
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Article scientifique Article 2005                                     Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

Keldysh study of point-contact tunneling between superconductors

Bolech Gret, Carlos José; Giamarchi, Thierry

How to cite

BOLECH GRET, Carlos José, GIAMARCHI, Thierry. Keldysh study of point-contact tunneling between 

superconductors. In: Physical review. B, Condensed matter and materials physics, 2005, vol. 71, n° 2. 

doi: 10.1103/PhysRevB.71.024517

This publication URL: https://archive-ouverte.unige.ch/unige:36133

Publication DOI: 10.1103/PhysRevB.71.024517

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:36133
https://doi.org/10.1103/PhysRevB.71.024517


Keldysh study of point-contact tunneling between superconductors
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We revisit the problem of point-contact tunnel junctions involving one-dimensional superconductors and
present a simple scheme for computing the full current-voltage characteristics within the framework of the
nonequilibrium Keldysh Green function formalism. We address the effects of different pairing symmetries
combined with magnetic fields and finite temperatures at arbitrary bias voltages. We discuss extensively the
importance of these results for present-day experiments. In particular, we propose ways of measuring the
effects found when the two sides of the junction have dissimilar superconducting gaps and when the symmetry
of the superconducting states is not the one of spin-singlet paring. This last point is of relevance for the study
of the superconducting state of certain organic materials like the Bechgaard salts and, to some extent, for
ruthenium compounds.
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I. INTRODUCTION

The theory of superconductivity by Bardeen, Cooper, and
SchrieffersBCSd is one of the most important achievements
of condensed matter theory. Some of the most striking con-
sequences of this theory concern the tunneling to and from a
superconductor. Indeed, the history of tunneling experiments
and applications is strongly linked to that of superconductiv-
ity. Not only some of the most crucial experimental verifica-
tions of the BCS theory came from tunneling experiments,1

but also some of the most important practical applications of
superconductivity involve Josephson tunneling junctions. To
describe the manifold of experimental and practical situa-
tions, two limiting cases are usually considered: planar inter-
faces and point contacts. As of latter, point-contact tunneling
per seacquired renewed relevance with the development of
scanning tunneling microscopysSTMd,2–4 that is today at the
forefront of the experimental techniques used to study un-
conventional superconductors. For STM the tip can be mod-
eled using some idealized geometry. For example the cases
of spherical,5,6 conical,7,8 and pyramidal9 tip geometries were
considered in the literaturesthe last two were used to model
very close STM contactsd. The point-contact approximation
is therefore the simplest one for the kind of tunneling pro-
cesses that take place on STM experiments. Other ways to
realize point contacts include the use of break junctions and
pressed crossed wires.

The simplest theoretical models used to interpret experi-
ments involving superconducting tunneling are typically
based on a simple scattering picture and go generally under
the name of semiconducting band models.10–12 A more
systematic approach is that based on the tunneling
Hamiltonian.13–15A large series of recent experiments16–21on
atomic-size contacts showed impressive agreement with the
theory; achieving, some of them, detailed microscopic de-
scription of the contacts. The current transport in these sys-
tems can be described as taking place through a small num-
ber of independentconduction channels, each of them well
described by a point-contact model. In some experiments
even the observation of single-channel transport was pos-
sible.

Tunneling can thus be used as a very efficient probe of the
properties of the leads. In particular one can expect to use it
to determine the symmetry of the superconducting order pa-
rameter in the leads. However, the previous theoretical
analyses of point-contact tunneling, although efficient in
simple cases, are too cumbersome to be easily generalized to
more complex cases such as unconventional order param-
eters at finite temperatures and finite magnetic fields. Simpli-
fied semiclassical methods exist,22–24 but they suffer from
their own limitations, for instance when one is dealing with
anisotropic superconductors.25 Thus a general and simple mi-
croscopic theory of point-contact tunneling was clearly lack-
ing, and is necessary in order to take into account some of
the complications of unusual superconductivity. Providing
such a theory is the purpose of this work. We use a Keldysh
formalism, to be able to compute the full current-voltage
characteristics and gain access to the effects of external
magnetic fields, potential scattering barriers, and finite tem-
peratures on the transport properties of different junctions at
arbitrary finite voltages. Contrarily to previous implementa-
tions of this technique, using the solution of difference
equations,15 we here obtain and diagonalize the full tunnel-
ing action for the point contact tunneling junctions involving
normal-metal and superconductor leads. This allows one to
easily incorporate complications such as triplet pairing in the
leads, finite temperature, and finite magnetic field. We ex-
plore in particular the physical properties of tunneling sys-
tems with leads with triplet pairing parameters.

Indeed, although the possibility of having triplet pairing
was investigated26,27 soon after the BCS theory, and such an
unconventional scenario was found about the same time in
the p-wave spin-triplet superfluid state of3He,28–30 the quest
to identify a p-wave charged superfluid proved much more
challenging. A class of candidates for triplet pairing, though
the evidence is as yet not completely conclusive, are the
organic superconductors31,32 and the ruthenates.33,34 There
are also proposals of spin-triplet pairing phases for some
heavy fermion superconductors like UPt3, but the issue re-
mains more open in those cases.35 The organic compounds
are the most interesting for us due to the quasi-one-
dimensional nature of their normal phases, and also because
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there is currently considerable debate on the symmetry of the
superconducting phase.36–38 For the ruthenates, on the other
hand, the triplet pairing seems already backed up by a con-
siderable amount of experimental evidence.39,40 To sort out
this question of the symmetry of the order parameter, tunnel-
ing can thus be an invaluable tool. Recently, STM tunneling
experiments were used to study the symmetry of the super-
conducting phase of Sr2RuO4 and other compounds. No such
attempts were as yet made in the case of the quasi-one-
dimensional organic salts, but efforts in this direction are on
their way. Also recently, preliminary experiments involving
junctions between twosdifferentd Bechgaard salts were per-
formed, and they showed a number of puzzling features in-
cluding a zero-bias conductance peaks“anomaly”d and zero
excess current.41 In that context, a precise theory of the par-
ticularities of point-contact tunneling involving spin-triplet
superconductors, done in the microscopic framework of the
tunneling Hamiltonian models, was called for. Given the na-
ture of these systems, it is difficult to perform phase sensitive
experiments such as the ones that were, for the cuprates,
smoking guns to fix the symmetry of the order parameter. We
show, however, that the tunneling spectrum has characteristic
features, such as the magnetic field dependence, that can be
used to unambiguously determine the order parameter sym-
metry in these systems. A short account of part of the results
of this paper was published previously.42

The rest of the paper is organized as follows. In Sec. II we
present the model that we use to describe the point-contact
junction geometry between either normal or superconducting
leads. In Sec. III we work out a way of finding the tunneling
characteristics using a nonequilibriumsKeldyshd formalism.
This allows us to obtain the current-voltage characteristics
for arbitrary current, temperature, or magnetic field, for junc-
tions with either normal, or singlet or triplet superconducting
leads. All technical details have been confined to these two
sections, while the two remaining sections deal with the
physical consequences of our findings. Readers only inter-
ested in those can thus safely jump to Sec. IV, where the
physics of such junctions is discussed in detail. Those results
are put in context within different experimental possibilities
in Sec. V. In particular we discuss there the possibility of
using tunneling experiments to probe the nature of the super-
conducting pairing in the organic superconductors. In Sec.
VI we close the paper with a general discussion of the im-
plications of our results.

II. MODEL OF THE POINT-CONTACT JUNCTION

Using a nonequilibrium Keldysh formalism we calculate
the full current-voltage characteristics of different types of
tunnel junctions where each side of the junction can be either
a normal metalsNd, a singletsSd, or a triplet sTd supercon-
ductor. We start from a tunneling Hamiltonian formulation,

H = H1 + H2 + Htun, s1d

Htun = o
,,,8,s

t,,8c,s
† s0dc,8ss0d. s2d

The first two terms describe the two leads of the junction
ssuperconducting or otherwised and the third one models the

tunneling processes in which an electron with spins hops
from lead,8 into lead,. The tunneling matrix is

t,,8 = SV1 t*

t V2
D . s3d

The diagonal terms,Vn, are local contact potential terms in-
cluded for the sake of generality43 and the off-diagonal ones
are the tunneling matrix elements taken to be constant con-
sistently with the assumption of a point contact. Since the
number of particles in each lead is a conserved quantity in
the absence of tunneling, we can define the current as pro-
portional to the rate of change in the relative particle number
and write13

I =
e

2
k]tsN2 − N1dl =

e

2i
kfHtun,N1 − N2gl. s4d

Notice that the diagonal part of the tunneling matrix con-
serves particle numbers and will not contribute to the cur-
rent.

To model the superconducting leads in calculations in-
tended to capture the main features of point-contact transport
on conventional superconductors, very simple models suffice
to achieve even quantitative agreement with the experiment.
Contrary to the case in some planar junction experiments,
dimensionality plays little or no role in the tunneling. There-
fore one can use one-dimensional leads to carry out all the
standard calculations. The situation becomes more complex
in the case of unconventional superconductors, mainly be-
cause the anisotropic nature of the pair wave function has to
be taken into account when modeling the leads. The most
conspicuous case is that of the cuprate compounds, for which
the putatived-wave pairing cannot be modeled within a
single-band one-dimensional lead. On the other hand, the
organic superconductors that we are interested in are sup-
posed to havep-wave symmetry. Since boths-wave and
p-wave symmetries can be modeled in single-band one-
dimensional chains, we can conveniently set up a formalism
that encompasses the two cases, as well as the normal state.
In the following, we will consider a one-dimensional band
with two Fermi points and expand the fermion fields around
them in the conventional way,44

cssxd < e−ikFxcLssxd + eikFxcRssxd s5d

thus defining left and right moving fieldsslead indexes were
omitted hered. Using these fields and in the spirit of the BCS
theory, we introduce the following four gap functions:

Dasxd = lakacLāsxdsab
a cRbsxdl s6d

where Greek indexes are summed over,a=0, . . . ,3 andsab
0

is the identity matrix while the other three are the usual Pauli
matrices. We use the notationā=−a with aP s↓ , ↑ d;s−1,
+1d.68 The constantsla would depend on the details of the
microscopic pairing mechanism about which we make no
assumptions.36 With this definitionD0sxd is the spin-singlet
order parameter, as in conventional superconductors, and the
other three functions form a vector of spin-triplet order

parameters,39 DW sxd=Dsxdd̂sxd. We use the approximation of
dropping the spatial dependence in the order parameter and,
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directly in Fourier space, we write the Hamiltonian for any
of the two leads as

K = jcksccks
† ccks − hDafcRkb

† sba
a ac

Lk̄ā

† g + H.c.j

whereK=H−mN with m the chemical potential of that lead.
All the indexes are summed over, in particularcP sL ,Rd
;s−1, +1d sums over the two possible chiralities andjcks

=cvFk−m−sh are the corresponding linear dispersions,
shifted by the inclusion of chemical potential and magnetic
field along theẑ axis sfor convenience we will takevF=1d.
This is the natural extension to the triplet case of the usual
pairing-approximation Hamiltonian found in BCS theory, we
remark that the fact it does not conserve particle number is
an artifact of the anomalous mean field approximation be-
hind its derivation and has no bearing in the operator defini-
tion of the current.

III. LOCAL ACTION APPROACH

Within the extended-BCS framework, the Hamiltonian re-
mains a quadratic form including “anomalous” terms. To be
able to write it down as a canonical quadratic form we intro-
duce the following spinor notation:

CknssÃd = S cRkssÃd

sc
Lk̄s̄

† sÃ̄d D ; 1
cRk↑sÃd
cRk↓sÃd

c
Lk̄↓
† sÃ̄d

− c
Lk̄↑
† sÃ̄d

2 s7d

sthat we present directly in Fourier spaced. Here k is the
reduced momentumsafter linearization was carried outd and

Ã = v − m s8d

is the shifted frequency corresponding to a time evolution
given byK scf. with the discussion of tunneling given in Ref.
45d; here the bars have the meaning of minus signs. Since we
make explicit distinction between chiralities, all the compo-
nents of the spinor are independent. Using this basis the
Hamiltonian can be written in matrix form

Ksc= Ckns
† sÃdFjksŝst

0
− D̂st

− D̂st
† − jks̄ŝst

0 G
nm

CkmtsÃd. s9d

Here we arranged the different components of the order pa-
rameter using the following matrix notation:

D̂ = SD↓↑ D↑↑
D↓↓ D↑↓

D ; Daŝa = SD0 + D3 D1 − iD2

D1 + iD2 D0 − D3
D .

We note that another convention, the one introduced in the

work of Balian and Werthamer,26 is related to ours viaD̂BW

=D̂ ·siŝyd; the difference is rooted in a different definition of
the spinor basis.

In the case of zero magnetic field,K2 is block diagonal
and one arrives to a closed solution for the quasiparticle ex-
citation spectrum.28 In the presence of magnetic field the
calculations for the case of a general order parameter are

more involved. We adopt the convention of taking the quan-
tization axissẑd along the magnetic field direction and con-
sider the cases of triplet order parameters parallel or perpen-
dicular to the field. In both of these cases the Hamiltonian
can be diagonalized via a canonical rotationsi.e., a
Bogoliubov-Valatin transformationd that proceeds in a com-
pletely identical way to that of the conventionals-wave case.
Following the analogy further, the local Green functions for
the leads can be written down immediately. For the case of a
parallel order parametersi.e., D1=D2=0d the nonzero matrix
elements of the advanced and retarded Green functions are

g11
r,a = g33

r,a =
2

w

− sÃ + h ± ihd
ÎuD↓↑u2 − sÃ + h ± ihd2

, s10d

g13
r,a = fg31

r,ag =
2

w

D↓↑
fpg

ÎuD↓↑u2 − sÃ + h ± ihd2
, s11d

g22
r,a = g44

r,a =
2

w

− sÃ − h ± ihd
ÎuD↑↓u2 − sÃ − h ± ihd2

, s12d

g24
r,a = fg42

r,ag =
2

w

D↑↓
fpg

ÎuD↑↓u2 − sÃ − h ± ihd2
, s13d

with the upperslowerd sign corresponding to the retarded
sadvancedd ones. Herew=4vF is an energy scale related to
the Fermi velocitysor equivalently to the normal density of
states at the Fermi leveld andh is a positive infinitesimal that
regularizes the Green functionsssometimes kept finite to
model the inelastic relaxation processes inside the leadsd.
Analogously for the case of a perpendicular order parameter
si.e., D0=D3=0d, the nonzero matrix elements of the ad-
vanced and retarded Green functions are this time

g11
r,a = g44

r,a =
2

w

− sÃ ± ihd
ÎuD↑↑u2 − sÃ ± ihd2

, s14d

g14
r,a = fg41

r,ag =
2

w

D↑↑
fpg

ÎuD↑↑u2 − sÃ ± ihd2
, s15d

g22
r,a = g33

r,a =
2

w

− sÃ ± ihd
ÎuD↓↓u2 − sÃ ± ihd2

, s16d

g23
r,a = fg32

r,ag =
2

w

D↓↓
fpg

ÎuD↓↓u2 − sÃ ± ihd2
. s17d

The nonequilibrium formalism that we seek to implement in
order to access the full I-V characteristics for arbitrary finite
voltages, requires the introduction of one more linearly inde-
pendent Green function. From the expressions for the re-
tarded and advanced functions and using the assumption of
thermal equilibrium of the leads, we can construct immedi-
ately the so-called Keldysh component46 of the local lead
Green function:gij

k =sgij
r −gij

adtanhsÃ /2Td.
Before proceeding, we stop to comment on the case of

two normal leads. The corresponding Green functions are
obtained by using any of the two sets above and taking the
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limit Da→0∀a. In this case it is a simple exercise to derive
from Eq. s4d the well-known expression for the conductance
of an N-N junction:

GNN =
e2

p"
a with a =

4t2

s1 + t2d2 , s18d

where we reintroduced Plank’s constant and measuredt in
units ofw. This expression was first derived by Landauer and
later extended and generalized in the works of Büttiker, Imry,
and others.47 The constanta is called thechannel transpar-
encyand takes values in the intervalf0,1g. Now we return to
the case when at least one of the two leads is superconduct-
ing.

Given the local Green functions and the tunneling Hamil-
tonian, the simplest way to proceed in order to compute the
characteristics of a junction is to use linear response and
perturbation theory.14,45 A more rigorous approach should
make use of nonequilibrium Green functions and treat the
tunneling term to all orders. This, to be able to calculate the
full I-V line and give a quantitative account of its subgap
structure even in the ballistic limitsi.e., for a→1d. One past
implementation of this program made a clever use of the
nonequilibrium Dyson equations and reduced the problem to
the solution of a set of linear recursion relations.15 Here we
do not want to restrict ourselves to thes-wave case and to
zero temperature and fields, we shall take then a different
route. We treat the local action and Green functions directly
as matrices in order to gain the convenience of a simpler
implementation of multiband multicomponent spinors and
deal with them numerically.

We notice that the lead Green functions can be inverted in
close analytical form to obtain the corresponding local lead
actions. This procedure implies the assumption of fast relax-
ation rates,1 which is consistent with the point-contact geom-
etry of the junction. Namely, working in a Keldysh-extended
Nambu-Eliashberg spinor basis of symmetric and antisym-
metric combinations of forward and backward time paths
ssee Ref. 46d, the local action for a single lead can be written
as

S, =E dv

2p
Ckn,,

† fA,gkn,k8n8Ck8n8,,, s19d

wheren labels the different components of the four-spinors
as introduced in Eq.s7d andk is the index for the twossym-
metric and antisymmetricd Keldysh components. The matrix
representation of the spinorial action density is given by

A, ; S 0̂ ĝa

ĝr ĝkD−1

= S− fĝrg−1ĝkfĝag−1 fĝrg−1

fĝag−1 0̂
D , s20d

where ĝr,a,k are the matrices in the four-spinor basis whose
nonzero components were given abovesfor the two orienta-
tions of the order parameter that we will consider, the in-
verses ofĝr,a are easy to calculate in closed formd. By com-
bining these actions and the spinorial matrix representation
of the tunneling HamiltoniansHtund written in a two-lead
Keldysh-extended Nambu-Eliashberg spinor basis, one can

ensemble the full nonequilibrium action matrix density for
the junction

A = fA,=1 % A,=2g − Htun. s21d

While carrying out this construction, special attention must
be paid to the fact that the shifted frequenciesfsee Eq.s8dg
will have different reference levels when there is a relative
bias applied to the leads. Positively and negatively shifted
frequencies in each lead are related by the coherent pairing
processes in the superconductors; this is reflected on the
choice of frequency pairs in the spinor basis. When two su-
perconductors with different chemical potentials are put into
contact, the tunneling Hamiltonian connects realsi.e., un-
shiftedd frequencies. Thus, at finite voltages, pairing and tun-
neling together create an infinite set of related frequencies
that is at the heart of the multiparticle tunneling processes
mediated by the so-called Andreev reflections; this is illus-
trated in Fig. 1.

To each value in the frequency window defined by the
chemical potentials in the two leads, one such set of “en-
tangled” frequencies can be assigned. These sets are inde-
pendent and the action is block diagonal between different
ones. Discretizing the frequencies in this window automati-
cally defines a discretization of the “whole” frequency space.
We proceed in this way and deal with one such set of fre-
quencies at a time. Since these sets are infinite, we truncate
their hierarchies at some distance from the central frequency
window. This is equivalent to introducing asoft limit in the
number of allowed Andreev reflections: up to some fixed
numbersNAd they are fully taken into account and then they

FIG. 1. Depiction of a set of frequencies involved in a multiple
coherent tunneling processsthe vertical axis corresponds to fre-
quenciesd. The horizontal lines correspond to frequency-conserving
tunneling processes that take place with amplitudeutu, while the
vertical lines correspond to electronsholed pair creation or destruc-
tion processes that occur with amplitudeuDu sthe superconducting
gap is taken in this figure to have the same magnitude in the two
sides of the junctiond. The chemical potentials, thermal distribu-
tions, and superconducting quasiparticle densities of states in the
leads are schematically indicated. The lowest order nonzero contri-
bution to the tunneling is depicted. The dashed lines and arrows
indicate that the chain of interrelated higher order processes contin-
uesad infinitum.
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are gradually suppressed until twice that number is reached.
This is a natural and consistent cutoff scheme at any finite
voltage, since the presence of a growing frequency denomi-
nator makes the higher contributions less and less important
regardless of the value ofa. It is also clear what the limita-
tions of the approach are; as the difference in chemical po-
tentials decreases, the denominators grow more and more
slowly and a larger number of Andreev reflections is required
in order to achieve the same accuracy.

The implementation of the described scheme imports one
more complication. In the spinor basis we adopted, only
chirality conserving tunneling processes can be written in
matrix form. To overcome this problem we introduce a sec-
ond mirrored spinor basis with the chiralities invertedfas in
Eq. s7d but interchangingR↔Lg. Using two copies of the
spinor space the full tunneling Hamiltoniansthat is, includ-
ing chirality nonconserving processesd can be written as a
matrix and thewholefrequency space forbothchiral species
is consideredslet us stress that no Hilbert space doubling
takes placed. Inverting the action matrix density thus con-
structedfEq. s21dg, using standard numerical methods, we
can obtain frequency densities for the different current har-
monicssconstructed out of the Keldysh components of lead-
mixing Green functionsd. Here we will concentrate on the dc
component. Finally, the current is computed integrating its
density over the full frequency axis,

I =
et

2i
o
s
E dv

2p
kc2,s

† c1,s − c1,s
† c2,slkel. s22d

The practical implementation of this numerical scheme is
straightforward and allows one to consider thescombinedd
effects of finite temperature, applied magnetic fields, contact
potentials in the junction, spin-flip tunneling, or spin-flip
scattering processes48 in the leads. It is also possible to com-
pute the ac response. Here our primary interest is in compar-
ing singlet and triplet superconductor junctions and how they
respond differently in the presence of an external field or
with temperature; other additional complications will be dis-
cussed elsewhere. Even though our numerical scheme is not
well suited for studying the limitV→0, in particular the
combinationa,1 with V,0 is the computationally most
expensive one, that limit can nevertheless be approached
analytically. On the other hand, all other regimes can be
solved with modest computational effort and the algorithm is
quite easily parallelizable. Even more, we shall show that the
finite bias features are the ones that might provide useful
signatures to further establish the spin-triple scenario.

IV. TUNNELING CHARACTERISTICS

To discuss and compare the I-V characteristics for differ-
ent types of junctions, we choose some convenient set of
parameters that clearly display the different features. For the
tunneling overlap integral we choose the valuest=0.2 and
t=0.5 sthat correspond, in the notation of Ref. 11, toa
.0.15 or Z=2.4 and toa=0.64 or Z=0.75, respectivelyd,
and when there is a magnetic field we fix its value toh
=0.2 in units of D sby D we mean the magnitude of the

singlet gap,D0, or of the triplet vector order parameter de-
pending on the case; notice we absorbed Bohr’s magneton
and the gyromagnetic factor in the definition of the magnetic
fieldd. These values are larger than, for instance, those in the
most typical STM tunneling experiments, except for the ones
engineered expressly to seek for large values ofa,17 but have
the virtue of making evident the different features, including
the Andreev gap structuressee belowd. We show, except
when indicated, curves for the dc response in the limit of
vanishing temperatures. For the truncation procedure we
have takenNA=3 and NA=5 for the cases oft=0.2 andt
=0.5, respectivelysand verified that larger values produce,
given the set of parameters chosen, identical curvesd. The
discretization used on the horizontal axis is better thandV
=0.025D /e in all the cases.

We review now the different pairing-symmetry scenarios.
Let us start with the case of normal-metal–superconductor
junctions. We show in Fig. 2sad typical curves for an N-S
junction si.e., a point-contact junction between a normal
metal and a conventional singlet-pairing superconductord.
The diagonal straight line is the N-N characteristics given as
a reference. The solid lines correspond to the N-S junction in
zero field and the dashed line is for one of the junctionssthe
less transparent oned in the presence of a magnetic field. The
effect of the magnetic field is to produce what would be seen
as a Zeeman splitting of the differential conductance peak
si.e., the peak in the curve ofdI /dV vs Vd. Notice the subgap
shoulder on the I-V curve wheneV,D sfor instance in the
zero field cased; its origin is in the coherent Andreev pro-

FIG. 2. Zero temperature I-V characteristics of normal-
superconductor junctions for both spin-singlet and spin-triplet par-
ing. sad N-S junctions fort=0.2 slower curvesd with and without
applied magnetic fieldsdashed and solid lines, respectively,h=0.2d
and t=0.5 supper curve, solid line only since the effect of field is
smaller and not displayedd; the curves are vertically displaced for
clarity. sbd N-T junctions fort=0.2 supper curved with and without
applied magnetic fieldsdashed and solid lines, respectively,h=0.2d
and t=0.5 slower curve, solid line onlyd.
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cesses that take place at the junction contact. Next we show
in Fig. 2sbd a typical curve this time for what we call an
N-T junction si.e., a junction between a normal metal and an
unconventional triplet-pairing superconductord. The solid
lines correspond to the N-T junction in zero field and the
dashed line is for thet=0.2 junction when in the presence of
a magnetic field that is aligned with the vector order param-

eterDW . If one considers a magnetic field that is perpendicular

to the order parametershW 'DW d, one finds it has no effect on
the I-V characteristic that remains identical to the one for the
zero field casesremark that in the case of the N-S junction
the orientation of the field was immateriald. Notice also the
absence of a subgap shoulder on the I-V curve. This absence
is caused by the odd real-space symmetry of the supercon-
ductor sp-wave pairingd: Andreev processes with opposite
chiralities interfere destructively and exactly cancel each
other. As a result, the curves are exactly identical to those
computed with a semiconducting band model that ignores
Andreev scatteringsto be contrasted with the nontrivial re-
sults in this respect that will be shown momentarily for junc-
tions involving two different-symmetry superconductorsd.

Let us now turn to examine the case of junctions in which
both their sides are superconducting. In Fig. 3 we display
typical curves for S-S junctionssboth the sides are conven-
tional spin-singlet superconductorsd and S-T junctionssone
of the sides is a spin-triplet superconductord. The straight
dotted line is the N-N characteristics—taken as a reference,
same as before. The remaining dotted lines are the I-V curves
of S-S junctions that show all the standard features already
well documented in the literature.12,15 For the purpose of
later comparison, we remark here the sizeable currents for

voltageseV.2D sthe value of the gap is taken to be the
same on both sides of the junctiond, and the “subgap” shoul-
der with Andreev steps ateV=2D /n swith n=1,2,3, . . .d. We
also remind the reader that this curve is, when orbital effects
can be ignored, not sensitive to applied magnetic fields. The
remaining curvessdashed and solid linesd correspond to
S-T junctions with different tunneling matrix element
strengths and with and without magnetic fieldsrespectivelyd.
The solid lines are insensitive to the orientation of the vector
order parameter on the triple-pairing side of the junctions,
and the current amplitude is found to be systematically
smaller than in the case of the respective S-S junctions. Re-
markably, the “subgap” structure shows only two stepssat
voltages given byn=1,2d and the current is zero wheneV
,D sif the magnitudes of the gaps in the spin-singlet and
spin-triplet sides of the junction are different, then the zero
current condition iseV,DTriplet, whereDTriplet is the magni-
tude of the vector order parameter on the spin-triplet side of
the junctiond. Concerning the effects of an applied magnetic
field, the curves remain unchanged if the field is applied
parallel to the direction of the vector-order parameter, but
show instead a Zeeman effect if the field is perpendicular to
it sdashed lined. This is in contrast with the case of N-T
junctions, for which the Zeeman effect is expected for fields

hW iDW .
In the figure inset we display curves for S-S junctions at

finite temperatures. In order to render the different features
simultaneously visible, we “push” the temperature to be
equal toD swith kB=1d. Let us denote asD the average gap
value s2D=D1+D2d that we keep using to define the unit in
which we measure the voltage, normalized current, etc. The
dashed line is the finite temperature I-V for thet=0.2 junc-
tion between two identical superconductorssD2=D1d,
whereas the solid lines correspond to similar junctions with
D2=3 D1 or D2=37/3 D1 and the same transparencysduring
this discussion we assumeD2ùD1d. Besides the standard
quasiparticle tunneling thresholdseV=2Dd one clearly sees
in both solid curves the step ateV=D2 corresponding to the
first term of the so-calledeven seriesseV=2D, /m with ,
=1,2 andm=2,4, . . .d. The steps corresponding to theodd
series seV=2D /m with m=3,5, . . .d are not visible in this
plot, but we verified that we observe them at low tempera-
tures in junctions withD2*D1. This current step structure
lacks temperature or magnetic field dependencesin accor-
dance with experimental observationsd. The other prominent
feature of the solid curves is the rounded cusp ateV<D2
−D1. This is a thermally activated feature that appears when
the upper gap edges at both sides of the junctions are
aligned. The rounding of the cusp has similar origin as the
rounding of the quasiparticle threshold, both are due to
higher order multiparticle processes. One new observation
that we made is that the position of the thermal cusp is not
exactlyD2−D1, but it is shifted towards lower voltages. This
is again a result of taking into account higher order Andreev
processes and is made more evident by our choice of param-
eters; for lower temperatures and less transparent junctions
this correction is typically very small. We also find that the
steps of both the even and the odd series that fall to the left
of the thermal cusp are usually washed away by its tail; this

FIG. 3. Zero temperature I-V characteristics of S-T junctions
with and without magnetic fieldsdashed and solid lines, respec-
tively, h=0.2d. The lower solid and dashed curves are fort=0.2
swithout and with magnetic fieldd and the upper solid curve is for
t=0.5. The dotted lines aresid the straight unitary slope line for the
reference N-N characteristics andsii d the S-S characteristics for
similar-parameters junctionssupper t=0.5 and lowert=0.2d. The
inset shows finite temperature characteristics of S-S junctions with
different values of the left and right gap amplitudes. The dotted line
is the reference N-N characteristics and the dashed line is the curve
for D2=D1. The solid lines correspond toD2ÞD1 sD2=3 D1 for the
line closest to the dashed one andD2=37/3 D1 for the other oned.
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we find to be consistent with available experimental results.
We expect the different detailed features corresponding to
dissimilar gaps and finite temperatures to be accessible to
current state-of-the-art experiments, we will comment on
that in the next section.

As an aside, let us comment on the effect of local contact
potential terms in the tunneling matrix. They suppress uni-
formly the dc current amplitude but have no other effect on
the shape of the I-V characteristics. This is true regardless of
the pairing symmetry of the superconductors forming the
junction, in particular they do not cause the appearance of
midgap states in the case of triplet pairingsfor neither the
N-T or S-T junctions nor for the T-T junctions discussed
belowd.

Finally, the only remaining case to consider is that of
junctions in which both sides are spin-triplet superconduct-
ors. Such a case is exemplified in the curves of Fig. 4. An-
dreev processes with triplet symmetric pairing, for tunneling
through a single-mode contact, interfere destructively and
the current remains zero up to voltages larger thaneV=2D,
when quasiparticle tunneling becomes allowed. The lower
solid line corresponds tot=0.5 and the upper one tot=0.2,
the inversion of the order is due to the fact that, for this range
of parameters, the current at fixed voltage grows more
slowly than in the case of normal junctionssN-Nd. Similarly
as in the S-S case, both sides of the junction react identically
to applied magnetic fields and no net effects are therefore
visible in the current-voltage characteristics.

The curves in the figure inset are the same as in the inset
of the previous figure but for the case of spin-triple pairing
symmetryson both sides of the junctiond. Both the quasipar-
ticle tunneling threshold and the thermal cusp remain sharp
since higher order processes interfere destructively and no
rounding takes place. Another consequence of this is that the

position of the thermal cusp is exactlyeV=D2−D1 and no
shift is observed. The subgap part of the curves is smooth
and its height and shape are governed by the thermal excita-
tions, the step structure of the even and odd series is absent.
Also in this case magnetic fields have no direct effects.

V. EXPERIMENTAL CONSEQUENCES

A first set of applications concerns atomic contacts. For
the case of normal or singlet superconducting leads with
identical gaps, and zero temperature and magnetic field, our
results are in full agreement with the previous studies of such
systems.15 For the case of two different gaps shown in the
inset of Fig. 3, our theory correctly reproduces the different
steps as discussed in the previous section. Another prominent
feature of such curves is the thermally activated rounded
cusp ateV<D2−D1. The rounding is due to higher order
multiparticle processes; and a new prediction is that the po-
sition of the thermal cusp is not exactlyD2−D1, but it is
shifted towards lower voltages. Such a shift from the naive
“density of states” answer could in principle be checked di-
rectly in atomic contacts. We also find that the steps of both
the even and the odd series that fall to the left of the thermal
cusp are usually washed away by its tail; this we find to be
consistent with available experimental results.1 Such features
corresponding to dissimilar gaps and finite temperatures
should be accessible to current state-of-the-art experiments.
For instance, the experiments of Ref. 17 could be attempted
using a Pb STM tip as before but to prove into a Mn-doped
Pb sample. Mn will act as a magnetic impurity and decrease
the value of the gap, such a setup would correspond to the
situation of similar but not identical gap parameters with a
doping controllable difference; it would be a way to try to
observe the “splitting” of the even series in single-point con-
tacts. Other setups could be envisaged based also on STM
techniques or on pressed crossed wires.

The main application of our results, however, concerns
the use of tunneling with triplet superconductors.42 In that
case the most direct experimental realization is organic
superconductors.32 The experiments show that for magnetic
fields along the direction of the conducting chainssa crystal-
line axisd the upper critical field is paramagnetically limited.
If such systems are indeed triplet superconductors, this
would correspond, following our notations, to a vector order

parameter aligned with the fieldshW iDW d.49 With this geometry
a Zeeman splitting of the differential conductance peak,
similar to that in conventional superconductors, should be
observed in a tunneling experiment. As the field is rotated the
splitting would be suppressed and for a magnetic field ori-
ented parallel to theb8 crystalline axis there should be no
Zeeman effectsaccompanied by the possibility of applying
large fields that are not paramagnetically limitedd. The dis-
appearance of splitting even as the field is being increased
would constitute a clear signature of spin-triplet supercon-
ductivity. The main difficulties of such an experiment would
be the set up of point-contacts and the resolution required to
observe the Zeeman effect. On the first point one possibility
would be to use STM setups with “thin tips.” On the second

FIG. 4. Zero temperature I-V characteristics of T-T junctions.
The lower curve corresponds tot=0.5 and the upper one tot=0.2.
The dotted line is the reference N-N characteristics. The inset shows
finite temperature characteristics of T-T junctions with different val-
ues of the left and right gap amplitudes. We used the same value
choices as in the inset of Fig. 3. Namely, the dotted line is the N-N
characteristics and the dashed line corresponds toD2=D1 while the
solid lines are forD2ÞD1 sD2=3 D1 for the line closest to the
dashed one andD2=37/3 D1 for the other oned.
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point, since the critical temperature of these organic salts is
relatively low, the experiment could be done with moderate
fields that would produce splittings that are a substantial
fraction of the superconducting gap. The linearity of the
magnetic field dependence of these splittings, a signature of
the Zeeman effect, could be accurately established using
Fourier analysis techniques.50

Similarly as in the case of N-T junctions, we can envisage
using the Zeeman response of S-T junctions as a direct probe
for spin-triplet order. If, for instance, a magnetic field is ap-
plied along theb8 crystalline axis ofsTMTSFd2PF6, we pre-
dict a Zeeman splitting of the main differential conductance
peak. This would also constitute a clear sign of unconven-
tional superconductivity since such an effect does not take
place for standard BCS superconductors. Theb8 direction is
the one on which the upper critical field is not paramagneti-
cally limited, so relatively large fields could be applied in
order to obtain a clear signalsas the field alignment changes
the splitting disappearsd. To afford large fields one would
need to use in the “conventional” side of the junction a com-
pound with a relatively high critical temperaturefas com-
pared with that ofsTMTSFd2PF6g. In this respect one has the
bonus that, since the required setup should be a point-
contact, superconductivity might survive at the contact-neck
region up to fields much in excess of the bulk value ofHc2
srather approachingHp

BCS for that materiald.8,51 Another ad-
vantage in the two-superconductor setup is that the levels of
noise are usually smaller,52 allowing a better definition of the
differential conductance signal from where the Zeeman split-
ting is going to be read off.

Similar considerations could also be made for those lay-
ered compounds that are believed to be triplet
superconductors.31,53In that case the critical magnetic field is
not paramagnetically limited when the applied field is ori-
ented parallel to the superconducting planes. Among these
compounds Sr2RuO4 is the best studied one so far, but only
few tunneling experiments were performed,54–58and none so
far with high resolution and in the presence of an applied
external magnetic fieldssee though Refs. 56, 57, and 59d.
One of the conspicuous features observed in some of these
experiments is the presence of a “zero bias anomaly”sZBAd
in the differential conductance. Its explanation is still a mat-
ter of debate, but seems to require extended contact inter-
faces and momentum dependent order parameterssto include
the effect of “zero energy states” at the interfaces, extensions
to our scheme would be required, possibly incorporating cer-
tain aspects of those calculations already done for planar
junctions60–62d. Our general findings about the effect of mag-
netic fields should, however, apply, since they refer to effects
to be measured at voltages of the order of the superconduct-
ing gap. It is intriguing to notice that in the “point-contact”
experiment of Ref. 55 two types of spectra are measured:
with and without ZBA in the differential resistance. One
might speculate that what changes between the different
samples should be no other thing than the effective size,
potential barrier, and geometry of the contactsexperiments in
other compounds indicate that that might be enough to give
rise to zero voltage features; cf. Ref. 63d. In particular, if that
is the case, at least thosedV/dI curves with no ZBA should,
according to our calculations, show no Zeeman splitting

when a field is applied parallel to the Ru-O planes, in con-
trast to what is expected for BCS superconductors. Two dif-
ferent groups reported that further point contact and STM
tunneling experiments on Sr2RuO4 in a magnetic field are
underway.55,64

VI. SUMMARY AND CLOSING REMARKS

Summarizing, we have shown how the full I-V character-
istics for point-contact junctions can be accurately studied
using a local action approach in the context of the Keldysh
formalism. Our formalism allows one to treat both normal
and superconductingssinglet and tripletd leads, and to take
into account effects of finite magnetic field and temperature.
In particular we have shown that the point-contact tunneling
involving unconventional superconductors with spin-triplet
pairing displays interesting characteristic features. Unlike the
case of conventional superconductors, these show quite dif-
ferent characteristics whether the junctions are planar65 or
point-contact-like.42 The Zeeman response to an external
magnetic field is such that it allows for the identification of
triplet phases and might be relevant for future experiments.
The prediction of a truncated subgap structure in point-
contact S-T junctions is also very interesting, but experi-
ments to test this are much harder to carry out. These kinds
of detailed experiments are, however, possible for conven-
tional superconductors and we believe they could be ex-
ploited to look for some as yet poorly tested predictions of
the theory. For instance, the experiments of Ref. 17 could be
attempted using a Pb STM tip as before but doping the
sample with Mn; it would be a way to try to observe the
“splitting” of the even series in single-point contacts.

Besides the different additional effects on the tunneling
characteristic that we discussed heresthe effects of fields,
temperature, and contact potentialsd, there are others that can
also be easily taken into account like, for instance, spin-flip
tunneling processes or temperature gradients. These effects
will be relevant in the study of junctions involving ferromag-
netssof possible relevance in the context of spintronics; cf.
Ref. 66d or in precision studies related to the renewed inter-
est in the use of microjunctions foron-chipthermometry and
eventually cryogenics.67 A remaining challenge, however, is
how to extend our formalism seeking to include the physics
responsible for producing ZBAs in order to further our un-
derstanding of tunneling experiments in layered unconven-
tional superconductors and planar junctions. Such extensions
shall seek to describe not only the point-contact limit, but
also the planar interface case. This is one of the ingredients
necessary for a realistic description of layered materials like
the ruthenates. In that respect the interplay with the advances
already made using semiclassical methods will constitute not
only a check of the approximations made in the latter but
also a way of finding efficient computational schemes for
more complicated scenarios that might incorporate, for in-
stance, the two-band nature of certain compounds. On the
other hand, in the context of the quasi-one-dimensional or-
ganic conductors, such developments should help to go be-
yond the one-dimensional approximation.
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68Notice that the objectacLā transforms as the complex conjugate

representation of the fundamental representation of SUs2d. In
other words, it has the same transformation properties ascLa

† .

C. J. BOLECH AND T. GIAMARCHI PHYSICAL REVIEW B71, 024517s2005d

024517-10


