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Abstract

Blood consists of different cell populations with distinct functions and correspondingly, distinct gene expression profiles. In
this study, global miRNA expression profiling was performed across a panel of nine human immune cell subsets
(neutrophils, eosinophils, monocytes, B cells, NK cells, CD4 T cells, CD8 T cells, mDCs and pDCs) to identify cell-type specific
miRNAs. mRNA expression profiling was performed on the same samples to determine if miRNAs specific to certain cell
types down-regulated expression levels of their target genes. Six cell-type specific miRNAs (miR-143; neutrophil specific,
miR-125; T cells and neutrophil specific, miR-500; monocyte and pDC specific, miR-150; lymphoid cell specific, miR-652 and
miR-223; both myeloid cell specific) were negatively correlated with expression of their predicted target genes. These results
were further validated using an independent cohort where similar immune cell subsets were isolated and profiled for both
miRNA and mRNA expression. miRNAs which negatively correlated with target gene expression in both cohorts were
identified as candidates for miRNA/mRNA regulatory pairs and were used to construct a cell-type specific regulatory
network. miRNA/mRNA pairs formed two distinct clusters in the network corresponding to myeloid (nine miRNAs) and
lymphoid lineages (two miRNAs). Several myeloid specific miRNAs targeted common genes including ABL2, EIF4A2, EPC1
and INO80D; these common targets were enriched for genes involved in the regulation of gene expression (p,9.0E-7).
Those miRNA might therefore have significant further effect on gene expression by repressing the expression of genes
involved in transcriptional regulation. The miRNA and mRNA expression profiles reported in this study form a
comprehensive transcriptome database of various human blood cells and serve as a valuable resource for elucidating the
role of miRNA mediated regulation in the establishment of immune cell identity.
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Editor: Christian Schönbach, Kyushu Institute of Technology, Japan

Received October 11, 2011; Accepted December 7, 2011; Published January 20, 2012

Copyright: � 2012 Allantaz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by F. Hoffmann-LaRoche Ltd. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have read the journal’s policy and have the following conflicts. FA, DC, TB, PR, ME, LB, BR, HB, SS, GDP, MEB, and, JV are
employees of Hoffmann-LaRoche. This does not alter the authors9 adherence to all the PLoS ONE policies on sharing data and materials.

* E-mail: florence.frager@hotmail.com (FA); donavan.cheng@roche.com (DC)

. These authors contributed equally to this work.

Introduction

Blood is a complex tissue consisting of several cell types with

unique functions and correspondingly, distinct gene expression

profiles. Using genome wide gene expression profiling by

microarray, several groups have succeeded in characterizing the

gene expression profiles of selected immune blood cell populations,

including T cells [1], dendritic cells [2], monocytes [3], B cells [4],

megakaryocytes, erythroblasts and platelets [5]. Several groups

have also isolated and profiled cell subsets from healthy donors’

blood to identify immune cell-specific mRNA transcripts [6,7,8].

Determining the specificity of mRNA expression profiles in blood

cells is clearly important for both understanding the biology of the

immune and hematopoietic systems [9] and for characterizing

blood as an important source of transcriptional biomarkers [10].

However, these profiles represent only a snapshot of gene

expression in blood cells – of greater interest are the dynamic

changes in transcriptional regulation that occur during the

differentiation process, which ultimately leads to gene expression

patterns observed in the differentiated cells. Transcription factors

are classic examples of such transcriptional regulators; the role of

transcription factors in haematopoiesis for example has been

demonstrated in several well-characterized systems, including T-

bet, STAT6, FOXp3 and RORgt in the regulation of T helper cell

differentiation.

Besides transcription factors, there is increasing recognition that

non-protein-coding RNAs can play an equally important role as

modulators of gene expression, which may also impact the
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immune cell differentiation process. These regulatory RNAs

include small nucleolar RNAs (snoRNAs), small Cajal body

specific RNAs (ScaRNA) and micro-RNAs (miRNA). snoRNAs

are a class of small RNA molecules that primarily guide chemical

modifications of other RNAs, mainly ribosomal RNAs, transfer

RNAs and small nuclear RNAs. There are two main classes of

snoRNA, the C/D box snoRNAs, which are associated with

methylation, and the H/ACA box snoRNAs which are associated

with pseudouridylation. scaRNAs are a specific class of small

nucleolar RNAs that localize to the Cajal bodies and guide the

modification of RNA polymerase II transcribed spliceosomal

RNAs U1, U2, U4, U5 and U12 [11]. miRNAs are small

(,21mer) regulatory RNA molecules encoded in plant and animal

genomes that regulate the expression of target genes by binding to

the 39 untranslated regions of specific mRNAs, thereby triggering

mRNA degradation or translational repression. Of the regulatory

RNA classes, miRNAs have been shown to play an important role

in hematopoiesis and in the immune response ([12,13], reviewed

in [14]), but their relative expression across different cells of the

immune system is not well described. Although previous studies

have measured expression of miRNAs in selected immune cell

systems, i.e. B cells [15], NK cells [16], DCs [17], T lymphocyte

development [18] and differentiation of naive T cells into effector

and memory T cell subsets [19], systematic efforts to profile global

miRNA expression across a diverse panel of immune cell subsets

are lacking.

To characterize more precisely the role of miRNAs in different

immune cells, we performed genome wide miRNA expression

profiling for nine immune cell subsets (neutrophils, eosinophils,

monocytes, B cells, NK cells, CD4 T cells, CD8 T cells, myeloid

dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs)),

isolated from whole blood collected from multiple human donors.

We complemented these data by performing genome wide mRNA

expression profiling on samples from the same donors to enable

accurate identification of genes targeted by specific miRNAs.

Based on growing evidence that many miRNAs cause mRNA

degradation or instability [20], simultaneously measured expres-

sion profiles of miRNAs and the mRNAs they target for

degradation should show an inverse relationship, i.e. a negative

correlation. We identified mRNAs that were both negatively

correlated with miRNA expression and also computationally

predicted to be miRNA targets. In addition, we validated and

enhanced the robustness of the miRNA signatures discovered by

performing a similar experiment on an independent cohort

recruited at the University Hospital of Geneva (HUG). This

yielded a highly confident set of mRNA and miRNA transcripts

specific to each of the studied cell populations. Finally, we used

both the mRNA and miRNA expression profiles to construct a

regulatory network for miRNA-mediated gene expression in

immune blood cells. Our study is unique in its systematic

approach towards the characterization of miRNA and mRNA

expression across various immune cell subsets, and identifies

potential miRNA-mRNA regulatory relationships that may be

relevant for immune cell functions and establishment of their

respective transcriptomic identities.

Results

Identification of cell-type specific miRNA transcripts
Nine cell subsets (CD16+CD66b+ Neutrophils, CD162

CD66b+ Eosinophils, CD14+ Monocytes, CD4+ T cells, CD8+
T cells, CD56+ NK cells, CD19+ B cells, CD123+ pDCs and

CD11c+ mDCs) were isolated from healthy human blood

obtained from five pools of five donors each with the exception

of monocytes, where 10 pools were used (Table S1, the donor

demographic information is available in Table S2). Subjects were

randomized across pools for age and gender. Purity of each

isolated cell subset was greater than 95%, as assessed by flow

cytometry, except for monocytes, CD4 T cells and mDCs for

which the average purity was 94%, 92% and 91% respectively.

Since pooling blood samples could theoretically cause cell

activation, samples were kept at 4uC and were pooled only

immediately before cell subset separation in order to minimize this

risk. In fact, we have chosen to pool samples in order to get

sufficient cell numbers for rare cell types (i.e. dendritic cells

representing less than 1% of the PBMCs) and to decrease sample

variability due to donor-to-donor variation.

To identify cell-type specific small non-coding RNA transcripts,

total RNA was extracted from pooled samples, labeled and

hybridized to Affymetrix miRNA chips to measure miRNA,

snoRNA and scaRNA expression. To ascertain that pooling of

samples had a minimal effect on miRNA expression, we isolated in

parallel selected immune cell subsets (CD4, CD8, B cells, NK cells,

neutrophils, eosinophils, monocytes) from single donors and

compared their miRNA profile with the profile from pooled

samples. Clustering samples by similarity of miRNA expression,

samples from the same cell subsets clustered together indepen-

dently of their origin (pooled or single donors). (Figure S1) The

total number of expressed miRNAs was also similar between

pooled and single donor samples, suggesting that pooled samples

did indeed not differ significantly in their miRNA expression from

single donor samples.

Using data from the pooled samples, 170 of the 7815 human-

specific probesets displayed an average log2 signal value greater

than 7 in at least one cell type and were deemed to be expressed

above background. Probesets were assessed for differential

expression across cell types using ANOVA, and were classified

as specific to one, two or three cell types, based on hierarchical

pair-wise comparisons (see methods). Few transcripts were found

uniquely specific for either CD4+ T cells or CD8+ T cells when

considered as individual cell types, and thus subsequent analyses

considered these two T cell types as a single group ‘‘T cells’’ (see

Methods).

Four small-RNA transcripts were each found to be expressed

specifically in one cell type: miR-378 in monocytes, miR-31 in T

cells, miR-935 in eosinophils and miR-143 in neutrophils

(Figure 1). Five small-RNA transcripts were specifically expressed

in two cell types, whereas nine transcripts were specifically

expressed in three cell types (Table 1). miR-31 and miR-143

were verified to be specifically expressed in T cells and neutrophils

in the single donor data (Figure S2). For the miRNAs unique to

one cell type, miR-378 was found to be 4 fold up-regulated in

monocytes relative to T cells, the cell type in which miR-378 had

the second highest expression level (p*,0.04). miR-31 was

expressed uniquely in T cells (at similar levels in CD4 and CD8

T cells) and was 59.2 fold up-regulated in T cells vs NK cells, the

next highest expressing cell type (p* = 9.9e-9). miR-935 was 5.6

fold up-regulated in eosinophils compared to mDCs (p* = 0.007).

Finally, we observed that miR-143 was uniquely expressed in

neutrophils, the only cell type where the log2 RMA expression

value was greater than 7. miR-143 was also 9.2 fold more

expressed in neutrophils than in eosinophils; p* = 0.0007.

miR-362 and miR-125 were specific to two cells types. miR-362

was 10 fold more expressed in monocytes and pDCs than in the

next highest expressing cell type, T cells. Similarly, miR-125 was

expressed in neutrophils and T cells, 14.1 fold higher than in

eosinophils. Small RNA transcripts specific to three cell types were

expressed in cell types belonging to a common lineage: they were

Paired miRNA-mRNA Profiling of Immune Cell Subsets
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either lymphocyte specific (expressed in B cells, T cells and NK

cells) or myeloid specific (expressed in monocytes and granulo-

cytes). For the myeloid lineage, we observed miR-223 to be

expressed only in monocytes and granulocytes (fold change = 8.1

between monocytes and mDCs; p* = 0.02). Like miR-223, miR-

652 was also only expressed in myeloid lineage cells (monocytes

and granulocytes, fold change = 3.2; p* = 0.04). For the lymphoid

lineage, miR-150 was expressed mainly in B cells, T cells and NK

cells (fold-change = 9.4 between NK cells and eosinophils,

p* = 0.001). In samples from single donors, miR-150 and miR-

223 were confirmed to be specifically expressed in lymphoid and

myeloid lineage cells respectively (Figure S2). Interestingly, we

observed that miR-155 was specifically expressed in lymphoid

lineage cells but down-regulated in neutrophils, eosinophils and

mDCs. This is consistent with previous reports that miR-155 is

elevated in lymphocytic leukemias and enhances inflammatory T

cell development [21,22]. We observed other lymphocyte-specific

small RNAs, including several snoRNAs like HBII-239 (predicted

to guide the 29O-ribose methylation of 5.8S rRNA on residue U14

[23]), as well as U27 and HBII-429, which have been shown to

have miRNA-like activities [24]. However, their exact function in

lymphoid cells remains to be determined.

Identification of mRNA transcripts regulated by cell type
specific miRNAs

We then set out to determine if any of the identified cell-type

specific miRNAs, which regulate the expression of protein-coding

genes, give rise to cell-type specific mRNA expression patterns. As

a first step, we performed whole genome mRNA expression

profiling on the same set of samples using Affymetrix HG-U133

Plus 2.0 microarrays. Data was normalized by RMA, and

expression data from 3 samples (2 neutrophils, 1 eosinophil) were

excluded because they showed a strong outlier expression profile

as observed after a principal component analysis (data not shown).

Probesets were additionally checked for sequence identity against

current genomic annotation. Probesets that did not map to unique

positions in the genome were discarded as an additional quality

control measure. Similar to the miRNA data, mean probeset

expression was compared across cell-types, and significance

assessed using an ANOVA test. Probesets were judged to be

Figure 1. Cell type specific expression of miRNAs. miRNAs were grouped based on specificity to one, two or three cell types. A) miR-143 and
miR-31 were specific to neutrophils and T cells respectively, while B) miR-362 and miR-125 were specific to monocytes, pDCs and T cells, neutrophils.
C) miR-223 was specific to myeloid lineage cells (neutrophils, eosinophils and monocytes), whereas miR-155 was specific to lymphoid lineage cells
(pDCs, T cells, B cells and NK cells).
doi:10.1371/journal.pone.0029979.g001
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specifically up or down-regulated in one, two or three cell types, if

the expression level in the specific cell type(s) was significantly

greater or lesser than expression in all the other cell types (criteria:

p*,0.05, corrected for multiple testing by method of Benjamini-

Hochberg and absolute fold change .4). Probesets up-regulated in

one, two or three cell types were required to be expressed with an

average log2 RMA signal value .7 in those respective cell types.

Similarly, down-regulated probesets were required to be expressed

with a signal value .7 in all other cell types.

Using this approach, we identified 696 genes specifically up- or

down-regulated in one, two or three different cell types (Table 2).

Among those, 542 were specific to one cell type (456 up-regulated

and 86 down-regulated), 109 were specific to two cell types (73 up-

regulated and 36 down-regulated) and 45 were specific to 3 cell

types (34 up-regulated and 11 down-regulated). Expression profiles

for the 542 genes specific to single cell types were subject to

hierarchical clustering (complete linkage using Pearson correlation

as distance) and the results visualized in a heatmap in Figure 2.

The full list is available in Table S3. Similar to the miRNA

analysis, we compared again mRNA expression data from single

donor samples to pooled samples to exclude pooling effects.

Expression profiles of single and pooled donor samples were very

similar with an average correlation .0.62 (Figure S3) and samples

co-clustered in hierarchical clustering by cell-type rather than

sample source (pooled or single donor) (Figure S4), suggesting that

pooling effects on mRNA expression were indeed minimal.

Interestingly, the distribution of genes specifically up-regulated

in single cell types was evenly distributed across cell types ranging

from 117 genes in pDCs to 21 genes in monocytes (Table 3), genes

down-regulated in single cell types showed a different distribution:

of the 86 down-regulated genes, a disproportionate majority of

genes were repressed in neutrophils (61 genes; 71% of all

downregulated genes) in contrast to 0% in monocytes. Genes

down-regulated in two or three cell types followed a similar trend,

where 30 of 47 genes identified were specifically repressed in

neutrophils, suggesting that cell-type specific repression of mRNA

Table 1. miRNAs are specifically expressed in 1, 2 or 3 blood cell subsets.

Affymetrix ID Specific Cell Type Fold Change p* Log2 Expression

hsa-miR-378_st Monocytes 3.96 4.37E-02 9.4

hsa-miR-31_st T cells 59.23 9.90E-09 9.39

hsa-miR-935_st Eosinophils 5.64 7.44E-03 7.67

hsa-miR-143_st Neutrophils 9.16 7.45E-04 9.53

hsa-miR-362-5p_st Monocytes; pDCs 10.18 1.31E-03 7.20; 7.17

hsa-miR-532-5p_st Monocytes; pDCs 5.78 1.09E-02 7.88; 8.85

hsa-miR-500-star_st Monocytes; pDCs 4.68 1.77E-02 7.32; 8.58

hsa-miR-663_st B cells; NK cells 5.71 1.37E-05 9.35; 9.91

hsa-miR-125a-5p_st T cells; Neutrophils 14.09 4.85E-06 7.7; 7.9

hsa-miR-150_st B cells; T cells; NK cells 9.38 1.32E-03 11.74; 12.91; 11.61

HBII-239_st B cells; T cells; NK cells 2.76 3.26E-03 9.06; 8.91; 8.68

HBII-429_st B cells; T cells; NK cells 2.72 3.57E-02 9.85; 9.79; 9.00

HBII-202_st B cells; T cells; NK cells 2.16 1.48E-03 11.3; 11.31; 11.02

U27_st B cells; T cells; NK cells 2.16 4.33E-02 8.76; 8.46; 8.10

U95_st B cells; T cells; NK cells 2.03 1.60E-04 12.16; 12.18; 12.01

hsa-miR-768-5p_st B cells; T cells; NK cells 1.95 2.89E-02 12.47; 12.36; 12.52

hsa-miR-223_st Monocytes; Eosinophils;
Neutrophils

8.05 2.21E-02 8.29; 10.16; 11.06

hsa-miR-652_st Monocytes; Eosinophils;
Neutrophils

3.16 4.08E-02 8.46; 9.42; 8.59

The fold-change is between the highest expressing cell population relative to the next highest expressing cell population (p* is the ANOVA p-value for significance of
this comparison, FDR corrected for multiple testing). The Log2 expression is the average expression observed in the different cell types in the order given in column 3
(specific cell type).
doi:10.1371/journal.pone.0029979.t001

Table 2. 696 transcripts are uniquely expressed by 1, 2 or 3 blood cell subsets.

Number of up-regulated
transcripts

Number of down-regulated
transcripts Total numbers of specific transcripts

1 cell type 456 86 542

2 cell types 73 36 109

3 cell types 34 11 45

Total 563 133 696

doi:10.1371/journal.pone.0029979.t002
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transcripts occurs predominantly in end-differentiated, mature

neutrophils.

Next, we asked if any mRNA transcripts were significantly

negatively correlated with miRNA expression and at the same

time predicted to be miRNA targets by seed site matching

algorithms. Pair-wise correlations were computed for 1,801

human miRNA probes and 20,367 curated mRNA probesets;

the significance of correlation was assessed using a cutoff of 20.55

(False discovery rate (FDR) 1%, based on 100 permutations). In

parallel, we used a modified version of the TargetScan algorithm

(conservation assessed across human, dog, horse, cow, mouse, rat,

opossum, excluding chicken) to determine miRNA targets by seed

site matching. TargetScan predictions were further cross-checked

against other computational (miRanda and miRDB) and exper-

imental databases (mir2disease, tarbase). TargetScan predictions

confirmed by at least one other database were used as the final list

of predicted miRNA targets. We assessed the degree of overlap

between mRNAs negatively correlated with a given miRNA and

mRNAs predicted to be targets of individual miRNAs. We

identified 94 miRNAs (corresponding to 79 miRNA families,

annotation from mirDB) with significant overlap (FDR 5%, 100

permutations, see methods) (Table S4). Six of these miRNAs (miR-

223, miR-143, miR-150, miR-500, miR-652 and miR-125) were

cell-type specific based on our previous analysis. Interestingly, four

of the six miRNAs were specific to cells of the myeloid lineage

(monocytes, neutrophils and eosinophils), consistent with our

earlier finding that most cell-type specific gene repression occurs in

granulocytes (Table 4).

Validation of predicted miRNA target genes using
external data

To further support our observations, we searched for studies in

which cell-type specific miRNA expression levels were altered by

either over-expression or knock-out, and asked if the genes we had

identified as miRNA targets were correspondingly up- or down-

regulated in response. For miR-223, we found one study by Baek

et al. [25], where the authors investigated the role of miR-223 in

granulopoiesis by performing gene expression and proteomic

profiling of mouse neutrophils obtained from a miR-223 knockout

mouse vs a wild type control. Since miR-223 levels were depleted

in the knockout, we asked if the 82 genes identified as miR-223

targets from our current dataset would correspondingly be up-

regulated in absence of negative regulation by miR-223. 66 of

these 82 genes had matching mouse homologs. By querying

against the Baek dataset, we observed that 11 of 66 genes (16.7%)

were indeed up-regulated, four of them (STIM1, FUBP3, CBX5,

FBXO8) with fold change .1.5, the remaining seven (KPNA3,

TMEM64, LRCH1, SMARCD1, PURA, RASA1, TNRC6B)

with fold change .1.3 (Figure 3A).

Genes identified as miR-223 targets using TargetScan were

mildly up-regulated in response to miR-223 knockout, compared

to all other genes. However, genes negatively correlated with miR-

223 expression in our dataset were significantly more correlated

(fold change .1.3) than similar sized groups of genes randomly

selected from the set of TargetScan predictions (FDR p,0.01,

1000 permutations) (Figure 3B), suggesting that additional filtering

for negative correlation between miRNA and mRNA expression

in our dataset yields an enriched set of miR-223 targets that has

higher probability of being regulated by miR-223 in vivo.

Table 3. 542 uniquely expressed transcripts display distinct distributions across cell types, comparing up vs. down-regulated
genes.

Cell Type Number of up-regulated genes Number of down-regulated genes

Neutrophils 84 (18.4%) 61 (70.9%)

Eosinophils 32 (7.0%) 5 (5.8%)

Monocytes 21 (4.6%) 0 (0%)

mDCs 24 (5.2%) 1 (01.1%)

pDCs 117 (25.7%) 10 (11.6%)

T lymphocytes 29 (6.4%) 2 (2.3%)

B lymphocytes 66 (14.5%) 5 (5.8%)

NK cells 83 (18.2%) 2 (2.3%)

Total 456 86

doi:10.1371/journal.pone.0029979.t003

Figure 2. 542 mRNA transcripts are uniquely up or down-
regulated in one cell type. 696 genes were specifically up or down-
regulated in one, two or three different cell-types, with the majority of
genes (542) uniquely up or down-regulated in a single cell-type.
Transformed expression levels are indicated by color scale, with red
representing relative high expression and green relative low expression.
doi:10.1371/journal.pone.0029979.g002

Paired miRNA-mRNA Profiling of Immune Cell Subsets
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Validation with independent dataset
As additional validation, an independent set of seven cell subsets

(CD16+CD66b+ Neutrophils, CD162CD66b+ Eosinophils,

CD14+ Monocytes, CD4+ T cells, CD8+ T cells, CD56+ NK

cells and CD19+ B cells) were obtained from a separate panel of

healthy donors at the University Hospital of Geneva (HUG)

(Table S2), using the same protocols for cell isolation and sample

processing as the Roche dataset. Samples were profiled for

miRNA and mRNA expression using the same protocols and were

subject to an identical data analysis workflow. This approach

yielded a total of 54 miRNA probesets specifically up-regulated in

one, two or three cell types in the HUG dataset, with 12 miRNA

probesets previously identified as cell-type specific in the Roche

dataset (The Jaccard coefficient, i.e. the intersection to union ratio,

which measures sample set similarity was 0.17.) If mDCs and

pDCs were excluded from the Roche dataset, the number of cell-

type specific miRNA probesets common to both HUG and Roche

datasets increased to 24 with Jaccard coefficient of 0.37. (Figure 4,

Table S5). All miRNAs reported as specific to single cell types in

the Roche dataset (miR-143, miR-31, miR-935 and miR-378)

remained significant in the HUG dataset, while additional

miRNAs were found to be cell-type specific, most notably miR-

145 in neutrophils, miR-181 in NK cells and miR-146 in T cells

and NK cells. Analysing the HUG mRNA data set in a similar

way as shown above for the Roche data, we identified 672 genes

specifically expressed in one, two or three cell types, of which 416

Table 4. 6 cell-type specific miRNAs are negatively correlated with significant numbers of target mRNAs as predicted by
TargetScan.

Affymetrix ID
Num. Target mRNAs (TargetScan, negatively
correlated) Cell Type specificity

HSA-MIR-223 82 Monocytes; Eosinophils; Neutrophils

HSA-MIR-143 60 Neutrophils

HSA-MIR-150 27 B cells; T cells; NK cells

HSA-MIR-500 25 Monocytes; pDCs

HSA-MIR-652 11 Monocytes; Eosinophils; Neutrophils

HSA-MIR-125A 9 T cells; Neutrophils

doi:10.1371/journal.pone.0029979.t004

Figure 3. Potential miR-223 targets are repressed in a miR-223 2/2 system. A) miR-223 expression across the profiled cell types (bars) is
plotted against the relative expression profile (lines) of 82 genes identified as potential miR-223 targets (TargetScan, significant negative correlation).
Red line represent mean expression profile of target genes, dotted line represents mean expression across cell types. B) 82 genes were identified in
our study as being significant miR-223 targets. We used the data from a previously published miR-223 2/2 system [25] to see if those targets would
correspondingly be de-repressed when miR-223 is knocked-out. 62 of these 82 genes had matching mouse homologs (in red). The change in
expression of these genes was compared against all TargetScan predicted miRNA target genes, which included predicted targets not negatively
correlated with miRNA expression in our dataset (234 genes, in blue). Fold-change for all probe sets is also plotted in this figure as a null distribution
(black).
doi:10.1371/journal.pone.0029979.g003
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genes were also reported as cell-type specific in the Roche dataset

(with both mDC and pDC samples removed to enable direct

comparisons). Also similar to the Roche dataset, a large majority of

genes specifically down-regulated in one cell type were repressed

in neutrophils (193 genes, or 91% out of a total of 212 genes).

Next, we applied the same analysis workflow to identify genes

both predicted to be miRNA targets by TargetScan and

significantly negatively correlated with miRNA expression in the

HUG dataset (correlation,20.55, FDR 1%). The genes identified

corresponded to predicted targets of 110 miRNAs, of which 21

miRNAs were specifically expressed in one, two or three cell types

in the HUG dataset (Table S6). Of interest, miR-223, miR-143,

miR-150 and miR-652 replicated as significant in both Roche and

HUG datasets, strengthening the case that these miRNAs may

indeed regulate expression of their respective predicted target

mRNAs.

Construction of a miRNA-mRNA regulatory network
Since we observed that several miRNAs were expressed in the

same cell type, e.g. miR-143, miR-145 and miR-223 are

specifically expressed in neutrophils, we asked if miRNAs specific

to the same cell type would target an overlapping set of genes. A

gene could thus be targeted by multiple miRNAs as part of a

coordinated regulatory mechanism to ensure repression of the

eventual gene product. Furthermore, if these miRNAs were cell-

type specific, targeting by multiple miRNAs could also imply the

presence of redundant mechanisms to repress certain genes to

ensure lineage commitment. To identify the genes targeted by

multiple miRNAs, we compared miRNAs with significant

numbers of negatively correlated target mRNAs from both

Roche and HUG datasets. To obtain a higher confidence set, we

selected only miRNA/target mRNA pairs that replicated across

both Roche and HUG datasets for analysis, and further filtered

this list for cell-type specific miRNA expression in the HUG

dataset. (The HUG dataset was chosen, since it contained a

greater number of cell type specific miRNAs compared to the

Roche dataset). We filtered this list for genes targeted by more

than one miRNA. In each case where a gene was targeted by

multiple miRNAs, genomic coordinates of each seed site match

were checked for overlap, to ensure that the miRNAs were not

targeting the same gene due to seed site similarity (the full list of

genes with respective seed site coordinates is in Table S7). The

resulting miRNA/target mRNA pairs were organized in a

network using Cytoscape [26,27] where edges between miRNA

and mRNA nodes represent a potential regulatory relationship.

The layout of the network was determined using a spring

embedded algorithm, which placed the most highly connected

(multiply targeted) mRNAs in the center of the network while

relegating mRNAs with fewer connections to miRNA nodes to

the periphery (Figure 5). The final network consisted of two

clusters, a large cluster consisting of 9 miRNAs specific to

neutrophils, monocytes and myeloid lineage cells (miR-223, miR-

143, miR-145, miR-25, miR-27, miR-425, miR-17, miR-652 and

miR-191) and a much smaller cluster specific to lymphoid lineage

cells (B, T and NK cells), consisting of miR-150 and miR-29 co-

regulating TET3, ERP44 and VEGFA.

Ranking genes in the myeloid cluster by their connectivity, we

found ABL2, a gene which regulates cytoskeleton remodeling

during cell differentiation, cell division and cell adhesion was

found to be targeted by the largest number of miRNAs (N = 5:

miR-223, miR-143, miR-25, miR-27, miR-17), followed by

EIF4A2, EPC1 and INO80D, which were targeted by four

miRNAs each. EIF4A2 is involved in regulation of translation

initiation, whereas EPC1 and INO80D are chromatin remodeling

factors, involved in transcriptional regulation. To determine if

other genes targeted by multiple miRNAs have similar regulatory

functions, we performed Gene Ontology functional enrichment

analysis on 76 mRNAs targeted by at least 2 myeloid specific

miRNAs. Indeed, a large fraction of these miRNAs (32 of 76) were

associated with regulation of expression (GO:0010468, p,9.0E-7,

corrected for multiple testing), suggesting that while the myeloid

specific miRNAs may be few in number (9 miRNAs), they may

exert significant secondary effects on the transcription of other

genes by directly repressing expression of genes involved in

transcriptional regulation.

Figure 4. Significant overlap observed between Roche and
HUG datasets. A) Excluding mDCs and pDCs, 749 genes were
identified as cell-type specific in the Roche dataset, compared to 672 in
HUG dataset. 416 genes were common to both (p,2.2e-16). The
Jaccard coefficient (i.e. the intersection to union ratio), which measures
sample set similarity, is 0.41. B) Excluding mDCs and pDCs, 35 miRNAs
were identified as cell-type specific in the Roche dataset, compared to
54 in HUG dataset. 24 miRNAs were common to both (p,2.2e-16) with
a Jaccard coefficient of 0.37. C) 6 miRNAs were significantly negatively
correlated with their TargetScan predicted target genes in the Roche
dataset, compared to 21 in the HUG dataset. 4 miRNAs were common
to both datasets with a Jaccard coefficient of 0.17.
doi:10.1371/journal.pone.0029979.g004
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Discussion

In this study, we sought to investigate the regulatory role of

miRNAs in nine immune cell subsets found in peripheral blood.

We performed miRNA profiling on a panel of nine human

immune cell subsets (neutrophils, eosinophils, monocytes, B cells,

NK cells, CD4 T cells, CD8 T cells, mDCs and pDCs) to identify

cell-type specific miRNAs and identified four, five and nine

miRNAs specific to one, two and three cell types, respectively. We

then profiled mRNA expression on the same cell subsets from the

same donors to investigate whether the cell-type specific miRNAs

down-regulated their predicted target genes and found six cell-type

specific miRNA that negatively correlated with expression of their

predicted target genes. These results were validated using an

independent cohort where miRNA and mRNA profiling was

conducted on similar immune cell subsets (HUG dataset). To

further elucidate the functional role of these miRNAs, we

constructed cell-type specific regulatory networks from these

miRNA/mRNA regulatory pairs. Two principal regulatory

networks were found: one network consisting of 9 miRNAs from

myeloid lineage cells and a second network consisting of 2

miRNAs from lymphoid lineage.

Although several groups have measured miRNA expression in

selected immune subsets in previous studies, the primary focus of

the present investigation was to systematically characterize cell-

type specific miRNA expression and its potential impact on

transcription of protein-coding genes. There were relatively few

miRNAs that were found exclusively in a single cell type. We

identified miR-143 as neutrophil specific, miR-31 as T-cell

specific, miR-378 as monocyte specific and miR-935 as eosinophil

specific. Several previous reports have shown that miR-143 is

indeed expressed in neutrophils, and patients with polycythemia

vera have elevated miR-143 expression in their neutrophils [28].

miR-143 and miR-145 are located in close proximity at

chromosome 5q32 and while the pre-miRNA structure has not

been identified, it is suggested that they are co-transcribed [29].

Indeed, we observed that miR-145 was also mainly expressed in

neutrophils (fold change = 4.53 in neutrophils vs eosinophils) even

though the difference was not significant. Specificity of miR-31 to

T cells appears to be consistent with its role in T cell lineage

determination. As reported by a previous study, miR-31 inhibits

differentiation of naı̈ve T cells to T regulatory cells by negatively

regulating FOXP3 expression, binding directly to its potential

target site in the 39 UTR of FOXP3 mRNA. Consequently, miR-

31 is down-regulated in nTreg compared to naı̈ve CD4+CD252 T

cells [30], permitting FOXP3 expression and establishment of T

regulatory cell identity. Little is known regarding the function of

miR-378 in monocytes, or miR-935 in eosinophils.

Interestingly, miRNAs specific to three cell types displayed an

expression pattern corresponding to the lineage of the cell types:

lymphoid (T cells, B cells, NK cells and pDC) and myeloid

(monocytes, neutrophils, eosinophils and mDC). miR-223 was an

example of a miRNA expressed in myeloid cells, which agreed

with previous studies showing that miR-223 was involved in the

differentiation of myeloid precursors into granulocytes. miR-223

mutant mice also have higher numbers of granulocyte progenitors

in the bone marrow and hypermature neutrophils in the

circulation [31]. On the other hand, miR-150 was found to be

specific in lymphoid cells, also confirming previous reports that

miR150 is highly expressed in mature B and T cells and can be

detected at high levels in the lymph nodes, spleen and the thymus

[32]. The divergence in expression profiles observed between the

cell subsets of distinct lineage origin reinforces the hypothesis that

miRNAs are key regulators of hematopoiesis.

Figure 5. Regulatory network identifying genes that are shared targets of cell-type specific miRNAs. Networks depicting regulatory
interactions between miRNAs and their respective target genes. miRNAs are coloured red, whereas target genes are coloured yellow. An edge from a
miRNA node to a mRNA node indicates that the gene is both predicted to be a miRNA target by TargetScan and significantly negatively correlated
with miRNA expression across the profiled blood cell subsets.
doi:10.1371/journal.pone.0029979.g005
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By performing mRNA expression profiling of immune cell

subsets isolated from the same donors, we identified genes that also

displayed similar specificities to one, two or three cell types and

attempted to correlate the expression of these genes to miRNA

expression profiles. We found 542 genes specific to a single cell

type, with 456 genes up- and 86 genes down-regulated. Unlike the

up-regulated genes, genes specifically down-regulated in a single

cell type were predominantly repressed in neutrophils. Neutrophils

are short-lived cells playing an important role in inflammatory

reactions, with a half-life of 6 to 7 hours in blood. This short life

span might explain why neutrophils have poorly developed

machinery for protein synthesis, and why genes related to

transcription and protein synthesis (i.e. ribosomal protein genes)

are profoundly under-represented. Despite this, neutrophils

maintain active genes responsible for their unique activities and

are able to synthesize RNA and proteins de novo following

activation [33]. A recent study by Rossi et al. describes the

miRNA-ome of most human lymphocyte subsets [34]. miR-125a-

5p, which we found in our study specifically expressed in T cells,

was also found to be expressed by CD4 and CD8 cells, in the study

of Rossi et al. In concordance with their results we also found

expression of miR-150 in all B, T and NK cells subsets. Finally,

they found miR-125b to be highly specific for naı̈ve CD4 T cells

and to constitute an important regulator of the naı̈ve state of those

cells; we found this miRNA to be specifically expressed in CD4

and CD8 cells in the lymphocyte compartment.

In correlating miRNA expression with expression of their

predicted mRNA targets, we identified 94 miRNAs that were

likely negative regulators of their respective mRNA targets. Of

these, six miRNAs were cell-type specific, suggesting that these

miRNAs could play a functional role in defining the cell-type

specificity of their respective targets. One of these miRNAs was

miR-223, for which we were able to show that the target genes

identified were correspondingly up-regulated in neutrophils of a

miR-223 gene knockout mouse [25], serving as additional support

that these genes may indeed be modulated by miR-223 in vivo.

This study also showed that mRNAs of most of the highly

responsive proteins were de-repressed already at the myeloid

progenitor stage, suggesting that miR-223 is important already

early in neutrophil differentiation.

As further validation of our approach, we decided to profile the

same cell subsets in an independent test cohort recruited at the

University Hospital of Geneva (HUG). When the same analysis

workflow was applied to the HUG dataset, we identified 54 cell

type specific miRNAs, of which 21 were significantly negatively

correlated with expression of their predicted target genes. Analysis

of the HUG dataset yielded more significant miRNAs and

mRNAs than the Roche dataset, but this was likely due to two

reasons: firstly, the HUG dataset did not include mDCs or pDCs,

which reduced the total number of cell types a miRNA or mRNA

transcript had to be compared against in order to be identified as

cell-type specific. When mDCs and pDCs were removed from the

Roche dataset to ensure direct comparison across datasets, the

agreement between both datasets increased, as measured by the

Jaccard coefficient, from 0.29 to 0.41 for the mRNA data and

from 0.17 to 0.37 for the miRNA data. Secondly and perhaps

more importantly, samples from each cell type in the HUG dataset

were hybridized to microarrays and run on separate days. We

assumed that the biological difference between cell types would be

greater than the technical variation in array quality across scan

dates; however this lack of randomization could have artificially

increased the apparent difference in miRNA expression between

cell types. Scan date and cell-type variability in the HUG miRNA

and mRNA datasets were visualized using principal components

analysis (PCA) (Figure S5). Since each cell type was scanned on a

separate date, the scan date effect was completely confounded with

the cell type effect and could have contributed to additional

separation between samples in the PCA plot. Overlap in terms of

the number of differentially expressed miRNAs could be

optimized via a maximum likelihood approach as developed by

Git et al [35]. In their iMLE algorithm, the authors varied

significance thresholds for each dataset iteratively to obtain the

highest number of differentially expressed ‘truth’ calls across all

compared datasets or platforms. We attempted to apply this

method to the current comparison between Roche and HUG

datasets, but were unable to obtain relevant results, most likely

because only 2 datasets were being compared as opposed to 6

independent datasets from different platforms in Git et al.

miRNAs can act via two mechanisms to cause target gene

repression: translational inhibition and transcript destabilization

and degradation. Transcript destabilization and degradation is

favored when complementarity between the miRNA and the seed

site match in the 39 UTR increases. Indeed, by using negative

correlation between miRNA and mRNA expression to identify

miRNA target genes, we tacitly assume that these miRNA

predominantly act on their targets by favoring the second

mechanism: transcript destabilization and degradation. It remains

to be determined what fraction of miRNA targets are solely

regulated by this mechanism, although a recent study using

ribosome profiling suggested that miRNAs predominantly act in

mammalian cells through decreasing levels of target mRNAs [20].

Another possibility might be that the inverse expression patterns

we observed between miRNAs and their predicted mRNA targets

are due to indirect regulation, which is impossible for us to rule out

but appears highly unlikely.

While the assumption that miRNAs regulate target mRNA

expression via transcript degradation may not be true in general,

in cases where a gene is targeted by multiple miRNAs, cooperative

action between multiple miRNAs could favor transcript degrada-

tion as opposed to translational inhibition. Towards this end, we

constructed a regulatory network of cell-type specific miRNAs and

their putative target genes, which enabled us to identify target gene

‘‘hubs’’, or genes targeted by multiple miRNAs, which increased

their likelihood of being targeted for transcript degradation. The

regulatory network consisted of a small cluster of miRNAs specific

to lymphoid lineage cells (miR-150 and miR-29) and a much

larger cluster of miRNAs specific to myeloid cells. We found ABL2

to be targeted by the largest number of myeloid specific miRNAs.

This was consistent with reports of ABL2 fusion transcripts in

AML cell lines [36], which suggested that increased activity of

transformed ABL2 helped maintain an undifferentiated myeloid

precursor state. Myeloid specific miRNAs may promote differen-

tiation and granulopoiesis by repressing ABL2 levels, disrupting

maintenance of the undifferentiated myeloid precursor state.

Targeting of ABL2 by various miRNAs could be a redundant

mechanism to ensure ABL2 repression in myeloid cells, and it

would be interesting to study whether indeed ABL2 levels could be

modulated in a dose dependent fashion in vivo by perturbing the

expression of one or more of its regulatory miRNAs.

The organization of myeloid miRNAs in the regulatory network

placed miR-223, miR-143 and miR-145 in a central position,

since they targeted several genes in common with other miRNAs.

This suggests that they might play a determinant role in cell-fate

decision during granulopoiesis. Indeed, miR-223, miR-143 and

miR-145 have been shown to be overexpressed in myeloid cells

from polycythemia vera patients in which enhanced erythropoiesis

is observed [28], suggesting that these 3 miRNAs are usually

decreased during erythropoiesis. It would be very interesting to
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study their expression in common myeloid progenitors and how

their regulation plays a role in erythropoiesis versus granulopoeisis

differentiation.

In conclusion, our study identifies miRNAs, their respective

target genes, and the regulatory role of miRNAs in specific

immune cell subsets. To our knowledge, it is the first study

attempting to simultaneously profile mRNA and miRNA from a

diverse panel of immune cells in a systematic manner. We have

identified strong candidates for miRNA/mRNA regulatory

relationships specific to myeloid and lymphoid cell subsets, which

contribute to our understanding of how miRNA-mediated

regulation can impact the establishment of immune cell identity.

Methods

Ethics Statement
This study was performed in conformity with requirements

approved by the institutional review boards of F.Hoffmann-

LaRoche Ltd and the University Hospital of Geneva. This study

was approved by the institutional review boards at F.Hoffmann-

LaRoche and the University Hospital of Geneva. All participants

were recruited following written informed consent.

Cell isolation
Peripheral blood was obtained from healthy donors with ages

ranging from 15 to 59 and with equal gender distribution. Blood

was drawn in EDTA tubes (BD Vacutainer, Franklin Lakes, NJ,

USA). A nucleated cell suspension was prepared from 50 mls of

whole blood using lymphocyte separation medium (LSM, MP

Biomedicals, LLC Solon, OH, USA). The cell pellet was transferred

to a new tube and lysed with ammonium chloride solution

(PharMLyse, BD Biosciences, Breda, The Netherlands) on ice for

10 minutes. After washing the pellet twice with PBS-2%FBS-1 mM

EDTA, cells were resuspended at 56107/mL and neutrophils and

eosinophils were isolated using the EasySepH Human Neutrophil

Enrichment Kit (Stem Cell Technologies, Grenoble, France) and

EasySepH Human Eosinophil Enrichment Kit (Stem Cell Technol-

ogies) respectively according to manufacturer’s instruction. The

PBMCs fraction was washed twice with PBS-2%FBS-1 mM

EDTA. CD14+ monocytes, CD8+ T cells, CD56+ NK cells and

CD19 B cells were isolated using the Human CD14 positive

Selection Kit, Human CD8+ T cells Enrichment Kit, EasySepH
Human CD56+ NK cells Enrichment Kit, EasySepH Human

CD19+ B cells Enrichment Kit (all from Stem Cell Technologies),

respectively, according to manufacturer’s instructions. The CD4+ T

cells were isolated from the monocyte-depleted fraction (obtained

during the monocyte isolation) using the EasySepH Human CD4

Positive Selection Kit (Stemcell Technologies) according to

manufacturer’s instructions. Blood dendritic cells were obtained

from a second batch of experiments. Briefly, a nucleated cell

suspension was prepared from EDTA treated whole blood

(,50 mls) using lymphocyte separation medium (LSM, MP

Biomedicals, LLC). The PBMC fraction was washed twice with

PBS-2%FBS-1 mM EDTA and CD123+ plasmacytoid dendritic

cells (pDCs), CD11c+ myeloid dendritic cells (mDCs) and CD14+
monocytes were isolated using the EasySepH Human pDC

Enrichment Kit, a custom EasySepH Human mDC Enrichment

Kit (containing antibodies directed against CD3, CD19, CD14,

CD16, CD19, CD25, CD34, CD56, CD66b, GlyA, CD85g,

CD45RA, CD123 and dextran) and the Human CD14 positive

Selection Kit (all from Stemcell Biotechnologies), respectively,

according to manufacturer’s instructions. When indicated, PBMCs

or granulocytes from 5 donors were pooled followed immediately by

cell subset isolation. The incubation time of cells from different

donors origin was kept to a minimum (never exceeding 30 minutes

at 4uC) in order to minimize cell activation. The purity of the

isolated cell population was assessed by FACS using the following

antibodies: anti-CD3 AF488, anti-CD66b FITC, Lin FITC, anti-

CD14 PE, anti-CD56 PE, anti-CD123 PE, anti-CD45 PE-Cy7,

anti-CD8 PerCP, anti-HLA-DR PerCP, anti-CD19 APC, anti-

CD11c APC, anti-CD4 APC-Cy7, anti-CD16 APC-Cy7 (all from

BD Bioscience), and was .90% for CD4+ T cells and mDCs and

.95% for all other cell types.

RNA isolation
Total RNA, including small non-coding RNAs, was extracted

using the mirVana RNA isolation kit (Ambion, Inc, Austin, TX,

USA), according to manufacturer’s protocol. RNA was quantified

using a ND-1000 spectrophotometer (Nanodrop TechnologyH,

Cambridge, UK) and RNA integrity was assessed using the Agilent

2100 Bioanalyzer (Agilent technologies, Santa Clara, CA, USA).

The 260/280 ratio were between 1.7 and 2.1 and the RINs (RNA

Integrity Numbers) were .6 for all samples.

Microarray processing
For mRNA expression analysis total RNA (100 ng) was

transcribed and labeled into amplified RNA (aRNA) using the

39IVT express kit (Affymetrix Inc., Santa Clara, CA) according to

manufacturer’s instruction on a GCAS (Gene Chip Array Station).

Fragmented and labeled aRNA was hybridized to the Affymetrix

U133 Plus 2.0 chips, according to manufacturer’s instructions.

For miRNA expression analysis total RNA (300 ng) was biotin

labeled using the FlashTagTM HSR RNA labeling kit for

Affymetrix miRNA arrays (Genisphere LLC., Hatfield, PA,

USA), according to manufacturer’s instructions. Labeled RNA

was hybridized to Affymetrix GeneChip miRNA microarrays,

according to manufacturer’s instructions. The data is available in

GEO under the accession number GSE28492.

Data analysis
The quality of the raw data (CEL files) was assessed in

Bioconductor using 4 metrics: maplot, spatial, boxplot and rle.

Data was then normalized using the robust multi-array average

(RMA) expression measure [37]. Probesets were then annotated

using the latest annotation available in Bioconductor and curated

using an internal Roche probe inspector tool, which updates gene

annotation per probeset based on the latest human genome draft

release. As an additional quality measure, probesets were also

curated using the tool for sequence specificity; probesets mapping

to non-unique locations in the genome were flagged and ignored

in subsequent analysis. A total of 20,367 out of 54,675 probesets

passed the QC and curation process, corresponding to 11,629

unique genes. Using principal component analysis (PCA) to

visualize sample-to-sample variability in miRNA data, we flagged

3 mDC samples (donor pools 16, 17 and 18) as outliers and

excluded them from subsequent analysis. 4 samples from the June

22nd 2010 scan date were also excluded as outliers (CD4+ T cell

sample from donor pool 2, CD14+ monocyte sample from donor

pool 7, eosinophil sample from donor pool 3 and neutrophil

sample from donor pool 7). For the mRNA data, 1 eosinophil

(donor pool 1) and 2 neutrophil samples (donor pools 1 and 2)

were also flagged as outliers and removed from analysis.

Identification of cell-type specific miRNA and mRNA
transcripts

For miRNA analysis, probesets were filtered for detection by

requiring RMA signal value to be at least greater than 7 in at least
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one cell type (considered above detection limit). A total of 8

immune cell subsets were considered in the analysis: T cells

(CD4+, CD8+), B cells (CD19+), NK cells (CD56+), Monocytes

(CD14+), Neutrophils, Eosinophils, mDCs and pDCs. CD4+ and

CD8+ subsets together as ‘T cells’ because few transcripts were

unique to resting CD4+ cells or CD8+ cells only. Transcripts with

significant differential expression across cell subsets were identified

using ANOVA. For each transcript, we ranked the various cell-

types in descending order, i.e. from highest-expressing to lowest-

expressing. miRNAs specifically up or down regulated in 1,2 or 3

cell-types were identified by requiring significant difference in

expression between the highest expressing cell types (or lowest for

cell type specific down-regulation) vs. the next highest cell type

(p,0.05, with Benjamini-Hochberg correction for multiple

testing). A fold-change cutoff was not imposed as a criterion for

cell type specific expression since few miRNAs displayed marked

fold-change differentials from highest/lowest expressing group

relative to next highest/lowest expressing cell type.

For mRNA analysis, transcripts were identified as specifically

up-regulated in 1, 2 or 3 cell types if differences in expression

within the top group were insignificant, whereas difference relative

to the next highest expressing cell-type was at least 4 fold. (p,0.05,

with Benjamini-Hochberg correction for multiple testing). Tran-

scripts specifically down-regulated in 1, 2 or 3 cell types were

identified by applying a similar set of criteria to the lowest

expressing 1, 2 or 3 cell-types.

In both miRNA and mRNA analysis, CD4+ and CD8+ T cells

were considered as a single group: ‘T cells’ because few transcripts

were unique to CD4+ cells or CD8+ cells only. For example, the

only mRNA transcript specific to CD8 T cells was CD8B. CD8A

was expressed by CD8+ T cells and NK cells with a higher level in

CD8+ T cells but the difference was not significant. Three other

genes previously identified to be CD8+ T cell-specific (DKK3,

CD248 and T-cell receptor alpha V gene segment TRAV1-2) [8]

could not be detected in our study (signal intensity below log2 7 or

non-specific probeset mapping to genome).

Platform comparison between Roche and HUG
Human Reference RNA (Agilent technologies) and First Choice

Human RNA (Ambion) were used as a RNA source respectively

for mRNA and miRNA platform validation between the two sites.

Arrays from 6 technical replicates for mRNA and 4 for miRNA

were processed at Roche and at HUG and evaluated to assess the

level of comparability between the two platforms. Data were

preprocessed separately for Roche and HUG arrays as described

above (RMA normalization, internal probe curation and QC). In

order to identify problematic arrays, QC was performed before

and after pre-processing. QC checks included: Evaluation of the

intensity profiles, M and A plots, between-arrays comparisons of

average background, scale factor, GAPDH 39/59 ratios, RNA

degradation (based on RNA digestion plots), PLM (probe level

models) methods (e.g. RLE, NUSE) and multivariate expression

profiling obtained by principal component analysis (PCA)

available in the Bioconductor affy package in the R programming

environment.

Correlation of miRNA and target mRNA expression
profiles

Expression profiles for all 20,367 probesets and 1,801 human

miRNA probes were Z-score transformed to have zero mean and

unit variance across cell-types. To identify miRNAs that

significantly negatively correlate with target mRNA expression,

we computed the Pearson correlation for each miRNA/mRNA

probeset pair. Pairs displaying significant negative correlation

(,20.55) were selected for further analysis. The value for the

correlation cutoff (20.55) was determined by setting a FDR of 1%

cutoff on the results of 100 permutations - in each permutation,

cell-type labels were randomized and miRNA-mRNA pairwise

correlations recomputed.

Target genes for miRNA were predicted using a Roche

modified TargetScanS algorithm and further cross-checked with

predictions from 2 other algorithms (miRanda and miRDB) and

experimentally validated targets from mir2disease and from

tarbase. Overlap between mRNAs significantly negatively corre-

lated with miRNA expression and mRNAs predicted to be

miRNA targets were calculated for each miRNA. Significance of

overlap was quantified by performing 100 permutations to

estimate false discovery rates. The number of predicted mRNA

targets per miRNA was fixed in each permutation, while their

identities were randomized. FDR cutoffs of 1% and 5% were

applied to obtain lists of miRNAs with significant numbers of

predicted mRNA targets that are also negatively correlated in

expression.

Supporting Information

Figure S1 Clustering of single donor and pooled donor
samples based on correlation of miRNA expression
profiles. Samples from single or pooled donors are listed in the

same order on x and y axes. Samples from pooled donors are

indicated by ‘‘Pool’’ followed by the donor pool number, cd19: B

cells, cd56: NK cells, cd4: CD4+ Tcells, cd8: CD8+ T cells, cd14:

Monocytes, eosino: Eosinophils, neutro: Neutrophils. Samples

from single donors are indicated by cell type, followed by single

donor index. Correlation between samples based on miRNA

expression is represented by the heatmap coloring scheme, ranging

from anti-correlated (Blue: 21) to correlated (Red: 1).

(TIFF)

Figure S2 miR-31, miR-143, miR-223 and miR-150 are
confirmed to be cell type specific, using data from single
donor samples. Expression levels for miR-31, miR-143, miR-

223 and miR-150 (Log2, mean 6 SEM) are plotted across a panel

of immune cell subsets, for samples obtained from single donors

(dark shaded bars) and pooled donors (light shaded bars).

(TIFF)

Figure S3 Average correlation between single and
pooled donor samples is .0.62 across cell types.
Correlations were computed between mRNA expression profiles

of single and pooled donor samples, for each cell type. The

distributions of correlation values for each cell type are plotted as

histograms, with the average correlation listed for each cell type.

(TIFF)

Figure S4 Clustering of single donor and pooled donor
samples based on correlation of mRNA expression
profiles. Samples from single or pooled donors are listed in the

same order on x and y axes. Samples from pooled donors are

indicated by ‘‘Pool’’ followed by the donor pool number, cd19: B

cells, cd56: NK cells, cd4: CD4+ Tcells, cd8: CD8+ T cells, cd14:

Monocytes, eosino: Eosinophils, neutro: Neutrophils. Samples

from single donors are indicated by cell type, followed by single

donor index. Correlation between samples based on mRNA

expression is represented by the heatmap coloring scheme, ranging

from anti-correlated (Blue: 21) to correlated (Red: 1).

(TIFF)

Figure S5 PCA plots of miRNA and mRNA data from
the HUG dataset. Principal component analysis (PCA) was

performed on mRNA and mRNA expression data from the HUG
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cohort. Samples were colored by scan date and represented as

different shapes by cell type.

(TIFF)

Table S1 Sample information.

(XLS)

Table S2 Blood Donor information.

(XLS)

Table S3 List of 696 mRNA transcripts specific to 1, 2 or
3 blood cell subsets.

(XLS)

Table S4 List of 94 miRNAs significantly negatively
correlated with target mRNA expression (TargetScan).

(XLS)

Table S5 List of 55 miRNAs which are cell-type specific
in the HUG dataset.

(XLS)

Table S6 List of 21 miRNAs which are cell-type specific
in HUG dataset and negatively correlate with target
mRNA expression (TargetScan).
(XLS)

Table S7 List of target genes that are regulated by
multiple miRNAs.
(XLS)

Acknowledgments

We are grateful to Dr Patrick Descombes (Genomic platform of the

University of Geneva) for his technical help for scanning miRNA

microarrays processed at HUG.

Author Contributions

Conceived and designed the experiments: FA DC. Performed the

experiments: FA. Analyzed the data: FA DC. Contributed reagents/

materials/analysis tools: PR HB SS ME LB GDP MFR. Wrote the paper:

FA DC. Isolated the cells at HUG: MD AC. Processed the micorarrays at

HUG: MD AC. Designed research: TB TM MFR BR MEB DH. Directed

work: JV TM.

References

1. Wang M, Windgassen D, Papoutsakis ET (2008) Comparative analysis of

transcriptional profiling of CD3+, CD4+ and CD8+ T cells identifies novel

immune response players in T-cell activation. BMC Genomics 9: 225.

2. Lindstedt M, Lundberg K, Borrebaeck CA (2005) Gene family clustering

identifies functionally associated subsets of human in vivo blood and tonsillar

dendritic cells. J Immunol 175: 4839–4846.

3. Zhao C, Zhang H, Wong WC, Sem X, Han H, et al. (2009) Identification of

novel functional differences in monocyte subsets using proteomic and

transcriptomic methods. J Proteome Res 8: 4028–4038.

4. Ehrhardt GR, Hijikata A, Kitamura H, Ohara O, Wang JY, et al. (2008)

Discriminating gene expression profiles of memory B cell subpopulations. J Exp

Med 205: 1807–1817.

5. Macaulay IC, Tijssen MR, Thijssen-Timmer DC, Gusnanto A, Steward M,
et al. (2007) Comparative gene expression profiling of in vitro differentiated

megakaryocytes and erythroblasts identifies novel activatory and inhibitory

platelet membrane proteins. Blood 109: 3260–3269.

6. Abbas AR, Baldwin D, Ma Y, Ouyang W, Gurney A, et al. (2005) Immune

response in silico (IRIS): immune-specific genes identified from a compendium

of microarray expression data. Genes Immun 6: 319–331.

7. Liu SM, Xavier R, Good KL, Chtanova T, Newton R, et al. (2006) Immune cell

transcriptome datasets reveal novel leukocyte subset-specific genes and genes

associated with allergic processes. J Allergy Clin Immunol 118: 496–503.

8. Watkins NA, Gusnanto A, de Bono B, De S, Miranda-Saavedra D, et al. (2009)

A HaemAtlas: characterizing gene expression in differentiated human blood
cells. Blood 113: e1–9.

9. Chaussabel D, Pascual V, Banchereau J (2010) Assessing the human immune

system through blood transcriptomics. BMC Biol 8: 84.

10. Burczynski ME, Dorner AJ (2006) Transcriptional profiling of peripheral blood
cells in clinical pharmacogenomic studies. Pharmacogenomics 7: 187–202.

11. Darzacq X, Jady BE, Verheggen C, Kiss AM, Bertrand E, et al. (2002) Cajal

body-specific small nuclear RNAs: a novel class of 29-O-methylation and

pseudouridylation guide RNAs. Embo J 21: 2746–2756.

12. Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate

hematopoietic lineage differentiation. Science 303: 83–86.

13. O’Connell RM, Chaudhuri AA, Rao DS, Gibson WS, Balazs AB, et al. (2010)

MicroRNAs enriched in hematopoietic stem cells differentially regulate long-

term hematopoietic output. Proc Natl Acad Sci U S A 107: 14235–14240.

14. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D (2010) Physiological and

pathological roles for microRNAs in the immune system. Nat Rev Immunol 10:

111–122.

15. Basso K, Sumazin P, Morozov P, Schneider C, Maute RL, et al. (2009)

Identification of the human mature B cell miRNome. Immunity 30: 744–752.

16. Bezman NA, Cedars E, Steiner DF, Blelloch R, Hesslein DG, et al. (2010)

Distinct requirements of microRNAs in NK cell activation, survival, and

function. J Immunol 185: 3835–3846.

17. Kuipers H, Schnorfeil FM, Brocker T (2010) Differentially expressed

microRNAs regulate plasmacytoid vs. conventional dendritic cell development.
Mol Immunol.

18. Neilson JR, Zheng GX, Burge CB, Sharp PA (2007) Dynamic regulation of

miRNA expression in ordered stages of cellular development. Genes Dev 21:

578–589.

19. Wu H, Neilson JR, Kumar P, Manocha M, Shankar P, et al. (2007) miRNA

profiling of naive, effector and memory CD8 T cells. PLoS One 2: e1020.

20. Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs

predominantly act to decrease target mRNA levels. Nature 466: 835–840.

21. Volinia S, Galasso M, Costinean S, Tagliavini L, Gamberoni G, et al. (2011)
Reprogramming of miRNA networks in cancer and leukemia. Genome Res 20:

589–599.
22. O’Connell RM, Kahn D, Gibson WS, Round JL, Scholz RL, et al. (2010)

MicroRNA-155 promotes autoimmune inflammation by enhancing inflamma-

tory T cell development. Immunity 33: 607–619.
23. Huttenhofer A, Kiefmann M, Meier-Ewert S, O’Brien J, Lehrach H, et al.

(2001) RNomics: an experimental approach that identifies 201 candidates for
novel, small, non-messenger RNAs in mouse. Embo J 20: 2943–2953.

24. Brameier M, Herwig A, Reinhardt R, Walter L, Gruber J (2010) Human box C/
D snoRNAs with miRNA like functions: expanding the range of regulatory

RNAs. Nucleic Acids Res.

25. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, et al. (2008) The impact of
microRNAs on protein output. Nature 455: 64–71.

26. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, et al. (2007)
Integration of biological networks and gene expression data using Cytoscape.

Nat Protoc 2: 2366–2382.

27. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. (2003) Cytoscape: a
software environment for integrated models of biomolecular interaction

networks. Genome Res 13: 2498–2504.
28. Slezak S, Jin P, Caruccio L, Ren J, Bennett M, et al. (2009) Gene and

microRNA analysis of neutrophils from patients with polycythemia vera and

essential thrombocytosis: down-regulation of micro RNA-1 and -133a. J Transl
Med 7: 39.

29. Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, et al. (2009) miR-
145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460:

705–710.
30. Rouas R, Fayyad-Kazan H, El Zein N, Lewalle P, Rothe F, et al. (2009) Human

natural Treg microRNA signature: role of microRNA-31 and microRNA-21 in

FOXP3 expression. Eur J Immunol 39: 1608–1618.
31. Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, et al. (2008)

Regulation of progenitor cell proliferation and granulocyte function by
microRNA-223. Nature 451: 1125–1129.

32. Zhou B, Wang S, Mayr C, Bartel DP, Lodish HF (2007) miR-150, a microRNA

expressed in mature B and T cells, blocks early B cell development when
expressed prematurely. Proc Natl Acad Sci U S A 104: 7080–7085.

33. Beaulieu AD, Paquin R, Rathanaswami P, McColl SR (1992) Nuclear signaling
in human neutrophils. Stimulation of RNA synthesis is a response to a limited

number of proinflammatory agonists. J Biol Chem 267: 426–432.
34. Rossi RL, Rossetti G, Wenandy L, Curti S, Ripamonti A, et al. (2011) Distinct

microRNA signatures in human lymphocyte subsets and enforcement of the

naive state in CD4+ T cells by the microRNA miR-125b. Nat Immunol 12:
796–803.

35. Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, et al. (2010)
Systematic comparison of microarray profiling, real-time PCR, and next-

generation sequencing technologies for measuring differential microRNA

expression. Rna 16: 991–1006.
36. Griesinger F, Janke A, Podleschny M, Bohlander SK (2002) Identification of an

ETV6-ABL2 fusion transcript in combination with an ETV6 point mutation in a
T-cell acute lymphoblastic leukaemia cell line. Br J Haematol 119: 454–458.

37. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, et al. (2003) Summaries
of Affymetrix GeneChip probe level data. Nucleic Acids Res 31: e15.

Paired miRNA-mRNA Profiling of Immune Cell Subsets

PLoS ONE | www.plosone.org 12 January 2012 | Volume 7 | Issue 1 | e29979


