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We develop a novel approach to Bell inequalities based on a constraint that the correlations exhibited
by local variable theories must satisfy. This is used to construct a family of Bell inequalities for bipartite
quantum systems of arbitrarily high dimensionality which are strongly resistant to noise. In particular,
our work gives an analytic description of previous numerical results and generalizes them to arbitrarily
high dimensionality.
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One of the most remarkable aspects of quantum mechan-
ics is its predicted correlations. Indeed, the correlations be-
tween outcomes of measurements performed on systems
composed of several parts in an entangled state have no
classical analog. The most striking aspect of this character-
istic feature of quantum physics is revealed when the parts
are spatially separated: no classical theory based on local
variables can reproduce the quantum correlations. Histori-
cally, this became known as the Einstein-Podolsky-Rosen
paradox and was formulated in terms of measurable quan-
tities by Bell [1] and by Clauser, Horne, Shimony, and
Holt [2] as the nowadays famous inequalities. Other as-
pects of quantum correlation were analyzed in the form
of paradoxes, such as Schrödinger’s cat and the measure-
ment problem. In recent years, these paradoxical aspects
have been overthrown by a more effective approach: let
us exploit “quantum strangeness” to perform tasks that
are classically impossible has become the new leitmotiv.
From this “conceptual revolution,” the field of quantum in-
formation emerged. Old words became fashionable, such
as “entanglement.” Old questions were revisited, such as
the classifications of quantum correlations.

The variety of known partial results, in particular, about
entanglement measures, makes it today obvious that there
is no one-parameter classification of entanglement. This
Letter concerns classifications related to what is called
“quantum nonlocality,” i.e., the impossibility to reproduce
quantum correlations with theories based on local variables
(often called “local realistic theories”). Specifically we de-
velop a powerful new approach to Bell inequalities which
we then use to write several families of Bell inequalities
for higher-dimensional systems.

Local variable theories cannot exhibit arbitrary correla-
tions. Rather the conditions these correlations must obey
can always be written as inequalities (the Bell inequalities)
which the joint probabilities of outcomes must satisfy. Our
approach to Bell inequalities is based on a logical con-
straint the correlations must satisfy in the case of local

variable theories. In order to introduce this constraint, let
us suppose that one of the parties, Alice, can carry out
two possible measurements, A1 or A2, and that the other
party, Bob, can carry out two possible measurements, B1
or B2. Each measurement may have d possible outcomes:
A1, A2, B1, B2 � 0, . . . , d 2 1. Without loss of general-
ity a local variable theory can be described by d4 proba-
bilities cjklm � j, k, l, m � 0, . . . , d 2 1� that Alice’s local
variable � jk� specifies that measurement A1 gives outcome
j and measurement A2 gives outcome k and that Bob’s
local variable �lm� specifies that measurement B1 gives
outcome l and measurement B2 gives outcome m. (In
this formulation Alice and Bob’s strategy is determinis-
tic since it is completely determined by the value of their
variables jk and lm. Any nondeterministic local theory
can be rephrased in the above way by incorporating the lo-
cal randomness in the probabilities cjklm; see, for instance,
[3].) Since the probabilities cjklm are positive �cjklm $ 0�
and sum to one �

P
jklm cjklm � 1�. The joint probabili-

ties take the form P�A1 � j,B1 � l� �
P

km cjklm, and
similarly for P�A1 � j, B2 � m�, P�A2 � k,B1 � l� and
P�A2 � k, B2 � m�.

Let us consider a particular choice of local variables
jklm (this choice occurs with probability cjklm). Since
A1 � j, A2 � k, B1 � l, B2 � m we have

r 0 � B1 2 A1 � l 2 j ,

s0 � A2 2 B1 � k 2 l ,

t0 � B2 2 A2 � m 2 k ,
(1)

u0 � A1 2 B2 � j 2 m .

We see that the difference, r 0, between A1 and B1 can be
freely chosen by choosing j and l. Similarly the difference,
s0, between B1 and A2 and the difference, t0, between A2
and B2 can be freely chosen. But then the difference u0

between B2 and A1 is constrained since we necessarily
have
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r 0 1 s0 1 t0 1 u0 � 0 . (2)

Thus in a local variable theory the relation between three
pairs of operators can be freely chosen, but then the last
relation is constrained.

This constraint plays a central role in our Bell inequali-
ties. Indeed they are written in such a way that their
maximum value can be attained only if this constraint is
frustrated. The simplest such Bell expression is

I � P�A1 � B1� 1 P�B1 � A2 1 1�

1 P�A2 � B2� 1 P�B2 � A1� , (3)

where we have introduced the probability P�Aa � Bb 1

k� that the measurements Aa and Bb have outcomes that
differ, modulo d, by k:

P�Aa � Bb 1 k� �
d21X
j�0

P�Aa � j, Bb � j 1 k modd� .

(4)

Because the difference between Aa and Bb is evaluated
modulo d, all the outcomes of Aa and Bb are treated on
an equal footing. As we see in Eq. (3) this symmetriza-
tion is the key to reducing Bell inequalities to the logical
constraint that is imposed by local variable theories. In-
deed because of the constraint Eq. (2) any choice of lo-
cal variables jklm can satisfy only three of the relations
appearing in Eq. (3), e.g., A1 � B1, B1 � A2 1 1, etc.
Hence I�local realism� # 3. On the other hand, nonlocal
correlations can attain I � 4 since they can satisfy all four
relations.

In the case of two-dimensional systems the inequality
I�local variable� # 3 is equivalent to the Clauser-Horne-
Shimony-Holt (CHSH) inequality [2]. But the power of
our reformulation is already apparent since this inequal-
ity generalizes the CHSH inequality to arbitrarily large di-
mensions. In fact, the above formulation of the constraint
imposed by local realistic theories allows one to write in
a unified way all previously known Bell inequalities [4].
It can also serve to write completely new Bell inequalities
and this is the subject of the present Letter. Specifically we
have generalized in a nontrivial way [see Eqs. (5) and (6)
below] the Bell expression (3) to d-dimensional systems
(for any d $ 2).

One of the interests of these new Bell expressions is that
they are highly resistant to noise. Indeed Bell inequalities
are sensitive to the presence of noise and above a certain

amount of noise the Bell inequalities will cease to be vio-
lated by a quantum system. However, it has been shown by
numerical optimization [5] that using higher-dimensional
systems can increase the resistance to noise. The measure-
ments that are carried out on the quantum system in order
to obtain an increased violation have been described an-
alytically in [6]. And an analytical proof of the greater
robustness of quantum systems of dimension 3 was given
in [7]. One of the interests of our new Bell inequalities is
that when we apply them to the quantum state and mea-
surement described in [6] for those dimensions �d # 16�
for which a numerical optimization was carried out in [6],
we obtain the same resistance to noise as in [6].

The first generalization of the Bell expression Eq. (3) is

I3 � 1�P�A1 � B1� 1 P�B1 � A2 1 1�

1 P�A2 � B2� 1 P�B2 � A1��

2 �P�A1 � B1 2 1� 1 P�B1 � A2�

1 P�A2 � B2 2 1� 1 P�B2 � A1 2 1�� . (5)

The maximum value of I3 for nonlocal theories is 4 since
a nonlocal theory could satisfy all four relations that have
a 1 sign in (5). On the other hand, for a local variable
theory I3 # 2. This should be compared to the constraint
I�local variable� # 3 for the expression (3). The origin of
this difference is the 2 signs in (5). Indeed we have seen
when analyzing (3) that only three of the relations with a 1

sign can be satisfied by local realistic theories. But if three
relations with 1 are satisfied in (5), then necessarily one
relation with 2 is also satisfied giving a total of I3 � 2.
Alternatively one can satisfy two relations with 1 and two
relations with weight zero (if the dimension is larger than
2), once more giving a total of I3 � 2.

For d � 2 the inequality I3�local variable� # 2 is
equivalent to the inequality I�local variable� # 3 and
therefore to the CHSH inequality. But for d $ 3 the
inequality based on I3 is not equivalent to that based on
I. For the quantum measurement described below (when
d $ 3) the inequality based on I3 (and its generalizations
Id given below) is more robust than that based on I.

The Bell expression I3 can be further generalized when
the dimensionality is greater than 3 by adding extra terms.
The extra terms in Id do not change the maximum value at-
tainable by local variable theories �Imax

d �local variable� �
2�, nor do they change the maximum value attainable by
completely nonlocal theories �Imax

d � 4�. However, these
extra terms allow a better exploitation of the correlations
exhibited by quantum systems.

These new Bell expressions have the form

Id �
�d�2�21X

k�0

µ
1 2

2k

d 2 1

∂
�1�P�A1 � B1 1 k� 1 P�B1 � A2 1 k 1 1� 1 P�A2 � B2 1 k� 1 P�B2 � A1 1 k��

2 �P�A1 � B1 2 k 2 1� 1 P�B1 � A2 2 k� 1 P�A2 � B2 2 k 2 1�

1 P�B2 � A1 2 k 2 1��� . (6)
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As mentioned above the maximum value of Id is 4. This
follows immediately from the fact that the maximum
weight of the terms in (6) is 11. And the maximum value
of Id for local variable theories is 2. We now prove this
last result.

The proof consists of enumerating all the possible rela-
tions between A1, B1, A2, B2 allowed by the constraints
(2). This is most easily done by first changing notation.
We do not use the coefficients r 0, s0, t0, u0 defined in (1),
but we use new coefficients r, s, t, u defined by the rela-
tion

A1 � B1 1 r, B1 � A2 1 s 1 1 ,

A2 � B2 1 t, B2 � A1 1 u ,
(7)

which obey the constraint

r 1 s 1 t 1 u 1 1 � 0 modd . (8)

Furthermore we restrict (without loss of generality) r, s,
t, u to lie in the interval

2�d�2� # r, s, t, u # ��d 2 1��2� . (9)

With this notation the value of the Bell inequality for a
given choice of r, s, t, u is

Id�r, s, t, u� � f�r� 1 f�s� 1 f�t� 1 f�u� , (10)

where f is given by

f�x� �

(
2

2x
d21 1 1, x $ 0 ,

2
2x

d21 2
d11
d21 , x , 0 .

(11)

We now consider different cases according to the signs of
r, s, t, u.

1. r, s, t, u are all positive. Then (8) and (9) imply that
r 1 s 1 t 1 u � d 2 1. Inserting into (10) and using
(11) one finds Id � 2.

2. Three of the numbers r, s, t, u are positive, one is
strictly negative. Then (8) and (9) imply that either r 1

s 1 t 1 u � d 2 1 or r 1 s 1 t 1 u � 21. Inserting
into (10) and using (11) one finds either Id � 22��d 2 1�
or Id � 2.

3. Two of the numbers r, s, t, u are positive, two are
strictly negative. Then (8) and (9) imply that r 1 s 1

t 1 u � 21. Inserting into (10) and using (11) one finds
Id � 22��d 2 1�.

4. One of the numbers r, s, t, u is positive, three
are strictly negative. Then (8) and (9) imply that ei-
ther r 1 s 1 t 1 u � 21 or r 1 s 1 t 1 u � 2d 2
1. Inserting into (10) and using (11) one finds either
Id � 22�d 1 1���d 2 1� or Id � 22��d 2 1�.

5. The numbers r, s, t, u are all strictly negative. Then
(8) and (9) imply that r 1 s 1 t 1 u � 2d 2 1. In-
serting into (10) and using (11) one finds Id � 22�d 1
1���d 2 1�.
(Note that for small dimensions d not all the possibilities
enumerated above can occur. For instance, for d � 2, the
only possible values are Id � 62.) Thus for all possible
choices of r, s, t, u, Id�local realism� # 2. This concludes
the proof.

Let us now consider the maximum value that can be
attained for the Bell expressions Id for quantum measure-
ments on an entangled quantum state. We have carried out
a numerical search for the optimal measurements. It turns
out that the best measurements that we have found numeri-
cally give the same value as the measurements described
in [6]. We do not have a proof that these measurements are
optimal, but our numerical work and the numerical work
that inspired [6] suggests that this is the case.

We therefore first recall the state and the measurement
described in [6]. The quantum state is the maximally en-
tangled state of two d-dimensional systems

c �
1
p

d

d21X
j�0

j j	A ≠ j j	B . (12)

Let the operators Aa, a � 1, 2, measured by Alice and
Bb, b � 1, 2, measured by Bob have the nondegenerate
eigenvectors

jk	A,a �
1
p

d

d21X
j�0

exp

µ
i

2p

d
j�k 1 aa�

∂
j j	A ,

jl	B,b �
1
p

d

d21X
j�0

exp

µ
i

2p

d
j�2l 1 bb�

∂
j j	B ,

(13)

where a1 � 0, a2 � 1�2, b1 � 1�4, and b2 � 21�4.
These measurements can be viewed as being carried out in
two steps: First Alice and Bob give each of the states j j	A

and j j	B a variable phase depending on the measurement
they want to perform; then Alice measures in the Fourier
transform basis and Bob in the inverse Fourier basis. Thus
the joint probabilities are

PQM �Aa � k, Bb � l� �
1
d3

É
d21X
j�0

exp

∑
i

2pj
d

�k 2 l 1 aa 1 bb�
∏ É2

�
1
d3

sin2�p�k 2 l 1 aa 1 bb��
sin2�p�k 2 l 1 aa 1 bb��d�

�
1

2d3 sin2�p�k 2 l 1 aa 1 bb��d�
, (14)

where in the last line we have used the values of aa and bb given above.
Equation (14) shows that these joint probabilities have several symmetries. First of all we have the relation

PQM �Aa � k, Bb � l� � PQM�Aa � k 1 c, Bb � l 1 c�

for all integers c. This symmetry property justifies us considering, as in (4), only the probabilities that Aa and Bb differ
by a given constant integer c:
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PQM �Aa � Bb 1 c� �
d21X
j�0

PQM�Aa � j 1 c, Bb � j�

� dPQM�Aa � c, Bb � 0� . (15)

Furthermore we have the relation

PQM �A1 � B1 1 c� � PQM �B1 � A2 1 c 1 1�

� PQM �A2 � B2 1 c�

� PQM �B2 � A1 1 c� . (16)

Using Eqs. (14)–(16) we can rank these probabilities by
decreasing order. Let us denote

qc � PQM �A1 � B1 1 c�

� 1��2d3 sin2�p�c 1 1�4��d�� . (17)

Then we have

q0 . q21 . q1 . q22 . q2 . · · · . q2�d�2�

�.q�d�2�� ,
(18)

where �x� denotes the integer part of x and the last term be-
tween parentheses occurs only for odd dimension d. This
suggests that the quantum probabilities violate the con-
straints imposed by local variable theories. Indeed the
probabilities in (16) are maximized by taking c � 0, but
then the four relations that appear in (16) are incompatible
with local realism. In fact, replacing the above probabili-
ties in the expression (3) yields a value IQM � 4dq0 . 3
for all dimensions d.

However, a stronger violation is obtained if instead of
using the Bell expression I, one uses the Bell expressions
Id. In fact, for a d-dimensional quantum system, one can
use all the Bell expressions Ik for k # d, but the strongest
violation is obtained by using the Bell expression Id. This
value, denoted Id�QM�, is given by

Id�QM� � 4d
�d�2�21X

k�0

µ
1 2

2k
d 2 1

∂
�qk 2 q2�k11�� .

(19)

For instance, we find

I3�QM� � 4��29 1 6
p

3 � 
 2.872 93 ,

I4�QM� �
2
3 �
p

2 1

q
10 2

p
2 � 
 2.896 24 ,

lim
d!`

Id�QM� �
2

p2

X̀
k�0

1
�k 1 1�4�2

2
1

�k 1 3�4�2

� 32 3 Catalan�p2 
 2.6981 ,

where Catalan 
 0.9159 is Catalan’s constant.
In the presence of uncolored noise the quantum state

becomes

r � pjc	 �cj 1 �1 2 p�
'

d2
, (20)

where p is the probability that the state is unaffected by
noise. The value of the Bell inequality for the state r is

Id�r� � pId�QM� . (21)

Hence the Bell inequality Id is certainly violated if

p .
2

Id�QM�
� pmin

d . (22)

(If there is a quantum measurement giving a value of Id

greater than that given by Eq. (19), then of course the Bell
inequality would be violated with even more noise. This
remark applies to the various pmin below.)

As a function of d one finds that pmin
d is a decreasing

function of d. For instance,

pmin
3 � �6

p
3 2 9��2 
 0.696 15 ,

pmin
4 � 3��

p
2 1

q
10 2

p
2 � 
 0.690 55 ,

lim
d!`

pmin
d �d� � p2��16 3 Catalan� 
 0.673 44 .

For d � 3 this reproduces the analytical result of [7]. And
combining Eqs. (19) and (22) reproduces the numerical
results of [6] for all dimensions �2 # d # 16� for which
a numerical optimization was carried out.

In summary, our reformulation of Bell inequalities in
terms of a logical constraint local variable theories must
satisfy has provided the basis for constructing a large fam-
ily of Bell inequalities for systems of large dimension. The
numerical work of [5,6] and a numerical search of our
own suggest that these Bell inequalities are optimal in the
same sense that the CHSH inequality is optimal for two-
dimensional systems, namely, both the resistance to noise
and the amount by which the inequality is violated are
maximal. For this reason we hope that the Bell inequali-
ties presented here will have as much interest for physicists
studying entanglement of systems of large dimensional-
ity as the CHSH inequalities have had for bidimensional
systems.

We acknowledge funding by the European Union under
project EQUIP (IST-FET program).

Note added.—While completing this Letter we learned
of a Bell inequality for qutrits [8] that exhibits the same
resistance to noise as that obtained in [5–7].
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