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OPTIMIZED SCHWARZ METHODS FOR MAXWELL’S EQUATIONS

V. DOLEAN? M.J. GANDER! AND L. GERARDO-GIORDA}

Abstract. Over the last two decades, classical Schwarz methods have been extended to systems
of hyperbolic partial differential equations, using characteristic transmission conditions, and it has
been observed that the classical Schwarz method can be convergent even without overlap in certain
cases. This is in strong contrast to the behavior of classical Schwarz methods applied to elliptic
problems, for which overlap is essential for convergence. More recently, optimized Schwarz methods
have been developed for elliptic partial differential equations. These methods use more effective
transmission conditions between subdomains than the classical Dirichlet conditions, and optimized
Schwarz methods can be used both with and without overlap for elliptic problems. We show here
why the classical Schwarz method applied to both the time harmonic and time discretized Maxwell’s
equations converges without overlap: the method has the same convergence factor as a simple opti-
mized Schwarz method for a scalar elliptic equation. Based on this insight, we develop an entire new
hierarchy of optimized overlapping and non-overlapping Schwarz methods for Maxwell’s equations
with greatly enhanced performance compared to the classical Schwarz method. We also derive for
each algorithm asymptotic formulas for the optimized transmission conditions, which can easily be
used in implementations of the algorithms for problems with variable coefficients. We illustrate our
findings with numerical experiments.

Key words. Schwarz algorithms, optimized transmission conditions, Maxwell’s equations

AMS subject classifications. 65M55, 65F10, 65N22

1. Introduction. Schwarz algorithms have experienced a second youth over the
last decades, when distributed computers became more and more powerful and avail-
able. Fundamental convergence results for the classical Schwarz methods were derived
for many partial differential equations, and can now be found in several authorita-
tive reviews, see [3, 41, 42], and books, see [34, 33, 39]. The Schwarz methods were
also extended to systems of partial differential equations, such as the time harmonic
Maxwell’s equations, see [12, 8], or the time discretized Maxwell’s equations, see [38],
or to linear elasticity [18, 19], but much less is known about the behavior of the
Schwarz methods applied to hyperbolic systems of equations. This is true in par-
ticular for the Euler equations, to which the Schwarz algorithm was first applied in
[31, 32], where classical (characteristic) transmission conditions are used at the in-
terfaces, or with more general transmission conditions in [7]. The analysis of such
algorithms applied to systems proved to be very different from the scalar case, see
[14, 15].

Over the last decade, a new class of overlapping Schwarz methods was devel-
oped for scalar partial differential equations, namely the optimized Schwarz methods.
These methods are based on a classical overlapping domain decomposition, but they
use more effective transmission conditions than the classical Dirichlet conditions at
the interfaces between subdomains. New transmission conditions were originally pro-
posed for three different reasons: first, to obtain Schwarz algorithms that are con-
vergent without overlap, see [28] for Robin conditions. The second motivation for
changing the transmission conditions was to obtain a convergent Schwarz method for
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the Helmholtz equation, where the classical overlapping Schwarz algorithm is not con-
vergent. As a remedy, approximate radiation conditions were introduced in [10, 12].
The third motivation was that the convergence rate of the classical Schwarz method
is rather slow and too strongly dependent on the size of the overlap. In a short
note on non-linear problems [26], Hagstrom et al. introduced Robin transmission
conditions between subdomains and suggested nonlocal operators for best perfor-
mance. In [4], these optimal, non-local transmission conditions were developed for
advection-diffusion problems, with local approximations for small viscosity, and low
order frequency approximations were proposed in [29, 9]. In [35], one can find low-
frequency approximations of absorbing boundary conditions for the Euler equations.
Independently, at the algebraic level, generalized coupling conditions were introduced
in [37, 36] for discrete overlapping Schwarz methods. Optimized transmission con-
ditions for the best performance of the Schwarz algorithm in a given class of local
transmission conditions were first introduced for advection diffusion problems in [27],
for the Helmholtz equation in [6, 24], and for Laplace’s equation in [17]. For complete
results and attainable performance for a symmetric, positive definite problem, see
[20], and for time dependant problems, see [23, 21]. The purpose of this paper is to
design and analyze a family of optimized overlapping and non-overlapping Schwarz
methods for Maxwell’s equations, both for the case of time discretized and time har-
monic problems, and to provide explicit formulas for the optimized parameters in the
transmission conditions of each algorithm in the family. These formulas can then eas-
ily be used in implementations for Maxwell’s equations with variable coefficients. As
we will see, one member of this family reduces in the case of no overlap and constant
coefficients to an algorithm in a curl-curl formulation of Maxwell’s equations, pro-
posed in [1] based on [5], which already greatly enhanced the performance compared
to the classical approaches in [12, §].

This paper is organized as follows: in Section 2, we present Maxwell’s equations
and a reformulation thereof with characteristic variables used in our analysis. In
Section 3, we treat the case of time harmonic solutions. We show that the classical
Schwarz method for Maxwell’s equations, which uses characteristic Dirichlet transmis-
sion conditions between subdomains, is convergent even without overlap. Exploiting
a relation with an optimized Schwarz method applied to a Helmholtz equation allows
us to develop an entirely new hierarchy of optimized Schwarz methods for Maxwell’s
equations with greatly enhanced performance, both with and without overlap. A sim-
ilar relation has been used in [13] for the Cauchy-Riemann equations. In Section 4,
we present and analyze the corresponding hierarchy of optimized Schwarz methods
for time discretizations of Maxwell’s equations. We then show in Section 5 numerical
experiments in two and three spatial dimensions, both for the time harmonic and
time discretized case, which illustrate the performance of the new optimized Schwarz
methods for Maxwell’s equations. We also include as an application the cooking of a
chicken in a microwave oven, a problem with variable coefficients. In Section 6, we
summarize our findings and conclude with an outlook on future research directions.

2. Maxwell’s Equations. The hyperbolic system of Maxwell’s equations de-
scribes the propagation of electromagnetic waves. It is given by

o€ H
—Ea—i—curl’ﬂ—(fg—.j, ME‘FCUI'Ig—O; (2.1)

where € = (£1,82,&3)T and ‘H = (H1,H2,H3)T denote the electric and magnetic
fields, respectively, € is the electric permittivity, p is the magnetic permeability, o is
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the electric conductivity and J is the applied current density. We assume the applied
current density to be divergence free, that is divJ = 0. Denoting the vector of
physical unknowns by

w=(E1,E,E,Hi, Ha, Ha) (2:2)
Maxwell’s equations (2.1) can be rewritten in the form
(G + Gooy)u + G,0,u + G oyu + G,0.u = (TJ;0), (2.3)

where the coefficient matrices are

I I N,
G:[a3 03:|5G0:[63 M[g];Gl:[_Nl l:|7 l:%y,z’,

where 03 (resp. I3) represent the 3 x 3 zero (identity) matrix, and the matrices IV,
l = x,y, 2 are given by

0 0 O 0 0 -1 0 10
N,=|10 0 1], Ny=]100 0 |, N,=| -1 0 0
0 -1 0 1 0 0 0 00
For any unit vector n = (n1,n2,n3), ||n|| = 1, we can define the characteristic matrix

of system (2.3) by

C(n)=G01<n1[_Nw Nw]+n2[_Ny Ny]+n3[_NZ Nz]);

whose eigenvalues are the characteristic speed of propagation along the direction 7.
A direct calculation shows that the matrix C'(n) has real eigenvalues,

A2 = —¢, Azq =0, As,6 = C,

with ¢ = \/% being the wave speed. This implies that Maxwell’s equations are hyper-
bolic, since the eigenvalues are real, but not strictly hyperbolic, since the eigenvalues
are not distinct, see [2]. For the special case of the normal vector n = (1,0,0), which

we will use extensively later, we obtain

C(n)=<_%Nw Ve >,

whose matrix of eigenvectors is given by

0 0 01 0 O
-Z 0 0 0 Z O
I = 0 Z 0 0 0 —-Z
0 0 10 0 O ’
0 1.0 0 0 1
1 0 00 1 O

where Z = \/E denotes the impedance. This leads to the characteristic variables
w = (wy,ws,ws,ws, ws, ws)? = L™ u associated with the direction m, where

wy = —3(5E — Hs), wy = %(%53 + Ha), ws = Hi,
wy = &1, Ws = 3\z
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z

Fi1G. 3.1. Overlapping domain decomposition.

In the following, we will denote by w, wo and w_ the characteristic variables asso-
ciated with the negative, zero, and positive eigenvalues respectively, that is

w_ = (UJ1,U]2)T, Wo = (11}3,11)4)T, w4 = (’11]5,’11)6)T. (25)

Imposing classical or characteristic boundary conditions on a boundary with unit
outward normal vector n = (1,0,0) means to impose Dirichlet conditions on the
incoming characteristic variables w_. For a general normal vector n, this is equivalent
to imposing the impedance condition (see [2])

Bn(E,H) :=nx%+nx(’Hxn)=s. (2.6)

3. Time Harmonic Solutions. Time harmonic solutions of Maxwell’s equa-
tions are complex valued static vector fields E and H such that the dynamic fields

E(z,t) = Re(E(zx) exp(iwt)), H(z,t) = Re(H (x) exp(iwt))

satisfy Maxwell’s equations (2.1). The positive real parameter w is called the pulsation
of the harmonic wave. The harmonic solutions E and H satisfy the time-harmonic
Maxwell’s equations

—iweE+curl H—-cE =J, iwpH + curl E = 0. (3.1

3.1. Classical and Optimized Schwarz Algorithm. We consider now the
problem (3.1) in a bounded domain 2, with either Dirichlet conditions on the tangent
electric field, or impedance conditions, on 052, in order to obtain a well posed problem,
see [30]. In order to explain the classical Schwarz algorithm for Maxwell’s equation,
we decompose the domain into two overlapping subdomains 4 and s, as illustrated
in Figure 3.1. The generalization of the algorithm formulation to the case of many
subdomains does not present any difficulties. The classical Schwarz algorithm then
solves for n = 1,2... the subdomain problems

—iweEY + curl HY" —¢EY™ = J in Qq
iwpHY™ 4+ curl EV = 0 in O
B’n1 (El,n’ Hl,n) — Bn1 (E2,n71’ H2,n71) on F12 (3 2)
—iweE*" + curl H>" —¢E*™ = J in Q9 )
iwpH*™ + curl E>® = 0 in Qs

an (E2,n,H2,n) Bn2 (El,nfl’Hl,nfl) on 1-121’
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where I'1p = 001 N, T21 = 002 NQy and Bp,, j = 1,2, denotes the impedance
boundary conditions defined in (2.6). On the physical part of the boundary, the given
boundary conditions are imposed. While the choice of transmission conditions Bp,
is natural in the view of the hyperbolic nature of the problem, we will see in our
analysis that there are better choices for the performance of the algorithm, based on
the notion of absorbing boundary conditions. This leads to the so called optimized
Schwarz methods,

—iwe B 4 curl HY" —oE"™ = J in O
iwpHY™ 4+ curl EV™ = 0 in
(B'n,l + San2)(E1’n, Hl’n) = (Bnl + San2)(E2’n_1, HZ,n—l) on I'1o
—iweE>" + curl H*™ —¢E>™ = J in Q,
iwpH*"™ + curl E>" = 0 in Qy
(an +S2Bn1)(E2’n7H27n) = (B'n,2 +SQBn1)(E1’n_1JH1’n_1) on 1—‘21a
(3.3)

where S;, j = 1,2 are tangential, possibly pseudo-differential operators we will study
in what follows in order to obtain various optimized Schwarz methods.

3.2. Convergence Analysis for the Classical Schwarz Algorithm. We
now study properties of the classical Schwarz algorithm (3.2). We use Fourier analysis,
and thus assume that the coefficients are constant, and the domain on which the
original problem is posed is 2 = R?, in which case we need for Maxwell’s equations
the Silver-Miiller radiation condition

lim r (H xn — E) =0, (3.4)
T—>00

where r = |z|, n = x/|z|, in order to obtain well-posed problems, see [30]. The two
subdomains are now half spaces,

Q= (0,00) x B2, Q= (—00,L) x R, (3.5)

the interfaces are I'1s = {L} x R? and I's; = {0} x R?, and the overlap is L > 0. We
denote by k, and k. the Fourier variables corresponding to a transform with respect
to y and z, respectively, and |k|* = k. + k2.

THEOREM 3.1. For any given initial guess (E>°; HY?) € (L?(™))%, (E*°; H*®) ¢
(L%(Q))8, the classical Schwarz algorithm (3.2) with overlap L > 0, including the
non-overlapping case, is for o > 0 convergent in (L?(€1))% x (L%(Q2))%, and the
convergence factor for each Fourier mode k is

pcla(k,(:)7a'7 Z, L) _ \/|k|2 — Q2 —}—MUO'Z — i o /|k|2—d)2+i&)aZL 7 (36)
VI — &2 +idoZ + zw

where & = w,/ep, and Z = \/g is the impedance as before.

Proof. Because of linearity, it suffices to analyze the convergence to the zero
solution when the right hand side vanishes. Performing a Fourier transform of system
(3.1) in the y and z direction, the first and the fourth equation provide an algebraic
expression for E, and Hl, Wthh is in agreement with the fact that these are the
characteristic variables associated with the null eigenvalue. Inserting these expressions
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into the remaining Fourier transformed equations, we obtain the first order system

~2 2 .
- kyk= —@ 'tk +iwpo R
E2 0 0 2_ iweto iweto E2 0
r- W=k, —iwpo kyk: ~
o @3 + 0 5 20 iwe+o iweto @3 — 0
T H2 kyk: w”—k, —iwpo 0 0 H2 0
~ W W ~ 0
H3 7'2+k§+z’wua _kykz 0 0 H3
Wi wp
(3.7
The eigenvalues of the matrix in (3.7) and their corresponding eigenvectors are
i kyk- Qg—ki—iwuu
ﬂﬁii).)‘ (iw5k+g)>\
— - —& wpo _ N
/\ng = —\/lk|2 — % +iwpo, vy = (iwe+o)A , Uy = (iwetao)A ,
1 0
0 1
(3.8)
and
__kyk: k2 —&®+iwpo
(iwe+o)A (iwe+o)A
TH - _ &% —k2—iwpo k2
Azq = VIE? — &2 +iwpo, vs = (weto)A y V4= (iwe+o) A
1 0
0 1
(3.9)

where we set A := \/|k|2 — &2 + iwpo. Because of the radiation condition, the solu-

tions of system (3.7) in €, [ = 1,2, are given by

(E3; By; Hy; Hy) = (aavi+a002)e?®™ 0, (B35 BS; Hy; H3) = (Bros+Bava)e ™,
(3.10)

where the coefficients a; and 3; (j = 1,2) are uniquely determined by the transmission

conditions. At the n-th step of the Schwarz algorithm, the coefficients @ = (a1, az)
and B = (81, B2) satisfy the system

a® = A1—1A2e—/\LIBn717 ﬂn — B1—1B2e—/\Lan—17

where the matrices in the iteration are given by

4 = [ —kyk, k2 =@ +ioA+ 0 Z(\ + i)
VTR -2+ 0 Z(\ + i) —kyk, ’ (3.11)
A — kyk. —ky +&* 0N + 0 Z(X — @) ] |
27 2402 HioN + 0 Z(\ — i) kyk. ’

and where B; = A;,l = 1,2. A complete iteration over two steps of the Schwarz
algorithm leads then to

an—i—l — (A1—1A2)2e—2ALan—1, ﬂn—i-l — (A1—1A2)26—2AL137L—17

and we obtain the iteration matrix

|k +220 Z (k2 —k2)+X20> 22 dkyk. Ao Z
— (A-14.\2,-20L _ OFi@)2(A+i@+oZ)? (\Fi@)2(At+io+oZ)? —2AL
R= (Al AQ) € - 4kyk Ao Z \k|4+2)\aZ(kZ—ki)+)\202Z2 € )
OFi@)2(Atio+02)? (A+i@)2(Atio+0Z)2

(3.12)
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Now by the definition of A, we have |k|? = A2 4+ &? — i©0 Z, and thus this matrix can
be re-written in factored form,

A—io\? o 4xoZ k2 kyk. ]
— - I z yhz 2AL
R (A+z‘w) ¢ d+ A+i0)2A+i0+0Z)? | kyk. —Fk; ¢

The convergence factor pg, of the algorithm is given by the square root of the spectral

3 2
radius of the matrix R, whose eigenvalues are (i;:g) e 2 and (%) e 2
Since ¢ > 0, a direct computation shows that the convergence factor is given by the
first eigenvalue, which leads to (3.6), and when o # 0, a straightforward computation
shows that pq(k) < 1 for all Fourier modes k. O

If o = 0, the convergence factor becomes

ﬁm , for |k|? < &2,
e~V |k‘2_°32L, for |k|? > &?.

Peia(k,©,0,Z, L) = (3.13)

In this case, we obtain for |k|> = @? that the convergence factor equals 1, indepen-
dently of the overlap, which indicates that the algorithm has convergence problems
for 0 = 0 when used in the iterative form described here. Convergence can still
be proved in the case of a bounded domain with suitable boundary conditions, see
[12]. In addition in practice, Schwarz methods are often used as preconditioners for
Krylov methods, which can handle isolated problems in the spectrum. We also see
from the convergence factor (3.13) that in the case o = 0 the overlap is necessary
for the convergence of the evanescent modes, |k|> > ©2. Without overlap, L = 0, we
have peq(k) < 1 only for the propagative modes, |k|?> < @2, and peq(k) = 1 when
|k|? > @2

Very similar observations were made in the analysis of optimized Schwarz methods
for the Helmholtz equation in [24]. If one applies to the Helmholtz equation

(A +&*u = f, in Q =R3, (3.14)
with Sommerfeld radiation conditions lim, e 7 (2% —i@u) = 0 and the same two

subdomain decomposition (3.5) the somewhat particular overlapping Schwarz method
(note the unequal treatment in the transmission conditions)

@+Nwy"=f in®  @+A"=f il (315)
uy” =uy" onTyy Gy —i@uy™ = (Op—i@)uy™ " on Ty,

then one obtains precisely the same convergence factor (3.13). The classical overlap-
ping Schwarz algorithm with characteristic transmission conditions (3.2) for Maxwell’s
equations is thus equivalent to the particular overlapping Schwarz method (3.15) for
the Helmholtz problem when ¢ = 0. This particular Schwarz method is a very sim-
ple variant of an optimized Schwarz method, where one has only replaced one of
the Dirichlet transmission conditions with a better one adapted for low frequencies.
There are much better transmission conditions for Helmholtz problems, as shown in
[24]. These conditions are based on approximations of transparent boundary condi-
tions, which we will study in the next subsection for Maxwell’s equations.
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3.3. Transparent Boundary Conditions. To design optimized Schwarz meth-
ods for Maxwell’s equations, we derive now transparent boundary conditions for those
equations, following the approach in [25]. We consider the time harmonic Maxwell’s
equations (3.1) on the domains Q; = (—o0, L) x R? and Q2 = (0,00) x R? with right
hand sides J,2 compactly supported in ); 2, together with the boundary conditions

(Wi +S1w2)(0,y,2) =0, (wl +Swl)(L,y,2)=0, (y,2) €R, (3.16)

and with the Silver-Miiller condition on their unbounded part, where w! and wi
are defined in (2.5), and the operators S;, | = 1,2, are general, pseudo-differential
operators acting in the y and z directions.

THEOREM 3.2. If the operators S;, | = 1,2 have the Fourier symbol

1 k2 —k2—AoZ —2k, k.
A+ i®)(A + i@ + 0Z) —2k, k. B2—k2—AoZ |’

F(S) = (3.17)

where X = \/|k[2 — @2 + i@0 Z, then the solution of Mazwell’s equations (3.1) in Q4 2
with boundary conditions (3.16) coincides with the restriction on Q4 o of the solution
of Mazwell’s equations (3.1) on R3.

Proof. We show that the difference e?, i = 1,2 between the solution of the global
problem and the solution of the restricted problem vanishes. We consider the case
of the second domain, similar computations can be carried out for the first one. The
difference e? satisfies in Q» the homogeneous counterpart of (3.1) with homogeneous
boundary conditions (3.16), and we obtain after a Fourier transform in y and 2

é2 = (Ozl’Ul + ag’llg)e)\w + (a3’03 + 014’04)6_)@,
where the vectors vj, j = 1,..,4, are defined in (3.8) and (3.9). The Silver-Miiller
radiation condition implies that a; = a2 = 0. Using now the boundary condition
(3.16) at (0,y,2), we obtain that the coefficients a;, j = 3,4, satisfy the system of
equations

(A1 + S14y) [ @3 ] =0,
Qy

where A; and A, are defined in (3.11). A direct computation with (3.17) leads to

—kyk. K22 +ioA ] [az] [0
e —kyk. as | 0]

which implies a3 = ay = 0. Thus é> = 0, which concludes the proof. [
REMARK 1. As in the case of the Cauchy-Riemann equations, see [13], the sym-
bols in (3.17) can be written in several, mathematically equivalent forms,

_ 1 _ 1 Ai
F(&) = (%H&)(Hz'&toz)M T |kI2+Ar0z Mid ~
= |k|2i,\az O M = (A—id)(A—id—oZ)M*,
where the matrices M and M are given by
V= k; —k2—)XoZ —2kyk, - k; —k2+XoZ —2kyk,
B —2kyk, k2 — kz —XoZ |’ a —2kyk, K2 — k; +XoZ |’
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This motivates different approximations of the transparent conditions in the context
of optimized Schwarz methods. In the case ¢ = 0 the first form contains a local and a
non-local term, since multiplication with the matrix M corresponds to second order
derivatives in y and z, which are local operations, whereas the term containing the
square-root of |k|? represents a non-local operation. The last form contains two non-
local operations, since the inversion of the matrix M corresponds to an integration.
This integration can however be passed to the other side of the transmission conditions
by multiplication with the matrix M. The second form contains two non-local terms
and a local one. We propose in the next section several approximations based on these
different forms, and analyze the performance of the associated optimized Schwarz
algorithms.

3.4. Optimized Schwarz Algorithms for Maxwell’s Equations. The trans-
parent operators §;, [ = 1,2, introduced in Subsection 3.3, are important in the de-
velopment of optimized Schwarz methods. When used in algorithm (3.3), they lead
to the best possible performance of the method, as we will show in Remark 2. The
transparent operators are however non-local operators, and hence difficult to use in
practice. In optimized Schwarz methods, they are therefore approximated to obtain
practical methods. If one is willing to use second order transmission conditions, then
the only parts of the symbols in (3.17) that need to be approximated are the terms
A = /|k|> — &2 + i®o Z, because the entries of the matrices are polynomials in the
Fourier variables, which correspond to derivatives in the y and z direction.

THEOREM 3.3. For the optimized Schwarz algorithm (3.3) with the two subdomain
decomposition (3.5), we obtain for o = 0 the following results:

1. If the operators S1 and Sa have the Fourier symbol

k2 — k2 —2k,k,

o=FE) =] Sk w22 |
2 y

v € Clhs, ky), 1=1,2, (3.18)

then the convergence factor is

1

_ |/ RP=e i) 10 (RP— a2k in)? 1 (VIEP-6%i2)? o/[kP-oor|”
|(V1kP=52ria)? 11 (v I—a2—ia)? (VR amiz)?

p

(3.19)
2. If the operators S and Sy have the Fourier symbol
-1
kf, — k2 —2kyk,

a=FE) =] Spk k|

v € Clkz,ky), 1=1,2, (3.20)

then the convergence factor is

1
| VIk2=a2+i3)? 61— (/| k|>—@2—i@)? 62— (\/\k|2—w2—zw)2 2/ k|—a2 sz‘
T (Voo 6 (V k5 1i2)? 63— (v Rl tid)® '
(3.21)
3. If the operator Si has the Fourier symbol (3.18) and Sz has the Fourier symbol
(3.20), then the convergence factor is

1/2

1—y1 (V| R|2—22+i2)? 62— (\/|k\2—w2—zw)2 2v/|k|2—a2L

3.22
LV RE—o2-i0)? 62— (VIEIE G2 tid)? (3.22)

p:
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Proof. The convergence results are again based on Fourier analysis, as in Section
3.2. At the n-th step of the Schwarz algorithm, the coefficients @ = (a1, as) and
B = (B1,B2) in (3.10) satisty

o™ = A Age Mg B" = By !B, e M a1, (3.23)
where A\ = \/|k|? — @2, and the matrices 4; and By, | = 1,2, are given by
A=A+ 014s, Ay = Ay + o144, By = A + 094s, By = Ay + 0241,

with 4;, | = 1,2, defined in (3.11). A complete double iteration of the Schwarz
algorithm leads therefore to

ot = A1—1A2BI—1326—2ALan—1, gl — BI—IB2A1—1A26—2,\Lﬂn71_
Notice that the matrices A; and A, verify the relations

MA; = —(A+i@)%As, MA; = —(\—i®)*4,, (3.24)

which allow us to obtain the convergence factor in all three cases:
1. We obtain, using (3.24),

A = Ar+mMAr = (1- (A —i@)’n)Ar,
Ay = Ar+mMA = (1-(A+ i0)%y1) Az,
B = A+ ’YQMAQ = ( (/\ — zw)2'y2)A1,
BQ = Ay + ’YQMAI = (]. - ()\ + lw)z’}’Q)Ag,

and therefore the iteration matrix becomes

-1 7 p-17 1—y1 (A+i@)?) 1 —y2 (A +i@)? -1 —
Ry = A As By ' By = (o ity (A ' A2)2e ™,

and by using the spectral radius of (3.12) the result follows.

2. We get
/_11 = A1 —+ 51M_1A2 = (1 — ()\+iw)2) A17
Ay = Ay +6 M4, = (1- (,\:ST)2 A,
Bl = A1 “+ 62M_1A2 = 1-— _(/\ff&)Q A17
By = Ay+66M 1A = (1 - m) Az,

and thus the iteration matrix is

4
_ A1 i p-lp. — [(Mia) (61=(A=i@)?)(da—(A=i@)?) 14,)2e= AL,
Ry = A7 AsBy By = (AJ—%) (61—(A+;g)2)(52—()\+;g)2)(A Az)%e
and we use again the spectral radius of (3.12) to conclude.
3. The conclusion follows as in the first two cases.
a
REMARK 2. From (8.19), we see that the choice 71 = v2 = 1/(\/|k|? — @2 +i@)?
is optimal, since then p = 0, for all frequencies k. With this choice of v1 and ~ys, the
matrices Ay and Bs actually vanish.



OPTIMIZED SCHWARZ METHODS FOR MAXWELL’S EQUATIONS 11

3.5. A Hierarchy of Optimized Transmission Conditions. We present now
several particular choices of the remaining parameters in the transmission operators S;
in Theorem 3.3 for 0 = 0. To facilitate the use of our results in domain decomposition
codes, we return to the initial notation using the physical parameters w, € and pu.
Case 1: taking v; = 72 = 0 in (3.18), which amounts to enforce the classical charac-

teristic Dirichlet transmission conditions, the convergence factor is

1
2

VIE? = w?ep +iw fEp

In the non-overlapping case, L = 0, this choice ensures convergence only for
propagative modes, and corresponds to the Taylor transmission conditions of
order zero proposed in the seminal paper [11] for the Helmholtz equation.

Case 2: taking v1 = Ik}P ;_z:g (3.18) orm1 = \k\272w2€:t+2iw\/@s in (3.18)

and 0, = |I<:|2 — 2w?ep — 2iw,/Epms in (3.20) with s € C, the convergence

k2_ 2 - 2 2
(s, L ) = (V" @ "”W) ~2VRF-oent

factor is
1
2 2
2 _ 2, _
P2 w,E,lL,L, k ,8) = |k| WEH 5 6_2\/ ‘kP_“JZENL
|k|? —w?ep + s

which is for L = 0 identical to the convergence factor obtained for optimized
non-overlapping Schwarz methods for the Helmholtz equation in [24].

Case 3: taking 7, = 12 = |k\2—2w2a;1¢+2iu\/57s in (3.18) with s € C, the convergence

factor is

k|2
p3(w,E,/L,L,|k|;5) = ‘M—Hw\/_
S pz(w,E,N;La|k|a )

p2(w,e, 1, L, k|, s)

. . 1 s1—iw\/Ep _ 1 i
Case 4: taking v, = k|2 sitiwER? l=1,2in (3.18) or ; = |k |2 —2w2eut-2iw /Els1 m

(3.18) and dy = |k|? — 2w?ep — 2iw,/eusy in (3.20) with s; € C, [ = 1,2, the
convergence factor is

1
2
\/\kP—w ep—s1 \/\kP—w Ep—52 ,—2 |k|2—w2epL

pa(w, e, p, L, k|, s1,82) = VI oepre VIR orepten

which is for L = 0 identical to the convergence factor obtained for a two
sided non-overlapping optimized Schwarz method for the Helmholtz equation
in [22].

. . _ 1 . . _ _
Case 5: taking v = B wrentoim s D (3.18) with s; € C, I = 1,2, the conver

gence factor is

VIk|2—w2ep—iw /en
L = ‘ K= L,
ps(w, €, 1, L, |K|, 51, 52) e pa(w,e, p, L, |k|, 51, 52)

p4(w757ﬂ>L7 |k|7 81752)'

IA

Except for Case 1, all cases use second order transmission conditions, even though we
use only a zeroth order approximation of the non-local operator y/|k|? — w?eu. In the
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cases with parameters, the best choice for the parameters is in general the one that
minimizes the convergence factor for all |k| € K, where K denotes the set of relevant
numerical frequencies. One therefore needs to solve the min-max problems

L,k i =2,3 L,|k j=4,5.
rgelg‘;cnlax pj(w,e,pm, L, k|, s), j = 2,3, sf,rslirécﬁcnﬁx pi(w,e,p, L, k|, s1,82), j = 4,
(3.25)

We can choose K = [(kmin, k) U (ky, kmax)]?, where ki, denotes the smallest fre-
quency relevant to the subdomain, and k4, = % denotes the largest frequency sup-
ported by the numerical grid with mesh size h, and k4 are parameters to be chosen to
exclude the resonance frequencies. If for example the domain (2 is a rectilinear conduc-
tor with homogeneous Dirichlet conditions on the lateral surface, the solution is the
sum of the transverse electric (TE) and transverse magnetic (TM) fields. If the trans-
verse section of the conductor is a rectangle with sides of length a and b, the TE and
TM fields can be expanded in a Fourier series with the harmonics sin(*7%) sin(™f%),

where the relevant frequencies are |k| = my/ ’:—22 + ’bl—f, m,n € NT. The lowest one

is therefore kmin = m\/ % + 7%, and if the mesh size h satisfies h = & = -, where
N and M are the number of grid points in the y and z direction, then the high-

est frequency would be kpax = f’r. The parameters k4 would correspond to the

frequencies closest to w\/ep, i.e. k— = my/ 7:21 + 7,:21 and ky = w4/ TZQZ + bz, where

T/ a_gl + b_21 < wyEp < m/ T2 2+ b2 , but such precise estimates are not necessary if
Krylov acceleration is used, see [24, 22].

The complete mathematical analysis of the min-max problems (3.25) is hard, and
currently open for L > 0. When L = 0, i.e. no overlap, Case 2 and Case 4 are equiva-
lent to the corresponding optimized Schwarz method for the Helmholtz equation, for
which theoretical results are available, see [22]. Here, we use asymptotic analysis and
an equioscillation principle to solve all the min-max problems in (3.25) asymptotically
as the mesh size goes to zero, in order to obtain compact formulas for the best param-
eters to be used in our numerical simulations. This leads to the asymptotic formulas
for the optimized parameters of the form s = p(1 —4) and s; = p;(1 —14), l = 1,2, with
p and p; shown in Table 3.1. These results allow us to compare the performance of
all the optimized Schwarz methods for Maxwell’s equations theoretically: we obtain
a hierarchy of better and better convergence factors starting with Case 1 and ending
with Case 5. In addition, the explicit formulas for the optimized parameters can be
used in order to easily obtain black-box optimized Schwarz methods for Maxwell’s
equations, which would not be possible otherwise. In Section 5, we will verify these
theoretical results numerically.

4. The Case of Time Discretization. If we do not assume the wave to be
periodic in time, the time domain also needs to be discretized. We consider a uniform
time grid with time step At, and use an implicit time integration scheme for the time
derivative in (2.1) of the form

—e BB |yl H"+12+H") s (E+2+E) —Jn,
W + curl (M) =0,

With this time discretization, we have to solve at each time step the system

—0E—-eynE+curl H=J, p/nH+curl E =g, (4.1)
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with overlap, L = h without overlap, L =0
Case p parameters p parameters
1 1- \/ k% —@%h none 1 none
1 1 1
o1 c2 V202 eler)
—_ 6 — D — D — D
2 1 -205h P= ot , 1 VC \{E T Vavh
_ 2 ~o\1,1 _ (i -a*)s _ V2 -a*)2 VO (k] —@°)1%
3 |1-2(ki —@%)shs| p= e 1 Ve Vvh = NN
o8 cd.oh
PYNE Y 1= 771, cd o1 =1
4 1-25C5°hs 2040 1——4hi S
_ < ci _¢g-cn
p2 = PR P2 = Py
2 ~2\2 2 _~2\8 3%
pl_(k-'—7w1)5 2 _~2\% p1—(k+ w)18C
- £ 1 ? — 8 ES )
> 1_2§(k1_w2)%h% (k2 :’55)% ! (k+cz =i (k3 7203’21)450%
— + — +
LGRS Y =
TABLE 3.1

Asymptotic convergence factor and optimal choice of the parameters in the transmission con-
ditions for the five variants of the optimized Schwarz method applied to Mazwell’s equations, when
the mesh parameter h is small, and the mazimum numerical frequency is estimated by kmax = %
Here & = w\/e[i and Cy = min (k3 — &%,&% — k2).

where we have set (E, H) := (E"**, H"™), /= 2, J := J" — /jeE" + 20 E" —
curl H", and g = \/nuH"™ — curl E".

4.1. Classical and Optimized Schwarz Algorithm. Asin the time harmonic
case, we consider the problem (4.1) in a bounded domain 2, with either Dirichlet
conditions on the tangent electric field, or impedance conditions, on 92, in order
to obtain a well posed problem, see [30]. For the two subdomain decomposition in
Figure 3.1, the classical Schwarz algorithm would at each time step then perform the
iteration

~1

—\/ﬁeEl’" +curl HY" —gE'Y™ = J in O
VipH"" +curl BV = g! in O
Bn1 (El,n, Hl,n) — B'm (E2,n—1’ H2,n—1) on 1112 (4 2)
—\/ﬁsEQ’" +curl H>" —gE*>" = j2 in Qo '
VipH +curl E = g2 in Qo
Bn2 (E2,n7H2,n) — an (El,nflel,nfl) on Fgl.

THEOREM 4.1. Let Q = R® be decomposed into Q; = (—oo,L) x R? and
Qy := (0,400) x R?, L > 0. Then, for any initial guess (E**; H"®) € (L?(1)),
(E*%; H*) € (L*(,))®, the classical Schwarz algorithm (4.2) with overlap L > 0,
including the non-overlapping case, is for o > 0 convergent in (L?(921))¢ x (L?(Q2))8,
and the convergence factor is bounded by

L+ 2. /ep —/Ln F
Regq = Y L=V VIV EE 1, (4.3)
L+ 2. /ep+ /Ly

where 1 = NEL.
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Proof. This result follows like in the time harmonic case, simply replacing iw by
/M- The convergence factor after a Fourier transform is

Pel (|k|) _ \/|k|2 + nep + \/ﬁO'Z - 77\/ E/J’e—‘/|k\2+nsu,+\/ﬁ0'ZL
clta - 0 ’
VIE? +nep+ /moZ +n\/ep

and the method thus converges for all Fourier modes. To conclude the proof, it suffices
to take the maximum of the convergence factor over |k|. O

The preceding theorem shows that the classical Schwarz algorithm with Dirichlet
transmission conditions applied to the time-discretized Maxwell’s equations is conver-
gent for all frequencies |k|, and that the overlap is not necessary to ensure convergence.
The classical Schwarz algorithm corresponds in the case 0 = 0 to a simple optimized
Schwarz algorithm for the positive definite Helmholtz equation

(71— A= f, (4.4)

and from [20] we know that there are much better transmission conditions for such
problems. We thus propose at each time step the new algorithm

~1

—/MeEY" + cwtl H'" — o E™™ = J in
VIRH"" + curl V" = gt . in Oy
(B, + S1Bn,)(EY" HY™) = (Bp, + S1Bn,)(E>" 1, H>" ) on Ty,
— B 4 curl HY — oE2" = J in 0,
VipH>" +curl E*" = g? in Qs
(Bn, + S2Bn, ) (B>, H*™) = (Bp, + S2Bn,)(EY™ 1, HY™ 1) on Ty.
(4.5)

Now Theorem 3.2, Remark 1, Theorem 3.3 and all the cases in subsection 3.5 hold
unchanged for the time discretized case of Maxwell’s equations upon replacing iw by
/1, so we do not restate these results here. The nature of the associated min-max
problems (3.25) however changes fundamentally, and the optimization parameters are
nowreal,s =p € Rand s; = p; € R, [ = 1,2. For cases 2 and 4 a complete analysis is
available, see [20]. Using a lengthy asymptotic analysis again, we complete the results
for the other cases, and show in Table 4.1 the asymptotically optimal parameters to
use in the time domain case. Again we obtain an entire hierarchy of optimized Schwarz
methods, with better and better convergence factors from Case 1 up to Case 5. While
for the time harmonic equations Case 2 and 3, and Case 4 and 5 were asymptotically
comparable, here all cases are asymptotically different. It is also interesting to note
a relationship of the optimized parameters for the time domain case with the one
for the Cauchy-Riemann equations, see [13]: Case 2 and 4 are identical, since the
corresponding convergence rates in the two cases are the same, while for Case 1, 3
and 5 there is a small difference in the constants, which is due to the additional low
frequency term in the Maxwell case. The difference appears to be systematic, the
convergence factor of the Maxwell case is obtained from the convergence factor of the
Cauchy-Riemann case by replacing h by 2h, while for the optimized parameters one
has to multiply by 2 in addition to the replacement of i by 2h.

5. Numerical Experiments. We discretize the equations using a finite volume
method on a staggered grid, which leads to the Yee scheme in the interior. For the first
two test cases we consider the propagation in vacuum with e = y =1 and 0 = 0. We
first show the two dimensional problem of transverse electric waves, since this allows
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with overlap, L = h without overlap, L =0
Case p parameters p parameters
3 .1 —
1 [1-2%73vh none 1—2Yp none
9 |1 — o2kt _ 27553 1 _ 4iivh _ Ot
! PT o, Ry P
3 [1-2%78nt p=21 1- 28 p3 p=2070
C_3 h3
1 2 1 3 _1 1_3
4.1 ,1 N5 n5 278 3 1 20478 C4ans8
4 1—257’10h5p1:2§h%,p2:167%’1% 1—\/0_"% h1 plzx/_h%ﬂ ,p2 = \/5}?%
2 1 11 1 4 1 2 3
71,1 2373 2376 2710 4 1 205710 205710
5 |1 —2enizhse = 227 = 2°70° 1] — 20 5 = Ui = Ui
n n Wi » P2 2 I D1 L3 y D2 2
TABLE 4.1

Asymptotic convergence factor and optimal choice of the parameters in the transmission con-
ditions for the five variants of the optimized Schwarz method applied to the time domain Mazwell’s
equations, when the mesh parameter h is small, and the mazimum numerical frequency is estimated
by kmax = % Here 1 = nept.

us to compute with finer mesh sizes and thus to illustrate our asymptotic results by
numerical experiments. We simulate directly the error equations, f = 0, on a uniform
mesh with mesh parameter h, and we use a random initial guess to ensure that all the
frequency components are present in the iteration. We then show the full 3d case, first
for a model problem, and then for the application of heating a chicken in a microwave
oven.

5.1. Two-dimensional case. We consider the transverse electric waves prob-
lem (TE) in the plane (z,y,0). There is no more dependence on z and the components
Es3, Hy H, are identically zero. The problem obtained is formally identical to the
three-dimensional case (2.3), if u = (E1, E», H3)!, and the matrix Ny becomes

N,= ("%
v Uz Y

and the matrices G, G, and G are

Ne Ne Ny
sz (Nt m), Gy: (Né y) and Gy = (Nt )

All the analytical results remain valid, we only need to replace |k| by |k,|, and the
corresponding quantities in the optimized parameters for both time-harmonic and
time-discretized solutions. We solve Maxwell’s equations on the unit square Q =
(0,1)? with a zeroth order approximation of the absorbing boundary conditions on
90. The domain  is decomposed into the two subdomains Q; = (0,3) x (0,1) and
Qs = (a,1) x (0,1), where 0 < o < 8 < 1, and therefore the overlap is L = § — a,
and we consider both decompositions with and without overlap.

In the time-harmonic case, the frequency @ = 2x is chosen such that the rule
of thumb of 10 points per wavelength is not violated. Table 5.1 shows the iteration
count to achieve a relative residual reduction of 10~¢ for all Schwarz algorithms we
considered, in the overlapping and non-overlapping case. The results are presented in
the form itg(itgar), where its denotes the iteration number for the iterative version
of the algorithm and itgps the iteration number for the accelerated version using
GMRES, and a dash means no convergence.
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with overlap, L = h without overlap, L =0
h 1/32 1/64 | 1/128 | 1/256 1/32 1/64 | 1/128 | 1/256
Case 1 | 27(21) | 47(27) | 72(33) | 118(45) | -(73) | -(100) | -(138) | -(181)
Case 2 | 19(14) | 19(15) | 22(17) | 26(19) | 41(26) | 57(34) | 79(40) | 111(47)
Case 3 | 13(13) | 14(14) | 17(17) | 21(18) | 41(23) | 56(25) | 80(28) | 115(35)
Case 4 | 19(14) | 21(16) | 24(18) | 27(19) | 31(24) | 35(28) | 41(30) | 47(33)
Case 5 | 13(13) | 15(15) | 17(18) | 19(19) | 56(26) | 64(30) | 76(32) | 76(35)

TABLE 5.1
Number of iterations in the 2d time harmonic case to attain a relative residual reduction of
10~ for different transmission conditions and different mesh sizes.

F1G. 5.1. Asymptotics for the overlapping (left) and non-overlapping (right) cases for the time
harmonic equations.

In Figure 5.1 we show the results we obtained in a graph, together with the
expected asymptotics. Both on the left in the overlapping case and on the right in
the non-overlapping one, the asymptotics agree quite well, except for the classical case
with overlap, where the algorithm performs better than predicted by the asymptotic
analysis. In the case of the Cauchy-Riemann equations [13], it was observed that
certain discretizations of the hyperbolic system can introduce higher order terms in
the discretized transmission conditions, which can improve the convergence behavior,
as we observe it here, an issue that merits further study.

For the time discretized Maxwell’s equations we choose 7 = 1. Table 5.2 shows
the iteration count for one time step to achieve a relative residual reduction of 106
for all Schwarz algorithms we considered, in the overlapping and non-overlapping case.
We observe that the classical non-overlapping algorithm converges only very slowly,
the need of optimized methods is evident here.

In Figure 5.2 we show the results we obtained in a graph, together with the
expected asymptotics, and there is very good agreement.

5.2. Three-dimensional case. We solve now Maxwell’s equations on the unit
cube Q = (0,1)%. We decompose the domain into two subdomains ; = (0, 8) x (0,1)?
and Qy = (a,1) x (0,1)%, with 0 < @« < 8 < 1, and L = 3 — « as before. In the
time-harmonic case, we chose the frequency & = 27/3 to satisfy the rule of thumb of
10 points per wavelength. Table 5.3 shows the iteration count to achieve a relative
residual reduction of 107¢ for all Schwarz algorithms we considered, both in the
overlapping and non-overlapping case.
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with overlap, L = h without overlap, L =0

h 1/16 1/32 1/64 | 1/128 1/16 1/32 1/64 1/128
Case 1 | 17(10) | 25(12) | 35(14) | 47(17) | 282(21) | 574(27) | 1122(33) | 2244(41)
Case 2 | 14(8) 16(9) | 20(11) | 25(12) | 40(14) | 59(18) 79(21) 111(24)
Case 3 | 12(8) 14(9) 16(9) 18(9) 14(9) 17(11) 20(12) 25(14)
Case 4 | 12(9) | 14(10) | 16(12) | 19(13) | 21(13) | 27(15) 33(17) 39(19)
Case 5 | 12(8) 14(9) | 15(10) | 17(10) | 14(9) 17(11) 17(12) 19(13)

TABLE 5.2

Number of iterations in the 2d time discretized case to attain a relative residual reduction of
10~ for different transmission conditions and different mesh sizes.

erlapping algorithm: time~domain case

Asymptotic convergence for the ove
T

Asymptotic for the pping case

10°F ~—

/

Fi1G. 5.2. Asymptotics for the overlapping (left) and non-overlapping (right) cases for the time
discretized equations.

The results for the time discretized Maxwell’s equations where 7j = 1 are shown
in Table 5.4.

5.3. A three-dimensional application: chicken in a micro-wave oven.
We apply now the previous principles to derive an efficient domain-decomposition
method based on optimized interface conditions to solve a realistic application: heat-
ing up a chicken in a micro-wave oven, see Figure 5.3 on the left. The computational
domain is now given by the heating cavity of a Whirlpool Talent Combi 4 microwave
oven, 2 = [0,0.32] x [0,0.36] x [0,0.20] meters. We impose metallic boundary condi-
tions (which means a null tangential electric field) on all faces except on the right of the
oven, where the components of the electric field are the dominant TE10 mode gener-
ated by the magnetron on a small rectangle of dimensions 0.08 x 0.04. The electric and
electromagnetic properties of the media are now non-constant in the computational
domain: inside the chicken, we have an electric permittivity ¢ = 4.43 - 10711 Farade 5
the conductivity is o = 3 - 10~ 11 Semens whoreas for the air & = 8,85 - 10~ 12Fards 5nq
o = 0%=222 The magnetic permeablhty is the same for both, u = 47 - 10_7He“ry and
the frequency is given by w = 27 - 2.45 GHz.

We decompose the microwave oven into 2 X 2 x 2 = 8 subdomains of equal size
on a grid with mesh size h = 0.005, which allows us to solve this problem on a PC,
where a direct factorization would not have been possible any more. This resolution is
enough for the wavelength of the microwave, and also for most of the geometry of the
chicken, except maybe for the drumstick tips. The real part of the magnetic field of
the solution is shown in Figure 5.3 on the right, and the intensity (Euclidian norm) of
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with overlap, L = h without overlap, L =0

h 1/8 1/16 1/30 1/8 1/16 1/30
Case 1 | 19(13) | 29(17) | 46(22) | -(93) | -(140) | -(202)
Case 2 | 14(12) | 19(14) | 23(16) | 48(29) | 69(36) | 98(48)
Case 3 | 16(12) | 18(14) | 21(16) | 65(35) | 80(42) | 166(55)
Case 4 | 15(13) | 19(15) | 22(17) | 38(28) | 60(33) | 104(39)
Case 5 | 16(13) | 18(14) | 21(16) | 70(36) | 80(42) | 176(55)

TABLE 5.3

Number of iterations in the 3d time harmonic case to attain a relative residual reduction of
10~ for different transmission conditions and different mesh sizes.

with overlap, L = h without overlap, L =0
h 1/8 1/16 1/30 1/8 1/16 1/30
Case 1 | 14(8) | 18(10) | 25(12) | 246(32) | 467(43) | 859(70)
Case 2 | 13(8) | 18(10) | 22(11) | 46(24) | 65(37) | 87(65)
Case 3 | 12(8) | 15(9) | 17(10) | 47(23) | 59(28) | 73(60)
Case 4 | 14(9) | 17(10) | 19(11) | 48(21) | 57(33) | 66(63)
Case 5 | 12(8) | 14(9) | 16(10) | 46(24) | 53(29) | 60(60)

TABLE 5.4
Number of iterations in the 3d time discretized case to attain a relative residual reduction of
1076 for different transmission conditions and different mesh sizes.

the electric and magnetic field in the oven are shown in Figure 5.4 in three dimensions.
Two-dimensional cross sections of the solution are shown in Figure 5.5, where we show
in each row on the left the electric and on the right the magnetic field intensity. One
can see from these computational experiments why a turntable is so important in a
microwave oven: there are hot spots, where the intensity of the standing wave is high
in the chicken, and other areas, where there is very little heating happening. Only a
turntable can lead to an approximately even heating of the chicken.

6. Conclusions. We have shown that for Maxwell’s equations, a classical Schwarz
algorithm using characteristic Dirichlet transmission conditions between subdomains
has the same convergence behavior as a simple optimized Schwarz method applied to
the Helmholtz equation, with a low frequency approximation of the optimal trans-
mission conditions. This relation allowed us to develop easily an entire hierarchy of
optimized overlapping and non-overlapping Schwarz methods with better transmis-
sion conditions than the characteristic ones for Maxwell’s equations. We illustrated
with numerical experiments that the new algorithms converge much more rapidly
than the classical one, and that such algorithms can be effectively used to compute
an approximate solution for a large scale application. This latter problem contains a
positive conductivity, variable coefficients and multiple subdomains, a case which is
not covered by our current analysis. Nevertheless, the algorithm performs well with
the coefficients derived from the zero conductivity, constant coefficient case. We are
currently studying the optimization problem with non-zero conductivity, for which
the equivalence with the Helmholtz equation does not hold any longer.

The equivalence between systems and scalar equations has already been instru-
mental for the development of optimized Schwarz algorithms for the Cauchy-Riemann
equations, and will almost certainly play an important role for other cases. For exam-
ple, it was observed in [15] that for Euler’s equation, the classical Schwarz algorithm
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Fic. 5.3. Chicken in a Whirlpool Talent Combi 4 micro-wave oven on the left, and real part of

the magnetic field in the cooking cavity while heating the chicken on the right.

6000

5000

4000

3000

2000

1000

F1G. 5.4. Chicken heating in a microwave oven: electric field intensity on the left, and magnetic

field intensity on the right.

with characteristic information exchange at the interfaces is convergent, even without
overlap. To relate systems of partial differential equations to scalar ones, the algebraic
tool of the Smith factorization [40] has proved to be useful, see [16].
Acknowledgment: The second author acknowledges the support of the Swiss Na-
tional Science Foundation grants 200020-117577/1 and 200021-107988.
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