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INTRODUCTION
One of the main ways volcanologists catego-

rize the volume and explosivity of the world’s 
major volcanic eruptions is through the analy-
sis of tephra distribution. This is because tephra 
deposits retain a large amount of important 
information related to the dynamics and physical 
parameters of the associated volcanic eruptions 
(e.g., Pyle, 1989; Walker, 1973). One of the most 
important parameters that can be derived from 
the analysis of tephra deposits is the erupted vol-
ume, which is essential for the assessment of the 
associated hazards (e.g., Volcanic Explosivity 
Index, VEI; Newhall and Self, 1982). Nonethe-
less, the calculation of erupted volume is com-
plicated by (1) the nonuniversal relationship of 
the deposit thinning with distance from the vent, 
(2) the poor preservation and accessibility to sig-
nifi cant parts of tephra deposits (limited outcrops 
and/or tephra dispersal often over large water 
bodies), and (3) the diffi culty in extrapolating 
thickness decay patterns of the medial portion 
of deposit, which is typically well preserved, to 
both proximal and distal areas. Several empiri-
cal volume calculation methods have been pro-
posed over the past 40 years, ranging from the 
analysis of crystal/glass ratio of large pumices to 
various integration methods of thickness-versus-
distance-from-the-vent relations, such as the two 
segments on a log-log plot, the trapezoidal rule, 
and the recent methods based on the exponential 
and power-law thinning on a semilog plot (see 
Fierstein and Nathenson [1992], Bonadonna and 
Houghton [2005], and Gonzalez and De la Cruz 

[2010] for a review). As an alternative, calcula-
tion of erupted mass has also been approached 
by solving an inverse problem for tephra loads 
through the use of both analytical and computa-
tional advection-diffusion models (e.g., Connor 
and Connor, 2006). These inversion strategies 
are very promising, but require larger compu-
tational resources and have intrinsic limitations 
mainly related to (1) the diffi culty of describing 
deposition in the very proximal area (dominated 
by column dynamics) and medial to distal area 
when dominated by aggregation, and (2) the 
common assumption of a uniform wind profi le. 
In contrast, the integration of the thickness-
versus-distance relationship based on various 
assumptions is of easier and faster application, 
but each empirical method has proved specifi c 
limitations. In particular, the exponential integra-
tion has been a subject of lively debate, as it was 
suggested that, even though the empirical fi t of 
one or two exponential segments displays a good 
agreement with some tephra deposits, the vol-
ume can be signifi cantly underestimated when 
the distal data are missing (e.g., Fierstein and 
Nathenson, 1992, 1993; Pyle, 1989, 1995; Rose, 
1993). In fact, more recent studies have shown 
that well-preserved tephra deposits do not follow 
a simple exponential decay because distal ash 
settles differently (e.g., Rose, 1993; Sparks et al., 
1992). The power-law fi t and the use of at least 
three exponential segments were introduced to 
better describe the thinning of well-preserved 
deposits (Bonadonna and Houghton, 2005). In 
addition, numerical models also indicate a much 

more gradual deposit thinning than predicted by 
one or two exponential segments, especially for 
eruptions that produce large amounts of both vol-
canic ash and lapillus-size particles (Bonadonna 
et al., 1998; Sparks et al., 1992). However, three 
segments cannot always be identifi ed, especially 
for poorly preserved deposits, and the power-
law fi t cannot be integrated between zero and 
infi nity. This paper presents a new fast empiri-
cal method, the fi t of deposit thinning through a 
Weibull distribution, which combines the advan-
tages of the exponential and power-law fi t of 
thickness-versus-distance data on semilog plots.

EMPIRICAL DESCRIPTION OF 
TEPHRA-DEPOSIT THINNING

Volumes of tephra deposits can be derived 
from the following relationship:

 ∫ ∫ ∫ )(= = =
∞ ∞ ∞

V T A T x T x x xd d d
0

2

0 0

, (1)

where T and x are the thickness and the square 
root of the isopach area A, respectively. A rela-
tionship between T and x can be empirically 
determined from fi eld observations. Here we 
propose a new method based on the assump-
tion of a Weibull distribution between thickness 
and square root of isopach areas, which recon-
ciles the positive features of the exponential and 
power-law methods. Specifi cally, the function 
xT(x) can be described by an even more general 
distribution (e.g., log-logistic), but the Weibull 
distribution is chosen because it represents a 
generalization of the exponential distribution, 
has the minimum number of parameters (three 
free parameters), and appears to be able to 
reproduce a large number of observations.

The Weibull method is based on the assump-
tion that thickness scales with square root of the 
isopach area according to the following relation-
ship:

 ) )( (= θ λ − λ⎣⎢ ⎦⎥
−

T x xexp
n n2

, (2)

where λ represents the characteristic decay 
length scale of deposit thinning (typically 
expressed in kilometers), θ represents a thick-
ness scale (typically expressed in centimeters; 
note that θ = e·T(λ) where e ≈ 2.718 denotes 
the Euler-Napier constant), and n is a shape 
parameter (dimensionless). For n = 1, the expo-
nential relationship for xT(x) is recovered [for 
an alternative formulation that recovers exactly 
the exponential thinning for T(x) see Appendix 
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ABSTRACT
Volume determination of tephra deposits is necessary for the assessment of the dynamics 

and hazards of explosive volcanoes. Several methods have been proposed during the past 
40 years that include the analysis of crystal concentration of large pumices, integrations of 
various thinning relationships, and the inversion of fi eld observations using analytical and 
computational models. Regardless of their strong dependence on tephra-deposit exposure and 
distribution of isomass/isopach contours, empirical integrations of deposit thinning trends still 
represent the most widely adopted strategy due to their practical and fast application. The 
most recent methods involve the best fi tting of thinning data using various exponential seg-
ments or a power-law curve on semilog plots of thickness (or mass/area) versus square root 
of isopach area. The exponential method is mainly sensitive to the number and the choice of 
straight segments, whereas the power-law method can better reproduce the natural thinning 
of tephra deposits but is strongly sensitive to the proximal or distal extreme of integration. We 
analyze a large data set of tephra deposits and propose a new empirical method for the deter-
mination of tephra-deposit volumes that is based on the integration of the Weibull function. 
The new method shows a better agreement with observed data, reconciling the debate on the 
use of the exponential versus power-law method. In fact, the Weibull best fi tting only depends 
on three free parameters, can well reproduce the gradual thinning of tephra deposits, and 
does not depend on the choice of arbitrary segments or of arbitrary extremes of integration.
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DR1 in the GSA Data Repository1]. In accor-
dance with Equations 1 and 2, the volume of 
tephra deposits can be calculated as
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where θ, λ, and n can be empirically determined 
from observations 

(note that V x
n

x
n

( ) = −⎡
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RESULTS
The Weibull method was applied to 33 tephra 

deposits associated with a VEI between 1 and 
6, and the new estimates were compared with 
those of previous methods (Table 1; see also the 
Data Repository). The error associated with the 
empirical fi t of observed thickness (i.e., relative 
mean square error, RMSE) was calculated for 
all techniques (i.e., exponential, power-law, and 
Weibull). When multiple exponential segments 
were used, the average error among the different 
segments was considered. In addition to RMSE, 
we have also accounted for a 10% error associ-
ated with the compilation of isopach maps, as 
derived from the specifi c case study of Coto-
paxi volcano (Biass and Bonadonna, 2011). 
For the power-law method, the RMSE and the 
error related to the compilation of isopachs were 
added to the relative error due to the choice of 
different distal integration limits (see Table 1). 
Nonetheless, such a total mean error does not 
account for uncertainty due to paucity of data 
(e.g., lack of proximal or distal data). In fact, 
scarce data are typically associated with low 
fi tting error, but with high uncertainties. Uncer-
tainties associated with the lack of information 
are discussed below. In order to fi nd the best fi t 
for the Weibull distribution of tephra-deposit 
thinning, a range needs to be chosen for each 
parameter θ, λ, and n. Our data set indicates that 
the best initial ranges for θ, λ, and n are 0.1–

1GSA Data Repository item 2012116, Tables DR1–
DR3, Figures DR1–DR4, Appendix DR1 (alternative 
formulation for recovering exponential thinning for n 
= 1), a description of the Weibull-method spreadsheet, 
and a Weibull method Excel spreadsheet (template for 
the calculation of erupted volume and mass based on 
the integration of the Weibull fi t), is available online 
at www.geosociety.org/pubs/ft2012.htm, or on request 
from editing@geosociety.org or Documents Secre-
tary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.

TABLE 1. COMPARISON OF VOLUME (in 106 m3) CALCULATED BASED ON THE INTEGRATION OF 
EXPONENTIAL, POWER-LAW, AND WEIBULL FIT AND ON OTHER METHODS FOR ERUPTIONS 

WITH VOLCANIC EXPLOSIVITY INDEX (VEI) BETWEEN 1 AND 6

Eruption
[no. of isopach lines]

Exponential
(± mean error)

[no. of exp. segments]

Power law
(± mean error)

[m]

Weibull
(± mean error)

Other 
methods

4+E8.2)%22( 4+E2.4]6.0[ )%17( 4+E7.8]2[ )%12( 4+E4.4]7[ )ak 6.3( naoniM
3+E4.6)%41( 4+E2.1]2.1[ )%24( 4+E6.2]1[ )%12( 3+E7.6]5[ )681 .D.A( opuaT

2+E0.6)%62( 3+E1.2]1.1[ )%93( 3+E2.2]2[ )%71( 2+E0.3]6[ )5781( D ajksA

Fontana Lapilli (>60 ka) [5] 6.0E+2 (22%) [1] 5.0E+3 (37%) [1.5] 1.9E+3 (25%) 2.7E+3a

3+E6.7)%63( 3+E8.3]7.1[ )%74( 3+E1.6]3[ )%91( 3+E9.6]9[ )1991( nosduH

Mount St. Helens (18 May 1980) [15] 1.1E+3 (15%) [2] 1.2E+3 (99%) [1.3] 1.0E+3 (26%) 1.4E+3b

1.1E+3c

3+E1.6)%52( 3+E5.5]7.1[ )%93( 3+E6.6]2[ )%81( 3+E2.5]7[ )2191( A atpuravoN

3+E7.2)%91( 3+E5.2]3.1[ )%85( 3+E6.5]2[ )%91( 3+E5.2]6[ )2191( B atpuravoN

Novarupta CDE (1912) [8] 2.7E+3 (17%) [3] 3.9E+3 (52%) [1.7] 2.6E+3 (31%) 4.8E+3

Novarupta FGH (1912) [10] 7.5E+3 (22%) [3] 1.2E+4 (53%) [1.2] 7.8E+3 (30%) 3.4E+3

)%95( 3+E0.9]9.1[ )%65( 4+E1.1]3[ )%26( 3+E5.9]11[ )2391( upaziuQ

3+E0.2)%12( 3+E0.8]8.0[ )%46( 4+E8.4]1[ )%12( 3+E2.9]6[ )2091( airaM atnaS

Agnano-Monte Spina B1 (~4100 yr B.P.) [4] 1.9E+2 (17%) [1] 1.5E+3 (45%) [1.1] 1.6E+2 (16%) 3.6E+3d

Agnano-Monte Spina D1 (~4100 yr B.P.) [3] 2.8E+2 (11%) [1] 3.8E+3 (52%) [0.7] 2.2E+2 (11%) 2.8E+3d

Chaiten β (6 May 2008) [12] 2.1E+2 (24%) [3] 1.6E+2 (85%) [1.5] 1.6E+2 (26%)

Cotopaxi L3 (~820 yr B.P.) [6] 6.0E+2 (18%) [1] 1.8E+3 (42%) [1.8] 5.4E+2 (14%) 2.4E+3e

Cotopaxi L5 (~1180 yr B.P.) [6] 3.0E+2 (17%) [2] 4.5E+2 (32%) [2.1] 2.3E+2 (24%) 4.7E+2e

)%31( 2+E8.4]1.1[ )%84( 3+E4.5]2[ )%51( 2+E0.4]5[ )3651( ogoF

3+E0.6)%41( 2+E6.5]4.1[ )%93( 3+E5.1]2[ )%51( 3+E0.1]7[ )681 .D.A( epetaH

2+E0.2)%45( 2+E4.2]2.2[ )%55( 2+E5.1]3[ )%81( 2+E0.2]11[ )7491( alkeH

Pululagua (2450 yr B.P.) [9] 3.0E+2 (16%) [1] 1.4E+3 (47%) [1.5] 3.2E+2 (14%) 3.0E+2f

4+E4.2)%41( 2+E8.4]2.2[ )%74( 2+E7.6]1[ )%71( 2+E0.5]6[ )6881( arewaraT

1+E0.3)%21( 1+E5.4]6.2[ )%32( 1+E9.2]1[ )%42( 1+E0.2]6[ )2991( orgeN orreC g

)%52( 1+E0.6]5.2[ )%92( 1+E4.4]1[ )%33( 1+E0.3]6[ )4791( ogeuF

Vesuvius AP3-B1 (2.7 ka) [3] 6.2E+0 (21%) [1] 2.0E+1 (34%) [2.0] 1.9E+1 (30%)

Vesuvius U3 (A.D. 512) [6] 1.1E+1 (14%) [2] 2.2E+1 (23%) [2.0] 5.0E+1 (18%) 8.9E+0h

Etna (1971) [7] 7.0E−1 (28%) [2] 8.0E−1 (18%) [2.6] 1.7E+0 (25%) 6.5E−1i

0+E0.2)%52( 0+E7.4]3.2[ )%52( 0+E0.2]3[ )%02( 0+E0.2]01[ )8991( antE j

Mount St. Helens (22 July 1980) [7] 6.0E+0 (68%) [2] 4.6E+0 (47%) [2.3] 1.0E+1 (50%)

)%11( 0+E4.4]0.2[ )%33( 0+E9.3]3[ )%33( 0+E0.4]71[ )6991( uhepauR

Montserrat (26 September 1997) [4] 5.0E−1 (23%) [1] 5.1E−1 (25%) [2.7] 5.3E−1 (25%)

Montserrat (31 March 1997) [7] 2.0E−1 (15%) [1] 5.7E−1 (61%) [1.1] 1.7E−1 (11%)

Montserrat (21 September 1997) [3] 4.0E−2 (25%) [1] 7.0E−1 (49%) [1.1] 4.7E−1 (11%)

Note: Decreasing volcanic explosivity index (VEI) is indicated by alternating shading. Estimated uncertainty (mean 
error) is also indicated in parentheses (see text for details). Weibull fi tting was obtained using the software Grace. 
Number of isopach contours, number of exponential segments, and absolute value of power-law exponent (m) are 
also indicated in square brackets. Distal limits for the power-law integrations are 700–1000 km for VEI 5 and VEI 6; 
300–500 km for VEI 4, VEI 3, and VEI 2; 25–50 km for VEI 1; proximal integration limit is calculated as in Equation 
7 of Bonadonna and Houghton (2005). Volume derived with other methods (other than exponential, power-law, and 
Weibull integrations) are described in Bonadonna and Houghton (2005), with the exception of the following:

aFontana Lapilli: derived solving an inverse problem for mass/area using TEPHRA2. 
bMount St. Helens, 18 May 1980: based on measurements of isopach area and thickness inside the 0.5 mm 

contour (Sarna-Wojcicki et al., 1981). 
cMount St. Helens, 18 May 1980: derived by best-fi tting column height, mass/area, and eruption duration using 

FALL3D with a Buoyancy Plume Theory–based model and assuming a deposit density of 450–550 kg m−3 (Folch et 
al., 2010).

dAgnano-Monte Spina (AMS) Layer B1 and D1: derived solving an inverse problem for both mass/area and grain 
size using HAZMAP (Costa et al., 2009). 

eCotopaxi Layer 3 and 5: derived solving an inverse problem for mass/area using TEPHRA2 (Biass and 
Bonadonna, 2011).

fPululagua: derived solving an inverse problem for both mass/area and grain size using TEPHRA2 (Volentik et al., 
2010). 

gCerro Negro 1992: derived solving an inverse problem for mass/area using TEPHRA2 (Connor and Connor, 
2006); erupted mass (3.5 × 1010 kg) was converted into volume based on an average deposit density of 1170 kg m−3 
(C.B. Connor, 2011, personal commun.).

hVesuvius A.D. 512: derived using one exponential segment (Cioni et al., 2011).
iEtna 1971: calculated by Booth and Walker (1973).
jEtna 1998: derived solving an inverse problem for mass/area using both TEPHRA2 and FALL3D (Bonadonna and 

Costa, 2012). 
All references and Weibull parameters (θ, λ, n) are described in Table DR1 (see text footnote 1).
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5000 cm, 0.1–1000 km, and 0.2–2, respectively. 
Best-fi t parameters are chosen minimizing the 
following residual:

 ∑ [ ]) )( (σ = −
=

w T Tobs calci i i
i

N
2 2

1

, (4)

where wi are weighting factors, N is the number 
of data points, and Ti(obs) and Ti(calc) represent 
the observed and calculated thickness values, 
respectively. Weighting factors wi depend upon 
the distribution of random errors in the depen-
dent variable. When wi = 1, all values have same 
weight (i.e., uniform error), and therefore, larger 
thicknesses have greater effect on the best fi t. 
When wi = 1/Ti

2(obs), the relative squared errors 
are minimized (i.e., proportional error). The use 
of wi = 1/Ti(obs) is a compromise between mini-
mizing the uniform and proportional errors. In 
our calculations, we used wi = 1/Ti

2(obs), except 
for Askja D, Montserrat (26 September 1997), 
and Vesuvius AP3-B1, for which we used wi = 
1/Ti(obs). Generally, the best weighting factor is 
the one that yields a random residual plot with 
no functional dependencies.

The Weibull function gives an excellent fi t 
for all deposits analyzed. Figures 1A–1C show 
some selected examples of different VEIs and 
different scales of square root of isopach area. 
All the studied cases are reported in Figure DR1 
in the Data Repository. The Weibull function is 
more fl exible than a fi t with multiple exponen-

tial segments, as it does not require the arbitrary 
choice of both position and number of straight 
segments (e.g., Ruapehu 1996 in Fig. 1D) and, 
similarly to the power-law fi t, can reproduce the 
natural thinning curvature when data are miss-
ing (e.g., proximal thinning of Taupo A.D. 186; 
Fig. 1D). With respect to the power law, the 
Weibull method shows a less gradual thinning 
and a better fi t of the actual data (Fig. 1D), and 
does not depend on the integration extremes as 
it can be integrated between zero and infi nity. 
Volumes estimated based on the integration of 
the Weibull function are mostly in between the 
volumes estimated by integrating the exponen-
tial fi t and the power-law fi t (Table 1), refl ecting 
the typical Weibull-type thinning that is more 
gradual than the exponential but more rapid 
than the power law (Fig. 1D). The two Weibull 
empirical parameters λ and θ are strongly 
related to the eruption characteristics, with λ 
being a measure of the rapidity of thinning and, 
therefore, increasing with the erupted volume 
(Figs. DR2 and DR3). In particular, λ is <20 km 
for all small and moderate eruptions (i.e., VEI 
≤3; Fig. DR3), while θ tends to increase with a 
decrease of λ within each VEI class (Figs. DR2 
and DR3).

Following the method described by Bona-
donna and Houghton (2005), a sensitivity analy-
sis was carried out on two deposits of different 
magnitude (i.e., Ruapehu 1996 and Novarupta 

CDE 1912) to investigate the sensitivity of the 
Weibull integration when proximal, medial, and 
distal data are sequentially removed (Fig. DR4; 
Tables DR2 and DR3). For the Ruapehu 1996 
test (VEI 2), when most proximal or most distal 
data are removed, the Weibull method tends to 
underestimate by ~50% of the volume calcu-
lated based on the complete data set, whereas, 
when only the medial are missing, and therefore 
the tails of the thinning are better described, the 
Weibull function overestimates by only 14% 
(Table DR2). Bonadonna and Houghton (2005) 
had already shown that the exponential integra-
tion of various segments underestimates the 
volume by ~40%–70% in all cases investigated, 
and the power-law integration is relatively sta-
ble when medial and distal data are missing, 
but overestimates up to nearly fi ve times when 
proximal data are removed. The same test car-
ried out on a larger deposit generated by the 
Novarupta CDE 1912 eruption (VEI 5) shows 
that discrepancies are within a similar order 
of magnitude (Table DR3). In particular, the 
Weibull integration results in discrepancies of 
−58% and 99% when proximal and distal data 
are removed, respectively. Finally, the expo-
nential integration method depends on two or 
more parameters (i.e., coeffi cient and exponent 
for each of the exponential segments) and the 
power-law integration method depends on four 
parameters (i.e., coeffi cient, exponent, and two 
arbitrary integration extremes). In contrast, the 
Weibull integration method depends on three 
parameters only (i.e., λ, θ, and n), and therefore, 
the deposit thinning can be described with at 
least three points distributed over the whole dis-
tribution. As an example, differences in volume 
derived from the Weibull integration in the case 
when only three points are considered (one in 
proximal, one in medial, and one in distal area) 
are 40% and 18% for the Ruapehu 1996 and 
Novarupta CDE 1912 cases, respectively.

DISCUSSION AND CONCLUSIONS
The determination of tephra-deposit volumes 

is crucial to the characterization of active volca-
noes, with obvious implications for environmen-
tal and climatic impact, estimation of magma 
production rate, long-term hazard assessments, 
and forecasting of future eruptions. Unfortu-
nately, all empirical methods used to derive 
erupted volume based on integration of deposit 
thinning strongly depend on the available data. 
In fact, thinning of distal deposits cannot be 
easily extrapolated based on the thinning of 
the proximal deposit because distal and proxi-
mal sedimentation are controlled by different 
regimes (i.e., laminar to turbulent; Bonadonna et 
al., 1998). For this reason it is very important to 
assess uncertainties related to each volume esti-
mation method. The errors associated with the 
exponential and the Weibull fi t are comparable 
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Figure 1. Semilog plots of thickness versus square root of isopach area showing the Weibull 
best fi t for tephra deposits on different length scales. A: 50 km (Etna 1998, VEI 2; Fuego 1974, 
VEI 3; Fogo 1563, VEI 4). B: 300 km (Ruapehu 1996, VEI 2; Askja D 1875, VEI 5; Taupo A.D. 
186, VEI 6). C: 600 km (Hekla 1947, VEI 4; Mount Saint Helens 1980, VEI 5; Minoan 3.6 ka, VEI 
6) from the vent. D: Comparison of Weibull, power-law, and exponential fi t for Taupo A.D. 
186. For Ruapehu 1996, only the comparison between Weibull and power law is shown, as 
one exponential segment cannot be fi t. References are in Table DR1 in the Data Repository 
(see footnote 1).
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(Table 1). However, our sensitivity tests indicate 
that the Weibull function is less sensitive when 
proximal, medial, or distal data are missing. In 
fact, when data are not well distributed or only 
a few isopach contours are available, uncertain-
ties are typically larger than errors reported in 
Table 1 (typically up to ~100%; see Tables DR2 
and DR3). Moreover, the multiple-exponential-
segment method tends to drastically underes-
timate the error when only few points are used 
for each segment. Finally, the 10% error we 
considered for the subjective compilation of iso-
pach maps has to be considered as a minimum 
estimation, and further studies are needed to 
better characterize it (e.g., Cioni et al., 2011). 
Concerning the comparison with other empirical 
methods, data fi tting with one or more exponen-
tial segments on a semilog plot is straightfor-
ward but requires an arbitrary choice of seg-
ments and can often underestimate the volume 
by a factor of 2.5 when proximal and/or distal 
data are missing (e.g., Pyle, 1995; Bonadonna 
and Houghton, 2005; this work). In contrast, the 
power-law fi t can better reproduce the natural 
thinning of tephra deposits, but cannot be inte-
grated between zero and infi nity and can signifi -
cantly overestimate the volume (up to a factor of 
5–6) when proximal or distal data are missing 
(Bonadonna and Costa, 2012; Bonadonna and 
Houghton, 2005; this work). In detail, the power-
law method is very sensitive to the proximal inte-
gration extreme for small deposits (i.e., mostly 
VEI ≤3; power-law exponent >2; Table 1) or 
the distal integration extreme for large deposits 
(i.e., mostly VEI >3; power-law exponent <2; 
Table 1) (Bonadonna and Costa, 2012). In brief, 
the use of the Weibull method is recommended 
because it shows a better fi t with observed thin-
ning and, similarly to the power-law function, it 
reproduces the natural gradual thinning of tephra 
deposits even when there are only a few data 
points available (i.e., when only one exponential 
segment can be identifi ed), but is associated with 
smaller errors than the power-law method when 
large parts of the deposit are missing in either the 
proximal or distal area (typically within a factor 
of 2). The method can be implemented by using 
several free software packages (e.g., Grace, Gnu-
plot, R), but we have also compiled a Microsoft 
Excel® template for the easy calculation of both 
erupted volume and mass in case thickness and 
mass/area data are used, respectively (see the 
Excel fi le in the Data Repository). All bulk vol-

umes can be easily converted into erupted mass, 
and therefore magnitude, if the deposit density 
is known. Nonetheless, due to the typical large 
uncertainties described above, volume and mag-
nitude of explosive eruptions cannot be consid-
ered as absolute values regardless of the tech-
nique used. It is important that various empirical 
and analytical methods are applied in order to 
assess such an uncertainty.

ACKNOWLEDGMENTS
We are grateful to C. Connor, R. Cioni, and two 

anonymous reviewers for constructive suggestions 
that improved the manuscript.

REFERENCES CITED
Biass, S., and Bonadonna, C., 2011, A quantitative 

uncertainty assessment of eruptive parameters 
derived from tephra deposits: The example of 
two large eruptions of Cotopaxi volcano, Ecua-
dor: Bulletin of Volcanology, v. 73, p. 73–90, 
doi:10.1007/s00445-010-0404-5.

Bonadonna, C., and Costa, A., 2012, Modeling of 
tephra sedimentation from volcanic plumes, in 
Fagents, S., et al., eds., Modeling volcanic pro-
cesses: The physics and mathematics of volca-
nism: Cambridge, UK, Cambridge University 
Press, ISBN 9780521895439 (in press).

Bonadonna, C., and Houghton, B.F., 2005, Total 
grain-size distribution and volume of tephra-
fall deposits: Bulletin of Volcanology, v. 67, 
p. 441–456, doi:10.1007/s00445-004-0386-2.

Bonadonna, C., Ernst, G.G.J., and Sparks, R.S.J., 
1998, Thickness variations and volume esti-
mates of tephra fall deposits: The importance of 
particle Reynolds number: Journal of Volcanol-
ogy and Geothermal Research, v. 81, p. 173–
187, doi:10.1016/S0377-0273(98)00007-9.

Booth, B., and Walker, G.P.L., 1973, Mount Etna 
and the 1971 eruption: Philosophical Transac-
tions of the Royal Society of London, v. 274, 
p. 147–151.

Cioni, R., Bertagnini, A., Andronico, D., Cole, P.D., 
and Mundula, F., 2011, The 512 AD eruption of 
Vesuvius: Complex dynamics of a small scale 
subplinian event: Bulletin of Volcanology, v. 73, 
p. 789–810, doi:10.1007/s00445-011-0454-3.

Connor, L.G., and Connor, C.B., 2006, Inversion is 
the key to dispersion: Understanding eruption 
dynamics by inverting tephra fallout, in Mader, 
H., et al., eds., Statistics in volcanology, vol-
ume 1: Special Publications of IAVCEI: Lon-
don, Geological Society, p. 231–242.

Costa A., Dell’Erba F., Di Vito M.A., Isaia, R., 
Macedonio, G., Orsi, G., and Pfeiffer, T., 2009, 
Tephra fallout hazard assessment at the Campi 
Flegrei caldera (Italy): Bulletin of Volcanology, 
v. 71, p. 259–273.

Fierstein, J., and Nathenson, M., 1992, Another look 
at the calculation of fallout tephra volumes: 
Bulletin of Volcanology, v. 54, p. 156–167, 
doi:10.1007/BF00278005.

Fierstein, J., and Nathenson, M., 1993, Reply to 
comment by WI Rose: Bulletin of Volcanology, 
v. 55, p. 375–378, doi:10.1007/BF00301149.

Folch, A., Costa, A., Durant, A., and Macedonio, G., 
2010, A model for wet aggregation of ash par-
ticles in volcanic plumes and clouds: 2. Model 
application: Journal of Geophysical Research, 
v. 115, B09202, doi:10.1029/2009JB007176.

Gonzalez, A.O., and De la Cruz, S., 2010, A simple 
semi-empirical approach to model thickness of 
ash-deposits for different eruption scenarios: Nat-
ural Hazards and Earth System Sciences, v. 10, 
p. 2241–2257,  doi:10.5194/nhess-10-2241-2010.

Newhall, C.G., and Self, S., 1982, The Volcanic 
Explosivity Index (VEI)—An estimate of ex-
plosive magnitude for historical volcanism: 
Journal of Geophysical Research (Oceans and 
Atmospheres), v. 87, p. 1231–1238, doi:10.1029
/JC087iC02p01231.

Pyle, D.M., 1989, The thickness, volume and grainsize 
of tephra fall deposits: Bulletin of Volcanology, 
v. 51, p. 1–15, doi:10.1007/BF01086757.

Pyle, D.M., 1995, Assessment of the minimum vol-
ume of tephra fall deposits: Journal of Volcanol-
ogy and Geothermal Research, v. 69, p. 379–
382, doi:10.1016/0377-0273(95)00038-0.

Rose, W.I., 1993, Comment on ‘another look at the 
calculation of fallout tephra volumes’ by Judy 
Fierstein and Manuel Nathenson: Bulletin of 
Volcanology, v. 55, p. 372–374, doi:10.1007/
BF00301148.

Sarna-Wojcicki, A.M., Shipley, S., Waitt, J.R., Dzuri-
sin, D., and Wood, S.H., 1981, Areal distribution 
thickness, mass, volume, and grain-size of air-
fall ash from the six major eruptions of 1980, in 
Lipman, P.W., and Mullineaux, D.R., eds., The 
1980 eruptions of Mount St. Helens, Washing-
ton: U.S. Geological Survey Professional Paper 
1250, p. 577–600.

Sparks, R.S.J., Bursik, M.I., Ablay, G.J., Thomas, 
R.M.E., and Carey, S.N., 1992, Sedimentation 
of tephra by volcanic plumes. 2: Controls on 
thickness and grain-size variations of tephra fall 
deposits: Bulletin of Volcanology, v. 54, p. 685–
695, doi:10.1007/BF00430779.

Volentik, A.C.M., Bonadonna, C., Connor, C.B., Con-
nor, L.J., and Rosi, M., 2010, Modeling tephra 
dispersal in absence of wind: Insights from the 
climactic phase of the 2450 B.P. Plinian erup-
tion of Pululagua volcano (Ecuador): Journal of 
Volcanology and Geothermal Research, v. 193, 
p. 117–136.

Walker, G.P.L., 1973, Explosive volcanic eruptions—
A new classifi cation scheme: Geologische 
Rundschau, v. 62, p. 431–446, doi:10.1007
/BF01840108.

Manuscript received 23 August 2011
Revised manuscript received 30 November 2011
Manuscript accepted 6 December 2011

Printed in USA

 as doi:10.1130/G32769.1Geology, published online on 19 March 2012


