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Motivation

NCCR LIVES
“Overcoming vulnerability: life course perspectives”

Methodological team
“Measuring life sequences and the disorder of lives” ruled by

Gilbert Ritschard

My contribution
Data mining approaches for the discovery of critical events in life

courses

Rousseaux and Ritschard – University of Geneva – 2/29



Introduction
Association rule mining

Artificial bee colony optimization
AR mining with ABCO

What’s next
References

Temporal association rules

We want to discover rules: A ⇒ B
I If I experience A, then I often experience B
I If I’m older than 50 with a low educational level and I lose my job, then I may

fall in long-term unemployment.

I At1 ⇒ Bt2
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Exclusion rules

Then we may want to find exclusions to these rules
I At1 ∧ Z t2 ⇒ B̄t3

I If I experience A but I experience Z too; I won’t
experience B

And look on the whole life course
I At1

work traj . ∧ Bt2
family traj . ⇒ C t3

health traj .
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Association rule: Definition

Let:
I I = {I1, I2, . . . , Ip} a set of binary attributes
I T a database of n observations on I .

An association rule is given by (Agrawal, Imieliński, and Swami, 1993)

I X ⊂ I , Y ⊂ I , X ∩ Y = ∅
I A direction: X ⇒ Y
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Association rule: Quality assessment

More than 50 criterias...
I Support: supp(A⇒ B) = nA∪B/n

I Confidence: conf(A⇒ B) = nA∪B/nA ≈ P(B|A)

I Lift: lift(A⇒ B) = supp(A⇒ B)/(supp(A) ∗ supp(B)) ≈ P(B|A)/P(B)

I Statistical criterias: chi-squared, implicative intensity, etc.

I ...
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Application to life-course mining

Specific features

I Temporality (Srikant and Agrawal, 1996; Harms and Deogun, 2004)

I Gap threshold between events
I Ordering

I Positive and negative rules (Swesi, Bakar, and Kadir, 2012)
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Frequent pattern mining

Exp(p) search space
I Limit exploration: support threshold

I Classical algorithms:

I Apriori (Agrawal, Imieliński, and
Swami, 1993)

I FP-growth (Han, Pei, and Yin,
2000)

I Extract too many rules, most of them

are useless

I Impossible to discover rare rules
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Mining rare classes

Recent approaches
I Multiple support thresholds (Liu, Hsu, and Ma, 1999)

I Particle swarm optimization (Sarath and Ravi, 2013)

I Genetic algorithm (Ghosh and Nath, 2004; Salleb-Aouissi, Vrain,

and Nortet, 2007)

I Proposal: Use an artificial bee colony algorithm
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Artificial bee colony algorithm

Recent Evolutionary Population-based stochastic
optimization algorithm
(Karaboga and Basturk, 2007; Karaboga and Basturk, 2008)

I Based on the foraging ability of bees
I Originally design for optimization in Rd

I Adapted for different problems (scheduling, feature

selection, non-linear equation, clustering, classification)

(Karaboga, Gorkemli, et al., 2014)
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Example

Cost function: f (x) = x2

Search space: R

fitness(x) =
1

1 + f (x) −2.5
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Figure : A (too much) easy function
to minimize
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Methodology

Parameters

I Let S = (s1, c1; . . . ; sN , cN) N food sources

I N employed bees and N onlooker bees

I L limit to the number of try per source: ci < L

Initialization

I Each source is randomly initialized

I Counter ci are all equal to 0
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Methodology

Employed bee phase

I Update solutions using Eq. 1

I Calculate fitness values of new solutions

I Keep a new solution when better, increment its

counter otherwise

vi = xi + ri(xi − xk), i 6= k (1)
−2.5
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Methodology

Onlooker bee phase

I Calculate selection probability by using Eq. 2

I Select an employed bee and update its solution by

using Eq. 1

I Keep new solutions when better, increment counter

otherwise

pi =
fitness(xi)∑N

k=1 fitness(xk)
(2)
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Methodology

Scout bee phase

I Select an abandonment counter having the highest

value

I If higher than L, generate a new source for the

employed bee by using Eq. 1
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Data transformation

Let T be a database with p attributes

I Binary variable: do nothing
I Categorical variable: one binary variable per
class

I Quantitative variable: discretization, then
binarization

Result: each individual is a pattern in {0, 1}Np .
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Coding of a rule

Let: A = 0010 and B = 0101, then
I A ∪ B =0111

Then a rule can be coded:
I A⇒ B = A ∪ B + is.conclusion = 01110101

This ensure A ∩ B = ∅
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Binary optimization with ABC

Initialization: For N sources

I We have to generate N patterns in {0, 1}2Np .
I Si = Si1Si1S2Np

I We can use a Bernouilli process:

Sij realization of Xij ∼ Bernouilli(p0)
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Binary optimization with ABCO

Very long sequences ⇒ Need a low complexity candidate
generation method

For each dimension (Kiran and Gunduz, 2013)

vi = xi +ri(xi−xk) becomes Vi = Xi⊕[Ri⊗(Xi⊕Xk)], i 6= k

with

I ⊗ = AND

I ⊕ = XOR

I Ri a realization of the logic NOT gate with 50% probability
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Fitness function
The fitness function has to be fast to compute

We use:
I A support filter SFθ0 : 1 if support(A⇒ B) >= θ0, 0 otherwise

I lift(A⇒ B)

I conviction(A⇒ B) = 1/lift(A⇒ B̄)

fitness(A⇒ B) = (SFθ0 . lift . conviction)(A⇒ B)
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Rule generation

Generation of a set of M rules

I Each run generate a single rule: the best solution of the run

I We iterate enough to get M different rules

I Ensemble scheme: repeat the generation ` times and keep the M most frequents

Rousseaux and Ritschard – University of Geneva – 24/29



Introduction
Association rule mining

Artificial bee colony optimization
AR mining with ABCO

What’s next
References

Outline

Introduction
Association rule mining
Artificial bee colony optimization
AR mining with ABCO
What’s next

Rousseaux and Ritschard – University of Geneva – 25/29



Introduction
Association rule mining

Artificial bee colony optimization
AR mining with ABCO

What’s next
References

What’s next

I Better handling of
I Time
I Negative items
I Quantitative covariates

I Development in process
I Available in R, surely bundled in a package
I http://emmanuel.rousseaux.me/
I Experimental assessment
I Visualization
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Thank you for your attention

Questions/remarks?
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