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Abstract: Observational studies have shown a relationship between eating patterns and chronotypes
with metabolic health in the general population and in healthy pregnancies. Data are lacking in
the postpartum period, which is characterized by an externally driven misalignment of sleep and
food intake. We investigated the associations between eating patterns, chronotypes, and metabolic
health in the early postpartum period in women who had gestational diabetes mellitus (GDM). We
prospectively included 313 women who completed their 6–8 weeks postpartum visit between January
2021 and March 2023 at the Lausanne University Hospital. Women filled questionnaires on the
timing of food intake, sleep (a shortened Pittsburgh Sleep Quality Questionnaire), and the chronotype
(the Morningness–Eveningness Questionnaire) and underwent HbA1c and fasting plasma glucose
measurements. After adjustments for weight, sleep quality, or breastfeeding, the later timing of
the first and last food intake were associated with higher fasting plasma glucose and HbA1c levels
6–8 weeks postpartum (all p ≤ 0.046). A higher number of breakfasts per week and longer eating
durations were associated with lower fasting plasma glucose levels (all p ≤ 0.028). The chrono-
type was not associated with metabolic health outcomes. Eating patterns, but not the chronotype,
were associated with worsened metabolic health in the early postpartum period in women with
previous GDM.

Keywords: eating patterns; chronotype; metabolic health; postpartum; gestational diabetes mellitus

1. Introduction

Eating patterns are often used to describe one’s individual eating timing, eating dura-
tion, and frequency within a day (such as the number of eating occasions per day or whether
breakfasts are consumed) [1]. The relationships and interactions between nutrition, biologi-
cal rhythms, and metabolic health are generally coined in the umbrella term “chrononutri-
tion” [2], which has gained interest in recent years. Individuals with an evening chronotype
typically have later activities, later bedtimes, and later food intake when compared to those
with a morning chronotype [3,4]. Growing evidence outside of pregnancy demonstrates
a relationship between eating patterns [5–10], chronotypes [11], and metabolic health.
These studies suggest that shifting one’s food intake towards late evening, eating over a
prolonged period per day, skipping breakfast, a lower eating frequency, and an evening
chronotype are associated with unfavorable health outcomes [5,9–11]. Specifically, late
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evening food consumption is associated with an increased risk of glucose intolerance [5].
Similarly, breakfast skipping and a lower number of eating occasions per day are related to
a higher prevalence of obesity [9]. Furthermore, an evening chronotype is associated with
an increased risk of obesity, diabetes, metabolic syndrome, and adverse cardiovascular
health outcomes [3,11–13].

During pregnancy, physiological changes in maternal metabolism affect fat storage in
early pregnancy, followed by increased insulin resistance, maternal glucose levels, and free
fatty acids in late pregnancy [14]. They are also influenced by individual eating patterns
(eating timing, eating duration, eating frequency like the number of breakfasts per week or
the number of eating occasions per day), and by the individual chronotype [15]. Prospective
studies on the relationships between eating patterns and metabolic health during pregnancy
revealed that increased nocturnal energy intake in the third trimester is associated with
increased gestational weight gain (GWG) [16], while longer nocturnal fasting intervals
and a lower number of eating occasions per day are related to decreased levels of fasting
glucose and 2 h post-OGTT glucose in the second trimester [17]. Pregnant women who
have a higher nocturnal energy intake are more likely to skip breakfast and exhibit poorer
glucose control, i.e., increased HbA1c, insulin resistance, and insulin level [18]. Pregnant
women with an evening chronotype tend to consume breakfast later and have a higher
energy intake in the evening compared to those with a morning chronotype [19]. They also
have a higher GWG in early [20] or late pregnancy [19].

A higher GWG is associated with an increased risk of pregnancy complications such
as gestational diabetes mellitus (GDM) [21]. GDM is a state of glucose intolerance with
the first onset during pregnancy that does not meet the criteria of overt diabetes [22].
Women with GDM face a 7–10-fold higher risk of developing diabetes after pregnancy [23]
and are more prone to future cardiovascular disease [24]. Notably, within the GDM
population, those with an evening chronotype exhibit poorer sleep quality and more
depressive symptoms, along with an elevated risk of obstetric complications such as
preeclampsia [25]. Furthermore, the chronotype may influence their metabolic health,
as evidenced by a study implementing chrononutrition and sleep hygiene interventions
among women with GDM, resulting in improved glycemic control [26]. These findings
highlight the impact of eating patterns and chronotype on metabolic health in the general
population, as well as during pregnancy. This is particularly relevant among metabolically
high-risk populations of women with GDM.

In addition to eating patterns and the chronotype, sleep disturbances, such as poor
sleep quality and abnormal sleep duration, influence metabolic health including glucose
control [27,28]. Insufficient sleep and circadian misalignment, which is defined as “wakeful-
ness and food intake occurring when the internal circadian system is promoting sleep” [29],
affect metabolic health including higher glucose, insulin, and triglyceride levels, and are
associated with increased risks of diabetes, weight gain, and obesity [30–33]. In pregnancy,
misalignments of eating time with day–night cycles are associated with higher postpartum
weight retention (PPWR) [34]. Circadian misalignment is especially prevalent in the post-
partum period when caring for the newborn impacts on the parents’ sleep and eating habits.
The postpartum period is also characterized by a lower total sleep time and regularity,
reduced sleep efficiency, and more frequent awakenings [35,36], all of which influence
maternal health after delivery. On the other hand, breastfeeding has been shown to help
with sleep regulation for both the mother and child [37], and thus may be considered a
protective factor.

Yet, studies in the postpartum have only investigated the role of the chronotype on
sleep and mood [38,39]. However, we are not aware of any study examining the relationship
between eating patterns and chronotypes on metabolic health in the postpartum period.
As women with a history of GDM are at higher risk for developing diabetes, investigating
these associations in this population is particularly relevant. In this study, we aimed
to investigate the effects of (1) eating patterns and of (2) the chronotype on metabolic
health in the early postpartum among women with previous GDM. We also evaluated if
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these relationships are independent of sleep quantity or quality, or other factors such as
breastfeeding or weight.

2. Materials and Methods
2.1. Study Design and Patient Population

This study is part of an ongoing longitudinal cohort of women with GDM that started
in 2011. We invited pregnant women diagnosed with GDM according to the International
Association of the Diabetes and Pregnancy Study Groups [22,40], who were attending the
antenatal diabetes care at the Woman-Mother-Child department at the Lausanne University
Hospital (CHUV) to participate. All women signed an informed consent prior to participa-
tion. The study protocol was approved by the Ethics Committee of the Canton de Vaud
(326/15) on 17 September 2015.

2.2. Inclusion and Exclusion Criteria

For this analysis, we included women with GDM aged ≥ 18 years, who were followed
up at our Woman-Mother-Child department between January 2021 and March 2023, and
who completed the Timing of the Food Intake (TFI) Questionnaire, the Pittsburgh Sleep
Quality Index (PSQI), and the Morningness–Eveningness Questionnaires (MEQ) 6–8 weeks
postpartum [41,42].

As the above-mentioned questionnaires were introduced in January 2021, we excluded
out of the total cohort population of 2254 women with GDM those who did not sign an
informed consent (n = 427) and those who did not or were yet to attend their 6–8 weeks
postpartum visit between January 2021 and March 2023 (n = 1393). Of the remaining
434 patients, we excluded those who did not complete all three questionnaires (TFI, MEQ,
and PSQI questionnaires) at the 6–8 weeks postpartum visit. Thus, the final sample included
313 women (see Figure 1).
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3. Measurements
3.1. Sociodemographic and Medical Characteristics

Data on maternal socio-demographic characteristics, including age, ethnic origin,
and educational level, were collected during the first GDM visit that took place after
diagnosis if GDM was diagnosed at 24–32 weeks of gestation [43]. Information on the
family history of diabetes (first or second degree), previous history of GDM, smoking
status during pregnancy, alcohol consumption, gravida, parity, glucose-lowering medical
treatment during pregnancy, and breastfeeding status (yes/no) at 6–8 weeks postpartum
were extracted from the participants’ medical charts.

3.1.1. Predictors
Assessment of the Eating Patterns

We employed a seven-item Timing of Food Intake (TFI) Questionnaire, developed
by our team (Appendix A.1), to assess eating patterns, including (a) eating timing,
(b) duration, and (c) frequency at 6–8 weeks postpartum. The assessment of the eating
timing included the time of the first and the last food intake, the time of the last main meal,
and the time of the first and the last drink intake. The questionnaire also assessed the eating
frequency with the number of eating occasions per day and the number of breakfasts per
week. Finally, we assessed the time of the first and last calorie intake (covering both food
or calorie-containing drinks), and we calculated the eating duration as the time interval
between the first and last food intake.

Assessment of the Chronotype

We evaluated the chronotype of participants using the Morningness–Eveningness
Questionnaire (MEQ) at 6–8 weeks postpartum. The MEQ is a self-rated 19-item question-
naire on human circadian rhythms, and categorizes people into morning, evening, and
intermediate chronotypes [41]. The MEQ total score ranges from 16 to 86, with scores ≤41
considered as eveningness, scores between 42–58 as intermediate/neutral chronotype, and
scores ≥59 as morningness. The analyses of the MEQ were conducted with the chronotype
categories (cutoff values above) and with the continuous value.

Assessment of Sleep

The PSQI [42] measures sleep quality over the past month and consists of seven com-
ponents as follows: subjective sleep quality, sleep latency, sleep duration, sleep efficiency,
sleep disturbances, use of sleep medication, and daytime dysfunction. The global score
ranges from 0 to 21, with higher scores indicating poorer sleep quality. In this study, we
used seven out of the nineteen individual questions, and calculated three out of the seven
component scores, i.e., subjective sleep quality (component 1), sleep duration (compo-
nent 3), and sleep efficiency (component 4) at 6–8 weeks postpartum. Each component
score ranges from 0 (no difficulty) to 3 (severe difficulty). In addition to the analysis of the
PSQI component, we examined the rise time (in hours), bedtime (in hours), sleep duration
(in hours), and sleep efficiency (number of hours slept divided by the number of hours in
bed, presented as a percentage, ranging from 0 to 100%).

3.1.2. Outcomes Measures
Anthropometric Data

We measured the height and weight of participants during the visit at 6–8 weeks
postpartum. Weight and BMI before pregnancy were taken from participants’ medical
charts or, if rarely missing, were self-reported. Height and weight were measured to
the nearest 0.1 cm and 0.1 kg, respectively, using regularly calibrated electronic scales
(Seca® Model 7017021094, Hamburg, Germany)). The BMI was calculated as the weight in
kilograms divided by the square of height in meters (kg/m2).
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Metabolic Health Variables

At 6–8 weeks postpartum, we measured the HbA1c level (%) in the venous blood
using a high-performance liquid chromatography method (HPLC) according to interna-
tional guidelines [44]. We also measured fasting glucose, both to reassess glucose control
after GDM.

3.2. Data Analysis

All analyses were conducted using Stata 15.0 (StataCorp LLC., College Station, TX,
USA). Descriptive variables were described as means (±SD) or percentages (%) where
appropriate (Table 1, Appendix A Table A1). Notably, all outcome variables (BMI, fasting
glucose, HbA1c level) exhibited a normal distribution.

For our first aim, we employed linear regression analyses to investigate cross-sectional
associations between the independent variables of interest (eating patterns: timing of
the first and last food/calorie intake, time of the last main meal intake, eating duration,
number of breakfasts per week, and number of food intakes per day) and the metabolic
health outcome variables (BMI, fasting glucose and HbA1c level at 6–8 weeks postpartum,
see Table 2). In the first model, we did not adjust for any potential confounders. If
relationships were significant in the first model, we performed a second model, where we
adjusted for sociodemographic and medical characteristic variables in cases where they
were significantly correlated with metabolic health outcomes at 6–8 weeks postpartum.
These potential confounding variables included age, breastfeeding, sleep quality (PSQI
component 1), sleep duration (in hours and PSQI component 3), sleep efficiency (in % and
PSQI component 4), rise time (h) and bedtime (h), and, for fasting glucose and HbA1c as
metabolic health outcomes, weight.

For the second aim, linear regression analyses were employed to investigate the
relationship between the MEQ score and metabolic health outcome variables at 6–8 weeks
postpartum (see Table 3). The first model was unadjusted. If the first model was significant,
the same variables (listed above) were tested as potential confounders. If they were
significantly related to the outcome variables, they were included in Model 2 (Table 3). We
also tested if the MEQ score was associated with eating patterns, specifically the timing of
the first and last food/calorie intake, the timing of the last main meal, the eating duration,
the number of breakfasts per week, and the number of food intakes per day at 6–8 weeks
postpartum. Again, we used an unadjusted model, Model 1, and an adjusted model,
Model 2, as mentioned above (see Table 3). To assess circadian misalignment, we also
performed correlations between the MEQ score and the actual rise time and bedtime.

In a supplementary posthoc analysis, we grouped the evening (n = 9) and the interme-
diate/neutral (n = 140) into a “non-morning” chronotype to better delineate the differences
in circadian rhythms among women with previous GDM. This combined group was thus
compared with the “morning” chronotype (n = 123) in terms of eating patterns, metabolic
health, and sleep (see Appendix A Table A2). All statistical significances were two-sided
and were with p < 0.05.

4. Results
4.1. Characteristics of Study Participants

Participants had a mean age of 33.6 ± SD 4.6 years. The pre-pregnancy weight and
BMI were 71.3 kg ± 16.4 and 26.4 kg/m2 ± 5.7, respectively. Half of the women had
a university education, and 32% were of Swiss nationality. The majority had a family
history of type 2 diabetes (58.7%) and 24% had a history of previous GDM. Additionally,
the majority (64%) of women received insulin treatment during pregnancy. At 6–8 weeks
postpartum, over 85% were breastfeeding (Table 1). Characteristics of women categorized
as a morning or a non-morning chronotype can be found in Appendix A (Table A1).
Briefly, women with a morning and those with a non-morning chronotype did not differ
regarding ethnic origins, smoking, alcohol intake, or family or medical history regarding
metabolic health.
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Table 1. Socio-demographic characteristics of study participants.

Variable All Women

Age (years) 33.6 ± 4.6

Educational level
Obligatory education uncompleted 6 (3.9%)
Obligatory education completed 25 (16.5%)
Upper secondary school diploma 16 (10.5%)
General and professional formation 29 (19.1%)
Higher formation (HES, university) 76 (50.00%)

Ethnic origin
Switzerland 78 (32.0%)
Western Europe 50 (20.5%)
Eastern Europe 34 (13.9%)
Africa 34 (13.9%)
Asia 32 (13.1%)
Latin America 13 (5.3%)
North of America 3 (1.2%)

Family history of Diabetes Mellitus
1st degree 80 (35.6%)
2nd degree 52 (23.1%)
No 93 (41.3%)

History of GDM 1

Yes 38 (24.4%)
No 118 (75.6%)

Smoking status during pregnancy
Yes 22 (9.4%)
No 209 (88.9%)
Stopped since knowledge of pregnancy 4 (1.7%)

Alcohol consumption
Occasionally 17 (7.4%)
No 213 (92.6%)

Gravida
1 81 (33.2%)
2 68 (27.9%)
≥3 95 (38.9%)

Parity
0 111 (45.5%)
1 79 (32.4%)
≥2 54 (22.1%)

Glucose-lowering medical treatment during
pregnancy

None 76 (36.0%)
Metformin 1 (0.5%)
Insulin 133 (63.0%)
Insulin and metformin 1 (0.5%)

Weight before pregnancy (kg) 71.3 ± 16.4

BMI before pregnancy (kg/m2) 26.4 ± 5.7

Breastfeeding at 6–8 weeks postpartum
No 31 (14.8%)
Yes 178 (85.2%)

1 GDM—gestational diabetes mellitus.
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4.2. Relationship between Eating Patterns, the Chronotype, and Metabolic Health in the
Early Postpartum

Table 2 describes the relationship between eating patterns and metabolic health in
the early postpartum period. In the unadjusted results, a later timing of the first food and
calorie intake were associated with higher morning fasting glucose levels (all p ≤ 0.010).
Furthermore, a later timing of the last food intake was associated with higher HbA1c levels
(p = 0.046), whereas a longer eating duration and a higher number of breakfasts per week
were associated with lower fasting glucose levels (all p ≤ 0.028).

We then adjusted for confounders including weight, sleep quality, and breastfeeding
at 6–8 weeks postpartum, as they were linked to fasting glucose levels at 6–8 weeks
postpartum (all p ≤ 0.024). After adjusting for confounders that were significant in the
univariate analysis, all relationships remained significant (all p ≤ 0.03). We found no
significant relationships between eating timing, eating duration, the number of breakfasts
per week, or the number of food intakes per day and BMI at 6–8 weeks postpartum (see
Table 2).

Table 2. Relationship between eating patterns and metabolic health in the early postpartum.

BMI (kg/m2)
(β [95% CI])

HbA1c (%)
(β [95% CI])

Fasting Glucose (mmol/L)
(β [95% CI])-Model 1

Fasting Glucose (mmol/L)
(β [95% CI])-Model 2

Time of the first food intake (h) 0.031 [−0.340, 0.402] −0.002 [−0.032, 0.028] 0.050 [0.012, 0.087] * 0.050 [0.005, 0.095] * 1,2,3

Time of the first calorie intake (h) 0.152 [−0.282, 0.586] −0.003 [−0.038, 0.032] 0.076 [0.032, 0.119] * 0.0513 [0.007, 0.096] * 1,2,3

Time of the last main meal (h) −0.039 [−0.461, 0.383] 0.006 [−0.029, 0.040] 0.001 [−0.042, 0.045] N/A

Time of the last food intake (h) 0.022 [−0.345, 0.390] 0.030 [0.001, 0.060] * −0.007 [−0.045, 0.031] N/A

Time of the last calorie intake (h) 0.089 [−0.271, 0.449] 0.026 [−0.003, 0.054] 0.017 [−0.020, 0.055] N/A

Eating duration (h) −0.001 [−0.270, 0.267] 0.016 [−0.005, 0.038] −0.031 [−0.058, −0.003] * −0.014 [−0.049, 0.021] 1,2,3

Number of breakfasts per week −0.300 [−0.620, 0.019] −0.011 [−0.037, 0.015] −0.041 [−0.074, −0.008] * −0.030 [−0.067, 0.008] 1,2,3

Number of food intakes per day −0.032 [−0.425, 0.361] 0.021 [−0.010, 0.052] 0.0003 [−0.040, 0.041] N/A

* p-value < 0.05. Adjusted for 1 weight, 2 sleep quality, and 3 breastfeeding at 6–8 weeks postpartum, as they were
related to the respective outcome and the unadjusted model was significant.

The relationships between the chronotype (MEQ score) and metabolic health are shown
in Table 3. The mean MEQ score was 57.0 ± 8.3, spanning from neutral/intermediate to
morning chronotypes. The MEQ score was not associated with BMI, fasting glucose, or
HbA1c at 6–8 weeks postpartum.

Table 3. Relationship between the MEQ total score and metabolic health or eating patterns.

Model 1 Model 2

Variable Coef. 95% Conf.
Interval p-Value Coef. 95% Conf.

Interval p-Value

Metabolic health

BMI (kg/m2) 0.016 −0.071, 0.103 0.721 N/A
HbA1c (%) 0.003 −0.004, 0.010 0.366 N/A
Fasting glucose (mmol/L) −0.004 −0.013, 0.005 0.392 N/A

Eating patterns

Time of the first food intake (h) −0.076 −0.101, −0.051 <0.001 −0.052 1,2 −0.079, −0.025 1,2 <0.001 1,2

Time of the first calorie intake (h) −0.059 −0.081, −0.038 <0.001 −0.032 1,2 −0.055, −0.009 1,2 0.007 1,2
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Table 3. Cont.

Model 1 Model 2

Variable Coef. 95% Conf.
Interval p-Value Coef. 95% Conf.

Interval p-Value

Time of the last main meal (h) −0.034 −0.053, −0.014 0.001 −0.023 2 −0.044, −0.002 2 0.032 2

Time of the last food intake (h) −0.042 −0.065, −0.019 <0.001 −0.032 2,3 −0.057, −0.008 2,3 0.010 2,3

Time of the last calorie intake (h) −0.039 −0.063, −0.015 0.001 −0.014 2 −0.036, 0.008 2 0.212 2

Eating duration (h) 0.034 0.00004, 0.067 0.050 N/A

Number of breakfasts per week 0.061 0.031, 0.091 <0.001 0.054 2,4 0.017, 0.090 2,4 0.004 2,4

Number of food intakes per day 0.021 −0.005, 0.047 0.108 N/A

Model 1—unadjusted. Model 2—adjusted for 1 rise time, 2 bedtime 3 sleep duration, or 4 breastfeeding at
6–8 weeks postpartum, when they were related to the respective outcome and the unadjusted model was
significant. N/A denotes not applicable.

4.3. Morningness–Eveningness Questionnaire (MEQ) Total Score and Eating Patterns

An earlier chronotype (indicated by a higher MEQ score) was associated with an
earlier timing of the first food and the first calorie intake, as well as an earlier time of the
last main meal, the last food intake, and the last calorie intake (all p ≤ 0.001). Furthermore,
a higher MEQ score was associated with an increased number of breakfasts per week
(p < 0.001). Regarding potential confounders, the rise time was related to the time of the
first food and first calorie intake, while an earlier bedtime was linked to an earlier time of the
first and last calorie intake, time of the first and last food intake, time of the last main meal
intake, and a higher number of breakfasts per week. Additionally, a longer sleep duration
was related to an earlier time of the last food intake and breastfeeding to a higher number
of breakfasts per week. Adjusting for these confounders did not alter the results, except for
the relationship between the chronotype and time of the last calorie intake was no longer
significant. However, there were no significant relationships between the chronotype and
the eating duration or number of food intakes per day (see Table 3). Regarding the extent
of external circadian misalignment, there were low correlations (correlation coefficients
0.29–0.35) between the MEQ total score and the actual rise time or bedtime at 6–8 weeks
postpartum.

4.4. Supplementary Analysis: “Morning” or ”Non-Morning” Chronotype and Metabolic Health

In our population, only few women (n = 9) were considered as having an “evening
chronotype”, while the majority had “intermediate/neutral” (n = 140) or “morning” chrono-
types (n = 123). In a supplementary analysis of categorical chronotype (Appendix A Ta-
ble A2), we regrouped the 149 women as “non-morning” and 123 women as “morning”
chronotypes, whose mean MEQ total score were 51.0 ± 5.9 and 64.3 ± 3.8, respectively.
Women with a morning chronotype exhibited an earlier time of the first food and the first
calorie intake, as well as the last main meal, the last food intake, and the last calorie intake
when compared to women with a non-morning chronotype (all p ≤ 0.025). Additionally,
morning women had a higher number of breakfasts per week (p = 0.002), but the number of
food intakes was not significantly different between the chronotypes. Regarding metabolic
health, there were no significant differences in BMI, fasting glucose, and HbA1c levels at
6–8 weeks postpartum between women with a morning vs. a non-morning chronotype.
Regarding sleep-related variables, non-morning women had a later rise time and bedtime,
a worse sleep quality, and a lower sleep duration and efficiency when compared to morning
women (all p ≤ 0.032).

5. Discussion

The early postpartum is a period where the mother’s circadian misalignment is affected
by the needs and caring for the newborn, thus impacting on both sleeping and eating
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schedules. In this cohort of women with GDM, eating patterns, but not the chronotype,
were associated with some metabolic health outcomes at 6–8 weeks postpartum. Specifically,
a later timing of both the first and the last food intake, as well as a later timing of the first
calorie intake, were associated with higher fasting glucose or HbA1c levels, indicating
a worse glucose regulation. These associations remained significant after adjusting for
weight, sleep quality, or breastfeeding. In addition, a higher number of breakfasts per week
and a longer eating duration were associated with a lower fasting glucose. We did not
observe a significant relationship between the chronotype and metabolic health outcomes.

We found positive correlations between a later timing of the first food intake, the
first calorie intake, and the last food intake and a higher fasting glucose and/or HbA1c at
6–8 weeks postpartum. These results remained significant after adjustments for weight,
sleep quality, or breastfeeding status. Other potential confounders such as age, rise time,
bedtime, sleep duration, and sleep efficiency were not related to metabolic health outcomes
in the postpartum period. In addition, a lower number of breakfasts per week and shorter
eating durations correlated with higher fasting glucose values. However, these results
did not remain significant after adjustments. The number of food intakes per day was not
related to metabolic health outcomes. Overall, the timing of food intake and eating patterns
had a more pronounced impact on metabolic health than the rise time, bedtime, or sleep
duration.

Our results are in part consistent with a study of the general population [5] which
showed that a later time of the last food intake was associated with higher HbA1c levels
and an increased risk of prediabetes or diabetes, particularly in women. A prospective
study of 103,312 participants [8] revealed that a later time of the first food intake was
associated with a higher incidence of type 2 diabetes. Among individuals with type 2
diabetes, a later time of the last food intake is prevalent [6] and is linked to higher HbA1c
levels [45]. Other studies show that eating patterns such as a shorter eating duration,
higher frequency of breakfasts, and higher number of food intakes are related to improved
metabolic health [9,46,47]. A recent review [46] showed that time-restricted eating can
lead to improvements in glucose control and to weight reduction among people with
overweight and obesity, but not among individuals with normal weight. Breakfast skipping
is associated with an increased risk of obesity [9] and type 2 diabetes [47]. Indeed, breakfast
skipping has been linked to a higher percentage of daily caloric intake later in individuals
with type 2 diabetes [48]. Another study showed that less than four eating episodes
per day were associated with a higher risk of obesity [9]. Studies in pregnancy relating
eating patterns to metabolic health have found an association between a higher night
eating syndrome score and higher fasting insulin, HbA1c, and high-density lipoprotein
cholesterol [18]. Increased night-fasting intervals and reduced eating episodes per day in
pregnancy are associated with lower fasting glucose levels [17]. Collectively, these results
regarding eating timing and breakfast frequency are consistent with our study that extends
existing data to the postpartum period, where misalignments are particularly present. In
our population, there was a low correlation between the chronotype (assessed with MEQ
score) and the actual rise time or bedtime. Importantly, the MEQ score explained only
around 10% of the actual sleep timing. These findings are consistent with an external
misalignment in this postpartum period. The overall findings of the previous study and
our study suggest a relationship between a later eating timing and breakfast skipping with
adverse metabolic health, especially in the female population. However, data regarding
the relationship of eating duration with metabolic health found in previous studies are in
contrast to our findings.

Food consumption that is not aligned with natural circadian rhythms have negative
effects on cardiometabolic health [31]. An intervention study [49] revealed that a 5 h de-
layed meal timing influences molecular clocks in peripheral tissues, such as white adipose
tissue, and contributes to fluctuations in plasma glucose levels. One possible explanation
of higher fasting glucose and HbA1c levels among women with later eating timing might
be explained by the higher desynchronization of circadian rhythms in peripheral tissues
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involved in regulating glucose levels, such as the liver, pancreas, muscle, and white adi-
pose tissue [50]. Other potential mechanisms that could explain the association between
later eating timing and poorer glucose control might be a shorter time interval between
the eating time and the fasting glucose, the reduction in resting-energy expenditure, fast-
ing carbohydrate oxidation, and decreased glucose tolerance when eating food later, as
indicated by a randomized controlled trial [51]. In the postpartum period, similarly as
during pregnancy [19], skipping breakfast might potentially lead to increased energy intake
later during the day. Conversely, in our study, the lower glucose levels when the eating
duration is longer can be attributed to the fact that daily calorie distribution tends to be
more balanced when consuming food over an extended period. In analogy with previous
data [46], this might be more pronounced in normal weight subjects, and therefore our
observed relationship did not remain significant when adjusting for weight.

We did not find a significant relationship between the MEQ total score and metabolic
health outcomes among women with previous GDM. This is in contrast to studies per-
formed in other populations or contexts that suggest a link between chronotype and
metabolic health [5,20]. Indeed, a recent meta-analysis showed that the prevalence of
diabetes type 2 is higher in the evening chronotype than the morning chronotype, and that
individuals with an evening chronotype have higher fasting glucose, BMI, and total choles-
terol levels in comparison with those with a morning chronotype [52]. Possible reasons for
the lack of association in our study may include the small population (n = 9) of women
with an evening chronotype. Some studies [53,54] found a greater prevalence of morning
chronotypes in women compared with men. In addition, having children was found to be
the strongest determinant of morning chronotypes among women [54]. This may explain
the low prevalence of the evening chronotype in our population. Furthermore, in the
postpartum period, when misalignment is particularly pronounced, as the needs of the
newborn impact both on the sleeping and eating schedules, the actual eating patterns could
have a more pronounced influence on women’s metabolic health than the “theoretical”
chronotype preference.

To our knowledge, this is the first study to investigate the relationship between
eating patterns, the chronotype, and metabolic health in the postpartum period, which is an
important and unique period in women’s life with externally driven circadian misalignment.
We investigated a metabolically high-risk population of women with a history of GDM,
and we took several relevant confounding factors into account. Our cohort is a clinical
multiethnic population. Despite these strengths, our study has some limitations. For
example, there was a limited number of participants with an evening chronotype, which
may have affected some of our results. In addition, we used questionnaires and not
objective measures of sleep or food intake, which were not possible to include in a clinical
cohort. The lack of data in our cohort regarding women’s dietary habits, food intake, and
physical activity levels represents a further limitation of our study, as we had to limit the
number of questionnaires in this clinical population. However, we did not find significant
differences in socio-demographic or health characteristics, including ethnic origin, health
behavior, a family history of diabetes (first or second degree), a previous history of GDM,
or glucose-lowering medical treatment during pregnancy between the morning and non-
morning chronotypes. Despite these limitations, our findings highlight the importance
of assessing eating patterns in the postpartum period in the management of women after
GDM, as they are modifiable risk factors for glucose control management in this population.

6. Conclusions

In this prospective cohort of women with GDM, we identified relationships between
eating patterns and glycemic control in the early postpartum. Specifically, a later time of
food and calorie intake, a shorter eating duration, and a lower number of breakfasts per
week were associated with poorer glycemic control, as shown by higher fasting glucose and
HbA1c levels. The impact of eating patterns on metabolic health was more pronounced than
the one of sleep timing. In a time period where externally driven circadian misalignment
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is particularly pronounced, we did not find any associations between the chronotype
preference and metabolic health. These findings emphasize the importance of including
eating patterns as a potential factor in glycemic control strategies in women with a history
of GDM. Future studies could enlarge the scope to also include dietary habits, physical
activity, and more in-depth evaluations of socio-economic factors as potential confounders
or mediators, and could investigate physiological mechanisms such as energy expenditure
or fasting carbohydrate oxidation and their impact on metabolic health in the postpartum.
There is also a need for intervention trials studying the impact of advancing the timing
of food intake and regular breakfast consumption on glucose control in the postpartum
period among women with GDM.
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Appendix A

Table A1. Socio-demographic characteristics of women characterized as morning or as non-morning
chronotypes.

Variable
Non-Morning
Chronotype

(N = 149)

Morning
Chronotype

(N = 123)
p-Value

Age (years) 33.6 ± 4.5 33.8 ± 4.8 0.764

Ethnic origin 0.927
Switzerland 41 (34.8%) 33 (35.1%)
Western Europe 26 (22.0%) 19 (20.2%)
Eastern Europe 16 (13.6%) 11 (11.7%)
Africa 13 (11.0%) 13 (13.8%)
Asia 14 (11.9%) 12 (12.8%)
Latin America 5 (4.2%) 6 (6.4%)
North of America 3 (2.5%) 0 (0%)

Family history of Diabetes Mellitus 0.199
1st degree 42 (37.5%) 24 (28.9%)
2nd degree 23 (20.5%) 20 (24.1%)
No 47 (42.0%) 39 (47.0%)
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Table A1. Cont.

Variable
Non-Morning
Chronotype

(N = 149)

Morning
Chronotype

(N = 123)
p-Value

History of GDM 1 0.756
Yes 17 (25.4%) 13 (21.0%)
No 50 (74.6%) 49 (79.0%)

Smoking status during pregnancy 0.121
Yes 12 (10.4%) 4 (4.5%)
No 102 (88.7%) 81 (92.0%)
Stopped since knowledge of pregnancy 1 (0.9%) 3 (3.5%)

Alcohol consumption 0.282
Occasionally 8 (7.0%) 7 (8.1%)
No 106 (93.0%) 79 (91.9%)

Gravida 0.503
1 47 (39.8%) 29 (30.9%)
2 32 (27.1%) 27 (28.7%)
≥3 39 (33.1%) 38 (40.4%)

Parity 0.386
0 64 (54.2%) 40 (42.6%)
1 35 (29.7%) 35 (37.2%)
≥2 19 (16.1%) 19 (20.2%)

Glucose-lowering medical treatment
during pregnancy 0.980

None 38 (36.9%) 31 (39.2%)
Metformin 1 (1.0%) 0 (0%)
Insulin 63 (61.1%) 48 (60.8%)
Insulin and metformin 1 (1.0%) 0 (0%)

1 GDM—gestational diabetes mellitus.

Table A2. Comparison of metabolic health, eating patterns, and sleep-related variables between
women characterized as morning or as non-morning chronotypes.

Variable Non-Morning Chronotype
(N = 149)

Morning Chronotype
(N = 123)

Mean
Difference p-Value

Metabolic health and MEQ score

MEQ total score 51.0 ± 5.9 64.3 ± 3.8 −13.2 ± 8.3 <0.001
BMI (kg/m2) 27.6 ± 5.5 27.1 ± 5.0 0.5 ± 5.3 0.50
HbA1c (%) 5.3 ± 0.4 5.3 ± 0.4 0.02 ± 0.4 0.70
Fasting glucose (mmol/L) 5.1 ± 0.6 4.9 ± 0.4 0.1 ± 0.5 0.10

Eating patterns

Time of the first food intake (h) 9.4 ± 1.9 8.6 ± 1.7 0.9 ± 1.8 <0.001
Time of the first calorie intake (h) 8.9 ± 1.4 8.2 ± 1.7 0.7 ± 1.6 <0.001
Time of the last main meal (h) 20.0 ± 1.3 19.7 ± 1.5 0.4 ± 1.4 0.025
Time of the last food intake (h) 21.3 ± 1.7 20.8 ± 1.5 0.5 ± 1.6 0.019
Time of the last calorie intake (h) 21.5 ± 1.7 21.1 ± 1.6 −0.5 ± 1.7 0.020
Eating duration (h) 11.9 ± 2.4 12.3 ± 2.2 −0.4 ± 2.3 0.17
Number of breakfasts per week 5.2 ± 2.4 6.0 ± 1.7 −0.8 ± 2.1 0.002
Number of food intake per day 4.0 ± 1.7 4.2 ± 1.9 −0.2 ± 1.8 0.46
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Table A2. Cont.

Variable Non-Morning Chronotype
(N = 149)

Morning Chronotype
(N = 123)

Mean
Difference p-Value

Sleep

Rise time (h) 7.5 ± 1.5 6.8 ± 1.4 0.7 ± 1.5 <0.001
Bedtime (h) 23.1 ± 1.3 22.5 ± 1.2 0.6 ± 1.3 <0.001
Sleep quality (subscale 1) * 1.6 ± 0.8 1.3 ± 0.9 0.4 ± 0.9 <0.001
Sleep duration (h) 5.7 ± 1.4 6.1 ± 1.5 −0.4 ± 1.5 0.032
Sleep duration (subscale 3) * 1.8 ± 0.9 1.6 ± 0.9 0.2 ± 0.9 0.06
Sleep efficiency (%) 68.2 ± 16.8 72.8 ± 16.0 −4.6 ± 16.5 0.025
Sleep efficiency (subscale 4) * 1.9 ± 1.1 1.6 ± 1.2 0.3 ± 1.2 0.053

* Higher scores indicate a worse sleep quality. Hours (h) are expressed as decimal fractions.

Appendix A.1 Timing of Food intake (TFI) Questionnaire

During the past week:
(1) At what time is your first meal or first food intake?
TIME ___________

(2) At what time is your last main meal (for example supper)?
TIME ___________

(3) At what time is your last food intake (can be your main meal or any food intake such as
snack or fruit, etc.)?
TIME ___________

(4) At what time is your first drink (only for fruit juice, milk, cocoa or sweet drink)?
TIME ___________

(5) At what time is your last drink (only for fruit juice, milk, cocoa or sweet drink)?
TIME ___________

(6) On average, how many food intakes do you have in a day including drinks such as fruit
juice, milk, cocoa, sugary drink?
NUMBER OF INTAKES ___________

(7) On average, how many times a week do you eat breakfast?
NUMBER OF TIMES ___________
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