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Theory of the scattering operator*)

by J. M. Jauch
Department of Physics, State University of Iowa, Iowa City, Iowa

(17. XI.1957)

Abstract. In this paper we give a complete theory of the scattering operator on
a rigorous mathematical foundation for a certain class of quantum mechanical
systems called, ‘simple scattering systems’. These systems are characterized by three
properties formulated in Section 3. The relation of these properties to the physical
content of scattering is explained. We then proceed to define the wave operator and
the scattering operator and prove their existence with mathematically rigorous
methods. No assumptions are needed regarding the occurrence of bound states and
the location of their energy with respect to the continuum region of the total energy
operator. In Section 4 we demonstrate the existence of a certain integral representa-
tion of the scattering operator which has often been used as a starting point of the
iteration approximation. Certain general properties of scattering systems are ob-
tained in Section 5. This leads to necessary conditions for systems to be scattering
systems as well as to a new definition of the scattering operator. The paper concludes
with a derivation of the scattering cross-section from the scattering operator. The
improvement of this derivation over the older ones consists in the special care
employed for stating the assumptions which must go into such a derivation and the
avoidence of improper functions or other artificial devices.

1. Introduction

It is generally recognized that the scattering operator is one of the most
fundamental concepts in elementary wave mechanics as well as in rela-
tivistic field theories. Yet a mathematically meaningful definition of this
operator does not seem to be known. It is the purpose of this paper to
supply such a definition and to prove the existence of this operator under
certain assumptions which characterize the scattering systems.

All the ‘definitions’ usually employed are of a purely formal character
based on a mathematical formalism which is simply derived from the
analogy between the Hilbert space and the finite-dimensional vector
spaces. These analogies exist but only to a limited extent and for the
questions centering around the concept of the scattering operator the
properties, for which this analogy fails, are the most important ones.

There has been a widely felt need for a satisfactory treatment of the
mathematical theory of scattering. However, all recent attempts in this

*) Supported by the National Science Foundation.



128 J. M. Jauch. H.P.A.

direction have fallen short of this objective and have remained incon-
clusive and heuristic in character!—10) ¥),

In order to make any progress in the mathematical scattering theory it
seemed to us essential to approach these problems with a new standard
of rigor and with mathematical methods of a more recent vintage than
the ones now generally employed by theoretical physicists. We hope that
this approach will eventually throw some light on many of the questions
in relativistic field theories which hitherto have been obscured by the
lack of rigor generally prevailing in theoretical physics.

The main problem in such an endeavor has been to reformulate the
physical scattering process in terms of a meaningful mathematical
language. The commonly employed method of representing scattering
states by non-normalizable wave functions leads to difficulties because it
does not seem possible to introduce a suitable topology in a function
space which contains these wave functions!!). Under such circumstances
the studying of limiting properties becomes exceedingly complicated.

We have, therefore, abandoned this approach and have developed a
scattering theory in which the states of the physical system are represent-
ed by the elements of a Hilbertspace consisting of L2-functions in a suit-
able domain. Besides the mathematical reasons there are good physical
reasons why we believe this to be desirable. The matrix elements of such
functions have a direct and simple physical interpretation as the prob-
ability amplitudes for the result of certain measurements. This inter-
pretation is lost in the function spaces of larger extent than the L2-space.
It can only be reintroduced by certain artificial devices, such as very
large boxes or the consideration of an infinite assembly of identical
systems. The artificiality of these devices merely exemplifies the in-
adequacy of the mathematical description.

In order to keep the mathematical language meaningful throughout it
is essential to refrain from using improper functions, such as the Dirac
d-function, and it is necessary to pay full attention to the domain of
linear operators and in the study of limiting relations the underlying
topology must be specified.

As regards the d-function, we are aware that in many instances its use
is a convenient and in most cases harmless symbolic notation for a some-
times cumbersome limiting relation. However, this is not always the case
and the indiscriminate use of this device has obscured the mathematical
difficulties which still beset the general field theories. Besides, there is

*) Note added in proof: The interesting paper by J. M. Cook, Journ. of Math.
and Phys. 36, 81 (1957) has just come to our attention. It is a notable exception
to the above statement. According to this paper any system with a square in-
tegrable interaction potential is a ‘“simple scattering system’ as defined in this

paper,
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really no good reason to retain this mathematical fiction invented at a
time when the mathematics of Hilbert space and functional analysis was
little known to physicists. This well developed and easily accessible
branch of mathematics contains most of the tools needed for handling the
mathematical problems involved in the theory of scattering.

In the present paper we restrict ourselves to a rather simple class of
scattering systems for which the existence problem can be rigorously
formulated and solved. This class contains the wave-mechanical scatter-
ing systems involving only one single channel but it excludes so far all
reaction processes such as they occur in nuclear collisions and in particle
creation and annihilation processes. The formulation is of sufficient
latitude to allow the necessary generalizations to the cases of scattering
with a finite number of channels. The cases involving infinitely many
channels such as they occur in field theory are much more difficult to
treat and lead to mathematical problems which have not even been
properly formulated at the present time.

Even within the limitations which we have imposed we need certain
mathematical results in the theory of functional analysis. Since these are
not generally known by physicists to which this paper addresses itself
primarily, we have given in section 2 a very brief review of some of the
definitions and theorems (without proofs) which are used in the rest of
the paper.

2. Mathematical Preliminaries

In this section we shall give some of the basic definitions as well as
some of the more important theorems needed in the rest of the paper!?).

The statevectors of a physical system are in one-to-one correspondence
with the normalized elements of a Hilbert space . This space is usually
realized in terms of the quadratically integrable functions on a Euclidean
space of finite dimensions. For the intrinsic properties of the Hilbert
space its particular realization by such functions is not essential and
we can therefore express them in the abstract form in which no reference
is made to such a realization.

A Hilbert space is a set of elements, denoted by f, g..., which satisfy
the following properties:

(1) They form a linear vectorspace over the complex numbers.

(2) There exists a positive definite scalar product.

(3) The space is complete.

(4) The space is separable.

The first two properties are so well-known that very little comment is
needed. We merely mention that the scalar product between two ele-
ments f, g ¢ § will be denoted by (f, g). The scalar product serves to intro-
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duce a metric in §. The distance between two elements f, g £ § is the posi-
tive square root

el =V(-29.G-2).

The following inequalities will be frequently used

[Fal<|fl el
[F+el <|fl+1lel-

Properties (3) and (4) are automatically satisfied for finite-dimensional
vectorspaces and it is for this reason that physicists usually pay no at-
‘tention to them*).

Roughly speaking condition (3) ensures that the space is large enough
while (4) ensures that it is not too large. Condition (3) can be explained
most easily in terms of fundamental sequences:

A sequence {f,} of elements f, ¢ § is a fundamental sequence if for each
¢ > 0 there exists an N such that

an—me < e forall n,m > N.

Condition (3) states that every fundamental sequence has a limit. Thus
if {f,} is such a sequence then there exists an element f e $ with the
property: For all ¢ > 0 one can select a positive integer N, such that

|f— 1. <& forall n>N.

The limit concept used here refers to the so-called strong topology in §
There is another type of limit which defines a weak topology: f,, converges
weakly to £, in symbols
f—1Ff, for n—>oc0
if
(& fa) = (g, /) forall ge$.

Strong convergence always implies weak convergence but #nof vice versa.
We shall work almost exclusively with the strong topology and strong
limits will always be implied unless a statement to the contrary is made.

If M is a subset of elements in § we can add to M all its limit points

and obtain its closure M. Obviously M C M and M = M. Property (4)
says that there exists a countable subset M of § such that

M=$%.
Property (4) is always satisfied for the elementary systems in Quantum

*) It may be noted that we have not introduced a dimension axiom as it is often
done for the Hilbert space. Hence all finite dimensional spaces are included in
this definition. For quantum mechanical systems this is often convenient.
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Mechanics but is not satisfied for the systems described by a quantized
field theory. When (4) is not satisfied we refer to a non-separable Hilbert
space. The fact that (4) is violated for field theories is one of the main
obstacles for a theory of the scattering operator in these cases.

The following concepts will be used frequently throughout the rest of
this paper but they will not be explained.

Linear manifolds and closed linear manifolds (the latter are also called
subspaces), orthogonal complements, projection operators, orthogonal
systems and complete orthogonal systems, bounded and unbounded
linear operators domains of definition, unitary and self-adjoint operators.

These concepts are explained in detail in any of the mentioned re-
ferences.

We shall state two theorems on functionals which have been found
useful in connection with our problem. We precede them by two de-
finitions:

A function @D(f) with domain § and values in the complex numbers C
is called a linear functional if it satisfies the following two properties:

PAf+pg) =AP() +pnP); ApeC; [geH. (a)
lp(f) | < A4|f] A4fixed >0. (b)

A function @ (f, g) with domain $x § (the topological product of $
with itself) and values in the complex numbers C is called a bilinear
functional if it satisfies the following three properties:

DAy fr+ 2272 ) :/‘L’f D(fy, g)+/'f§ D(fs, g) (a)
D(f, 1 &1 + t2 &) = a1 D, g1) + ps P(f, g2) (b)
1P, 9) | < B|f| llg], B fixed>0. (c)

The two theorems are: Every linear functional @ (f) is of the form

D(f) = (g )

with some fixed g ¢ § (Riesz-FrECHET). For every bilinear functional
D(f, g) there exists a bounded linear operator 4 such that

D(f,g)= (.43 .
The bound of 4 is given by
|41 = 1w T =19
Fa Ll .

The second theorem is a simpie consequence of the first.
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We further need the spectral theorems for the selfadjoint and unitary
operators. The following definition is used in this connection:

A family of projection operators E(4) (4 real) is said to be non-decrasing
with A if for every f ¢ §

(£ EG) [)<(f, EQy) J) for Iy <iy;
we write
E(A) < E(Zy) .
The spectral theorem for self adjoint operators may now be stated as
follows: To every self-adjoint operator A4 there exists a non-decreasing
family of projection operators such that

E(—o0)=0, E(+o00)=1
and

A =f/1dz«:(z).

In this expression the integral is to be interpreted as the Stieltjes integral
- valid for any pair of elements f, g ¢ §:

+00

(1, 4g)=[2d(1. E@)g).

The spectral representation is most useful for the definition of the
functions of a self-adjoint operator. If F(4) is a function of the real vari-
able A the function F(4) is defined as
+ 00
F(A) =fF(A) dE (3) .
The domain of definition Dy 4 is the linear manifold of all f&$ for

which
+o00

/|F(/"L)|2d(f, E()}) <oo.
We shall be dealing primarily with unitary operator families U, de-

pending on a parameter ¢ and expressible in terms of a self-adjoint
operator 4 as an exponential function

U,=e'?  (treal).

It follows from the above definition that
)

U, =] e'* dE (3)



Vol. 31, 1958 Theory of the Scattering Operator. 133

and that the domain of definition of U, is the whole of §). The operator

family U, satisfies
U Us = Uys = U U

and it is a representation of the additive group of real numbers.

Two self-adjoint operators 4 and B are said to be unitarily equivalent
if there exists a unitary operator X such that the domains of B and
XAX™1 are equal and that throughout this domain Bf = XAX-1. If
E(2) and F(2) are the spectral families of A and B then

F() = X E(3) X
for all . It follows from this that the corresponding operators U, = ¢'4 £
and V, = ¢'8! are also unitarily equivalent, that is

V,=XUX1

for all ¢£. In this case we also write V, ~ U, This is an equivalence
relation.

In the fifth section we shall have occasion to introduce subspaces
invariant under a unitary group representation such as U,. Aset MC$
is said to be a subspace invariant under U, if it is a closed linear manifold
and if forany f e M, U, f ¢ M for all ¢.

If N = M~ is the orthogonal complement of M and M is an invariant
subspace then N is too.

If £, and E, are the projection operators corresponding to these two
subspaces, such that

By By = Ey By =0

Byt Exy=d,
then
U Ey= EMUJEMUf-
and
LE;—Eg UtENUt.

The representations YU, and YU, are said to be the reduction of U, to M
and N respectively. We always have

U, + U= T,

and we say U, is decomposed. The representations " U; and ’\’(Ut are called
subrepresentations of U,.

If U, is equivalent to some subrepresentation ¥V, of V, then we say
U, is contained in V,. We use the notation U, < V, for this situation.

~
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3. Definition of a Scattering System

The dynamical properties of a quantum mechanical system are contain-
ed in the structure of a self-adjoint linear operator H operating in a
separable Hilbert space §. The operator represents the total energy of the
system. In the more interesting systems H is an unbounded operator.
However, in all systems the energy has a lower bound. An operator with
this property is called semi-bounded. The mathematical expression for this

° (f, Hf) =0 for fe D, . (3.1)

Here Dy is the domain of definition of H which is everywhere dense in $
and we have arbitrarily put the lower bound of H equal to zero which is
no restriction since an additive constant in H can always be adjusted
without changing the physical content of the system.

We wish to introduce now additional restrictions on H which select
from the class of all quantum mechanical systems a certain subclass
which we shall call the scattering systems.

In order to motivate these restrictions we shall for a moment digress
to the intuitive description of a scattering process. Such a process must
be visualized essentially in three stages. In the first stage we have a
number of incident particles (in practice either one or two) approaching
each other (or in the case of one particle, approaching the scatterer). In
the second stage which lasts only a very short time compared with the
duration of the whole process a collision occurs. After the collision a
number of particles emerge with their direction of motion different from
the original direction. This is the third stage.

This intuitive picture is at the basis of the theory of scattering. The
problem i1s to find the adequate mathematical language for the expres-
sion of this physical situation. In the description which we have given
we have not made the assumption that the numbers or even the kind of
particles are the same before and after the collision process, nor have we
implied anything concerning internal degrees of freedom such as a spin
or isotopic spin for the particles partaking in the scattering process. The
mathematical description should be sufficiently broad so as to include
these cases.

The essential feature of the scattering process is that in the remote
past and in the distant future the motion of the particle is ‘free’. This
means that in the limit { - -+ oo no interaction between the particles is
operating. The time development of such ‘free’ particles is governed by a
‘free’ Hamiltonian which represents the total kinetic energy of the parti-
cipating particles. These free Hamiltonians H, depend on the number
and kind of incident or emerging particles. They always have either one
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of the following forms, depending on whether we treat the particles
relativistically or not.

1
B, =2 g Bos (2]

H,— 3 |m+p. (3.3)

Here p, represents the momentum operator of the particle, m,, its mass.
The operators p,, are self-adjoint and the positive square root in (3.3) is
defined in the manner as indicated in the preceding section. The index «
distinguishes the various kinds and numbers of particles which can parti-
cipate in the scattering process and it is called the channel index. Which-
ever form of H, is adopted, these operators are always semi-bounded
self-adjoint linear operators such that

(/. H,f) =0 (fe Dy ) - (3.4)

In order to simplify the mathematical formulation we shall restrict our-
selves in this paper to the case of only one channel. We speak then of a
single channel scattering and the system is called a ‘simple’ scattering
system. The corresponding free Hamiltonian will be denoted by H,. The
number of particles participating in the collision is either one or two and
it is the same before and after the collision. Instead of the operators H,
and H it is more convenient to introduce the unitarv operators U; and
V; defined by

U; _ e—iHot
K:‘e_th" (35)
The unitary property is expressed by
0=,
. (3.6)
B =V .

The advantage of the operators U, and T, is that they are defined every-
where in § while H, and H are only defined in everywhere dense linear
manifolds. It is then not necessary to indicate the domain of definition
of these operators and they can be freely multiplied without restrictions
since the range of one is always contained in the domain of the other.

In the usual formulation of scattering theory the initial and final states
are always represented in the form of plane waves and these are called
‘eigen states’ of the operator H,,.

It is here that our formulation of the scattering theory departs from
the usual one. The spectrum of the operator H, is always continuous,
hence there exist no ‘eigen states’ in the underlying Hilbert space.
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The correct formulation of initial and final states is in terms of wave
packets, that is, elements f e $. This formulation, incidentally, corre-
sponds much closer to the actual physical situation than the plane-wave
representation which is physically an abstraction and mathematically
most inconvenient because plane-waves are not contained in §.

The first condition which is necessary for a system to be a scattering
system is that the limits
lim VU, f=/, (I)
t—F oo
exist¥*) for all f ¢ .
The set of elements which are limits in the sense of (I) are denoted by
R . The second condition which we require is that these two sets are
identical:

R,=R_=R. (IT)

We shall now show that these conditions contain the essential ingre-
dients of the usual formulation of the scattering theory. The elements of
the form

f, =lim V* U, f
t——o00
are those states which in the usual presentation of scattering theory are
represented by ‘plane waves’ plus ‘outgoing scattered waves’. Similarly
the f_ correspond to ‘plane waves’ plus ‘ingoing scattered waves’. The
significance of the limits (I) can be illuminated by the following remarks:
If the limit I exists, then, for instance, the limit

lim U* Vf, = (3.7)
t— —o0

exists also. This may be seen as follows: (I) means that for ¢ > 0, arbi-
trary, there exists a 7 such that

HV;* i f+H < E
forallt > T, since V, and U, are unitary we also have
|V Uf =1 =1 - U Vit <e

for the same ¢.

The vector g(t) = U* V, ¢ has a familiar interpretation. It represents
a state of the system in the interaction picture when g represents that
same state in the Heisenberg picture. Hence the existence of this limit

*) The existence of the limit # > + oo can be proved if the limit # > — oo exists
and vice versa if an additional assumption is made expressing invariance of the
system under the time reversal transformation. This point will be elaborated
elsewhere and will not be persued further here.
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means that the state in the interaction picture approaches a constant as
{ - — oo. Now in the interaction picture the states change only because
of the interaction operator H — H,,. The fact that these states approach
a constant means that the interaction becomes ineffective for the remote
past. Because of condition (II) a similar statement holds for the limit
t > + oo. This is precisely the physical property we mean to imply with
a scattering system.

To the two conditions we shall add a third condition which we shall
take as characterizing the simple scattering systems. In order to formulate
this condition we define the subspace M consisting of the closed linear
manifold spanned by the proper elements of H, that is, all elements of the
form

Hif=wf{ (w real) .

The orthogonal complement M+ of M is denoted by N and elements in
N are said to belong to the continuum of H. The third condition then

requires that
NCR. (IIT)

We shall prove in the next section that always R C N. Hence (III) can
also be replaced by N = R. The meaning of this condition is that there
are no states in the continuum of H which are not scattering states as-
sociated with H,. If there were such states the description of the scat-
tering states in terms of H and H, alone would be incomplete. This is
precisely the situation in the multichannel scattering processes; hence we
shall adopt condition (III) as characterizing the simple scattering
systems.

We shall now derive a few simple conclusions from these properties of
scattering systems. The mapping f > f, of § onto R is a linear map-
ping and an isometry. The linear property of the mapping is obvious. We
verify the isometry: || f|| = /. |-

Since| V,*U, /| =| /| theleft-hand side is independent of . Hence in
the limit

[ #1 =107l

We can therefore introduce a pair of bounded linear aperators £, defined
in all of § and with range R such that

S.i=f o B =i ¥ (3.8)

t—F oo

the bound of 2, is ||, || = 1. These operators will be called the ‘wave-
operators’. Since £ is isometric R is a subspace.
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Let 2 be either one of the wave-operators. Since £ is bounded and de-
fined everywhere we can define everywhere in § the adjoint operator £2*
as a bounded linear operator with the defining property

(Q*f,¢) = (/. Qg). (3.9)
for all g ¢ . Let Q) be the set of elements f ¢ § such that
Q¥f=0. (3.10)

From the defining property (3.9) it follows immediately that f ¢ Q im-
plies f ¢ RL (the orthogonal complement of R). Similarly if f ¢ R+ then
(2*f, g) = 0 for all g or Q*f = 0 that is f ¢ Q. Thus Q = RL. On the other
hand if f ¢ R then there exists a g ¢ § such that 2 g = f. Hence because
of (3.8) 2*f = 2*Qg = g. Thus the operator 20* is defined everywhere
and it is the projection operator E, with respect to R

Q.9 =E,=1-E,, (3.11)
and .
Q0 =1.
The projection E, may be called the unitary deficiency of the wave
operator.
It is important to note that the right-hand side is independent of the
sign attached to £. This is an important consequence of condition (II).

A further property of the projection E, may be noted. Because of the
definition (3.10) of Q we have

* *
Q E,=Q" E,=E,Q_ =E,Q, =0.
From this follows immediately that the operator
§e=0 2, (3.12)
is unitary. Indeed '
S*S=Q1Q_ Q" Q =" (I-E)Q, =202 =1

and

B = D 0 =0 U—EJ B =T. L

The unitary operator (3.12) is the scattering operator.

4. Integral Representations of the Wave Operator

In a previous publication we have given explicit integral representa-
tions of the operators £2, which can be made the starting point of certain
approximation methods for determining these operators!. These repre-
sentations were purely formal in character and a proof of their existence
has never been given. In this section we shall give such an existence proof
for the case of simple scattering systems.
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We begin by stating and proving a few lemmata.

Lemma 7. The elements U, f and V, f are strongly continuous functions
of the real variable ¢ for all £ and all { ¢ £).

Proof: Strong continuity of U,f at ¢ = ¢, means that for ¢ > 0, there
exists a & > 0 such that

|Uf=Uf| <e for|t—t| <. (4.1)

Because of the group property and the unitary property of U, this is
equivalent to continuity at ¢ = 0:

|(I—U)f|<e for|t]|<d. (4.2)

This expression can be put into a slightly more convenient form by
writing

lE—T)f| =V (-0 —vyf)=V(te-U-Uf). #3)

~iH,;

Since U, = e™**, and H, is self adjoint, there exists a sequence of non-
decreasing projection operators E(1) (— co << 4 < + oo) such that

E(—) =0, E(+oo)=1I (4.4)
and ! ®
(1, UN = [ a(f, E@ f). (4.5)

When this is substituted in (4.3) and (4.4) is used we obtain

—+00

la—uyt| =2 [simSa(s W] (4.6

—Cc0

Since the function [f, E(A)f] is monotonically increasing with 1 we can
majorize the integral by replacing sin? 1¢/2 by the larger value A2#2/4

+o0
la-vyil <t| [ra(E@D]" (4.7
Thus if f is in the domain of H, '
la-vyf|<t-C @)
where :
C= Ei H,f l|

is some fixed positive number. If g ¢ § is an arbitrary element then, using
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the fact that the domain of H is everywhere dense in §, we can find an
f & Dy, such that

le—fl<%
with this f fixed we select £ < ¢/2 C = 6 and obtain
| A=T)g| < Ud g =N+l @—0U)f|
& €
QZ‘T-F7=8, q.e.d.

The proof is equally valid for V, provided we replace H, by H.

Lemma 2. Let W, = V;* U,, then the function W, f is strongly continu-
ous for allZand all f ¢ .

Proof: Let £, be some fixed value of £ and write
W,-W,=V*U-U)+ (V' -V)HU
| W =W Fl<|WG-U)F+] (W= Vel
=U,f.

Strong continuity of W, f at ¢ = ¢, now follows from lemma 1, q.e.d.

where

Lemma 3. The function ¢(¢) = (f, W, g) is continuous for all £ and all

heeHand @) | <[ f]]g]-
Proof: Strong continuity implies weak continuity which is the state-

ment of the lemma 3. The boundedness follows from the fact that W, is
unitary and therefore

@ [=[¢Weg <[ /] [Wee| =171
Lemwma 4. The integral

g =ele o (4.10)
|

where @(t) = (f, W, g), is absolutely convergent for all /,ge Hande > 0
and it is bounded:

(4.9)

| @(ho) <[/l el (+.11)

Proof: The integrand is continuous and hence integrable on any finite
interval. The absolute convergence follows from the boundedness of ¢(¢)

(lemma 3)

(@ thg) | <efe @@ a<e e 1] [el=1/l¢l ae
0

0



Vol. 31, 1958 Theory of the Scattering Operator. 141

It follows from the last lemma and the obvious bilinear property of
D, (f, g) that it is a bilinear functional with upper bound 1. (For the de-
finition, see Section 2). According to the theorem quoted in Section 2
there exists a linear operator {2, with the property

D (1,8 = (1,2 8) (4.12)
[, <1.

The operator thereby defined may be written as

Q= VA (£>0). (4.13)
0
There is a corresponding operator defined by
0
Q.. = efe” V*Udt (> 0). (4.14)
When the distinction between the two operators is irrelevant we shall
omit the 4- and denote one of the two cases simply by £2,.
Our next task is to study the limit ¢ - + 0 for the operators £,. The
limit of a set of operators can be understood in three senses:
(1) The limit in the norm: £2, converges in the norm to 2 (2, =» Q) if

|2, —82||—0.

(2) The strong limit: L2, converges strongly to £ (£2, - £) on a subset
Me9ifforallfe M '
[(@ O f—o0.

(3) The weak limit: 2, converges weekly to 2 (2, —~ £) on a subset
MeSifforallf,geM

| (2.8 — (1.2 |—>0.

One can show that (1) implies (2) and (2) implies (3), but the implications
are not reversible. We shall understand our limits in the sense (2). We shall
first prove the

Lemma 5. The set L = {f| lim (2 f exists} is a closed linear manifold and
e— + 0

lim £2, is a bounded linear operator on M with bound < 1.
e—+0

Proof: That L is a linear manifold follows from the fact that £, is a
linear operator and that the limit of sums is the sum of the limits. That it
is closed may be seen as follows:

Let {f,} be a sequence such that f,— fand f, ¢ L.

| (e, = Q) 1| <[ (R, = Q) | + 26, (= 1) | + L6, (fu =N ] - (4.15)
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We chose > 0 arbitrary and select an » such that
)

and a pair ¢, & such that for the aforementioned fixed =

é

| (Q¢, —L¢,) f]| < 5

Using the boundedness of £2, we find from (4.15)
| (e, =) F| <9

Since § was arbitrary, lim Q, f= £ exists which shows that L is closed,
e—>+0

q.e.d. The bound of lim £2, is

lim ef] . F :
et SR e R LR LA
[l 0

Our next problem is to determine the extent of the space L. Lemma 5
shows that the set of elements f for which this limit exists is a subspace
L C$. The operator 2 = lim £, is therefore defined throughout L and

e—+0
is there a bounded linear operator with bound | 2| < 1. We could al-
ways extend the definition of £2 to a bounded operator in all of § which
in L agrees with £ and which has the same bound as 2 by the following
procedure. Let L1 be the orthogonal complement of L and write for any
f € § the unique decomposition

f=h+f hel, fszL

1. c. then the assignment f > £ f;, is a proper extension of £ with the same
bound.

We shall see, however, that for scattering systems there is no need to
do so, since for such systems the lim £ exists throughout all of §. This is
an immediate consequence of the following.

Lemma 6:
If lim V;*U, f = /- exists then
t—+40
o0
lim sfe‘”Vt*Utfdt
e—>+40 i

exists also and it is equal to f_ .
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Proof: Let f_ = lim V; U, {. Then
f—>+ 00

Hs/‘“V*det—f | <f e | VAU, f— 1| dr.
0
The integral on the right may be separated into two parts

J-f+f
0 0 ©
For the first integral we obtain the upper bound

o

[ 1 Vo Ut =t ae<a ([ £ +]£])

0
We then choose ¢ > 0 and arbitrary, determine a
1 0
OSZTAIT

and then an ¢ such that for all ¢ > o/e

this gives |V t = q <5 6
?*O_T i 1 ) .
/e i T/e s T = f-|a “"f—{_ 2 | Fl+17- ||)

0
1 w_y
+?afe ¥ s &,
0

oo

lim effsfvt* U f

g—+0

Therefore the limit

0
exists and is equal to f_, q.e.d. Since the limit which occurs in the bypo-
thesis of lemma 6 is assumed to exist throughout § [property (I)], we have

established the existence of lim £, throughout & also. This result is
g—>-+0
equally valid for the plus and minus case. We define

0, = lim 2, . (4.16)

e—>-+0

We now assert that the adjoint operator 2% can be defined similarly as
Q7 = lim Q7 .. (4.17)
e—>+0

This is not a trivial consequence of (4.16) as might be inferred. Indeed the
existence of the limit in (4.17) follows from lemma 6 only if the limit of
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the integrand exists for £ > 4+ oco. However for states f ¢ Q = RL this
limit of the integrand does not exist. Hence lemma 6 cannot be applied.
It is however true that (4.16) implies the existence of the weak limit in
(4.17). The assertion (4.17) is meant to be the strong limit and needs a
separate proof. ‘

For states f ¢ R the limit does exist since for such states lemma 6 is
applicable. Thus we need only to show the existence of the limit in case
f e Q = RL. Because of our condition (III) f ¢ Q implies f & M where M
is the subspace spanned by the proper elements of H. Let ¢, @,,... be a
complete finite or infinite orthonormal system of elements in M such that

f=Xcp, (Xe,|*<<o0).
We can choose the ¢, in such a way that

H(poc:woc(pa’

where w, are the proper values of I which may not all be different from
each other. We have then

Vii=2Xc e o,
and *

oo

qr ®
Qt—e[e U Vi= [ I o pi—is TR, C,9,
0 0

In this last expression we have introduced the Resolvent operators
associated with H,,

o0

R;

= i/ew“wa“ Uk= (Hy— 7)1, I, =, —ie.
0
These operators are bounded linear operators for all values of A different

from the spectrum and therefore for all ¢ > 0. We shall now prove the

Lemma 7: 1f H, has no point spectrum then lim & R;, ¢, = 0 for all .
e—+0
Proof: Let A be any of the 1, and w = w, the corresponding eigenvalue

and ¢ = ¢, the corresponding eigenfunction of H

|
I

e| Ryg|2=e (R, Ryg) =¢ (p, Rl Ryg).

The right-hand side can be transformed by using R} = R,. and the Hil-
bert relation valid for any pair 4, u:

Ry— Ry=(u—24) Ry Ry.
We then obtain

1 2
e | Rig |*= 5= (9 (R — R) 9).
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We now use the spectral decomposition of R, and after a slight rearrange-
ment of the integrand arrive at the expression

+o00 +00
; o 2 2
EWR¢V=f@r§a;ﬂ%EWMﬂffgLaﬂ%E@+d¢%

The integral has a positive integrand and a non-decreasing expression
after the d-sign hence we can obtain an upper bound for it by separating
the integral into three parts as follows:

+00 =7 + 1 +o0
f=f+f+f (7> 0) .
S o %
For the second part we replace the integrand by
82
T
in the other two by
e? £2

n? + &2 < 0%+’

and then replace the sum of the first and third by an integral from
— oo to + oo. In this manner we obtain

+n +-00

o~ ~

e RrplP< [d(p.E@+0)9)+ s [d(pE@+0)g).
v o

g2

= (@ E@+n¢)— (9. E@@—n¢)+ n?+ed’

In the limit ¢ = + O the last term vanishes, and since 7 was arbitrary we
finally have

lim &2 | Ry |2 < (cp, [E (@ + 0) — E (0 — 0)] qp).
e—>+0

Since H, has no point spectrum the right-hand side is zero, consequently

lim ¢ | R, | =0
e—+ 0

or
lime R, =0, q.e. d.

e—>+40

It follows from this that
IimQ7 f=0 for feM.

e—>+0

We can now summarize the result of this section with the following
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Theorew:

In a scattering system described by the self-adjoint energy operators
H and H; and the corresponding unitary operators

—1Ht —iHt
-V;Ze ,Ut:e *

the operators

[e.0]
. %
Q_=lime [ eV U
e—+0 0
and
o0
. — *
.Qizhrneje “CURV,
e—>+0

0

exist throughout the underlying Hilbert space § and they are boundet
linear operators with upper bound 1. They satisfy the relations

Q"0 =1, Q0 =1-E,,

where E,, is the projection into the subspace of bound states.
A similar result holds for the operators
0
2 =lme /e”T/t* U,
s~++0_"'oo
0
Q" =lim ¢ fe”Ut* V,.
e—40
—o00
We conclude this section with the remark that the particular type of
averaging which is used in the integral representation of Q. and Q% is
not essential. Indeed it is possible to obtain the same operators in the
form of a limit 2 = lim Q_;, where for instance

T—o00

T
-Q—erlerz* U, dt.
0

The existence of this limit can be proved with similar methods and it can
be shown that the result is identical with the result obtained with the
other process.

In this form the result appears as a generalization of the so-called
mean ergodic theorem of VoN NEUMANNI4).

The theorem is proved here only under the rather restrictive assump-
tions of the scattering systems. It is an interesting but unsolved problem
wheather this generalized theorem is true for arbitrary continuous re- -
presentations of the group of real numbers. As we shall see in the next
section, if it were possible to assert this, one could formulate necessary
and sufficient conditions for a system to be a scattering system.
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5. Properties of Scattering Systems

We have already shown in Section 3 that the wave operators are linear
1sometries with the property

Q0 =00 =1

'
S

Q0" -0 0" —1_E,

where E,, is the projection into the subspace of proper elements of H.
We shall now use the integral representation of the preceding section to
derive some further properties of this operator. The first of these is con-
tained in the

T heovem :

The operators {2 are intertwining operators for the representations U,
and V,:
QU= V4. (5.1)

Proof:

We shall prove the theorem for 2 = _ only, in the other case the
proof is similar and need not be given.

50 o0
QU,=¢ [ VU Udt=s [ VU, dt

0 0
— ¢ Vsj A AN IS
S

Hence
R.U=T80 +eX,

where X is some bounded operator for all ¢ > 0. Since the limit >0
exists everywhere in § we obtain for ¢ - + 0Eq. (5.1), q.e.d.

By taking the adjoint operators in (5.1) we obtain the

Corollary :
The operators £2* satisfy

Q% V, = U,0*. (5.2)

There are several interesting consequences which follow from this theorem
and its corollary.
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Detine the one-parameter operator family

£2(f) = U;"Q U,. (5.3)
Then we have the
Theorem.:

The lim Q(¢) exists and we have

lim Q,(f) = limQ_(t) = 1 (5.4)
f—— 00 f=+00
lim Q,(f) = S (5.5)
t— + 00
lim Q_(f) — S-1. (5.6)
t—>—o00
Proof:

By using (5.1) we have Q(f) = U* V, 2. The operator limit U* V,
exists on the range R of 2[Eq. (3.7)] and is there equal to 2% for # -+ oco.

Hence
lim Q. (?) =Q*+Q+ = J

t— =00

lim Q () =Q*Q_ =1

t—> 4 co

lim Q. @) =090 Q. =S

t—+ o0

lim Q_(f) = Q% Q_= S,

t—>— 00

This result leads to a new and equivalent definition of the scattering
operator S through Eq. (5.5) or (5.6).
Since these limits exist everywhere in §), the operator

Q) Q*(t) =1 — Ey()
with
EM(t) — Uf* EM Ut

also has limits for £ -> 4 oo and because of (5.4)
lim E, () = 0. (5.7)
t—+ o0

With the results so far obtained we can now clear up a paradox which
has often been discussed in the literature but which has never been
completely understood. The paradox appears when one discusses the
family of transformation operators

Ut &) = Ut* Vi Vt:k Uto-
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This is a two-parameter family of unitary operators, with the properties

Ult, t,) = U* (i, t) (5.8)
Ulty to) = I , (5.9)
Ulty, 8) Ult, &) = Ulty, ) (5.10)

Such an operator family is obtained if one ‘solves’ formally the Schro-
dinger equation in the interaction picture

i LU 1) =T Ul 1) (5.11)

with the ‘initial condition’ (5.9). The same equation is satisfied by te
operators €2, (¢)

L0 =VHe. o (5.12)

and they satisfy the ‘initial condition’
Q(—o0)=1
Hence one would expect to have
Q@) =U(t, — o) (5.13)

if the implied limit on the right exists. The paradox comes from the fact
that U(¢, ¢,) is unitary for all ¢, while £2(¢) is not, in fact

QNO* (1) =1—E, ()

The obvious answer, which occasionally has been given, that the limit
Ul¢, t,) for ¢, > — oo does not exist if H has discrete eigenvalues, is in-
correct. Indeed the operator Vi U, does have a limit for ¢, > — coon
all of § (condition I) and the equation (5.13) is a correct equation a- s})ne
can easily verify with the help of the relations (5.1) and (5.2). The solu-
tion of the paradox lies in the observation that the limit U*(¢, ¢,) for
ty > — oo does not exist on all of §, because the operator M:‘ V;, hasno
limit for vectors with non-vanishing components in M. Without the
existence of this limit the unitary property of U(t, ¢,) is destroyed for
ty—~> — oo. Hence the paradox is resolved.

Among the more interesting consequences of the intertwining property
of the wave operators are those which follow from the application of
Schur’s lemma. This lemma can be formulated as follows: Let @ be the
nul-space of 2, that is the set of vectors f ¢ § such that 2 f=0 and R
the closure of the range of £2, and Q*, R* the corresponding quantities for
£2*. These are all subspaces of §, and RL = Q*, 0+ = R*. Schur’s lemma
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then says: R is an invariant subspace for ¥, and R* is an invariant sub-
space for U, and the reduction of V, to R is unitarily equivalent to the
reduction of U, to R*:

B ~ B,

In our particular case R* = Q1 is the whole space § since R* is equal
to the domain of definition of {2 (condition I). Hence for scattering

systems:
Ry ~ U,. (5.14)

Since R = Q** = M ' is the subspace of the continuum states of H we
can express (5.14) in the following manner:

The operator U, is unitarily equivalent to the reduction of V, to the con-
tinuum states of H.

As a corollary we have: The continuous parts of the spectra for A and
H, are 1dentical.

We have here found a necessary condition for a system characterized
by H and H, to be a scattering system. It is an interesting question
whether this condition is also sufficient. It can be shown that the answer
would be yes if it were possible to establish a generalized mean ergodic
theorem (section 4) for unitarily equivalent representations U, and V.
However we have not been able to do this and the question must be left
open for the time being.

We shall now establish a few additional properties of bounded linear
operators £2, with the intertwining property

QlU::Vt*Ql }

(5.15)
QT V=0,

The study of such general operators will give us a third definition of the
scattering operator S.

Let R, be the closure of the range of £ and R} the closure of the
range of QF. These are subspaces of §. Schur’s lemma gives

Ry ~ BAQ, (5.16)

Let R denote as before the common range of 2, and £_ (property II).
Then we have the

Lemma 1: The range of R; of £, is contained in the range R of Q:
R, CR.

Proof: Since R*C § the representation ®*U, is contained in U,.

We use for this relation the notation ' '

Rr*U, < U,.
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By applying Schur’s Ierhma twice we obtain the equivalence relations
By ~ B'U, < U, ~ ®V,.
LV s AT

R,CR, q.e.d.

Hence

This means*)

Lemma 2. For every intertwining operator £, of a scattering system
the operator ©,(¢) = U* 2, U, has limits at ¢ > + oo.

Proof: The intertwining property yields
2, () = U:: V2

and the limits UV, f for ¢ > 4 ooexist for f ¢ R. [See eq. (3.7)]. Every
{ of the form f = £, g, is in R, and therefore by lemma 1 also in R. Thus
lim £,(¢) g exists for all g ¢ §, q.e.d.

— -+ 00
Lemma 3. Every intertwining operator (2, determines uniquely two
operators X, and X_ such that

0, =0 X,=0 X_
and X, and X_ commute with U,.
Proof: We prove one case only and omit the sign index. Define
Ll =X
then .
QO*Q =0X=(1—- Ey) 0.

Now Q* = Rl, and Ey. is the projection into the subspace R1. By
lemma 1 the range R, is contained in R and consequently all f ¢ R, are
orthogonal to Q* = R-Ll. This yields

Ep.0,=0
0X=0,.

and

Furthermore the intertwining property for £ and £, implies that X
commutes with U, q.e.d.

Definition:
An intertwining operator (2, is called complete if R, = R.

Lemma 4. An intertwining operator 2, is complete if and only if the X
of lemma 3 has an inverse.

*) Note added in proof: This conclusion does not follow from the preceding
equation. A corrected proof of this lemma will be given elsewhere.
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Proof: Assume £2; is complete. Denote by £2*(R,;) the subspace of vec-
tors of the form Q* f with f ¢ R,. The operator X maps § onto the sub-
space 2*(R,). But if Q, is complete R; = R and $*(R;) = . Thus the
range of X 1s §. We next show that f + O implies g = X f £ 0. If g = 0 then
D, feQ*=R* but 2,fe R, = R, therefore 2,/ =0, or f £ Q; = R**,
Now for a scattering system R* = §. Hence R* *= RT* = ;= 0 and
therefore f = 0. Thus we have shown X has an inverse for everv f ¢ ),
q.e.d. Conversely if X has an inverse, we can write £ = §; X~. Therefore
if f ¢ R then f = £ g for some g ¢ § and consequently f = 2, X~ g. This
means & R, and RC R;. But by lemma 1 R, C R and we conclude
R = R,, q.e.d.

Corollary: 1f £, and 2, are two complete intertwining operators then
there exists a linear operator Z such

2y =0 Z (5.17)
and
[Z, ] =0.
it
LY = X5 and £, =10 X5
then Z-X,1X,.

In the case that 2, and £, are the operators £2, and £2_ respectively the
operator Z of the corollary is simply the S-operator. The commuting
property of S with U, is the mathematical expression for the law of the
conservation of energy.

Theorem: Let U, and V, be the unitary representations of the additive
group of real numbers associated with a scattering system and £, any
complete intertwining operator, then the limits of the operator family
Q,() = UF Q, U, exist for ¢ > + oo and

0, (+ o0) = S, (— o) (5.18)
where S is the scattering operatos: "

Proof: Existence of the limits is assured by lemma 2. According to
lemma 3 there exists a unique bounded linear operator X, such that

‘Ql = Q+ X .
Since X commutes with U,, we also have

Q,0)=2,X
and consequently
Qi (—o0)=0, (—0) X=X

Q1 (+o00)=0, (+0) X=SX.
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Combining the last two equations, we find
Q) (+ o0) = S, (— )

which proves the theorem.

The content of this theorem can be used for a new definition of the
scattering operator S: Given U, V, of a scattering system, find a com-
plete intertwining operator £2; and then define S by (5.18).

6. The Scattering Cross Section

In the preceding sections we have established that the so-called
‘simple scattering systems’ characterized by the properties (I), (II), and
(ITII) always admit a unitary scattering operator. It is not immediately
obvious how this operator is related to the physically observable quanti-
ties in a scattering process. These quantities are always expressed in
terms of the scattering cross-section. Hence our problem is to show how
the scattering cross section is obtained from the unitary scattering
operator.

The formal procedure for calculating the scattering cross section is well
known*). We shall derive this result here from a mathematically more
satisfactory point of view. All derivations of the cross section which have
been given either make use of improper function or artificial devices such
as normalized wave functions in a box which are entirely foreign to the
physical problem on hand. It may, therefore, be not superfluous to show
how the cross section can be obtained without any artificial devices of
this nature. In the derivation here presented we shall at all stages stay
very close to the actual physical situation.

Before we do this we must first examine an assumption which is al-
ways made as a matter of course viz. that every S-operator can be re-
presented as an S-matrix. It is well-known that the association of an in-
tegral operator with a unitary operator is not always possible. The
simplest example is the unit operator. Hence we must first examine in
what sense it is possible to associate an integral operator with the S-
operator.

In order to make the discussion specific we shall examine the simplest
case, viz. the scattering of a single particle with no internal degrees of
freedom. The interaction is then necessarily an external one, such that
the total momentum of the particle is changed in the scattering process.
The case of the scattering of two particles is easily reduced to this case,
for instance, by separating the center of mass motion from that of the
relative motion. It is equally simple to include internal degrees of free-
dom.

*) See for instance reference 1 esp. chapt. 8.
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In order to study the matrix-representation of the S-operator we shall
introduce a relaziation of the Hilbert space by the family of L2-functions
f(R) over the infinite domain of the three-dimensional Euclidean space.
It is well-known that in such a realization the three-momentum operators
p; can be written as multiplication with &;, and that this realization is
essentially (that is apart from unitary equivalence) unique??).

In this realization the operator H, is given by

H, [ (R) = w (k)  (R) (6.2)

where

: 1 e B2 4 2
o (F) either 572 or |k me.
In any case w(k) is a monotonically increasing function of %, such that
w(k) < w(k) for <Pk

If S has a representation as an integral operator then there exists a
function S(k, R’) of the six variables kR and R’ such that

Stk fs (RR) [ (R)BE . 6.3)

It is easy to show that for the S-operators such a representation can
never exist. This is a simple consequence of the fact that S commutes
with H, that is, the equation

SHyj=H,S} (6.4)

holds for all f & Dy,. When this equation is expressed in terms of the
functions f(R) there results

fS kk' (k) — w(k '))f(k’) d* k' =0, (6.5)
This equation holds for all f(R) such that
fwz(k) 17 (R) |2d2 k< oo

The set of vectors with this property is everywhere dense and from this
one concludes by a well-known reasoning that almost everywhere

S (RR)(w(k) —w(k)) =0 (6.6)
and also
S(RR)=0 for %k =*Fk. (6.7)

Since the surface w(k) = const. has measure zero with respect to the
volume integration we find

f S* (kR,k') S (R, E') A3k =0

which is incompatible with the unitary property of S. Hence the represen-
tation (6.3) does not exist.
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We have here of course merely expressed the well-known fact that
‘the S-matrix must contain a d-function with respect to the energy’.

Even though a matrix representation of S is seen not to exist, it is
possible that there might exist a matrix representation in the following
sense: Introduce spherical polarcoordinates in R-space and denote a
point on the unit sphere with « and the corresponding (two-dimensional)
surface element with do. Writing f(%, «) for the functions in L? we may
find a function Ry, (k) of the pairs «, &’ such that

Sf(ko)=f(k a) +/-le, k) f (B o) doc’. (6.8)

An interpretation of scattering in terms of a differential cross section
is only possible in terms of the matrix elements R,,.. Hence the existence
of such a matrix is a necessary requirement for this interpretation. We
shall, therefore, make the assumption that (6.8) exists and proceed to
show how the cross section is defined in terms of the matrix elementsR

We simplify the notation by suppressing the parameter & on which all
quantities depend. In the physical interpretation of quantum mechanics

) = [ | Rint, R 14() £ (o) i’ dot (6.9)

represents the probability density for the observation of a scattered
particle with the propagation direction «. In this form the result is not
yet susceptible to a physical interpretation. The reason is, that scattering
experiments are not performed with a single scatterer but with a target
which contains a large number of independent scatterers at different
locations in space. What is observed then is not the probability density
(6.9) but an average of this quantity over a large number of scatterers in
the target.

There are two conditions which a good target should satisfy. The first
is that it must not be too thick so that multiple scattering inside the
target is negligeable. The second is, that the scatterers in the target
should be arranged in an essentially random manner so that there are
no phase relations of the scattered waves arriving from different scatter-
ing centers. These two conditions allow us to calculate the average value
of the probability P(x) by summing the contribution of the single scat-
tering probability (6.9) from each individual scatterer in the target.

The S-operator S(a) associated with a scatterer at the position a is
obtained from the operator S of a scatterer at the origin by a similarity
transformation

S (a) =11 (a) SIT* (a) (6.10)
with the unitary displacement operator I/(a) defined by
IT(a) f (k) = e=i%= [ () (6.11)



156 J. M. Jauch. H.P.A.

From this we find for the corresponding matrix elements

Ry (@) = g ' Roo (6.12)
with
k=F.

We shall now make the assumption that the number of scatterers in the
target is so large that one may, with sufficient accuracy, calculate the
average scattering probability by replacing the sum over the individual
scatterers by an integral. When this is done we arrive at the following
expression for the average probability density P()

P(x) = / aa f f dof do g -¥1 e B R PPl (). (6.13)
(k"= %"= k)

where # d®a is the (constant) number of scatterers inside the volume
element d3a and the integral d3a is to be carried out over the entire
target volume,

In order to evaluate this integral we adapt the coordinate system to
the geometrical configuration of the target. Let the 3-component of a
be normal to the target area and the 1- and 2-components in the target
area which is assumed to extend in all directions without limit. The inte-
gral over a, and a, can then be evaluated with the Fourier integral
theorem. We keep a‘‘ fixed, define g =R’ — R, introduce spherical
coordinates ¥, ¢ such that

do' =sindddde.

If the polar axis is in the direction of g; we have
g, = ksin ¥ cos ¢
g, = ksindsin g

g3 = k(cos ¥ — 1)
so that

A" = 0 (&, @) dg, dg, = dg, dg, )
0 (g1, &2) k]/kz_glz_gzz

The resulting integral is of the form

[ day day [ #nt 8% Bl ) dgy dgy = 22 F(0,0), (614

where
1

F (g g) =m kl/m s Raar [¥(@) [ (") .

The remaining integration over a, is now trivial, since the integrand which
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is left after the substitution (6.14) is independent of a;. Denoting by 4 the
thickness of the target we arrive at the final result:

P (o) = 2n)2n d/da’% | Ry, 2] 1 (@) ]2 (6.15)

The quantity
2 2
o=C2 R, |2, (6.16)

which has the dimension of an area, is the differential scattering cross
section for the scattering of a particle with direction «’ into a particle
with direction o.

It is easily seen that formulae (6.15) and (6.16) correspond exactly to
the usual description of the scattering process in terms of the cross
section. Indeed, if the direction of the incident particles is equal to ¢, to
a very high degree of approximation then this situation would be de-
scribed by a wave packet f(«) with a sharply peaked probability ampli-
tude around &’ = «,. In this case the probability density for scattering
into the direction « would be described with a high degree of accuracy

P(x)=mn-do. (6.17)

This is the usual expression of this quantity in terms of the cross section o.

7. Concluding remarks

In the preceding sections we have given three equivalent definitions
of the scattering operator and we have proved the existence of this
operator for simple scattering systems as well as its unitary property.

With this result we have succeeded to place the theory of scattering
processes on a rigorous mathematical foundation. The results obtained
here, as well as the new methods introduced, may be the incentive for a
number of further investigations. Foremost among these is the general
scattering formalism for the multichannel processes and the investiga-
tion of the scattering operator in field theories.

The author has received considerable help from Professor H. A. DYE
of the University of Southern California who pointed out to him the
connection with the Mean Ergodic Theorem, and from Professor G. W.
MAckey of Harvard University for an interesting suggestion and a
counter example. Several conversations with my colleagues, Professor
M. SmiLEY and Professor S. K. BERBERIAN of this University have been
very helpful. To all of them I wish to express here my thanks.
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