed as the
closure of a curve C� ⇢ (C⇤)2 of Newton polygon � never contains any vertex
of T

�

. We will always restrict to this case while considering curve C ⇢ T
�

.
We define the points at infinity of C as C1 := C \ C�.We will also denote

b := |@� \ Z2| and g := |Int� \ Z2|.

By [Kho78], g is the arithmetic genus of C and b is the intersection multiplic-
ity of C with the union of the divisor at infinity. In particular, if C intersects
each of them transversally, then b = |C1|.

Up to a well chosen di↵eomorphism R2 ! Int�, the moment map µ
extends the map

A : (C⇤)2 ! R2

(z, w) 7!
�

log |z|, log |w|
� .

Definition 6.1. Let C� ⇢ (C⇤)2 be an algebraic curve. The amoeba of C� is
the subset A(C�) ⇢ R2. With a slight abuse, we will as well refer to the latter
subset as the amoeba of C and denote it A(C).

Proposition 6.2 ( see [FPT00] ). For an algebraic curve C� ⇢ (C⇤)2, its
amoeba A(C�) is a closed subset of R2. Moreover, every connected component
of R2 \ A(C�) is convex.

Denote by arg(z) 2 S1 the argument of the complex number z 2 C⇤, the
argument torus T :=

�

S1

�

2

and

Arg : (C⇤)2 ! T
(z, w) 7!

�

arg(z), arg(w)
� .

Definition 6.3. Let C� ⇢ (C⇤)2 be an algebraic curve. The coamoeba CoA(C�)
of C� is the subset Arg(C�) ⇢ R2. With a slight abuse, we will as well refer
to the latter subset as the coamoeba of C and denote it CoA(C).

Amoebas and coamoebas are related by the fact that they are respec-
tively real and imaginary part of algebraic curves in logarithmic coordinates.
Interplays between them can be often described in term of the logarithmic
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Gauss map. For a smooth curve C ⇢ T
�

, the logarithmic Gauss � : C ! CP1

is given on C� by

�(z, w) = [z · @zf(z, w) : w · @wf(z, w)]

where f is a polynomial equation for C�. Geometrically, this map is locally
the composition of the coordinate wise complex logarithm with the classical
Gauss map which associates to every point of a smooth hypersurface its
tangent hyperplane. Even though the complex logarithm is multivalued, this
map is well defined. In the case of singular curves C, � might not be define
globally. It is always well defined on the smooth part of C. If ⇡ : C̃ ! C is
the normalization of C, � defines then a rational map on C̃. By removable
singularity theorem, it extends to an algebraic map �̃ : C̃ ! CP1.

Definition 6.4. Let C ⇢ T
�

be a curve, possibly singular, and ⇡ : C̃ ! C
its normalization. The logarithmic Gauss map of C̃ is the map �̃ : C̃ ! CP1

defined above.

For a singular curve C ⇢ T
�

, we will always denote its normalization by
⇡ : C̃ ! C. We will also denote C̃� := ⇡�1

�

C�� and C̃1 := C̃ \ C̃�. Remark
that our assumptions guarantees that C can only have singularities inside
(C⇤)2. In particular, C1 = C̃1.

An alternative description of � (and then �̃) can be given. Looking at z
and w as 2 meromorphic functions on C̃, consider the 2 meromorphic di↵er-
entials d log(z) and d log(w) on C. The quotient of 2 such di↵erentials defines
a meromorphic function on C̃. One has

Proposition 6.5. The Logarithmic Gauss map �̃ : C̃ ! CP1 is given by

p 7!
⇥

�d log
�

w(p)
�

: d log
�

z(p)
�⇤

.

Moreover, the degree of �̃ is ��
�

C̃��.

Proof If p is a local coordinate on C̃�, then

⇥

�d log
�

w(p)
�

: d log
�

z(p)
�⇤

=



� d

dp
log
�

w(p)
�

:
d

dp
log
�

z(p)
�

�

.

Obviously, as C̃� is immersed in (C⇤)2,
� d

dp
log
�

z(p)
�

,
d

dp
log
�

w(p)
��

is a

non zero tangent vector for the coordinatewise logarithm of C� at the point
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corresponding to p. Hence, this tangent plane is given by the equation

�d log
�

w(p)
�

· u+ d log
�

z(p)
�

· v = 0,

which proves the first part of the statement.
The degree of �̃ can be computed as the number of zeroes of d log(w) · u +
d log(z) · v for a generic non zero vector (u, v). By genericity, C̃1 is exactly
the set of poles of this di↵erential and all of them are simple. By Riemann-
Roch, such di↵erential has degree 2 b

1

(C̃)�2. Hence, it has 2 b
1

(C̃)+ |C̃1|�2
zeroes.

⇤
Lemma 6.6. Let s be a side of � and (a, b) 2 Z2 a primitive integer vector
supporting s. For any curve C ⇢ T

�

, and any point p 2 Ds \ C, one has

�(p) = [a : b] .

Proof Suppose first that neither a nor b is zero. By implicit function the-
orem, for any local coordinate t of C centred at p, there exists 2 holomorphic
functions hz(t) and hw(t) having a simple zero at the origin and a positive
integer m such that

z(t) =
�

hz(t)
��bm

and w(t) =
�

hw(t)
�am

.

The number m is exactly the intersection multiplicity De \ C at p. By 6.5,

�(p) = lim
t!0

⇥

�d log
�

w(t)
�

: d log
�

z(t)
�⇤

= lim
t!0



�am · h
0
w(t)

hw(t)
: �bm · h

0
z(t)

hz(t)

�

= [a : b] .

If a (resp. b) is zero, hw (resp. hz) is a non vanishing holomorphic function.
The same computation leads to the result.

⇤
The map A : C̃� ! R2 is a map between smooth surfaces. Following

[Mik00], denote by F̃ � ⇢ C̃� the critical locus of A, that is the set of points
where A is not submersive. Denote by F̃ its closure in C̃.
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Lemma 6.7.
F̃ = �̃�1

�

RP1

�

.

Moreover, F̃ is also the closure of the critical locus of the map Arg : C̃� ! T .

Proof Let p̃ 2 C̃� and denote ⇡(p̃) =: (p
1

, p
2

) =: p. The point p̃ is in F̃ �

if TpC� contains a vector v tangent to the torus |z| = |p
1

|, |w| = |p
2

| (if p is
a singular point of C�, consider the tangent line in TpC� corresponding to p̃).
Equivalently, z has purely imaginary logarithmic coordinates. This hold if
and only if �̃(p̃) 2 RP1.
Similarly, p̃ is a critical point for the map Arg if TpC� contains a vector v
tangent to arg(z) = arg(p

1

), arg(w) = arg(p
2

), i.e. z has real logarithmic
coordinates. Once again, it holds if and only if �̃(p̃) 2 RP1.

⇤

Remark. Any point of C̃ mapped to the boundary of A(C) belongs to F̃ .
By the above lemma, the real part RC̃ of any curve C̃ defined over R is always
a subset of F̃ .

Corollary 6.8. One has the following

⇤ C̃1 ⇢ F̃ .

⇤ F̃ ⇢ C̃ is smooth if and only if �̃ has no branching point on RP1. In
this case, F̃ is a disjoint union of smoothly embedded circle in C̃.

⇤ If F̃ is smooth, both A|
˜

F

� and Arg|
˜

F

� have a well defined Gauss map
given by �̃. In particular, A|

˜

F

� and Arg|
˜

F

� have no inflection points.

Proof The first point is a direct consequence of lemmas 6.6 and 6.7.
For the second point, if �̃ has no branching point on RP1, �̃|

˜

F

is a local

di↵eomorphism, and F̃ is a topological covering of RP1. It implies that F̃ is
a disjoint union of smoothly embedded circle in C̃. If �̃ has a branching point
q 2 RP1, then there exists p 2 �̃�1(q) such that F̃ near p is di↵eomorphic to
the preimage of R ⇢ C by z 7! zn for some n � 2. Hence, F̃ is not smooth at
p. The last point falls from the geometric interpretation of the logarithmic
Gauss map. Consider the tangent bundle of C2 restricted to the coordinate
wise complex logarithm Log

�

C̃��. Considering real and imaginray parts gives
a splitting R2� iR2 of the latter bundle. We have seen in the previous lemma
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that the tangent bundle of Log
�

C̃�� splits in a direct sum of 2 line bundles

while restricted to Log
�

F̃ ��. One of them is contained in the R2 factor of the
previous splitting, and the other one is contained in the iR2 factor. Denote
them by LRe and LIm respectively. Note that the maps A and Arg are just
linear projections on R2 and iR2 in these logarithmic coordinates. Therefore,
A (resp. Arg) maps LRe (resp. LIm) to the tangent line bundle of A(F̃ �)
(resp. Arg(F̃ �)). It follows that the Gauss maps of A(C̃�) and Arg(C̃�) are
both given by �̃. By assumption, �̃ has no critical point, that is A(C̃�) and
Arg(C̃�) have no inflection point.

⇤

Now let us recall that to any holomorphic function f on
�

C⇤�2, one can
associate its Ronkin function

Nf (x, y) :=
1

(2i⇡)2

Z

A�1

(x,y)

log |f(z, w)|
zw

dz ^ dw

defined on R2. The function Nf allows to describe the geometry of the
amoeba A

�

{f = 0}
�

. It is a convex function , that is a�ne linear on any
connected component of the complement of A

�

{f = 0}
�

, see [PR04]. The
gradient gradNf is then a constant function on such components. One de-
fines the order of such component to be the value gradNf on it.
In the case where f is a polynomial, gradNf takes values inside of New(f).
Moreover, its image is dense there.

Proposition 6.9. Let C ⇢ T
�

be an algebraic curve. The order map defines
an injection from the set of connected components of R2 \ A(C) to � \ Z2.
Compact components are sent in the interior of � and non-compact compo-
nents are sent on its boundary. Moreover, the order map is surjective on the
vertices of �.

Consideration of the Hessian of Nf gives rise to a so-called Monge-Ampère
measure supported on A(C). Comparison of this measure with the standard
Lebesgue measure gives the following interesting result.

Proposition 6.10. [PR04] Let C ⇢ T
�

be an algebraic curve. Then

Area
�

A(C)
�

 ⇡2Area
�

�
�

where the area is computed with respect to the standard Lebesgue measure.
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There are other “areas” one can compute about amoebas and coamoebas.
Let x

1

,x
2

be the coordinates of R2 and y
1

, y
2

be the coordinates on T . Define
first

Areas
�

A(C)
�

=

Z

˜C�\ ˜F �
A⇤�dx

1

^ dx
2

�

and

Areas
�

CoA(C)
�

=

Z

˜C�\ ˜F �
Arg⇤

�

dy
1

^ dy
2

�

.

It consists of computing areas of amoebas and coamoebas with multiplicities.
For both maps, the source and the target spaces are canonically oriented, and
the maps are local di↵eomorphisms. Hence one can associate to each point
in the image its signed number of preimages, counting in how many sheets
upstairs the map is orientation preserving minus the number of sheets where
it is orientation reversing.
Define as well

Aream
�

A(C)
�

=

Z

˜C�\ ˜F �

�

�A⇤�dx
1

^ dx
2

�

�

�

and

Aream
�

CoA(C)
�

=

Z

˜C�\ ˜F �

�

�Arg⇤
�

dy
1

^ dy
2

�

�

� .

Here, one compute areas with multiplicities just by counting the number
of preimages over any point of the respective target spaces. The following
observation is due to Mikhalkin :

Lemma 6.11. For any algebraic curve C ⇢ T
�

, the 2-forms A⇤�dx
1

^ dx
2

�

and Arg⇤
�

dy
1

^ dy
2

�

are equal on C̃� \ F̃ �. In implies that

Areas
�

A(C)
�

= Areas
�

CoA(C)
�

= 0

and
Aream

�

A(C)
�

= Aream
�

CoA(C)
�

.

Proof Consider locally the coordinate wise complex logarithm Log(C̃).
It is a holomorphic curve in C2. It implies that the the restriction of the
complex 2-form dz

1

^ dz
2

on C2 to Log(C̃) is zero. Write zj = xj + iyj for
j = 1, 2, then Re

�

dz
1

^ dz
2

�

= dx
1

^ dx
2

� dy
1

^ dy
2

is also zero on Log(C̃),
meaning that the 2-forms dx

1

^ dx
2

and dy
1

^ dy
2

are equal on Log(C̃). As
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we already said, the projection on the x-plane (resp. y-plane) is nothing but
A (resp. Arg). It implies the first part of the statement.
Equalities of Areas and Aream are direct consequences. In the case of Areas,
the moment map µ extends A and has a compact source space. Then it
has a well defined degree d which is zero as µ is not surjective. This de-
gree is precisely the number of preimages of A counted with signs. Hence
Areas

�

A(C)
�

= 0.

⇤
Denote by Af the set of connected components of the complement of

A
�

{f = 0}
�

. For an element ↵ 2 Af denote by N↵
f the a�ne linear function

on R2 extending (Nf )|
↵

. Then the spine Sf is defined as the corner locus of
the piecewise a�ne linear and convex function

Sf := max
↵2A

f

N↵
f .

Sf is a piecewise linear graph in the plane. Equipped with some natural
collection of weight, the spine turns out to be a tropical curve, see next
subsection.

Theorem 6.12 ([PR04]). Let C ⇢ T
�

be an algebraic curve defined by a
polynomial f . Then, A(C) deformation retracts on Sf .

we end up this section with a short description of the maps A and Arg
near the points of C1. The map A has to go to infinity. By convexity
and finiteness of the area of A(C), one deduces that a neighbourhood of any
point of C1 is mapped onto a thin tentacle going o↵ to infinity along a certain
asymptotic direction. If this point belongs to Ds, lemma 6.6 implicitly states
that this direction is orthogonal to the corresponding side s of �.
In the case of Arg, define C̃Arg to be the real oriented blow-up of C̃ at every
point of C̃1. Denote by Sp ⇢ C̃Arg the fiber of the blow-up over p 2 C̃1.

Lemma 6.13. The map Arg extends to C̃Arg. Moreover, if s is a side of
�, (a, b) a primitive integer vector supporting s, and p belongs to Ds, then
Arg : Sp ! T is an m-covering over a geodesic of slope (�b, a), where m is
the intersection multiplicity of C̃1 \Ds at p.

Proof As in the proof of lemma 6.6, use a local coordinate t and consider
the expressions

z(t) =
�

hz(t)
��bm

and w(t) =
�

hw(t)
�am

.
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For t = rei✓, one has

z(t) = r�bm
�

z
0

e�ibm✓ + o(1)
�

and w(t) = ram
�

w
0

eiam✓ + o(1)
�

.

It follows that for any ei✓ 2 S1

lim
r!0

arg
�

hz(re
i✓)
�

= arg(z
0

)� bm · ✓

and
lim
r!0

arg
�

hw(re
i✓)
�

= arg(w
0

) + am · ✓.

This gives the result when a and b are non zero. Otherwise, replace z(t) or
w(t) by a non vanishing function and repeat the same computation, see 6.6.

⇤

6.2 Tropical curves

Let us recall briefly some classical notions about tropical curves in the plane.
All definitions, statements and their proofs can be found in [Mik05] and
[IMS09].
Consider the set T := R [ {�1} and the 2 tropical operations

“x+ y” = max {x, y} and “xy” = x+ y.

Tropical operations will always be distinguished from usual ones by quotation
marks. Equipped with this 2 operations, T is a semifield : the tropical
semifield.
A tropical Laurent polynomial in 2 variables x and y is a function

f(x, y) = “
X

(↵,�)2A
c
(↵,�)x

↵y�”

where A ⇢ Z2 is a finite subset. Such function is piecewise a�ne linear and
convex. As for classical polynomials, the Newton polygon New(f) of f is the
convexhull of A in R2 = Z2 ⌦Z R. The tropical zero set V (f) of a tropical
Laurent polynomial f is defined as the subset of R2 where f is not smooth.
Equivalently,

V (f) =
�

(x, y) 2 R2

�

� 9(↵, �) 6= (a, b) 2 As.t. “c
(↵,�)x

↵y�” = “c
(a,b)x

ayb”
 

.
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As a first observation, a tropical zero set is a graph embedded in R2 with
straight edges and leaves (unbounded edges) with rational slopes. If g is
another tropical Laurent polynomial given by

g(x, y) := “c
(↵,�)x

↵y� · f(x, y)”,

then obviously
V (f) = V (g),

but the converse fails to be true. Without loss of generality, we can and we do
restrict once again to Newton polygon � contained in the positive quadrant
and touching the 2 coordinate axes.
For a tropical polynomial f of Newton polygon �, consider its extended
Newton polygon

�̃ := ConvexHull
��

(↵, �), t
�

2 R3

�

� (↵, �) 2 A, t � c
(↵,�)

 

.

Projecting on the first 2 coordinates maps down all closed bounded faces of
�̃ homeomorphically on �. It induces a subdivision Subdivf of �. It can be
seen using Legendre transform that there is the following duality

Proposition 6.14. Let f be a tropical polynomial in 2 variables. The subdi-
vision of R2 by V (f) is dual to the subdivision Subdivf of � in the following
way

⇤ 2-cells of R2\V (f) are in bijection with vertices of Subdivf , and 2-cells
of Subdivf are in bijection with vertices of V (f),

⇤ leaves-edges of V (f) are in bijection with edges of Subdivf , and their
directions are orthogonal to each other,

⇤ incidence relations are reversed.

Moreover, unbounded 2-cells of R2 \ V (f) are dual to boundary points of �
and leaves of V (f) are dual to edges on the boundary of �.

Remark. Note that this duality rests only on the knowledge of the tropical
zero set V (f). A defining tropical equation f need not to be chosen.

This duality implies that the geometry of � is fixed by V (f), and that up to
our convention on Newton polygons, a tropical zero set has a unique Newton
polygon, not depending on its defining equation.

73



Definition 6.15. Let f be a tropical polynomial in 2 variables. For any
leaf-edge " of V (f), the weight w(") of " is the integer length of its dual edge
"_ in Subdivf , that is |"_ \ Z2|� 1.

Definition 6.16. A tropical curve C ⇢ R2 is a tropical zero set equipped with
the weights defined in 6.15. If � is its Newton polygon, denote by SubdivC
the subdivision of � dual to C.

By the above remark, the notion of weight does not depend on the poly-
nomial f but only on its tropical zero set. Hence, the latter definition makes
sense.

Remark. The convex piecewise a�ne linear function Sf defining the spine
of the curve {f = 0} ⇢ (C⇤)2 is a tropical polynomial. Equipped with the
corresponding collection of weights, the spine of an algebraic curve in (C⇤)2

is a tropical curve.

It is a classical fact that tropical curves satisfy the so-called balancing
given by the following

Proposition 6.17. Let C ⇢ R2 be a tropical curve. For any vertex v of C,
let v

1

, ..., vk be the collection of outgoing primitive vectors supporting the k
leaves-edges adjacent to v and w

1

, ..., wk their respective weights, then

k
X

j=1

wj · vj = 0.

We end up this subsection by recalling what is the stable intersection
multiplicity of 2 tropical curves in the plane C

1

and C
2

. Assume first that
we are in a generic case : C

1

and C
2

intersect transversally, that is in a finite
number of points that are neither vertices of C

1

nor vertices of C
2

. Let p
be an intersection point, v

1

(resp. v
2

) a primitive integer vector supporting
the leaf-edge of C

1

(resp. C
2

) containing p. Denote also w
1

(resp. w
2

) the
corresponding weight. Define the local intersection multiplicity of C

1

and C
2

at p by
mp(C1

, C
2

) := w
1

w
2

· |det(v
1

, v
2

)|,
and the intersection multiplicity by

m(C
1

, C
2

) :=
X

p2C
1

\C
2

mp(C1

, C
2

).
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Now assume that the intersection of C
1

and C
2

is arbitrary. There is a dense
open subset O ⇢ R2, such that for any ~v 2 O, the intersection of C

1

and
C
2

+ ~v is transversal. It is an easy consequence of the balancing condition
that m(C

1

, C
2

+ ~v) does not depend on ~v.

Definition 6.18. The stable intersection multiplicity of C
1

and C
2

is given
by m(C

1

, C
2

+ ~v) for any ~v 2 O.

The stable intersection considered as a divisor on tropical curve can be
defined by using small perturbations. For more details, see [RST05]

6.3 Simple complex tropical curves

Definition 6.19. A simple tropical curve C ⇢ R2 is a tropical curve with all
weights 1 and such that its vertices are dual in SubdivC to a triangle of area
1/2 or to any parallelogram.

A vertex dual to a triangle of area 1/2 is classically referred as a smooth
vertex.

Definition 6.20. For any simple tropical curve C 2 R2, The normalization
C̃ of C is the proper transform of C̃ obtained by the real blow-up of R2 at the
4-valent vertices of C. Denote the blow-up by ⇡ : C̃ ! C.

Remark. The normalization of a simple tropical curve is a 3-valent graph.
It could be made into an abstract tropical curve by adding some extra struc-
ture, and the morphism ⇡ could be made into a tropical morphism, but this
considerations are not needed here, see [Mik05] for example.

Definition 6.21. A simple tropical curve C ⇢ R2 is irreducible if its nor-
malization C̃ is connected.

Definition 6.22. From now on, we define the vertices (resp. edges, resp.
leaves) of a simple tropical curve C 2 R2 to be the image of the vertices (resp.
edges, resp. leaves) of its normalization C̃ by the map ⇡. They form the set
V (C) (resp. E(C),resp. L(C)) and we denote LE(C) := L(C) [ E(C).
The points of C having 2 preimages in C̃ are called the nodes of C and form
the set N(C).
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Definition 6.23. Let C 2 R2 be a simple tropical curve and n 2 N(C). The
multiplicity of the node n is the positive integer number

m(n) := 2 · Area(n_)

where n_ is the 2-cell dual to n in SubdivC. An node n is hyperbolic if
m(n) = 2.

Definition 6.24. A binomial cylinder & ⇢ (C⇤)2 is a set defined by an equa-
tion zawb = c with c 2 C⇤ and (a, b) 2 Z2 a primitive integer vector.
A general line L 2 (C⇤)2 is a set defined by a polynomial equation f(z, w) = 0
where New(f) has euclidean area 1/2.

Consider the general line L
0

:= {(z, w) 2 (C⇤)2|z + w + 1 = 0}. Its coameba
CoA(L

0

) is the union of the 2 open triangles delimited by the 3 geodesics
�
1

:= {arg(z) = ⇡} , �
2

:= {arg(w) = ⇡} and �
3

:= {arg(w) = arg(z) + ⇡}
plus their 3 common vertices (⇡, 0), (0, ⇡) and (⇡, ⇡), see figure 6.3.
As a convention, we choose a framing on each of the �i’s as follows

⇤ �
1

is oriented downward, with origin (⇡, ⇡),

⇤ �
2

is oriented leftward, with origin (0, ⇡),

⇤ �
3

is oriented up-rightward, with origin (⇡, 0).

These framings are coherent with the up-left triangle of CoA(L
0

) (see figure
6.3). The argument map is orientation preserving on this triangle and orien-
tation reversing on the other. For this reason, the framings are kept globally
unchanged by any of the 6 toric automorphisms of L

0

.
With this framing, any boundary geodesic is canonically isomorphic as an
abelian group to S1 equipped with the counter-clockwise orientation.

Proposition 6.25. For any general line L, there exists a toric transforma-
tion of (C⇤)2, that is an element � 2 Sl

2

(Z)o (C⇤)2 such that �(L) = L
0

.
The induced transformation �T 2 Sl

2

(Z)o T on the argument torus T sends
CoA(L) onto CoA(L

0

).
There is a unique framing of the boundary geodesics of CoA(L) that maps
to the canonical framings on CoA(L

0

) by any � 2 Sl
2

(Z) o (C⇤)2 such that
�(L) = L

0

.
For any general line L, we equip CoA(L) with these framings.
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Proof By Pick’s formula, the Newton polygon of any polynomial equation
defining L contains 3 integer points spanning the lattice Z2. Then, there
exists an element of Sl

2

(Z) sending this polygon onto the standard simplex
of size 1. Translating the coordinates by an appropriate element of (C⇤)2

gives the desired �. The details are left to the reader.

⇤

Definition 6.26. A simple complex tropical curve V ⇢ (C⇤)2 is a topological
Riemann surface such that :

⇤ its amoeba A(V ) is a simple tropical curve C ⇢ R2,

⇤ for any e 2 LE(C), there exists a binomial cylinder & such that
�

A|
V

��1

(e) = A�1(e) \ &,

⇤ for any v 2 V (C), there exists a general line L such that
�

A|
V

��1

(v) = CoA(L).

(-⇡,-⇡)

(0, 0)

T

Figure 3: The coamoeba of L
0

, and the framings of its 3 boundary geodesics.

Remark. The fact that such complex tropical curve do exists could be for-
mulated as an easy proposition. In order V ⇢ (C⇤)2 to be a topological Rie-
mann surface, the binomial cylinder & sitting above an element e 2 LE(C)
has to be defined by an equation zawb = c where (a, b) 2 Z2 is a primitive
integer vector supporting e. The fact that such cylinders can be glued to-
gether by the coamoeba of general line above a vertex v 2 V (C) holds on an
appropriate choice of the c’s and the fact that C has only smooth vertices.
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Definition 6.27. For a simple complex tropical curve V ⇢ (C⇤)2, denote
by Ṽ the smooth topological Riemann surface obtained by pulling back the
fibration A|

V

: V ! C to the normalization C̃ of C by the map ⇡ : C̃ ! C.

Remark. Similarily to definition 6.20, we could add extra structure in the
latter definition in order to fit in complex tropical settings, but this is not
needed here, either.

Let us consider a simple complex tropical curve V , with C := A(V ). For
any e 2 E(C) and v

1

, v
2

2 V (C) its 2 adjacent vertices, the topological cylin-

der
�

A|
V

��1

(e) is glued to 2 boundary geodesics �
1

and �
2

in
�

A|
V

��1

(v
1

)

and
�

A|
V

��1

(v
2

) respectively. Let ⌧
1

, ⌧
2

be the canonical group isomorphisms
⌧i : S1 ! �i. Identifying the 2 argument torus A�1(v

1

) and A�1(v
2

), one
has that �

1

and �
2

are set theoretically identical. This is due to the fact that
the coamoeba of a binomial cylinder is single geodesic in T . Under this iden-
tification, one has that the map ⌧�1

2

� ⌧
1

is an orientation reversing isometry
of the form

⌧�1

2

� ⌧
1

: S1 ! S1

z 7! �ei✓z.

As this isometry is self inverse, the datum ei✓ does not depend on the order
we have chosen for �

1

and �
2

.

Definition 6.28. Let V be a simple complex tropical curve, with C := A(V ).
For any e 2 E(C), the element ei✓ 2 S1 constructed above is called the twist
parameter of the edge e.

Definition 6.29. A simple real tropical curve V ⇢ (C⇤)2 is a simple com-
plex tropical curve that is invariant under complex conjugation. We denote
by RV ⇢ (R⇤)2 its real point set and by TV the image of RV under the
di↵eomorphism

As : (R⇤)2 ! R2 ⇥ (Z
2

)2

(x, y) 7!
�

( x
|x| ln |x|,

y
|y| ln |y|), (

x
|x| ,

y
|y|)
�

.

Proposition 6.30. Let V ⇢ (C⇤)2 be a simple complex tropical curve with
C := A(V ). Then V a is real if and only if one of the following equivalent
conditions holds :

i) For every e 2 LE(C), the binomial cylinder
�

zawb = c
 

supporting
�

A|
V

��1

(e) is defined over R, that is c 2 R⇤.
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ii) For every v 2 V (C), the general line L for which
�

A|
V

��1

(v) = CoA(L)
is defined over R.

iii) For every v 2 V (C), the 3 special points of the closed coamoeba
�

A|
V

��1

(v)
are in {(0, 0), (⇡, 0), (0, ⇡), (⇡, ⇡)}.

The proof is straightforward.

Remark. Note that by composing the map As with

Abs : R2 ⇥ (Z
2

)2 ! R2

�

(x, y), (", �)
�

7! ("x, �y),

one recovers the map A. Note moreover that the real locus of any binomial
cylinder defined over R has exactly 2 connected components.

As corollaries of the previous observations, we have

Proposition 6.31. Let V ⇢ (C⇤)2 be a simple real tropical curve and denote
by C := A(V ) its amoeba. Then TV is a piecewise linear curve and Abs :
TV ! C is 2-to-1.

Proposition 6.32. The twist parameters of a real tropical curve V ⇢ (C⇤)2

are always contained in {�1, 1} ⇢ S1.

7 Definition and first properties

Definition 7.1. A real algebraic curve C ⇢ T
�

is a simple Harnack curve if
it is irreducible and

F̃ = RC̃.

This generalizes the notion of simple Harnack curve given in the previous
section. Here, we relax any constraints on the type of singularities of simple
Harnack curves. We will see later that it allows many other cases to appear.
From now on, we will always refer to the latter definition while speaking
about simple Harnack curves.
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Recall that given two compact Riemann surfaces equipped with a real
structure (X, �X) and (Y, �Y ) together with a holomorphic map f : X ! Y ,
then f is said to be totally real if f�1

�

RY
�

= RX. By the lemma 6.7, one
has the following reformulation

Proposition 7.2. An irreducible real algebraic curve C is a simple Harnack
curve if and only if its logarithmic Gauss map �̃ is totally real.

Remark. The latter equivalent definition of simple Harnack curve implies
that RC̃ ⇢ C̃ is of type 1, that is RC̃ \ C̃ has exactly 2 connected components.

In order to get the first general properties of such curves, let us slightly
generalize a construction due to [MO07] : for a curve C ⇢ T

�

consider the
map

Alga : C� ! T
(z, w) 7! (2 arg z, 2 arg w).

Define C̃Bl to be the blow-up of C̃ at every point of C̃1. For any point p 2 C̃1
denote by Pp the fiber of C̃Bl ! C̃ over p. By construction, one has the
factorisation C̃Arg ! C̃Bl ! C̃ inducing a double covering Sp ! Pp for any
p 2 C̃1.

Lemma 7.3. The map Alga naturally extends to

Alga : C̃Bl ! T.

Proof By lemma 6.13, Alga extend to C̃Arg. For any p and any point
in Pp, its 2 preimages in Sp are mapped to the same value by Alga. Hence,
Alga : C̃Arg ! T factorizes through C̃Bl.

⇤
Define the subset C̃

0

⇢ C̃Bl to be Alga�1

|
˜C
Bl

�

{0T}
�

. Note that

Alga�1

�

{0T}
�

=
�

R⇤�2.

Thus, it implies that C̃
0

is the union of RC̃Bl plus some isolated points,
whenever C is defined over R. In this case, the isolated points of C̃

0

come
either as the trace of real isolated singular points of RC or from non transverse
intersection with a toric divisor at infinity. Indeed, by lemma 6.13, if C
intersects a divisor Ds with multiplicity m at a point p 2 C1, there are
exactly m points in the exceptional divisor Pp belonging to C̃

0

, and exactly
one of these belongs to RC̃Bl.
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Lemma 7.4. A real algebraic curve C ⇢ T
�

is a simple Harnack if and only
if

Alga : C̃Bl \ C̃0 ! T \ {0T}
is an unbranched covering.

Proof By lemma 6.7 and the remark above, the latter statement is an
equivalent reformulation of definition 7.1.

⇤

Define at last T̂ to be the real blow-up of T at 0T , and Ĉ to be the real
blow-up of C̃Bl at C̃0. As blowing-up at a smooth submanifold of codimension
1 doesn’t change the surface, blowing-up is e↵ective only at isolated points
of C̃

0

.

Theorem 4. A real algebraic curve C ⇢ T
�

is a simple Harnack if and only
if the map Alga : C̃Bl \ C̃0 ! T \ {0T} extends to a covering

Alga : Ĉ ! T̂ .

Proof Let C be a simple Harnack curve. By definition, the map
Alga : C̃Bl ! T is regular at the isolated points of C̃

0

. Hence, the map
Alga : C̃Bl \ C̃

0

! T \ {0T} extends to T̂ in a tautological way at these
isolated points. At a point of RC̃Bl, blowing-up consists of considering the
normal direction to RC̃Bl in the tangent space. This actually specifies the
line bundle LIm introduced in the proof of lemma 6.8. The projectivized
tangent map of Alga realizes a covering of the exceptional divisor of T̂ by
LIm, giving the extension Alga : Ĉ ! T̂ .
Conversely, if C is such that Alga : Ĉ ! T̂ , lemma 7.4 implies that C is a
simple Harnack curve.

⇤

Corollary 7.5. If C ⇢ T
�

is a simple Harnack curve, then

Aream
�

CoA
�

C
��

= ⇡2

�

� �(Ĉ)
�

.

If moreover C has no real isolated singularity and if it intersecting transver-
sally every toric divisors at infinity, then

Aream
�

CoA
�

C
��

= ⇡2

�

� �(C̃�)
�

.
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Proof It is clear by definition thatAream
�

CoA
�

C
��

= 4Aream
�

Alga
�

C
��

.

By theorem 4, Aream
�

Alga
�

C
��

= Area(T ) ·deg Alga = 4⇡2 ·
�

��(Ĉ)
�

. The
first part of the statement follows.
For the second one, the assumptions are such that C̃

0

has no isolated point.
It implies that Ĉ = C̃Bl, but �(C̃Bl) = �(C̃�).

⇤

8 Tropical construction of Harnack curves

8.1 Tropical Harnack curves

Definition 8.1. Let C ⇢ R2 be a simple tropical curve with normalization
C̃. For every oriented loop �̃ ⇢ C̃, and � the corresponding oriented loop
in C, denote by �� ⇢ E(C) \ � the subset of oriented edges that forms,
together with its previous and following edges in �, a non convex piecewise
linear curve.

Definition 8.2. An irreducible simple tropical curve C ⇢ R2 with normal-
ization C̃ is a tropical Harnack curve if for every oriented loop �̃ ⇢ C̃, one
has

X

~e2�
�

v~e = 0 mod 2 (7)

where v~e is the primitive integer vector supporting the oriented edge ~e.

Figure 4: Projective tropical cubic, quadric and quintic. Both the cubic and
the quintic are tropical Harnack curves. The quartic in the middle does not
satisfy the condition of definition 8.2.
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Definition 8.3. An edge (resp. a leaf) of TV is defined to be one of the 2
connected components mapping onto an edge (resp. a leaf) of C. They form
a set denoted E(TV ) (resp. L(TV )). Their union is denoted LE(TV ).

Definition 8.4. Let V ⇢ (C⇤)2 be RT curve. An inflection pattern of TV is
a collection of 3 consecutive elements of LE(TV ) that is not convex.

Proposition 8.5. An irreducible simple tropical curve C ⇢ R2 is a Harnack
tropical curve if and only if there exists a simple real tropical curve V ⇢ (C⇤)2

such that

⇤ A(V ) = C,

⇤ TV has no inflection pattern.

In such case, V is unique up to sign change (z, w) 7! (±z,±w) of the coor-
dinates.

Definition 8.6. Any of the 4 simple complex tropical curve V of the previous
proposition is defined as a complex tropical Harnack curve sitting above C.

Figure 5: TV for the the cubic and the quintic of figure 4.

The definition of tropical Harnack curves given in 8.2 is a practical defi-
nition, in the sense that it gives a e↵ective method to determine whether a
simple tropical curve is Harnack or not. In spirit, the equivalent definition
given by the above proposition is the one of interest for us, especially because
of the following

Proposition 8.7. Let C ⇢ R2 be a tropical Harnack curve, and V be one
of the 4 complex tropical Harnack curves sitting above C. Then the total
logarithmic curvature of RV is equal to ��(Ṽ ).
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The notion of total logarithmic curvature needs to be clarified. Before
doing so, let us make some enlightening comments.
The “curve” TV lives in the logarithmic plane. The interest of such object
for us is that one can construct families of real curves {C�

t }t>>1

such that
As(RC�

t ) converges to TV , in Hausdor↵ distance. Reasonably, one should
define the total logarithmic curvature of RV such that it corresponds to the
limit of deg �̃|R ˜C�

t

, that is the total logarithmic curvature of RC̃�
t . Relating

the latter proposition with the propositions 6.5 and 7.2, one forsee that the
family {C�

t }t>>1

will be a family of simple Harnack curve, topology of which
is prescribed by the topology of TV . The question of approximation of trop-
ical Harnack curve will be undertaken in the next subsection.

Now we come to the definition of the total logarithmic curvature on RV .
Consider the compactification of RV in T

�

, and normalize it. The result is
a disjoint union of topological circle. Up to the change of coordinates As, it
induces a compactification-normalization of TV . Choose " > 0 su�ciently
small such that the "-neighbourhood of the vertices of TV are pairwise dis-
joint, and smooth the immersion of the topological circles such that

⇤ TV gets deformed only inside the chosen "-neighbourhoods,

⇤ the deformation has no inflection inside the chosen "-neighbourhoods.

Then, each of the smoothed immersions have a well defined logarithmic Gauss
map. In particular, it has a well defined degree, up to the choice of an
orientation. For each of these circles O, define its total curvature O to be
the absolute value of the degree of its Gauss map. Each of these numbers is
clearly independent of the deformation and the choice of orientation.

Definition 8.8. The total curvature of RV is the defined by

 :=
X

O,

where the sum runs over all the topological circles O of the compactification-
normalization of RV defined above.

Proof of proposition 8.7 On one hand, ��(Ṽ ) is equal to the number
of vertices of C̃. To see this, cut C̃ at the middle of any of its edges. As C̃ has
only 3-valent vertices, it splits into a collection of tripods, one for each vertex
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of C̃. The part of Ṽ sitting above any of these tripods is a topological pair-
of-pants, having Euler characteristic -1. Additivity of Euler characteristic
implies the above claim.
On the other hand, one can compute the total logarithmic curvature of RV by
computing its local contributions. By the very definition, these contributions
are concentrated at the vertices of TV . It corresponds to 1/⇡ times the
measure of the solid angle between the 2 normals at the vertices of TV
(see figure 4 in [BLR13]), counted with signs depending on how TV changes
inflection between to consecutive vertices. As TV has no inflection pattern,
this local contributions should all be counted positively. Now, for each vertex
in C, there are 3 vertices in TV . One easily sees that the local contributions
at these 3 vertices add up to 1, see figure 5 in [BLR13]. Hence the total
logarithmic curvature of RV is also equal to the number of vertices of C,
that is the number of vertices of C̃ by convention. The result follows.

⇤

The rest of this subsection is devoted to the proof of proposition 8.5.

Definition 8.9. The edge of a simple real tropical curve is twisted (or has a
twist) if its twist parameter is -1. It is not twisted (or has no twist) otherwise.

Note that we made a slight abuse of language by speaking about edge
of a simple complex tropical curve rather than edge of its underlying simple
tropical curve.

Lemma 8.10. Let V ⇢ (C⇤)2 be simple real tropical curve. Then the inflec-
tion patterns of TV are in 2-to-1 correspondence with the twisted edges of
V .

Proof Let C := A(V ). The middle element of an inflection pattern has
to be an edge. Consider e 2 E(C) and v

1

, v
2

2 V (C) its 2 adjacent vertices.

Let �
1

be the geodesic corresponding to e in
�

A|
V

��1

(v
1

) and �
2

the one

corresponding to e in
�

A|
V

��1

(v
2

). Denote by e
1

, e
2

2 LE(C) the 2 others
elements adjacent to v

1

and "
1

, "
2

2 LE(C) the 2 others elements adjacent
to v

2

, such that e
1

, e
2

, e and "
1

, "
2

, e are cyclically ordered. The origin of
�
1

connects an edge-leaf of TV above e
2

to an edge of TV above e and the
origin of �

2

connects an edge-leaf of TV above "
2

to an edge of TV above e.
Similarly, the �1 point of �

1

connects an edge-leaf of TV above e
1

to an edge
of TV above e and the �1 point of �

2

connects an edge-leaf of TV above "
1
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to an edge of TV above e.
Recall that by definition of the twist parameter, the origin of �

1

is connected
to the origin of �

2

if and only if there is a twist on e. It follows that: either
there is a twist on e and one has 2 inflection patterns in TV , one mapping
down to e

2

, e, "
2

and one mapping down to e
1

, e, "
1

; or there is no twist and
one has 2 patterns in TV , one mapping down to e

2

, e, "
1

and one mapping
down to e

1

, e, "
2

, and they are not inflected.

⇤

A ev
1

v
2

�
1

�
2

e
1

e
2

"
1

"
2

no twist

twist

Figure 6: The proof of the latter lemma. On the left, RV (in blue) sitting
inside of V . The origins of �

1

and �
2

are drawn in purple.

We also refers to section 3 in [Bru13], for a description of twisted edges
in combinatorial patch-working.

Proof of proposition 8.5 Suppose there is a simple complex tropical
curve V ⇢ (C⇤)2 such that A(V ) = C and TV has no inflection pattern. By
the previous lemma, it is equivalent to the fact that V has no twisted edges.
For any vertex v 2 �, there is a distinguished point among the 3 special
points of the coamoeba

�

A|
V

��1

(v), namely the intersection point of the 2
geodesics corresponding to the 2 edges in � adjacent to v. Let us look at
the position of this distinguished point in the argument torus T while going
around �. Going from a vertex v to the next one via an edge e, the point is
moved according to the following rule : if e is not in ��, then this point is
fixed; if e is in ��, this point is moved by ⇡ · r�⇡/2(~e) in T , where r�⇡/2 is
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the rotation of angle �⇡/2. After a full cycle, the distinguished point has to
end up its initial place. This is clearly equivalent to the condition stated in
definition 8.2 on the loop �. Hence C is a tropical Harnack curve.
Conversely, if C satisfies the condition of definition 8.2 for any cycle, pick
an initial vertex v

0

on C. There is exactly one possible general line L such
that

�

A|
V

��1

(v
0

) = CoA(L), up to the 4 changes of signs of the coordinates.
The adjacent binomial cylinders are determined by L, and the general lines
above the nearby vertices are determined as well, because there are no twist.
The first part of the proof shows that the condition of definition 8.2 is nec-
essary and su�cient for this construction to close along every cycle �. The
proposition is proved.

⇤

8.2 Construction by tropical approximation

Theorem 8.11. (Mikhalkin) Let V ⇢ (C⇤)2 be a simple real tropical curve of
Newton polygon �, and let g and n be natural number such that the normal-
ization Ṽ is a smooth topological Riemann surface of genus g with n punc-
tures. Then, there exists a family of real Riemann surfaces {St}t>>1

⇢ Mg,n

together with a family of immersions ◆t : St ! (C⇤)2 such that

⇤ ◆
�

St

�

is a real algebraic curve of newton polygon �,

⇤ ◆
�

St

�

converges in Hausdor↵ distance to V .

The latter theorem allows us to construct real algebraic curve with pre-
scribed topology. In particular, it allows to construct a plenty a simple
Harnack curve as we just show below.

Definition 8.12. Let C be a tropical Harnack curve of Newton polygon �.
Define Top(C) to be the topological triad

⇣

RT
�

, RV,
[

s

RDs

⌘

up to homeomorphism, where s runs over all the sides of � and V is one of
the 4 simple complex tropical curves of proposition 8.5 sitting above C. As
they are obtained one from each others by toric transformations, Top(C) is
well defined.
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Theorem 5. Let C be a tropical Harnack curve of Newton polygon �, then
there exists a simple Harnack curve C ⇢ T

�

such that
⇣

RT
�

, RC,
[

s

RDs

⌘

= Top(C).

Proof Taking t large enough in theorem 8.11 guarantees the existence
of C such that the associated topological triad equals Top(C). It remains to
show that, necessarily, C is a simple Harnack curve. By the very definition of
8.8, one has that the degree of �̃|RC is equal to the total logarithmic curvature
of RV , for any complex tropical Harnack curve V sitting above C. This is
equal to ��(Ṽ ) by proposition 8.7. But ��(Ṽ ) = ��(C̃�), by construction
of C, see theorem 8.11. By proposition 6.5, this is exactly the degree of �̃.
Hence, the logarithmic Gauss map �̃ is totally real. By proposition 7.2, it
implies that C is a simple Harnack curve.

⇤

It was shown in [MR01], that smooth simple Harnack curves as introduced
by Mikhalkin cannot degenerate to curves with wild singularities. Indeed,
the closure of the space of such curves contains only curves with real isolated
double points. At such points, the curve is described by

x2 + y2 = 0.

These are also called elliptic nodes, in contrast with hyperbolic node, locally
described by

x2 � y2 = 0.

By approximating the simple tropical curves drawn in figure 4, one can con-
struct simple Harnack curve with such hyperbolic nodes, as shown in figure
5. In particular, such curves has not been considered before. One can ask for
the possible singularities of simple Harnack curves. Rather than attacking
the question in its generality, let us give examples for the simplest singulari-
ties.
Let us first construct a cuspidal Harnack cubic in the projective plane. The
recipe is now very simple: consider a family {Ct}t>>1

of tropical Harnack
cubic as pictured in figure 4 such that the unique compact connected com-
ponent of the complement shrinks as t ! 1. Up to the choice of a sign,
there is a unique family of complex tropical Harnack curves {Vt}t>>1

above
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the previous family. Even if the tropical curve at the limit C1 is very de-
generated, one can still recover TV1 by passing to the limit. Approximating
each Ct close enough and passing to the limit gives a cuspidal Harnack cubic
as pictured in figure 7.

2

2

Figure 7: C1, TV1 and a cuspidal Harnack cubic.

One can also produces simple Harnack curves with complex conjugated
double points. In the figure 8, we illustrate the construction of a curve
of bi-degree (4, 2) in P1 ⇥ P1. Such curve has arithmetic genus 3. The
curve pictured here has one hyperbolic node on its real part and the 2 edges
coloured in blue are responsible for 2 complex conjugated double points.

Figure 8: A tropical Harnack curve with a node of multiplicity 2, and its
corresponding topological type.
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8.3 Tropical Harnack curves with a single hyperbolic
node

Proposition 8.13. Let C ⇢ R2 be a tropical Harnack curve of Newton
polygon � with a single hyperbolic node n. Then the parallelogram n_ dual
to n in SubdivC has exactly 3 of its vertices on the boundary of �. This 3
vertices are distributed on 2 sides of � that are adjacent to a smooth vertex
⌫ of �.

Proof Suppose n_ has at least 2 vertices v
1

and v
2

in the interior of �.
Consider the polygonal domain P of � obtained by taking the union of n_

together with all the minimal triangle of SubdivC having v
1

or v
2

as a vertex.
Consider the subset of C dual to P . It has a single loop �̃ in the normalization
C̃. There are 2 cases : either v

1

and v
2

are consecutive or opposite in n_. In
the first case, �� is a singleton. In the second, �� is exactly composed of the
2 leaves-edges forming the node n. In both case, the condition of definition
8.2 is not fulfilled. Hence, we get a contradiction.
If n_ has its 4 vertices on the boundary �, then C is reducible. This is a
contradiction.
Then, n_ exactly 3 of its vertices on the boundary of �. Either the middle
vertex is a vertex of �, and this is then a smooth one, or one of the 2 sides
of n_ specified by the 3 vertices is on a side of � and a minimal triangle is
attached to the other side. The vertex of this triangle not contained in n_ is
the smooth vertex of � we are looking for. The statement is proven.

⇤

Definition 8.14. Let C ⇢ R2 be a tropical Harnack curve with a single
hyperbolic node n, and let ⌫ be the smooth vertex of its Newton polygon given
by the previous proposition. One will say that the node of C is next to ⌫.
Denote by TH

�,⌫ the space of tropical Harnack curve with a single hyperbolic
node next to ⌫.

Proposition 8.15. Let � be a Newton polygon and ⌫ a smooth vertex of �.
Then, the topological type Top(C) for any C 2 TH

�,⌫ is unique and depends
only on the pair (�, ⌫).

Definition 8.16. The topological type Top(C) of any C 2 TH
�,⌫ will be

denoted
Top(�, ⌫).
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Proof Up to toric transformation of (C⇤)2 one can assume that ⌫ =
(0, 0) and that its 2 adjacent sides are supported on the x- and the y-axes.
Consider the subdivision SubdivC dual to �. By proposition 8.13, the unique
parallelogram of SubdivC can only be of the following type In particular, (1, 1)

�

is always a vertex of this parallelogram. If g := |� \ Z2|, each of the (g � 1)
remaining points is dual to an oval of RV . These ovals are unnested and up to
an appropriate choice of sign, the oval corresponding to (i, j) 2 �\Z2 sits in
the quadrant of (R⇤)2 given by the pair of signs (i, j) mod 2. Now, the union
of all the 2-cells of SubdivC touching either @� or the point (1, 1) is dual
to the unique component of RV intersecting the toric divisors at infinity. It
intersects these divisors in a cyclical order as in the case of smooth Harnack
curves, see [Mik00], except that 2 intersection points with the vertical and
the horizontal divisors near the origin are exchanged (see the left picture
in figure 5 for example), this no matter where the parallelogram sits in �.
Nesting of the compact ovals with this component is fixed by the geometry
of �. Details are left to the reader.

⇤

9 Simple Harnack curves with a single hyper-
bolic node

9.1 Statements of the main theorems

In this section we undertake the topological classification of the triads
⇣

RT
�

, RC,
[

s

RDs

⌘
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for simple Harnack curves C with a single hyperbolic node in any toric surface
T
�

. We go slightly beyond by showing a strong connection between these
curves and their tropical avatars, in the fashion of [KO06]. One has the
following theorems

Theorem 6. Let C ⇢ T
�

be a simple Harnack curve with a single hyperbolic
node. Assume moreover that C intersects transversally every toric divisor at
infinity. Then, there is a smooth vertex ⌫ of � such that

⇣

RT
�

, RC,
[

s

RDs

⌘

= Top(�, ⌫).

In the latter theorem, one had to specify the intersection profil at infinity,
as the topological classification depends on it. Transversality is a genericity
assumption, and the general case can be deduced easily from the generic one.

Definition 9.1. Let C ⇢ T
�

be a simple Harnack curve with a single hyper-
bolic node, and let ⌫ be the smooth vertex of its Newton polygon given by the
previous theorem. One will say that the node of C is next to ⌫.
Denote by H

�,⌫ the space of simple Harnack curve with a single hyperbolic
node next to ⌫.

Theorem 7. The spine of a curve in H
�,⌫ is a tropical curve in TH

�,⌫. It
defines a map

S : H
�,⌫ ! TH

�,⌫ ,

which is a local di↵eomorphism.

Remark. In [KO06], The authors proved that consideration of the spine
gives a local di↵eomorphism from the space of Mikhalkin’s Harnack curve
to the space of tropical curves. They proved a stronger result : the area of
the holes of their amoebas and the coordinates of the points of intersection
with the toric divisors gives a global set of coordinates on the space of such
Harnack curves. We do believe that it can be reformulated in terms of their
spine and obtain that the map S is a global di↵eomorphism. We postpone
this study for a further paper.

On the way of proving these main theorems, one goes through the follow-
ing results :
First one needs to distinguish the di↵erent connected components of the
critical locus F̃ inside of a cuve C̃.
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Definition 9.2. Let C ⇢ T
�

be a simple Harnack curve. A u-oval is a con-
nected component of RC̃ intersecting C̃1. A b-oval is a connected component
of RC̃ not intersecting C̃1.

This distinction is made because the amoeba map A has disctinct be-
haviour on u- and b-ovals : indeed, it is unbounded on u-ovals and bounded
on b-ovals.

Proposition 9.3. Let C ⇢ T
�

be a simple Harnack curve with a single
hyperbolic node. Then, the normalization RC̃ ⇢ C̃ is an M-curve. Moreover,
RC̃ is the union of (g � 1) b-ovals and a single u-oval, where (g � 1) is the
genus of C̃.

The latter proposition implies that the normalization of such simple Har-
nack curve admits the following decomposition

C̃ := C̃� [ RC̃ [ C̃+

where C̃� and C̃+ are exchanged by the complex conjugation � on C̃. As
Arg � � = �id � Arg, the map Arg is orientation preserving on one “half”
of C̃ and orientation reversing on the other. By convention, fix C̃+ to be the
one where Arg is orientation preserving.
Let us also introduce the following notation : if ⌫ is a smooth vertex of a
Newton polygon �, denote by �⌫ ⇢ � the polygonal domain obtained by
removing the parallelogram of area 1 in the corresponding corner of �. To be
more precise, this parallelogram is spanned by the 2 primitive integer vectors
supporting the 2 sides of � adjacent to ⌫.

Theorem 8. Let C ⇢ T
�

be a simple Harnack curve with a single hyperbolic
node next to ⌫. Then, the restriction to C̃+ of the argument map Arg lifts to
the universal covering R2 of T . Moreover, its lift Arg

0

is a di↵eomorphism
and

Arg
0

�

C̃+

�

= ⌧
�

�⌫

�

where ⌧ is the composition of a rotation by �⇡/2 and a homothety by ⇡.

9.2 Some more conventions

In the rest of this section, C ⇢ T
�

will be a simple Harnack curve with a
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single hyperbolic node p. We denote by ' the connected component of RC�

containing p, and by '̃ its normalization in RC̃�.
Up to toric transformation of (C⇤)2, one can and do assume that � has an
horizontal side supported on the x-axis. We will denote

b :=
�

�@� \ Z2

�

� and g :=
�

�Int(�) \ Z2

�

�

and refer to m as the number of sides of �.
We will always give @� the counter-clockwise orientation. It induces a cycli-
cal order on the set of sides of �. We formalize it by a bijection

Z/mZ ! the set of sides of �
j 7! sj

such that s
1

is the horizontal side of � supported on the x-axis. For each
side sj, j 2 Z/mZ, there is a unique primitive integer vector vj, j 2 Z/mZ,
supporting sj and coherent with the orientation of @�.
By corollary 6.8, we can and we do orient each connected component # of
RC̃ such that A(RC̃�) is a locally concave parametrized curve.
For any u-oval #, this orientation induces a cyclical order on the set (with
possible repetitions) of the toric divisors Ds as they are encountered by #.
We formalize it by a map

Z/m#Z ! Z/mZ ! the set of sides of �
j 7! #(j) 7! s#(j)

where m# is the number of points of #1 := C̃1\#. Denote also #� := #\#1.
Note that the map on the left is not necessarily injective, and is defined up to
translation. For our purpose, we do not need to specify this map any further.
For 2 vectors u and v in the plane, we denote by ](u, v) the measure of the
oriented angle from u to v with values in [0; 2⇡[.

Definition 9.4. The index of a u-oval # of RC̃ is defined by

ind(#) =
1

2⇡

X

j2Z/m
#

Z

]
�

v#(j), v#(j+1)

�

9.3 Topological maximality

This subsection is mainly devoted to the proof of proposition 9.3.
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Lemma 9.5. The only possible cases are the following

(↵) ' is a self-intersecting arc in
�

R⇤�2 joining the toric divisor Ds
j

to the
toric divisor Ds

k

, with ⇡ < ](vj, vk) < 2⇡,

(�) ' is a self-intersecting arc in
�

R⇤�2 joining the toric divisor Ds
j

to the
toric divisor Ds

k

, with 0  ](vj, vk) < ⇡,

(�) ' is an immersed closed curve of rotational index 2 self-intersection at
p,

(�) ' is the union of 2 arcs intersecting transversally at p.

Remark. The distinction we made between case (↵) and (�) is not of topo-
logical nature a priori, but will be motivated later.

Proof Suppose the normalization '̃ of ' is connected. Then it is either an
open segment or a topological circle. The first possibility is split between (↵)
and (�). For the second possibility, ' is an immersed circle self-intersecting
at p. One of the 2 possible smoothings of ' gives 2 disjoint circles. If these
circle are nested in the plane, then it corresponds to (�). If they are not, then
' is isotopic to the figure “1” and has inflection. This contradicts corollary
6.8. Suppose now that the normalization '̃ of ' is not connected. Then it is
the union of 2 open segments, but this is case (�).

⇤

(↵) (�) (�) (�)

vk

vj vk
vj

Figure 9: A(') in the 4 cases of lemma 9.5

The classification of lemma 9.5 is relevant while computing the contribu-
tion to �̃ of the di↵erent ovals of RC̃. The goal here is to shorten this list

95



using the fact that the sum of all this contributions is constrained by the
total reality of �̃.

Remark. Note that all the cases of the list in lemma 9.5 can appear for
simple Harnack curve. The case (↵) was already illustrated by the cubic
of figure 4. We will see in the sequel that the 3 other cases cannot appear
solely. Their manifestation forces the curve to have some other singularities,
see figure 10.

Figure 10: The case (�) on the left, and (�) on the right. The case (�)
appears in both.

Then we have

Lemma 9.6. For an u-oval # ⇢ RC̃ such that A is an embedding on each
connected component of #�, one has

deg �|
#

= |#1|� 2 · ind(#).

For a b-oval # ⇢ RC̃ for which A is an embedding, one has

deg �|
#

= 2.

Proof To prove the first formula, one has to compute the contribution on
every connected component of #�. As A is an embedding, lemma 6.6 implies
first that 0  ](v#(j), v#(j+1)

)  ⇡ for each j 2 Z/m#Z and that according to
our orientation conventions, the contribution between the j-th and (j+1)-th
point of #1 is given by

1

⇡
]
�

� v#(j+1)

, v#(j)
�

=
1

⇡

⇣

⇡ � ]
�

v#(j), v#(j+1)

�

⌘

� 0.
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Summing over all j’s gives the desired formula. The second formula is the
projective reformulation of the fact that a simple closed curve in the plane
has rotational index 1.

⇤
Lemma 9.7. In the cases (↵), and (�) of proposition 9.5, let # be the unique
u-oval in RC̃ containing '̃. Then, one has

deg �|
#

= |#1|+ 2� 2 · ind(#).

In the case (�) of proposition 9.5, let # be the unique b-oval in RC̃ containing
the node p. Then, one has

deg �|
#

= 4.

Proof In the cases (↵), and (�) of proposition 9.5, the proof goes as the
one of the first formula of the previous lemma, except that the contribution
of the arc '̃ is given for some j by

1

⇡
]
�

� v#(j+1)

, v#(j) + 2
�

.

For the case (�), A(#) has rotational index 2 in the plane, that is 4 projec-
tively.

⇤
Proof of proposition 9.3 By lemma 6.5, one has that

deg �̃ = 2g + b� 4.

Consider first the cases (↵) and (�) of proposition 9.5, and denote by # the
u-oval of RC̃ containing '̃. Let us compute

deg �̃ =
P

O oval

of R ˜C

deg �̃|O =
P

O u-oval

deg �̃|O +
P

O b-oval

deg �̃|O

=
⇣

deg �̃|
#

+
P

O u-oval

O 6=#

deg �̃|O
⌘

+
P

O b-oval

deg �̃|O

=
⇣

|#1|+ 2� 2 · ind(#) +
P

O u-oval

O 6=#

(|O1|� 2 · ind(O))
⌘

+2 # {O b-oval}
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by lemmas 9.6 and 9.7

=
⇣

b+ 2� 2 ·
P

O u-oval

ind(O)
⌘

+ 2
⇣

b
0

(RC̃)�# {O u-oval}
⌘

= 2 b
0

(RC̃) + b+ 2� 2 ·
P

O u-oval

�

ind(O) + 1
�

.

It follows that

2 b
0

(RC̃)� 2 ·
X

O u-oval

�

ind(O) + 1
�

= 2g � 6. (8)

Moreover, RC̃ is of type 1 inside of C̃ which is of genus (g� 1), hence b
0

(RC̃)
is constrained by

b
0

(RC̃)  g and b
0

(RC̃) ⌘ g mod 2.

If b
0

(RC̃) = g � 2l, then

2g � 6 = 2 b
0

(RC̃)� 2 ·
P

O u-oval

�

ind(O) + 1
�

 2g � 4l � 4 # {O u-oval}

 2g � 4
�

l + 1
�

.

It implies that l = 0, b
0

(RC̃) = g, and
X

O u-oval

�

ind(O) + 1
�

= 3.

Hence # is the unique u-oval and ind(#) = 2. We proved the result for cases
(↵) and (�).
Consider now the case (�) of proposition 9.5, and denote once again by # the
u-oval of RC̃ containing '̃. We repeat the same computation

deg �̃ =
P

O u-oval

deg �̃|O +
P

O b-oval

deg �̃|O

=
P

O u-oval

(|O1|� 2 · ind(O)) +
⇣

P

O u-oval

O 6=#

2 + 4
⌘

98



as # contributes to 4 according to 9.7

=
⇣

b� 2 ·
P

O u-oval

ind(O)
⌘

+
⇣

2 # {O b-oval}+ 2
⌘

= 2 b
0

(RC̃) + b+ 2� 2 ·
P

O u-oval

�

ind(O) + 1
�

.

Once again, we end up with equation (8). The same arguments as above
imply that b

0

(RC̃) = g, and that there is a unique u-oval # with ind(#) = 2.
We proved the result for case (�).
Consider finally the case (�) of proposition 9.5. Note that every oval of RC̃
satisfies the assumptions of 9.6. We compute as before

deg �̃ =
P

O u-oval

deg �̃|O +
P

O b-oval

deg �̃|O

=
⇣

b� 2 ·
P

O u-oval

ind(O)
⌘

+
⇣

2 # {O u-oval}
⌘

= 2 b
0

(RC̃) + b� 2 ·
P

O u-oval

�

ind(O) + 1
�

.

It follows that

2 b
0

(RC̃)� 2 ·
X

O u-oval

O 6=#

�

ind(O) + 1
�

= 2g � 4,

implying in turn that b
0

(RC̃) = g, that there is a unique u-oval # and that
ind(#) = 1. Equivalently, the cyclical order on the b boundary points of
C induced by # and the one induced by the boundary @� of the moment
polygon � are the same. In such case, the image by A of any two connected
components of #� intersect at 0 or 2 points, but C has exactly one singular
point. This is a contradiction.

⇤

Note that, along the latter proof, we obtained the following

Lemma 9.8. For a simple Harnack curve with only one hyperbolic node, the
case (�) of lemma 9.5 cannot occur.
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9.4 Lifted coamoebas

This subsection is devoted to the proof of theorem 8.

The idea of lifting the argument map to the universal cover of the argu-
ment torus appeared in [Passare,Nilsson]. In this paper, the authors studied
A-discriminantal curves : by Horn parametrization theorem, these curves
happen to be rational, i.e parametrized by a sphere, a simply connected
space. As a consequence, the argument map on (half of) such curves can
be lifted to R2, and this has very nice combinatorial repercussions on their
coamoebas.
In the present case, our parametrizing curve RC̃ is not rational in general.
One can consider only half of this space and show that the argument map
there factorizes through a disc, implying in particular that the induced map
on the fundamental groups is trivial.

Lemma 9.9. The restriction to C̃+ of the argument map Arg lifts to the
universal covering R2 of T . Moreover, its lift Arg

0

is a local di↵eomorphism.

Proof This lemma is a corollary of proposition 9.3. Indeed, the latter
implier that C̃+ is homeomorphic to an open disc with exactly (g � 1) holes.
Compactifiying C̃+ by attaching back RC̃, one see that the fundamental group
of C̃+ is generated by the (g�1) b-ovals of RC̃. The argument map contracts
each of these ovals to one of the 4 points {(0, 0), (0, ⇡), (⇡, 0), (⇡, ⇡)} in T .
In other words, the map

Arg : ⇡
1

�

C̃+

�

! ⇡
1

�

T
�

is trivial. This is the necessary and su�cient condition for Arg to lift to a
map

Arg
0

: C̃+ ! R2.

By the definition of simple Harnack curve and lemma 6.7, Arg is a local
di↵eomorphism. So is Arg

0

.

⇤

Now, define the topological disc D as follows : consider first the closure of
C̃+ in C̃Arg, see lemma 6.13. It is a closed disc with (g�1) open holes bounded
by the b-ovals of RC̃. Now contract to a point every connected component
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of RC̃Arg that is in the closure of C̃+. The result is clearly a topological disc
that we denote D

Lemma 9.10. Arg
0

extends to a di↵erentiable map Arg
0

: D ! R2. De-
note by # the unique u-oval of C̃, then Arg

0

maps the boundary of D to the
piecewise linear curve with vertices in ⇡Z2 obtained by the concatenation of
the vectors ⌧

�

v#(j)
�

according to the cyclical ordering j 2 Z/m#Z, ⌧ being
defined in 8.

Remark. The points of Arg
0

(D) \ ⇡Z2 are exactly the points of D coming
from the contracted connected components of RC̃Arg.

Proof The fact that Arg
0

extends has been proven in lemma 6.13. Dif-
ferentiability at the boundary is implicitly given in the proof of lemma 6.13.
To see di↵erentiability at the points obtained by contraction of the b-ovals,
use the same arguments as in the proof of 4.
The second part of the statement falls from lemma 6.13 and the way we
defined C̃+.

⇤

Now, we are ready to prove theorem 8. The area enclosed by the piece-
wise linear curve Arg

0

�

@D
�

is given by theorem 4. We somehow have to solve
a combinatorial isoperimetrical inequality problem. Here, the constraint is
such that the boundary curve is as predicted by theorem 8.

Proof of theorem 8 By theorem 4, one has that

Area
�

Arg
0

(D)
�

= Area
�

Arg
0

(C̃+) = 1

2

Area
�

Arg(C�)
�

= �⇡2

2

�(C̃�).

In the present case, Khovanskii’s formula [Kho78] gives

��(C̃�) = (2g + b� 2)� 2.

Using Pick’s formula gives in turn

Area
�

Arg
0

(D)
�

= ⇡2

�

(g + b/2� 1)� 1
�

= ⇡2

�

Area(�)� 1
�

(9)
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Consider the case (↵) of lemma 9.5. By the previous lemma, Arg
0

(@D) is
a piecewise linear curve with vertices in ⇡Z2. As we have seen in the proof
of lemma 9.6, it is locally convex everywhere except at the vertex coming
from '̃ ⇢ C̃Arg, where by assumption the angle interior to Arg

0

(D) is strictly
between ⇡ and 2⇡. Let j 2 Z/m#Z be such that this non convex angle is
formed by ⌧

�

v#(j)
�

and ⌧
�

v#(j+1)

�

. If one permutes these 2 vectors, the area
of the domain of R2 enclosed by the piecewise linear curve increases at least
by ⇡2, and exactly by ⇡2 if and only if v#(j) and v#(j+1)

span a parallelogram
of area 1. Suppose the new polygonal domain is still not convex. Then, one
can repeat the previous construction, and increase the area until we end up
with a convex domain. This convex domain can be nothing but � (up to
translation). This contradicts (9). Hence, the result of the permutation were
already convex and v#(j) and v#(j+1)

have to span a parallelogram of area
1, by (9). In other words, there exists a smooth vertex ⌫ of � such that
Arg

0

�

D
�

= ⌧
�

�⌫

�

.
In cases (�) and (�) of lemma 9.5, one has that Arg

0

(@D) is convex. In
such case, its rotational index is exactly computed by ind(#), where # is the
unique u-oval of C̃. It has been shown in the proof of proposition 9.3 that this
rotational index is 2. Then, there exists 2 distinct points p

1

and p
2

on @D
mapped to the same point in R2. They cut @D into 2 arcs �

1

and �
2

. Denote
by �

1

and �
2

the polygonal domains enclosed by �
1

and �
2

respectively.
Then

Area
�

Arg
0

(D)
�

= Area(�
1

) + Area(�
2

). (10)

2 cases can occurs : either p
1

and p
2

are mapped to a point of ⇡Z2, or not.
In the first case, ⌧�1

�

�
1

�

and ⌧�1

�

�
2

�

are 2 polygonal domains in R2 with
integer vertices. Reorder their edges in convex position in order to get 2
convex polygon ⇤

1

and ⇤
2

. Then

� = ⇤
1

+⇤
2

(11)

where the plus sign is a Minkowski sum. By (9), (10), one has

Area(�)� 1  Area(⇤
1

) + Area(⇤
1

),

and (11) provide the opposite inequality. It means that the mixed volume
V ol(⇤

1

,⇤
2

) = 1. By [Kus76], This is the intersection number of 2 generic
curves of respective Newton polygon ⇤

1

and ⇤
2

. By (11), the union of 2 such
curves has Newton polygon �. Such reducible curves form a component of
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the space of nodal curves in T
�

. By Horn parametrization, this space is
irreducible. Hence, every nodal curve in T

�

is reducible, in particular, C is.
This is a contradiction.
In the second case, p

1

and p
2

are not mapped on a point of ⇡Z2. Denote by
v
1

the closest vertex of Arg
0

(@D) before the self-intersection point Arg
0

(p
1

),
and v

2

the closest vertex of Arg
0

(@D) after it. Now cut the first edge of
Arg

0

(@D) after v
1

and past it before v
2

as shown below. This construction
has the following properties :

(⇤) the area enclosed by the resulting curve is strictly greater than
Area

�

Arg
0

(D)
�

,

(⇤) the angle at the vertex next the self-intersection point strictly decreases,
if it is still convex.

Arg
0

(D)

v
1

v
2

v
1

v
2

The latter property implies that, repeating this process, one has to end up
either in the case where the self-intersection point is moved to a point of
⇡Z2, then the previous treatment leads to a contradiction; or in the case of
a piecewise linear curve of rotational index 1 that is convex except at one
vertex. This amounts to the treatment of case (↵). The first property implies
that

Area
�

Arg
0

(D)
�

< ⇡2

�

Area(�)� 1
�

.

This is in contraction with (9). By lemma 9.8, the case (�) cannot occur.
The theorem is proved.

⇤

Note that during the proof, we obatined the following

Corollary 9.11. Only the case (↵) of lemma 9.5 can occur.
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Remark. Note that in [Mik00], the approach was to determine the topology
of smooth simple Harnack curve by using the 2-to-1 property of the map A,
or equivalently that this map is 1-to-1 on half of the curve. Obviously, this
is no longer true while considering simple Harnack curves with a hyperbolic
node. What we have shown here is that on an open half of the curve, the
map Arg

0

is 1-to-1 and that we are able to determine precisely its image by
using constraints on its area. Note that the same approach works also in the
smooth case. Nevertheless, this is not possible to apply such consideration
for general simple Harnack curve. There are example where one cannot lift
the argument map to R2, see for instance the quintic of figure 4.

9.5 Spines

This section is devoted to the proofs of theorems 7 and 6
Contrary to the case of smooth Harnack curve, the amoeba map is not

at most 2-to-1. It is indeed 4-to-1 over some domain of R2 as the 2 branches
near the singular point are mapped one over the other in a 2-to-1 fashion.
It could happen that a hole of one of the branches would be hidden by the
other branch in the amoeba-plane. The theorem 7 asserts that it is never the
case and that all the holes are “visible”. The other striking point is that the
spine of C describes the topology of C. In particular, the node of C manifests
tropically as a node on its spine. It is not clear in general if a singular curve
has to have a singular spine.

Up to a toric transformation, one can assume that � contains the 3 points
(0, 0), (0, 1) and (1, 0) and that ⌫ = (0, 0). It induces the local compactifica-
tion of (C⇤)2 by C2 in T

�

, where the 2 toric divisors adjacent to ⌫ are the 2
coordinate axis. Hence, the 2 asymptotes of A(') are horizontal leftward and
verical downward. As before, let p = (p

1

, p
2

) 2 (C⇤)2 be the node of C, and
choose "

1

, "
2

> 0 such that the point (log |p
1

|+"
1

, log |p
2

|+"
2

) belongs to the
compact connected component of the complement of A(RC) delimited A(').
The next lemma implies that this component is indeed in the complement of
A(C). Define the following sets

R :=
�

(x, y) 2 R2

�

� x  log |p
1

|+ "
1

, y  log |p
2

|+ "
2

 

,
H :=

�

(x, y) 2 R2

�

� x  log |p
1

|+ "
1

, y = log |p
2

|+ "
2

 

,
V :=

�

(x, y) 2 R2

�

� x = log |p
1

|+ "
1

, y  log |p
2

|+ "
2

 

.

104



Lemma 9.12. A|C\A�1

(R)

is at most 2-to-1. For any connected component C

of A�1(R) in the normalization C̃, A|
C

is at most 2-to-1.

Proof The elements of this proof are contained in the proof of lemma 8
in [Mik00]. For self-contentedness, one reproduces almost word by word, the
needed arguments. Let q

1

2 R2 \ R be a point such that A�1(q
1

) consists of
more than 2 points. Let L be a line passing through q

1

with a rational slope
which is not orthogonal to the slope of a side of �. Let q

2

2 L \
�

R2 \ R
�

be a point close to infinity in L so that A�1(q
2

) = ;. As each component
of A(RC) cuts R2 into a convex and a non convex half, we call the convex
half the interior of the component (even if this component is non compact).
If q

1

belongs to the interior of a components and q
2

belongs to the interior
of b components then the number of points in A�1(q

1

) is 2(b � a). But A
is an embedding on the unique u-oval of C out of R, hence there is only one
arc which joins the sides of � adjacent to q

2

and only the interior of this arc
may contain q

2

. Therefore, b = 1 and 2(b � a)  2. The first part of the
statement is proven.
Now consider a line segment L in A(C) \R having one extremal point on the
loop of A(') and the other on the boundary of a non compact component
of the complement. Such L is easily seen to exist. A�1(L) is an embedded
circle in C. Consider C

1

and C
2

the 2 surfaces with boundary obtained by
cutting the normalization C̃ along this circle. The outer boundaries of A(C

1

)
and A(C

2

) are given be the line segment L and the image of their respective
intersection with the unique u-oval of C. In such case, one can easily adapt
the latter arguments to show that A is at most 2-to-1 on both C

1

and C
2

.
Each connected component C of the statement is included in C

1

or C
2

, hence
the second part of the lemma is proved.

⇤

Lemma 9.13. C \ A�1(R) is a reducible holomorphic curve such that each
of its irreducible components intersects either A�1(H) or A�1(V ).

Proof This follows from the proof of the latter lemma. Indeed, any such
irreducible component is included either in C

1

or C
2

. Up to a change of the
indices, A(C

1

) intersects only H and A(C
2

) intersects only V .

⇤
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Definition 9.14. Let us denote by CH the union of the irreducible compo-
nents of C \A�1(R) intersecting A�1(H) and CV the union of the irreducible
components of C \A�1(R) intersecting A�1(V ).

Lemma 9.15. There exists 2 functions g and h holomorphic on A�1(R)
such that CV (resp. CH) is the zero set of g (resp. h). Moreover they can be
chosen such that g · h = f where f is a polynomial defining C.

Proof The closure of A�1(R) in T is the polydisc D centred at the origin,
with bi-radius (|p

1

|, |p
2

|) in the local compactification C2 of (C⇤)2. Let us
consider an irreducible component C of CV or CH . If one can show that
there exists a holomorphic function on D which zero set is exactly C, the
result easily follows. By the classical implicit function theorem, there exists
an open covering D ⇢

S

j Uj and a collection of function gj holomorphic on
Uj such that the zero set of gj is exactly Uj \C. Hence the quotient gj/gk is
a nowhere vanishing holomorphic function on the overlap Uj \ Uk. We are
looking for a global function g holomorphic on D such that its zero set is
exactly C or equivalently such that g/gj is a nowhere vanishing holomorphic
function on Uj. This amounts to solve the second Cousin problem, in the
holomorphic case. As D is a Stein manifold, such that H2(D,Z) = 0, the
Cousin problem is always solvable on D, see [H90].

⇤

The latter local factorization of f induces a splitting of its associated
Ronkin function on A�1(R), that is

Nf (x, y) := 1

(2i⇡)2

Z

A�1

(x,y)

log |f(z, w)|
zw

dz ^ dw

= 1

(2i⇡)2

Z

A�1

(x,y)

log |g(z, w)|+ log |h(z, w)|
zw

dz ^ dw

=: Ng(x, y) +Nh(x, y).

To each of the latter Ronkin functions, one can associate their respective
spines Sg and Sh, as in [PR04]. These are 2 tropical curves in the domain
R such that the amoeba A(CV ) (resp. A(CH)) deformation retracts on Sg

(resp. Sh), see theorem 6.12.
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Recall that Af is the set of connected components of the complement of
A(C). Similarly, denote Ah (resp. Ag) the set of connected components of
the complement of A(CH) (resp. A(CV ) in R. The same properties hold for
Nh and Ng and Sg and Sh are defined the exact same way as Sf . If one
denotes by AR

f the elements of Af intersecting R, convexity implies that

(Sf )|
R

= max
↵2AR

f

N↵
f

= max
↵2AR

f

N↵
h + max

↵2AR

f

N↵
g

 max
↵2A

h

N↵
h +max

↵2A
g

N↵
g

= Sh + Sg,

where the elements of AR
f are seen as subsets of the elements of Ah and Ag

in the second equality. There is equality if and only the maps AR
f ! Ah

and AR
f ! Ag given by the inclusion are both surjective, or equivalently no

connected component of the complement of A(CH) is included in A(CV ) and
vice versa. Note that in such case

(Sf )|
R

= Sh + Sg.

In order to prove theorem 7, one will need few more lemmas.

Lemma 9.16. The stable intersection of Sg and Sh in R is 1.

Proof The idea is to deform smoothly CH and CV “close” to their respec-
tive spine in such a way that the intersection number of the deformations is
kept constant equal to 1, and such that this intersection number corresponds
to the stable intersection of Sg and Sh.
Let us first deform CH . Consider a smooth foliation of A(CH) modelled on
the foliation F , as pictured in figure 6 of [Mik04]. The example given here
is depicted in the neighbourhood of a 3-valent vertex of the spine but can
easily be carried out for any higher valency. Now, let us deform A(CH) in
time t by applying on each leaf an homothety of ratio 1/t centered at the the
spine. The result is a smooth deformation retraction of A(CH) to resp. Sh,
for t >> 1. Now, one can deform smoothly CH in a smooth surface CH,t lying
above the deformation at time t of A(CH), by keeping constant the argument
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of the points in a moving fiber. Now, perform a similar deformation CV,t of
CV . As A(CV,t) \ H = A(CH,t) \ V = ; and @A(CV,t) ⇢ V , @A(CH,t) ⇢ H
for any t >> 1, the homological intersection of CH,t and CV,t is constant in t,
that is equal to 1. At the level of spines, one can use a translation as small
as desired in order to assume that the set-theoretical intersection of Sg and
Sh is a finite collection of points, none of which is a vertex of any of the 2
spines, and that no intersection point went out of R. Then, translating CH,t

and CV,t accordingly, one clearly has that both intersection numbers under
consideration are not a↵ected by these translations.
Hence, for t large enough, A(CH,t) does not contain any vertex of Sg and
A(CV,t) does not contain any vertex of Sh. It implies that for any intersec-
tion point of Sg and Sh, there exists a small neighbourhood U such that the
quadruple (A(CV,t) \ U ,Sg \ U ,A(CH,t) \ U ,Sh \ U) is di↵eomorphic to

(]�2, 2[⇥ [�1, 1] , ]�2, 2[⇥ {0} , [�1, 1]⇥ ]�2, 2[ , {0}⇥ ]�2, 2[)

in ]�2, 2[2. By the 2-to-1 property, see lemma 9.12, the preimages of the 2
stripes in U are 2 cylinders in CV,t and CH,t. Locally, each of these cylinders
separates 2 connected component of the complement. By the proof of lemma
11 in [Mik00], the homolgy class of each cylinder in H

1

�

T,Z
�

is given by the
di↵erence of the orders of its 2 adjacent components of the complement. By
the definition of the spine, the di↵erence of these orders corresponds to the
primitive integer vector supporting the corresponding edge of the spine, times
its multiplicity. On one side, the homological intersection of the 2 cylinders
is given by the intersection of their homology class in H

1

�

T,Z
�

, that is the
corresponding lattice index. By the definition of stable intersection and the
latter observations, this is also the local stable intersection of Sg and Sh in
U . The result follows.

⇤

Lemma 9.17. Sg and Sh are trees. Their Newton polygons are either seg-
ments of integer length 1 or triangles without inner integer points.

Proof By assumption, Sh has at least a vertical leaf going downward,
and Sg has at least an horizontal leaf going leftward. Neither Sh or Sg

could have more than one leaf of the respective kinds, otherwise it would
obviously contradict the previous lemma. If �h and �h are the respective
Newton polygons, the latter implies that �h is bounded from below by an
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horizontal side sH of length 1 and �g is bounded from the left by a vertical
side sV of length 1. For �g, the side attached at the top of sV , if there
is, is strictly slanted toward the right, otherwise the corresponding leaf of
Sg would intersect H. The side attached at the bottom of sV , if there is, is
horizontal or strictly slanted toward the left, otherwise the corresponding leaf
of Sg would intersect the vertical leaf of Sh, up to translation. It contradicts
the previous lemma. The only possibility is that �g is either a binomial or
a right angled triangle with integer height 1. The same arguments apply for
�h.

⇤

Proof of theorems 6 and 7 As the curves of H
�,⌫ having transversal

intersection at infinity are dense in the latter space, it is su�cient to prove the
result only for this case. By the previous lemma, every connected component
of the complement of A(CH) and A(CV ) are unbounded in R. It implies that
no connected components of the complement of A(CH) is hidden by A(CV )
and vice versa. By the previous remarks, it implies that

(Sf )|
R

= Sh + Sg.

It implies also that A(C) has exactly g visible holes, which is the maximal
possible. Indeed, the previsous lemma implies that none of the (g�1) b-ovals
of RC̃ intersect A�1(R), and A is at most 2-to-1 on this space, by lemma 9.12.
Hence, their image by A bounds a compact component of the complement.
The same holds for the singular loop of A('). Hence, the complement of Sf

has also g compact connected components.
It implies, together with the transversality assumption, that Sf has only
leaves-edges of weight 1. The only possibility preventing Sf to be in TH

�,⌫

is the occurrence of vertices of valency higher than 3. Those vertices cannot
hide any genus, in the sense that their dual polygon has no interior point.
One can perturb them in order to get a 3-valent tree, and this perturbation
can be chosen as small as desired. Then the map S does take values in
TH

�,⌫ . We postpone the fact that S is a local di↵eomorphism to the next
section. Up to this, theorem 7 is proven.
Now, theorem 6 falls as a corollary. Thanks to the 2-to-1 property of lemma
9.12, one can recover in which quadrant sits any connected component of RC�

from its image by A in the very same fashion as in lemma 11 in [Mik00]. But
this is exactly how one recovers TV from the only datum of the underlying
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tropical Harnack curve. Hence RC� deforms isotopically to the real locus of a
simple tropical Harnack curve, obtained by a small perturbation of its spine.

⇤

9.6 Spines continued

In order to end the proof of theorem 7, one needs to show that one can
reproduce the arguments given in [KO06], in section 2.2.4 and 4.2. We are
not any more in the situation studied there. Namely the amoeba map is not
2-to-1 any more, but the situation is not so dramatic. Basically, all of what
we have proven yet can be described in the following picture
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This represent the amoeba of C, where A(RC) is drawn in blue, A(') is
drawn in purple. Over the light gray region, A is 2-to-1. It is 4-to-1 over the
dark gray region.
For self-contentedness, let us repeat the arguments of [KO06] : take ↵

1

, ...,
↵g�1

to be the (g � 1) smooth compact ovals of RC. For each of these ovals,
pick a point (xj, yj) in the complement of A(C) enclosed by A(↵j), and define

�j :=
�

(z, w) 2 (C⇤)2
�

� |z| = exj , |w|  eyj
 

.

The ↵j’s and �j’s can be taken as a- and b-cycles for C̃.
Recall that C is given by a polynomial f of Newton polygon � that contains
the origin and has a vertical and an horizontal side adjacent to it. The origin
has been chosen to be the vertex next to which C has an hyperbolic node as
shown in the above picture, see definition 9.1.
Then the tangent space to C with given points at infinity and node is given by
the polynomials vanishing at the points at infinity and the node of C, modulo
the polynomial f itself. Such polynomials have the form zw · q(z, w) where
the Newton polygon of q is obtained from � by removing all its boundary
points. Hence, the Newton polygon of q has g integer points. As q has to
vanish at the node of C, the space of such q’s is (g � 1) dimensional.
On the other hand, one can check that the holomorphic di↵erentials on C̃
have the form

! =
q(z, w)
@
@w

f(z, w)
dz.

The space of tropical curve of TH
�,⌫ with given points at infinity is (g � 1)

dimensional. It can be described by the intercept of the tropical monomial
dominating inside its j-th hole, for 1  j  g�1. If the tropical curve under
consideration is the spine of the curve C, this intercept can be computed by

Nf (x, y)� (ax+ by)
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where (x, y) lies inside the j-th hole, and (a, b) is the order of this hole.
Repeating the computation of [KO06], one has

d
dt
Nf+tzw·q(x, y)|

t=0

=
1

(2⇡i)2

Z

|z|=ex

|w|=ey

q(z, w)

f(z, w)
dz dw

=
1

2⇡i

Z

|z|=ex

X

f(z,w
r

)=0

|w
r

|ey

q(z, wr)
@
@w

f(z, wr)
dz

=
1

2⇡i

Z

�
j

q(z, w)
@
@w

f(z, w)
dz.

One deduces that the Jacobian of the map that associates to a curve of H
�,⌫

the intercepts of its Ronkin function is precisely the period matrix of the
curve, in particular it is invertible. One concludes that the map S is a local
di↵eomorphism. This ends the proof of theorem 7.

10 Discussions

10.1 Harnack curves and tropical curves

In [KO06], The authors showed that the map S that associates its spine to a
smooth Harnack curve is a local di↵eomorphism. They also showed that the
area of the holes of their amoebas gives global coordinates on the space of
smooth Harnack curves, when the points at infinity are fixed. In the mean-
time, they show that the map from the intercept of the linear components of
the Ronkin function to the area of the holes is a coordinate change. Hence

Theorem 10.1. [KO06] The map S from the closure of the space of smooth
Harnack curves of degree d to the space of tropical curves of degree d is a
di↵eomorphism.

Following the exact same reasoning, we claim that one can strengthen
theorem 7 by

Theorem 9. The map
S : H

�,⌫ ! TH
�,⌫

is a global di↵eomorphism.
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In section 8, we constructed Harnack curves in H
�,⌫ from tropical curves.

The latter theorem tells in some sense that every Harnack curve can be con-
structed this way. One can naturally ask the following question

Qu1. Can we construct any Harnack curve by approximating tropical Har-
nack curves?

It is very tempting to answer positively. Nevertheless, the techniques used
here can’t be developed further. First, notice that if Qu1 admits a posi-
tive answer, then every Harnack curve has to be an M-curve. This is part
of proposition 9.3. Already, the methods used in the proof cannot give the
expected result while considering Harnack curves with 2 hyperbolic nodes.
Moreover one cannot expect to be able to lift coamoebas to the universal
covering of the torus as we did in theorem 8. Indeed, consider the projective
Harnack quintic given in figure 5. From a more general point of view, it
wouldn’t be reasonable trying to answer Qu1 by treating all the cases one
by one.
The approach we would suggest is a more extensive study of the connection
between Harnack curves and their tropical avatars. For example

Qu2. Does there exist for any Harnack curve a canonical degeneration to-
wards its spine?

By the local 2-to-1 property of the amoeba map, the pull-back of the spine
by A gives the critical graph of a Strebel foliation in the normalization C̃,
see [HM79]. Such foliation is given by a quadratic di↵erential which in turns
correspond to a tangent direction at C̃ in the appropriate Teichmüller space,
see [Nip10]. It would be interesting to study possible tropical degenerations
by following the geodesic with respect to the Teichmüller metric given by the
specified tangent direction.

10.2 Harnack curves as spectral curves

In [KOS06] and [CD13], Harnack curves arise as spectral curves for di↵er-
ent physical models. By Horn-Kapranov theorem, reduced A-discriminantal
curves are exactly those curves for which their logarithmic Gauss map are bi-
rational isomorphisms, see [Kap91]. For this reason, they are clearly Harnack
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curves. Such curves are given as spectral curve of the associated discrimi-
nantal complex, see [GKZ08]. Naturally one can ask whether every Harnack
curve can be presented as the spectral curve of a geometric/physical prob-
lem, and if it can be done in a uniform way. For example, can we reasonably
relate A-discriminant to dimer configurations on the torus?

10.3 Complement components of coamoebas

Due to their nice properties, amoebas had been more attractive and more
extensively studied than their imaginary counterpart, namely coamoebas.
They are closed subsets, with convex connected component in their com-
plement, and they are somehow intermediate objects between classical and
tropical geometry. They carry nice combinatorial informations. On the other
side, coamoebas are apparently not as nice, apparently. We have seen here
how useful they can be. One problem coming from the amoeba side is to
give a description of the connected components of coamoebas. One knows
since [FPT00] that the set of connected components of the complement of
amoebas maps injectively in the set of integer point of the Newton polygon.
For coamoebas, a similar map has been constructed in [FJ12] by introducing
an intermediate object, the lopsided coamoeba.
Lopsided coamoebas are of very combinatorial nature, and for this reason
they are easier to study. In fact, one can show that lopsided coamoebas
and coamoebas are the same for Harnack curves. More than that, every
curve for which its coamoeba and its lopsided coamoeba are the same turns
out to be a ramified covering of a Harnack curve. These curves are called
multi-Harnack curves. They will be studied by the author in a further paper.
Regarding questions on complement components of coamoebas, multi-Harnack
curves are very interesting and their classification rely on the classification
of Harnack curves. This is one more reason why the latter should be studied
extensively.
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